Science.gov

Sample records for pressure vapor-liquid equilibria

  1. Vapor-liquid equilibria for the hexane + hexadecane and hexane + 1-hexadecanol systems at elevated temperatures and pressures

    SciTech Connect

    Joyce, P.C.; Thies, M.C.

    1998-09-01

    Fischer-Tropsch (F-T) synthesis produces a broad range of products (known as waxes) consisting primarily of paraffins, olefins, and alcohols with carbon numbers ranging from 1 up to about 200. Slurry bubble column (SBC) reactors are receiving increasing attention as the preferred way to carry out the F-T reaction. However, the separation of the reactor catalyst from the wax product is an issue that has yet to be satisfactorily resolved. Vapor and liquid equilibrium compositions have been measured for the hexane + hexadecane and the hexane + 1-hexadecanol systems at temperatures from 472.0 K to 623.0 K and pressures from 6.2 bar to 46.4 bar. A continuous-flow apparatus was used both to minimize possible thermal degradation and to accurately measure the lower hexadecanol concentrations in the vapor phase. Mixture critical pressures and compositions were also measured. Results indicate that the addition of the hydroxyl group to the C{sub 16} hydrocarbon backbone significantly affects the phase behavior with hexane.

  2. Isobaric vapor-liquid equilibria in the system methyl propanoate + n-butyl alcohol

    SciTech Connect

    Susial, P.; Ortega, J. . Lab. de Termodinamica y Fisicoquimica)

    1993-10-01

    Isobaric vapor-liquid equilibria were determined at 74.66, 101.32, and 127.99 kPa for binary mixtures containing methyl propanoate + n-butyl alcohol by using a dynamic still with vapor and liquid circulation. No azeotrope was detected. The data were found to be thermodynamically consistent according to the point to point test. Application of the group-contribution models ASOG, UNIFAC, and modified UNIFAC to the activity coefficients at the three pressures studied gives average errors of less than 10%, 11%, and 3%, respectively.

  3. Vapor Liquid Equilibria of Hydrofluorocarbons Using Dispersion-Corrected and Nonlocal Density Functionals.

    PubMed

    Goel, Himanshu; Butler, Charles L; Windom, Zachary W; Rai, Neeraj

    2016-07-12

    Recent developments in dispersion corrected and nonlocal density functionals are aimed at accurately capturing dispersion interactions, a key shortcoming of local and semilocal approximations of density functional theory. These functionals have shown significant promise for dimers and small clusters of molecules as well as crystalline materials. However, their efficacy for predicting vapor liquid equilibria is largely unexplored. In this work, we examine the accuracy of dispersion-corrected and nonlocal van der Waals functionals by computing the vapor liquid coexistence curves (VLCCs) of hydrofluoromethanes. Our results indicate that the PBE-D3 functional performs significantly better in predicting saturated liquid densities than the rVV10 functional. With the PBE-D3 functional, we also find that as the number of fluorine atoms increase in the molecule, the accuracy of saturated liquid density prediction improves as well. All the functionals significantly underpredict the saturated vapor densities, which also result in an underprediction of saturated vapor pressure of all compounds. Despite the differences in the bulk liquid densities, the local microstructures of the liquid CFH3 and CF2H2 are relatively insensitive to the density functional employed. For CF3H, however, rVV10 predicts slightly more structured liquid than the PBE-D3 functional. PMID:27295451

  4. Vapor-Liquid Equilibria Using the Gibbs Energy and the Common Tangent Plane Criterion

    ERIC Educational Resources Information Center

    Olaya, Maria del Mar; Reyes-Labarta, Juan A.; Serrano, Maria Dolores; Marcilla, Antonio

    2010-01-01

    Phase thermodynamics is often perceived as a difficult subject with which many students never become fully comfortable. The Gibbsian geometrical framework can help students to gain a better understanding of phase equilibria. An exercise to interpret the vapor-liquid equilibrium of a binary azeotropic mixture, using the equilibrium condition based…

  5. Vapor-liquid equilibria for solutions of dendritic polymers

    SciTech Connect

    Mio, C.; Kiritsov, S.; Thio, Y.; Brafman, R.; Prausnitz, J. |; Hawker, C.; Malmstroem, E.E.

    1998-07-01

    Vapor-liquid equilibrium data were obtained for dendritic polymer solutions using a classic isothermal gravimetric-sorption method; the amount of solvent absorbed by the dendrimer was measured at increasing solvent activity. The polymers were polyamidoamine (PAMAM) dendrimers of generations 1, 2, and 4 and benzyl ether dendrimers with different end groups (aromatic rings, dodecyl chains, methyl ester groups, perfluoroalkyl chains) of generations 2 to 6, and two series of benzyl ether linear polymers that are analogues of the dendrimers. Solvents were acetone, acetonitrile, chloroform, cyclohexane, methanol, n-pentane, n-propylamine, tetrahydrofuran, and toluene. The temperature range was 35 to 89 C. The amount of solvent absorbed by the dendrimers depends, sometimes strongly, on the kind of dendrimer end groups. The relation between solvent absorption and dendrimer generation number, or molecular weight, depends on the solvent-dendrimer system and on temperature. Solvent absorption in linear polymers is below that for corresponding dendrimers, all or in part owing to crystallinity in the linear polymers.

  6. A model of vapor-liquid equilibria for acid gas-alkanolamine-water systems

    SciTech Connect

    Austgen, D.M. Jr.

    1989-01-01

    A physico-chemical model was developed for representing liquid phase chemical equilibria and vapor-liquid (phase) equilibria of H{sub 2}SCO{sub 2}-alkanolamine-water systems. The equilibrium composition of the liquid phase is determined by minimization of the Gibbs free energy. Activity coefficients are represented with the Electrolyte-NRTL equation treating both long-range electrostatic interactions and short-range binary interactions between liquid phase species. Vapor phase fugacity coefficients are calculated using the Redlich-Kwong-Soave Equation of State. Adjustable parameters of the model, binary interaction parameters and carbamate stability constants, were fitted on published binary system alkanolamine-water and ternary system (H{sub 2}S-alkanolamine-water, CO{sub 2}-alkanolamine-water) VLE data. The Data Regression System of ASPEN PLUS, based upon the Maximum Likelihood Principle, was used to estimate adjustable parameters. Ternary system measurements used in parameter estimation ranged in temperature from 25 to 120{degree}C in alkanolamine concentration from 1 to 5 M, in acid gas loading from 0 to 1.5 moles per mole alkanolamine, and in acid gas partial pressure from 0.1 to 1,000 kPa. Maximum likelihood estimates of ternary system H{sub 2} or CO{sub 2} equilibrium partial pressures and liquid phase concentrations were found to be in good agreement with measurements for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), diglycolamine (DGA), and methyldiethanolamine (MDEA) indicating that the model successfully represents ternary system data. The model was extended to represent CO{sub 2} solubility in aqueous mixtures of MDEA with MEA or DEA. The solubility was measured at 40 and 80{degree}C over a wide range of CO{sub 2} partial pressures. These measurements were used to estimate additional binary parameters of the mixed solvent systems.

  7. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system

    USGS Publications Warehouse

    Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao

    2008-01-01

    Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.

  8. Vapor-liquid equilibria in the systems of toluene/aniline, aniline/naphthalene, and naphthalene/quinoline

    SciTech Connect

    Lee, C.H.; Mohamed, R.S.; Holder, G.D. )

    1992-04-01

    This paper reports on vapor-liquid equilibria for the aniline/naphthalene, toluene/aniline, and naphthalene/quinoline systems that have been determined at 0-1500 kPa and 490-623 K by using a static equilibrium cell. The data can be accurately correlated with the modified Peng-Robinson equation of state by using density-dependent mixing rules. The binary interaction parameters and correction factors for the equation of state are reported at each isotherm. The presence of coal-derived solids in these binary systems did not influence any of the binary bubble pressures.

  9. Isothermal vapor-liquid equilibria for the binary systems of chlorine with difluoromethane, chlorodifluoromethane, and dichlorodifluoromethane at 10 C

    SciTech Connect

    Kang, Y.W.; Cho, S.Y.; Nah, I.W.

    1998-07-01

    Isothermal vapor-liquid equilibria for difluoromethane + chlorine, chlorodifluoromethane + chlorine, and dichlorodifluoromethane + chlorine have been measured. The experimental data are correlated with the Peng-Robinson equation of state, and the relevant parameters are presented. All of the binary systems form minimum boiling homogeneous azeotropes at the experimental conditions. The correlation of the vapor-liquid equilibria was found to be in good agreement with the experimental data.

  10. Vapor-liquid equilibria for alcohol + alcohol + sodium iodide at 298.15 K

    SciTech Connect

    Yamamoto, H.; Fukase, K.; Shibata, J.

    1996-09-01

    Estimation and correlation of phase equilibria data in chemical engineering are indispensable for the design of equilibrium separation processes. If a salt, being completely nonvolatile, is added to the solvent mixture, the relative volatility generally changes; this is known as the salting-in or -out effect on vapor-liquid equilibria. Vapor-liquid equilibria for methanol + propan-1-ol + NaI, methanol + propan-2-ol + NaI, ethanol + propan-1-ol + NaI, and ethanol + propan-2-ol + NaI systems were measured at 298.15 K using a static method. The apparatus was tested by comparing results for ethanol + water and ethanol + water + CaCl{sub 2} with literature results. Results were tested for thermodynamic consistency by Herinton`s area test and point test. NaI exerted a salting-in effect on all binary alcohol solutions and the order of the salt effect of NaI was methanol + ethanol < ethanol + propan-1-ol < ethanol + propan-2-ol < methanol + propan-1-ol < methanol + propan-2-ol. Hala`s model was applied for the correlation of four alcohol + alcohol + salt systems using observed data. Calculated {beta} values in Hala`s equation were between 2.8 and 3.9 for the four alcohol + alcohol + NaI systems.

  11. Vapor-liquid equilibria for copolymer+solvent systems: Effect of intramolecular repulsion

    SciTech Connect

    Gupta, R.B.; Prausnitz, J.M.

    1995-03-01

    Role of intramolecular interactions in blend miscibility is well documented for polymer+copolymer mixtures. Some copolymer+polymer mixtures are miscible although their corresponding homopolymers are not miscible; for example, over a range of acrylonitrile content, styrene/acrylonitrile copolymers are miscible with poly(methyl methacrylate) but neither polystyrene nor polyacrylonitrile is miscible with poly(methyl methacrylate). Similarly, over a composition range, butadiene/acrylonitrile copolymers are miscible with poly(vinyl chloride) while none of the binary combinations of the homopolymers [polybutadiene, polyacrylonitrile, and poly(vinyl chloride)] are miscible. This behavior has been attributed to ``intramolecular repulsion`` between unlike copolymer segments. We have observed similar behavior in vapor-liquid equilibria (VLE) of copolymer+solvent systems. We find that acrylonitrile/butadiene copolymers have higher affinity for acetonitrile solvent than do polyacrylonitrile or polybutadiene. We attribute this non-intuitive behavior to ``intramolecular repulsion`` between unlike segments of the copolymer. This repulsive interaction is weakened when acetonitrile molecules are in the vicinity of unlike copolymer segments, favoring copolymer+solvent miscibility. We find similar behavior when acetonitrile is replaced by methyl ethyl ketone. To best knowledge, this effect has not been reported previously for VLE. We have obtained VLE data for mixtures containing a solvent and a copolymer as a function of copolymer composition. It appears that, at a given solvent partial pressure, there may be copolymer composition that yields maximum absorption of the solvent. This highly non-ideal VLE phase behavior may be useful for optimum design of a membrane for a separation process.

  12. A cubic equation of state with group contributions for the calculation of vapor-liquid equilibria of mixtures of hydrofluorocarbons and lubricant oils

    SciTech Connect

    Elvassore, N.; Bertucco, A.; Wahlstroem, A.

    1999-05-01

    A method for calculating the vapor-liquid equilibria of mixtures between hydrofluorocarbons and lubricant oils is presented. A cubic equation of state is used containing three parameters: the attractive on, a, the volume parameter, b, and the number of external degrees of freedom per molecule, c. To allow calculation of the parameters of the high molecular weight components, whose critical constants and vapor pressure are unknown, a group-contribution approach is developed for a, b, and c. The extension to mixtures is achieved by applying Huron-Vidal mixing rules. A modified Uniquac model is used to evaluate infinite-pressure activity coefficients. With the proposed method, the density of pure heavy components (such as n-hexadecane and pentaerythritol esters) is predicted as a function of temperature. Vapor-liquid equilibria calculations are presented for binary mixtures between several hydrofluorocarbons and pentaerythritol esters or hexadecane; a comparison with the results obtained by available models is also outlined.

  13. Vapor-liquid equilibria of alternative refrigerants by molecular dynamics simulations

    SciTech Connect

    Lisal, M.; Aim, K.; Budinsky, R.; Vacek, V.

    1999-01-01

    Alternative refrigerants HFC-152a (CHF{sub 2}CH{sub 3}), HFC-143a (CF{sub 3}CH{sub 3}), HFC-134a (CF{sub 3}CH{sub 2}F), and HCFC-142b (CF{sub 2}ClCH{sub 3}) are modeled as a dipolar two-center Lennard-Jones fluid. Potential parameters of the model are fitted to the critical temperature and vapor-liquid equilibrium data. The required vapor-liquid equilibrium data of the model fluid are computed by the Gibbs-Duhem integration for molecular elongations L = 0.505 and 0.67, and dipole moments {mu}{sup *2} = 0, 2, 4, 5, 6, 7, and 8. Critical properties of the model fluid are estimated from the law of rectilinear diameter and critical scaling relation. The vapor-liquid equilibrium data are presented by Wagner equations. Comparison of the vapor-liquid equilibrium data based on the dipolar two-center Lennard-Jones fluid with data from the REFPROP database shows good-to-excellent agreement for coexisting densities and vapor pressure.

  14. Vapor-Liquid Equilibria for Some Concentrated Aqueous PolymerSolutions

    SciTech Connect

    Striolo, Alberto; Prausnitz, John M.

    1999-07-01

    Vapor-liquid-equilibrium data were obtained for binary aqueous solutions of six water-soluble linear polymers in the range 70-95 C. A classical gravimetric sorption method was used to measure the amount of solvent absorbed as a function of vapor-phase water pressure. Polymers studied were polyvinylpyrrolidone, polyethyleneoxide, polyvinylalcohol, hydroxyethylcellulose, polyethylenimine, polymethylvinylether. The experimental data were reduced with Hino's lattice model that distinguished the interactions due to London dispersion forces and those due to hydrogen bonding.

  15. Vapor-liquid equilibria for the systems difluoromethane + chlorodifluoromethane, difluoromethane + dichlorodifluoromethane, and difluoromethane + chloromethane at 10.0 C

    SciTech Connect

    Kang, Y.W.; Chung, K.Y.

    1996-05-01

    Isothermal vapor-liquid equilibria for the three binary systems (difluoromethane + chlorodifluoromethane, difluoromethane + dichlorodifluoromethane, and difluoromethane + chloromethane) have been measured at 10.0 C. The experimental data for the binary systems are correlated with the Wilson equation and the relevant parameters are presented. The difluoromethane + dichlorodifluoromethane system forms a minimum boiling azeotrope, but the others do not.

  16. Vapor-liquid equilibria for the systems difluoromethane + hydrogen fluoride, dichlorodifluoromethane + hydrogen fluoride, and chlorine + hydrogen fluoride

    SciTech Connect

    Kang, Y.W.

    1998-01-01

    Isothermal vapor-liquid equilibria for difluoromethane + hydrogen fluoride, dichlorodifluoromethane + hydrogen fluoride, and chlorine + hydrogen fluoride have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. The binary system difluoromethane + hydrogen fluoride forms a homogeneous liquid phase, and the others form minimum boiling heterogeneous azeotropes at the experimental conditions.

  17. Vapor-liquid equilibria for the binary difluoromethane (R-32) + propane (R-290) mixture

    SciTech Connect

    Higashi, Y. . Dept. of Mechanical Engineering)

    1999-03-01

    The vapor-liquid equilibrium of the mixture composed of difluoromethane (R-32) and propane (R-290) was studied in the temperature range between 273.15 and 313.15 K. The experimental uncertainties of temperature, pressure, and composition measurements were estimated to be within [+-]10 mK, [+-]3 kPa, and [+-]0.4 mol%, respectively. Comparisons between the present data and available experimental data were made using the Helmholz free energy mixture model (HMM) adopted in the thermophysical properties program package, REFPOP 6.0, as a baseline. In addition, the existence of an azeotrope and the determination of new adjustable parameters for HMM for the R-32 + R-290 mixture are discussed.

  18. Vapor-liquid equilibria for the binary difluoromethane (R-32) + propane (R-290) mixture

    SciTech Connect

    Higashi, Y.

    1999-03-01

    The vapor-liquid equilibrium of the mixture composed of difluoromethane (R-32) and propane (R-290) was studied in the temperature range between 273.15 and 313.15 K. The experimental uncertainties of temperature, pressure, and composition measurements were estimated to be within {+-}10 mK, {+-}3 kPa, and {+-}0.4 mol%, respectively. Comparisons between the present data and available experimental data were made using the Helmholz free energy mixture model (HMM) adopted in the thermophysical properties program package, REFPOP 6.0, as a baseline. In addition, the existence of an azeotrope and the determination of new adjustable parameters for HMM for the R-32 + R-290 mixture are discussed.

  19. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles

    SciTech Connect

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M

    2004-10-20

    Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.

  20. Vapor-liquid equilibria for the difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a) system

    SciTech Connect

    Chung, E.Y.; Kim, M.S.

    1997-11-01

    Isothermal vapor-liquid equilibrium data of the binary mixture of difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a) have been measured in the temperature range between 263 K and 323 K. The experiment was carried out with a circulation type apparatus with the measurement of temperature, pressure, and compositions of the liquid and vapor phases. The experimental data were correlated with the Peng-Robinson and Redlich-Kwong-Soave equations of state, and comparison with literature results has been made.

  1. Vapor-liquid equilibria of copolymer + solvent and homopolymer + solvent binaries: New experimental data and their correlation

    SciTech Connect

    Gupta, R.B.; Prausnitz, J.M.

    1995-07-01

    Sixty-four isothermal data sets for vapor-liquid equilibria (VLE) for polymer + solvent binaries have been obtained using a gravimetric sorption technique, in the range of 23.5--80 C. Solvents studied were acetone, acetonitrile, 1-butanol, 1,2-dichloroethane, chloroform, cyclohexane, hexane, methanol, octane, pentane, and toluene. Copolymers studied were poly(acrylonitrile-co-butadiene), poly(styrene-co-acrylonitrile), poly(styrene-co-butadiene), poly(styrene-co-butyl methacrylate), poly(vinyl acetate-co-ethylene), and poly(vinyl acetate-co-vinyl chloride). All copolymers were random copolymers. Some homopolymers were also studied: polyacrylonitrile, polybutadiene, poly(butyl methacrylate), poly(ethylene oxide), polystyrene, and poly(vinyl acetate). The composition of the copolymer may have a surprising effect on VLE. Normally, deviation from ideal behavior lies between those of the constituent homopolymers, according to the copolymer composition, as observed for cyclohexane + poly(ethylene-co-vinyl acetate) and chloroform + poly(styrene-co-butyl methacrylate). However, the strong nonideal behavior observed for systems containing hydrocarbons and poly(butadiene-co-acrylonitrile) shows that the effect of acrylonitrile is in excess of that expected form the copolymer composition. The perturbed hard-sphere chain (PHSC) equation of state was used to represent VLE of the copolymer solutions studied here.

  2. Vapor-liquid equilibria for methanol + ethanol + calcium chloride, + ammonium iodide, and + sodium iodide at 298.15 K

    SciTech Connect

    Yamamoto, Hideki; Terano, Tamotsu; Nishi, Yasuharu; Tokunaga, Junji

    1995-03-01

    Recently, an alternative extractive distillation using a salt as extractive solvent has attracted attention. Vapor-liquid equilibria for methanol + ethanol + CaCl{sub 2}, + NH{sub 4}I, and + NaI were measured at 298.15 {+-} 0.05 K using a static method. The data obtained in this apparatus were confirmed by comparison with the literature data of ethanol + water and ethanol + water + CaCl{sub 2} and tested for thermodynamic consistency. Any salt used in this work exerted salting-in effect on the methanol + ethanol system, the magnitude of which was CaCl{sub 2} > NaI > NH{sub 4}I. The observed data were correlated by use of Hala`s equation, and {beta} was determined for each system. The calculated result of each system reproduced experimental data within an accuracy of {+-}2.12% in vapor-phase mole fraction. From the results of comparison of {beta} obtained in this work with the kind of salt additive for methanol + ethanol and ethanol + water systems, it was found that {beta} depended mainly on the kind of salt but not on the kind of solvent mixture. The application of Hala`s model for an alcohol + alcohol + salt system was confirmed at a temperature of 298.15 K.

  3. Isothermal vapor-liquid equilibria for the systems 1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride

    SciTech Connect

    Kang, Y.W.; Lee, Y.Y.

    1997-03-01

    Isothermal vapor-liquid equilibria for the three binary systems (1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride) have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. All of the systems form minimum boiling heterogeneous azeotropes.

  4. Vapor-liquid equilibria for 1,1,1,2-tetrafluoroethane + 1-chloro-1,2,2,2-tetrafluoroethane and 1-chloro-1,2,2,2-tetrafluoroethane + 1-chloro-1,1-difluoroethane systems

    SciTech Connect

    Lee, J.; Lee, J.; Kim, H.

    1996-07-01

    Isothermal vapor-liquid equilibria were determined for two binary mixtures of refrigerants with a circulation type apparatus. The 1,1,1,2-tetrafluoroethane (HFC-134a) + 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) system was studied at 296.45, 302.25, and 307.25 K. The 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) + 1-chloro-1,1-difluoroethane (HCFC-142b) system was studied at 298.15 and 312.15 K. At each temperature, the pressure and vapor and liquid compositions were measured. Results were correlated with the Peng-Robinson equation of state.

  5. Isothermal vapor-liquid equilibria for 1,1,1,2-tetrafluoroethane + propane and propane + 1,1,1,-trifluoroethane at 283.18 K

    SciTech Connect

    Stryjek, R.; Bobbo, S.; Camporese, R.

    1998-03-01

    Isothermal vapor-liquid equilibria (VLE) for the binary systems 1,1,1,2-tetrafluoroethane (R134a) + propane (R290) and propane + 1,1,1-trifluoroethane (R143a) were measured at 283.18 K using a recirculation apparatus in which the vapor phase was forced through the liquid. The phase composition at equilibrium was measured by gas chromatography, calibrating its response using gravimetrically prepared mixtures. The data were correlated using the Carnahan-Starling-De Santis and Peng-Robinson equations of state. The authors found positive homoazeotropes for R134a (1) + R290 (2) at a pressure P = 1,000.5 kPa and a composition x{sub 1} = 0.386, and for R290 (1) + R143a (2) at P = 796 kPa and x{sub 1} = 0.363. For the R134a + R290 there was a valid consistency with the values reported in the literature.

  6. Vapor-liquid equilibria in the system ethanethiol + methyldiethanolamine + water in the presence of acid gases

    SciTech Connect

    Jou, F.Y.; Mather, A.E.; Schmidt, K.A.G.; Ng, H.J.

    1999-07-01

    This investigation was carried out to determine the solubility of ethanethiol in a methyldiethanolamine (MDEA) solution. Measurements were made in the absence of acid gases, H{sub 2}H and CO{sub 2}, with individual acid gases present, and with mixtures of acid gases present. Experiments with an aqueous solution of 50 mass % MDEA were carried out at 40 and 70 C. The total pressure for most of the experiments was 6,890 kPa, which was maintained by methane. Partial pressures of ethanethiol ranged from 0.2 to 15 kPa.

  7. Vapor-liquid equilibria for the system benzene-thiophene-methanol

    SciTech Connect

    Triday, J.O.; Rodriguez, P.

    1985-01-01

    Isothermal vapor pressure data over the whole range of composition were obtained for the system benzene-thiophene-methanol. Data were taken at temperatures of 35, 40, and 45 /sup 0/C by using a static equilibrium cell. The systems benzene-methanol and thiophene-methanol are highly nonideal, while the system benzene-thiophene shows a very small deviation from ideality. The models suggested by Wilson and by Renon and Prausnitz (NRTL) and the modified equation of Abrams and Prausnitz (UNIQUAC) were used in the reduction of data. Physical parameters of these equations obtained from the binary data were used to predict the ternary system. The Wilson equation gives the best fit for the binary as well as the ternary data. Also, this equation gives the best prediction for the ternary system.

  8. Isobaric vapor-liquid equilibria in the systems methyl 1,1-dimethylethyl ether + hexane and + heptane

    SciTech Connect

    Wisniak, J.; Magen, E.; Shachar, M.; Zeroni, I.; Segura, H.; Reich, R.

    1997-03-01

    The vapor-liquid equilibrium at 94 kPa has been determined for the binary systems of methyl 1,1-dimethylethyl ether (MTBE) with hexane and with heptane. Both systems deviate slightly from ideal behavior, can be described as regular solutions, and do not present an azeotrope. The activity coefficients and boiling point of the solutions were correlated with its composition by the Redlich-Kister, Wohl, Wilson, UNIQUAC, NRTL, and Wisniak-Tamir equations.

  9. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  10. Vapor-liquid equilibria of coal-derived liquids; 3: Binary systems with tetralin at 200 mmHg

    SciTech Connect

    Blanco, B.; Beltran, S.; Cabezas, J.L. . Dept. of Chemical Engineering); Coca, J. . Dept. of Chemical Engineering)

    1994-01-01

    Isobaric vapor-liquid equilibrium data are reported for binary systems of tetralin with p-xylene, [gamma]-picoline, piperidine, and pyridine; all systems were measured at 26.66 kPa (200 mmHg) with a recirculation still. Liquid-phase activity coefficients were correlated using the Van Laar, Wilson, NRTL, and UNIQUAC equations. Vapor-phase nonidealities were found negligible under the experimental conditions of this work, and deviations of the liquid phase from the ideal behavior, as described by Raoult's law, were found to be slightly positive for all the systems.

  11. Vapor-liquid equilibria for nitric acid-water and plutonium nitrate-nitric acid-water solutions

    SciTech Connect

    Maimoni, A.

    1980-01-01

    The liquid-vapor equilibrium data for nitric acid and nitric acid-plutnonium nitrate-water solutions were examined to develop correlations covering the range of conditions encountered in nuclear fuel reprocessing. The scanty available data for plutonium nitrate solutions are of poor quality but allow an order of magnitude estimate to be made. A formal thermodynamic analysis was attempted initially but was not successful due to the poor quality of the data as well as the complex chemical equilibria involved in the nitric acid and in the plutonium nitrate solutions. Thus, while there was no difficulty in correlating activity coefficients for nitric acid solutions over relatively narrow temperature ranges, attempts to extend the correlations over the range 25/sup 0/C to the boiling point were not successful. The available data were then analyzed using empirical correlations from which normal boiling points and relative volatilities can be obtained over the concentration ranges 0 to 700 g/l Pu, 0 to 13 M nitric acid. Activity coefficients are required, however, if estimates of individual component vapor pressures are needed. The required ternary activity coefficients can be approximated from the correlations.

  12. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    SciTech Connect

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  13. Vapor-liquid equilibria in the systems of n-decane/tetralin, n-hexadecane/tetralin, n-decan/1-methylnaphthalene, and 1-methylnaphthalene/tetralin

    SciTech Connect

    Lee, C.H.; Dempsey, D.M.; Mohamed, R.S.; Holder, G.D. )

    1992-04-01

    Vapor-liquid equilibrium data for the binary systems of n-decane/tetralin, n-hexadecane/tetralin, n-decane/1-methyinaphthalene, and 1-methyinaphthalene/tetralin were measured at a low to moderate pressure (0 - 1123 kPa) by using a static equilibrium cell. The binary P-x data were isothermally correlated using the modified Peng-Robinson equation of state to describe both vapor and liquid phases at 473.15, 533.15, and 573.15 K. In this paper interaction parameters for density-dependent mixing rules are reported at each isotherm.

  14. Vapor-liquid equilibria for difluoromethane + dichloromethane at 303.2 and 313.2 K and 1,1-difluoroethane + vinyl chloride at 303.2 and 323.2 K

    SciTech Connect

    Lim, J.S.; Lee, Y.W.; Lee, Y.Y.

    1997-05-01

    Isothermal vapor-liquid equilibria for difluoromethane (HFC-32) + dichloromethane at 303.2 K and 313.2 K and 1,1-difluoroethane (HFC-152a) + vinyl chloride at 303.2 K and 323.2 K were measured in a circulation-type apparatus. The experimental data were correlated with the Peng-Robinson equation of state using the Wong and Sandler mixing rule, and the relevant parameters are presented.

  15. All-atom force field for the prediction of vapor-liquid equilibria and interfacial properties of HFA134a.

    PubMed

    Peguin, Robson P S; Kamath, Ganesh; Potoff, Jeffrey J; da Rocha, Sandro R P

    2009-01-01

    A new all-atom force field capable of accurately predicting the bulk and interfacial properties of 1,1,1,2-tetrafluoroethane (HFA134a) is reported. Parameterization of several force fields with different initial charge configurations from ab initio calculations was performed using the histogram reweighting method and Monte Carlo simulations in the grand canonical ensemble. The 12-6 Lennard-Jones well depth and diameter for the different HFA134a models were determined by fitting the simulation results to pure-component vapor-equilibrium data. Initial screening of the force fields was achieved by comparing the calculated and experimental bulk properties. The surface tension of pure HFA134a served as an additional screening property to help discriminate an optimum model. The proposed model reproduces the experimental saturated liquid and vapor densities, and the vapor pressure for HFA134a within average errors of 0.7%, 4.4%, and 3.1%, respectively. Critical density, temperature, vapor pressure, normal boiling point, and heat of vaporization at 298 K are also in good agreement with experimental data with errors of 0.2%, 0.1%, 6.2%, 0%, 2.2%, respectively. The calculated surface tension is found to be within the experimental range of 7.7-8.1 mN.m(-1). The dipole moment of the different models was found to significantly affect the prediction of the vapor pressure and surface tension. The ability of the HFA134a models in predicting the interfacial tension against water is also discussed. The results presented here are relevant in the development of technologies where the more environmentally friendly HFA134a is utilized as a substitute to the ozone depleting chlorofluorocarbon propellants. PMID:19086791

  16. Vapor-liquid phase equilibria of potassium chloride-water mixtures: Equation-of-state representation for KCl-H2O and NaCl-H2O

    USGS Publications Warehouse

    Hovey, J.K.; Pitzer, Kenneth S.; Tanger, J.C., IV; Bischoff, J.L.; Rosenbauer, R.J.

    1990-01-01

    Measurements of isothermal vapor-liquid compositions for KCl-H2O as a function of pressure are reported. An equation of state, which was originally proposed by Pitzer and was improved and used by Tanger and Pitzer to fit the vapor-liquid coexistence surface for NaCl-H2O, has been used for representation of the KCl-H2O system from 300 to 410??C. Improved parameters are also reported for NaCl-H2O from 300 to 500??C. ?? 1990 American Chemical Society.

  17. Vapor-liquid equilibria for hydrogen fluoride + difluoromethane, + 1,1,1,2-tetrafluoroethane, and + 1-chloro-1,2,2,2-tetrafluoromethane at 283.3 and 298.2 K

    SciTech Connect

    Lee, J.; Kim, H.; Lim, J.S.; Kim, J.D.; Lee, Y.Y.

    1996-01-01

    The production of refrigerants involves the separation of multicomponent mixtures containing hydrogen fluoride, hydrogen chloride, and various chlorinated and fluorinated hydrocarbons. Therefore, it is essential to known the phase behavior of these mixtures. Isothermal vapor-liquid equilibria for hydrogen fluoride (HF) + difluoromethane (HFC-32), HF + 1,1,1,2-tetrafluoroethane (HFC-134a), and HF + 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) were measured by the P-T-x method at 283.3 and 298.2 K. Vapor compositions were calculated from these results. Among these systems, the HF + HFC-134a and HF + HCFC-124 systems exhibit minimum boiling azeotropes at both temperatures.

  18. Vapor-liquid equilibria for the systems composed of 1-chloro-1,1-difluoroethane, 1,1-dichloro-1-fluoroethane, and 1,1,1-trichloroethane at 50.1 C

    SciTech Connect

    Kang, Y.W.; Lee, Y.Y.

    1996-03-01

    Isothermal vapor-liquid equilibria for the three binary systems 1-chloro-1,1-difluoroethane + 1,1-dichloro-1-fluoroethane, 1-chloro-1,1-difluoroethane + 1,1,1-trichloroethane, and 1,1-dichloro-1-fluoroethane + 1,1,1-trichloroethane and the ternary system 1-chloro-1,1-difluoromethane + 1,1-dichloro-1-fluoroethane + 1,1,1-trichloroethane have been measured at 50.1 C. The experimental data for the binary systems are correlated with the Peng-Robinson equation of state, and the relevant parameters are presented. The predicted results for the ternary system were found to be in good agreement with the experimental data.

  19. Densities and vapor-liquid equilibria in binary mixtures formed by propyl methanoate + ethanol, + propan-1-ol, and + butan-1-ol at 160.0 kPa

    SciTech Connect

    Falcon, J.; Ortega, J.; Gonzalez, E.

    1996-07-01

    Densities and excess volumes were determined at 298.15 K for propyl methanoate + ethanol, + propan-1-ol, and + butan-1-ol. The results of those quantities were then correlated to get the concentrations of vapor-liquid equilibrium obtained isobarically at 160 kPa for the same mixtures. Two mixtures show azeotropes: for propyl methanoate (1) + ethanol (2), x{sub 1} = 0.443 at T = 358.7 K; and for propyl methanoate (1) + propan-1-ol (2), x{sub 1} = 0.762 at T = 368.2 K. The mixtures are thermodynamically consistent, and the predictions made using several group-contribution models are satisfactory.

  20. Vapor-liquid Equilibria and Polarization Behavior of the GCP Water Model: Gaussian Charge-on-spring versus Dipole Self-consistent Field approaches to induced polarization

    DOE PAGESBeta

    Chialvo, Ariel A; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-01-01

    We implemented the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. For that purpose we adapted the recently developed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantitiesmore » from the actual GCP water model.« less

  1. Experimental investigation of the phase equilibria in the carbon dioxide-propane-3 M MDEA system

    SciTech Connect

    Jou, F.Y.; Mather, A.E.; Otto, F.D.; Carroll, J.J.

    1995-07-01

    The treating of liquefied petroleum gas (LPG) to remove carbon dioxide and hydrogen sulfide using aqueous alkanolamine solutions is an important aspect of gas processing. One of the amines used in the natural gas industry is methyldiethanolamine (MDEA). Measurements of the phase equilibria in the carbon dioxide-propane-3 M MDEA system have been made at 25 and 40 C at pressures up to 15.5 MPa. Vapor-liquid, liquid-liquid, and vapor-liquid-liquid equilibria were determined. The vapor-liquid equilibrium data were compared with the model of Deshmukh and Mather.

  2. Monte Carlo Simulation of Vapor-Liquid Equilibria for Perfluoropropane (R-218) and 2,3,3,3-Tetrafluoropropene (R-1234yf)

    NASA Astrophysics Data System (ADS)

    Paulechka, E.; Kazakov, A.; Frenkel, M.

    2010-03-01

    Thermophysical properties of two refrigerants (perfluoropropane and 2,3,3,3-tetrafluoropropene) were computed using Monte Carlo methods with the OPLS-AA (Optimized Potentials for Liquid Simulations-All Atoms) forcefield. Original OPLS-AA parameters were extended to include an F atom attached to a double bond in 2,3,3,3-tetrafluoropropene and modified to produce the correct stationary geometry for this compound. The results of the simulations for critical parameters, saturated densities, saturated pressures, liquid densities, and vaporization enthalpies are in good agreement with available experimental data and equation of state models. Systematic deviations between the experimental data and the predicted values were observed for liquid densities and saturated pressures, suggesting that further refinement of forcefield parameters that can lead to better accuracy may be possible.

  3. Vapor-liquid phase separator permeability results

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1981-01-01

    Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.

  4. Vapor-Liquid Equilibrium Data Bibliography, Supplement IV

    SciTech Connect

    Wichterle, I.; Linek, J.; Hala, E.

    1985-01-01

    This is the fourth supplement of the publication Vapor-Liquid Equilibrium Data Bibliography. This recent work covers the literature on systems where vapor-liquid equilibria have been measured and reported from January 1982 through to December 1984. Since the Bibliography was published in 1972 the total number of references has reached almost 8,500. Workers in the chemical industry who have to deal with problems of separation processes will find the publication particularly useful. It should help them in the development, design and rational operation of distillation equipments because it indicates where to find the necessary data.

  5. Extended fluid models: Pressure tensor effects and equilibria

    SciTech Connect

    Cerri, S. S.; Henri, P.; Califano, F.; Pegoraro, F.; Del Sarto, D.; Faganello, M.

    2013-11-15

    We consider the use of “extended fluid models” as a viable alternative to computationally demanding kinetic simulations in order to manage the global large scale evolution of a collisionless plasma while accounting for the main effects that come into play when spatial micro-scales of the order of the ion inertial scale d{sub i} and of the thermal ion Larmor radius ρ{sub i} are formed. We present an extended two-fluid model that retains finite Larmor radius (FLR) corrections to the ion pressure tensor while electron inertia terms and heat fluxes are neglected. Within this model we calculate analytic FLR plasma equilibria in the presence of a shear flow and elucidate the role of the magnetic field asymmetry. Using a Hybrid Vlasov code, we show that these analytic equilibria offer a significant improvement with respect to conventional magnetohydrodynamic shear-flow equilibria when initializing kinetic simulations.

  6. Pressure, Chaotic Magnetic Fields and MHD Equilibria

    SciTech Connect

    S.R. Hudson & N. Nakajima

    2010-05-12

    Analyzes of plasma behavior often begin with a description of the ideal magnetohydrodynamic equilibrium, this being the simplest model capable of approximating macroscopic force balance. Ideal force balance is when the pressure gradient is supported by the Lorentz force, ∇p = j x B. We discuss the implications of allowing for a chaotic magnetic field on the solutions to this equation. We argue that the solutions are pathological and not suitable for numerical calculations. If the pressure and magnetic Field are continuous, the only non-trivial solutions have an uncountable infinity of discontinuities in the pressure gradient and current. The problems arise from the arbitrarily small length scales in the structure of the field, and the consequence of ideal force balance that the pressure is constant along the Field-lines, B • ∇p = 0. A simple method to ameliorate the singularities is to include a small but Finite perpendicular diffusion. A self-consistent set of equilibrium equations is described and some algorithmic approaches aimed at solving these equations are discussed.

  7. Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure

    NASA Astrophysics Data System (ADS)

    Throumoulopoulos, George; Kuiroukidis, Apostolos; Tasso, Henri

    2015-11-01

    By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e. the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis. This work has received funding from (a) the National Programme for the Controlled Thermonuclear Fusion, Hellenic Republic, (b) Euratom research and training programme 2014-2018 under grant agreement No 633053.

  8. Vlasov tokamak equilibria with sheared toroidal flow and anisotropic pressure

    SciTech Connect

    Kuiroukidis, Ap; Throumoulopoulos, G. N.; Tasso, H.

    2015-08-15

    By choosing appropriate deformed Maxwellian ion and electron distribution functions depending on the two particle constants of motion, i.e., the energy and toroidal angular momentum, we reduce the Vlasov axisymmetric equilibrium problem for quasineutral plasmas to a transcendental Grad-Shafranov-like equation. This equation is then solved numerically under the Dirichlet boundary condition for an analytically prescribed boundary possessing a lower X-point to construct tokamak equilibria with toroidal sheared ion flow and anisotropic pressure. Depending on the deformation of the distribution functions, these steady states can have toroidal current densities either peaked on the magnetic axis or hollow. These two kinds of equilibria may be regarded as a bifurcation in connection with symmetry properties of the distribution functions on the magnetic axis.

  9. Axisymmetric equilibria with pressure anisotropy and plasma flow

    NASA Astrophysics Data System (ADS)

    Throumoulopoulos, George; Evangelias, Achilleas

    2015-11-01

    A generalised Grad-Shafranov equation that governs the equilibrium of an axisymmetric toroidal plasma with anisotropic pressure and incompressible flow of arbitrary direction is derived. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a free boundary and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy and plasma flow on these equilibria are examined. It turns out that depending on the maximum value and the shape of an anisotropy function, the anisotropy can act either paramagnetically or diamagnetically. Also, in most of the cases considered both the anisotropy and the flow have stronger effects on NSTX equilibria than on ITER ones. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from (a) the National Programme for the Controlled Thermonuclear Fusion, Hellenic Republic, (b) Euratom research and training programme 2014-2018.

  10. Axisymmetric equilibria with pressure anisotropy and plasma flow

    NASA Astrophysics Data System (ADS)

    Evangelias, A.; Throumoulopoulos, G. N.

    2016-04-01

    A generalised Grad-Shafranov equation that governs the equilibrium of an axisymmetric toroidal plasma with anisotropic pressure and incompressible flow of arbitrary direction is derived. This equation includes six free surface functions and recovers known Grad-Shafranov-like equations in the literature as well as the usual static, isotropic one. The form of the generalised equation indicates that pressure anisotropy and flow act additively on equilibrium. In addition, two sets of analytical solutions, an extended Solovev one with a plasma reaching the separatrix and an extended Hernegger-Maschke one for a plasma surrounded by a fixed boundary possessing an X-point, are constructed, particularly in relevance to the ITER and NSTX tokamaks. Furthermore, the impacts both of pressure anisotropy and plasma flow on these equilibria are examined. It turns out that depending on the maximum value and the shape of an anisotropy function, the anisotropy can act either paramagnetically or diamagnetically. Also, in most of the cases considered both the anisotropy and the flow have stronger effects on NSTX equilibria than on ITER ones.

  11. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    NASA Astrophysics Data System (ADS)

    Schur, W. W.

    2004-01-01

    Excess in skin material of a pneumatic envelope beyond what is required for minimum enclosure of a gas bubble is a necessary but by no means sufficient condition for the existence of multiple equilibrium configurations for that pneumatic envelope. The very design of structurally efficient super-pressure balloons of the pumpkin shape type requires such excess. Undesired stable equilibria in pumpkin shape balloons have been observed on experimental pumpkin shape balloons. These configurations contain regions with stress levels far higher than those predicted for the cyclically symmetric design configuration under maximum pressurization. Successful designs of pumpkin shape super-pressure balloons do not allow such undesired stable equilibria under full pressurization. This work documents efforts made so far and describes efforts still underway by the National Aeronautics and Space Administration's Balloon Program Office to arrive on guidance on the design of pumpkin shape super-pressure balloons that guarantee full and proper deployment.

  12. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.

    1985-01-01

    A study of porous plug use for vapor-liquid phase seperation in spaceborne cryogenic systems was conducted. The three main topics addressed were: (1) the usefulness of porous media in designs that call for variable areas and flow rates; (2) the possibility of prediction of main parameters of porous plugs for a given material; and (3) prediction of all parameters of the plug, including secondary parameters.

  13. Boundary conditions on the vapor liquid interface at strong condensation

    NASA Astrophysics Data System (ADS)

    Kryukov, A. P.; Levashov, V. Yu.

    2016-07-01

    The problem of the formulation of boundary conditions on the vapor-liquid interface is considered. The different approaches to this problem and their difficulties are discussed. Usually, a quasi-equilibrium scheme is used. At sufficiently large deviations from thermodynamic equilibrium, a molecular kinetics approach should be used for the description of the vapor flow at condensation. The formulation of the boundary conditions at the vapor liquid interface to solve the Boltzmann kinetic equation for the distribution of molecules by velocity is a sophisticated problem. It appears that molecular dynamics simulation (MDS) can be used to provide this solution at the interface. The specific problems occur in the realization of MDS on large time and space scales. Some of these problems, and a hierarchy of continuum, kinetic and molecular dynamic time scales, are discussed in the paper. A description of strong condensation at the kinetic level is presented for the steady one-dimensional problem. A formula is provided for the calculation of the limiting condensation coefficient. It is shown that as the condensation coefficient approaches the limiting value, the vapor pressure rises significantly. The results of the corresponding calculations for the Mach number and temperature at different vapor flows are demonstrated. As a result of the application of the molecular kinetics method and molecular dynamics simulation to the problem of the determination of argon condensation coefficients in the range of temperatures of vapor and liquid ratio 1.0-4.0, it is concluded that the condensation coefficient is close to unity.

  14. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    NASA Technical Reports Server (NTRS)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  15. Pressure tensor in the presence of velocity shear: Stationary solutions and self-consistent equilibria

    SciTech Connect

    Cerri, S. S.; Pegoraro, F.; Califano, F.; Jenko, F.

    2014-11-15

    Observations and numerical simulations of laboratory and space plasmas in almost collisionless regimes reveal anisotropic and non-gyrotropic particle distribution functions. We investigate how such states can persist in the presence of a sheared flow. We focus our attention on the pressure tensor equation in a magnetized plasma and derive analytical self-consistent plasma equilibria which exhibit a novel asymmetry with respect to the magnetic field direction. These results are relevant for investigating, within fluid models that retain the full pressure tensor dynamics, plasma configurations where a background shear flow is present.

  16. Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes

    NASA Astrophysics Data System (ADS)

    Mick, Jason R.; Soroush Barhaghi, Mohammad; Jackman, Brock; Rushaidat, Kamel; Schwiebert, Loren; Potoff, Jeffrey J.

    2015-09-01

    Transferrable force fields, based on n-6 Mie potentials, are presented for noble gases. By tuning the repulsive exponent, ni, it is possible to simultaneously reproduce experimental saturated liquid densities and vapor pressures with high accuracy, from the normal boiling point to the critical point. Vapor-liquid coexistence curves for pure fluids are calculated using histogram reweighting Monte Carlo simulations in the grand canonical ensemble. For all noble gases, saturated liquid densities and vapor pressures are reproduced to within 1% and 4% of experiment, respectively. Radial distribution functions, extracted from NVT and NPT Monte Carlo simulations, are in similarly excellent agreement with experimental data. The transferability of the optimized force fields is assessed through calculations of binary mixture vapor-liquid equilibria. These mixtures include argon + krypton, krypton + xenon, methane + krypton, methane + xenon, krypton + ethane, and xenon + ethane. For all mixtures, excellent agreement with experiment is achieved without the introduction of any binary interaction parameters or multi-body interactions.

  17. Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes.

    PubMed

    Mick, Jason R; Soroush Barhaghi, Mohammad; Jackman, Brock; Rushaidat, Kamel; Schwiebert, Loren; Potoff, Jeffrey J

    2015-09-21

    Transferrable force fields, based on n-6 Mie potentials, are presented for noble gases. By tuning the repulsive exponent, ni, it is possible to simultaneously reproduce experimental saturated liquid densities and vapor pressures with high accuracy, from the normal boiling point to the critical point. Vapor-liquid coexistence curves for pure fluids are calculated using histogram reweighting Monte Carlo simulations in the grand canonical ensemble. For all noble gases, saturated liquid densities and vapor pressures are reproduced to within 1% and 4% of experiment, respectively. Radial distribution functions, extracted from NVT and NPT Monte Carlo simulations, are in similarly excellent agreement with experimental data. The transferability of the optimized force fields is assessed through calculations of binary mixture vapor-liquid equilibria. These mixtures include argon + krypton, krypton + xenon, methane + krypton, methane + xenon, krypton + ethane, and xenon + ethane. For all mixtures, excellent agreement with experiment is achieved without the introduction of any binary interaction parameters or multi-body interactions. PMID:26395716

  18. High-beta equilibria in tokamaks with pressure anisotropy and toroidal flow

    NASA Astrophysics Data System (ADS)

    Layden, B.; Hole, M. J.; Ridden-Harper, R.

    2015-12-01

    We extend previous analytical calculations of 2D high-β equilibria in order-unity aspect ratio tokamaks with toroidal flow to include pressure anisotropy, assuming guiding-center theory for a bi-Maxwellian plasma and the ideal MHD Ohm's law. Equilibrium solutions are obtained in the core region (which fills most of the plasma volume) and the boundary layer. We find that pressure anisotropy with p∥>p⊥ ( p∥Ωmin ) were previously found to suppress the field-free region (diamagnetic hole) that exists in static isotropic high-β equilibria. We find that all equilibrium solutions with pressure anisotropy suppress the diamagnetic hole. For the static case with a volume-averaged toroidal beta of 70%, plasmas with max (p∥/p⊥)>α1=1.07 have equilibrium solutions. We find that α1 decreases with increasing toroidal flow speed, and above the flow threshold Ωmin we find α1=1 , so that all p∥>p⊥ plasmas have equilibrium solutions. On the other hand, for p∥p⊥ , while the converse is true for p∥

  19. Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa

    USGS Publications Warehouse

    Marion, G.M.; Kargel, J.S.; Catling, D.C.; Jakubowski, S.D.

    2005-01-01

    solutions at subzero temperatures, rather than the supercooled water model. Model-derived estimates of mixed salt solution densities and chemical equilibria as a function of pressure are in reasonably good agreement with experimental measurements. To demonstrate the usefulness of this low-temperature, high-pressure model, we examined two hypothetical cases for Europa. Case 1 dealt with the ice cover of Europa, where we asked the question: How far above the putative ocean in the ice layer could we expect to find thermodynamically stable brine pockets that could serve as habitats for life? For a hypothetical nonconvecting 20 km icy shell, this potential life zone only extends 2.8 km into the icy shell before the eutectic is reached. For the case of a nonconvecting icy shell, the cold surface of Europa precludes stable aqueous phases (habitats for life) anywhere near the surface. Case 2 compared chemical equilibria at 1 bar (based on previous work) with a more realistic 1460 bars of pressure at the base of a 100 km Europan ocean. A pressure of 1460 bars, compared to 1 bar, caused a 12 K decrease in the temperature at which ice first formed and a 11 K increase in the temperature at which MgSO4. 12H2O first formed. Remarkably, there was only a 1.2 K decrease in the eutectic temperatures between 1 and 1460 bars of pressure. Chemical systems and their response to pressure depend, ultimately, on the volumetric properties of individual constituents, which makes every system response highly individualistic. Copyright ?? 2005 Elsevier Ltd.

  20. Effects of pressure on aqueous chemical equilibria at subzero temperatures with applications to Europa

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Kargel, Jeffrey S.; Catling, David C.; Jakubowski, Scott D.

    2005-01-01

    solutions at subzero temperatures, rather than the supercooled water model. Model-derived estimates of mixed salt solution densities and chemical equilibria as a function of pressure are in reasonably good agreement with experimental measurements. To demonstrate the usefulness of this low-temperature, high-pressure model, we examined two hypothetical cases for Europa. Case 1 dealt with the ice cover of Europa, where we asked the question: How far above the putative ocean in the ice layer could we expect to find thermodynamically stable brine pockets that could serve as habitats for life? For a hypothetical nonconvecting 20 km icy shell, this potential life zone only extends 2.8 km into the icy shell before the eutectic is reached. For the case of a nonconvecting icy shell, the cold surface of Europa precludes stable aqueous phases (habitats for life) anywhere near the surface. Case 2 compared chemical equilibria at 1 bar (based on previous work) with a more realistic 1460 bars of pressure at the base of a 100 km Europan ocean. A pressure of 1460 bars, compared to 1 bar, caused a 12 K decrease in the temperature at which ice first formed and a 11 K increase in the temperature at which MgSO 4·12H 2O first formed. Remarkably, there was only a 1.2 K decrease in the eutectic temperatures between 1 and 1460 bars of pressure. Chemical systems and their response to pressure depend, ultimately, on the volumetric properties of individual constituents, which makes every system response highly individualistic.

  1. Sintered plug flow modulation of a vapor-liquid phase separator for a helium II vessel

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Chuang, C.; Kamioka, Y.; Lee, J. M.; Yuan, S. W. K.

    1984-01-01

    Presented is a system for modulation of a superfluid (helium II) flow in a vapor-liquid phase separator, for use in cryogenic storage tanks in future space missions. The system consists of a semicircular mechanically operated shutter, downstream of the separator plug, rotated at 0.1 rpm to control the operational surface area of the separator. The mass flow rate was varied from 10 to 22 mg/s. Pressure gradients across the plug are also discussed.

  2. High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins

    PubMed Central

    McCoy, John; Hubbell, Wayne L.

    2011-01-01

    Identifying equilibrium conformational exchange and characterizing conformational substates is essential for elucidating mechanisms of function in proteins. Site-directed spin labeling has previously been employed to detect conformational changes triggered by some event, but verifying conformational exchange at equilibrium is more challenging. Conformational exchange (microsecond–millisecond) is slow on the EPR time scale, and this proves to be an advantage in directly revealing the presence of multiple substates as distinguishable components in the EPR spectrum, allowing the direct determination of equilibrium constants and free energy differences. However, rotameric exchange of the spin label side chain can also give rise to multiple components in the EPR spectrum. Using spin-labeled mutants of T4 lysozyme, it is shown that high-pressure EPR can be used to: (i) demonstrate equilibrium between spectrally resolved states, (ii) aid in distinguishing conformational from rotameric exchange as the origin of the resolved states, and (iii) determine the relative partial molar volume () and isothermal compressibility () of conformational substates in two-component equilibria from the pressure dependence of the equilibrium constant. These volumetric properties provide insight into the structure of the substates. Finally, the pressure dependence of internal side-chain motion is interpreted in terms of volume fluctuations on the nanosecond time scale, the magnitude of which may reflect local backbone flexibility. PMID:21205903

  3. State-of-the-art review of phase equilibria

    SciTech Connect

    Prausnitz, J.M.

    1980-03-01

    High-pressure phase-equilibrium calculations using an equation of state are more sensitive to the mixing rules than to details in the effect of density or temperature on pressure. Attention must be given to the problem of how to extend equations of state to mixtures. One possible technique is provided by perturbation theory; another by superposition of chemical equilibria. At low or moderate pressures, vapor-phase corrections are often important. When specific intermolecular forces produce formation of molecular aggregates, strong deviations from ideal-gas behavior can be significant even at pressures well below 1 bar. When vapor-liquid equilibrium data are reduced using conventional expressions for the excess Gibbs energy, the resulting binary parameters tend to be partially correlated, it difficult, but no impossible, to calculate ternary liquid-liquid equilibria using binary parameters only. New models for calculating properties of liquid-phase mixtures mist allow for changes in free volume to give consideration to the effect of mixing on changes in rotational and vibrational degrees of freedom. Liquid-phase volumetric effects are also important in describing the solubilities of gases in solvent mixtures. Therefore, future liquid-phase models should incorporate a liquid-phase equation of state, either of the van der Waals type or, perhaps, as given by the direct-correlation function theory of liquids.

  4. Out-of-plane equilibria in the symmetric collinear restricted four-body problem with radiation pressure

    NASA Astrophysics Data System (ADS)

    Arribas, M.; Abad, A.; Elipe, A.; Palacios, M.

    2016-08-01

    In this paper, a three dimensional case of the restricted four-body problem with radiation pressure is considered. The three primaries are supposed to be in a collinear central configuration where both masses and both radiation forces of peripheral bodies are equal. In addition to the analysis of the equilibria in the planar problem introduced in a previous paper by the authors, we present here a complete study of position and stability of the equilibrium points out of {Oxy} plane.

  5. A "User-Friendly" Program for Vapor-Liquid Equilibrium.

    ERIC Educational Resources Information Center

    Da Silva, Francisco A.; And Others

    1991-01-01

    Described is a computer software package suitable for teaching and research in the area of multicomponent vapor-liquid equilibrium. This program, which has a complete database, can accomplish phase-equilibrium calculations using various models and graph the results. (KR)

  6. Combination downflow-upflow vapor-liquid separator

    DOEpatents

    Kidwell, John H.; Prueter, William P.; Eaton, Andrew M.

    1987-03-10

    An improved vapor-liquid separator having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end.

  7. Design of a high-pressure ebulliometer, with vapor-liquid equilibrium results for the systems CHF2 Cl + CF3 CH3 and CF3 CH2 F + CH2F2

    NASA Astrophysics Data System (ADS)

    Weber, L. A.; Silva, A. M.

    1996-07-01

    We describe the design and operation of a new high-pressure metal ebulliometer which can operate at pressures to at least 3 MPa in the range 220 400 K. Infinite-dilution activity coefficients are presented for the system CHF2Cl + CF3-CH, at 275 K and for the system CF3-CH2F + CH2F2, at 260, 230, and 300 K. The Wilson activity coellicient model and a virial coefficient model are applied to these systems, and the phase equilibrium conditions are calculated. The results are shown to agree well with predicted and with published measured values. The excess enthalpy is calculated and compared with results from a Peng Robinson equation of state. Vapor densities on the dew curves are given.

  8. Experimental investigation of undesired stable equilibria in pumpkin shape super-pressure balloon designs

    NASA Astrophysics Data System (ADS)

    Schur, W.

    a visco-elastic film. The balloons of a third and fourth full-scale test flights experienced structural problems during a campaign in Australia in 2001. Post-flight investigations identified two problems. The first problem was apparently caused by lack of dynamic strength of the film material in its transverse direction, a property that has theretofore not been tested in balloon films. The second problem was identified through photographic evidence on the second of the two balloons. Images of the launch spool configuration and of the balloon at float altitude, indicated that excess gore-width might prevent full deployment to the design shape. This is a dangerous situation, as the proper functioning of the design requires full deployment. Search in the literature confirmed one other case of flawed but stable deployment of a pumpkin shape balloon that has been investigated by researchers. This balloon is the "Endeavor", which is an adventurer balloon that was intended for manned circumnavigation. The experimental work documented in this paper sought to identify what design aspects of pumpkin shape balloons promote faulty deployment into undesired stable equilibria and w at design aspects assure full deployment ofh pumpkin type balloons. It is argued that the features of a constant bulge shape design (the apparent design of the "Endeavor") make it unnecessarily prone to flawed deployment. The constant bulge radius design is a superior choice, but could be improved by using a smaller bulge radius between the "tropics" of the quasi-spheroid while using a larger bulge radius for the remainder of the balloon when deployment issue become critical. In that case, of course, the strength critical region is the one with the larger bulge radius. Adequate understanding of these aspects is required to design pumpkin shape super-pressure balloons with confidence. Results from studies and tests conducted as a part of the ULDB Project are discussed.

  9. Silicon nanowire synthesis by a vapor-liquid-solid approach

    NASA Technical Reports Server (NTRS)

    Mao, Aaron; Ng, H. T.; Nguyen, Pho; McNeil, Melanie; Meyyappan, M.

    2005-01-01

    Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.

  10. Extension of the transferable potentials for phase equilibria force field to dimethylmethyl phosphonate, sarin, and soman.

    PubMed

    Sokkalingam, Nandhini; Kamath, Ganesh; Coscione, Maria; Potoff, Jeffrey J

    2009-07-30

    The transferable potentials for phase equilibria force field is extended to dimethylmethylphosphonate (DMMP), sarin, and soman by introducing a new interaction site representing the phosphorus atom. Parameters for the phosphorus atom are optimized to reproduce the liquid densities at 303 and 373 K and the normal boiling point of DMMP. Calculations for sarin and soman are performed in predictive mode, without further parameter optimization. Vapor-liquid coexistence curves, critical properties, vapor pressures and heats of vaporization are predicted over a wide range of temperatures with histogram reweighting Monte Carlo simulations in the grand canonical ensemble. Excellent agreement with experiment is achieved for all compounds, with unsigned errors of less than 1% for vapor pressures and normal boiling points and under 5% for heats of vaporization and liquid densities at ambient conditions. PMID:19719285

  11. Stability Limit of Water by Metastable Vapor-Liquid Equilibrium with Nanoporous Silicon Membranes.

    PubMed

    Chen, I-Tzu; Sessoms, David A; Sherman, Zachary; Choi, Eugene; Vincent, Olivier; Stroock, Abraham D

    2016-06-16

    Liquid can sustain mechanical tension as its pressure drops below the vapor-liquid coexistence line and becomes less than zero, until it reaches the stability limit-the pressure at which cavitation inevitably occurs. For liquid water, its stability limit is still a subject of debate: the results obtained by researchers using a variety of techniques show discrepancies between the values of the stability limit and its temperature dependence as temperature approaches 0 °C. In this work, we present a study of the stability limit of water by the metastable vapor-liquid equilibrium (MVLE) method with nanoporous silicon membranes. We also report on an experimental system which enables tests of the temperature dependence of the stability limit with MVLE. The stability limit we found increases monotonically (larger tension) as temperature approaches 0 °C; this trend contradicts the centrifugal result of Briggs but agrees with the experiments by acoustic cavitation. This result confirms that a quasi-static method can reach stability values similar to that from the dynamic stretching technique, even close to 0 °C. Nevertheless, our results fall in the range of ∼ -20 to -30 MPa, a range that is consistent with the majority of experiments but is far less negative than the limit obtained in experiments involving quartz inclusions and that predicted for homogeneous nucleation. PMID:27223603

  12. Prediction of thermodynamic properties, including solubility equilibria and vapor pressures, for mixed aqueous electrolytes to high temperatures

    SciTech Connect

    Pabalan, R.T.; Pitzer, K.S.

    1988-01-01

    A number of different models have been proposed in the literature that treat the thermodynamic properties of electrolyte solutions. The most frequently used at present is the ion-interaction or virial coefficient approach, which was initially developed by Pitzer (1973) and Pitzer and Kim (1974) for aqueous solutions near room temperature. Since the model is based on a general equation for the excess Gibbs energy of the aqueous fluid, any thermodynamic property can be obtained from the appropriate derivatives. Thus the model has been used to describe osmotic and activity coefficients, as well as volumetric and thermal properties (e.g., heat capacity and enthalpy) of aqueous electrolytes. Success of this model when applied to complex and concentrated electrolyte mixtures was initially demonstrated for calculations of equilibria at room temperature between a brine phase and one or more solids by Harvie and Weare (1980). In this study we show that the same success holds over a wider range of temperature conditions. The model is applied to calculations of solubility equilibria, as well as to calculations of vapor pressures of electrolyte mixtures to high temperatures. 32 refs., 8 figs., 2 tabs.

  13. Vapor-Liquid Equilibrium in the Mixture Propenenitrile C3H3N + C6H5NO2 Nitrobenzene (EVLM1211, LB5650_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture Propenenitrile C3H3N + C6H5NO2 Nitrobenzene (EVLM1211, LB5650_E)' providing data from direct measurement of temperature at variable mole fraction in liquid phase and constant pressure.

  14. Vapor-Liquid Equilibrium in the Mixture 1,2-Dichloroethane C2H4Cl2 + C3H3N Propenenitrile (EVLM1211, LB5647_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture 1,2-Dichloroethane C2H4Cl2 + C3H3N Propenenitrile (EVLM1211, LB5647_E)' providing data from direct measurement of temperature at variable mole fraction in liquid phase and constant pressure.

  15. Vapor-Liquid Equilibrium in the Mixture Propenenitrile C3H3N + C6H5Cl Chlorobenzene (EVLM1211, LB5649_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture Propenenitrile C3H3N + C6H5Cl Chlorobenzene (EVLM1211, LB5649_E)' providing data from direct measurement of temperature at variable mole fraction in liquid phase and constant pressure.

  16. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  17. A study of vapor-liquid flow in porous media

    SciTech Connect

    Satik, Cengiz; Yortsos, Yanis C.

    1994-01-20

    We study the heat transfer-driven liquid-to-vapor phase change in single-component systems in porous media by using pore network models and flow visualization experiments. Experiments using glass micromodels were conducted. The flow visualization allowed us to define the rules for the numerical pore network model. A numerical pore network model is developed for vapor-liquid displacement where fluid flow, heat transfer and capillarity are included at the pore level. We examine the growth process at two different boundary conditions.

  18. Vapor-Liquid Equilibrium for Binary Mixtures of 1,4-Diazabicyclo[2.2.2]octane with Ethylenediamine, Ethanolamine, and Ethylene Glycol

    NASA Astrophysics Data System (ADS)

    Trejbal, Jiří

    2009-04-01

    Vapor-liquid equilibria of mixtures of 1,4-diazabicyclo[2.2.2]octane with ethylenediamine, ethanolamine, and ethylene glycol were studied. Ideal behavior in the ethylenediamine and 1,4-diazabicyclo[2.2.2]octane mixture was observed. Ethanolamine and 1,4-diazabicyclo[2.2.2]octane form an azeotrope with a minimum boiling point whereas ethylene glycol and 1,4-diazabicyclo[2.2.2]octane form an azeotrope with a maximum boiling point. Non-ideal behavior of the mixtures was described by the NRTL equation, and the corresponding constants were calculated.

  19. Vapor-Liquid Equilibrium Measurements of the Binary R32+R125 Refrigerant Mixture

    NASA Astrophysics Data System (ADS)

    Higashi, Yukihiro; Miyake, Takeshi; Fujii, Ken-Ichi

    Vapor-liquid equilibrium (VLE) data of the binary R32+R125 refrigerant mixture including R410A (50mass% R32 + 50mass% R125) were obtained by the circulation-type experimental apparatus with a liquid-bath thermostat. VLE measurements were carried out in the temperatures between 263.15 K and 318.15 K and in the pressures between 505 kPa and 2724 kPa. The experimental uncertainties of temperature, pressure, and composition measurements were estimated to be within 3 mK, 0.1 %, and 0.4 %, respectively. The present data were compared with reported experimental data against the REFPROP 6.01 as well as REFPROP 7.0 calculation results.

  20. Pressure driven currents near magnetic islands in 3D MHD equilibria: Effects of pressure variation within flux surfaces and of symmetry

    NASA Astrophysics Data System (ADS)

    Reiman, Allan H.

    2016-07-01

    In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B

  1. On the existence of vapor-liquid phase transition in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Kundu, M.; Avinash, K.; Sen, A.; Ganesh, R.

    2014-10-01

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram for a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.

  2. On the existence of vapor-liquid phase transition in dusty plasmas

    SciTech Connect

    Kundu, M.; Sen, A.; Ganesh, R.; Avinash, K.

    2014-10-15

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram for a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.

  3. Prediction of high-temperature thermodynamic properties of mixed electrolyte solutions including solubility equilibria, vapor pressure depression and boiling point elevation

    SciTech Connect

    Pabalan, R.T.; Pitzer, K.S.

    1988-01-01

    The Pitzer ion-interaction model, which is theoretically derived but uses empirical parameters evaluated from experimental data on binary and ternary aqueous mixtures, is shown to accurately predict thermodynamic properties of aqueous eletrolytes to high temperatures and concentrations and for more complex compositions. Applications of the model include calculations of solubility equilibria, vapor pressures and boiling points of electrolyte mixtures. Examples of these calculations are given below. 32 refs., 5 figs., 2 tabs.

  4. Vapor-Liquid Partitioning of Iron and Manganese in Hydrothermal Fluids: An Experimental Investigation with Application to the Integrated Study of Basalt-hosted Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Pester, N. J.; Seyfried, W. E.

    2010-12-01

    The chemistry of deep-sea hydrothermal vent fluids, expressed at the seafloor, reflects a complex history of physicochemical reactions. After three decades of field and experimental investigations, the processes of fluid-mineral equilibria that transform seawater into that of a typical “black smoker” are generally well described in the literature. Deep crustal fluids, when encountering a given heat source that ultimately drives hydrothermal circulation, routinely intersect the two-phase boundary. This process results in the nearly ubiquitous observations of variable salinity in vent fluids and is often a secondary driver of circulation via the evolution of a more buoyant (i.e. less saline) phase. Phase separation in chemically complex fluids results in the partitioning of dissolved species between the two evolved phases that deviates from simple charge balance calculations and these effects become more prominent with increasing temperature and/or decreasing pressure along the two-phase envelope. This process of partitioning has not been extensively studied and the interplay between the effects of phase separation and fluid-mineral equilibrium are not well understood. Most basalt-hosted hydrothermal systems appear to enter a steady state mode wherein fluids approach the heat source at depth and rise immediately once the two-phase boundary is met. Thus, venting fluids exhibit only modest deviations from seawater bulk salinity and the effects of partitioning are likely minor for all but the most volatile elements. Time series observations at integrated study sites, however, demonstrate dynamic changes in fluid chemistry following eruptions/magmatic events, including order of magnitude increases in gas concentrations and unexpectedly high Fe/Cl ratios. In this case, the time dependence of vapor-liquid partitioning relative to fluid-mineral equilibrium must be considered when attempting to interpret changes in subsurface reaction conditions. The two-phase region of

  5. Effect of dimensionality on vapor-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Singh, Sudhir Kumar

    2014-04-01

    Dimensionality play significant role on `phase transitions'. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions `phase transition' properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor-liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  6. Force-free equilibria of magnetized jets. [pressure confined extragalactic radio hydromagnetics

    NASA Technical Reports Server (NTRS)

    Koenigl, A.; Choudhuri, A. R.

    1985-01-01

    Force-free equilibrium configurations of magnetic-pressure-dominated magnetized supersonic jets confined by slowly varying external pressure are investigated analytically. For the case where internal dissipation mechanisms are active, the lowest-energy field configuration is found to be the superposition of an axisymmetric mode and a helical mode with a wavelength equal to 5 times the jet radius, and the pressure below which the nonaxisymmetric mode becomes energetically favorable is given as 2700 times the product of the 4th power of the magnetic helicity per unit length and the -6th power of the magnetic flux. A model of the total and polarized emission of such a configuration is developed and applied to the extended well-collimated astronomically resolved jet NGC 6251. The model is shown to reproduce significant features such as transverse oscillations of the ridge line, width oscillations and emission knots, the projected magnetic-field configuration, oscillations of the degree of polarization, and the distribution of the Faraday rotation measure.

  7. Vapor pressure of perfluoroalkylalkanes: the role of the dipole.

    PubMed

    Morgado, Pedro; Das, Gaurav; McCabe, Clare; Filipe, Eduardo J M

    2015-01-29

    The vapor pressure of four liquid perfluoroalkylalkanes (CF3(CF2)n(CH2)mCH3; n = 3, m = 4,5,7; n = 5, m = 5) was measured as a function of temperature between 278 and 328 K. Molar enthalpies of vaporization were calculated from the experimental data, and the results were compared with data from the literature for the corresponding alkanes and perfluoroalkanes. The heterosegmented statistical associating fluid theory was used to interpret the results at the molecular level both with and without the explicit inclusion of the dipolar nature of the molecules. Additionally, ab initio calculations were performed for all perfluoroalkylalkanes studied to determine the dipole moment to be used in the theoretical calculations. We demonstrate that the inclusion of a dipolar term is essential for describing the vapor-liquid equilibria of perfluoroalkylalkanes. It is also shown that vapor-liquid equilibria in these compounds result from a subtle balance between dipolar interactions, which decrease the vapor pressure, and the relatively weak dispersive interactions between the hydrogenated and fluorinated segments. PMID:25526174

  8. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires.

    PubMed

    Pinion, Christopher W; Nenon, David P; Christesen, Joseph D; Cahoon, James F

    2014-06-24

    The vapor-liquid-solid (VLS) mechanism is widely used for the synthesis of semiconductor nanowires (NWs), yet several aspects of the mechanism are not fully understood. Here, we present comprehensive experimental measurements on the growth rate of Au-catalyzed Si NWs over a range of temperatures (365-480 °C), diameters (30-200 nm), and pressures (0.1-1.6 Torr SiH4). We develop a kinetic model of VLS growth that includes (1) Si incorporation into the liquid Au-Si catalyst, (2) Si evaporation from the catalyst surface, and (3) Si crystallization at the catalyst-NW interface. This simple model quantitatively explains growth rate data collected over more than 65 distinct synthetic conditions. Surprisingly, upon increasing the temperature and/or pressure, the analysis reveals an abrupt transition from a diameter-independent growth rate that is limited by incorporation to a diameter-dependent growth rate that is limited by crystallization. The identification of two distinct growth regimes provides insight into the synthetic conditions needed for specific NW-based technologies, and our kinetic model provides a straightforward framework for understanding VLS growth with a range of metal catalysts and semiconductor materials. PMID:24815744

  9. Growth characteristics of silicon nanowires synthesized by vapor-liquid-solid growth in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Lew, Kok-Keong; Redwing, Joan M.

    2003-06-01

    The fabrication of Si nanowires has been demonstrated using a combination of template-directed synthesis and vapor-liquid-solid (VLS) growth. The use of nanoporous alumina membranes for VLS growth provides control over nanowire diameter while also enabling the production of single crystal material. An investigation of the growth characteristics of Si nanowires over a temperature range from 400°C to 600°C, and over a SiH 4 partial pressure range from 0.13 to 0.65 Torr was carried out. The length of Si nanowires was found to be linearly dependent on growth time over this range of conditions. The nanowire growth rate increased from 0.068 μm/min at 400°C to 0.52 μm/min at 500°C at a constant SiH 4 partial pressure of 0.65 Torr. At temperatures greater than 500°C, Si deposited on the top surface and pore walls of the membrane thereby reducing the nanowire growth rate. The growth rate versus temperature data was used to calculate an activation energy of 22 kcal/mol for the nanowire growth process. This activation energy is believed to be associated with the decomposition of SiH 4 on the Au-Si liquid surface, which is considered to be the rate-determining step in the VLS growth process.

  10. Vapor-liquid-solid growth of silicon and silicon germanium nanowires

    NASA Astrophysics Data System (ADS)

    Nimmatoori, Pramod

    2009-12-01

    Si and Si1-xGex nanowires are promising materials with potential applications in various disciplines of science and technology. Small diameter nanowires can act as model systems to study interesting phenomena such as tunneling that occur in the nanometer regime. Furthermore, technical challenges in fabricating nanoscale size devices from thin films have resulted in interest and research on nanowires. In this perspective, vertical integrated nanowire field effect transistors (VINFETs) fabricated from Si nanowires are promising devices that offer better control on device properties and push the transistor architecture into the third dimension potentially enabling ultra-high transistor density circuits. Transistors fabricated from Si/Si 1-xGex nanowires have also been proposed that can have high carrier mobility. In addition, the Si and Si1-xGe x nanowires have potential to be used in various applications such as sensing, thermoelectrics and solar cells. Despite having considerable potential, the understanding of the vapor-liquid-solid (VLS) mechanism utilized to fabricate these wires is still rudimentary. Hence, the objective of this thesis is to understand the effects of nanoscale size and the role of catalyst that mediates the wire growth on the growth rate of Si and Si1-xGe x nanowires and interfacial abruptness in Si/Si1-xGe x axial heterostructure nanowires. Initially, the growth and structural properties of Si nanowires with tight diameter distribution grown from 10, 20 and 50 nm Au particles dispersed on a polymer-modified substrate was studied. A nanoparticle application process was developed to disperse Au particles on the substrate surface with negligible agglomeration and sufficient density. The growth temperature and SiH4 partial pressure were varied to optimize the growth conditions amenable to VLS growth with smooth wire morphology and negligible Si thin film deposition on wire sidewalls. The Si nanowire growth rate was studied as a function of growth

  11. Design of a vapor-liquid-equilibrium, surface tension, and density apparatus

    SciTech Connect

    Holcomb, C.D.; Outcalt, S.L.

    1997-12-31

    The design and performance of a unique vapor-liquid equilibrium (VLE) apparatus with density and surface tension capabilities is presented. The apparatus operates at temperatures ranging from 218 to 423 K, at pressures to 17 MPa, at densities to 1100 kg/m{sup 3}, and at surface tensions ranging from 0.1 to 75 mN/m. Temperatures are measured with a precision of {+-}0.02 K, pressures with a precision of {+-}0.1% of full scale, densities with a precision of {+-}0.5 kg/m{sup 3}, surface tensions with a precision of {+-}0.2 mN/m, and compositions with a precision of {+-}0.005 mole fraction. The apparatus is designed to be both accurate and versatile. Capabilities include: (1) the ability to operate the apparatus as a bubble point pressure or an isothermal pressure-volume-temperature (PVT) apparatus, (2) the ability to measure densities and surface tensions of the coexisting phases, and (3) the ability for either trapped or capillary sampling. We can validate our VLE and density data by measuring PVT or bubble point pressures in the apparatus. The use of the apparatus for measurements of VLE, densities, and surface tensions over wide ranges of temperature and pressure is important in equation of state and transport property model development. The use of different sampling procedures allows measurement of a wider variety of fluid mixtures. VLE measurements on the alternative refrigerant system R32/134a are presented and compared to literature results to verify the performance of the apparatus.

  12. The system NaCl-H2O: relations of vapor-liquid near the critical temperature of water and of vapor-liquid-halite from 300° to 500°C

    USGS Publications Warehouse

    Bischoff, James L.; Rosenbauer, Robert J.; Pitzer, Kenneth S.

    1986-01-01

    Vapor-liquid relations (P-T-x) for the system NaCl-H2O were determined experimentally at temperatures spanning the critical temperature of water (Tc), the lowest temperature in the system at which critical behavior occurs. In addition, vapor-liquid-halite P-T-x(vapor) relations were determined from 300° to 500°C. Results show that at 373.0°C, immediately below Tc, the vapor side of the isothermal vaporliquid P-x boundary has a shape quite different from that previously conceived. The NaCl content of the vapor increases with pressure in a smooth manner from the pressure of the three-phase assemblage (135 bars, 0.0029% NaCl), to a pressure just below that of the vapor pressure of pure water (0.012% NaCl at 184 bars). Above this pressure the boundary abruptly reverses and projects asymptotically to 0% NaCl in a beak-like shape at 218 bars, the vapor pressure of pure water. At 375.5°, slightly above Tc, the asymptote disappears, and is replaced by a rounded nose. At progressively higher temperatures, the nose disappears and by 380°C the familiar symmetrical bell-shaped curve predominates with the critical point defined by the top of the bell. The P-T curve of the three-phase assemblage determined in the present study is in agreement with previous workers. The NaCl content of the three-phase vapor, however, is much higher than some literature values at temperatures above 410°C.

  13. Transferable potentials for phase equilibria. 8. United-atom description for thiols, sulfides, disulfides, and thiophene.

    PubMed

    Lubna, Nusrat; Kamath, Ganesh; Potoff, Jeffrey J; Rai, Neeraj; Siepmann, J Ilja

    2005-12-22

    An extension of the transferable potentials for phase equilibria united-atom (TraPPE-UA) force field to thiol, sulfide, and disulfide functionalities and thiophene is presented. In the TraPPE-UA force field, nonbonded interactions are governed by a Lennard-Jones plus fixed point charge functional form. Partial charges are determined through a CHELPG analysis of electrostatic potential energy surfaces derived from ab initio calculations at the HF/6-31g+(d,p) level. The Lennard-Jones well depth and size parameters for four new interaction sites, S (thiols), S(sulfides), S(disulfides), and S(thiophene), were determined by fitting simulation data to pure-component vapor-equilibrium data for methanethiol, dimethyl sulfide, dimethyl disulfide, and thiophene, respectively. Configurational-bias Monte Carlo simulations in the grand canonical ensemble combined with histogram-reweighting methods were used to calculate the vapor-liquid coexistence curves for methanethiol, ethanethiol, 2-methyl-1-propanethiol, 2-methyl-2-propanethiol, 2-butanethiol, pentanethiol, octanethiol, dimethyl sulfide, diethyl sulfide, ethylmethyl sulfide, dimethyl disulfide, diethyl disulfide, and thiophene. Excellent agreement with experiment is achieved, with unsigned errors of less than 1% for saturated liquid densities and less than 3% for critical temperatures. The normal boiling points were predicted to within 1% of experiment in most cases, although for certain molecules (pentanethiol) deviations as large as 5% were found. Additional calculations were performed to determine the pressure-composition behavior of ethanethiol+n-butane at 373.15 K and the temperature-composition behavior of 1-propanethiol+n-hexane at 1.01 bar. In each case, a good reproduction of experimental vapor-liquid equilibrium separation factors is achieved; both of the coexistence curves are somewhat shifted because of overprediction of the pure-component vapor pressures. PMID:16375402

  14. Studies of epitaxial silicon nanowire growth by the vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Aella, Pavan Reddy K.

    2007-12-01

    Silicon nanowires were grown epitaxially on Si (100) and (111) surfaces using the Vapor-Liquid-Solid (VLS) mechanism under both thermal and plasma enhanced growth conditions. Silane and disilane were used as source gases. Plasma excitation at low growth temperatures is found to strongly enhance nanowire growth rates and promote the nucleation of smaller diameter <110> oriented silicon nanowires relative to the larger diameter <111> nanowires. The higher nucleation rate for <110> nanowires during plasma excitation is attributed to a plasma-induced increase in silicon chemical potential. From this study, plasma excitation can be concluded to enable an additional degree of control over nanowire orientation. In low power radio frequency silane plasma, SiH3 are the dominant radical species in the gas phase. These reactive radicals formed in the plasma "bypass" the SiH 4 → SiH3 decomposition step on the liquid AuSi interface required for growth under thermal growth conditions, thereby leading to faster incorporation rates into the melt and hence promoting higher growth rates. Also consistent with this interpretation is the strong reduction in nucleation times in the presence of plasma. The nanowire growth rate shows a linear dependence with plasma power. The activation energy decreases from 0.78 eV under thermal growth conditions to 0.23 eV for a 2.5 W radio frequency plasma stimulated conditions. This decreased activation energy for growth under plasma excitation indicates that the rate limiting step for VLS growth of Si nanowires using Au as a catalyst is at the vapor-liquid interface. The growth under plasma conditions is dominated by the plasma influenced decomposition step and this strong reduction in the activation energy under silane plasma is consistent with a change in the rate limiting step. Growth kinetics between silane and disilane reveals an incorporation coefficient of Si, 60 to 80 times higher with disilane. This results in higher growth rates with

  15. Design, fabrication and performance evaluation of a vaporizing liquid microthruster

    NASA Astrophysics Data System (ADS)

    Kundu, Pijus; Kanti Bhattacharyya, Tarun; Das, Soumen

    2012-02-01

    A recent application domain of MEMS technology is in the development of microthrusters for micro-/nanosatellites. Among the various types of MEMS microthruster developed so far, the vaporizing liquid microthruster (VLM) has been widely explored for its capability to produce continuously variable thrust in the micro-Newton (µN) to mili-Newton (mN) range. This paper reports the design and experimental validation of silicon MEMS VLM consisting of a microcavity, inlet channel and converging-diverging (C-D) in-plane exit nozzle integrated in two micromachined bonded chips and sandwiched between two p-diffused microheaters, located at the top and bottom surface of the device. Structural configuration was designed using simple analytical equations to achieve maximum thrust force by controlling the inlet propellant flow and heater power of VLM in an efficient way. In addition, a 3D model using a computational fluid dynamics technique was constructed to simulate the aft section of VLM for the investigation of its aerodynamic behavior. The device fabrication and testing have been briefly described. The fabricated VLM is capable to produce 1 mN thrust using maximum heater power of 3.6 W at a water flow rate of 2.04 mg s-1 using an in-plane C-D exit nozzle of throat area 130 µm × 100 µm. A detailed thrust force measurement was carried out with the variation of input heater power for different mass flow conditions and exit to throat area ratio of the exit nozzle, and the results were interpreted with the theoretical model. The model gives considerable physical insight in the operation of the VLM. Finally, a performance comparison with other published VLM results indicates that the present design can yield comparatively more thrust force with much less input power. A performance comparison with other published VLM results indicates that the present design can achieve improved performance by integrating two heaters with appropriate chamber volume in respect of propellant flow

  16. Vapor-liquid phase behavior of the iodine-sulfur water-splitting process : LDRD final report for FY03.

    SciTech Connect

    Bradshaw, Robert W.; Larson, Richard S.; Lutz, Andrew E.

    2004-01-01

    This report summarizes the results of a one-year LDRD project that was undertaken to better understand the equilibrium behavior of the iodine-water-hydriodic acid system at elevated temperature and pressure. We attempted to extend the phase equilibrium database for this system in order to facilitate development of the iodine-sulfur water-splitting process to produce hydrogen to a commercial scale. The iodine-sulfur cycle for thermochemical splitting of water is recognized as the most efficient such process and is particularly well suited to coupling to a high-temperature source of process heat. This study intended to combine experimental measurements of vapor-liquid-liquid equilibrium and equation-of-state modeling of equilibrium solutions using Sandia's Chernkin software. Vapor-liquid equilibrium experiments were conducted to a limited extent. The Liquid Chernkin software that was developed as part of an earlier LDRD project was enhanced and applied to model the non-ideal behavior of the liquid phases.

  17. Phase equilibria modification by electric fields. 1998 annual progress report

    SciTech Connect

    Tsouris, C.

    1998-06-01

    'The objective of this project is to use electric fields to favorably manipulate the thermodynamic and transport properties of mixtures so that higher separation efficiencies can be achieved. The main focus is to understand and quantify the influence of electric fields on vapor-liquid, liquid-liquid, and solid-liquid systems. It is expected that this program will lead to greater separation efficiency in a wide range of environmental treatment processes, including solvent extraction, sorption, distillation, and stripping. Such processes are widely used by DOE for treatment of wastes and sites contaminated with heavy metals, radionuclides, and organic solvents. Particular examples of applications of vapor-liquid- equilibria modification can be found in the separation of volatile organic compounds by either stripping or distillation. Improvements can also be made in liquid-liquid-extraction processes of TRU, Sr, Tc, and Cs by both thermodynamic and transport enhancements.'

  18. Metastability of Au-Ge liquid nanocatalysts: Ge vapor-liquid-solid nanowire growth far below the bulk eutectic temperature.

    PubMed

    Adhikari, Hemant; Marshall, Ann F; Goldthorpe, Irene A; Chidsey, Christopher E D; McIntyre, Paul C

    2007-12-01

    The vapor-liquid-solid mechanism of nanowire (NW) growth requires the presence of a liquid at one end of the wire; however, Au-catalyzed Ge nanowire growth by chemical vapor deposition can occur at approximately 100 degrees C below the bulk Au-Ge eutectic. In this paper, we investigate deep sub-eutectic stability of liquid Au-Ge catalysts on Ge NWs quantitatively, both theoretically and experimentally. We construct a binary Au-Ge phase diagram that is valid at the nanoscale and show that equilibrium arguments, based on capillarity, are inconsistent with stabilization of Au-Ge liquid at deep sub-eutectic temperatures, similar to those used in Ge NW growth. Hot-stage electron microscopy and X-ray diffraction are used to test the predictions of nanoscale phase equilibria. In addition to Ge supersaturation of the Au-Ge liquid droplet, which has recently been invoked as an explanation for deep sub-eutectic Ge NW growth, we find evidence of a substantial kinetic barrier to Au solidification during cooling below the nanoscale Au-Ge eutectic temperature. PMID:19206662

  19. Vapor-liquid activity coefficients for methanol and ethanol from heat of solution data: application to steam-methane reforming.

    PubMed

    Kunz, R G; Baade, W F

    2001-11-16

    This paper presents equations and curves to calculate vapor-liquid phase equilibria for methanol and ethanol in dilute aqueous solution as a function of temperature, using activity coefficients at infinite dilution. These thermodynamic functions were originally derived to assess the distribution of by-product contaminants in the process condensate and the steam-system deaerator of a hydrogen plant [Paper ENV-00-171 presented at the NPRA 2000 Environmental Conference, San Antonio, TX, 10-12 September 2000], but have general applicability to other systems as well. The functions and calculation method described here are a necessary piece of an overall prediction technique to estimate atmospheric emissions from the deaerator-vent when the process condensate is recycled as boiler feed water (BFW) make-up. Having such an estimation technique is of particular significance at this time because deaerator-vent emissions are already coming under regulatory scrutiny in California [Emissions from Hydrogen Plant Process Vents, Adopted 21 January 2000] followed closely elsewhere in the US, and eventually worldwide. The overall technique will enable a permit applicant to estimate environmental emissions to comply with upcoming regulations, and a regulatory agency to evaluate those estimates. It may also be useful to process engineers as a tool to estimate contaminant concentrations and flow rates in internal process streams such as the steam-generating system. Metallurgists and corrosion engineers might be able to use the results for materials selection. PMID:11606240

  20. Vapor-Liquid Equilibrium in the Mixture 1,1,1,2-Tetrafluoroethane C2H2F4 + C4H10O2 2,5-Dioxahexane (EVLM1111, LB5748_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture 1,1,1,2-Tetrafluoroethane C2H2F4 + C4H10O2 2,5-Dioxahexane (EVLM1111, LB5748_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  1. Vapor-Liquid Equilibrium in the Mixture Pentafluoroethane C2HF5 + C2H2F4 1,1,1,2-Tetrafluoroethane (EVLM1311, LB5632_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture Pentafluoroethane C2HF5 + C2H2F4 1,1,1,2-Tetrafluoroethane (EVLM1311, LB5632_E)' providing data from direct measurement of pressure at variable temperature and constant mole fraction in liquid phase.

  2. Vapor-Liquid Equilibrium in the Mixture 1,1,2,2-Tetrachloroethane C2H2Cl4 + C3H3N Propenenitrile (EVLM1211, LB5648_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture 1,1,2,2-Tetrachloroethane C2H2Cl4 + C3H3N Propenenitrile (EVLM1211, LB5648_E)' providing data from direct measurement of temperature at variable mole fraction in liquid phase and constant pressure.

  3. Vapor-liquid equilibrium, coexistence curve, and critical locus for difluoromethane + pentafluoroethane (R-32 + R-125)

    SciTech Connect

    Higashi, Yukihiro

    1997-11-01

    The vapor-liquid equilibrium for difluoromethane + pentafluoroethane (R-32 + R-125) was measured by the static method in the temperature range between 283 K and 313 K. The vapor-liquid coexistence curve near the critical point was measured by the observation of the meniscus disappearance. The critical temperatures and critical densities of a 30 mass % R-32 and a 60 mass % R-32 mixture were determined on the basis of the saturation densities along the coexistence curve in the critical region. In addition, the critical locus for the R-32 + R-125 mixture is correlated as the function of composition.

  4. ``Seedless'' vapor-liquid-solid growth of Si and Ge nanowires: The origin of bimodal diameter distributions

    NASA Astrophysics Data System (ADS)

    Dailey, Eric; Drucker, Jeff

    2009-03-01

    We identify a previously uncharacterized vapor-liquid-solid growth mode that can produce small diameter, epitaxial ⟨110⟩ oriented Si and Ge nanowires (NWs). Disilane or digermane pyrolysis evolves H2 causing the monolayer thick Au/Si(111) layer between three dimensional Au seeds to dewet and form small Au islands. Under some conditions, these small islands facilitate "seedless" growth of small diameter NWs distinct from larger NWs that grow from the deposited seeds leading to a bimodal diameter distribution. We identify the precursor pressures and growth temperature regimes for which Si and Ge NW growth occurs in the absence of deposited seeds from the dewetted Au/Si(111) layer.

  5. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  6. Simplified thermodynamic functions for vapor-liquid phase separation and fountain effect pumps

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Hepler, W. A.; Frederking, T. H. K.

    1984-01-01

    He-4 fluid handling devices near 2 K require novel components for non-Newtonian fluid transport in He II. Related sizing of devices has to be based on appropriate thermophysical property functions. The present paper presents simplified equilibrium state functions for porous media components which serve as vapor-liquid phase separators and fountain effect pumps.

  7. Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Kokh, Maria A.; Lopez, Mathieu; Gisquet, Pascal; Lanzanova, Aurélie; Candaudap, Frédéric; Besson, Philippe; Pokrovski, Gleb S.

    2016-08-01

    Although CO2 is a ubiquitous volatile in geological fluids typically ranging from a few to more than 50 wt%, its effect on metal vapor-liquid fractionation during fluid boiling and immiscibility phenomena in the Earth's crust remains virtually unknown. Here we conducted first experiments to quantify the influence of CO2 on the partition of different metals in model water + salt + sulfur + CO2 systems at 350 °C and CO2 pressures up to 100 bar, which are typical conditions of formation of many hydrothermal ore deposits. In addition, we performed in situ Raman spectroscopy measurements on these two-phase systems, to determine sulfur and carbon speciation in the liquid and vapor phases. Results show that, in S-free systems and across a CO2 concentration range of 0-50 wt% in the vapor phase, the absolute vapor-liquid partitioning coefficients of metals (Kvap/liq = Cvap/Cliq, where C is the mass concentration of the metal in the corresponding vapor and liquid phase) are in the range 10-6-10-5 for Mo; 10-4-10-3 for Na, K, Cu, Fe, Zn, Au; 10-3-10-2 for Si; and 10-4-10-1 for Pt. With increasing CO2 from 0 to 50 wt%, Kvap/liq values decrease for Fe, Cu and Si by less than one order of magnitude, remain constant within errors (±0.2 log unit) for Na, K and Zn, and increase by 0.5 and 2 orders of magnitude, respectively for Au and Pt. The negative effect of CO2 on the partitioning of some metals is due to weakening of hydration of chloride complexes of some metals (Cu, Fe) in the vapor phase and/or salting-in effects in the liquid phase (Si), whereas both phenomena are negligible for complexes of other metals (Na, K, Zn, Mo). The only exception is Pt (and in a lesser extent Au), which partitions significantly more to the vapor of S-free systems in the presence of CO2, likely due to formation of volatile carbonyl (CO) complexes. In the S-bearing system, with H2S content of 0.1-1.0 wt% in the vapor, Kvap/liq values of Cu, Fe, Mo, and Au are in the range 0.01-0.1, those of Pt 0

  8. Vapor-liquid equilibrium measurements for methyl propanoate-ethanol and methyl propanoate-propan-1-ol at 101. 32 kPa

    SciTech Connect

    Susial, P.; Ortega, J. ); DeAlfonso, C.; Alonso, C. )

    1989-04-01

    Isobaric vapor-liquid equilibrium measurements on binary systems of methyl propanoate with ethanol and propan-1-ol are taken at a constant pressure of 101.32 +- 0.02 kPa. These systems exhibit significant deviations from ideality and are shown to be thermodynamically consistent. The methyl propanoate-ethanol system forms an azeotrope at x = y = 0.483 and T = 345.58{Kappa}. Experimental data are fitted to a suitable equation and are likewise compared with the values predicted by the UNIFAC and ASOG models.

  9. Impact of Friedel oscillations on vapor-liquid equilibria and supercritical properties in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Huber, Landon; Delhommelle, Jerome

    2016-07-01

    We determine the impact of the Friedel oscillations on the phase behavior, critical properties, and thermodynamic contours in films [two dimensions (2 D )] and bulk phases [three dimensions (3 D )]. Using expanded Wang-Landau simulations, we calculate the grand-canonical partition function and, in turn, the thermodynamic properties of systems modeled with a linear combination of the Lennard-Jones and Dzugutov potentials, weighted by a parameter X (0

  10. Equilibria in Chemical Systems

    Energy Science and Technology Software Center (ESTSC)

    1992-01-01

    SOLGASMIX-PV calculates equilibrium relationships in complex chemical systems. Chemical equilibrium calculations involve finding the system composition, within certain constraints, which contains the minimum free energy. The constraints are the preservation of the masses of each element present and either constant pressure or volume. SOLGASMIX-PV can calculate equilibria in systems containing a gaseous phase, condensed phase solutions, and condensed phases of invariant and variable stoichiometry. Either a constant total gas volume or a constant total pressuremore » can be assumed. Unit activities for condensed phases and ideality for solutions are assumed, although nonideal systems can be handled provided activity coefficient relationships are available.« less

  11. Pressure Dependence of the Acid/Base Equilibria of Methyl Orange in Aqueous Solutions to 1000 bars at 20°C

    SciTech Connect

    Suleimenov, Oleg M; Boily, Jean F

    2006-07-31

    The pressure dependence on the acid/base equilibria of methyl orange in aqueous solution was measured at 20°C in the 1-1000 bar range with a newly designed flow-through spectrophotometric cell. Combined chemometric and thermodynamic analyses of uv-vis spectrophotometric data were used to extract the dissociation constants as well as the changes in molar volume and isothermal compressibility of methyl orange as a function of pressure. The results show increasing pressure promotes the deprotonation of the methyl orange, with pK values ranging from 3.505 at 1 bar to 3.445 (0.002) at 1000 bars. Increasing pressure also yields small values of negative changes in the molar volume ranging from –6.9 cm3∙mol-1 at 1 bar to –1.7 cm3∙mol-1 at 1000 bars. The isothermal compressibility of methyl orange in this pressure range was estimated using the 2nd derivative of 2nd and 3rd order polynomial fits to the constants and gave rise to a constant value of –48.4x 10-4 cm3∙mol-1∙bar-1 in the former case, and increasing values from -107×10-4 cm3∙mol-1∙bar-1 at 1 bar to 3.43×10-4 cm3∙mol-1∙bar-1 at 1000 bars in the latter case. Molar absorption coefficients for the protonated and deprotonated species were also shown to be only slightly affected by pressure changes and can be used to accurately predict the absorption spectra of methyl orange as a function of pressure.

  12. Influence of the range of attractive forces on vapor/liquid phase coexistence

    NASA Astrophysics Data System (ADS)

    Shukla, K.; Rajagopalan, Raj

    1994-12-01

    The influence of the range of interparticle attractions on vapor/liquid coexistence in spherically symmetric systems has been investigated by mapping the pair potential on to the adhesive-hard-sphere model. Comparisons of our analytical predictions with recent Gibbs-Ensemble Monte Carlo simulations for the Yukawa potential show a very good agreement. The temperature range over which vapor/liquid coexistence is thermodynamically preferred shrinks as the range of attraction decreases, and for short ranges the coexistence curve flattens, consistent with the results of the simulations. Using the Sutherland potential model we also show that for very small ranges of attraction the liquid state is unstable down to very small temperatures and that a fluid/solid transition is preferred.

  13. Universal adsorption at the vapor-liquid interface near the consolute point

    NASA Technical Reports Server (NTRS)

    Schmidt, James W.

    1990-01-01

    The ellipticity of the vapor-liquid interface above mixtures of methylcyclohexane (C7H14) and perfluoromethylcyclohexane (C7F14) has been measured near the consolute point T(c) = 318.6 K. The data are consistent with a model of the interface that combines a short-ranged density-vs height profile in the vapor phase with a much longer-ranged composition-versus-height profile in the liquid. The value of the free parameter produced by fitting the model to the data is consistent with results from two other simple mixtures and a mixture of a polymer and solvent. This experiment combines precision ellipsometry of the vapor-liquid interface with in situ measurements of refractive indices of the liquid phases, and it precisely locates the consolute point.

  14. Vapor-liquid equilibrium and critical behavior of the square-well fluid of variable range: a theoretical study.

    PubMed

    Schöll-Paschinger, Elisabeth; Benavides, Ana Laura; Castañeda-Priego, Ramon

    2005-12-15

    The vapor-liquid phase behavior and the critical behavior of the square-well (SW) fluid are investigated as a function of the interaction range, lambdain [1.25, 3], by means of the self-consistent Ornstein-Zernike approximation (SCOZA) and analytical equations of state based on a perturbation theory [A. L. Benavides and F. del Rio, Mol. Phys. 68, 983 (1989); A. Gil-Villegas, F. del Rio, and A. L. Benavides, Fluid Phase Equilib. 119, 97 (1996)]. For this purpose the SCOZA, which has been restricted up to now to a few model systems, has been generalized to hard-core systems with arbitrary interaction potentials requiring a fully numerical solution of an integro-partial differential equation. Both approaches, in general, describe well the liquid-vapor phase diagram of the square-well fluid when compared with simulation data. SCOZA yields very precise predictions for the coexistence curves in the case of long ranged SW interaction (lambda>1.5), and the perturbation theory is able to predict the binodal curves and the saturated pressures, for all interaction ranges considered if one stays away from the critical region. In all cases, the SCOZA gives very good predictions for the critical temperatures and the critical pressures, while the perturbation theory approach tends to slightly overestimate these quantities. Furthermore, we propose analytical expressions for the critical temperatures and pressures as a function of the square-well range. PMID:16392937

  15. Transferable potentials for phase equilibria. 9. Explicit hydrogen description of benzene and five-membered and six-membered heterocyclic aromatic compounds.

    PubMed

    Rai, Neeraj; Siepmann, J Ilja

    2007-09-13

    The explicit hydrogen version of the transferable potentials for phase equilibria (TraPPE-EH) force field is extended to benzene, pyridine, pyrimidine, pyrazine, pyridazine, thiophene, furan, pyrrole, thiazole, oxazole, isoxazole, imidazole, and pyrazole. While the Lennard-Jones parameters for carbon, hydrogen (two types), nitrogen (two types), oxygen, and sulfur are transferable for all 13 compounds, the partial charges are specific for each compound. The benzene dimer energies for sandwich, T-shape, and parallel-displaced configurations obtained for the TraPPE-EH force field compare favorably with high-level electronic structure calculations. Gibbs ensemble Monte Carlo simulations were carried out to compute the single-component vapor-liquid equilibria for benzene, pyridine, three diazenes, and eight five-membered heterocycles. The agreement with experimental data is excellent with the liquid densities and vapor pressures reproduced within 1 and 5%, respectively. The critical temperatures and normal boiling points are predicted with mean deviations of 0.8 and 1.6%, respectively. PMID:17713943

  16. Space cryogenics components based on the thermomechanical effect - Vapor-liquid phase separation

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Frederking, T. H. K.

    1989-01-01

    Applications of the thermomechanical effect has been qualified including incorporation in large-scale space systems in the area of vapor-liquid phase separation (VLPS). The theory of the porous-plug phase separator is developed for the limit of a high thermal impedance of the solid-state grains. Extensions of the theory of nonlinear turbulent flow are presented based on experimental results.

  17. Growth of epitaxial silicon and germanium nanowires using the gold catalyzed vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Dailey, Eric J.

    The growth of silicon and germanium nanowires and their nanowire heterostructures has been investigated using the gold catalyzed vapor-liquid-solid (VLS) mechanism. The Au catalyst particles were deposited under ultra high vacuum (UHV) conditions onto vicinal Si(111) surfaces using physical vapor deposition. Nanowires were grown in a home built UHV-chemical vapor deposition (CVD) chamber using silane, disilane, germane, and digermane as gas precursors. Silicon nanowire morphology was determined to be dependent on the stability of the gold catalyst particle at the tip of the nanowire. Specifically, silicon nanowires grow along <111> orientations when gold wets the nanowire sidewalls and along <112> orientations when gold does not wet the nanowire sidewalls except under a very narrow pressure range. The dependence of gold coverage on CVD parameters on the sidewalls of <111> and <112> silicon nanowires was also determined revealing a liquid metal wetting of cylinders phenomenon. A new "seedless" VLS mechanism for nanowire growth was also determined in which the Stranski-Krastanov planar gold layer on Si(111) dewets under certain CVD conditions resulting in 15 nm diameter gold seeds that then form nanowires via the VLS mechanism. Both core/shell and axial nanowire heterostructures were also investigated with a focus on the effect of nanowire orientation on heterostructure formation. For core/shell heterostructures, only the <110> germanium core/silicon shell heterostructures were determined to form with smooth shell deposition while all other orientations underwent shell roughening. Various germanium core diameters and silicon shell thicknesses for <110> germanium core/silicon shell heterostructures were analyzed to determine the effect of nanowire diameter on shell coherency limits and to determine the strain within the nanowire heterostructures. Lastly, axial nanowire heterostructures were investigated to determine the ability to form axial heterostructures using

  18. On the Electronic Nature of the Surface Potential at the Vapor-Liquid Interface of Water

    SciTech Connect

    Kathmann, S M; Kuo, I; Mundy, C J

    2008-02-05

    The surface potential at the vapor-liquid interface of water is relevant to many areas of chemical physics. Measurement of the surface potential has been experimentally attempted many times, yet there has been little agreement as to its magnitude and sign (-1.1 to +0.5 mV). We present the first computation of the surface potential of water using ab initio molecular dynamics. We find that the surface potential {chi} = -18 mV with a maximum interfacial electric field = 8.9 x 10{sup 7} V/m. A comparison is made between our quantum mechanical results and those from previous molecular simulations. We find that explicit treatment of the electronic density makes a dramatic contribution to the electric properties of the vapor-liquid interface of water. The E-field can alter interfacial reactivity and transport while the surface potential can be used to determine the 'chemical' contribution to the real and electrochemical potentials for ionic transport through the vapor-liquid interface.

  19. Phase equilibria of chlorofluorocarbon alternative refrigerant mixtures

    SciTech Connect

    Lee, B.G.; Park, J.Y.; Lim, J.S.; Cho, S.Y.; Park, K.Y.

    1999-03-01

    Isothermal vapor-liquid equilibrium data were determined for binary systems of difluoromethane/1,1,1,2-tetrafluoroethane (HFC-32/HFC-134a), difluoromethane/pentafluoroethane (HFC-32/HFC-125), difluoromethane/1,1,1-trifluoroethane (HFC-32/HFC-143A), and difluoromethane/1,1-difluoroethane (HFC-32/HFC-152a). The vapor and liquid compositions and pressures were measured in a circulation-type apparatus at 303.15 K and 323.15 K. The experimental data were compared with literature results and correlated with the Canahan-Starling-De Santis equation of state within the uncertainty of {+-}1.0%.

  20. Fluid-solid equilibria of flexible and linear rigid tangent chains from Wertheim's thermodynamic perturbation theory

    NASA Astrophysics Data System (ADS)

    Blas, Felipe J.; Sanz, Eduardo; Vega, Carlos; Galindo, Amparo

    2003-11-01

    An extension of Wertheim's first-order thermodynamic perturbation theory is proposed to describe the global phase behavior of linear rigid tangent hard sphere chains. The extension is based on a scaling proposed recently by Vega and McBride [Phys. Rev. E 65, 052501 (2002)] for the equation of state of linear chains in the solid phase. We have used the Einstein-crystal methodology, the Rahman-Parrinello technique, and the thermodynamic integration method for calculating the free energy and equation of state of linear rigid hard sphere chains with different chain lengths, including the solid-fluid phase equilibria. Agreement between the simulation data and theoretical predictions is excellent in all cases. Once it is confirmed that the proposed theory can be used to describe correctly the equation of state, free energy, and solid-fluid phase transitions of linear rigid molecules, a simple mean-field approximation at the level of van der Waals is included to account for segment-segment attractive interactions. The approach is used to determine the global phase behavior of fully flexible and linear rigid chains of varying chain lengths. The main effect of increasing the chain length in the case of linear rigid chains is to decrease the fluid densities at freezing, so that the triple-point temperatures increase. As a consequence, the range of temperatures where vapor-liquid equilibria exist decreases considerably with chain length. This behavior is a direct result of the stabilization of the solid phase with respect to the liquid phase as the chain length is increased. The vapor-liquid equilibria are seen to disappear for linear rigid chains formed by more than 11 hard sphere segments that interact through an attractive van der Waals mean-field contribution; in other words, long linear rigid chains exhibit solid-vapor phase behavior only. In the case of flexible chains, the fluid-solid equilibrium is hardly affected by the chain length, so that the triple

  1. Condensation coefficient of methanol vapor near vapor-liquid equilibrium states

    NASA Astrophysics Data System (ADS)

    Fujikawa, S.; Yano, T.; Ichijo, M.; Iwanami, K.

    This paper is concerned with the nonequilibrium condensation from a vapor to a liquid phase on the plate endwall of a shock tube behind a reflected shock wave. The growth of a liquid film on the endwall is measured by an optical interferometer using a laser beam. The experiment is carefully conducted on the precisely designed apparatus, and thereby the condensation coefficient of methanol vapor is determined in a wide range of vapor-liquid conditions from near to far from equilibrium states. The result shows that the condensation coefficient increases with the increase of the ratio of number densities of vapor and saturated vapor at the interface.

  2. Thermodynamic Study of the Role of Interface Curvature on Multicomponent Vapor-Liquid Phase Equilibrium.

    PubMed

    Shardt, Nadia; Elliott, Janet A W

    2016-04-14

    The effect of interface curvature on phase equilibrium has been much more studied for single-component than multicomponent systems. We isolate the effect of curvature on multicomponent vapor-liquid equilibrium (VLE) phase envelopes and phase composition diagrams using the ideal system methanol/ethanol and the nonideal system ethanol/water as illustrative examples. An important finding is how nanoscale interface curvature shifts the azeotrope (equal volatility point) of nonideal systems. Understanding of the effect of curvature on VLE can be exploited in future nanoscale prediction and design. PMID:27028744

  3. Diameter-Independent Kinetics in the Vapor-Liquid-Solid Growth of Si Nanowires

    NASA Astrophysics Data System (ADS)

    Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M.

    2006-03-01

    We examine individual Si nanowires grown by the vapor-liquid-solid mechanism, using real-time in situ ultra high vacuum transmission electron microscopy. By directly observing Au-catalyzed growth of Si wires from disilane, we show that the growth rate is independent of wire diameter, contrary to the expected behavior. Our measurements show that the unique rate-limiting step here is the irreversible, kinetically limited, dissociative adsorption of disilane directly on the catalyst surface. We also identify a novel dependence of growth rate on wire taper.

  4. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires.

    PubMed

    Kodambaka, S; Tersoff, J; Reuter, M C; Ross, F M

    2006-03-10

    We examine individual Si nanowires grown by the vapor-liquid-solid mechanism, using real-time in situ ultra high vacuum transmission electron microscopy. By directly observing Au-catalyzed growth of Si wires from disilane, we show that the growth rate is independent of wire diameter, contrary to the expected behavior. Our measurements show that the unique rate-limiting step here is the irreversible, kinetically limited, dissociative adsorption of disilane directly on the catalyst surface. We also identify a novel dependence of growth rate on wire taper. PMID:16606284

  5. Temperature dependent shape transformation of Ge nanostructures by the vapor-liquid-solid method

    NASA Astrophysics Data System (ADS)

    Das, K.; Chakraborty, A. K.; NandaGoswami, M. L.; Shingha, R. K.; Dhar, A.; Coleman, K. S.; Ray, S. K.

    2007-04-01

    A vapor-liquid-solid method has been used to study the temperature dependent growth mechanism of Ge nanostructures on Au-coated Si (100) substrates. The formation of Ge nanodots, nanorods, and nanowires has been observed at different growth temperatures. The diameter of grown nanowires is found to be varying from 40 to 80 nm and that of nanorods from 70 to 90 nm, respectively. A comparative study has been done on three types of samples using x-ray diffraction and Raman spectroscopy. Photoluminescence spectra of grown nanostructures exhibit a broad emission band around 2.6 eV due to oxide related defect states.

  6. A search for the prewetting line. [in binary liquid system at vapor-liquid interface

    NASA Technical Reports Server (NTRS)

    Schmidt, J. W.; Moldover, M. R.

    1986-01-01

    This paper describes efforts to locate the prewetting line in a binary liquid system (isopropanol-perfluoromethylcyclohexane) at the vapor-liquid interface. Tight upper bounds were placed on the temperature separation (0.2 K) between the prewetting line and the line of bulk liquid phase separation. The prewetting line in systems at equilibrium was not detected. Experimental signatures indicative of the prewetting line occurred only in nonequilibrium situations. Several theories predict that the adsorption of one of the components (the fluorocarbon, in this case) at the liquid-vapor interface should increase abruptly, at a temperature sightly above the temperature at which the mixture separates into two liquid phases. A regular solution calculation indicates that this prewetting line should have been easily detectable with the instruments used in this experiment. Significant features of the experiment are: (1) low-gradient thermostatting, (2) in situ stirring, (3) precision ellipsometry from the vapor-liquid interface, (4) high resolution differential index of refraction measurements using a novel cell design, and (5) computer control.

  7. Low-temperature, vapor-liquid-solid, laterally grown silicon films using alloyed catalysts

    NASA Astrophysics Data System (ADS)

    LeBoeuf, Jerome L.; Brodusch, Nicolas; Gauvin, Raynald; Quitoriano, Nathaniel J.

    2014-12-01

    Using amorphous oxide templates known as micro-crucibles which confine a vapor-liquid-solid catalyst to a specific geometry, two-dimensional silicon thin-films of a single orientation have been grown laterally over an amorphous substrate and defects within crystals have been necked out. The vapor-liquid-solid catalysts consisted nominally of 99% gold with 1% titanium, chromium, or aluminum, and each alloy affected the processing of micro-crucibles and growth within them significantly. It was found that chromium additions inhibited the catalytic effect of the gold catalysts, titanium changed the morphology of the catalyst during processing and aluminum stabilized a potential third phase in the gold-silicon system upon cooling. Two mechanisms for growing undesired nanowires were identified both of which hindered the VLS film growth, fast silane cracking rates and poor gold etching, which left gold nanoparticles near the gold-vapor interface. To reduce the silane cracking rates, growth was done at a lower temperature while an engineered heat and deposition profile helped to reduce NWs caused by the second mechanism. Through experimenting with catalyst compositions, the fundamental mechanisms which produce concentration gradients across the gold-silicon alloy within a given micro-crucible have been proposed. Using the postulated mechanisms, micro-crucibles were designed which promote high-quality, single crystal growth of semiconductors.

  8. Suppression of the vapor-liquid-solid growth of silicon nanowires by antimony addition.

    PubMed

    Nimmatoori, Pramod; Zhang, Qi; Dickey, Elizabeth C; Redwing, Joan M

    2009-01-14

    The effect of Sb addition on the growth rate and structural properties of Si nanowires synthesized by vapor-liquid-solid growth was investigated. The nanowire growth rate was reduced by an order of magnitude following the addition of a low concentration pulse of trimethylantimony (TMSb) to the gas phase during growth. Transmission electron microscopy analysis revealed that the wires had a thick amorphous coating ( approximately 8 nm) around the catalyst particle and a distorted catalyst shape. Energy-dispersive x-ray spectroscopy showed the presence of trace amounts of Sb in the amorphous coating around the catalyst and at the catalyst-wire interface. Antimony was also found to be incorporated in the Si nanowires with a peak in the Sb concentration measured at the initial point where the TMSb pulse was added to the gas stream. The significant reduction in wire growth rate was attributed to Sb segregation at the vapor-liquid and liquid-solid interfaces which results in a change in interfacial energies and a reduction in the rate of Si incorporation at these interfaces. PMID:19417276

  9. Nimbus 7 SMMR derived seasonal variations in the water vapor, liquid water, and surface winds over the global oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    A study based on monthly mean maps of atmospheric water vapor, liquid water, and surface wind derived from Nimbus-7 SMMR over the oceans for 13 months, is examined. A discussion of the retrieval technique used to derive the parameters is presented. The seasonal changes in the strength and position of several of the parameter features are revealed by the December 1978 and June 1979 maps. Zonal averages of the water vapor, liquid water, and surface wind for December and June are compared with information derived from conventional measurements and the results are presented in graphs.

  10. A flux induced crystal phase transition in the vapor-liquid-solid growth of indium-tin oxide nanowires

    NASA Astrophysics Data System (ADS)

    Meng, Gang; Yanagida, Takeshi; Yoshida, Hideto; Nagashima, Kazuki; Kanai, Masaki; Zhuge, Fuwei; He, Yong; Klamchuen, Annop; Rahong, Sakon; Fang, Xiaodong; Takeda, Seiji; Kawai, Tomoji

    2014-05-01

    Single crystalline metal oxide nanowires formed via a vapor-liquid-solid (VLS) route provide a platform not only for studying fundamental nanoscale properties but also for exploring novel device applications. Although the crystal phase variation of metal oxides, which exhibits a variety of physical properties, is an interesting feature compared with conventional semiconductors, it has been difficult to control the crystal phase of metal oxides during the VLS nanowire growth. Here we show that a material flux critically determines the crystal phase of indium-tin oxide nanowires grown via the VLS route, although thermodynamical parameters, such as temperature and pressure, were previously believed to determine the crystal phase. The crystal phases of indium-tin oxide nanowires varied from the rutile structures (SnO2), the metastable fluorite structures (InxSnyO3.5) and the bixbyite structures (Sn-doped In2O3) when only the material flux was varied within an order of magnitude. This trend can be interpreted in terms of the material flux dependence of crystal phases (rutile SnO2 and bixbyite In2O3) on the critical nucleation at the liquid-solid (LS) interface. Thus, precisely controlling the material flux, which has been underestimated for VLS nanowire growths, allows us to design the crystal phase and properties in the VLS nanowire growth of multicomponent metal oxides.Single crystalline metal oxide nanowires formed via a vapor-liquid-solid (VLS) route provide a platform not only for studying fundamental nanoscale properties but also for exploring novel device applications. Although the crystal phase variation of metal oxides, which exhibits a variety of physical properties, is an interesting feature compared with conventional semiconductors, it has been difficult to control the crystal phase of metal oxides during the VLS nanowire growth. Here we show that a material flux critically determines the crystal phase of indium-tin oxide nanowires grown via the VLS route

  11. Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Sang Ho; Chisholm, Matthew F.; Kauffmann, Yaron; Kaplan, Wayne D.; Luo, Weidong; Rühle, Manfred; Scheu, Christina

    2010-10-01

    In vapor-liquid-solid (VLS) growth, the liquid phase plays a pivotal role in mediating mass transport from the vapor source to the growth front of a nanowire. Such transport often takes place through the liquid phase. However, we observed by in situ transmission electron microscopy a different behavior for self-catalytic VLS growth of sapphire nanowires. The growth occurs in a layer-by-layer fashion and is accomplished by interfacial diffusion of oxygen through the ordered liquid aluminum atoms. Oscillatory growth and dissolution reactions at the top rim of the nanowires occur and supply the oxygen required to grow a new (0006) sapphire layer. A periodic modulation of the VLS triple-junction configuration accompanies these oscillatory reactions.

  12. A new vapor-liquid equilibrium apparatus for hydrogen fluoride containing systems

    SciTech Connect

    Jongcheon Lee; Hwayong Kim; Jong Sung Lim; Jae-Duck Kim; Youn Yong Lee

    1996-12-31

    A new circulating type apparatus has been constructed to obtain reliable equilibrium PTxy data for hydrogen fluoride (HF) containing system. Equilibrium cell with Pyrex windows protected by Teflon PFA sheets to prevent the corrosion was used. Isothermal vapor-liquid equilibrium data for the 1,1-difluoroethane (HFC-152a) + HF system at 288.23 and 298.35 K were obtained, and compared with PTx measurement results. Experimental data were correlated using Lencka and Anderko equation of state for HF with the Wong-Sandler mixing rule as well as the van der Waals one fluid mixing rule. The Wong-Sandler mixing rule gives better results. 5 refs., 3 figs.

  13. Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires

    SciTech Connect

    Oh, Sang Ho; Chisholm, Matthew F; Kauffmann, Yaron; Kaplan, Prof. Wayne D.; Luo, Weidong; Ruhle, M.; Scheu, Christina

    2010-01-01

    In vapor-liquid-solid (VLS) growth, the liquid phase plays a pivotal role in mediating mass transport from the vapor source to the growth front of a nanowire. Such transport often takes place through the liquid phase. However, we observed by in situ transmission electron microscopy a different behavior for self-catalytic VLS growth of sapphire nanowires. The growth occurs in a layer-by-layer fashion and is accomplished by interfacial diffusion of oxygen through the ordered liquid aluminum atoms. Oscillatory growth and dissolution reactions at the top rim of the nanowires occur and supply the oxygen required to grow a new (0006) sapphire layer. A periodic modulation of the VLS triple-junction configuration accompanies these oscillatory reactions.

  14. Physical model of the vapor-liquid (insulator-metal) transition in an exciton gas

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-04-15

    We propose a simple physical model describing the transition of an exciton gas to a conducting exciton liquid. The transition occurs due to cohesive coupling of excitons in the vicinity of the critical point, which is associated with transformation of the exciton ground state to the conduction band and the emergence of conduction electrons. We calculate the cohesion binding energy for the exciton gas and, using it, derive the equations of state, critical parameters, and binodal. The computational method is analogous to that used by us earlier [5] for predicting the vapor-liquid (insulator-metal) phase transition in atomic (hypothetical, free of molecules) hydrogen and alkali metal vapors. The similarity of the methods used for hydrogen and excitons makes it possible to clarify the physical nature of the transition in the exciton gas and to predict more confidently the existence of a new phase transition in atomic hydrogen.

  15. Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism

    SciTech Connect

    Zervos, M. Giapintzakis, J.; Mihailescu, C. N.; Luculescu, C. R.; Florini, N.; Komninou, Ph.; Kioseoglou, J.; Othonos, A.

    2014-05-01

    Indium tin oxide nanowires were grown by the reaction of In and Sn with O{sub 2} at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001). We obtain Sn doped In{sub 2}O{sub 3} nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO{sub 2} and suppression of In{sub 2}O{sub 3} permitting compositional and structural tuning from SnO{sub 2} to In{sub 2}O{sub 3} which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

  16. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    SciTech Connect

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  17. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    PubMed

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-01

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles. PMID:26599639

  18. Secondary ion mass spectrometry of vapor-liquid-solid grown, Au-catalyzed, Si wires.

    PubMed

    Putnam, Morgan C; Filler, Michael A; Kayes, Brendan M; Kelzenberg, Michael D; Guan, Yunbin; Lewis, Nathan S; Eiler, John M; Atwater, Harry A

    2008-10-01

    Knowledge of the catalyst concentration within vapor-liquid-solid (VLS) grown semiconductor wires is needed in order to assess potential limits to electrical and optical device performance imposed by the VLS growth mechanism. We report herein the use of secondary ion mass spectrometry to characterize the Au catalyst concentration within individual, VLS-grown, Si wires. For Si wires grown by chemical vapor deposition from SiCl 4 at 1000 degrees C, an upper limit on the bulk Au concentration was observed to be 1.7 x 10(16) atoms/cm(3), similar to the thermodynamic equilibrium concentration at the growth temperature. However, a higher concentration of Au was observed on the sidewalls of the wires. PMID:18767881

  19. Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method

    NASA Astrophysics Data System (ADS)

    Sunkara, M. K.; Sharma, S.; Miranda, R.; Lian, G.; Dickey, E. C.

    2001-09-01

    Silicon nanowires will find applications in nanoscale electronics and optoelectronics both as active and passive components. Here, we demonstrate a low-temperature vapor-liquid-solid synthesis method that uses liquid-metal solvents with low solubility for silicon and other elemental semiconductor materials. This method eliminates the usual requirement of quantum-sized droplets in order to obtain quantum-scale one-dimensional structures. Specifically, we synthesized silicon nanowires with uniform diameters distributed around 6 nm using gallium as the molten solvent, at temperatures less than 400 °C in hydrogen plasma. The potential exists for bulk synthesis of silicon nanowires at temperatures significantly lower than 400 °C. Gallium forms a eutectic with silicon near room temperature and offers a wide temperature range for bulk synthesis of nanowires. These properties are important for creating monodispersed one-dimensional structures capable of yielding sharp hetero- or homointerfaces.

  20. Effects of capillary heterogeneity on vapor-liquid counterflow in porous media

    SciTech Connect

    Stubos, A.K.; Satik, C.; Yortsos, Y.C.

    1992-06-01

    Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force, that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the ``infinite`` two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid - liquid dominated - dry, or liquid - vapor dominated - dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.

  1. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  2. Measurements of the vapor-liquid coexistence curve and the critical parameters for 1,1,1,2-tetrafluoroethane

    SciTech Connect

    Kabata, Y.; Tanikawa, S.; Uematsu, M.; Watanabe, K. )

    1989-05-01

    Measurements of the vapor-liquid coexistence curve in the critical region for 1,1,1,2-tetrafluoroethane (R134a; CH{sub 2}FCF{sub 3}), which is currently considered as a prospective substitute for conventional refrigerant R12, have been performed by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Twenty-seven saturated densities along the vapor-liquid coexistence curve between 208 and 999 kg {times} m{sup {minus}3} have been obtained in the temperature range 343 K to the critical temperature. The experimental uncertainties in temperature and density measurements have been estimated to be within {plus minus} 10 mK and {plus minus} 0.55%, respectively. On the basis of these measurements near the critical point, the critical temperature and the critical density for 1,1,1,2-tetrafluoroethane were determined in consideration of the meniscus disappearing level as well as the intensity of the critical opalescence. In addition, the critical exponent {beta} along the vapor-liquid coexistence curve has been determined in accord with the difference between the density of the saturated liquid and that of the saturated vapor.

  3. Measurements of the Vapor-Liquid Coexistence Curves and the Critical Parameters of HCFC123 and HFC134a

    NASA Astrophysics Data System (ADS)

    Fukushima, Masato; Watanabe, Naohiro; Kamimura, Toru

    The critical parameters and vapor-liquid coexistence curves in the critical region of two environmentally acceptable hydrogen-containing halocarbons (HCFC123 and HFC134a) were determined experimentally. The measurements of vapor-liquid coexistence curves were made through visual observation of the disappearance of meniscus at the vapor-liquid interface within the optical cell. Thirty eight saturated densities in the range of 209 to 1176 kg/m3 were obtained between the temperature of 392 K and the critical temperature for HCFC123. And seventeen saturated densities in the range of 322 to 746 kg/m3 were obtained between the temperature of 370 K and the critical temperature for HFC134a. On the basis of these results, the critical temperature and critical density of HCFC123 were determined to be 456.94 K and 553 kg/m3, respectively. And these parameters of HFC134a were determined to be 374.18 K and 507 kg/m3. In addition, the critical exponents were determined and the correlation of vapor-liquid coexistence curves were developed.

  4. Effect of pressure-induced changes in the ionization equilibria of buffers on inactivation of Escherichia coli and Staphylococcus aureus by high hydrostatic pressure.

    PubMed

    Gayán, Elisa; Condón, Santiago; Álvarez, Ignacio; Nabakabaya, Maria; Mackey, Bernard

    2013-07-01

    Survival rates of Escherichia coli and Staphylococcus aureus after high-pressure treatment in buffers that had large or small reaction volumes (ΔV°), and which therefore underwent large or small changes in pH under pressure, were compared. At a low buffer concentration of 0.005 M, survival was, as expected, better in MOPS (morpholinepropanesulfonic acid), HEPES, and Tris, whose ΔV° values are approximately 5.0 to 7.0 cm(3) mol(-1), than in phosphate or dimethyl glutarate (DMG), whose ΔV° values are about -25 cm(3) mol(-1). However, at a concentration of 0.1 M, survival was unexpectedly better in phosphate and DMG than in MOPS, HEPES, or Tris. This was because the baroprotective effect of phosphate and DMG increased much more rapidly with increasing concentration than it did with MOPS, HEPES, or Tris. Further comparisons of survival in solutions of salts expected to cause large electrostriction effects (Na2SO4 and CaCl2) and those causing lower electrostriction (NaCl and KCl) were made. The salts with divalent ions were protective at much lower concentrations than salts with monovalent ions. Buffers and salts both protected against transient membrane disruption in E. coli, but the molar concentrations necessary for membrane protection were much lower for phosphate and Na2SO4 than for HEPES and NaCl. Possible protective mechanisms discussed include effects of electrolytes on water compressibility and kosmotropic and specific ion effects. The results of this systematic study will be of considerable practical significance in studies of pressure inactivation of microbes under defined conditions but also raise important fundamental questions regarding the mechanisms of baroprotection by ionic solutes. PMID:23624471

  5. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  6. Spontaneous, Defect-Free Kinking via Capillary Instability during Vapor-Liquid-Solid Nanowire Growth.

    PubMed

    Li, Yanying; Wang, Yanming; Ryu, Seunghwa; Marshall, Ann F; Cai, Wei; McIntyre, Paul C

    2016-03-01

    Kinking, a common anomaly in nanowire (NW) vapor-liquid-solid (VLS) growth, represents a sudden change of the wire's axial growth orientation. This study focuses on defect-free kinking during germanium NW VLS growth, after nucleation on a Ge (111) single crystal substrate, using Au-Ge catalyst liquid droplets of defined size. Statistical analysis of the fraction of kinked NWs reveals the dependence of kinking probability on the wire diameter and the growth temperature. The morphologies of kinked Ge NWs studied by electron microscopy show two distinct, defect-free, kinking modes, whose underlying mechanisms are explained with the help of 3D multiphase field simulations. Type I kinking, in which the growth axis changes from vertical [111] to ⟨110⟩, was observed in Ge NWs with a nominal diameter of ∼20 nm. This size coincides with a critical diameter at which a spontaneous transition from ⟨111⟩ to ⟨110⟩ growth occurs in the phase field simulations. Larger diameter NWs only exhibit Type II kinking, in which the growth axis changes from vertical [111] directly to an inclined ⟨111⟩ axis during the initial stages of wire growth. This is caused by an error in sidewall facet development, which produces a shrinkage in the area of the (111) growth facet with increasing NW length, causing an instability of the Au-Ge liquid droplet at the tip of the NW. PMID:26837774

  7. Mathematical modeling of planar and spherical vapor-liquid phase interfaces for multicomponent fluids

    NASA Astrophysics Data System (ADS)

    Celný, David; Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2016-03-01

    Development of methods for accurate modeling of phase interfaces is important for understanding various natural processes and for applications in technology such as power production and carbon dioxide separation and storage. In particular, prediction of the course of the non-equilibrium phase transition processes requires knowledge of the properties of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor-liquid phase interfaces for binary mixtures. We developed a robust computational method to determine the density and concentration profiles. The fundamentals of our approach lie in the Cahn-Hilliard gradient theory, allowing to transcribe the functional formulation into a system of ordinary Euler-Langrange equations. This system is then split and modified into a shape suitable for iterative computation. For this task, we combine the Newton-Raphson and the shooting methods providing a good convergence speed. For the thermodynamic roperties, the PC-SAFT equation of state is used. We determine the density and concentration profiles for spherical phase interfaces at various saturation factors for the binary mixture of CO2 and C9H20. The computed concentration profiles allow to the determine the work of formation and other characteristics of the microscopic droplets.

  8. Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device.

    PubMed

    Kaur, N; Comini, E; Zappa, D; Poli, N; Sberveglieri, G

    2016-05-20

    In the field of advanced sensor technology, metal oxide nanostructures are promising materials due to their high charge carrier mobility, easy fabrication and excellent stability. Among all the metal oxide semiconductors, nickel oxide (NiO) is a p-type semiconductor with a wide band gap and excellent optical, electrical and magnetic properties, which has not been much investigated. Herein, we report the growth of NiO nanowires by using the vapor liquid solid (VLS) technique for gas sensing applications. Platinum, palladium and gold have been used as a catalyst for the growth of NiO nanowires. The surface morphology of the nanowires was investigated through scanning electron microscopy to find out which catalyst and growth conditions are best for the growth of nanowires. GI-XRD and Raman spectroscopies were used to confirm the crystalline structure of the material. Different batches of sensors have been prepared, and their sensing performances towards different gas species such as carbon monoxide, ethanol, acetone and hydrogen have been explored. NiO nanowire sensors show interesting and promising performances towards hydrogen. PMID:27053627

  9. Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device

    NASA Astrophysics Data System (ADS)

    Kaur, N.; Comini, E.; Zappa, D.; Poli, N.; Sberveglieri, G.

    2016-05-01

    In the field of advanced sensor technology, metal oxide nanostructures are promising materials due to their high charge carrier mobility, easy fabrication and excellent stability. Among all the metal oxide semiconductors, nickel oxide (NiO) is a p-type semiconductor with a wide band gap and excellent optical, electrical and magnetic properties, which has not been much investigated. Herein, we report the growth of NiO nanowires by using the vapor liquid solid (VLS) technique for gas sensing applications. Platinum, palladium and gold have been used as a catalyst for the growth of NiO nanowires. The surface morphology of the nanowires was investigated through scanning electron microscopy to find out which catalyst and growth conditions are best for the growth of nanowires. GI-XRD and Raman spectroscopies were used to confirm the crystalline structure of the material. Different batches of sensors have been prepared, and their sensing performances towards different gas species such as carbon monoxide, ethanol, acetone and hydrogen have been explored. NiO nanowire sensors show interesting and promising performances towards hydrogen.

  10. Influences of depletion potential on vapor-liquid critical point metastability

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Liu, G.

    2016-04-01

    Phase behavior of a neutral colloid dispersion is investigated based on an improved Asakura-Oosawa (AO) model. Several observations are made: (i) an increase of solvent fugacity can enlarge the fluid-solid (FS) coexistence region, and this makes fugacity become a powerful factor in tuning a vapor-liquid transition (VLT) critical point metastability. (ii) A reducing of size ratio of the solvent versus colloid particle can enlarge the FS coexistence region as well as lower the VLT critical temperature, and a combination of the two effects makes the size ratio an extremely powerful factor adjusting the VLT critical point metastability. (iii) Existence of a long-range attraction term in the effective colloid potential is not a necessary condition for occurrence of a vapor-solid transition (VST), and short-ranged oscillatory depletion potential also can induce the VST over an even broader temperature range. (iv) Sensitivity of the freezing line on the size ratio is disclosed, and one can make use of the sensitivity to prepare mono-disperse colloid of well-controlled diameter by following a fractionated crystallization scheme; moreover, broadening of the FST coexistence region by raising the solvent fugacity and/or lowering the size ratio has important implication for crystallization process.

  11. Field Emission studies of Silicon nanowires grown by Vapor-Liquid-Solid (VLS) technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, Niraj; Bae, Joonho; Stanley, Scott; Coffee, Shawn; Ekerdt, John; Yao, Zhen; Shih, Chih-Kang

    2004-03-01

    Semiconductor nanowires among other 1-D nanostructures are potential candidates for field emission applications by virtue of their small tip radii and large aspect ratios. In this regard field emission properties of silicon nanowires are investigated. Silicon as a material has processing advantages over others because it has been well researched over the past decades. Silicon nanowires are grown by hot wire chemical vapor deposition (CVD) of disilane at approximately 600 C. The growth takes place via vapor-liquid-solid (VLS) mechanism with a thin film (20 nm) of gold acting as a catalyst. VLS growth enables large area coverage and also offers scalability. Field emission studies of these samples will be reported. Preliminary studies indicate a threshold field of 10-15 V/μ m. As a consequence of VLS growth, the catalyst (gold) resides at the tip of the nanowire and can be etched away by aqua regia. The effect of gold removal on the field emission characteristics will be reported. Silicon also offers an additional degree of freedom in terms of doping to engineer the position of the Fermi level. The effect of doping on the field emission characteristics will also be reported.

  12. Whisker reinforced structural ceramics: Progress in the VLS growth and use of long silicon carbide whiskers. [Vapor-liquid-solid

    SciTech Connect

    Gac, F.D.; Shalek, P.D.; Parkinson, W.J.; Edwards, C.; Price, J.B.

    1987-01-01

    A VLS (vapor-liquid-solid) whisker growth process, optimized for the production of short (approx.10 mm lengths) SiC whiskers, was modified to produce greater than or equal to 25 mm long whiskers. In conjunction with this modification, a plan was developed for incorporating an artificial-intelligence system to enhance the whisker growth process. An oriented whisker ribbon was produced from the long whiskers, as a step toward the development of a staple whisker yarn.

  13. Phase relations in the system NaCl-KCl-H2O: V. Thermodynamic-PTX analysis of solid-liquid equilibria at high temperatures and pressures

    USGS Publications Warehouse

    Sterner, S.M.; Chou, I.-Ming; Downs, R.T.; Pitzer, Kenneth S.

    1992-01-01

    The Gibbs energies of mixing for NaCl-KCl binary solids and liquids and solid-saturated NaCl-KCl-H2O ternary liquids were modeled using asymmetric Margules treatments. The coefficients of the expressions were calibrated using an extensive array of binary solvus and solidus data, and both binary and ternary liquidus data. Over the PTX range considered, the system exhibits complete liquid miscibility among all three components and extensive solid solution along the anhydrous binary. Solid-liquid and solid-solid phase equilibria were calculated by using the resulting equations and invoking the equality of chemical potentials of NaCl and KCl between appropriate phases at equilibrium. The equations reproduce the ternary liquidus and predict activity coefficients for NaCl and KCl components in the aqueous liquid under solid-saturation conditions between 673 and 1200 K from vapor saturation up to 5 kbar. In the NaCl-KCl anhydrous binary system, the equations describe phase equilibria and predict activity coefficients of the salt components for all stable compositions of solid and liquid phases between room temperature and 1200 K and from 1 bar to 5 kbar. ?? 1992.

  14. Rational Concept for Designing Vapor-Liquid-Solid Growth of Single Crystalline Metal Oxide Nanowires.

    PubMed

    Klamchuen, Annop; Suzuki, Masaru; Nagashima, Kazuki; Yoshida, Hideto; Kanai, Masaki; Zhuge, Fuwei; He, Yong; Meng, Gang; Kai, Shoichi; Takeda, Seiji; Kawai, Tomoji; Yanagida, Takeshi

    2015-10-14

    Metal oxide nanowires hold great promise for various device applications due to their unique and robust physical properties in air and/or water and also due to their abundance on Earth. Vapor-liquid-solid (VLS) growth of metal oxide nanowires offers the high controllability of their diameters and spatial positions. In addition, VLS growth has applicability to axial and/or radial heterostructures, which are not attainable by other nanowire growth methods. However, material species available for the VLS growth of metal oxide nanowires are substantially limited even though the variety of material species, which has fascinating physical properties, is the most interesting feature of metal oxides. Here we demonstrate a rational design for the VLS growth of various metal oxide nanowires, based on the "material flux window". This material flux window describes the concept of VLS nanowire growth within a limited material flux range, where nucleation preferentially occurs only at a liquid-solid interface. Although the material flux was previously thought to affect primarily the growth rate, we experimentally and theoretically demonstrate that the material flux is the important experimental variable for the VLS growth of metal oxide nanowires. On the basis of the material flux window concept, we discover novel metal oxide nanowires, composed of MnO, CaO, Sm2O3, NiO, and Eu2O3, which were previously impossible to form via the VLS route. The newly grown NiO nanowires exhibited stable memristive properties superior to conventional polycrystalline devices due to the single crystallinity. Thus, this VLS design route offers a useful guideline for the discovery of single crystalline nanowires that are composed of functional metal oxide materials. PMID:26372675

  15. Correlation of Zeno (Z = 1) line for supercritical fluids with vapor-liquid rectilinear diameters

    SciTech Connect

    Ben-Amotz, D.; Herschbach, D.R.

    1996-08-01

    For a wide range of substances, extending well beyond the regime of corresponding states behavior, the contour in the temperature-density plane along which the compressibility factor Z = P/{rho}kT is the same as for an ideal gas is nearly linear. This Z = 1 contour, termed the Zeno line, begins deep in the liquid region and ascends as the density decreases to the Boyle point of the supercritical fluid, specified by the temperature T{sub B} for which (dZ/d{rho}){sub T} = 0 as {rho} {r_arrow} 0; equivalent, at T{sub B} the second virial coefficient vanishes. The slope of the Z = 1 line is {minus}B{sub 3}/(dB{sub 2}/dT), in terms of the third virial coefficient and the derivative of the second, evaluated at T{sub B}. Previous work has examined the Zeno line as a means to extend corresponding states and to enhance other practical approximations. Here the authors call attention to another striking aspect, a strong correlation with the line of rectilinear diameters defined by the average of the subcritical vapor and liquid densities. This correlation is obeyed well by empirical data for many substances and computer simulations for a Lennard-jones potential; the ratios of the intercepts and slopes for the Zeno and rectilinear diameter liens are remarkably close to those predicted by the van der Waals equation, 8/9 and 16/9, respectively. Properties of the slightly imperfect fluid far above the critical point thus implicitly determine the diameter of the vapor-liquid coexistence curve below the critical point.

  16. Synthesis and characterization of group IV semiconductor nanowires by vapor-liquid-solid growth

    NASA Astrophysics Data System (ADS)

    Lew, Kok-Keong

    There is currently intense interest in one-dimensional nanostructures, such as nanotubes and nanowires, due to their potential to test fundamental concepts of dimensionality and to serve as building blocks for nanoscale devices. Vapor-liquid-solid (VLS) growth, which is one of the most common fabrication methods, has been used to produce single crystal semiconductor nanowires such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs). In the VLS growth of Group IV semiconductor nanowires, a metal, such as gold (Au) is used as a catalyst agent to nucleate whisker growth from a Si-containing (silane (SIH4)) or Ge-containing vapor (germane (GeH 4)). Au and Si/Ge form a liquid alloy that has a eutectic temperature of around 360°C, which, upon supersaturation, nucleates the growth of a Si or Ge wire. The goal of this work is to develop a more fundamental understanding of VLS growth kinetics and intentional doping of Group IV semiconductor nanowires in order to better control the properties of the nanowires. The fabrication of p-type and n-type Si nanowires will be studied via the addition of dopant gases such as diborane (B2H 6), trimethylboron (TMB), and phosphine (PH3) during growth. The use of gaseous dopant sources provides more flexibility in growth, particularly for the fabrication of p-n junctions and structures with axial dopant variations (e.g. p+-p- p+). The study is then extended to fabricate SiGe alloy nanowires by mixing SiH4 and GeH4. Bandgap engineering in Si/SiGe heterostructures can lead to novel devices with improved performance compared to those made entirely of Si. The scientific findings will lead to a better understanding of the fabrication of Si/SiGe axial and radial heterostructure nanowires for functional nanowire device structures, such as heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs). Eventually, the central theme of this research is to provide a scientific knowledge base and foundation for

  17. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  18. (Vapor + Liquid) Equilibrium (VLE) for Binary Lead-Antimony System in Vacuum Distillation: New Data and Modeling Using Nonrandom Two-Liquid (NRTL) Model

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Kong, Lingxin; Xu, Baoqiang; Yang, Bin; You, Yanjun; Xu, Shuai; Zhou, Yuezhen; Li, Yifu; Liu, Dachun

    2016-07-01

    In this work, new experimental vapor-liquid equilibrium (VLE) data of lead-antimony alloy (Pb-Sb alloy) in vacuum distillation are reported. The activity coefficients of components of Pb-Sb alloy were calculated by using the NRTL model. The calculated average relative deviations were ±0.1425 and ±0.2433 pct, and the average standard deviations were ±0.0009 and ±0.0007, respectively, for Pb and Sb. The VLE phase diagrams, such as the temperature composition (T-x) and pressure composition (P-x) diagrams of Pb-Sb alloy in vacuum distillation were predicted based on the NRTL model and VLE theory. The predicted results are consistent with the new experimental data indicating that VLE phase diagrams obtained by this method are reliable. The VLE phase diagrams of alloys will provide an effective and intuitive way for the technical design and realization of recycling and separation processes. The VLE data may be used in separation processes design, and the thermodynamic properties as the key parameters in specific applications.

  19. Vapor-liquid equilibrium of the Mg(NO/sub 3/)/sub 2/-HNO/sub 3/-H/sub 2/O system

    SciTech Connect

    Thompson, B.E.; Derby, J.J.; Stalzer, E.H.

    1983-06-01

    The vapor-liquid equilibrium of the Mg(NO/sub 3/)/sub 2/-HNO/sub 3/-H/sub 2/O system in concentrations of 0 to 70 wt % Mg(NO/sub 3/)/sub 2/ and 0 to 75 wt % HNO/sub 3/ at atmospheric pressure was correlated by two approaches. One was based on a dissociation equilibrium expression in which the activities of the reacting species (HNO/sub 3/, NO/sub 3//sup -/, and H/sup +/) were approximated with mole fractions. The activity coefficients of the undissociated HNO/sub 3/ and H/sub 2/O were correlated as functions of the concentrations of magnesium nitrate and nitric acid by second-order polynomials. The average absolute difference between predicted and experimental values was 8% for the mole fraction of acid in the vapor and 8/sup 0/K for the bubble-point temperature. The second approach was to correlate the mean ionic rational activity coefficient of water with a form of the excess Gibbs energy composed of two terms. One term, a function of the ionic strength, accounts for the coulombic (ionic) interactions; the other term accounts for the non-coulombic (molecular) interactions. The average absolute difference between predicted and experimental values was 9% for the mole fraction of acid in the vapor, and 10/sup 0/K for the bubble-point temperature.

  20. (Vapor + Liquid) Equilibrium (VLE) for Binary Lead-Antimony System in Vacuum Distillation: New Data and Modeling Using Nonrandom Two-Liquid (NRTL) Model

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Kong, Lingxin; Xu, Baoqiang; Yang, Bin; You, Yanjun; Xu, Shuai; Zhou, Yuezhen; Li, Yifu; Liu, Dachun

    2016-09-01

    In this work, new experimental vapor-liquid equilibrium (VLE) data of lead-antimony alloy (Pb-Sb alloy) in vacuum distillation are reported. The activity coefficients of components of Pb-Sb alloy were calculated by using the NRTL model. The calculated average relative deviations were ±0.1425 and ±0.2433 pct, and the average standard deviations were ±0.0009 and ±0.0007, respectively, for Pb and Sb. The VLE phase diagrams, such as the temperature composition ( T- x) and pressure composition ( P-x) diagrams of Pb-Sb alloy in vacuum distillation were predicted based on the NRTL model and VLE theory. The predicted results are consistent with the new experimental data indicating that VLE phase diagrams obtained by this method are reliable. The VLE phase diagrams of alloys will provide an effective and intuitive way for the technical design and realization of recycling and separation processes. The VLE data may be used in separation processes design, and the thermodynamic properties as the key parameters in specific applications.

  1. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    DOE PAGESBeta

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silanemore » provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.« less

  2. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires: Composition dependence on precursor reactivity and morphology control for vertical forests

    NASA Astrophysics Data System (ADS)

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-01

    Growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1-xGex alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350 °C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a "two-step" growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. With increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1-xGex alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.

  3. Engineering scale development of the Vapor-Liquid-Solid (VLS) process for the production of silicon carbide fibrils

    SciTech Connect

    Hollar, W.E. Jr.; Mills, W.H.

    1993-09-01

    Vapor-liquid-solid (VLS)SiC fibrils are used as reinforcement in ceramic matrix composites (CMC). A program has been completed for determining process scaleup parameters and to produce material for evaluation in a CMC. The scaleup is necessary to lower production cost and increase material availability. Scaleup parameters were evaluated in a reactor with a vertical dimension twice that of the LANL reactor. Results indicate that the scaleup will be possible. Feasibility of recycling process gas was demonstrated and the impact of postprocessing on yields determined.

  4. Effect of cooling time on the vapor liquid solid based growth of gold-catalyzed bismuth nanorods

    NASA Astrophysics Data System (ADS)

    Acharya, Susant Kumar; Rai, Alok Kumar; Kim, Gil-Sung; Hyung, Jung-Hwan; Ahn, Byung-Guk; Lee, Sang-Kwon

    2012-01-01

    Deposition of single crystalline bismuth nanorods (Bi NRs) using a thermal evaporation method through vapor-liquid-solid (VLS) mechanism is reported here and the effect of sample cooling time on the growth of Bi NRs is investigated. Deposited Bi NRs have diameters varying from 100 to 400 nm and lengths extending to ∼3 μm in the (012) growth direction. Morphological observation indicated that the length and density of Bi NRs are strongly coupled with prolonged cooling time. A growth mechanism is suggested and discussed to describe the growth of single crystalline Bi NRs based on the morphological observations as a function of cooling temperature and time.

  5. Vapor-Liquid Equilibrium in the Systems Argon-Oxygen and Ammonia-Water Measurements and Modeling for Industrial and Planetary Applications

    NASA Astrophysics Data System (ADS)

    Parikh, Nimmi Chandra

    1997-11-01

    This work presents an integrated approach for characterizing binary vapor-liquid equilibrium (VLE) through a combination of experimental measurements and thermodynamic modeling for low to medium pressure binary VLE. We focus on two dissimilar mixtures: the non-polar argon-oxygen system of importance for industrial air separation processes and the polar ammonia-water system of interest for understanding the atmospheres of Jupiter, Saturn, Uranus, and Neptune. Experimental measurements of pressure, temperature, and phase composition at equilibrium were made for the argon-oxygen system at temperatures from 92K to 115K with a cryogenic VLE apparatus. A second custom-built apparatus was used to measure VLE in the ammonia-water system from 276K to 285K. Our new data, along with existing literature data, were critically evaluated and tested for thermodynamic consistency. A thermodynamic model of the argon-oxygen system from 90K to 120K was developed using an activity coefficient approach to describe nonidealities in the liquid and the virial equation of state to characterize vapor phase nonidealities. The model employs maximum likelihood parameter fitting which takes into account uncertainties in all measured quantities and maximizes the likelihood that the model describes the true behavior of the mixture. For the ammonia-water study a new extension of the thermodynamic model to polar mixtures is presented. Our model has built-in temperature dependence for reliable extrapolation to temperatures beyond the range of the available data. The model constants can be used in a simple iterative procedure to calculate the liquid and vapor compositions of the mixture at specified temperature and pressure. As a demonstration, our ammonia-water model is used to calculate altitude-composition profiles for condensing clouds of liquid ammonia-water solution on Jupiter.

  6. Collection of VLE data for acid gas---alkanolamine systems using fourier transform infrared spectroscopy. [Vapor-liquid equilibrium

    SciTech Connect

    Bullin, J.A.; Frazier, R.E.

    1992-01-01

    The industrial standard process for the purification of natural gas is to remove acid gases, mainly hydrogen sulfide and carbon dioxide, by the absorption and reaction of these gases with alkanolamines. Inadequate data for vapor--liquid equilibrium (VLE) hinder the industry from converting operations to more energy efficient amine mixtures and conserving energy. Some energy reductions have been realized in the past decade by applying such amine systems as hindered'' amines, methyldiethanolamine (MDEA), and MDEA based amine mixtures. However, the lack of reliable and accurate fundamental VLE data impedes the commercial application of these more efficient alkanolamine systems. The first project objective is to improve the accuracy of vapor--liquid equilibrium measurements at low hydrogen sulfide concentrations. The second project objective is to measure the VLE for amine mixtures. By improving the accuracy of the VLE measurements on MDEA and mixtures with other amines, energy saving can be quickly and confidently implemented in the many existing absorption units already in use. If about 25% of the existing 95.3 billion SCFD gas purification capacity is converted to these new amine systems, the energy savings are estimated to be about 3 [times] 10[sup 14] BTU/yr.

  7. Extended MHD Stabiliy Calculations of Spheromak Equilibria

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Sovinec, C. R.

    2013-10-01

    Linear extended MHD calculations of spheromak equilibria in a cylindrical flux conserver are performed using the NIMROD code (Sovinec et al., JCP 195, 2004). A series of Grad-Sharfranov equilibria are generated with β ranging from 0 . 4 % to 4 . 2 % , corresponding to peak electron temperatures ranging 50 to 300 eV. These equilibria use a λ profile representative of SSPX shot 14590, which measured a peak electron temperature of 325 eV (McLean et al., POP 13, 2006). Resistive MHD calculations find that the β = 0 . 4 % case is unstable to resonant resistive interchange modes with γτA <= 2 . 3 % . These modes transition to ideal interchange as the equilibrium pressure is increased. Growth rates as large as γτA = 20 % are calculated for the 4 . 2 % β case. Calculations including ion-gyroviscosity show a minimal reduction of growth rate. Effects from including the Hall and Electron pressure terms in Ohm's Law and the cross-field diamagnetic heat flux are investigated. Results of related nonlinear simulations are also presented. Work Supported by US DOE.

  8. Phase equilibria of CFC alternative refrigerant mixtures: Binary systems of isobutane + 1,1,1,2-tetrafluoroethane, + 1,1-difluoroethane, and + difluoromethane

    SciTech Connect

    Lim, J.S.; Park, J.Y.; Lee, B.G.; Lee, Y.W.; Kim, J.D.

    1999-12-01

    Isothermal vapor-liquid equilibria were measured in the binary systems 1,1,1,2-tetrafluoroethane + isobutane at 303.2 and 323.2 K, 1,1-difluoroethane + isobutane at 303.2, 313.2, 323.2, and 333.2 K, and difluoromethane + isobutane at 301.8 and 321.8 K in a circulation-type equilibrium apparatus. The experimental data were well correlated with the Peng-Robinson equation of state using the Wong and Sandler mixing rules.

  9. Vapor-liquid equilibrium, coexistence curve, and critical locus for pentafluoroethane + 1,1,1,2-tetrafluoroethane (R125/R134a)

    SciTech Connect

    Higashi, Yukihiro

    1999-03-01

    The vapor-liquid equilibrium for pentafluoroethane (R125) + 1,1,1,2-tetrafluoroethane (R134a) was measured along four isotherms between 283 K and 313 K. The vapor-liquid coexistence curve at constant composition near the mixture critical point was measured by the observation of the meniscus disappearance. The critical temperatures and critical densities of the 0.2670 and 0.6648 mole fraction of R125 were determined from the saturation densities along the coexistence curve in the critical region. In addition, the critical locus for the R125/R134a mixture is correlated as a function of composition.

  10. Vapor-liquid equilibrium, coexistence curve, and critical locus for pentafluoroethane + 1,1,1-trifluoroethane (R125/R143a)

    SciTech Connect

    Higashi, Yukihiro

    1999-03-01

    The vapor-liquid equilibrium for pentafluoroethane (R125) + 1,1,1-trifluoroethane (R143a) was measured by the static method in the temperature range between 273.15 K and 313.15 K. The vapor-liquid coexistence curve near the critical point was measured by observation of the meniscus disappearance. The critical temperatures and critical densities of the 0.4118 and 0.6208 mole fraction of R125 were determined from the saturation densities along the coexistence curve in the critical region. In addition, the critical locus for the R125/R143a mixture is correlated as a function of composition.

  11. Vapor-Liquid Equilibrium in the Mixture Propyl vinyl ether C5H10O + C6H6 Benzene (EVLM1121, LB5723_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume B 'Binary Liquid Systems of Nonelectrolytes II' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-liquid Equilibrium in the Mixture Propyl vinyl ether C5H10O + C6H6 Benzene (EVLM1121, LB5723_E)' providing data from direct measurement of mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  12. Vapor-Liquid Equilibrium in the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (EVLM1121, LB5724_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture Propan-1-ol C3H8O + C5H10O Propyl vinyl ether (EVLM1121, LB5724_E)' providing data from direct measurement of mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  13. Phase equilibria in the system BN-Si{sub 3}N{sub 4}-Mg{sub 3}N{sub 2} at atmospheric and high pressures

    SciTech Connect

    Zhukov, A.N.; Burdina, K.P.; Semenenko, K.N.

    1995-01-20

    Isothermal sections for the system BN-Si{sup 3}N{sup 4}-Mg{sub 3}N{sub 2} at atmospheric and 5.0 GPa pressures have been constructed. Three new compounds Mg{sub 5}Si{sub 2}N{sub 6}, Mg{sub 7}SiB{sub 2}N{sub 8}, and Mg{sub 10}SiBN{sub 9} have been found, the first two of which are formed both at atmospheric and at high pressure and the last only at high pressure. P,T parameters of the {alpha}-BN {r_arrow} {beta}-BN conversion in the presence of Mg{sub 7}SiB{sub 2}N{sub 8} and MgSiN{sub 2} have been determined. 13 refs., 3 figs., 4 tabs.

  14. Vertically Aligned Ge Nanowires on Flexible Plastic Films Synthesized by (111)-Oriented Ge Seeded Vapor-Liquid-Solid Growth.

    PubMed

    Toko, Kaoru; Nakata, Mitsuki; Jevasuwan, Wipakorn; Fukata, Naoki; Suemasu, Takashi

    2015-08-19

    Transfer-free fabrication of vertical Ge nanowires (NWs) on a plastic substrate is demonstrated using a vapor-liquid-solid (VLS) method. The crystal quality of Ge seed layers (50 nm thickness) prepared on plastic substrates strongly influenced the VLS growth morphology, i.e., the density, uniformity, and crystal quality of Ge NWs. The metal-induced layer exchange yielded a (111)-oriented Ge seed layer at 325 °C, which allowed for the VLS growth of vertically aligned Ge NWs. The Ge NW array had almost the same quality as that formed on a bulk Ge(111) substrate. Transmission electron microscopy demonstrated that the Ge NWs were defect-free single crystals. The present investigation paves the way for advanced electronic optical devices integrated on a low-cost flexible substrate. PMID:26230716

  15. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    SciTech Connect

    Barick, B. K. E-mail: subho-dh@yahoo.co.in; Dhar, S. E-mail: subho-dh@yahoo.co.in; Rodríguez-Fernández, Carlos; Cantarero, Andres

    2015-05-15

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [112{sup -}0] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  16. Vapor-liquid-solid growth of GaN nanowires by reactive sputtering of GaAs

    NASA Astrophysics Data System (ADS)

    Mohanta, P.; Chaturvedi, P.; Major, S. S.; Srinivasa, R. S.

    2013-02-01

    Uniformly distributed nanosized Au-Ga alloy particles were formed on ultrathin Au coated quartz substrate by sputtering of GaAs with argon at 700 °C. Subsequent deposition of GaN by reactive sputtering of GaAs in 100 % nitrogen results in the growth of GaN nanowires. X-ray diffraction analysis confirmed the formation of hexagonal GaN. Field emission gun scanning electron microscopy studies show that the nanowires are of average length 400±50 nm and average diameter 40±5 nm. The presence of spherical Au-Ga nanoparticles of diameter ˜ 50 nm at the top of the nanowires suggests that the growth takes place by vapor-liquid-solid mechanism.

  17. Bubble-point pressures and liquid densities of binary R-125 + R-143a System

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Sato, H.; Watanabe, K.

    1995-05-01

    Bubble-point pressures and saturated-liquid densities of the binary R-135 (pentafuoroethane) + R- 143a ( 1, 1, 1-trifluoroethane) system have been measured for several compositions at temperatures from 280 to 330 K by means of a magnetic densimeter coupled with a variable-volume cell mounted with a metallic bellows. The experimental uncertainties of the temperature, pressure. and density measurements and the composition determination were estimated to be within ±15 mK, ±13 k Pa, ±0.2%, and ±0.1 wt%, respectively. The purities of the samples used throughout the measurements are 99.98 wt% for R-125 and 99.0 mol % for R- 143a. Based on the present data, the thermodynamic behavior of the vapor-liquid equilibria of this binary refrigerant mixture has been evaluated by using the Peng-Robinson equation for the bubble-point pressures, and the modified Hankinson-Brobst-Thomson equation for the saturated-liquid densities. This was done to identify the optimized binary interaction parameters.

  18. Vapor pressure and boiling point elevation of slash pine black liquors: Predictive models with statistical approach

    SciTech Connect

    Zaman, A.A.; McNally, T.W.; Fricke, A.L.

    1998-01-01

    Vapor-liquid equilibria and boiling point elevation of slash pine kraft black liquors over a wide range of solid concentrations (up to 85% solids) has been studied. The liquors are from a statistically designed pulping experiment for pulping slash pine in a pilot scale digester with four cooking variables of effective alkali, sulfidity, cooking time, and cooking temperature. It was found that boiling point elevation of black liquors is pressure dependent, and this dependency is more significant at higher solids concentrations. The boiling point elevation data at different solids contents (at a fixed pressure) were correlated to the dissolved solids (S/(1 {minus} S)) in black liquor. Due to the solubility limit of some of the salts in black liquor, a change in the slope of the boiling point elevation as a function of the dissolved solids was observed at a concentration of around 65% solids. An empirical method was developed to describe the boiling point elevation of each liquor as a function of pressure and solids mass fraction. The boiling point elevation of slash pine black liquors was correlated quantitatively to the pulping variables, using different statistical procedures. These predictive models can be applied to determine the boiling point rise (and boiling point) of slash pine black liquors at processing conditions from the knowledge of pulping variables. The results are presented, and their utility is discussed.

  19. A Graphical Simulation of Vapor-Liquid Equilibrium for Use as an Undergraduate Laboratory Experiment and to Demonstrate the Concept of Mathematical Modeling.

    ERIC Educational Resources Information Center

    Whitman, David L.; Terry, Ronald E.

    1985-01-01

    Demonstrating petroleum engineering concepts in undergraduate laboratories often requires expensive and time-consuming experiments. To eliminate these problems, a graphical simulation technique was developed for junior-level laboratories which illustrate vapor-liquid equilibrium and the use of mathematical modeling. A description of this…

  20. Evaluation of the electrode method for measuring H/sub 2/S vapor pressure over alkanolamine solutions

    SciTech Connect

    Austgen, D.M.; Rochelle, G.T.

    1987-01-01

    A new electrode method for measuring the equilibrium vapor pressure of H/sub 2/S over any sulfide solution was tested. The method relates the electropotential difference produced between pH and silver/sulfide ion specific electrodes to the H/sub 2/S equilibrium vapor pressure of solution. The experimental technique is simple and time efficient. In this work, H/sub 2/S equilibrium vapor pressures were measured from 10/sup -4/ kPa to 10 kPa at 25/sup 0/C in aqueous solutions of monoethanolamine-MEA (2.5 N), diethanolamine-DEA (2.0N), and methyldiethanolamine-MDEA (1.0 N and 4.28 N). The H/sub 2/S vapor-liquid equilibria (VLE) of 4.28 N MDEA was also examined at 40/sup 0/C. The results indicate that the addition of MEA to a MDEA solution reduces the H/sub 2/S vapor pressure only at low H/sub 2/S loadings.

  1. Vapor-liquid equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine

    SciTech Connect

    Jou, F.Y.; Otto, F.D.; Mather, A.E. . Dept. of Chemical Engineering)

    1994-08-01

    Aqueous solutions of alkanolamines are used to separate carbon dioxide and hydrogen sulfide from gas streams. Data for the distribution of carbon dioxide between the vapor and aqueous solutions of four mixtures of monoethanolamine (MEA) and methyldiethanolamine (MDEA) have been obtained at 25, 40, 80 and 120 C over a range of pressures from 100 kPa to 20 MPa. Partial pressures of CO[sub 2] ranged from 0.001 to 19,930 kPa. Enthalpies of reaction of CO[sub 2] in the solutions have been calculated from the solubility data.

  2. Jump conditions in transonic equilibria

    SciTech Connect

    Guazzotto, L.; Betti, R.; Jardin, S. C.

    2013-04-15

    In the present paper, the numerical calculation of transonic equilibria, first introduced with the FLOW code in Guazzotto et al.[Phys. Plasmas 11, 604 (2004)], is critically reviewed. In particular, the necessity and effect of imposing explicit jump conditions at the transonic discontinuity are investigated. It is found that 'standard' (low-{beta}, large aspect ratio) transonic equilibria satisfy the correct jump condition with very good approximation even if the jump condition is not explicitly imposed. On the other hand, it is also found that high-{beta}, low aspect ratio equilibria require the correct jump condition to be explicitly imposed. Various numerical approaches are described to modify FLOW to include the jump condition. It is proved that the new methods converge to the correct solution even in extreme cases of very large {beta}, while they agree with the results obtained with the old implementation of FLOW in lower-{beta} equilibria.

  3. Calculation of complex equilibria involving vaporization into vacuum

    NASA Technical Reports Server (NTRS)

    Paule, R. C.

    1974-01-01

    A simplified, direct approach is presented to the description of complex equilibria involving vaporization into vacuum. Emphasis is on the basic problem-solving process and on modification of existing techniques. Sequential solutions are presented to problems involving purification of a melt by vaporization into vacuum. The effects of concentration of melt and oxygen partial pressures on vaporization rates are demonstrated.

  4. Method and apparatus for cutting, abrading, and drilling with sublimable particles and vaporous liquids

    DOEpatents

    Bingham, Dennis N.; Swainston, Richard C.; Palmer, Gary L.

    1998-01-01

    A gas delivery system provides a first gas which is in a liquid state under extreme pressure and in a gaseous state under intermediate pressure. A particle delivery system provides a slurry comprising the first gas in a liquid state and a second gas in a solid state. The second gas is selected so that it will solidify at a temperature at or above the temperature of the first gas in a liquid state. A nozzle assembly connected to the gas delivery system and to the particle delivery system produces a stream having a high velocity central jet comprising the slurry, a liquid sheath surrounding the central jet comprising the first gas in a liquid state and an outer jacket surrounding the liquid sheath comprising the first gas in a gas state.

  5. Method and apparatus for cutting, abrading, and drilling with sublimable particles and vaporous liquids

    DOEpatents

    Bingham, D.N.; Swainston, R.C.; Palmer, G.L.

    1998-03-31

    A gas delivery system provides a first gas which is in a liquid state under extreme pressure and in a gaseous state under intermediate pressure. A particle delivery system provides a slurry comprising the first gas in a liquid state and a second gas in a solid state. The second gas is selected so that it will solidify at a temperature at or above the temperature of the first gas in a liquid state. A nozzle assembly connected to the gas delivery system and to the particle delivery system produces a stream having a high velocity central jet comprising the slurry, a liquid sheath surrounding the central jet comprising the first gas in a liquid state and an outer jacket surrounding the liquid sheath comprising the first gas in a gas state. 19 figs.

  6. A method of computational magnetohydrodynamics defining stable Scyllac equilibria

    PubMed Central

    Betancourt, Octavio; Garabedian, Paul

    1977-01-01

    A computer code has been developed for the numerical calculation of sharp boundary equilibria of a toroidal plasma with diffuse pressure profile. This generalizes earlier work that was done separately on the sharp boundary and diffuse models, and it allows for large amplitude distortions of the plasma in three-dimensional space. By running the code, equilibria that are stable to the so-called m = 1, k = 0 mode have been found for Scyllac, which is a high beta toroidal confinement device of very large aspect ratio. PMID:16592383

  7. Ideal MHD beta-limits of poloidally asymmetric equilibria

    SciTech Connect

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  8. A new equation of state of a flexible-chain polyelectrolyte solution: Phase equilibria and osmotic pressure in the salt-free case

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Georgi, N.; Nogovitsyn, E. A.; Kiselev, M. G.

    2015-05-01

    We develop a first-principle equation of state of salt-free polyelectrolyte solution in the limit of infinitely long flexible polymer chains in the framework of a field-theoretical formalism beyond the linear Debye-Hueckel theory and predict a liquid-liquid phase separation induced by a strong correlation attraction. As a reference system, we choose a set of two subsystems—charged macromolecules immersed in a structureless oppositely charged background created by counterions (polymer one component plasma) and counterions immersed in oppositely charged background created by polymer chains (hard-core one component plasma). We calculate the excess free energy of polymer one component plasma in the framework of modified random phase approximation, whereas a contribution of charge densities' fluctuations of neutralizing backgrounds we evaluate at the level of Gaussian approximation. We show that our theory is in a very good agreement with the results of Monte Carlo and MD simulations for critical parameters of liquid-liquid phase separation and osmotic pressure in a wide range of monomer concentration above the critical point, respectively.

  9. New apparatus for simultaneous determination of phase equilibria and rheological properties of fluids at high pressures: Its application to coal pastes studies up to 773 K and 30 MPa

    NASA Astrophysics Data System (ADS)

    Cohen, Albert; Richon, Dominique

    1986-06-01

    In this article, we present a new apparatus based on a static method to simultaneously measure rheological properties of a dense (liquid or liquid+solid) medium and sample phases (dense and gaseous) for analysis purposes. It was especially designed to study coal pastes in the working conditions of hydroliquefaction processes. It can also be used to study other mediums such as asphalts and polymers. The rheometer part of the apparatus was already tested and results published in a previous paper. The ability of the new apparatus to get reliable vapor-liquid equilibrium data in the range of thermal stability of chemical materials is shown as a result of measurements on the nitrogen-n-heptane system at 497.1 K and the methane-n-hexadecane system at 623.1 K and comparison to literature's data. Reproducibility tests have displayed very small data dispersion.

  10. Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane

    NASA Astrophysics Data System (ADS)

    Schmid, H.; Björk, M. T.; Knoch, J.; Riel, H.; Riess, W.; Rice, P.; Topuria, T.

    2008-01-01

    We have carried out a detailed study on the vapour-liquid-solid growth of silicon nanowires (SiNWs) on (111)-oriented Si substrates using Au as catalytic seed material. Arrays of individual seeds were patterned by electron-beam lithography, followed by Au evaporation and lift-off. SiNWs were grown using diluted silane as precursor gas in a low-pressure chemical vapor deposition system. The silane partial pressure, substrate temperature, and seed diameter were systematically varied to obtain the growth rate of the NWs and the rate of sidewall deposition. Activation energies of 19kcal/mol for the axial SiNW growth and 29kcal/mol for the radial deposition on the SiNW surface are derived from the data. SiNW growth at elevated temperatures is accompanied by significant Au surface diffusion, leading to a loss of Au from the tips of the SiNWs that depends on the layout and density of the Au seeds patterned. In contrast to NWs grown from a thin-film-nucleated substrate, the deterministic patterning of identical Au seeds of varying diameters allows accurate measurements of the nucleation yield of the SiNW, which is close to 100%, and analysis of the epitaxial relationship with the substrate. In addition to the vertical and the three 70.5°-inclined ⟨111⟩ epitaxial growth directions, we observe three additional 70.5°-inclined directions, which are rotated by 60°. The 60° rotation is explained by the occurrence of stacking faults in the SiNWs. The overall yield of vertically grown ⟨111⟩ NWs depends sensitively on the partial pressure of the silane and, to a lesser extent, on the growth temperature. At 80mTorr partial pressure and 470°C, up to 60% of the SiNWs grow in the vertical ⟨111⟩ direction. In situ doping of SiNWs using arsine resulted in a significant reduction of nucleation and wire growth, whereas doping with trimethylboron and phosphine exhibited no difference in growth and epitaxy compared with undoped samples.

  11. Vapor-liquid surface tension of strong short-range Yukawa fluid.

    PubMed

    Odriozola, G; Bárcenas, M; Orea, P

    2011-04-21

    The thermodynamic properties of strong short-range attractive Yukawa fluids, κ = 10, 9, 8, and 7, are determined by combining the slab technique with the standard and the replica exchange Monte Carlo (REMC) methods. A good agreement was found among the coexistence curves of these systems calculated by REMC and those previously reported in the literature. However, REMC allows exploring the coexistence at lower temperatures, where dynamics turns glassy. To obtain the surface tension we employed, for both methods, a procedure that yields the pressure tensor components for discontinuous potentials. The surface tension results obtained by the standard MC and REMC techniques are in good agreement. PMID:21513403

  12. Vapor-liquid equilibrium of ethanol by molecular dynamics simulation and Voronoi tessellation.

    PubMed

    Fern, Jared T; Keffer, David J; Steele, William V

    2007-11-22

    Explicit atom simulations of ethanol were performed by molecular dynamics using the OPLS-AA potential. The phase densities were determined self-consistently by comparing the distribution of Voronoi volumes from two-phase and single-phase simulations. This is the first demonstration of the use of Voronoi tessellation in two-phase molecular dynamics simulation of polyatomic fluids. This technique removes all arbitrary determination of the phase diagram by using single-phase simulations to self-consistently validate the probability distribution of Voronoi volumes of the liquid and vapor phases extracted from the two-phase molecular dynamics simulations. Properties from the two phase simulations include critical temperature, critical density, critical pressure, phase diagram, surface tension, and molecule orientation at the interface. The simulations were performed from 375 to 472 K. Also investigated were the vapor pressure and hydrogen bonding along the two phase envelope. The phase envelope agrees extremely well with literature values from GEMC at lower temperatures. The combined use of two-phase molecular dynamics simulation and Voronoi tessellation allows us to extend the phase diagram toward the critical point. PMID:17973521

  13. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Ghiorso, Mark S.; Sack, Richard O.

    1995-03-01

    A revised regular solution-type thermodynamic model for twelve-component silicate liquids in the system SiO2 TiO2 Al2O3 Fe2O3 Cr2O3 FeO MgO CaO Na2O K2O P2O5 H2O is calibrated. The model is referenced to previously published standard state thermodynamic properties and is derived from a set of internally consistent thermodynamic models for solid solutions of the igneous rock forming minerals, including: (Mg, Fe2+, Ca)-olivines, (Na, Mg, Fe2+, Ca)M2 (Mg, Fe2+, Ti, Fe3+, Al)M1 (Fe3+, Al, Si)2 TETO6- pyroxenes, (Na,Ca,K)-feldspars, (Mg, Fe2+) (Fe3+, Al, Cr)2O4-(Mg, Fe2+)2 TiO4 spinels and (Fe2+, Mg, Mn2+)TiO3-Fe2O3 rhombohedral oxides. The calibration utilizes over 2,500 experimentally determined compositions of silicate liquids coexisting at known temperatures, pressures and oxygen fugacities with apatite ±feldspar ±leucite ±olivine ±pyroxene ±quartz ±rhombohedral oxides ±spinel ±whitlockite ±water. The model is applicable to natural magmatic compositions (both hydrous and anhydrous), ranging from potash ankaratrites to rhyolites, over the temperature ( T) range 900° 1700° C and pressures ( P) up to 4 GPa. The model is implemented as a software package (MELTS) which may be used to simulate igneous processes such as (1) equilibrium or fractional crystallization, (2) isothermal, isenthalpic or isochoric assimilation, and (3) degassing of volatiles. Phase equilibria are predicted using the MELTS package by specifying bulk composition of the system and either (1) T and P, (2) enthalpy (H) and P, (3) entropy (S) and P, or (4) T and volume (V). Phase relations in systems open to oxygen are determined by directly specifying the f o2 or the T-P-f o2 (or equivalently H- P-f o2, S- P-f o2, T-V- f o2) evolution path. Calculations are performed by constrained minimization of the appropriate thermodynamic potential. Compositions and proportions of solids and liquids in the equilibrium assemblage are computed.

  14. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth

    PubMed Central

    Lu, Haiming; Meng, Xiangkang

    2015-01-01

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size. PMID:26053237

  15. Ab initio potential energy surface for methane and carbon dioxide and application to vapor-liquid coexistence

    NASA Astrophysics Data System (ADS)

    Pai, Sung Jin; Bae, Young Chan

    2014-08-01

    A six-dimensional intermolecular potential energy surface for a rigid methane (CH4) and carbon dioxide (CO2) dimer was developed from the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory. A total of 466 grid points distributed to 46 orientations were calculated from the complete basis set limit extrapolation based on up to aug-cc-pVQZ basis set. A modified site-site pair potential function was proposed for rapid representation of the high level ab initio calculations. A nonadditive three-body interaction was represented by the Axilrod-Teller-Muto expression for mixtures with the polarizability and the London dispersion constant of each molecule. Second to fourth virial coefficients of CH4 and CO2 mixtures were calculated using both the Mayer sampling Monte Carlo method and the present potential functions. The virial equation of state derived from these coefficients was used to predict the pVT values and showed good agreement with experimental data below 200 bar at 300 K. The vapor-liquid coexistence curves of pure CH4, CO2 and their mixtures were presented with the aid of Gibbs ensemble Monte Carlo simulations. The predicted tie lines agreed with the experimental data within the uncertainties up to near the critical point.

  16. Group V sensitive vapor-liquid-solid growth of Au-catalyzed and self-catalyzed III-V nanowires

    NASA Astrophysics Data System (ADS)

    Dubrovskii, Vladimir G.

    2016-04-01

    We present a new theoretical model that treats the group V sensitive growth rates and structures of Au-catalyzed and self-catalyzed III-V nanowires within a single kinetic picture. It is shown that Au-catalyzed III-V nanowires can grow with a time-independent radius within a wide range of parameters. At high V/III flux ratios, the vapor-liquid-solid growth of Au catalyzed III-V nanowires is controlled by surface diffusion of the group III adatoms, while at low V/III flux ratios it becomes nucleation-limited. Conversely, self-catalyzed III-V nanowires cannot grow with a time-independent droplet size and instead such nanowires may either swell or shrink or converge to a certain stationary radius depending on the V/III flux ratio. Quite importantly, the results are presented in a concise analytical form which is convenient for comparison with experimental data or prior theoretical works. We demonstrate how the model fits the data obtained previously for Au- and Ga-catalyzed GaAs nanowires.

  17. Essential role of catalysts (Mn, Au, and Sn) in the vapor liquid solid growth kinematics of ZnS nanowires

    SciTech Connect

    Rehman, S.; Shehzad, M. A.; Hafeez, M.; Bhatti, A. S.

    2014-01-14

    In this paper, we demonstrate that surface energy of the catalyst is a vital parameter for the growth rate, self doping of the self assembled nanowires synthesized by employing vapor liquid solid growth technique. The synthesis of ZnS nanowires was done by selectively using three different catalysts (Mn, Au, and Sn), where Au, is the most common catalyst, was used as a reference. The distinctive difference in the growth rate was due to the surface energy of the metal alloy droplet and the interface energies, as explained theoretically using thermodynamic approach. We have found that the activation energy of diffusion of (Zn, S) species in the catalyst droplet was low in Sn (0.41 eV for Zn and 0.13 eV for S) and high in Mn (1.79 eV for Zn and 0.61 eV for S) compared to Au (0.62 eV for Zn and 0.21 eV for S) catalyzed ZnS nanostructures. The thermodynamic calculations predicted the growth rates of Sn (7.5 nm/s) catalyzed nanowires was faster than Au (5.1 nm/s) and Mn (4.6 nm/s) catalyzed ZnS nanostructures, which were in agreement with the experimental results. Finally, the location of the catalyst as dopant in the grown nanostructure was predicted and compared with experimental observations.

  18. Toluene Diisocyanate Reactivity with Glutathione Across a Vapor/Liquid Interface and Subsequent Transcarbamoylation of Human Albumin

    PubMed Central

    Wisnewski, Adam V; Hettick, Justin M.; Siegel, Paul D.

    2012-01-01

    Glutathione has previously been identified as a reaction target for toluene diisocyanate (TDI) in vitro and in vivo, and has been suggested to contribute to toxic and allergic reactions to exposure. In this study, the reactivity of reduced glutathione (GSH) with TDI in vitro was further investigated using a mixed phase (vapor/liquid) exposure system to model the in vivo biophysics of exposure in the lower respiratory tract. HPLC/MS/MS was used to characterize the observed reaction products. Under the conditions tested, the major reaction products between TDI vapor and GSH were S-linked bis(GSH)-TDI and to a lesser extent mono(GSH)-TDI conjugates (with one N=C=O hydrolyzed). The vapor phase generated GSH-TDI conjugates were capable of transcarbamoylating human albumin in a pH-dependent manner, resulting in changes in the self-protein’s conformation/charge, based on electrophoretic mobility under native conditions. Specific sites of human albumin-TDI conjugation, mediated by GSH-TDI, were identified (Lys73, Lys159, Lys190, Lys199, Lys212, Lys351, Lys136/137, Lys413/414, Lys524/525) and overlap with those susceptible to direct conjugation by TDI. Together, the data extend proof-of-principle for GSH to act as a “shuttle” for a reactive form of TDI, which could contribute to clinical responses to exposure. PMID:21806041

  19. Three-dimensional stellarator equilibria by iteration

    SciTech Connect

    Boozer, A.H.

    1983-02-01

    The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.

  20. Study of the Vapor-Liquid Coexistence Curve and the Critical Curve for Nonazeotropic Refrigerant Mixture R152a + R114 System

    NASA Astrophysics Data System (ADS)

    Kabata, Yasuo; Higashi, Yukihiro; Uematsu, Masahiko; Watanabe, Koichi

    Measurements of the vapor-liquid coexistence curve in the critical region for the refrigerant mixture of R152a (CH3CHF2: 1, l-difluoroethane) +R 114 (CCIF2CCIF2 :1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) system were made by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Forty-eight saturated densities along the vapor-liquid coexistence curve between 204 and 861 kg·m-3 for five different compositions of 10, 20, 50, 80 and 90 wt% R 152a were obtained in the temperature range 370 to 409 K. The experimental errors of temperature, density, and mass fraction were estimated within ±10mK, ±0.5% and +0.05 %, respectively. On the basis of these measurements, the critical parameters of five different compositions for the R 152a +R 114 system were determined in consideration of the meniscus disappearance level as well as intensity of the critical opalescence. In accordance with the previous results of three other refrigerant mixtures, i.e., R 12 +R 22 system, R 22 +R 114 system and R 13B1 + R 114 system, the coexistence curve and critical curve on the temperature-density diagram for binary refrigerant mixtures were discussed. In addition, correlations of its composition dependence for this system were proposed.

  1. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    SciTech Connect

    Betts, S.E.

    1993-10-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON`s evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA).

  2. Solid state equilibria in the Ba-Cu-O system

    SciTech Connect

    Voronin, G.F.; Degterov, S.A. )

    1994-05-01

    Thermodynamic modeling is performed for the Ba-Cu-O system, which is essential to a good understanding of phase and chemical equilibria in the Y-Ba-Cu-O and some other oxide systems containing high-temperature superconductors. A self-consistent set of thermodynamic functions of the phases BaO[sub 2], BaCu[sub 2]O[sub 2], BaCuO[sub 2], Ba[sub 2]Cu[sub 3]O[sub 5+y], and Ba[sub 2]CuO[sub 3+q] is obtained. A variety of phase equilibria in the Ba-Cu-O system are calculated for a wide range of oxygen pressures and temperatures. The present thermodynamic data can be readily used for computing the phase equilibria and conditions for thermodynamic stability of oxide superconductors. It is detected that both BaCuO[sub 2] and Ba[sub 2]CuO[sub 3+q] have two stability boundaries, one at low temperatures and low oxygen pressures. Critical analysis of phase equilibria in the Ba-Cu-O system makes it possible to explain a number of conflicting results encountered in the literature. These contradictions arise from solid state reactions between phases, which may be very slow due to kinetic problems.

  3. Equilibria in Quantitative Reachability Games

    NASA Astrophysics Data System (ADS)

    Brihaye, Thomas; Bruyère, Véronique; de Pril, Julie

    In this paper, we study turn-based quantitative multiplayer non zero-sum games played on finite graphs with reachability objectives. In this framework each player aims at reaching his own goal as soon as possible. We prove existence of finite-memory Nash (resp. secure) equilibria in multiplayer (resp. two-player) games.

  4. Correct Representation of Conformational Equilibria.

    ERIC Educational Resources Information Center

    Fulop, F.; And Others

    1983-01-01

    In representing conformational equilibria of compounds having only one chiral center, erroneous formulas showing different antipodes on the two sides of the equilibrium are rare. In contrast, with compounds having two or more chiral centers especially with saturated heterocycles, this erroneous representation occurs frequently in the chemical…

  5. Experimental determination of phase equilibria of a basalt from Piton de la Fournaise (La Réunion island): 1 atm data and high pressure results in presence of volatiles.

    NASA Astrophysics Data System (ADS)

    Brugier, Yann-Aurélien; Pichavant, Michel; di Muro, Andréa

    2015-04-01

    To understand the petrogenetic relations between the 4 groups of lavas erupted at Piton de la Fournaise (PdF), constrain the structure of the feeding system and the magma storage conditions, experimental phase equilibria have been determined, both at 1 atm and high pressures (HP), on a lava representative of Steady State Basalts (SSB). The lava (SiO2=49.2 wt%, MgO=7.8 wt%, CaO/Al2O3= 0.81) was fused at 1400°C, 1 atm in air. The resulting glass was crushed and the powder directly used as starting material. The 1atm experiments were performed with the wire-loop method in a vertical CO-CO2 gas mixing furnace. To minimize Fe-loss from the charge, experiments were repeated under constant T-fO2 conditions to progressively saturate the suspension wire with Fe. Intermediate charges were dissolved in HF and the charge from the last cycle retained for detailed study. Analyses of experimental products are in progress. The HP experiments were carried out in an internally heated pressure vessel, at 50MPa and 400MPa, between 1100-1200°C and under fluid-present conditions. Glass (30-50 mg) plus 10% in mass of volatiles (H2O or H2O+CO2) were loaded in Au80Pd20 capsules. Distilled water and Ag2C2O4 (CO2 source) were weighted to give charges with xH2O initial (molar H2O / (H2O+CO2)) ranging from 1 to 0. Run durations lasted for 2-14h. Redox conditions were controlled by loading a given proportion of H2 gas in the vessel (3 bar H2 for 50MPa, 5 bar H2 for 400MPa). Experimental fH2 were determined by solid Pd-Co sensors, leading to fO2 conditions approaching NNO-1. All experiments were rapidly drop quenched and products analyzed by SEM, EMPA and µ-FTIR Spectroscopy. To overcome Fe-loss, both capsule Fe pre-saturation and charge Fe pre-enrichment were tested. The first method was shown to be time-consuming and fraught with difficulties while the second is still being developed. Consequently, the experimental data presented here were obtained with no attempt to circumvent Fe loss

  6. Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H 2O-CO 2 system

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Dubessy, Jean

    2010-04-01

    Molecular based equations of state (EOS) are attractive because they can take into account the energetic contribution of the main types of molecular interactions. This study models vapor-liquid equilibrium (VLE) and PVTx properties of the H 2O-CO 2 binary system using a Lennard-Jones (LJ) referenced SAFT (Statistical Associating Fluid Theory) EOS. The improved SAFT-LJ EOS is defined in terms of the residual molar Helmholtz energy, which is a sum of four terms representing the contributions from LJ segment-segment interactions, chain-forming among the LJ segments, short-range associations and long-range multi-polar interactions. CO 2 is modeled as a linear chain molecule with a constant quadrupole moment, and H 2O is modeled as a spherical molecule with four association sites and a dipole moment. The multi-polar contribution to Helmholtz energy, including the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole contribution for H 2O-CO 2 system, is calculated using the theory of Gubbins and Twu (1978). Six parameters for pure H 2O and four parameters for pure CO 2 are needed in our model. The Van der Waals one-fluid mixing rule is used to calculate the Lennard-Jones energy parameter and volume parameter for the mixture. Two or three binary parameters are needed for CO 2-H 2O mixtures, which are evaluated from phase equilibrium data of the binary system. Comparison with the experimental data shows that our model represents the PVT properties of CO 2 better than other SAFT EOS without a quadrupole contribution. For the CO 2-H 2O system, our model agrees well with the vapor-liquid equilibrium data from 323-623 K. The average relative deviation for CO 2 solubility (expressed in mole fraction) in water is within 6%. Our model can also predict the PVTx properties of CO 2-H 2O mixtures up to 1073 K and 3000 bar. The good performance of this model indicates that: (1) taking account of the multi-polar contribution explicitly improves the agreement of calculated

  7. Beltrami–Bernoulli equilibria in plasmas with degenerate electrons

    SciTech Connect

    Berezhiani, V. I.; Shatashvili, N. L.; Mahajan, S. M.

    2015-02-15

    A new class of Double Beltrami–Bernoulli equilibria, sustained by electron degeneracy pressure, is investigated. It is shown that due to electron degeneracy, a nontrivial Beltrami–Bernoulli equilibrium state is possible even for a zero temperature plasma. These states are, conceptually, studied to show the existence of new energy transformation pathways converting, for instance, the degeneracy energy into fluid kinetic energy. Such states may be of relevance to compact astrophysical objects like white dwarfs, neutron stars, etc.

  8. A Small-Volume Apparatus for the Measurement of Phase Equilibria

    PubMed Central

    Outcalt, Stephanie L.; Lee, Byung-Chul

    2004-01-01

    An apparatus has been designed and constructed for the measurement of vapor-liquid equilibrium properties. The main components of the apparatus consist of an equilibrium cell and a vapor circulation pump. The cell and all of the system valves are housed inside a temperature controlled, insulated aluminum block. The temperature range of the apparatus is 260 K to 380 K to pressures of 6 MPa. The uncertainty of the temperature measurement is 0.03 K, and the uncertainty in the pressure measurement is 9.8 × 10−4 MPa. An automated data acquisition system is used to measure temperature and pressure at equilibrium. The apparatus has been performance tested by measuring the vapor pressures of propane, butane, and a standard mixture of propane + butane. PMID:27366631

  9. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    SciTech Connect

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.

  10. Vapor-liquid equilibrium measurements at 101. 32 kPa for binary mixtures of methyl acetate + ethanol or 1-propanol

    SciTech Connect

    Ortega, J.: Susial, P.; de Alfonso, C. )

    1990-07-01

    This paper reports on isobaric vapor-liquid equilibrium data at 101.32 {plus minus} 0.02 kPa for methyl acetate (1) + ethane (2) or + 1-propanol (2). The results are compared with those predicted by the UNIFAC and ASOG methods. The methyl acetate (1) + ethanol (2) system forms an azeotrope at 329.8 K and a molar concentration of x{sub 1} = 0.958. Both methods predict the vapor-phase compositions equally well, with overall mean errors of less than 5%.

  11. Two-population replicator dynamics and number of Nash equilibria in matrix games

    NASA Astrophysics Data System (ADS)

    Galla, T.

    2007-04-01

    We study the connection between the evolutionary replicator dynamics and the number of Nash equilibria in large random bi-matrix games. Using techniques of disordered systems theory we compute the statistical properties of both, the fixed points of the dynamics and the Nash equilibria. Except for the special case of zero-sum games, one finds a transition as a function of the so-called co-operation pressure between a phase in which there is a unique stable fixed point of the dynamics coinciding with a unique Nash equilibrium, and an unstable phase in which there are exponentially many Nash equilibria with statistical properties different from the stationary state of the replicator equations. Our analytical results are confirmed by numerical simulations of the replicator dynamics, and by explicit enumeration of Nash equilibria.

  12. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  13. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  14. Molecular gas dynamics applied to phase change processes at a vapor-liquid interface: shock-tube experiment and MGD computation for methanol

    NASA Astrophysics Data System (ADS)

    Fujikawa, S.; Yano, T.; Kobayashi, K.; Iwanami, K.; Ichijo, M.

    This paper deals with a molecular gas-dynamics method applied to the accurate determination of the condensation coefficient of methanol vapor. The method consisted of an experiment using a shock tube and computations using a molecular gas-dynamics equation. The experiments were performed in such situations where the shift from a vapor-liquid equilibrium state to a nonequilibrium one is realized by a shock wave in a scale of molecular mean free time of vapor molecules. The temporal evolution in thickness of a liquid film formed on the shock-tube endwall behind a reflected shock wave is measured by an optical interferometer. By comparing the measured liquid-film thickness with numerical solutions for a polyatomic version of the Gaussian-BGK model of the Boltzmann equation, the condensation coefficient of methanol vapor is accurately determined in vapor-liquid nonequilibrium states. As a result, it is clear that the condensation coefficient is just unity very near to an equilibrium state, but is smaller far from the equilibrium state.

  15. To Polarize or Not to Polarize? Charge-on-Spring versus KBFF Models for Water and Methanol Bulk and Vapor-Liquid Interfacial Mixtures.

    PubMed

    Ploetz, Elizabeth A; Rustenburg, Ariën S; Geerke, Daan P; Smith, Paul E

    2016-05-10

    Simulations of water and methanol mixtures using polarizable force fields (FFs) for methanol (COS/M and CPC) and water (COS/G2) were performed and compared to experiment and also to a nonpolarizable methanol (KBFF) model with SPC/E water in an effort to quantify the importance of explicit electronic polarization effects in bulk liquid mixtures and vapor-liquid interfaces. The bulk liquid mixture properties studied included the center of mass radial distribution functions, Kirkwood-Buff integrals (KBIs), volumetric properties, isothermal compressibility, enthalpy of mixing, dielectric constant, and diffusion coefficients. The vapor-liquid interface properties investigated included the relative surface probability distributions, surface tension, excess surface adsorption, preferred surface molecule orientations, and the surface dipole. None of the three FFs tested here was clearly superior for all of the properties examined. All the force fields typically reproduced the correct trends with composition for both the bulk and interfacial system properties; the differences between the force fields were primarily quantitative. The overall results suggest that the polarizable FFs are not, at the present stage of development, inherently better able to reproduce the studied bulk and interfacial properties-despite the added degree of explicit transferability that is, by definition, built into the polarizable models. Indeed, the specific parametrization of the FF appears to be just as important as the class of FF. PMID:27045390

  16. Measurements of the vapor-liquid coexistence curve in the critical region and the critical parameters of 1,1,2,2,-tetrafluoroethane

    SciTech Connect

    Tatoh, Jun; Kuwabara, Shigeo; Sata, Haruki; Watanabe, Koichi . Dept. of Mechanical Engineering)

    1993-01-01

    The vapor-liquid coexistence curve in the critical region of 1,1,2,2-tetrafluoroethane (HFC-134) was measured by a visual observation of the meniscus in an optical cell. Eighteen saturated liquid densities and 10 saturated vapor densities have been obtained in a temperature range from 364 K to the critical temperature, corresponding to a density range from 243 to 1001 kg/m[sup 3]. The experimental uncertainties of temperature and density measurements are estimated to be within [plus minus]10 mK and between [plus minus]0.11% and [plus minus]0.44%, respectively. Not only the level where the meniscus disappeared but also the intensity of the critical opalescence was considered in the determination of the critical temperature and density being 391.74 [plus minus] 0.02 K (ITS-90) and 536 [plus minus] 2 kg/m[sup 3], respectively. The critical exponent of the power law, [beta], was also determined as 0.347 [plus minus] 0.002. A saturated vapor-liquid density correlation has been developed on the basis of the present measurements.

  17. Vapor-liquid critical surface of ternary difluoromethane + pentafluoroethane + 1,1,1,2-tetrafluoroethane (R-32/125/134a) mixtures

    SciTech Connect

    Higashi, Y.

    1999-09-01

    The plane of vapor-liquid criticality for ternary refrigerant mixtures of difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a) was determined from data on the vapor-liquid coexistence curve near the mixture critical points. The composition (mass percentage) of the mixtures studied were 23% R-32 + 25% R-125 + 52% R-134a (R-407C). 25% R-32 + 15% R-125 + 60% R-134a (R-407E), and 20% R-32 + 40% R-125 + 40% R-134a (R-407A). The critical temperature of each mixture was determined by observation of the disappearance of the meniscus. The critical density of each mixture was determined on the basis of meniscus disappearance level and the intensity of the critical opalescence. The uncertainties of the temperature, density, and composition measurements are estimated as {+-}10mK, {+-}5kg{center_dot}m{sup {minus}3}, and {+-}0.05%, respectively. In addition, predictive methods for the critical parameters of R-32/125/134a mixtures are discussed.

  18. Molecular Simulations of the Vapor-Liquid Phase Interfaces of Pure Water Modeled with the SPC/E and the TIP4P/2005 Molecular Models

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Celný, David; Planková, Barbora; Němec, Tomáš; Duška, Michal; Hrubý, Jan

    2016-03-01

    In our previous study [Planková et al., EPJWeb. Conf. 92, 02071 (2015)], several molecular simulations of vapor-liquid phase interfaces for pure water were performed using the DL_POLY Classic software. The TIP4P/2005 molecular model was successfully used for the modeling of the density profile and the thickness of phase interfaces together with the temperature dependence of the surface tension. In the current study, the extended simple point charge (SPC/E) model for water was employed for the investigation of vapor-liquid phase interfaces over a wide temperature range from 250 K to 600 K. The TIP4P/2005 model was also used with the temperature step of 25 K to obtain more consistent data compared to our previous study. Results of the new simulations are in a good agreement with most of the literature data. TIP4P/2005 provides better results for the saturated liquid density with its maximum close to 275 K, while SPC/E predicts slightly better saturated vapor density. Both models give qualitatively correct representation for the surface tension of water. The maximum absolute deviation from the IAPWS standard for the surface tension of ordinary water is 10.4 mN · m-1 and 4.1 mN · m-1 over the temperature range from 275 K to 600 K in case of SPC/E and TIP4P/2005, respectively.

  19. Computation of Multi-region Relaxed Magnetohydrodynamic Equilibria

    SciTech Connect

    Hudson, S. R.; Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; von Nessi, G.; Lazerson, S.

    2013-03-29

    We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.

  20. Applications of Wang-Landau sampling to determine phase equilibria in complex fluids

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, Georg; Camp, Philip J.

    2007-10-01

    Applications of the Wang-Landau algorithm for simulating phase coexistence at fixed temperature are presented. The number density is sampled using either volume scaling or particle insertion/deletion. The resulting algorithms, while being conceptually easy, are of comparable efficiency to existing multicanonical methods but with the advantage that neither the chemical potential nor the pressure at phase coexistence has to be estimated in advance of the simulation. First, we benchmark the algorithm against literature results for the vapor-liquid transition in the Lennard-Jones fluid. We then demonstrate the general applicability of the algorithm by studying vapor-liquid coexistence in two examples of complex fluids: charged soft spheres, which exhibit a transition similar to that in the restricted primitive model of ionic fluids, being characterized by strong ion pairing in the vapor phase; and Stockmayer fluids with high dipole strengths, in which the constituent particles aggregate to form chains, and for which the very existence of a transition has been widely debated. Finally, we show that the algorithm can be used to locate a weak isotropic-nematic transition in a fluid of Gay-Berne mesogens.

  1. Applications of Wang-Landau sampling to determine phase equilibria in complex fluids.

    PubMed

    Ganzenmüller, Georg; Camp, Philip J

    2007-10-21

    Applications of the Wang-Landau algorithm for simulating phase coexistence at fixed temperature are presented. The number density is sampled using either volume scaling or particle insertion/deletion. The resulting algorithms, while being conceptually easy, are of comparable efficiency to existing multicanonical methods but with the advantage that neither the chemical potential nor the pressure at phase coexistence has to be estimated in advance of the simulation. First, we benchmark the algorithm against literature results for the vapor-liquid transition in the Lennard-Jones fluid. We then demonstrate the general applicability of the algorithm by studying vapor-liquid coexistence in two examples of complex fluids: charged soft spheres, which exhibit a transition similar to that in the restricted primitive model of ionic fluids, being characterized by strong ion pairing in the vapor phase; and Stockmayer fluids with high dipole strengths, in which the constituent particles aggregate to form chains, and for which the very existence of a transition has been widely debated. Finally, we show that the algorithm can be used to locate a weak isotropic-nematic transition in a fluid of Gay-Berne mesogens. PMID:17949170

  2. Reflectivity method for geomechanical equilibria

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Boris N.

    2007-08-01

    It is shown that the block LU decomposition of the transfer and scattering matrix convert these matrices into each other. This allows to introduce a generalization of the Kennett reflectivity method, which is applicable to arbitrary systems of linear differential equations. The introduced method is convenient to analyse equilibria, where the governing matrix is degenerate. The resulting algorithm is compact and numerically stable. To illustrate the concept, we consider elastic equilibrium of a layered medium. We also derive closed-form expressions for a quasi-stationary poroelastic case taking into account solid-fluid and electrokinetic coupling.

  3. Steady State Tokamak Equilibria without Current Drive

    SciTech Connect

    Shaing, K.C.; Aydemir, A.Y.; Lin-Liu, Y.R.; Miller, R.L.

    1997-11-01

    Steady state tokamak equilibria without current drive are found. This is made possible by including the potato bootstrap current close to the magnetic axis. Tokamaks with this class of equilibria do not need seed current or current drive, and are intrinsically steady state. {copyright} {ital 1997} {ital The American Physical Society}

  4. Signaling equilibria in sensorimotor interactions.

    PubMed

    Leibfried, Felix; Grau-Moya, Jordi; Braun, Daniel A

    2015-08-01

    Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments. PMID:25935748

  5. A note on two-dimensional asymptotic magnetotail equilibria

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes; Moore, Brian D.

    1994-01-01

    In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.

  6. Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1977-01-01

    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed.

  7. Heat pipes for spacecraft temperature control: An assessment of the state-of-the-art. [gas, vapor, liquid, and voltage control

    NASA Technical Reports Server (NTRS)

    Groll, M.; Kirkpatrick, J. P.

    1976-01-01

    Spacecraft applications that require the efficient cooling of high-powered components, the precise temperature control of sensitive electronic and optical components, and the protection of cooled components from temporary, adverse environmental conditions are increasing. Heat pipes using gas, vapor, liquid, or voltage control to provide variable conductance or diode thermal behavior have been and are continuing to be developed to meet increasingly difficult requirements. The various control techniques are critically evaluated using characteristic features and properties, including heat transport capability, volume and mass requirements, complexity and ease of fabrication, reliability, and control characteristics. As a result, advantages and disadvantages of specific approaches are derived and discussed. Using four development levels, the state-of-the-art of the various heat pipe temperature control techniques is assessed.

  8. Vapor-liquid equilibrium and polarization behavior of the GCP water model: Gaussian charge-on-spring versus dipole self-consistent field approaches to induced polarization.

    PubMed

    Chialvo, Ariel A; Moucka, Filip; Vlcek, Lukas; Nezbeda, Ivo

    2015-04-16

    We developed the Gaussian charge-on-spring (GCOS) version of the original self-consistent field implementation of the Gaussian Charge Polarizable water model and test its accuracy to represent the polarization behavior of the original model involving smeared charges and induced dipole moments. For that purpose we adapted the recently proposed multiple-particle-move (MPM) within the Gibbs and isochoric-isothermal ensembles Monte Carlo methods for the efficient simulation of polarizable fluids. We assessed the accuracy of the GCOS representation by a direct comparison of the resulting vapor-liquid phase envelope, microstructure, and relevant microscopic descriptors of water polarization along the orthobaric curve against the corresponding quantities from the actual GCP water model. PMID:25803267

  9. On the topological stability of magnetostatic equilibria

    NASA Technical Reports Server (NTRS)

    Tsinganos, K. C.; Rosner, R.; Distler, J.

    1984-01-01

    The topological stability of MHD equilibria is investigated by exploring the formal analogy, in the ideal MHD limit, between the topology of magnetic lines of force in coordinate space and the topology of integral surfaces of one- and two-dimensional Hamiltonian systems in phase space. It is demonstrated that in an astrophysical setting, symmetric magnetostatic equilibria satisfying the ideal MHD equations are exceptional. The principal result of the study is that previous infinitesimal perturbation theory calculations can be generalized to include finite-amplitude and symmetry-breaking effects. The effect of the ergodicity of perturbed symmetric equilibria on heat dispersal in magnetically dominated plasmas is discussed.

  10. Rigid-drift magnetohydrodynamic equilibria for cylindrical screw pinches

    NASA Technical Reports Server (NTRS)

    Turner, L.

    1979-01-01

    The rigid-drift equations of MHD equilibria in cylindrical geometry are solved analytically in terms of an infinite series of hypergeometric functions for the case where the pressure is proportional to the square of number density and the current density is arbitrarily pitched. Solutions are obtained for a pure Z pinch, a pure theta pinch, and a general screw pinch. It is found that the shapes of the pressure and magnetic-field profiles are completely determined by the model once two parameters are specified: the local plasma beta on the axis and a quantity related to the pitch of the current density. A set of profiles that resemble those observed experimentally in reversed-field pinches is presented. The results also indicate that hollow pressure profiles and reversed Bz profiles can occur either simultaneously or independently and that the pressure always falls to zero at a finite value of the radius.

  11. Kinetic equilibria of very high- β plasmas

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren; TAE Team

    2015-11-01

    Plasma equilibria with many large ion orbits, such as an advanced beam-driven field-reversed configuration, are neither static (Grad-Shafranov) nor describable as a flowing, multi-fluid. A fully-kinetic treatment of the ions is essential for such high- β plasmas. A kinetic equilibrium is needed to properly support realistic stability and transport analyses, both of which are strongly affected by large-orbit ions. A hybrid equilibrium model has been developed with a fully-kinetic treatment of both thermal ions and a rapidly-rotating ``beam-ion'' component, such as produced by neutral beam injection, relevant to the C-2U experiments at TAE. It employs analytic Vlasov solutions in that the distribution depends only on the two constants of motion, the Hamiltonian (H) and the canonical angular momentum (Pθ) . Electrons are treated as a pressure-bearing fluid. Since realistic forms of f (H ,Pθ) are affected by collisions, f is limited to solutions of a simplified Fokker-Planck equation. Importantly, a kinetic end-loss condition applies to unconfined ions, using a particle sink at a rate consistent with Monte-Carlo-like simulations of end loss accounting for a strong end mirror.

  12. Symmetry transforms for ideal magnetohydrodynamics equilibria.

    PubMed

    Bogoyavlenskij, Oleg I

    2002-11-01

    A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)equilibria that model ball lightning with dynamics of plasma inside the fireball. PMID:12513610

  13. Braided magnetic fields: equilibria, relaxation and heating

    NASA Astrophysics Data System (ADS)

    Pontin, D. I.; Candelaresi, S.; Russell, A. J. B.; Hornig, G.

    2016-05-01

    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity—as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor’s hypothesis.

  14. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    SciTech Connect

    Gabitto, Jorge; Barrufet, Maria

    2001-12-18

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibria, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  15. PVT measurements on tetrafluoroethane (R134a) along the vapor-liquid equilibrium boundary between 288 and 373 K and in the liquid state from the triple point to 265 K

    SciTech Connect

    Blanke, W.; Klingenberg, G.; Weiss, R.

    1995-09-01

    For the investigations of the gas-liquid phase equilibria, a new apparatus has been developed capable of simultaneously determining the pressure and the liquid and vapor densities using Archmiedes` principle. The relative measurement uncertainties of the liquid and vapor densities of R134a (purity, 99.999%) at 313 K are 2 X 10 {sup -4} and 7 X 10{sup -4}, respectively (95% confidence level). For the measurements in the liquid region along nine quasi-isochores at pressures up to 5MPa, an isochoric apparatus was used. The relative measurement uncertainty of pv/(RT) is less than 1X10{sup -3}. In addition to the investigation of the (p,v,T) properties, the temperature and pressure at the triple point and the vapor pressure between the triple point and 265 K were measured. On the basis of these data, a vapor pressure correlation has been developed that reproduces the measured vapor pressures within the uncertainty of measurement. The results of our measurements of other research groups.

  16. Grad-Shafranov Equilibria with Negative Core Toroidal Current in Tokamak Plasmas

    SciTech Connect

    Rodrigues, Paulo; Bizarro, Joao P.S.

    2005-07-01

    Numerical Grad-Shafranov (GS) equilibria with negative current density in the plasma core are computed which do not impose any particularly chosen models for the pressure and current-density profiles. This flexibility allows the profiles to be tailored so that an island unfolds in the low-field side, even for elongated plasmas, thus sustaining the negative-current core against outward forces. Among other topological results, reversed GS equilibria are also shown to be necessarily non-nested, except for the cylindrical and other very special degenerate, hence structurally unstable cases.

  17. Grad-Shafranov equilibria with negative core toroidal current in Tokamak plasmas.

    PubMed

    Rodrigues, Paulo; Bizarro, João P S

    2005-07-01

    Numerical Grad-Shafranov (GS) equilibria with negative current density in the plasma core are computed which do not impose any particularly chosen models for the pressure and current-density profiles. This flexibility allows the profiles to be tailored so that an island unfolds in the low-field side, even for elongated plasmas, thus sustaining the negative-current core against outward forces. Among other topological results, reversed GS equilibria are also shown to be necessarily non-nested, except for the cylindrical and other very special degenerate, hence structurally unstable cases. PMID:16090623

  18. Tokamak Equilibria with Toroidal-Current Reversal in the Plasma Core Consistent with Experimental Data

    SciTech Connect

    Rodrigues, Paulo; Bizarro, Joao P. S.

    2007-09-21

    For the first time, tokamak equilibria with negative toroidal current flowing in the plasma core are computed consistently with available measurements from typical current-hole discharges. The equilibrium reconstruction, which leads to non-nested configurations where a system of axisymmetric magnetic islands unfolds, yields an overall good agreement between the computed and experimental plasma-pressure profiles, together with an excellent fit to motional-Stark-effect data. Therefore, considering the accuracy limits of present-day experimental results, care must be exercised when ruling out the existence of tokamak equilibria with central toroidal-current reversal, particularly if relying on reconstruction tools that cannot cope with non-nested configurations.

  19. Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

    SciTech Connect

    Loizu, J.; Hudson, S. R.; Bhattacharjee, A.; Lazerson, S.; Helander, P.

    2015-09-15

    We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at the resonant surface.

  20. Solution equilibria of deferoxamine amides.

    PubMed

    Ihnat, Peter M; Vennerstrom, Jonathan L; Robinson, Dennis H

    2002-07-01

    The physico-chemical solution properties of deferoxamine were modified by acylating the terminal amino group with short-chain aliphatic, succinic, and methylsulphonic moieties. The analog iron(III)-binding constants and stabilities under physiological conditions were determined to confirm that the iron binding ability of the parent molecule was retained following modification. The proton dissociation constants of the lipophilic deferoxamine analogs were determined by potentiometric titration and nonlinear least-squares analysis. However, because the iron(III) binding complex is fully formed below pH 2, the metal-ligand equilibria could not be studied using potentiometric methods. The iron binding constants of the deferoxamine analogs were determined by spectrophotometrically following the proton-dependent exchange of iron with EDTA in the pH range of 4.0 to 6.5 and solving mass balance equations. The proton-dissociation constants and the iron binding constants of the lipophilic deferoxamine analogs were comparable to those of deferoxamine. However, at physiological conditions, the iron-binding complex of the most lipophilic butylamide derivative was slightly less stable and the succinamide derivative complex was slightly more stable. Like deferoxamine, the hydroxamate groups of the analogs were unhindered and free to form a 1:1 coordination complex with iron(III). Consequently, changes in aqueous solvation, conformation, and steric interference, imparted by the modifications at the terminal amino group of deferoxamine, may have affected the stabilities of the iron(III) complex and the efficiency of iron binding. PMID:12115836

  1. Relative Equilibria of Identical Point Vortices

    NASA Astrophysics Data System (ADS)

    Aref, Hassan

    2006-11-01

    The problem of finding relative equilibria of identical point vortices is classical and was considered by Kelvin and J. J. Thomson almost immediately after the model had been introduced by Helmholtz in 1858. At the time relative equilibria of vortices were proposed as models of atoms. Apart from the intrinsic interest of the problem, and its mathematical challenge, such equilibria have been used as models for stationary states of distributed vortices, and have been observed in rotating superfluids, most recently in spectacular images of BECs. Simple equilibria such as regular polygons (both open and centered) were found and analyzed in the 19th century. Double rings and more recently triple rings have been found analytically. However, the numerically known relative equilibria continue to greatly outnumber those that are analytically known. A major numerical exploration was undertaken by Campell & Ziff in 1978 resulting in what is known as the Los Alamos Catalog. We will explore the results in this catalog and what we have learned since then, and present details on the quest for an analytical understanding of these intriguing states.

  2. On Nash equilibria in Eisert-Lewenstein-Wilkens game

    NASA Astrophysics Data System (ADS)

    Bolonek-Lasoń, Katarzyna; Kosiński, Piotr

    2015-12-01

    Landsburg method of classifying mixed Nash equilibria for maximally entangled Eisert-Lewenstein-Wilkens (ELW) game is analyzed with special emphasis on symmetries inherent to the problem. Nash equilibria for the original ELW game are determined.

  3. Investigation of crystallinity and planar defects in the Si nanowires grown by vapor-liquid-solid mode using indium catalyst for solar cell applications

    NASA Astrophysics Data System (ADS)

    Ajmal Khan, Muhammad; Ishikawa, Yasuaki; Kita, Ippei; Tani, Ayumi; Yano, Hiroshi; Fuyuki, Takashi; Konagai, Makoto

    2016-01-01

    Stacking-fault-free and planar defect (twinning plane)-free In-catalyzed Si nanowires (NWs) are essential for carrier transport and nanoscale device applications. In this article, In-catalyzed, vertically aligned, and cone-shaped Si NWs on Si(111) were grown successfully, in the vapor-liquid-solid (VLS) mode. In particular, the influences of substrate temperature (TS) and cooling rate (ΔTS/Δt) on the formation of planar defects, twinning planes along the [112] direction, and stacking faults in Si NWs were investigated. When TS was decreased from 600 °C to room temperature at a rate of 100 °C/240 s after Si NW growth, twinning plane defects perpendicular to the substrate and along different segments of (111)-oriented Si NWs were observed. Finally, one simple model was proposed to explain the stacking fault formation as well as Si NW length limitation due to the In-nanoparticle (In-NP) migration, and root causes of the twinning plane defects in the Si-NWs.

  4. Fabrication and electrical characterization of homo- and hetero-structure Si/SiGe nanowire Tunnel Field Effect Transistor grown by vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Brouzet, V.; Salem, B.; Periwal, P.; Alcotte, R.; Chouchane, F.; Bassani, F.; Baron, T.; Ghibaudo, G.

    2016-04-01

    We demonstrate the fabrication and electrical characterization of Ω -gate Tunnel Field Effect Transistors (TFET) based on p-Si/i-Si/n+Si0.7Ge0.3 heterostructure nanowires grown by Chemical Vapor Deposition (CVD) using the vapor-liquid-solid (VLS) mechanism. The electrical performances of the p-Si/i-Si/n+Si0.7Ge0.3 heterostructure TFET device are presented and compared to Si and Si0.7Ge0.3 homostructure nanowire TFETs. We observe an improvement of the electrical performances of TFET with p-Si/i-Si/n+Si0.7Ge0.3 heterostructure nanowire (HT NW). The optimized devices present an Ion current of about 245 nA at VDS = -0.5 V and VGS = -3 V with a subthreshold swing around 135 mV/dec. Finally, we show that the electrical results are in good agreement with numerical simulation using Kane's Band-to-Band Tunneling model.

  5. Comparative study of the effects of phosphorus and boron doping in vapor-liquid-solid growth with fixed flow of silicon gas

    NASA Astrophysics Data System (ADS)

    Islam, Md. Shofiqul; Mehedi, Ibrahim Mustafa

    2016-04-01

    This work was carried out to investigate the comparative effects of phosphorus and boron doing in vapor-liquid-solid (VLS) growth. Doped Si microneedles were grown by VLS mechanism at the temperature of 700 °C or less using Au as the catalyst. VLS growth using in-situ doping with the mixed gas of Si2H6 and PH3 produced phosphorus doped n-Si microneedles at Au dot sites, whereas, the mixed gas of Si2H6 and B2H6 produced boron doped p-Si microneedles. The variation of growth rate, diameter, resistivity, impurity concentration and carrier (electron, hole) mobility of these n-Si and p-Si microneeedles were investigated and compared with the variation of dopant gas (PH3 or B2H6) flow, with a fixed flow of Si gas (Si2H6). This comparative study shall be helpful while fabricating devices by growing n-Si and p-Si microneedles one above another by multistep (2-step or 3-step) VLS growth.

  6. Vapor-liquid-solid growth route to AlN nanowires on Au-coated Si substrate by direct nitridation of Al powder

    NASA Astrophysics Data System (ADS)

    Yu, Leshu; Lv, Yingying; Zhang, Xiaolan; Zhang, Yiyue; Zou, Ruyi; Zhang, Fan

    2011-11-01

    In the past several decades vapor-liquid-solid (VLS) growth mechanism has been used for constructing one dimensional (1D) AlN nanostructures though the clear observation of metallic catalyst particles on top of individual 1D nanostructure is rare. Using Au thin film on Si substrate as metallic catalyst, fine AlN nanowires were grown through the nitridation of Al powder in this study. The systematic characterizations including scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) have confirmed the existence of metallic catalyst particles on the top of each AlN nanowire. Therefore the AlN nanowires growth is indeed accomplished via VLS process. The VLS-generated conditions including thickness of Au film and reaction temperature were also explored for the growth of AlN nanowires. Incidentally some other AlN nanostructures such as faceted cross-sectional nanorods, nanobelt and nanocomb were also obtained via vapor-solid growth mechanism on the Si substrate.

  7. Peeling-Ballooning Mode Analysis in Shifted-Circle Tokamak Equilibria

    NASA Astrophysics Data System (ADS)

    Burke, B.; Kruger, S. E.; Hegna, C. C.; Snyder, P. B.; Sovinec, C. R.; Zhu, P.

    2009-11-01

    Progress in understanding edge localized modes (ELMs) has been made by investigating the stability properties of edge localized peeling-ballooning modes. We focus on the evolution of ideal MHD modes over a large spectrum in two shifted-circle tokamak equilibria, using the extended-MHD code NIMROD. The TOQ-generated equilibria model a H-mode plasma with a pedestal pressure profile and parallel edge currents. A vacuum region is prescribed by a resistivity profile that transitions from a small to very large value at a specified location. The vacuum model is benchmarked against the linear ideal MHD codes ELITE & GATO. We demonstrate vacuum effects on the stability by adjusting the vacuum location relative to the pedestal pressure region. Ballooning-like instabilities dominate distant vacuum cases, whereas peeling mode physics is expected to dominate as the vacuum approaches the pedestal. Numerical simulations of the early nonlinear stages of edge localized MHD instabilities are presented. Comparisons between equilibria that have ``ballooning'' dominated instabilities relative to equilibria that are ``peeling'' dominated are made.

  8. Tokamak Equilibria with Reversed Current Density

    NASA Astrophysics Data System (ADS)

    Martynov, A. A.; Medvedev, S. Yu.; Villard, L.

    2003-08-01

    Observations of nearly zero toroidal current in the central region of tokamaks (the “current hole”) raises the question of the existence of toroidal equilibria with very low or reversed current in the core. The solutions of the Grad-Shafranov equilibrium equation with hollow toroidal current density profile including negative current density in the plasma center are investigated. Solutions of the corresponding eigenvalue problem provide simple examples of such equilibrium configurations. More realistic equilibria with toroidal current density reversal are computed using a new equilibrium problem formu­lation and computational algorithm which do not assume nested magnetic surfaces.

  9. Vapor-liquid-soild growth of group IV (Si, Ge, Si1-xGe x) single and heterostructured nanowires

    NASA Astrophysics Data System (ADS)

    Minassian, Sharis

    In this thesis, an alternative Si source, disilane (Si2H 6) has been investigated which is of interest since it is more reactive than SiH4 and therefore may enable higher growth rates at lower temperature and lower partial pressures. The lower thermal stability of Si 2H6 could also be an advantage to enable the growth of Si 1-xGex nanowires over the entire composition range at lower temperatures which are more compatible with the range of conditions typically used for Ge nanowire growth and in turn may enable the fabrication of different types of heterostructures. To fulfill the objective of this research, a systematic study has been developed to explore the growth of group IV (Si, Ge, and Si 1-xGex alloy) single and heterostructured nanowires from Si2H6 and GeH4 precursors. First, the growth kinetics of individual SiNWs from Si2H 6 was investigated by examining the effects of growth parameters on their growth rate. The results were compared to that obtained with SiH 4. In addition, to gain a better insight into the SiNW growth process, the results were also compared with Si films deposited under similar conditions inside the same reactor. Overall compared to SiH4, the use of Si 2H6 enabled higher growth rates for both SiNWs and Si films. For both gases, a nonlinearity was observed in the growth rate of nanowire as a function of gas partial pressure which was explained by a simple decomposition mechanism including the adsorption, desorption and incorporation of precursor molecule on the Au droplet surface. The apparent activation energy of the process was found to be identical for both gases under the conditions examined in the present study, suggesting similar rate-determining step in the nanowire growth process from the two precursors. Upon completion of studies on SiNW growth, the synthesis parameter space was then determined for undoped GeNWs and the influence of growth conditions on their morphology as well as their growth rate was examined. It was found that

  10. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria

    USGS Publications Warehouse

    Sverjensky, D.A.; Hemley, J.J.; d'Angelo, W. M.

    1991-01-01

    The thermodynamic properties of minerals retrieved from consideration of solid-solid and dehydration equilibria with calorimetric reference values, and those of aqueous species derived from studies of electrolytes, are not consistent with experimentally measured high-temperature solubilities in the systems K2O- and Na2O-Al2O3-SiO2-H2O-HCl (e.g., K-fs - Ms - Qtz - K+ - H+). This introduces major inaccuracies into the computation of ionic activity ratios and the acidities of diagenetic, metamorphic, and magmatic hydrothermal fluids buffered by alkali silicate-bearing assemblages. We report a thermodynamic analysis of revised solubility equilibria in these systems that integrates the thermodynamic properties of minerals obtained from phase equilibria studies (Berman, 1988) with the properties of aqueous species calculated from a calibrated equation of state (Shock and Helgeson, 1988). This was achieved in two separate steps. First, new values of the free energies and enthalpies of formation at 25??C and 1 bar for the alkali silicates muscovite and albite were retrieved from the experimental solubility equilibria at 300??C and Psat. Because the latter have stoichiometric reaction coefficients different from those for solid-solid and dehydration equilibria, our procedure preserves exactly the relative thermodynamic properties of the alkali-bearing silicates (Berman, 1988). Only simple arithmetic adjustments of -1,600 and -1,626 (??500) cal/mol to all the K- and Na-bearing silicates, respectively, in Berman (1988) are required. In all cases, the revised values are within ??0.2% of calorimetric values. Similar adjustments were derived for the properties of minerals from Helgeson et al. (1978). Second, new values of the dissociation constant of HCl were retrieved from the solubility equilibria at temperatures and pressures from 300-600??C and 0.5-2.0 kbars using a simple model for aqueous speciation. The results agree well with the conductance-derived dissociation

  11. Instability of magnetic equilibria in barotropic stars

    NASA Astrophysics Data System (ADS)

    Mitchell, J. P.; Braithwaite, J.; Reisenegger, A.; Spruit, H.; Valdivia, J. A.; Langer, N.

    2015-02-01

    In stably stratified stars, numerical magnetohydrodynamics simulations have shown that arbitrary initial magnetic fields evolve into stable equilibrium configurations, usually containing nearly axisymmetric, linked poloidal and toroidal fields that stabilize each other. In this work, we test the hypothesis that stable stratification is a requirement for the existence of such stable equilibria. For this purpose, we follow numerically the evolution of magnetic fields in barotropic (and thus neutrally stable) stars, starting from two different types of initial conditions, namely random disordered magnetic fields, as well as linked poloidal-toroidal configurations resembling the previously found equilibria. With many trials, we always find a decay of the magnetic field over a few Alfvén times, never a stable equilibrium. This strongly suggests that there are no stable equilibria in barotropic stars, thus clearly invalidating the assumption of barotropic equations of state often imposed on the search of magnetic equilibria. It also supports the hypothesis that, as dissipative processes erode the stable stratification, they might destabilize previously stable magnetic field configurations, leading to their decay.

  12. Equilibria with incompressible flows from symmetry analysis

    SciTech Connect

    Kuiroukidis, Ap E-mail: gthroum@cc.uoi.gr; Throumoulopoulos, G. N. E-mail: gthroum@cc.uoi.gr

    2015-08-15

    We identify and study new nonlinear axisymmetric equilibria with incompressible flow of arbitrary direction satisfying a generalized Grad Shafranov equation by extending the symmetry analysis presented by Cicogna and Pegoraro [Phys. Plasmas 22, 022520 (2015)]. In particular, we construct a typical tokamak D-shaped equilibrium with peaked toroidal current density, monotonically varying safety factor, and sheared electric field.

  13. Phase Equilibria and Crystallography of Ceramic Oxides

    PubMed Central

    Wong-Ng, W.; Roth, R. S.; Vanderah, T. A.; McMurdie, H. F.

    2001-01-01

    Research in phase equilibria and crystallography has been a tradition in the Ceramics Division at National Bureau of Standards/National Institute of Standatrds and Technology (NBS/NIST) since the early thirties. In the early years, effort was concentrated in areas of Portland cement, ceramic glazes and glasses, instrument bearings, and battery materials. In the past 40 years, a large portion of the work was related to electronic materials, including ferroelectrics, piezoelectrics, ionic conductors, dielectrics, microwave dielectrics, and high-temperature superconductors. As a result of the phase equilibria studies, many new compounds have been discovered. Some of these discoveries have had a significant impact on US industry. Structure determinations of these new phases have often been carried out as a joint effort among NBS/NIST colleagues and also with outside collaborators using both single crystal and neutron and x-ray powder diffraction techniques. All phase equilibria diagrams were included in Phase Diagrams for Ceramists, which are collaborative publications between The American Ceramic Society (ACerS) and NBS/NIST. All x-ray powder diffraction patterns have been included in the Powder Diffraction File (PDF). This article gives a brief account of the history of the development of the phase equilibria and crystallographic research on ceramic oxides in the Ceramics Division. Represented systems, particularly electronic materials, are highlighted. PMID:27500068

  14. Equilibrator: Modeling Chemical Equilibria with Excel

    ERIC Educational Resources Information Center

    Vander Griend, Douglas A.

    2011-01-01

    Equilibrator is a Microsoft Excel program for learning about chemical equilibria through modeling, similar in function to EQS4WIN, which is no longer supported and does not work well with newer Windows operating systems. Similar to EQS4WIN, Equilibrator allows the user to define a system with temperature, initial moles, and then either total…

  15. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-01

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ˜2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ˜1% from simulation data while the theory reproduces the excess

  16. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  17. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    SciTech Connect

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-14

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory

  18. Measurement of vapor/liquid distributions in a binary-component fuel spray using laser imaging of droplet scattering and vapor absorption

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Zhang, Yuyin; Wu, Shenqi; Xu, Bin

    2014-08-01

    Fuel volatility has a great effect on its evaporation processes and the mixture formation and thus combustion and emissions formation processes in internal combustion engines. To date, however, instead of the actual gasoline or diesel fuel, many researchers have been using single-component fuel in their studies, because the composition of the former is too complicated to understand the real physics behind the evaporation and combustion characteristics. Several research groups have reported their results on droplets evaporation in a spray of multi-component fuel, carried out both numerically and experimentally. However, there are plenty of difficulties in quantitative determination of vapor concentration and droplet distributions of each component in a multicomponent fuel spray. In this study, to determine the vapor phase concentration and droplet distributions in an evaporating binary component fuel spray, a laser diagnostics based on laser extinction by droplet scattering and vapor absorption was developed. In practice, measurements of the vapor concentration distributions of the lower (n-tridencane) and higher (n-octane) volatility components in the binary component fuel sprays have been carried out at ambient temperatures of 473K and 573K, by substituting p-xylene for noctane or α-methylnaphthalene for n-tridecane. p-Xylene and α-methylnaphthalene were selected as the substitutes is because they have strong absorption band near 266nm and transparent near 532nm and, their thermo-physical properties are similar to those of the original component. As a demonstration experiment, vapor/liquid distribution of the lower boiling point (LBP) and higher boiling point (HBP) components in the binary component fuel spray have been obtained.

  19. Asymptotic expansion for stellarator equilibria with a non-planar magnetic axis: Numerical results

    NASA Astrophysics Data System (ADS)

    Freidberg, Jeffrey; Cerfon, Antoine; Parra, Felix

    2012-10-01

    We have recently presented a new asymptotic expansion for stellarator equilibria that generalizes the classic Greene-Johnson expansion [1] to allow for 3D equilibria with a non-planar magnetic axis [2]. Our expansion achieves the two goals of reducing the complexity of the three-dimensional MHD equilibrium equations and of describing equilibria in modern stellarator experiments. The end result of our analysis is a set of two coupled partial differential equations for the plasma pressure and the toroidal vector potential which fully determine the stellarator equilibrium. Both equations are advection equations in which the toroidal angle plays the role of time. We show that the method of characteristics, following magnetic field lines, is a convenient way of solving these equations, avoiding the difficulties associated with the periodicity of the solution in the toroidal angle. By combining the method of characteristics with Green's function integrals for the evaluation of the magnetic field due to the plasma current, we obtain an efficient numerical solver for our expansion. Numerical equilibria thus calculated will be given.[4pt] [1] J.M. Greene and J.L. Johnson, Phys. Fluids 4, 875 (1961)[0pt] [2] A.J. Cerfon, J.P. Freidberg, and F.I. Parra, Bull. Am. Phys. Soc. 56, 16 GP9.00081 (2011)

  20. Quasilinear perturbed equilibria of resistively unstable current carrying plasma

    NASA Astrophysics Data System (ADS)

    Hu, Di; Zakharov, Leonid E.

    2015-12-01

    > A formalism for consideration of island formation is presented using a model of a cylindrical resistively unstable plasma. Both current and pressure driven island formation at resonant surfaces are considered. The proposed formalism of perturbed equilibria avoids problems typical for linear analysis of resistive magneto-hydrodynamic instabilities related to extraction of the so-called small solution near the resonant surfaces. The matching technique of this paper is not sensitive to configuration parameters near the resonant surfaces. The comparison of the perturbed equilibrium method with the frequently used quasilinear mode analysis based on a perturbed averaged current density profile shows that the latter is limited in its applicability and underestimates the stability. Presented here for a cylindrical case, the perturbed equilibrium technique can be used in toroidal perturbed equilibrium codes with minor modifications.

  1. Fixed boundary toroidal plasma equilibria with toroidal flows

    NASA Astrophysics Data System (ADS)

    Hu, Yanqiang; Hu, Yemin; Xiang, Nong

    2016-04-01

    The fixed boundary toroidal plasma equilibria with toroidal flows are investigated by solving the modified Grad-Shafranov equation numerically in the cylindrical coordinate system. For normal equilibrium configurations with geometry and profiles similar to usual tokamaks with no flow, it is found that the effect of flow is to lead to an outward shift of the magnetic flux surfaces, together with the profiles of pressure, and mass and current densities. The shifts could become significant when the toroidal flow Mach number exceeds 0.5. For non-conventional current profiles, even for the usual tokamak geometry, novel current reversal equilibrium configurations may result, sometimes with changed topology in the poloidal flux function. This change in the topology of plasma equilibrium can be attributed to the large toroidal flow. The computed results may correspond to situations of intense tangential injection during the low toroidal current phase in expected experimental situations.

  2. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  3. Erratum: "A new equation of state of a flexible-chain polyelectrolyte solution: Phase equilibria and osmotic pressure in the salt-free case" [J. Chem. Phys. 142, 174901 (2015)

    NASA Astrophysics Data System (ADS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Georgi, N.; Nogovitsyn, E. A.; Kiselev, M. G.

    2015-11-01

    We develop a first-principle equation of state of salt-free polyelectrolyte solution in the limit of infinitely long flexible polymer chains in the framework of a field-theoretical formalism beyond the linear Debye-Hueckel theory and predict a liquid-liquid phase separation induced by a strong correlation attraction. As a reference system we choose a set of two subsystems - charged macromolecules immersed in a structureless oppositely charged background created by counterions (polymer one component plasma) and counterions immersed in oppositely charged background created by polymer chains (hard-core one component plasma). We calculate the excess free energy of polymer one component plasma in the framework of Modified Random Phase Approximation, whereas a contribution of charge densities fluctuations of neutralizing backgrounds we evaluate at the level of Gaussian approximation. We show that our theory is in a very good agreement with the results of Monte-Carlo and MD simulations for critical parameters of liquid-liquid phase separation and osmotic pressure in a wide range of monomer concentration above the critical point, respectively.

  4. Free boundary skin current MHD (magnetohydrodynamic) equilibria

    SciTech Connect

    Reusch, M.F.

    1988-02-01

    Function theoretic methods in the complex plane are used to develop simple parametric hodograph formulae which generate sharp boundary equilibria of arbitrary shape. The related method of Gorenflo and Merkel is discussed. A numerical technique for the construction of solutions, based on one of the methods is presented. A study is made of the bifurcations of an equilibrium of general form. 28 refs., 9 figs.

  5. Symmetry breaking of quasihelical stellarator equilibria

    SciTech Connect

    Weening, R.H. )

    1993-04-01

    A mean-field Ohm's law is used to determine the effects of the bootstrap current on quasihelically symmetric stellarator equilibria. The Ohm's law leads to the conclusion that the effects of the bootstrap current break the quasihelical stellarator symmetry at second order in an inverse aspect ratio expansion of the magnetic field strength. The level of symmetry breaking suggests that good approximations to quasihelical stellarator fusion reactors may not be attainable.

  6. Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach

    SciTech Connect

    Cicogna, G.; Pegoraro, F.

    2015-02-15

    We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.

  7. Liquid-vapor phase equilibria and the thermodynamic properties of 2-methylpropanol- n-alkyl propanoate solutions

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.; Meshcheryakov, A. V.

    2016-08-01

    The boiling points of solutions of five binary systems are measured via ebulliometry in the pressure range of 2.05-103.3 kPa. Equilibrium vapor phase compositions, the values of the excess Gibbs energies, enthalpies, and entropies of solution of these systems are calculated. Patterns in the changes of phase equilibria and thermodynamic properties of solutions are established, depending on the compositions and temperatures of the systems. Liquid-vapor equilibria in the systems are described using the equations of Wilson and the NRTL (Non-Random Two-Liquid Model).

  8. Close relative equilibria of identical point vortices

    NASA Astrophysics Data System (ADS)

    Dirksen, Tobias; Aref, Hassan

    2011-11-01

    Via numerical solution of the classical problem of relative equilibria for identical point vortices on the unbounded plane we have found configurations that are very close to the analytically known, centered, symmetrically arranged, nested equilateral triangles. Numerical solutions of this kind were found for 3 n + 1 vortices, where n = 2 , 3 , ... , 30 . A sufficient, although apparently not necessary, condition for this phenomenon of close solutions is that the ``core'' of the configuration is marginally stable, as occurs for a central vortex surrounded by an equilateral triangle. The open, regular heptagon also has this property, and new relative equilibria close to the nested, symmetrically arranged, regular heptagons have been found. The centered regular nonagon is also marginally stable. Again, a new family of close relative equilibria has been found. The closest relative equilibrium pairs occur, however, for symmetrically nested equilateral triangles. The numerical evidence is surveyed and related recent work mentioned. A Letter in Physics of Fluids 23 (2011) 051706 is available. Supported in part by the Danish National Research Foundation through a Niels Bohr visiting professorship.

  9. Four motional invariants in axisymmetric tori equilibria

    SciTech Connect

    A ring gren, O.; Moiseenko, V.E.

    2006-05-15

    In addition to the standard set ({epsilon},{mu},p{sub {phi}}) of three invariants in axisymmetric tori, there exists a fourth independent radial drift invariant I{sub r}. For confined particles, the net radial drift has to be zero, whereby the drift orbit average I{sub r}= of the gyro center radial Clebsch coordinate is constant. To lowest order in the banana width, the radial invariant is the gyro center radial coordinate r{sub 0}(x,v), and to this order the gyro center moves on a magnetic flux surface. The gyro center orbit projected on the (r,z) plane determines the radial invariant and first order banana width corrections to I{sub r} are calculated. The radial drift invariant exists for trapped as well as passing particles. The new invariant is applied to construct Vlasov equilibria, where the magnetic field satisfies a generalized Grad-Shafranov equation with a poloidal plasma current and a bridge to ideal magnetohydrodynamic equilibria is found. For equilibria with sufficiently small banana widths and radial drift excursions, the approximation I{sub r}{approx_equal}r{sub 0}(x,v) can be used for the equilibrium state.

  10. Quantum Nash Equilibria and Quantum Computing

    NASA Astrophysics Data System (ADS)

    Fellman, Philip Vos; Post, Jonathan Vos

    In 2004, At the Fifth International Conference on Complex Systems, we drew attention to some remarkable findings by researchers at the Santa Fe Institute (Sato, Farmer and Akiyama, 2001) about hitherto unsuspected complexity in the Nash Equilibrium. As we progressed from these findings about heteroclinic Hamiltonians and chaotic transients hidden within the learning patterns of the simple rock-paper-scissors game to some related findings on the theory of quantum computing, one of the arguments we put forward was just as in the late 1990's a number of new Nash equilibria were discovered in simple bi-matrix games (Shubik and Quint, 1996; Von Stengel, 1997, 2000; and McLennan and Park, 1999) we would begin to see new Nash equilibria discovered as the result of quantum computation. While actual quantum computers remain rather primitive (Toibman, 2004), and the theory of quantum computation seems to be advancing perhaps a bit more slowly than originally expected, there have, nonetheless, been a number of advances in computation and some more radical advances in an allied field, quantum game theory (Huberman and Hogg, 2004) which are quite significant. In the course of this paper we will review a few of these discoveries and illustrate some of the characteristics of these new "Quantum Nash Equilibria". The full text of this research can be found at http://necsi.org/events/iccs6/viewpaper.php?id-234

  11. A Magnetic Diagnostic Code for 3D Fusion Equilibria

    SciTech Connect

    Samuel Aaron Lazerson

    2012-07-27

    A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The codes is validated against a vacuum shot on the Large Helical Device where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the Large Helical Device (LHD).

  12. A Magnetic Diagnostic Code for 3D Fusion Equilibria

    SciTech Connect

    Samuel A. Lazerson, S. Sakakibara and Y. Suzuki

    2013-03-12

    A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The code is validated against a vacuum shot on the Large Helical Device (LHD) where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the LHD.

  13. Phase relations in the system NaCl-KCl-H2O: IV. Differential thermal analysis of the sylvite liquidus in the KCl-H2O binary, the liquidus in the NaCl-KCl-H2O ternary, and the solidus in the NaCl-KCl binary to 2 kb pressure, and a summary of experimental data for thermodynamic-PTX analysis of solid-liquid equilibria at elevated P-T conditions

    USGS Publications Warehouse

    Chou, I.-Ming; Sterner, S.M.; Pitzer, Kenneth S.

    1992-01-01

    The sylvite liquidus in the binary system KCl-H2O and the liquidus in the ternary system NaCl-KCl-H2O were determined by using isobaric differential thermal analysis (DTA) cooling scans at pressures up to 2 kbars. Sylvite solubilities along the three-phase curve in the binary system KCl-H2O were obtained by the intersection of sylvite-liquidus isopleths with the three-phase curve in a P-T plot. These solubility data can be represented by the equation Wt.% KCl (??0.2) = 12.19 + 0.1557T - 5.4071 ?? 10-5 T2, where 400 ??? T ??? 770??C. These data are consistent with previous experimental observations. The solidus in the binary system NaCl-KCl was determined by using isobaric DTA heating scans at pressures up to 2 kbars. Using these liquidus and solidus data and other published information, a thermodynamic-PTX analysis of solid-liquid equilibria at high pressures and temperatures for the ternary system has been performed and is presented in an accompanying paper (Part V of this series). However, all experimental liquidus, solidus, and solvus data used in this analysis are summarized in this report (Part IV) and they are compared with the calculated values based on the analysis. ?? 1992.

  14. A molecular-thermodynamic framework for asphaltene-oil equilibria

    SciTech Connect

    Wu, J.; Prausnitz, J.M. |; Firoozabadi, A.

    1997-02-01

    Asphaltene precipitation is a perennial problem in production and refinery of crude oils. To avoid precipitation, it is useful to predict the solubility of asphaltenes in petroleum liquids as a function of temperature, pressure and liquid-phase composition. In the molecular-thermodynamic model presented here, both asphaltenes and resins are represented by pseudo-pure components, and all other components in the solution are represented by a continuous medium which affects interactions among asphaltene and resin particles. The effect of the medium on asphaltene-asphaltene, resin-asphaltene, resin-resin pair interactions is taken into account through its density and molecular-dispersion properties. To obtain expressions for the chemical potential of asphaltene and for the osmotic pressure of an asphaltene-containing solution, the authors use the integral theory of fluids coupled with the SAFT model to allow for asphaltene aggregation and for adsorption of resin on asphaltene particles. With these expressions, a variety of experimental observations can be explained including the effects of temperature, pressure and composition on the phase behavior of asphaltene-containing fluids. For engineering application, the molecular parameters in this model must be correlated to some macroproperties of oil such as density and molecular weight. When such correlations are established, it will be possible to calculate asphaltene-precipitation equilibria at a variety of conditions for realistic systems.

  15. Metamorphism and partial melting of ordinary chondrites: Calculated phase equilibria

    NASA Astrophysics Data System (ADS)

    Johnson, T. E.; Benedix, G. K.; Bland, P. A.

    2016-01-01

    Constraining the metamorphic pressures (P) and temperatures (T) recorded by meteorites is key to understanding the size and thermal history of their asteroid parent bodies. New thermodynamic models calibrated to very low P for minerals and melt in terrestrial mantle peridotite permit quantitative investigation of high-T metamorphism in ordinary chondrites using phase equilibria modelling. Isochemical P-T phase diagrams based on the average composition of H, L and LL chondrite falls and contoured for the composition and abundance of olivine, ortho- and clinopyroxene, plagioclase and chromite provide a good match with values measured in so-called equilibrated (petrologic type 4-6) samples. Some compositional variables, in particular Al in orthopyroxene and Na in clinopyroxene, exhibit a strong pressure dependence when considered over a range of several kilobars, providing a means of recognising meteorites derived from the cores of asteroids with radii of several hundred kilometres, if such bodies existed at that time. At the low pressures (<1 kbar) that typify thermal metamorphism, several compositional variables are good thermometers. Although those based on Fe-Mg exchange are likely to have been reset during slow cooling, those based on coupled substitution, in particular Ca and Al in orthopyroxene and Na in clinopyroxene, are less susceptible to retrograde diffusion and are potentially more faithful recorders of peak conditions. The intersection of isopleths of these variables may allow pressures to be quantified, even at low P, permitting constraints on the minimum size of parent asteroid bodies. The phase diagrams predict the onset of partial melting at 1050-1100 °C by incongruent reactions consuming plagioclase, clinopyroxene and orthopyroxene, whose compositions change abruptly as melting proceeds. These predictions match natural observations well and support the view that type 7 chondrites represent a suprasolidus continuation of the established petrologic

  16. From one-dimensional fields to Vlasov equilibria: Theory and application of Hermite polynomials

    NASA Astrophysics Data System (ADS)

    Allanson, Oliver; Neukirch, Thomas; Troscheit, Sascha; Wilson, Fiona

    2016-06-01

    We consider the theory and application of a solution method for the inverse problem in collisionless equilibria, namely that of calculating a Vlasov-Maxwell equilibrium for a given macroscopic (fluid) equilibrium. Using Jeans' theorem, the equilibrium distribution functions are expressed as functions of the constants of motion, in the form of a Maxwellian multiplied by an unknown function of the canonical momenta. In this case it is possible to reduce the inverse problem to inverting Weierstrass transforms, which we achieve by using expansions over Hermite polynomials. A sufficient condition on the pressure tensor is found which guarantees the convergence and the boundedness of the candidate solution, when satisfied. This condition is obtained by elementary means, and it is clear how to put it into practice. We also argue that for a given pressure tensor for which our method applies, there always exists a positive distribution function solution for a sufficiently magnetised plasma. Illustrative examples of the use of this method with both force-free and non-force-free macroscopic equilibria are presented, including the full verification of a recently derived distribution function for the force-free Harris sheet (Allanson et al., Phys. Plasmas, vol. 22 (10), 2015, 102116). In the effort to model equilibria with lower values of the plasma β, solutions for the same macroscopic equilibrium in a new gauge are calculated, with numerical results presented for β_{pl}=0.05.

  17. From one-dimensional fields to Vlasov equilibria: Theory and application of Hermite polynomials

    NASA Astrophysics Data System (ADS)

    Allanson, Oliver; Neukirch, Thomas; Troscheit, Sascha; Wilson, Fiona

    2016-06-01

    We consider the theory and application of a solution method for the inverse problem in collisionless equilibria, namely that of calculating a Vlasov-Maxwell equilibrium for a given macroscopic (fluid) equilibrium. Using Jeans’ theorem, the equilibrium distribution functions are expressed as functions of the constants of motion, in the form of a Maxwellian multiplied by an unknown function of the canonical momenta. In this case it is possible to reduce the inverse problem to inverting Weierstrass transforms, which we achieve by using expansions over Hermite polynomials. A sufficient condition on the pressure tensor is found which guarantees the convergence and the boundedness of the candidate solution, when satisfied. This condition is obtained by elementary means, and it is clear how to put it into practice. We also argue that for a given pressure tensor for which our method applies, there always exists a positive distribution function solution for a sufficiently magnetised plasma. Illustrative examples of the use of this method with both force-free and non-force-free macroscopic equilibria are presented, including the full verification of a recently derived distribution function for the force-free Harris sheet (Allanson et al., Phys. Plasmas, vol. 22 (10), 2015, 102116). In the effort to model equilibria with lower values of the plasma β, solutions for the same macroscopic equilibrium in a new gauge are calculated, with numerical results presented for β_{pl}=0.05.

  18. Tokamak equilibria with toroidal-current reversal in the plasma core consistent with experimental data.

    PubMed

    Rodrigues, Paulo; Bizarro, João P S

    2007-09-21

    For the first time, tokamak equilibria with negative toroidal current flowing in the plasma core are computed consistently with available measurements from typical current-hole discharges. The equilibrium reconstruction, which leads to non-nested configurations where a system of axisymmetric magnetic islands unfolds, yields an overall good agreement between the computed and experimental plasma-pressure profiles, together with an excellent fit to motional-Stark-effect data. Therefore, considering the accuracy limits of present-day experimental results, care must be exercised when ruling out the existence of tokamak equilibria with central toroidal-current reversal, particularly if relying on reconstruction tools that cannot cope with non-nested configurations. PMID:17930511

  19. Linear Stability of Equilibria of a Fluid that is a Nonconductor of Heat

    NASA Astrophysics Data System (ADS)

    Yudovich, V. I.

    1995-02-01

    Convective stability is studied in the linear approximation of equilibria of a strongly viscous fluid that is a nonconductor of heat where the fluid fills a bounded domain in a gravitational field. The corresponding system consists of the heat equation with transport in a velocity field and the steady-state Stokes system for the velocity and pressure. The latter includes an Archimedean force proportional to the temperature.It is proved that equilibria for which the temperature strictly increases upward are stable in L_2 with respect to the temperature and in W_2^2 with respect to the velocity. Here, however, perturbations may die out arbitrarily slowly (Banach-Steinhaus stability). Under rough violation of the condition of monotonicity of the temperature the equilibrium is unstable.Some critical cases of stability are also considered.Bibliography: 13 titles.

  20. Two-dimensional nonlinear cylindrical equilibria with reversed magnetic shear and sheared flow

    NASA Astrophysics Data System (ADS)

    Kuiroukidis, Ap; Throumoulopoulos, G. N.; Throumoulopoulos

    2014-02-01

    Nonlinear translational symmetric equilibria with up to quartic flux terms in free functions, reversed magnetic shear, and sheared flow are constructed in two ways: (i) quasi-analytically by an ansatz, which reduces the pertinent generalized Grad-Shafranov equation to a set of ordinary differential equations and algebraic constraints which is then solved numerically, and (ii) completely numerically by prescribing analytically a boundary having an X-point. This latter case presented in Sec. 4 is relevant to the International Thermonuclear Experimental Reactor project. The equilibrium characteristics are then examined by means of pressure, safety factor, current density, and electric field. For flows parallel to the magnetic field, the stability of the equilibria constructed is also examined by applying a sufficient condition. It turns out that the equilibrium nonlinearity has a stabilizing impact, which is slightly enhanced by the sheared flow. In addition, the results indicate that the stability is affected by the up-down asymmetry.

  1. Liquidus equilibria of lunar analogs at high pressure

    NASA Technical Reports Server (NTRS)

    Longhi, J.

    1993-01-01

    Melting experiments have been performed in the range of 20 to 40 kbar on partially crystallized synthetic glasses in order to test the accuracy of the polybaric fractional fusion model for picritic lunar green glasses. Results show that the model predicts the position of the olivine (ol) + orthopyroxene (opx) liquidus boundary within the uncertainty of the measurements, but that details of the calculations are subject to change because of new crystal/liquid partitioning data for olivine and pyroxene.

  2. Discovering the Thermodynamics of Simultaneous Equilibria: An Entropy Analysis Activity Involving Consecutive Equilibria

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2007-01-01

    An activity is presented in which the thermodynamics of simultaneous, consecutive equilibria are explored. The activity is appropriate for second-year high school or AP chemistry. Students discover that a reactant-favored (entropy-diminishing or endergonic) reaction can be caused to happen if it is coupled with a product-favored reaction of…

  3. Metal biosorption equilibria in a ternary system

    SciTech Connect

    Chong, K.H.; Volesky, B.

    1996-03-20

    Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data and with conclusions postulated from the three possible binary subsystems.

  4. Relativistic thermal plasmas - Pair processes and equilibria

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.

    1982-01-01

    The work of Bisnovatyi-Kogan, Zel'dovich and Sunyaev (1971) is extended and generalized, through the inclusion of pair-producing photon processes and effects due to the finite size of the plasma, in an investigation of the equilibria of relativistic thermal plasmas which takes into account electron-positron creation and annihilation and photons produced within the plasma. It is shown that the bridge between an effectively thin plasma and an effectively thick plasma occurs in the transrelativistic region, where the dimensionless temperature value is between 0.1 and 1.0 and the temperature remains in this region over a great luminosity range.

  5. Phase equilibria for complex fluid mixtures

    SciTech Connect

    Prausnitz, J.M.

    1983-04-01

    After defining complex mixtures, attention is given to the canonical procedure used for the thermodynamics of fluid mixtures: first, we establish a suitable, idealized reference system and then we establish a perturbation (or excess function) which corrects the idealized system for real behavior. For complex mixtures containing identified components (e.g. alcohols, ketones, water) discussion is directed at possible techniques for extending to complex mixtures our conventional experience with reference systems and perturbations for simple mixtures. Possible extensions include generalization of the quasi-chemical approximation (local compositions) and superposition of chemical equilibria (association and solvation) on a physical equation of state. For complex mixtures containing unidentified components (e.g. coal-derived fluids), a possible experimental method is suggested for characterization; conventional procedures can then be used to calculate phase equilibria using the concept of pseudocomponents whose properties are given by the characterization data. Finally, as an alternative to the pseudocomponent method, a brief introduction is given to phase-equilibrium calculations using continuous thermodynamics.

  6. On Learning Algorithms for Nash Equilibria

    NASA Astrophysics Data System (ADS)

    Daskalakis, Constantinos; Frongillo, Rafael; Papadimitriou, Christos H.; Pierrakos, George; Valiant, Gregory

    Can learning algorithms find a Nash equilibrium? This is a natural question for several reasons. Learning algorithms resemble the behavior of players in many naturally arising games, and thus results on the convergence or non-convergence properties of such dynamics may inform our understanding of the applicability of Nash equilibria as a plausible solution concept in some settings. A second reason for asking this question is in the hope of being able to prove an impossibility result, not dependent on complexity assumptions, for computing Nash equilibria via a restricted class of reasonable algorithms. In this work, we begin to answer this question by considering the dynamics of the standard multiplicative weights update learning algorithms (which are known to converge to a Nash equilibrium for zero-sum games). We revisit a 3×3 game defined by Shapley [10] in the 1950s in order to establish that fictitious play does not converge in general games. For this simple game, we show via a potential function argument that in a variety of settings the multiplicative updates algorithm impressively fails to find the unique Nash equilibrium, in that the cumulative distributions of players produced by learning dynamics actually drift away from the equilibrium.

  7. Spontaneous Decay of Periodic Magnetostatic Equilibria.

    PubMed

    East, William E; Zrake, Jonathan; Yuan, Yajie; Blandford, Roger D

    2015-08-28

    In order to understand the conditions that lead to a highly magnetized, relativistic plasma becoming unstable, and in such cases how the plasma evolves, we study a prototypical class of magnetostatic equilibria in which the magnetic field satisfies ∇×B=αB, where α is spatially uniform, on a periodic domain. Using numerical solutions, we show that generic examples of such equilibria are unstable to ideal modes (including incompressible ones), which are marked by exponential growth in the linear phase. We characterize the unstable mode, showing how it can be understood in terms of merging magnetic and current structures, and explicitly demonstrate its instability using the energy principle. Following the nonlinear evolution of these solutions, we find that they rapidly develop regions with relativistic velocities and electric fields of comparable magnitude to the magnetic field, liberating magnetic energy on dynamical time scales and eventually settling into a configuration with the largest allowable wavelength. These properties make such solutions a promising setting for exploring the mechanisms behind extreme cosmic sources of gamma rays. PMID:26371660

  8. Fluorite solubility equilibria in selected geothermal waters

    USGS Publications Warehouse

    Nordstrom, D.K.; Jenne, E.A.

    1977-01-01

    Calculation of chemical equilibria in 351 hot springs and surface waters from selected geothermal areas in the western United States indicate that the solubility of the mineral fluorite, CaF2, provides an equilibrium control on dissolved fluoride activity. Waters that are undersaturated have undergone dilution by non-thermal waters as shown by decreased conductivity and temperature values, and only 2% of the samples are supersaturated by more than the expected error. Calculations also demonstrate that simultaneous chemical equilibria between the thermal waters and calcite as well as fluorite minerals exist under a variety of conditions. Testing for fluorite solubility required a critical review of the thermodynamic data for fluorite. By applying multiple regression of a mathematical model to selected published data we have obtained revised estimates of the pK (10,96), ??Gof (-280.08 kcal/mole), ??Hof (-292.59 kcal/mole), S?? (16.39 cal/deg/mole) and CoP (16.16 cal/deg/mole) for CaF2 at 25??C and 1 atm. Association constants and reaction enthalpies for fluoride complexes with boron, calcium and iron are included in this review. The excellent agreement between the computer-based activity products and the revised pK suggests that the chemistry of geothermal waters may also be a guide to evaluating mineral solubility data where major discrepancies are evident. ?? 1977.

  9. Axi-symmetric Gravitational MHD Equilibria in the Presence of Plasma Rotation

    SciTech Connect

    Cremaschini, C.; Beklemishev, A.; Miller, J.; Tessarotto, M.

    2008-12-31

    In this paper, extending the investigation developed in an earlier paper (Cremaschini et al., 2008), we pose the problem of the kinetic description of gravitational Hall-MHD equilibria which may arise in accretion disks (AD) plasmas close to compact objects. When intense EM and gravitational fields, generated by the central object, are present, a convenient approach can be achieved in the context of the Vlasov-Maxwell description. In this paper the investigation is focused primarily on the following two aspects:1) the formulation of the kinetic treatment of G-Hall-MHD equilibria. Based on the identification of the relevant first integrals of motion, we show that an explicit representation can be given for the equilibrium kinetic distribution function. For each species this is represented as a superposition of suitable generalized Maxwellian distributions;2) the determination of the constraints to be placed on the fluid fields for the existence of the kinetic equilibria. In particular, this permits a unique determination of the functional form of the species number densities and of the fluid partial pressures, in terms of suitably prescribed flux functions.

  10. TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE

    SciTech Connect

    CHU, M.S.; PARKS, P.B.

    2002-06-01

    OAK B202 TOKAMAK EQUILIBRIA WITH CENTRAL CURRENT HOLES AND NEGATIVE CURRENT DRIVE. Several tokamak experiments have reported the development of a central region with vanishing currents (the current hole). Straightforward application of results from the work of Greene, Johnson and Weimer [Phys. Fluids, 3, 67 (1971)] on tokamak equilibrium to these plasmas leads to apparent singularities in several physical quantities including the Shafranov shift and casts doubts on the existence of this type of equilibria. In this paper, the above quoted equilibrium theory is re-examined and extended to include equilibria with a current hole. It is shown that singularities can be circumvented and that equilibria with a central current hole do satisfy the magnetohydrodynamic equilibrium condition with regular behavior for all the physical quantities and do not lead to infinitely large Shafranov shifts. Isolated equilibria with negative current in the central region could exist. But equilibria with negative currents in general do not have neighboring equilibria and thus cannot have experimental realization, i.e. no negative currents can be driven in the central region.

  11. Formalism for multi-fluid equilibria with flow

    SciTech Connect

    Steinhauer, L.C.

    1999-07-01

    A formalism is developed for flowing multifluid equilibria. In the standard reduced case (massless electrons, quasineutrality) this system simplifies to a pair of second-order partial differential equations for the magnetic and ion flow stream functions plus a Bernoulli equation giving the density. Each species has its own characteristic surfaces, which are the drift surfaces, and three arbitrary surface functions associated with each species. In the case of minimum energy equilibria, the surface functions are no longer arbitrary. The flowing equilibrium system is a generalization of the familiar Grad{endash}Shafranov system for magnetostatic equilibria. {copyright} {ital 1999 American Institute of Physics.}

  12. Following the equilibria of slender elastic rods

    NASA Astrophysics Data System (ADS)

    Lazarus, Arnaud; Miller, James; Reis, Pedro

    2012-02-01

    We present a novel continuation method to characterize and quantify the equilibria of elastic rods under large geometrically nonlinear displacements and rotations. To describe the kinematics we exploit the synthetic power and computational efficiency of quaternions. The energetics of bending, stretching and torsion are all taken into account to derive the equilibrium equations which we solve using an asymptotic numerical continuation method. This provides access to the full set of analytical equilibrium branches (stable and unstable), a.k.a bifurcation diagrams. This is in contrast with the individual solution points attained by classic energy minimization or predictor-corrector techniques. We challenge our numerics for the specific problem of an extremely twisted naturally curved rod and perform a detailed comparison against a precision desktop-scale experiments. The quantification of the underlying 3D buckling instabilities and the characterization of the resulting complex configurations are in excellent agreement between numerics and experiments.

  13. Relative equilibria of vortices in two dimensions.

    PubMed

    Palmore, J I

    1982-01-01

    An old problem of the evolution of finitely many interacting point vortices in the plane is shown to be amenable to investigation by critical point theory in a way that is identical to the study of the planar n-body problem of celestial mechanics. For any choice of positive circulations of the vortices it is shown by critical point theory applied to Kirchhoff's function that there are many relative equilibria configurations. Each of these configurations gives rise to a stationary configuration of the vortices in a suitably chosen rotating coordinate system. A sharp lower bound on the number of stationary vortex configurations for the problem of point vortices interacting in the plane is given. The problem of point vortices in a circular disk is defined and it is shown that these estimates hold for stationary configurations of small size. PMID:16593155

  14. Magnetic equilibria for X-Diverted plasmas

    NASA Astrophysics Data System (ADS)

    Pekker, M.; Valanju, P.; Kotschenreuther, M.; Wiley, J.; Mahajan, S.

    2006-10-01

    The X-divertor has been proposed to solve heat exhaust problems for reactors beyond ITER. By generating an extra X-point downstream from the main X-point, the X-divertor greatly expands magnetic flux at the divertor plates. As a result, the heat is distributed over a larger area and the line length is greatly increased. We have developed coil sets for X-diverted magnetic equilibria for many devices (NSTX, PEGASUS, EAST, HL-2A, CREST, and a CTF). These demonstrate that the XD configuration can be created for highly shaped plasmas using moderate coil currents. For reactors, all coils can be placed behind 1 m of shielding. We have also shown that XD configurations are robust to modest plasma perturbations and VDEs; this is in contrast to the sensitivity of highly tilted divertor plates.

  15. Helical relativistic electron beam Vlasov equilibria

    NASA Astrophysics Data System (ADS)

    Lai, H. M.

    1980-08-01

    Three existing helical relativistic electron beam models are discussed and compared. Both Yoshikawa's and Lawson's models are shown to be derivable from appropriate Vlasov equilibria. A new helical Vlasov equilibrium with energy spread is presented and studied. Unlike Auer's axial current model in which the allowance of an energy spread limits the total current in the relativistic beam case, the present model, with the addition of an azimuthal current, permits solutions with arbitrarily large current. On the other hand, like the model studied by Kan and Lai, the present model leads to nonhollowed-out beam solutions in which, the larger the beam current, the more force-free is the magnetic field configuration.

  16. Code System to Model Aqueous Geochemical Equilibria.

    Energy Science and Technology Software Center (ESTSC)

    2001-08-23

    Version: 00 MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution ofsolid phases. MINTEQ can accept a finite massmore » for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and each compositionally and structurally distinct solid forms a separate phase.« less

  17. Molecular equilibria and condensation sequences in carbon rich gases

    NASA Technical Reports Server (NTRS)

    Sharp, C. M.; Wasserburg, G. J.

    1993-01-01

    Chemical equilibria in stellar atmospheres have been investigated by many authors. Lattimer, Schramm, and Grossman presented calculations in both O rich and C rich environments and predicted possible presolar condensates. A recent paper by Cherchneff and Barker considered a C rich composition with PAH's included in the calculations. However, the condensation sequences of C bearing species have not been investigated in detail. In a carbon rich gas surrounding an AGB star, it is often assumed that graphite (or diamond) condenses out before TiC and SiC. However, Lattimer et al. found some conditions under which TiC condenses before graphite. We have performed molecular equilibrium calculations to establish the stability fields of C(s), TiC(s), and SiC(s) and other high temperature phases under conditions of different pressures and C/O. The preserved presolar interstellar dust grains so far discovered in meteorites are graphite, diamond, SiC, TiC, and possibly Al2O3.

  18. Adsorption equilibria of chlorinated organic solvents onto activated carbon

    SciTech Connect

    Yun, J.H.; Choi, D.K.; Kim, S.H.

    1998-04-01

    Adsorption equilibria of dichloromethane, 1,1,1-trichloroethane, and trichloroethylene on activated carbon were obtained by a static volumetric technique. Isotherms were measured for the pure vapors in the temperature range from 283 to 363 K and pressures up to 60 kPa for dichloromethane, 16 kPa for 1,1,1-trichloroethane, and 7 kPa for trichloroethylene, respectively. The Toth and Dubinin-Radushkevich equations were used to correlate experimental isotherms. Thermodynamic properties such as the isosteric heat of adsorption and the henry`s constant were calculated. It was found that the values of isosteric heat of adsorption were varied with surface loading. Also, the Henry`s constant showed that the order of adsorption affinity is 1,1,1-trichloroethane, trichloroethylene, and dichloromethane. By employing the Dubinin-Radushkevich equation, the limiting volume of the adsorbed space, which equals micropore volume, was determined, and its value was found to be approximately independent of adsorbates.

  19. Fluctuation theory of molecular association and conformational equilibria

    PubMed Central

    Jiao, Yuanfang; Smith, Paul E.

    2011-01-01

    General expressions relating the effects of pressure, temperature, and composition on solute association and conformational equilibria using the fluctuation theory of solutions are provided. The expressions are exact and can be used to interpret experimental or computer simulation data for any multicomponent mixture involving molecules of any size and character at any composition. The relationships involve particle-particle, particle-energy, and energy-energy correlations within local regions in the vicinity of each species involved in the equilibrium. In particular, it is demonstrated that the results can be used to study peptide and protein association or aggregation, protein denaturation, and protein-ligand binding. Exactly how the relevant fluctuating properties may be obtained from experimental or computer simulation data are also outlined. It is shown that the enthalpy, heat capacity, and compressibility differences associated with the equilibrium process can, in principle, be obtained from a single simulation. Fluctuation based expressions for partial molar heat capacities, thermal expansions, and isothermal compressibilities are also provided. PMID:21744905

  20. Scaling-law equilibria for calcium in canopy-type models of the solar chromosphere

    NASA Technical Reports Server (NTRS)

    Jones, H. P.

    1982-01-01

    Scaling laws for resonance line formation are used to obtain approximate excitation and ionization equilibria for a three-level model of singly ionized calcium. The method has been developed for and is applied to the study of magnetograph response in the 8542 A infrared triplet line to magnetostatic canopies which schematically model diffuse, nearly horizontal fields in the low solar chromosphere. For this application, the method is shown to be efficient and semi-quantitative, and the results indicate the type and range of effects on calcium-line radiation which result from reduced gas pressure inside the magnetic regions.

  1. The freedom to choose neutron star magnetic field equilibria

    NASA Astrophysics Data System (ADS)

    Glampedakis, Kostas; Lasky, Paul D.

    2016-08-01

    Our ability to interpret and glean useful information from the large body of observations of strongly magnetised neutron stars rests largely on our theoretical understanding of magnetic field equilibria. We answer the following question: is one free to arbitrarily prescribe magnetic equilibria such that fluid degrees of freedom can balance the equilibrium equations? We examine this question for various models for neutron star matter; from the simplest single-fluid barotrope to more realistic non-barotropic multifluid models with superfluid/superconducting components, muons and entropy. We do this for both axi- and non-axisymmetric equilibria, and in Newtonian gravity and general relativity. We show that, in axisymmetry, the most realistic model allows complete freedom in choosing a magnetic field equilibrium whereas non-axisymmetric equilibria are never completely arbitrary.

  2. Tokamak equilibria and edge stability when non-axisymmetric fields are applied

    NASA Astrophysics Data System (ADS)

    Ham, C. J.; Chapman, I. T.; Simpson, J.; Suzuki, Y.

    2015-05-01

    Tokamaks are traditionally viewed as axisymmetric devices. However this is not always true, for example in the presence of saturated instabilities, error fields, or resonant magnetic perturbations (RMPs) applied for edge localized mode (ELM) control. We use the VMEC code (Hirshman and Whitson 1983 Phys. Fluids 26 3553) to calculate three dimensional equilibria by energy minimization for tokamak plasmas. MAST free boundary equilibria have been calculated with profiles for plasma pressure and current derived from two dimensional reconstruction. It is well known that ELMs will need to be controlled in ITER to prevent damage that may limit the lifetime of the machine (Loarte et al 2003 Plasma Phys. Control. Fusion 45 1549). ELM control has been demonstrated on several tokamaks including MAST (Kirk et al 2013 Nucl. Fusion 53 043007). However the application of RMPs causes the plasma to gain a displacement or corrugation (Liu et al 2011 Nucl. Fusion 51 083002). Previous work has shown that the phase and size of these corrugations is in agreement with experiment (Chapman et al 2012 Plasma Phys. Control. Fusion 54 105013). The interaction of these corrugations with the plasma control system (PCS) may cause high heat loads at certain toroidal locations if care is not taken (Chapman et al 2014 Plasma Phys. Control. Fusion 56 075004). VMEC assumes nested flux surfaces but this assumption has been relaxed in other stellarator codes. These codes allow equilibria where magnetic islands and stochastic regions can form. We show some initial results using the HINT2 code (Suzuki et al 2006 Nucl. Fusion 46 L19). The Mercier stability of VMEC equilibria with RMPs applied is calculated. The geodesic curvature contribution can be strongly influenced by helical Pfirsch-Schlüter currents driven by the applied RMPs. ELM mitigation is not fully understood but one of the factors that influences peeling-ballooning stability, which is linked to ELMs, is a three dimensional corrugation of the

  3. Two-dimensional magnetohydrodynamic equilibria with flow and studies of equilibria fluctuations

    SciTech Connect

    Agim, Y.Z.

    1989-08-01

    A set of reduced ideal MHD equations is derived to investigate equilibria of plasmas with mass flow in general two-dimensional geometry. These equations provide a means of investigating the effects of flow on self-consistent equilibria in a number of new two-dimensional configurations such as helically symmetric configurations with helical axis, which are relevant to stellarators, as well as axisymmetric configurations. It is found that as in the axisymmetric case, general two-dimensional flow equilibria are governed by a second-order quasi-linear partial differential equation for a magnetic flux function, which is coupled to a Bernoulli-type equation for the density. The equation for the magnetic flux function becomes hyperbolic at certain critical flow speeds which follow from its characteristic equation. When the equation is hyperbolic, shock phenomena may exist. As a particular example, unidirectional flow along the lines of symmetry is considered. In this case, the equation mentioned above is always elliptic. An exact solution for the case of helically symmetric unidirectional flow is found and studied to determine flow effects on the magnetic topology. In second part of this thesis, magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency. It is shown that the fluid model with resistivity yields spectral densities which are roughly Lorentzian, exhibit equipartition with no apparent cutoff in wavenumber space and a Bohm-type diffusion coefficient. Under certain conditions, the ensuing transport may be comparable to classical values. For a phenomenological cutoff imposed on the spectrum, the typical fluctuating-to-equilibrium magnetic field ratio is found to be of the order of 10 {sup {minus}10}.

  4. Phase equilibria of the magnesium sulfate-water system to 4 kbars

    NASA Technical Reports Server (NTRS)

    Hogenboom, D. L.; Kargel, J. S.; Ganasan, J. P.; Lee, L.

    1993-01-01

    Magnesium sulfate is the most abundant salt in carbonaceous chondrites, and it may be important in the low-temperature igneous evolution and aqueous differentiation of icy satellites and large chondritic asteroids. Accordingly, we are investigating high-pressure phase equilibria in MgSO4-H2O solutions under pressures up to four kbars. An initial report was presented two years ago. This abstract summarizes our results to date including studies of solutions containing 15.3 percent, 17 percent, and 22 percent MgSO4. Briefly, these results demonstrate that increasing pressure causes the eutectic and peritectic compositions to shift to much lower concentrations of magnesium sulfate, and the existence of a new low-density phase of magnesium sulfate hydrate.

  5. Phase Equilibria and Compressibility of bastnaesite-(La)

    NASA Astrophysics Data System (ADS)

    Rowland, R. L., II; Burnley, P. C.

    2015-12-01

    Bastnaesite (Ce,La,Y)CO3(F,OH) is a rare earth element (REE) bearing ore mineral. REEs are more common in the Earth's crust than precious metals like gold or platinum, but are not commonly concentrated in economically viable ore deposits. For over a decade, China has been the world's leading supplier of REEs. Recent export restrictions from China have necessitated the search for new deposits. Determining basic material properties such as phase equilibria and the equation of state for bastnaesite helps in understanding the processes that form REE ore deposits and thereby assist in locating new deposits. For this study we focus on the lanthanum-fluoride variant of bastnaesite (LaCO3F) since it can be easily synthesized in the laboratory. Previous work by others determined that in both open and closed systems at atmospheric pressure bastnaesite decomposes to lanthanum oxyfluoride and carbon dioxide (LaOF + CO2) above 325°C; at 100 MPa bastnaesite decomposes above 860°C (Hsu, 1992). Using a Griggs-type modified piston cylinder apparatus, we pressurized samples of synthetic bastnaesite-(La) to conditions ranging from 250 MPa to 1.2 GPa, and then subjected each sample to constant temperatures ranging from 700°C to 1050°C for a minimum of five hours. We then analyzed the samples with X-ray powder diffraction to identify phases present and determined that bastnaesite-(La) is stable at 250 MPa up to approximately 800°C and at 1.0 GPa up to approximately 900°C. Reversal experiments are underway. In order to develop an equation of state for bastnaesite-(La), we studied single crystals via monochromatic synchrotron X-ray diffraction in the diamond anvil cell at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. Measurements were made at pressures ranging from ambient to nearly 4 GPa. From these diffraction patterns, we determine the structure of bastnaesite-(La), and the change in unit cell volume as a function of pressure can be fit to a Birch

  6. PARALLEL ASSAY OF OXYGEN EQUILIBRIA OF HEMOGLOBIN

    PubMed Central

    Lilly, Laura E.; Blinebry, Sara K.; Viscardi, Chelsea M.; Perez, Luis; Bonaventura, Joe; McMahon, Tim J.

    2013-01-01

    Methods to systematically analyze in parallel the function of multiple protein or cell samples in vivo or ex vivo (i.e. functional proteomics) in a controlled gaseous environment have thus far been limited. Here we describe an apparatus and procedure that enables, for the first time, parallel assay of oxygen equilibria in multiple samples. Using this apparatus, numerous simultaneous oxygen equilibrium curves (OECs) can be obtained under truly identical conditions from blood cell samples or purified hemoglobins (Hbs). We suggest that the ability to obtain these parallel datasets under identical conditions can be of immense value, both to biomedical researchers and clinicians who wish to monitor blood health, and to physiologists studying non-human organisms and the effects of climate change on these organisms. Parallel monitoring techniques are essential in order to better understand the functions of critical cellular proteins. The procedure can be applied to human studies, wherein an OEC can be analyzed in light of an individual’s entire genome. Here, we analyzed intraerythrocytic Hb, a protein that operates at the organism’s environmental interface and then comes into close contact with virtually all of the organism’s cells. The apparatus is theoretically scalable, and establishes a functional proteomic screen that can be correlated with genomic information on the same individuals. This new method is expected to accelerate our general understanding of protein function, an increasingly challenging objective as advances in proteomic and genomic throughput outpace the ability to study proteins’ functional properties. PMID:23827235

  7. Tearing Mode Stability of Evolving Toroidal Equilibria

    NASA Astrophysics Data System (ADS)

    Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.

    2000-10-01

    There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.

  8. Free-boundary magnetohydrodynamic equilibria with flow

    SciTech Connect

    Schmitt, R. F.; Park, G. Y.; Guazzotto, L.; Strauss, H.; Chang, C.-S.

    2011-02-15

    The finite-element M3D code [W. Park et al., Phys. Plasmas 6, 1796 (1999)] has been modified to include a free-boundary equilibrium solver with arbitrary toroidal and poloidal flows. With this modification, the M3D code now has the capability to self-consistently model two essential ingredients necessary for equilibrium calculations in the edge region, namely, free-boundary and arbitrary flow. As a free-boundary code, M3D includes the separatrix and scrape-off layer regions in the equilibrium calculation. Poloidal flows in the subsonic, supersonic, and transonic regimes can be calculated with the new version of the M3D code. Calculation results show that the presence of equilibrium flows, in particular those next to the plasma boundary, can considerably influence the position of the X-point and magnetic separatrix shape/location and hence the position of the strike point on the divertor plates. Moreover, it is shown that poloidal flow is not a rigid-body rotation, with the fastest flows occurring on the inboard side of the plasma. A numerical confirmation of the ''de Laval nozzle'' model of Betti and Freidberg [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)] for free-boundary equilibrium calculations is obtained, with the formation of the predicted discontinuities between regions of subsonic and supersonic flows (with respect to the poloidal sound speed). Finally, a detailed comparison between isentropic and isothermal equilibria is presented, showing qualitative analogies and quantitative differences.

  9. Water under-saturated phase equilibria of basaltic andesites from Westdahl volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Rader, E. L.; Larsen, J.

    2008-12-01

    The two most abundant gases released from magmatic systems are typically H2O and CO2, however, most phase equilibria studies examining crystallization applied to natural magmatic systems over the past 200 years have relied on H2O-saturated conditions. We will present the results of new phase equilibria experiments run using natural basaltic andesite starting materials from the 1991-1992 eruption of Westdahl volcano, Alaska, examining both H2O-saturated and undersaturated conditions, using a fixed ratio of XH2O ~0.7 and XCO2 ~0.3 in the total volatile budget. The experiments were conducted at total pressures (PTotal) of 0-200 MPa and 900-1050 °C, and fO2 set to the Ni-NiO buffer. Experiments were loaded into gold and Au75Pd25 capsules, and run in a TZM alloy pressure vessel for 48 hours before rapid quenching while still at pressure. After quenching, samples were polished and examined by microprobe and reflective microscopy. Identified mineral phases include plagioclase, clinopyroxene, Fe-Ti oxides, and minor orthopyroxene in both water-saturated and under- saturated experiments. A ~25 to 50 °C shift in temperature, at similar pressures is observed in the plagioclase and pyroxene stability curves when CO2 is added. Solubility models predict relatively low amounts of CO2 dissolved in the melt at similar conditions. Thus, our experiments indicate a significant effect of CO2 on the crystallization of mafic magmas at crustal pressures in volcanic arcs.

  10. Water-Nafion equilibria. absence of Schroeder's paradox.

    PubMed

    Onishi, Lisa M; Prausnitz, John M; Newman, John

    2007-08-30

    Water-Nafion phase equilibria and proton conductivities were measured in two ways. First, Nafion was in contact with saturated water vapor. Second, Nafion was in contact with liquid water at the same temperature. At 29 degrees C, for preboiled, vapor-equilibrated Nafion exposed to water with an activity = 1 and air pressures ranging from 0 to 0.96 bar, the water content was lambda = 23 +/- 1 mol H(2)O/mol SO3-. For the preboiled, liquid-equilibrated membrane, lambda = 24 +/- 2. At 100% relative humidity (RH), the water content of preboiled Nafion decreased as the temperature rose from 30 to 80 degrees C but did not recover its initial water content when the temperature returned to 30 degrees C. The water content of predried Nafion at 1 atm and 30 degrees C was lambda = 13.7 +/- 0.2 when vapor-equilibrated and lambda = 13.1 +/- 0.5 when liquid-equilibrated. A Nafion membrane originally boiled in water had much higher liquid- and 100% RH vapor-equilibrated proton conductivities than the same membrane originally dried at 110 degrees C with a RH less than 2%. The liquid-equilibrated and 100% RH vapor-equilibrated membrane conductivities were the same when the membrane had the same thermal history. The conductivity data was fit to a model, and the water content was determined at different temperatures. The predried membrane water content increased with temperature, and the preboiled membrane's water content changed slightly with temperature. Both water sorption and proton-conductivity data do not exhibit Schroeder's paradox. These studies and previous results suggest that Schroeder's paradox is resolved when attention is given to the thermal history of the absorbing polymer. PMID:17685645

  11. Correlation of three-liquid-phase equilibria involving ionic liquids.

    PubMed

    Rodríguez-Escontrela, I; Arce, A; Soto, A; Marcilla, A; Olaya, M M; Reyes-Labarta, J A

    2016-08-01

    The difficulty in achieving a good thermodynamic description of phase equilibria is finding a model that can be extended to a large variety of chemical families and conditions. This problem worsens in the case of systems containing more than two phases or involving complex compounds such as ionic liquids. However, there are interesting applications that involve multiphasic systems, and the promising features of ionic liquids suggest that they will play an important role in many future processes. In this work, for the first time, the simultaneous correlation of liquid-liquid and liquid-liquid-liquid equilibrium data for ternary systems involving ionic liquids has been carried out. To that end, the phase diagram of the water + [P6 6 6 14][DCA] + hexane system has been determined at 298.15 K and 323.15 K and atmospheric pressure. The importance of this system lies in the possibility of using the surface active ionic liquid to improve surfactant enhanced oil recovery methods. With those and previous measurements, thirteen sets of equilibrium data for water + ionic liquid + oil ternary systems have been correlated. The isoactivity equilibrium condition, using the NRTL model, and some pivotal strategies are proposed to correlate these complex systems. Good agreement has been found between experimental and calculated data in all the regions (one triphasic and two biphasic) of the diagrams. The geometric aspects related to the Gibbs energy of mixing function obtained using the model, together with the minor common tangent plane equilibrium condition, are valuable tools to check the consistency of the obtained correlation results. PMID:27427420

  12. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  13. Bilinear relative equilibria of identical point vortices

    NASA Astrophysics Data System (ADS)

    Aref, Hassan; Beelen, Peter; Brøns, Morten

    2011-11-01

    A new class of bilinear relative equilibria of identical point vortices in which the vortices are constrained to be on two perpendicular lines, taken to be the x- and y-axes of a cartesian coordinate system, is introduced and studied. In general we have m vortices on the y-axis and n on the x- axis. We define generating polynomials q (z) and p (z) , respectively, for each set of vortices. A second order, linear ODE for p (z) given q (z) is derived. Several results relating the general solution of the ODE to relative equilibrium configurations are established. Our strongest result, obtained using Sturm's comparison theorem, is that if p (z) satisfies the ODE for a given q (z) with its imaginary zeros symmetric relative to the x-axis, then it must have at least n - m + 2 simple, real zeros. For m = 2 this provides a complete characterization of all zeros, and we study this case in some detail. In particular, we show that given q (z) =z2 +η2 , where η is real, there is a unique p (z) of degree n, and a unique value of η2 =An , such that the zeros of q (z) and p (z) form a relative equilibrium of n + 2 point vortices. We show that An ~2/3 n +1/2 , as n --> ∞ , where the coefficient of n is determined analytically, the next order term numerically. Supported in part by the Danish National Research Foundation through a Niels Bohr visiting professorship.

  14. Phase liquid-vapor equilibria and thermodynamic properties of solutions of n-propanol-aliphatic ketones

    NASA Astrophysics Data System (ADS)

    Suntsov, Yu. K.; Vlasov, M. V.; Chuikov, A. M.

    2015-06-01

    The boiling points of solutions of five binary systems are measured using the ebulliometric method in the pressure range of 4.4-101.3 kPa. Compositions of the equilibrium vapor phases of systems are calculated, based on the constructed pressure isotherms of saturated vapor. The values of excess Gibbs energy and the enthalpy and entropy of solutions are calculated from the data on the liquid-vapor equilibrium. The patterns of change in the phase equilibria and thermodynamic properties of the solutions are established, based on the composition and temperature of the systems. The liquid-vapor equilibrium of systems is described using the equations of Wilson and the NRTL (Non-Random Two-Liquid model).

  15. Landau resonant modification of multiple kink mode contributions to 3D tokamak equilibria

    SciTech Connect

    King, J. D.; Strait, E. J.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; Lanctot, M. J.; Liu, Y. Q.; Logan, N.; Paz-Soldan, C.; Shiraki, D.; Turnbull, A. D.

    2015-12-17

    Detailed measurements of the plasma's response to applied magnetic perturbations provide experimental evidence that the form of three-dimensional (3D) tokamak equilibria, with toroidal mode number n = 1, is determined by multiple stable kink modes at high-pressure. For pressures greater than the ideal magnetohydrodynamic (MHD) stability limit, as calculated without a stabilizing wall, the 3D structure transitions in a way that is qualitatively predicted by an extended MHD model that includes kinetic wave-particle interactions. These changes in poloidal mode structure are correlated with the proximity of rotation profiles to thermal ion bounce and the precession drift frequencies suggesting that these kinetic resonances are modifying the relative amplitudes of the stable modes. These results imply that each kink may eventually be independently controlled.

  16. Landau resonant modification of multiple kink mode contributions to 3D tokamak equilibria

    DOE PAGESBeta

    King, J. D.; Strait, E. J.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; Lanctot, M. J.; Liu, Y. Q.; Logan, N.; Paz-Soldan, C.; Shiraki, D.; et al

    2015-12-17

    Detailed measurements of the plasma's response to applied magnetic perturbations provide experimental evidence that the form of three-dimensional (3D) tokamak equilibria, with toroidal mode number n = 1, is determined by multiple stable kink modes at high-pressure. For pressures greater than the ideal magnetohydrodynamic (MHD) stability limit, as calculated without a stabilizing wall, the 3D structure transitions in a way that is qualitatively predicted by an extended MHD model that includes kinetic wave-particle interactions. These changes in poloidal mode structure are correlated with the proximity of rotation profiles to thermal ion bounce and the precession drift frequencies suggesting that thesemore » kinetic resonances are modifying the relative amplitudes of the stable modes. These results imply that each kink may eventually be independently controlled.« less

  17. Three-dimensional force-free looplike magnetohydrodynamic equilibria

    NASA Technical Reports Server (NTRS)

    Finn, John M.; Guzdar, Parvez N.; Usikov, Daniel

    1994-01-01

    Computations of three-dimensional force-free magnetohydrodynamic (MHD) equilibria, del x B = lambdaB with lambda = lambda(sub 0), a constant are presented. These equilibria are determined by boundary conditions on a surface corresponding to the solar photosphere. The specific boundary conditions used correspond to looplike magnetic fields in the corona. It is found that as lambda(sub 0) is increased, the loops of flux become kinked, and for sufficiently large lambda(sub 0), develop knots. The relationship between the kinking and knotting properties of these equilibria and the presence of a kink instability and related loss of equilibrium is explored. Clearly, magnetic reconnection must be involved for an unknotted loop equilibrium to become knotted, and speculations are made about the creation of a closed hyperbolic field line (X-line) about which this reconnection creating knotted field lines is centered.

  18. Wavelength resolved specific optical rotations and homochiral equilibria.

    PubMed

    Polavarapu, P L; Covington, C L

    2015-09-01

    The fundamental expressions governing specific optical rotations (SORs) of homochiral systems exhibiting monomer-dimer equilibria are presented. These equations are then utilized with the experimental measurements of wavelength resolved circular birefringence for (R)-(-)-α-hydroxy-β,β-dimethyl-γ-butyrolactone, to determine the wavelength resolved SORs of monomer and dimer components for the first time. Density functional theory predictions on the corresponding dispersion properties of monomer and dimer are found to match with experimentally determined quantities within a factor of ∼2. The wavelength resolved circular birefringence in the liquid solution phase thus provides a powerful means to investigate the molecular properties involved in homochiral equilibria. PMID:26227210

  19. Vlasov versus reduced kinetic theories for helically symmetric equilibria

    SciTech Connect

    Tasso, H.; Throumoulopoulos, G. N.

    2013-04-15

    A new constant of motion for helically symmetric equilibria in the vicinity of the magnetic axis is obtained in the framework of Vlasov theory. In view of this constant of motion the Vlasov theory is compared with drift kinetic and gyrokinetic theories near axis. It turns out that as in the case of axisymmetric equilibria [H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas 18, 064507 (2011)] the Vlasov current density thereon can differ appreciably from the drift kinetic and gyrokinetic current densities. This indicates some limitation on the implications of reduced kinetic theories, in particular, as concerns the physics of energetic particles in the central region of magnetically confined plasmas.

  20. The influence of the droplet composition on the vapor-liquid-solid growth of InAs nanowires on GaAs (111)B by metal-organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Bauer, Jens; Gottschalch, Volker; Wagner, Gerald

    2008-12-01

    The heteroepitaxial growth of InAs nanowires (NWs) on GaAs (1¯1¯1¯)B substrate was investigated by metal-organic vapor phase epitaxy. The vapor-liquid-solid (VLS) growth mechanism was applied with gold as seed material. InAs NW with two types of morphology were observed. The first morphology type exhibited a tapered NW shape. In a distinct region below the alloy particle the shape was influenced by the precursor surface diffusion. The NW growth was attributed to Au-rich liquid alloy particles containing gallium as a result of the initial Au-GaAs interaction. Differential scanning calorimetry measurements revealed the lowest eutectic temperature of the Au-Ga-In liquid alloy for different compositions. For a considerable amount of gallium inside the ternary alloy, the eutectic temperature was found to be below the InAs NW growth temperature window. A second type of morphology with a more columnlike shape was related to a very high indium fraction inside the liquid alloy particle during VLS growth. These NW exhibited a change in the side facet orientation from {2¯11} to {1¯10} below the droplet. Additionally, the sample structure was studied by transmission electron microscopy. A change in the InAs NW crystal structure from sphalerite-type to mainly wurtzite-type was observed with an increase in the growth temperature.

  1. Experimental technique for studying high-temperature phase equilibria in reactive molten metal based systems

    NASA Astrophysics Data System (ADS)

    Ermoline, Alexandre

    The general objective of this work is to develop an experimental technique for studying the high-temperature phase compositions and phase equilibria in molten metal-based binary and ternary systems, such as Zr-O-N, B-N-O, Al-O, and others. A specific material system of Zr-O-N was selected for studying and testing this technique. The information about the high-temperature phase equilibria in reactive metal-based systems is scarce and their studying is difficult because of chemical reactions occurring between samples and essentially any container materials, and causing contamination of the system. Containerless microgravity experiments for studying equilibria in molten metal-gas systems were designed to be conducted onboard of a NASA KC-135 aircraft flying parabolic trajectories. A uniaxial apparatus suitable for acoustic levitation, laser heating, and splat quenching of small samples was developed and equipped with computer-based controller and optical diagnostics. Normal-gravity tests were conducted to determine the most suitable operating parameters of the levitator by direct observations of the levitated samples, as opposed to more traditional pressure mapping of the acoustic field. The size range of samples that could be reliably heated and quenched in this setup was determined to be on the order of 1--3 mm. In microgravity experiments, small spherical specimens (1--2 mm diameter), prepared as pressed, premixed solid components, ZrO2, ZrN, and Zr powders, were acoustically levitated inside an argon-filled chamber at one atmosphere and heated by a CO2 laser. The levitating samples could be continuously laser heated for about 1 sec, resulting in local sample melting. The sample stability in the vertical direction was undisturbed by simultaneous laser heating. Oscillations of the levitating sample in the horizontal direction increased while it was heated, which eventually resulted in the movement of the sample away from its stable levitation position and the laser

  2. Moving contact lines in a vapor-liquid system: a singularity-free description in the sole framework of classical physics

    NASA Astrophysics Data System (ADS)

    Rednikov, Alexey; Colinet, Pierre

    2010-11-01

    When one is lead to think about a theoretical treatment of moving contact lines in the sole framework of classical physics, the first associations coming to mind are most probably those of singularities intractable unless "regularizing" effects, beyond the classical approach, are taken into account, such as the disjoining pressure or a slip at the wall. Here we show that, contrary to such preconceptions, no contact-line singularities arise, even in the absence of these regularizing effects, in a system consisting of a liquid, its pure vapor and a superheated substrate (of interest, in particular, in boiling applications). Furthermore, no thermal singularities typically associated with this system are encountered either, even in the absence of the thermal regularizing effects such as a finite rate of the evaporation kinetics or a finite heat conductivity of the substrate. We consider, in the framework of the lubrication theory and a classical one-sided model, a contact line moving at a constant velocity (advancing or receding) and starting abruptly at a (formally) bare solid surface, the micro- contact angle being either equal to zero or finite.

  3. Phase equilibria of carbon dioxide hydrate system in the presence of sucrose, glucose, and fructose

    SciTech Connect

    Chun, M.K.; Lee, H.

    1999-09-01

    The three-phase (H-L{sub w}-V) equilibria of the carbon dioxide hydrate formation system in aqueous solutions containing sucrose, glucose, and fructose were experimentally determined at pressures ranging from 1.580 to 4.355 MPa and at temperatures between 273.6 and 281.7 K. The upper quadruple points (H-L{sub w}-L{sub CO{sub 2}}-V) were also measured at concentrations of 10, 20, and 30 mass % sucrose, glucose, and fructose. The addition of carbohydrates exhibited a similar inhibition effect as that observed for electrolytes and alcohols. A thermodynamic model predicting the three- and four-phase hydrate equilibria while accounting for the inhibition effect of carbohydrates was developed on the basis of the van der Waals-Platteeuw model and the Redlich-Kwong-Soave equation of state with a modified version of the Huron-Vidal mixing rule. The calculated results were found to be in good agreement with the experimental data.

  4. Stability of compressible reduced magnetohydrodynamic equilibria-Analogy with magnetorotational instability

    SciTech Connect

    Morrison, P. J.; Tassi, E.; Tronko, N.

    2013-04-15

    Stability analyses for equilibria of the compressible reduced magnetohydrodynamics (CRMHD) model are carried out by means of the Energy-Casimir (EC) method. Stability results are compared with those obtained for ideal magnetohydrodynamics (MHD) from the classical {delta}W criterion. An identification of the terms in the second variation of the free energy functional for CRMHD with those of {delta}W is made: two destabilizing effects present for CRMHD turn out to correspond to the kink and interchange instabilities in usual MHD, while the stabilizing roles of field line bending and compressibility are also identified in the reduced model. Also, using the EC method, stability conditions in the presence of toroidal flow are obtained. A formal analogy between CRMHD and a reduced incompressible model for magnetized rotating disks, due to Julien and Knobloch [EAS Pub. Series, 21, 81 (2006)], is discovered. In light of this analogy, energy stability analysis shows that the condition for magnetorotational instability (MRI) for the latter model corresponds to the condition for interchange instability in CRMHD, with the Coriolis term and shear velocity playing the roles of the curvature term and pressure gradient, respectively. Using the EC method, stability conditions for the rotating disk model, for a large class of equilibria with possible non-uniform magnetic fields, are obtained. In particular, this shows it is possible for the MRI system to undergo, in addition to the MRI, another instability that is analogous to the kink instability. For vanishing magnetic field, the Rayleigh hydrodynamical stability condition is recovered.

  5. Asymptotic expansion for stellarator equilibria with a non-planar magnetic axis: Numerical progress

    NASA Astrophysics Data System (ADS)

    Cerfon, Antoine; Freidberg, Jeffrey; Parra, Felix

    2012-03-01

    We have recently presented a new asymptotic analysis [1], which reduces the complexity of the MHD equilibrium equations in stellarators and generalizes the asymptotic approach followed by Greene and Johnson in their classic paper [2]. As in [2], our expansion relies on the small ratio of the helical magnetic field to the vacuum toroidal field. However, our ordering relaxes the Greene and Johnson constraint which assumes a strong separation in length scales between the helical period and the major radius. In our expansion these two length scales are of comparable order, which provides a better match with modern stellarator experiments. Toroidal effects enter the analysis in the same order as helical effects, allowing the calculations of equilibria with multiple helicities and a non-planar magnetic axis. The end result of our analysis is a set of two coupled PDEs for the plasma pressure and the magnetic vector potential, which fully determine the stellarator equilibrium. We present simple analytic solutions to these equations, and discuss the numerical methods we are developping to calculate more general stellarator equilibria.[4pt] [1] A.J. Cerfon, J.P. Freidberg, and F.I. Parra, Bull. Am. Phys. Soc. 56, 16 GP9.00081[0pt] [2] J.M. Greene and J.L. Johnson, Phys. Fluids 4, 875 (1961)

  6. Acquisition and evaluation of thermodynamic data for morenosite-retgersite equilibria at 0.1 MPa

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R., II

    2003-01-01

    Metal-sulfate salts in mine drainage environments commonly occur as solid solutions containing Fe, Cu, Mg, Zn, Al, Mn, Ni, Co, Cd, and other elements. Thermodynamic data for some of the end-member salts containing Fe, Cu, Zn, and Mg have been collected and evaluated previously, and the present study extends to the system containing Ni. Morenosite (NiSO4-7H2O)-retgersite (NiSO4-6H2O) equilibria were determined along five humidity buffer curves at 0.1 MPa and between 5 and 22??C. Reversals along these humidity-buffer curves yield In K = 17.58-6303.35/T, where K is the equilibrium constant, and T is temperature in K. The derived standard Gibbs free energy of reaction is 8.84 kJ/mol, which agrees very well with the values of 8.90, 8.83, and 8.85 kJ/mol based on the vapor pressure measurements of Schumb (1923), Bonnell and Burridge (1935), and Stout et al. (1966). respectively. This value also agrees reasonably well with the values of 8.65 and 9.56 kJ/mol calculated from the data compiled by Wagman et al. (1982) and DeKock (1982), respectively. The temperature-humidity relationships defined by this study for dehydration equilibria between morenosite and retgersite explain the more common occurrence of retgersite relative to morenosite in nature.

  7. The Existence Condition for Magnetic Flux-Current Surfaces in Magnetohydrostatic Equilibria

    NASA Astrophysics Data System (ADS)

    Choe, G. S.; No, J.; Kim, S.; Jang, M.

    2014-12-01

    Magnetohydrostatic equilibria, in which the Lorentz force, the plasma pressure force and the gravitational force balance out to zero, are widely adopted as the zeroth order states of many space plasma systems. A magnetic flux-current surface is a surface, whose tangent plane is locally spanned by the magnetic field vector and the current density vector at each point in it; in other words, it is a surface, in which both magnetic field lines and current lines lie. We have derived the necessary and sufficient condition for existence of magnetic flux-current surfaces in magnetohydrostatic equilibria. It is also shown that the existence of flux-current surfaces is a necessary (but not sufficient) condition for the ratio of gravity-aligned components of current density and magnetic field to be constant along each field line. However, its necessary and sufficient condition is found to be very restrictive. This finding gives a significant constraint in modeling solar coronal magnetic fields as force-free fields using photospheric magnetic field observations.

  8. Phase equilibria and modeling of pyridinium-based ionic liquid solutions.

    PubMed

    Domańska, Urszula; Królikowski, Marek; Ramjugernath, Deresh; Letcher, Trevor M; Tumba, Kaniki

    2010-11-25

    The phase diagrams of the ionic liquid (IL) N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide ([BM(4)Py][NTf(2)]) with water, an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol), an aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene), an alkane (n-hexane, n-heptane, n-octane), or cyclohexane have been measured at atmospheric pressure using a dynamic method. This work includes the characterization of the synthesized compound by water content and also by differential scanning calorimetry. Phase diagrams for the binary systems of [BM(4)Py][NTf(2)] with all solvents reveal eutectic systems with regards to (solid-liquid) phase equilibria and show immiscibility in the liquid phase region with an upper critical solution temperature (UCST) in most of the mixtures. The phase equilibria (solid, or liquid-liquid) for the binary systems containing aliphatic hydrocarbons reported here exhibit the lowest solubility and the highest immiscibility gap, a trend which has been observed for all ILs. The reduction of experimental data has been carried out using the nonrandom two-liquid (NRTL) correlation equation. The phase diagrams reported here have been compared with analogous phase diagrams reported previously for systems containing the IL N-butyl-4-methylpyridinium tosylate and other pyridinium-based ILs. The influence of the anion of the IL on the phase behavior has been discussed. PMID:20964426

  9. NONLINEAR STABILITY OF A CLASS OF MAGNETOSTATIC EQUILIBRIA WITH AN APPLICATION TO SOLAR PROMINENCES

    SciTech Connect

    Aly, J.-J.

    2012-02-10

    We consider a particular class of three-dimensional magnetostatic equilibria in which the plasma is submitted to a vertical gravitational field and the gradient of the total (thermal+magnetic) pressure vanishes. We show analytically that an equilibrium in that class makes the energy an absolute minimum in the set of all the configurations accessible from it by an arbitrary finite deformation constrained by ideal MHD and imposed to vanish on a rigid conducting wall (line-tying condition). Along with energy conservation, this implies the nonlinear ideal stability of that equilibrium in the following sense. Suppose that a perturbation of energy w(0) is applied at time t = 0 and thus evolves by obeying the nonlinear MHD equations. Then some measure of the sizes of the plasma velocity and the deformation of the structure can be made to stay at any t {>=} 0 below an arbitrarily prescribed value by choosing w(0) small enough. Nonlinear stability also holds true for a configuration obtained by superposing an equilibrium of the previous type and a nonmagnetic equilibrium which is also an energy minimizer-for instance an equilibrium with uniform specific entropy, which is shown to have that property. Our result applies to a subset of a family of equilibria, computed by B. C. Low, which includes in particular the standard Kippenhahn-Schlueter model describing the magnetic support of solar corona prominences.

  10. Graphic Representation of Carbon Dioxide Equilibria in Biological Systems.

    ERIC Educational Resources Information Center

    Kindig, Neal B.; Filley, Giles F.

    1983-01-01

    The log C-pH diagram is a useful means of displaying quantitatively the many variables (including temperature) that determine acid-base equilibria in biological systems. Presents the diagram as extended to open/closed biological systems and derives a new water-ion balance method for determining equilibrium pH. (JN)

  11. Current Sheet Formation, Equilibria and Heating in the Closed Corona

    NASA Astrophysics Data System (ADS)

    Rappazzo, A. F.

    2014-12-01

    Parker model for coronal heating is investigated within theframework of reduced magnetohydrodynamics (RMHD) in cartesian geometry. A popular hypothesis is that in response to slow photospheric motionsthe magnetic field evolves quasi-statically through a seriesof unstable equilibria. Instabilities, e.g., kink modes or else,allow the release of energy while the field relaxes to a new equilibrium.On the other hand it has long been suggested that the dynamics relevant to the basic heating of coronal loops may not entaila quasi-static evolution (Parker 1972, 1994), and recently it has beenshown that the relaxation of an initial configuration out of equilibriumdevelops current sheets without accessing intermediate equilibria (Rappazzo & Parker 2013).The properties of the equilibria are therefore key in understanding thedynamics of coronal heating both in the case of low-frequency photospheric motions (DC) and for propagating waves (AC).Equilibria and nonlinear dynamics are studied numerically and theoretically,explaining why dynamics are inhibited below a critical twist, while for highervalues of the fluctuations nonlinear dynamics lead to the formation of current sheets (and magnetic reconnection in the non ideal case), whose thickness istracked with the analiticity strip method and shown to decrease at least exponentiallydown to dissipative lenght-scales on fast ideal Alfvenic timescales. The impact onthe heating of solar and stellar coronae will be discussed.

  12. Chaotic magnetic fields in Vlasov-Maxwell equilibria

    SciTech Connect

    Ghosh, Abhijit; Janaki, M. S.; Dasgupta, Brahmananda; Bandyopadhyay, Alak

    2014-03-15

    Stationary solutions of Vlasov-Maxwell equations are obtained by exploiting the invariants of single particle motion leading to linear or nonlinear functional relations between current and vector potential. For a specific combination of invariants, it is shown that Vlasov-Maxwell equilibria have an associated Hamiltonian that exhibits chaos.

  13. Acid-Base and Precipitation Equilibria in Wine

    ERIC Educational Resources Information Center

    Palma, Miguel; Barroso, Carmelo G.

    2004-01-01

    Experiments are performed to establish the changes of pH during the precipitation of potassium hydrogen tartrate, with its unfavorable impact on the stability of wine. Students, thus, obtain a clearer understanding of the interplay between a variety of chemical equilibria within a single medium.

  14. Kinetic axisymmetric gravitational equilibria in collisionless accretion disk plasmas

    SciTech Connect

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2010-07-15

    A theoretical treatment is presented of kinetic equilibria in accretion disks (AD) around compact objects, for cases where the plasma can be considered as collisionless. The plasma is assumed to be axisymmetric and to be acted on by gravitational and electromagnetic fields; in this paper, the particular case is considered where the magnetic field admits a family of toroidal magnetic surfaces, which are locally mutually nested and closed. It is pointed out that there exist asymptotic kinetic equilibria represented by generalized bi-Maxwellian distribution functions and characterized by primarily toroidal differential rotation and temperature anisotropy. It is conjectured that kinetic equilibria of this type can exist which are able to sustain both toroidal and poloidal electric current densities, the latter being produced via finite Larmor-radius effects associated with the temperature anisotropy. This leads to the possibility of existence of a new kinetic effect - referred to here as a 'kinetic dynamo effect - resulting in the self-generation of toroidal magnetic field even by a stationary plasma, without any net radial accretion flow being required. The conditions for these equilibria to occur, their basic theoretical features, and their physical properties are all discussed in detail.

  15. Model Checking Coalition Nash Equilibria in MAD Distributed Systems

    NASA Astrophysics Data System (ADS)

    Mari, Federico; Melatti, Igor; Salvo, Ivano; Tronci, Enrico; Alvisi, Lorenzo; Clement, Allen; Li, Harry

    We present two OBDD based model checking algorithms for the verification of Nash equilibria in finite state mechanisms modeling Multiple Administrative Domains (MAD) distributed systems with possibly colluding agents (coalitions) and with possibly faulty or malicious nodes (Byzantine agents). Given a finite state mechanism, a proposed protocol for each agent and the maximum sizes f for Byzantine agents and q for agents collusions, our model checkers return PASS if the proposed protocol is an ɛ-f-q-Nash equilibrium, i.e. no coalition of size up to q may have an interest greater than ɛ in deviating from the proposed protocol when up to f Byzantine agents are present, FAIL otherwise. We implemented our model checking algorithms within the NuSMV model checker: the first one explicitly checks equilibria for each coalition, while the second represents symbolically all coalitions. We present experimental results showing their effectiveness for moderate size mechanisms. For example, we can verify coalition Nash equilibria for mechanisms which corresponding normal form games would have more than 5 ×1021 entries. Moreover, we compare the two approaches, and the explicit algorithm turns out to outperform the symbolic one. To the best of our knowledge, no model checking algorithm for verification of Nash equilibria of mechanisms with coalitions has been previously published.

  16. MINTEQ--A COMPUTER PROGRAM FOR CALCULATING AQUEOUS GEOCHEMICAL EQUILIBRIA

    EPA Science Inventory

    MINTEQ is a computer program for computation of geochemical equilibria. MINTEQ was developed for incorporation into the Metals Exposure Analysis Modeling System (MEXAMS), a modeling system for the assessment of the fate and migration of selected priority pollutant metals in aquat...

  17. Substituent Effects on Keto-Enol Equilibria Using NMR Spectroscopy

    ERIC Educational Resources Information Center

    Manbeck, Kimberly A.; Boaz, Nicholas C.; Bair, Nathaniel C.; Sanders, Allix M. S.; Marsh, Anderson L.

    2011-01-01

    In this extension to a classic physical chemistry experiment, students record the proton nuclear magnetic resonance spectra of the [beta]-diketones 2,4-pentanedione, 3-methyl-2,4-pentanedione, and 3-chloro-2,4-pentanedione to investigate the effect of substituents on keto-enol tautomerization equilibria. From the integrated intensities of keto and…

  18. A Simple Chaotic Flow with a Plane of Equilibria

    NASA Astrophysics Data System (ADS)

    Jafari, Sajad; Sprott, J. C.; Molaie, Malihe

    2016-06-01

    Using a systematic computer search, a simple four-dimensional chaotic flow was found that has the unusual feature of having a plane of equilibria. Such a system belongs to a newly introduced category of chaotic systems with hidden attractors that are important and potentially problematic in engineering applications.

  19. Planetary phase equilibria - Application to formation of earth, Venus and Mercury

    NASA Astrophysics Data System (ADS)

    Saxena, S. K.

    1981-06-01

    Calculations of phase equilibria in a solar mixture with variable hydrogen abundance show that the major element chemical composition of the earth and Venus can be simply explained by their formation in equilibrium at 800 and 1000 K, respectively, at a pressure of 0.001 atm, provided that there is an iron loss from the region of proto-Venus relative to the solar nebula. The calculated mineralogical chemical compositions of the two planets are in excellent agreement with the available chemical and physical data. Phase equilibrium calculations at 1500 K and 0.001 atm show that nearly 96% of the silicates and 81% of metal must have been lost from the region of proto-Mercury.

  20. Planetary phase equilibria - Application to formation of earth, Venus and Mercury

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1981-01-01

    Calculations of phase equilibria in a solar mixture with variable hydrogen abundance show that the major element chemical composition of the earth and Venus can be simply explained by their formation in equilibrium at 800 and 1000 K, respectively, at a pressure of 0.001 atm, provided that there is an iron loss from the region of proto-Venus relative to the solar nebula. The calculated mineralogical chemical compositions of the two planets are in excellent agreement with the available chemical and physical data. Phase equilibrium calculations at 1500 K and 0.001 atm show that nearly 96% of the silicates and 81% of metal must have been lost from the region of proto-Mercury.

  1. Dissociation and ionization equilibria of deuterium fluid over a wide range of temperatures and densities

    SciTech Connect

    Zaghloul, Mofreh R.

    2015-06-15

    We investigate the dissociation and ionization equilibria of deuterium fluid over a wide range of temperatures and densities. The partition functions for molecular and atomic species are evaluated, in a statistical-mechanically consistent way, implementing recent developments in the literature and taking high-density effects into account. A new chemical model (free energy function) is introduced in which the fluid is considered as a mixture of diatomic molecules, atoms, ions, and free electrons. Intensive short range hard core repulsion is taken into account together with partial degeneracy of free electrons and Coulomb interactions among charged particles. Samples of computational results are presented as a set of isotherms for the degree of ionization, dissociated fraction of molecules, pressure, and specific internal energy for a wide range of densities and temperatures. Predictions from the present model calculations show an improved and sensible physical behavior compared to other results in the literature.

  2. Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria

    SciTech Connect

    Loizu, J.; Hudson, S.; Bhattacharjee, A.; Helander, P.

    2015-02-15

    Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2) retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.

  3. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  4. Topology of tokamak plasma equilibria with toroidal current reversal

    SciTech Connect

    Rodrigues, Paulo; Bizarro, Joao P. S.

    2012-01-15

    Some general principles about scalar functions with critical points are used to rigorously ascertain that magnetic equilibria with both toroidal current reversal and nested magnetic surfaces are atypical solutions and highly unstable to arbitrary perturbations of boundary conditions and other parameters. The cause for such is shown to lie in the condition of nested magnetic surfaces and not in the possibility of current reversal and consequent vanishing of the poloidal field inside the plasma. Rather than supporting the claim that instability against experimentally driven perturbations forbids configurations with toroidal current reversal, it is argued that these can be attained if an axisymmetric island system is allowed for in order to break the condition of nested magnetic surfaces. A number of results previously reported in the literature are discussed and reinterpreted under the proposed framework, providing some physical insight on the nature of equilibria with toroidal current reversal.

  5. Sloshing-ion equilibria in the TARA endplugs

    SciTech Connect

    Hokin, S.; Kesner, J.

    1983-11-01

    We have employed a modified version of the LLNL Bounce-average Fokker-Planck code to model neutral beam-produced sloshing-ion equilibria in the TARA endplugs. The questions we have addressed concern the effect of deuterium beam operation as opposed to hydrogen operation, and the advantage of using full-energy beams rather than the usual three-component beams. We find that, for the expected base case TARA operating parameters, a 40% savings in required beam power is attained by using deuterium beams rather than hydrogen beams, and that the use of full-energy beams results in an additional 26% power savings for these parameters. For higher plasma temperatures the use of full-energy beams becomes significantly advantagous. We have also investigated the equilibria of two possible alternate mirror configurations for the TARA endplugs, believed to be more stable to trapped particle modes, and report those results here.

  6. Braided coronal loops: equilibria, heating, and observational signatures

    NASA Astrophysics Data System (ADS)

    Pontin, David Iain; Hornig, Gunnar; Candelaresi, Simon

    2016-05-01

    We examine the dynamics of coronal loops containing non-trivial magnetic field line braiding. We discuss the existence of braided force-free equilibria, and demonstrate that these equilibria must contain current layers whose thickness becomes increasingly small for increasing field complexity. In practical terms, the implication is that if one considers a line-tied coronal loop that is driven by photospheric motions, then the eventual onset of reconnection and energy release is inevitable. Once the initial reconnection event is triggered a turbulent relaxation ensues. We discuss the relation with Parker’s braiding mechanism for coronal heating, and go on to describe the expected observational signatures of energy release in such a braided coronal loop.

  7. Finding Bounded Rational Equilibria. Part 1; Iterative Focusing

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2004-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality characterizing all real-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. It has recently been shown that the same information theoretic mathematical structure, known as Probability Collectives (PC) underlies both issues. This relationship between statistical physics and game theory allows techniques and insights from the one field to be applied to the other. In particular, PC provides a formal model-independent definition of the degree of rationality of a player and of bounded rationality equilibria. This pair of papers extends previous work on PC by introducing new computational approaches to effectively find bounded rationality equilibria of common-interest (team) games.

  8. Bifurcation Analysis of Equilibria in Competitive Logistic Networks with Adaptation

    NASA Astrophysics Data System (ADS)

    Raimondi, A.; Tebaldi, C.

    2008-04-01

    A general n-node network is considered for which, in absence of interactions, each node is governed by a logistic equation. Interactions among the nodes take place in the form of competition, which also includes adaptive abilities through a (short term) memory effect. As a consequence the dynamics of the network is governed by a system of n2 nonlinear ordinary differential equations. As a first step, equilibria and their stability are investigated analytically for the general network in dependence of the relevant parameters, namely the strength of competition, the adaptation rate and the network size. The existence of classes of invariant subspaces, related to symmetries, allows the introduction of a reduced model, four dimensional, where n appears as a parameter, which give full account of existence and stability for the equilibria in the network.

  9. Dynamic equilibria in an epidemic model with voluntary vaccinations.

    PubMed

    Chen, Frederick H; Cottrell, Allin

    2009-07-01

    The dynamics of an epidemic model with voluntary vaccinations are studied. Individual vaccination decisions are modelled using an economic/game-theoretic approach: agents in the model decide whether to vaccinate or not by weighing the cost and benefit of vaccination and choose the action that maximizes their net benefit. It is shown that, when vaccine efficacy is low, there are parameter values for which multiple steady-state equilibria and periodic equilibria coexist. When multiplicity of steady states is obtained, which one the population reaches in some cases depends entirely on agents' expectations concerning the future course of an epidemic and not on the initial conditions of the model. (†)Comments and suggestions from anonymous referees of the journal are gratefully acknowledged. This paper is dedicated to the loving memory of Lucy Hauser. PMID:22876938

  10. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z. )

    1992-02-01

    Self-consistent magnetospheric equilibria with anisotropic pressure are obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distributions or particle distributions measured along a satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibria including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator owing to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has a significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling the dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the taillike flux surface.

  11. Approximation of stochastic equilibria for dynamic systems with colored noise

    SciTech Connect

    Bashkirtseva, Irina

    2015-03-10

    We consider nonlinear dynamic systems forced by colored noise. Using first approximation systems, we study dynamics of deviations of stochastic solutions from stable deterministic equilibria. Equations for the stationary second moments of deviations of random states are derived. An application of the elaborated theory to Van der Pol system driven by colored noise is given. A dependence of the dispersion on the time correlation of the colored noise is studied.

  12. A Chaotic System with Different Shapes of Equilibria

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Thanh; Jafari, Sajad; Wang, Xiong; Ma, Jun

    Although many chaotic systems have been introduced in the literature, a few of them possess uncountably infinite equilibrium points. The aim of our short work is to widen the current knowledge of the chaotic systems with an infinite number of equilibria. A three-dimensional system with special properties, for example, exhibiting chaotic attractor with circular equilibrium, chaotic attractor with ellipse equilibrium, chaotic attractor with square-shaped equilibrium, and chaotic attractor with rectangle-shaped equilibrium, is proposed.

  13. Stable and Metastable Equilibria in the Pb-Cd System

    NASA Astrophysics Data System (ADS)

    Chuang, Ying-Yu; Paik, J.-S.; Zhang, C.; Perepezko, J. H.; Chang, Y. A.

    2013-07-01

    Thermodynamic and phase diagram data in the Pb-Cd system are reevaluated. A substitutional solution model is used for the liquid and fcc and hcp phases. The stable and metastable equilibria of this system are calculated using the thermodynamic equations derived from equilibrium data. Besides the well-established eutectic reaction at 521 K (248 °C), one stable monotectic reaction at 548 K (275 °C) is found due to the existence of a stable liquid miscibility gap. The stable monotectic reaction has been missed in all previous evaluations. Experimental verifications of the stable and metastable phase equilibria are provided using droplet samples and undercooled liquid alloys. A differential thermal analysis (DTA) method is applied to determine the phase reaction temperatures using both traditional heating and cooling processes and a specially designed cycling process. Additional microstructural evidence is used to elucidate the nature of the phase reactions. The refined thermodynamic descriptions are based upon both the thermochemical and phase diagram stable and metastable data. The agreement between the calculated and experimental data is good. All experimental stable and metastable results are well explained by the new Pb-Cd phase diagram calculations within the experimental accuracy limits. Combined experimental and thermodynamic modeling procedures developed for determining the stable and metastable phase equilibria yield a highly reliable overall phase diagram assessment and a quantitative basis for the interpretation of non-equilibrium solidification processing.

  14. Phase equilibria modification by electric fields. 1997 annual progress report

    SciTech Connect

    Tsouris, C.; Shah, V.M.

    1997-09-01

    'In this research program, Oak Ridge National Laboratory is investigating the modification of phase equilibria and interface transport enhancement-caused by electric fields. The majority of environmental and waste treatment processes involve complex chemical separations and reactions. The treatment efficiency in such processes is governed by thermodynamic equilibria and transport. The objective of this project is to use electric fields to favorably manipulate the thermodynamic and transport properties of mixtures so that higher separation efficiencies can be achieved. An understanding of the mechanisms of the underlying phenomena of molecular and fluid interactions with electric fields will lead to the development of efficient remediation methods for contaminated natural environments and wastes. Research Statement The main focus of this project is to understand and quantify the influence of electric fields on thermodynamic equilibria and transport properties of fluid mixtures and to determine the conditions and properties of the systems for which this influence is of practical significance. The specific objectives of the project are discussed.'

  15. Solution influence on biomolecular equilibria - Nucleic acid base associations

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  16. Heat transfer in two-phase flow at high reduced pressures

    NASA Astrophysics Data System (ADS)

    Yagov, V. V.; Minko, M. V.

    2011-04-01

    It is shown that heat transfer that takes place in vapor-liquid flows in the region of high reduced pressures is mainly due to the nucleate boiling mechanism even at high values of vapor quality. At relatively low heat fluxes, a noticeable enhancement of heat transfer is observed as vapor quality increases. A procedure for calculating heat transfer is proposed, which is confirmed by a comparison of calculated results with experimental data on the boiling of carbon dioxide and other liquids in channels.

  17. Relative Equilibria in the Spherical, Finite Density Three-Body Problem

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.

    2016-05-01

    The relative equilibria for the spherical, finite density three-body problem are identified. Specifically, there are 28 distinct relative equilibria in this problem which include the classical five relative equilibria for the point-mass three-body problem. None of the identified relative equilibria exist or are stable over all values of angular momentum. The stability and bifurcation pathways of these relative equilibria are mapped out as the angular momentum of the system is increased. This is done under the assumption that they have equal and constant densities and that the entire system rotates about its maximum moment of inertia. The transition to finite density greatly increases the number of relative equilibria in the three-body problem and ensures that minimum energy configurations exist for all values of angular momentum.

  18. The Pierce diode with an external circuit: II, Non-uniform equilibria

    SciTech Connect

    Lawson, W.S.

    1987-07-22

    The non-uniform (non-linear) equilibria of the classical (short circuit) Pierce diode and the extended (series RLC external circuit) Pierce diode are described theoretically, and explored via computer simulation. It is found that most equilibria are correctly predicted by theory, but that the continuous set of equilibria of the classical Pierce diode at ..cap alpha.. = 2..pi.. are not observed. The stability characteristics of the non-uniform equilibria are also worked out, and are consistent with the simulations. 8 refs., 22 figs., 3 tabs.

  19. Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges

    SciTech Connect

    Seyfried, W.E. Jr.; Ding, K.; Berndt, M.E. )

    1991-12-01

    Recent advances in experimental and theoretical geochemistry have made it possible to assess both homogeneous and heterogeneous equilibria involving a wide range of aqueous species at temperatures and pressures appropriate to model hydrothermal alteration processes at mid-ocean ridges. The authors have combined selected aspects of the chemistry of hot spring fluids with constraints imposed by a geologically reasonable assemblage of minerals in the system Na{sub 2}O-K{sub 2}O-CaO-MgO-FeO-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O-HCl-H{sub 2}S to assess the effect of temperature on the composition of the aqueous phase and the activities of mineral components in plagioclase and epidote solid solutions. Assuming fO{sub 2(g)} and fS{sub 2(g)} controlled by pyrite-pyrrhotite-magnetite equilibria, a constant dissolved Ca concentration, and a dissolved Cl concentration equivalent to that of seawater, increasing temperature from 250 to 400C at 500 bars results in systematic changes in the composition of mineral phases, which in turn constrain pH and the distribution of aqueous species. The model predicts that dissolved concentrations of Fe, SiO{sub 2}, K, H{sub 2}S, and H{sub 2} increase, while Na and pH{sub (25C)} decrease with increasing temperature. That many hot springs vent fluids are characterized by variable degrees of conductive heat loss renders measured temperatures unreliable as indicators of the maximum temperature of subseafloor hydrothermal alteration processes. The implications of this are significant for hot spring fluids which reveal large Cl variations relative to seawater, since likely mechanisms to account for such variability typically require temperatures in excess of those inferred for subseafloor reaction zones by simply correcting measured temperatures for the effects of adiabatic cooling.

  20. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  1. Anomeric and tautomeric equilibria in D-2-glucosamine Schiff bases

    NASA Astrophysics Data System (ADS)

    Kołodziej, B.; Grech, E.; Schilf, W.; Kamieński, B.; Makowski, M.; Rozwadowski, Z.; Dziembowska, T.

    2007-11-01

    The structure of some glucosamine Schiff bases has been studied by means of ab initio RHF and DFT calculation and CP/MAS 13C and 15N NMR measurements. The anomeric and tautomeric equilibria in a DMSO solution have been studied by 1H, 13C and 15N NMR spectroscopy. The anomeric composition of D-2-glucosamine Schiff bases in the solid state and in DMSO solution has been shown to depends on the tautomeric form of Schiff bases and electronic properties of substituents on the aromatic ring.

  2. Boson stars: Gravitational equilibria of self-interacting scalar fields

    SciTech Connect

    Colpi, M.; Shapiro, S.L.; Wasserman, I.

    1986-11-17

    Spherically symmetric gravitational equilibria of self-interacting scalar fields phi with interaction potential V(phi) = (1/4)lambdachemically bondphichemically bond/sup 4/ are determined. Surprisingly, the resulting configurations may differ markedly from the noninteracting case even when lambda<<1. Contrary to generally accepted astrophysical folklore, it is found that the maximum masses of such boson stars may be comparable to the Chandrasekhar mass for fermions of mass m/sub fermion/--lambda/sup -1/4/m/sub boson/. .AE

  3. Stability and bifurcations of relative equilibria of a pendulum suspended on the equator

    NASA Astrophysics Data System (ADS)

    Burov, A. A.; Kosenko, I. I.

    2013-05-01

    The problem of equilibria of a pendulum suspended at an equatorial point relative to the rotating Earth is considered. An altitude is determined at which the degree of instability of the inverted pendulum changes from two to unity. Relative equilibria are investigated that bifurcate from the radial one when its degree of instability changes. Their stability properties are studied.

  4. Protonation Equilibria of Biologically Active Ligands in Mixed Aqueous Organic Solvents

    PubMed Central

    El-Sherif, Ahmed A.; Shoukry, Mohamed M.; Abd Elkarim, Abeer T.; Barakat, Mohammad H.

    2014-01-01

    The review is mainly concerned with the protonation equilibria of biologically active ligands like amino acids, peptides, DNA constituents, and amino acid esters in nonaqueous media. Equilibrium concentrations of proton-ligand formation as a function of pH were investigated. Also, thermodynamics associated with protonation equilibria were also discussed. PMID:25197267

  5. Hydration energies of sodiated amino acids from gas-phase equilibria determinations.

    PubMed

    Wincel, Henryk

    2007-07-01

    The sequential hydration of a number of sodiated amino acids is investigated using a high-pressure mass spectrometer. Ions produced continuously by electrospray are injected into the reaction chamber in the pulsed mode where the hydration equilibria, AANa+(H2O)n-1+H2O=AANa+(H2O)n (AA=Val, Pro, Met, Phe, and Gln), and the temperature dependence of the equilibrium constants are measured in the gas phase at 10 mbar (N2 bath gas and known pressure of H2O). The thermochemical properties, DeltaH degrees n, DeltaS degrees n, and DeltaG degrees n, for the hydrated systems are determined and discussed in conjunction with the structural forms. The results show that the binding energies of water to the AANa+ complexes decrease with the increasing number of water molecules. The present results from equilibrium measurements are compared to those from earlier studies obtained by other techniques. A correlation between the free energy changes for the addition of the first and second water molecules to AANa+, and the corresponding sodium ion affinities, is observed. Generally, the hydration free energy becomes weaker as the AA-Na+ bond strength increases. PMID:17559201

  6. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.

    PubMed

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas; Wierzchowski, Scott; Walsh, Matthew R; Koh, Carolyn A; Sloan, E Dendy; Wu, David T; Sum, Amadeu K

    2010-05-01

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled using the TIP4P/ice potential and a united-atom Lennard-Jones potential, respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials, (ii) calculation of the chemical potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated for pressures ranging from 20 to 500 bar and is shown to follow the Clapeyron behavior, in agreement with experiment; coexistence temperatures differ from the latter by 4-16 K in the pressure range studied. The enthalpy of dissociation extracted from the calculated P-T curve is within 2% of the experimental value at corresponding conditions. While computationally intensive, simulations such as these are essential to map the thermodynamically stable conditions for hydrate systems. PMID:20392117

  7. Bottom-up and top-down fabrication of nanowire-based electronic devices: In situ doping of vapor liquid solid grown silicon nanowires and etch-dependent leakage current in InGaAs tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kuo, Meng-Wei

    Semiconductor nanowires are important components in future nanoelectronic and optoelectronic device applications. These nanowires can be fabricated using either bottom-up or top-down methods. While bottom-up techniques can achieve higher aspect ratio at reduced dimension without having surface and sub-surface damage, uniform doping distributions with abrupt junction profiles are less challenging for top-down methods. In this dissertation, nanowires fabricated by both methods were systematically investigated to understand: (1) the in situ incorporation of boron (B) dopants in Si nanowires grown by the bottom-up vapor-liquid-solid (VLS) technique, and (2) the impact of plasma-induced etch damage on InGaAs p +-i-n+ nanowire junctions for tunnel field-effect transistors (TFETs) applications. In Chapter 2 and 3, the in situ incorporation of B in Si nanowires grown using silane (SiH4) or silicon tetrachloride (SiCl4) as the Si precursor and trimethylboron (TMB) as the p-type dopant source is investigated by I-V measurements of individual nanowires. The results from measurements using a global-back-gated test structure reveal nonuniform B doping profiles on nanowires grown from SiH4, which is due to simultaneous incorporation of B from nanowire surface and the catalyst during VLS growth. In contrast, a uniform B doping profile in both the axial and radial directions is achieved for TMBdoped Si nanowires grown using SiCl4 at high substrate temperatures. In Chapter 4, the I-V characteristics of wet- and dry-etched InGaAs p+-i-n+ junctions with different mesa geometries, orientations, and perimeter-to-area ratios are compared to evaluate the impact of the dry etch process on the junction leakage current properties. Different post-dry etch treatments, including wet etching and thermal annealing, are performed and the effectiveness of each is assessed by temperaturedependent I-V measurements. As compared to wet-etched control devices, dry-etched junctions have a significantly

  8. The Pierce diode with an external circuit. I. Oscillations about nonuniform equilibria

    SciTech Connect

    Lawson, W. S.

    1989-07-01

    The nonuniform (nonlinear) equilibria of the classical (short circuit)Pierce diode and the extended (series RLC external circuit) Pierce diode aredescribed, and the spectrum of oscillations (stable and unstable) about theseequilibria are worked out. It is found that only the external capacitance altersthe equilibria, though all elements alter the spectrum. In particular, theintroduction of an external capacitor destabilizes some equilibria that aremarginally stable without the capacitor. Computer simulations are performed totest the theoretical predictions for the case of an external capacitor only. Itis found that most equilibria are correctly predicted by theory, but that thecontinuous set of equilibria of the classical Pierce diode at Pierce parameters(..cap alpha..=..omega../sub /ital p/L///ital v//sub 0/) that are multiples of 2..pi.. are notobserved. This appears to be a failure of the simulation method under the rathersingular conditions rather than a failure of the theory.

  9. Electronic structure and phase equilibria in ternary substitutional alloys

    SciTech Connect

    Traiber, A.J.S.; Allen, S.M.; Turchi, P.E.A.; Waterstrat, R.M.

    1996-04-26

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate {ital ab}{ital initio} calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr{sub 0.5}(Ru, Pd){sub 0.5}.

  10. Tokamak equilibria with toroidal current reversal: properties and computational issues

    SciTech Connect

    Rodrigues, Paulo; Bizarro, Joao P. S.

    2006-11-30

    Several properties of axisymmetric plasma equilibria with toroidal-current reversal (TCR) are discussed using some unifying concepts from catastrophe theory. Namely, those of structural stability of functions near critical points, singularity unfolding by small perturbations, and model parameter-space division by bifurcation sets are found to be of particular usefulness. Magnetic configurations displaying, simultaneously, TCR and nested flux surfaces are thence shown to be necessarily degenerate and structurally unstable, meaning that they are easily transformed into non-nested ones by small perturbations in the model parameter set. This should lead to a new paradigm when discussing TCR equilibria, as most of present knowledge relies mainly on the properties of nested solutions, which is expected to favor the study of the broader class of non-nested configurations that recently attracted a considerable discussion in the fusion community. In addition, it is also shown how TCR imposes some constraints on plasma profiles, and how these may be dealt with computationally while keeping the ability to manipulate the shape of the inner island system.

  11. Expansions of non-symmetric toroidal magnetohydrodynamic equilibria

    NASA Astrophysics Data System (ADS)

    Weitzner, Harold

    2016-06-01

    Expansions of non-symmetric toroidal ideal magnetohydrodynamic equilibria with nested flux surfaces are carried out for two cases. The first expansion is in a topological torus in three dimensions, in which physical quantities are periodic of period 2 π in y and z. Data is given on the flux surface x = 0. Despite the possibility of magnetic resonances the power series expansion can be carried to all orders in a parameter which measures the flux between x = 0 and the surface in question. Resonances are resolved by appropriate addition resonant fields, as by Weitzner, [Phys. Plasmas 21, 022515 (2014)]. The second expansion is about a circular magnetic axis in a true torus. It is also assumed that the cross section of a flux surface at constant toroidal angle is approximately circular. The expansion is in an analogous flux coordinate, and despite potential resonance singularities, may be carried to all orders. Non-analytic behavior occurs near the magnetic axis. Physical quantities have a finite number of derivatives there. The results, even though no convergence proofs are given, support the possibility of smooth, well-behaved non-symmetric toroidal equilibria.

  12. Stability of Hall equilibria in neutron star crusts

    SciTech Connect

    Marchant, Pablo; Reisenegger, Andreas; Valdivia, Juan Alejandro; Hoyos, Jaime H.

    2014-12-01

    In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent cascade to scales at which ohmic dissipation becomes effective, allowing a much faster decay in objects with very strong fields. On the other hand, it has been found that there are 'Hall equilibria', i.e., field configurations that are unaffected by Hall drift. Here we address the crucial question of the stability of these equilibria through axially symmetric (two-dimensional (2D)) numerical simulations of Hall drift and ohmic diffusion, with the simplifying assumption of uniform electron density and conductivity. We demonstrate the 2D stability of a purely poloidal equilibrium, for which ohmic dissipation makes the field evolve toward an attractor state through adjacent stable configurations, around which damped oscillations occur. For this field, the decay scales with the ohmic timescale. We also study the case of an unstable equilibrium consisting of both poloidal and toroidal field components that are confined within the crust. This field evolves into a stable configuration, which undergoes damped oscillations superimposed on a slow evolution toward an attractor, just as the purely poloidal one.

  13. Protolytic equilibria on the surface of carboxyl-containing silica

    SciTech Connect

    Mil'chenko, D.V.; Kudryavtsev, G.V.; Lisichkin, G.V.

    1986-09-01

    Potentiometric titration has been used to study the protolytic equilibria on the surface of carboxyl-containing silica (CS) prepared by the reaction of silica (Silokhrom S-80, S /SUB sp/ = 80 m2/g) with C1/sub 3/SiCH/sub 2/CH/sub 2/COOCH/sub 3/, followed by hydrolysis with 30% sulfuric acid. The titration curve of the vacuum-dried sample is irreversible. The titration curve of its Na+ form with hydrochloric acid proceeds lower than the titration curve of its H+ form and coincides with the titration curve of the air-dried sample (the last curve is reversible). The titration curve of CS coincides with the titration curve of butyric acid at pH < 6. At pH > 6 the titration curve of CS passes below the titration curve of butyric acid; this is due to the participation of silanol groups on the silica surface in the protolytic equilibria. The pK /SUB a/ of the grafted CS groups is equal to 4.80 which is close to the pK /SUB a/ value of butyric acid (4.78). A method has been proposed for the determination of the amount of weak acid groups grafted to the silica. It has been shown that in the titration of CS the equilibrium is established much faster than in the case of the unmodified silica.

  14. Equilibria near asteroids for solar sails with reflection control devices

    NASA Astrophysics Data System (ADS)

    Gong, Shengping; Li, Junfeng

    2015-02-01

    Solar sails are well-suited for long-term, multiple-asteroid missions. The dynamics of solar sails near an asteroid have not yet been studied in detail. In this paper, out-of-plane artificial equilibria in a Sun-asteroid rotating frame and hovering points in a body-fixed rotating frame are studied (using a solar sail equipped with reflection control devices). First, the dynamics and the stability of out-of-plane artificial equilibria are studied as an elliptical restricted three body problem. Next, the body-fixed hovering problem is discussed as a two-body problem. Hovering flight is only possible for certain values of the latitude of the asteroid's orbit. In addition, the feasible range of latitudes is determined for each landmark on the asteroid's surface. The influence of the sail lightness number on the feasible range is also illustrated. Several special families of hovering points are discussed. These points include points above the equator and poles and points with an altitude equal to the radius of the synchronous orbit. In both of these types of problems, the solar sail (equipped with reflection control devices) can equilibrate over a large range of locations.

  15. An Energy Principle for Ideal MHD Equilibria with Flows

    SciTech Connect

    Yao Zhou and Hong Qin

    2013-03-11

    In the standard ideal MHD energy principle for equilibria with no flows, the stability criterion, which is the defi niteness of the perturbed potential energy, is usually constructed from the linearized equation of motion. Equivalently while more straightforwardly, it can also be obtained from the second variation of the Hamiltonian calculated with proper constraints. For equilibria with flows, a stability criterion was proposed from the linearized equation of motion, but not explained as an energy principle1. In this paper, the second variation of the Hamiltonian is found to provide a stability criterion equivalent to, while more straightforward than, what was constructed from the linearized equation of motion. To calculate the variations of the Hamiltonian, a complete set of constraints on the dynamics of the perturbations is derived from the Euler-Poincare structure of the ideal MHD. In addition, a previous calculation of the second variation of the Hamiltonian was claimed to give a different stability criterion2, and in this paper we argue such a claim is incorrect.

  16. Social Interactions under Incomplete Information: Games, Equilibria, and Expectations

    NASA Astrophysics Data System (ADS)

    Yang, Chao

    My dissertation research investigates interactions of agents' behaviors through social networks when some information is not shared publicly, focusing on solutions to a series of challenging problems in empirical research, including heterogeneous expectations and multiple equilibria. The first chapter, "Social Interactions under Incomplete Information with Heterogeneous Expectations", extends the current literature in social interactions by devising econometric models and estimation tools with private information in not only the idiosyncratic shocks but also some exogenous covariates. For example, when analyzing peer effects in class performances, it was previously assumed that all control variables, including individual IQ and SAT scores, are known to the whole class, which is unrealistic. This chapter allows such exogenous variables to be private information and models agents' behaviors as outcomes of a Bayesian Nash Equilibrium in an incomplete information game. The distribution of equilibrium outcomes can be described by the equilibrium conditional expectations, which is unique when the parameters are within a reasonable range according to the contraction mapping theorem in function spaces. The equilibrium conditional expectations are heterogeneous in both exogenous characteristics and the private information, which makes estimation in this model more demanding than in previous ones. This problem is solved in a computationally efficient way by combining the quadrature method and the nested fixed point maximum likelihood estimation. In Monte Carlo experiments, if some exogenous characteristics are private information and the model is estimated under the mis-specified hypothesis that they are known to the public, estimates will be biased. Applying this model to municipal public spending in North Carolina, significant negative correlations between contiguous municipalities are found, showing free-riding effects. The Second chapter "A Tobit Model with Social

  17. Recent developments in Bayesian inference of tokamak plasma equilibria and high-dimensional stochastic quadratures

    NASA Astrophysics Data System (ADS)

    von Nessi, G. T.; Hole, M. J.; The MAST Team

    2014-11-01

    We present recent results and technical breakthroughs for the Bayesian inference of tokamak equilibria using force-balance as a prior constraint. Issues surrounding model parameter representation and posterior analysis are discussed and addressed. These points motivate the recent advancements embodied in the Bayesian Equilibrium Analysis and Simulation Tool (BEAST) software being presently utilized to study equilibria on the Mega-Ampere Spherical Tokamak (MAST) experiment in the UK (von Nessi et al 2012 J. Phys. A 46 185501). State-of-the-art results of using BEAST to study MAST equilibria are reviewed, with recent code advancements being systematically presented though out the manuscript.

  18. Interpretation of trace element and isotope features of basalts: relevance of field relations, petrology, major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    O'Hara, M. J.; Herzberg, C.

    2002-06-01

    The concentrations and ratios of the major elements determine the physical properties and the phase equilibria behavior of peridotites and basalts in response to the changing energy contents of the systems. The behavior of the trace elements and isotopic features are influenced in their turn by the phase equilibria, by the physical character of the partial melting and partial crystallization processes, and by the way in which a magma interacts with its wall rocks. Concentrating on the trace element and isotope contents of basalts to the exclusion of the field relations, petrology, major element data, and phase equilibria is as improvident as slaughtering the buffalo for the sake of its tongue. The crust is a cool boundary layer and a density filter, which impedes the upward transfer of hot, dense "primary" picritic and komatiitic liquids. Planetary crusts are sites of large-scale contamination and extensive partial crystallization of primitive melts striving to escape to the surface. Escape of truly unmodified primitive melts to the surface is a rare event, requiring the resolution of daunting problems in chemical and mechanical engineering. Primary status for volumetrically abundant basalts such as mid-ocean ridge basalt, ocean island basalt, and continental flood basalts is denied by their low-pressure cotectic character, first remarked upon on petrological grounds in 1928 and on experimental grounds in 1962. These basalt liquids are products of crystal-liquid separation at low pressure. Primary status for these common basalts is further denied by the phase equilibria of such compositions at elevated pressures, when the required residual mantle mineralogy (magnesian olivine and orthopyroxene) is not stable at the liquidus. It is also denied by the picritic or komatiitic nature of partial melts of candidate upper-mantle compositions at high pressures - a conclusion supported by calculation of the melt composition, which would need to be extracted in order to

  19. Three-dimensional equilibria in axially symmetric tokamaks.

    PubMed

    Garabedian, Paul R

    2006-12-19

    The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of alpha particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158

  20. Three-dimensional equilibria in axially symmetric tokamaks

    PubMed Central

    Garabedian, Paul R.

    2006-01-01

    The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of α particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158

  1. Boric acid equilibria in near-critical and supercritical water

    SciTech Connect

    Wofford, W.T.; Gloyna, E.F.; Johnston, K.P.

    1998-05-01

    Greater knowledge of acid-base equilibria is crucial to understanding the chemistry of hydrothermal processes including oxidation of organics, corrosion, catalysis, hydrolysis reactions, crystal growth and formation, precipitation of metal complexes and steam power cycles. The pH values of aqueous solutions of boric acid and KOH were measured with the optical indicator 2-naphthol at temperatures from 300 to 380 C. The equilibrium constant K{sub b}{sup {minus}1} for the reaction B(OH){sub 3} + OH{sup {minus}} = B(OH){sub 4}{sup {minus}} was determined from the pH measurements and correlated with a modified Born model. The titration curve for the addition of HCl to sodium borate exhibits strong acid-strong base behavior even at 350 C and 24.1 MPa. At these conditions, aqueous solutions of sodium borate buffer the pH at 9.6 {+-} 0.25.

  2. Navigable networks as Nash equilibria of navigation games

    NASA Astrophysics Data System (ADS)

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-07-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.

  3. Study of ionic equilibria of indotricarbocyanines in aromatic hydrocarbons

    SciTech Connect

    Dyadyusha, G.G.; Ishchenko, A.A.; Derevyanko, N.A.; Tolmachev, A.I.

    1982-05-01

    Study of the equilibria in nonpolar solvents is very complicated by the poor solubility of the salt-like dyes. Indotricarbocyanines I and II were found to be fairly soluble in aromatic hydrocarbons for solving these problems by means of electronic spectra. In the present work, their absorption spectra were studied in benzene, toluene, and m-xylene (the absorption spectra were measured on the SF-8 spectrophotometer). It was shown that the dyes studied in these solvents have spectral bands of unusual form of polymethine dyes. At the long wave edge of the spectra of indotricarbocyanines, a distinct band appears, whose intensity is very dependent on the nature of the anion. In the case of perchlorate I, it has a lower intensity, and in the case of iodide II, the intensity is higher.

  4. Resonances and oscillatory behavior near multi-species plasma equilibria

    SciTech Connect

    Núñez, Manuel

    2014-03-15

    We consider dynamic multi-species plasma equilibria whose variables depend on a single spatial coordinate and linear perturbations of these. The linearized system may be reduced to a second-order one satisfied by the respective fluid streamfunctions. For the two-species case, the electron mass is a parameter small enough for a WKB asymptotic analysis to be justified. It turns out that the points where either the ion or electron equilibrium velocity equals the ratio between the temporal and transversal frequencies of the perturbation are turning or singular points of the system, connecting exponentially increasing or decreasing solutions to oscillatory ones. The crucial role of singular points in the balance between the different contributions to the electron kinetic energy is explored.

  5. A generalized procedure for the prediction of multicomponent adsorption equilibria

    DOE PAGESBeta

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas

    2015-01-01

    Prediction of multicomponent adsorption equilibria has been investigated for several decades. While there are theories available to predict the adsorption behavior of ideal mixtures, there are few purely predictive theories to account for nonidealities in real systems. Most models available for dealing with nonidealities contain interaction parameters that must be obtained through correlation with binary-mixture data. However, as the number of components in a system grows, the number of parameters needed to be obtained increases exponentially. Here, a generalized procedure is proposed, as an extension of the predictive real adsorbed solution theory, for determining the parameters of any activity model,more » for any number of components, without correlation. This procedure is then combined with the adsorbed solution theory to predict the adsorption behavior of mixtures. As this method can be applied to any isotherm model and any activity model, it is referred to as the generalized predictive adsorbed solution theory.« less

  6. Navigable networks as Nash equilibria of navigation games.

    PubMed

    Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-01-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277

  7. A generalized procedure for the prediction of multicomponent adsorption equilibria

    SciTech Connect

    Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas

    2015-01-01

    Prediction of multicomponent adsorption equilibria has been investigated for several decades. While there are theories available to predict the adsorption behavior of ideal mixtures, there are few purely predictive theories to account for nonidealities in real systems. Most models available for dealing with nonidealities contain interaction parameters that must be obtained through correlation with binary-mixture data. However, as the number of components in a system grows, the number of parameters needed to be obtained increases exponentially. Here, a generalized procedure is proposed, as an extension of the predictive real adsorbed solution theory, for determining the parameters of any activity model, for any number of components, without correlation. This procedure is then combined with the adsorbed solution theory to predict the adsorption behavior of mixtures. As this method can be applied to any isotherm model and any activity model, it is referred to as the generalized predictive adsorbed solution theory.

  8. Navigable networks as Nash equilibria of navigation games

    PubMed Central

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-01-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277

  9. Efficiently Finding Trends in Macroscopic MHD Stability Using Perturbed Equilibria

    NASA Astrophysics Data System (ADS)

    Comer, K. J.; Callen, J. D.; Hegna, C. C.; Turnbull, A. D.; Cowley, S. C.

    2001-10-01

    The effects of equilibrium shaping and profiles on long wavelength ideal MHD instabilities in toroidal plasmas are traditionally studied using numerical parameter scans. Previously, we introduced a new perturbative technique to explore these dependencies: assuming small equilibrium variations, new stability properties are found using a perturbation of the energy principle rather than with a traditional stability code. With this approach, stability dependencies can be efficiently examined without numerically generating complete MHD stability results for every set of parameters (which can be time-intensive for accurate representations of several configurations). Here, we briefly expand on previous successful perturbed stability analyses for screw pinch equilibria by discussing cases where the approach fails. Next, we extend the approach to toroidal geometry using the GATO and TOQ codes, and present cases that both validate the approach and suggest caution in its application.

  10. Aluminum Deoxidation Equilibria in Liquid Iron: Part II. Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Paek, Min-Kyu; Pak, Jong-Jin; Kang, Youn-Bae

    2015-10-01

    Al deoxidation equilibria in liquid iron over the whole composition range from very low Al ([pct Al] = 0.0027) to almost pure liquid Al were thermodynamically modeled for the first time using the Modified Quasichemical Model in the pair approximation for the liquid phase. The present modeling is distinguished from previous approaches in many ways. First, very strong attractions between metallic components, Fe and Al, and non-metallic component, O, were taken into account explicitly in terms of Short-Range Ordering. Second, the present thermodynamic modeling does not distinguish solvent and solutes among metallic components, and the model calculation can be applied from pure liquid Fe to pure liquid Al. Therefore, this approach is thermodynamically self-consistent, contrary to the previous approaches using interaction parameter formalism. Third, the present thermodynamic modeling describes an integral Gibbs energy of the liquid alloy in the framework of CALPHAD; therefore, it can be further used to develop a multicomponent thermodynamic database for liquid steel. Fourth, only a small temperature-independent parameter for ternary liquid was enough to account for the Al deoxidation over wide concentration (0.0027 < [pct Al] < 100) and wide temperature range [1823 K to 2139 K (1550 °C to 1866 °C)]. Gibbs energies of Fe-O and Al-O binary liquid solutions at metal-rich region (up to oxide saturation) were modeled, and relevant model parameters were optimized. By merging these Gibbs energy descriptions with that of Fe-Al binary liquid modeled by the same modeling approach, the Gibbs energy of ternary Fe-Al-O solution at metal-rich region was obtained along with one small ternary parameter. It was shown that the present model successfully reproduced all available experimental data for the Al deoxidation equilibria. Limit of previously used interaction parameter formalism at high Al concentration is discussed.

  11. Postperovskite phase equilibria in the MgSiO3-Al2O3 system.

    PubMed

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-12-01

    We investigate high-P,T phase equilibria of the MgSiO(3)-Al(2)O(3) system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh(2)O(3)(II) phase, present calculations demonstrate that (i) dissolving Al(2)O(3) tends to decrease the postperovskite transition pressure of MgSiO(3) but the effect is not significant ( approximately -0.2 GPa/mol% Al(2)O(3)); (ii) Al(2)O(3) produces the narrow perovskite+postperovskite coexisting P,T area (approximately 1 GPa) for the pyrolitic concentration (x(Al2O3) approximately 6 mol%), which is sufficiently responsible to the deep-mantle D'' seismic discontinuity; (iii) the transition would be smeared (approximately 4 GPa) for the basaltic Al-rich composition (x(Al2O3) approximately 20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh(2)O(3)(II) with increasing the Al concentration involving small displacements of the Mg-site cations. PMID:19036928

  12. Vapor Pressure of R12/Oil and R22/Oil Mixtures

    NASA Astrophysics Data System (ADS)

    Takaishi, Yoshinori; Oguchi, Kosei

    The paper describes measurements of vapor pressures for R 12/0il and R 22/0il mixtures. Refrigeration oil employed in the present study is an alkyl benzene base synthetic oil. The measurements have been carried out in the range of temperatures between 283.15 K and 333.15 K for both R 12/0il and R 22/0il mixtures using the same refrigeration oil. Correlations that interpolate the experimental vapor pressures with average pressure deviations of 0.21% for R 12/0il system and 0.42% for R 22/0il system have been reported. Furthermore, a calculation method based on a theory of vapor-liquid phase equilibrium has been tested for the systems using the present experimental data.

  13. Linguistic structure emerges through the interaction of memory constraints and communicative pressures.

    PubMed

    Lewis, Molly L; Frank, Michael C

    2016-01-01

    If memory constraints were the only limitation on language processing, the best possible language would be one with only one word. But to explain the rich structure of language, we need to posit a second constraint: the pressure to communicate informatively. Many aspects of linguistic structure can be accounted for by appealing to equilibria that result from these two pressures. PMID:27562423

  14. A Multistep Equilibria-Redox-Complexation Demonstration to Illustrate Le Chatelier's Principle.

    ERIC Educational Resources Information Center

    Berger, Tomas G.; Mellon, Edward K.

    1996-01-01

    Describes a process that can be used to illustrate a number of chemical principles including Le Chatelier's principle, redox chemistry, equilibria versus steady state situations, and solubility of species. (JRH)

  15. Multiple Reaction Equilibria--With Pencil and Paper: A Class Problem on Coal Methanation.

    ERIC Educational Resources Information Center

    Helfferich, Friedrich G.

    1989-01-01

    Points out a different and much simpler approach for the study of equilibria of multiple and heterogeneous chemical reactions. A simulation on coal methanation is used to teach the technique. An example and the methodology used are provided. (MVL)

  16. Non-neutral plasma equilibria, trapping, separatrices, and separatrix crossing in magnetic mirrors

    NASA Astrophysics Data System (ADS)

    Fajans, J.

    2003-05-01

    The equilibria of non-neutral plasmas confined in Penning-Malmberg traps with axial varying (mirror) magnetic fields exhibit numerous unusual features, including potential differences along field lines, plasma density variations, trapped particles in both the high and low field regions, and unusual separatrices between trapped and untrapped particles. Mirror fields play prominent roles in a number of recent experiments, and overly simplistic models of the equilibria can lead to errors in the interpretation of experimental results.

  17. Putting Phase Equilibria into Geodynamic Models: An Equation of State Approach (Invited)

    NASA Astrophysics Data System (ADS)

    Connolly, J.

    2009-12-01

    temperature and pressure. Although this formulation is straightforward, the computation of phase equilibria as a function of entropy and volume is challenging because the equations of state for individual phases are usually expressed as a function of temperature and pressure. This challenge can be met by an algorithm in which continuous equations of state are approximated by a series of discrete states; a representation that reduces the phase equilibrium problem to a linear optimization problem that is independent of the functional form used for the equations of state of individual phases and readily solved by successive linear programming. Regardless of the way free energy minimization is implemented and the choice of independent variables, a consistent definition of pressure, and the coupling of equilibrium kinetics to deformation, is only possible if the continuity equation accounts for dilational strain.

  18. Speculative equilibria and asymptotic dominance in a market with adaptive CRRA traders (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Anufriev, Mikhail; Bottazzi, Giulio; Pancotto, Francesca

    2005-05-01

    We consider a simple pure exchange economy with two assets, one riskless, yielding a constant return on investment, and one risky, paying a stochastic dividend. Trading takes place in discrete time and in each trading period the price of the risky asset is fixed through the market clearing condition. Individual demands are expressed as fractions of traders wealth and depend on traders forecasts about future price movement. Under these assumptions, we derive the stochastic dynamical system that describes the evolution of price and wealth. We study the cases in which one or two agents operate in the market, identifying the possible equilibria and discussing their stability conditions. The main novelty of this paper rests in the abstraction from the precise characterization of agents' beliefs and preferences. In this respect our results generalize several previous contributions in the field. In particular, we show that, irrespectively of agents' behavior, the system can only possess isolated generic equilibria where a single agent dominates the market and continuous manifolds of non-generic equilibria where heterogeneous agents hold finite shares of the aggregate wealth. Moreover, we show that all possible equilibria belong to a one dimensional "Equilibria Market Line". Finally we discuss the role of different parameters for the stability of equilibria and the selection principle governing market dynamics.

  19. Lattice melting and rotation in perpetually pulsating equilibria

    SciTech Connect

    Pichon, C.; Lynden-Bell, D.; Pichon, J.; Lynden-Bell, R.

    2007-01-15

    Systems whose potential energies consists of pieces that scale as r{sup -2} together with pieces that scale as r{sup 2}, show no violent relaxation to Virial equilibrium but may pulsate at considerable amplitude forever. Despite this pulsation these systems form lattices when the nonpulsational ''energy'' is low, and these disintegrate as that energy is increased. The ''specific heats'' show the expected halving as the ''solid'' is gradually replaced by the ''fluid'' of independent particles. The forms of the lattices are described here for N{<=}18 and they become hexagonal close packed for large N. In the larger N limit, a shell structure is formed. Their large N behavior is analogous to a {gamma}=5/3 polytropic fluid with a quasigravity such that every element of fluid attracts every other in proportion to their separation. For such a fluid, we study the ''rotating pulsating equilibria'' and their relaxation back to uniform but pulsating rotation. We also compare the rotating pulsating fluid to its discrete counterpart, and study the rate at which the rotating crystal redistributes angular momentum and mixes as a function of extra heat content.

  20. On the stability of MHD equilibria with flow

    NASA Astrophysics Data System (ADS)

    Andreussi, Tommaso; Morrison, Philip J.; Pegoraro, Francesco

    2012-03-01

    Three kinds of energy principles arising from the Hamiltonian structure of the (MHD) equations are used to determine sufficient stability conditions. The Lagrangian energy principle of Ref.[1] is presented and the stability conditions for symmetric and non-symmetric perturbations are introduced. Exploiting the noncanonical Hamiltonian formulation of MHD [2] plasma flows are analyzed in terms of Eulerian variables. An energy principle in Eulerian form is deduced for equilibria with a geometric symmetry and sufficient conditions for stability are obtained by expanding a functional F composed of the sum of the Eulerian energy plus Casimir invariants to second order. Next, an energy principle based on dynamically accessible variations [3] that preserve the invariants of the system explicitly is considered. Dynamically accessible variations do not rely on any symmetry and thus give general criteria for stability. Finally, the conditions obtained from the three different approaches are compared and implications about nonlinear stability are discussed.[4pt] [1] E.A. Frieman and M. Rotenberg, Rev. Mod. Phys., 32 898 (1960).[0pt] [2] P.J. Morrison and J.M. Greene, Phys. Rev. Lett., 45 790 (1980).[0pt] [3] P.J. Morrison, Rev. Mod. Phys., 70 467 (1998).

  1. Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins

    PubMed Central

    López, Carlos J; Fleissner, Mark R; Guo, Zhefeng; Kusnetzow, Ana K; Hubbell, Wayne L

    2009-01-01

    Recent evidence suggests that proteins at equilibrium can exist in a manifold of conformational substates, and that these substates play important roles in protein function. Therefore, there is great interest in identifying regions in proteins that are in conformational exchange. Electron paramagnetic resonance spectra of spin-labeled proteins containing the nitroxide side chain (R1) often consist of two (or more) components that may arise from slow exchange between conformational substates (lifetimes > 100 ns). However, crystal structures of proteins containing R1 have shown that multicomponent spectra can also arise from equilibria between rotamers of the side chain itself. In this report, it is shown that these scenarios can be distinguished by the response of the system to solvent perturbation with stabilizing osmolytes such as sucrose. Thus, site-directed spin labeling (SDSL) emerges as a new tool to explore slow conformational exchange in proteins of arbitrary size, including membrane proteins in a native-like environment. Moreover, equilibrium between substates with even modest differences in conformation is revealed, and the simplicity of the method makes it suitable for facile screening of multiple proteins. Together with previously developed strategies for monitoring picosecond to millisecond backbone dynamics, the results presented here expand the timescale over which SDSL can be used to explore protein flexibility. PMID:19585559

  2. Singular Isothermal Disks. Paper 2; Nonaxiymmetric Bifurcations and Equilibria

    NASA Technical Reports Server (NTRS)

    Galli, Danielle; Shu, Frank H.; Laughlin, Gregory; Lizano, Susana

    2000-01-01

    We review the difficulties of the classical fission and fragmentation hypotheses for the formation of binary and multiple stars. A crucial missing ingredient in previous theoretical studies is the inclusion of dynamically important levels of magnetic fields. As a minimal model for a candidate presursor to the formation of binary and multiple stars, we therefore formulate and solve the problem of the equilibria of isopedically magnetized, singular isothermal disks, without the assumption of axial symmetry. Considerable analytical progress can be made if we restrict our attention to models that are scale-free, i.e., that have surface densities that vary inversely with distance omega from the rotation axis of the system. In agreement with earlier analysis by Syer and Tremaine, we find that lopsided (M = 1) configurations exist at any dimensionless rotation rate, including zero. Multiple-lobed (M = 2, 3, 4, ...) configurations bifurcate from an underlying axisymmetric sequence at progressively higher dimensionless rates of rotation, but such nonaxisymmetric sequences always terminate in shockwaves before they have a chance to fission into M = 2, 3, 4, ... separate bodies. On the basis of our experience in this paper, we advance the hypothesis that binary and multiple star-formation from smooth (i.e., not highly turbulent) starting states that are supercritical but in unstable mechanical balance requires the rapid (i.e., dynamical) loss of magnetic flux at some stage of the ensuing gravitational collapse.

  3. Modeling phase equilibria in mixtures containing hydrogen fluoride and halocarbons

    SciTech Connect

    Lencka, M. ); Anderko, A. Polish Academy of Sciences, Warszawa )

    1993-03-01

    Recently, much attention has been focused on the production of environmentally acceptable refrigerants, which not only offer desirable physico-chemical properties, but do not deplete the ozone layer and do not cause the greenhouse effect. The production of such refrigerants involves the separation of multicomponent mixtures containing hydrogen fluoride, hydrogen chloride, and various chlorinated and fluorinated hydrocarbons. Therefore, it is indispensable to know the phase behavior of these mixtures. While the phase behavior of refrigerant mixtures can be adequately modeled in the absence of HF using standard thermodynamic techniques, drastically increases the complexity of the mixture because of its unusually strong association. The association of HF manifests itself in its significantly reduced gas-phase compressibility factor and the strong nonideality of mixtures containing HF and hydrocarbons or halocarbons. In this work, the authors develop an accurate, yet simple, association model for HF and compare it with simulation data. The model is combined with a simple equation of state to yield a closed-form expression that is applicable to both pure fluids and mixtures. In addition to representing the pure-component data for HF, the theory accurately predicts phase equilibria in HF + halocarbon systems.

  4. Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins.

    PubMed

    López, Carlos J; Fleissner, Mark R; Guo, Zhefeng; Kusnetzow, Ana K; Hubbell, Wayne L

    2009-08-01

    Recent evidence suggests that proteins at equilibrium can exist in a manifold of conformational substates, and that these substates play important roles in protein function. Therefore, there is great interest in identifying regions in proteins that are in conformational exchange. Electron paramagnetic resonance spectra of spin-labeled proteins containing the nitroxide side chain (R1) often consist of two (or more) components that may arise from slow exchange between conformational substates (lifetimes > 100 ns). However, crystal structures of proteins containing R1 have shown that multicomponent spectra can also arise from equilibria between rotamers of the side chain itself. In this report, it is shown that these scenarios can be distinguished by the response of the system to solvent perturbation with stabilizing osmolytes such as sucrose. Thus, site-directed spin labeling (SDSL) emerges as a new tool to explore slow conformational exchange in proteins of arbitrary size, including membrane proteins in a native-like environment. Moreover, equilibrium between substates with even modest differences in conformation is revealed, and the simplicity of the method makes it suitable for facile screening of multiple proteins. Together with previously developed strategies for monitoring picosecond to millisecond backbone dynamics, the results presented here expand the timescale over which SDSL can be used to explore protein flexibility. PMID:19585559

  5. Study of improved methods for predicting chemical equilibria. Final technical report, April 1, 1993--August 31, 1997

    SciTech Connect

    Lenz, T.G.; Vaughan, J.D.

    1997-10-01

    A long-standing goal of chemical engineers and chemists has been the development of techniques for accurate prediction of the thermodynamic properties of isolated molecules. The thermochemical functions for an ideal gas then provide a means of computing chemical equilibria, and such computations can be extended to condensed phase chemical equilibria with appropriate physical property data. Such capability for predicting diverse chemical equilibria is important in today`s competitive international economic environment, where bringing new products to market rapidly and efficiently is crucial. The purpose of this project has been to develop such computational methods for predicting chemical equilibria.

  6. Phase Equilibria in Ferrous Calcium Silicate Slags: Part II. Evaluation of Experimental Data and Computer Thermodynamic Models

    NASA Astrophysics Data System (ADS)

    Nikolic, Stanko; Henao, Hector; Hayes, Peter C.; Jak, Evgueni

    2008-04-01

    Ferrous calcium silicate slags (described by the FeO-Fe2O3-CaO-SiO2 system) are the basis for a number of slag systems used in nonferrous smelting. Characterization of this slag system is necessary to improve the design and optimization parameters of new processes, including fluxing and operating temperatures. Particularly of interest are the phase relations at intermediate oxygen partial pressures relevant to processes such as copper converting. Experimental data on the phase equilibria of these slags at controlled oxygen partial pressures in the temperature range between 1200 °C and 1350 °C are discussed, differences between various data sources are analyzed, and discrepancies are resolved. An evaluation of two thermodynamic computer models is undertaken to verify the computer-aided predictions using the experimental data. New experimental data for this system are reported for the temperature condition of 1300 °C, defined using the equilibration/rapid-quenching/electron probe microanalysis (EPMA) with wavelength dispersive detectors technique. This new information, combined with results from the previous study, has enabled the equilibrium liquidus compositions to be defined over a wide range of temperatures and oxygen partial pressures.

  7. Predicting Water Activity for Complex Wastes with Solvation Cluster Equilibria (SCE) - 12042

    SciTech Connect

    Agnew, S.F.; Reynolds, J.G.; Johnston, C.T.

    2012-07-01

    Predicting an electrolyte mixture's water activity, i.e. the ratio of water vapor pressure over a solution with that of pure water, in principle reveals both boiling point and solubilities for that mixture. Better predictions of these properties helps support the ongoing missions to concentrate complex nuclear waste mixtures in order to conserve tank space and improved predictions of water activity will help. A new approach for predicting water activity, the solvation cluster equilibria (SCE) model, uses pure electrolyte water activities to predict water activity for a complex mixture of those electrolytes. An SCE function based on electrolyte hydration free energy and a standard Debye- Hueckel (DH) charge compression fits each pure electrolyte's water activity with three parameters. Given these pure electrolyte water activities, the SCE predicts any mixture water activity over a large range of concentration with an additional parameter for each mixture vector, the multinarity. In contrast to ionic strength, which scales with concentration, multinarity is related to the relative proportion of electrolytes in a mixture and can either increase or decrease the water activity prediction over a broad range of concentration for that mixture. The SCE model predicts water activity for complex electrolyte mixtures based on the water activities of pure electrolytes. Three parameter SCE functions fit the water activities of pure electrolytes and along with a single multinarity parameter for each mixture vector then predict the mixture water activity. Predictions of water activity can in principle predict solution electrolyte activity and this relationship will be explored in the future. Predicting electrolyte activities for complex mixtures provides a means of determining solubilities for each electrolyte. Although there are a number of reports [9, 10, 11] of water activity models for pure and binary mixtures of electrolytes, none of them compare measured versus calculated

  8. Liquid-liquid equilibria of binary mixtures of a lipidic ionic liquid with hydrocarbons.

    PubMed

    Green, Blane D; Badini, Alexander J; O'Brien, Richard A; Davis, James H; West, Kevin N

    2016-01-28

    Although structurally diverse, many ionic liquids (ILs) are polar in nature due to the strong coulombic forces inherent in ionic compounds. However, the overall polarity of the IL can be tuned by incorporating significant nonpolar content into one or more of the constituent ions. In this work, the binary liquid-liquid equilibria of one such IL, 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide, with several hydrocarbons (n-hexane, n-octane, n-decane, cyclohexane, methylcyclohexane, 1-octene) is measured over the temperature range 0-70 °C at ambient pressure using a combination of cloud point and gravimetric techniques. The phase behavior of the systems are similar in that they exhibit two phases: one that is 60-90 mole% hydrocarbon and a second phase that is nearly pure hydrocarbon. Each phase exhibits a weak dependence of composition on temperature (steep curve) above ∼10 °C, likely due to swelling and restructuring of the nonpolar nano-domains of the IL being limited by energetically unfavorable restructuring in the polar nano-domains. The solubility of the n-alkanes decreases with increasing size (molar volume), a trend that continues for the cyclic alkanes, for which upper critical solution temperatures are observed below 70 °C. 1-Octene is found to be more soluble than n-octane, attributable to a combination of its lower molar volume and slightly higher polarity. The COSMO-RS model is used to predict the T-x'-x'' diagrams and gives good qualitative agreement of the observed trends. This work presents the highest known solubility of n-alkanes in an IL to date and tuning the structure of the ionic liquid to maximize the size/shape trends observed may provide the basis for enhanced separations of nonpolar species. PMID:26700653

  9. Magnetohydrodynamic equilibria in the vicinity of an X -type neutral line specified by footpoint shear

    SciTech Connect

    Finn, J.M.; Lau, Y. )

    1991-09-01

    Results pertaining to two-dimensional ({partial derivative}/{partial derivative}{ital z}=0) magnetohydrodynamic equilibria in the presence of an {ital X}-type neutral line are presented. Naive analyses indicate that there may be tangential discontinuities in {bold B}, specifically discontinuities in {ital B}{sub {ital z}} across the separatrix connected to the {ital X} line. However, such analyses indicate an infinite {ital z} component of footpoint displacement (or safety factor {ital q} in the toroidal case) at the separatrix. The solutions presented here allow the specification of footpoint displacement (or safety factor {ital q}) that is finite as the separatrix is approached. These solutions are scale-invariant, or similarity, solutions. They are appropriate near the {ital X} line on length scales intermediate between the boundary layer width because of resistivity (or other nonideal effects) and the macroscopic length scale. Force balance across the separatrix implies identical radial dependence in all four quadrants and continuity of {ital B}{sup 2}{sub {ital z}} across the separatrix. The latter shows that there are two classes of solutions: those with {ital B}{sub {ital z}} continuous across the separatrix and those with {vert bar}{ital B}{sub {ital z}}{vert bar} continuous but with a sign change in {ital B}{sub {ital z}}. The former class has fractional power-law singularities at the separatrix. The latter class has, in addition, a sheet current along the separatrix in the {ital x}-{ital y} plane associated with the jump in {ital B}{sub {ital z}}. Detailed properties of these solutions are explored. In particular, sheetlike one-dimensional solutions are found to be limiting cases of the general solutions. Except for one special case, these sheet solutions cannot have finite footpoint displacement if they are force free, but can in the presence of pressure gradient.

  10. Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm

    NASA Astrophysics Data System (ADS)

    Namur, Olivier; Charlier, Bernard; Toplis, Michael J.; Vander Auwera, Jacqueline

    2012-01-01

    Many models for plagioclase-melt equilibria have been proposed over the past 30 years, but the focus is increasingly on the effects of water content and pressure. However, many geological and petrological applications concern low pressure and low water systems, such as the differentiation of large terrestrial basaltic magma chambers, and lunar and asteroidal magmatism. There is, therefore, a justified need to quantify the influence of anhydrous liquid composition on the composition of equilibrium plagioclase at 1-atm. With this in mind, a database of over 500 experimentally determined plagioclase-liquid pairs has been created. The selected low pressure, anhydrous, experiments include both natural and synthetic liquids, whose compositions range from basalt to rhyolite. Four equations are proposed, derived from this data. The first is based on a thermodynamically inspired formalism, explicitly integrating the effect of temperature. This equation uses free energies and activities of crystalline anorthite available from the literature. For the activity of anorthite in the liquid phase, it is found that current models of the activity of individual oxides are insufficient to account for the experimental results. We have therefore derived an empirical expression for the variation of anorthite activity in the liquid as a function of melt composition, based upon inversion of the experimental data. Using this expression allows the calculation of plagioclase composition with a relative error less than 10%. However, in light of the fact that temperature is not necessarily known for many petrological applications, an alternative set of T-independent equations is also proposed. For this entirely empirical approach, the database has been divided into three compositional groups, treated independently for regression purposes: mafic-ultramafic, alkali-rich mafic-ultramafic, and intermediate-felsic. This separation into distinct subgroups was found to be necessary to maintain errors

  11. Large number of endemic equilibria for disease transmission models in patchy environment.

    PubMed

    Knipl, D H; Röst, G

    2014-12-01

    We show that disease transmission models in a spatially heterogeneous environment can have a large number of coexisting endemic equilibria. A general compartmental model is considered to describe the spread of an infectious disease in a population distributed over several patches. For disconnected regions, many boundary equilibria may exist with mixed disease free and endemic components, but these steady states usually disappear in the presence of spatial dispersal. However, if backward bifurcations can occur in the regions, some partially endemic equilibria of the disconnected system move into the interior of the nonnegative cone and persist with the introduction of mobility between the patches. We provide a mathematical procedure that precisely describes in terms of the local reproduction numbers and the connectivity network of the patches, whether a steady state of the disconnected system is preserved or ceases to exist for low volumes of travel. Our results are illustrated on a patchy HIV transmission model with subthreshold endemic equilibria and backward bifurcation. We demonstrate the rich dynamical behavior (i.e., creation and destruction of steady states) and the presence of multiple stable endemic equilibria for various connection networks. PMID:25223233

  12. Phase equilibria in the La-Ba-Co-O system

    SciTech Connect

    Cherepanov, V.A.; Gavrilova, L.Y.; Filonova, E.A.; Trifonova, M.V.; Voronin, V.I.

    1999-04-01

    Phase equilibria in the La-Ba-Co-O system were studied at 1,100 C in air. The existence of oxide phases LaCoO{sub 3}, BaCoO{sub 3{minus}y}, Ba{sub 2}CoO{sub 4}, and La{sub 2}BaO{sub 4} in quasibinary systems in air at 1,100 C was found, in agreement with previous data. Two types of solid solutions were found in the quasiternary system: La{sub 1{minus}x}Ba{sub x}CoO{sub 3{minus}{delta}} and (La{sub 1{minus}z}Ba{sub z}){sub x}CoO{sub 4}. The homogeneity range of La{sub 1{minus}x}Ba{sub x}CoO{sub 3{minus}{delta}} was found to be 0 {le} x {le} 0.8. As the content of alkali-earth metal (x) increased, a rhombohedral distortion of La{sub 1{minus}x}Ba{sub x}CoO{sub 3{minus}{delta}} decreased; La{sub 0.55}Ba{sub 0.45}CoO{sub 3{minus}{delta}} had an ideal cubic structure. The composition of single phase samples of (La{sub 1{minus}z}Ba{sub z}){sub 2}CoO{sub 4} composition was obtained for z = 0.300, 0.325, 0.350, and 0.375. These samples had the tetragonal K{sub 2}NiF{sub 4}-type structure.

  13. Control of 3D equilibria with resonant magnetic perturbations in MST

    NASA Astrophysics Data System (ADS)

    Munaretto, S.; Chapman, B. E.; Holly, D. J.; Nornberg, M. D.; Norval, R. J.; Den Hartog, D. J.; Goetz, J. A.; McCollam, K. J.

    2015-10-01

    To aid in diagnosis of 3D equilibria in the Madison Symmetric Torus, it has become necessary to control the orientation of the equilibria. In reversed field pinch experiments a transition to a 3D equilibrium is common with sufficiently large plasma current (and Lundquist number). Diagnosis of this state is hampered by the fact that the helical structure is stationary but with an orientation that varies shot-to-shot. A resonant magnetic perturbation (RMP) technique has been developed to vary controllably the orientation of the 3D equilibria and optimized to minimize the plasma wall interaction due to its use. Application of an RMP now allows alignment of the structure with key diagnostics, including Thomson scattering and an interferometer-polarimeter.

  14. MHD Stability Trends from Perturbed Equilibria: Possible Limitations with Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Comer, K. J.; Callen, J. D.; Hegna, C. C.; Turnbull, A. D.; Cowley, S.

    2003-10-01

    The effects of equilibrium changes on ideal MHD properties are usually studied using numerical parameter scans. Previously, we introduced a new technique to explore these dependencies: changes in the potential energy δ W due to equilibrium changes are found with an expansion of the energy principle, rather than an eigenvalue-solver code. Validation of the approach in toroidal geometry attempted to use GATO (an ideal MHD stability code) and DIII-D shot 87009. The approach should succeed with the global modes of 87009; however, ˜ 0.1% changes to qo predicted δ W rapidly increasing. Perturbing β of other toroidal equilibria resulted in similar behavior. We first review results for a cylindrical equilibrium and for 87009. Between the cylindrical case and 87009 lie several other equilibria, which should produce intermediate results. We examine several of these intermediate equilibria, starting with the cylindrical case and changing aspect ratio, shape and profiles until ending at 87009.

  15. Predominance Diagrams, a Useful Tool for the Correlation of the Precipitation-Solubility Equilibrium with Other Ionic Equilibria

    ERIC Educational Resources Information Center

    Pereira, Constantino Fernandez; Alcalde, Manuel; Villegas, Rosario; Vale, Jose

    2007-01-01

    The four types of ionic equilibria--acid-base, redox, precipitation, and complexation--have certain similarities, which has led some authors to develop a unified treatment of them. These authors have highlighted the common aspects and tried to find a systemization of the equilibria that would facilitate learning them. In this unified treatment,…

  16. Phase equilibria and PVT data for the methane-methanol system to 300 MPa and 240/sup 0/C

    SciTech Connect

    Francesconi, A.Z.; Lentz, H.; Franck, E.U.

    1981-10-29

    The apparatus and experimental procedure are described, which permit the determination of phase equilibria and PVT data of fluid binary systems to high temperatures and pressures. Visual observation through a sapphire window is combined with pT measurements at constant volumes. The boundary surface of the two-phase region of the methane-methanol system is determined by pT curves of nine compositions (isopleths) from 8 to 90 mol % CH/sub 3/OH. The critical curve is of the interrupted type and extends from the critical point of methanol (239/sup 0/C, 8.1 MPa) to 33.0/sup 0/C and 300 MPa with a critical volume of 31.2 cm/sup 3/ mol/sup -1/. At 150/sup 0/C molar volume data for the one-phase region to 300 MPa are given. For pressures to 30 MPa the critical curve could be calculated by a semiempirical method. New experimentally determined data for the molar volumes of methane are presented from 50 to 450/sup 0/C and from 30 to 300 MPa.

  17. Prediction of fluid phase equilibria and interfacial tension of triangle-well fluids using transition matrix Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sengupta, Angan; Adhikari, Jhumpa

    2016-05-01

    The triangle-well (TW) potential is a simple model which is able to capture the essence of the intermolecular attraction in real molecules. Transition matrix Monte Carlo simulations in the grand canonical ensemble (GC-TMMC) are performed to investigate the role of the range of attraction on the features of fluid phase equilibria. As the TW potential range increases, the vapour-liquid coexistence curves shift towards a higher temperature range with the critical temperature and pressure increasing, and the critical density values decreasing. These GC-TMMC results are in excellent agreement with the predictions of Gibbs ensemble Monte Carlo and replica exchange Monte Carlo (REMC) simulations reported in literature. Using the GC-TMMC method, the vapour pressures are also computed directly from the particle number probability distributions (PNPDs). It has been noted in literature that the surface tension values are computationally more expensive and difficult to determine than other coexistence properties using molecular simulations. The PNPDs from GC-TMMC simulations along with Binder's formalism allow for the calculation of the interfacial tension with relative ease. Also, our simulation generated results for the interfacial tension are in good agreement with the literature data obtained using REMC (via the virial route) and the plots of our interfacial tension values as a function of temperature are smooth unlike the literature data.

  18. Phase and chemical equilibria in the transesterification reaction of vegetable oils with supercritical lower alcohols

    NASA Astrophysics Data System (ADS)

    Anikeev, V. I.; Stepanov, D. A.; Ermakova, A.

    2011-08-01

    Calculations of thermodynamic data are performed for fatty acid triglycerides, free fatty acids, and fatty acid methyl esters, participants of the transesterification reaction of vegetable oils that occurs in methanol. Using the obtained thermodynamic parameters, the phase diagrams for the reaction mixture are constructed, and the chemical equilibria of the esterification reaction of free fatty acids and the transesterification reaction of fatty acid triglycerides attained upon treatment with supercritical methanol are determined. Relying on our analysis of the obtained equilibria for the esterification reaction of fatty acids and the transesterification reaction of triglycerides attained upon treatment with lower alcohols, we select the optimum conditions for performing the reaction in practice.

  19. Two-dimensional magnetohydrodynamic equilibria with flow and studies of equilibrium fluctuations

    SciTech Connect

    Agim, Y.Z.

    1989-01-01

    A set of reduced ideal MHD (magnetohydrodynamic) equations is derived to investigate equilibria of plasmas with mass flow in general two-dimensional geometry. These equations provide a means of investigating the effects of flow on self-consistent equilibria in a number of new two-dimensional configurations such as helically symmetric configurations with helical axis, which are relevant to stellarators, as well as axisymmetric configurations. In the second part, magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency.

  20. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization

    SciTech Connect

    Canale, Eduardo A.; Monzón, Pablo

    2015-02-15

    This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 1–15 (2012)], a sufficient condition for almost global synchronization was found in terms of the minimum degree–order ratio of the graph. In this work, a new lower bound for this ratio is given. The improvement is achieved by a concrete infinite sequence of regular graphs. Besides, non standard unstable equilibria of the graphs studied in Wiley et al. [Chaos 16, 015103 (2006)] are shown to exist as conjectured in that work.

  1. Magnesium sulfate-water to 400 MPa using a novel piezometer: Densities, phase equilibria, and planetological implications.

    NASA Astrophysics Data System (ADS)

    Hogenboom, D. L.; Kargel, J. S.; Ganasan, J. P.; Lee, L.

    1995-06-01

    Carbonaceons chondrites commonly contain 10-20% water-soluble salts by mass, the products of low-temperature aqueous alteration under oxidizing conditions. About 75% (by mass) of chondrite salts typically consists of magnesium sulfate hydrates. Conditions similar to those that affected carbonaceous chondrites may have prevailed within some asteroids and icy satellites, resulting in the formation of similar salt-rich rock (plus ice). These salts would be important in determining the physical and chemical characteristics of cryomagmatic brines. Frozen eutectic mixtures of MgSO 4-rich brines could constitute a large fraction of the mass and volume of differentiated salty icy satellites, and widespread volcanic ice plains on some icy satellites may consist of frozen MgSO 4-rich brines. The nature of brine magmatism depends in part on phase equilibria and volumetric relations of solid and liquid phases under the pertinent conditions of temperature, pressure, and other physical parameters. Accordingly, we have investigated densities and phase equilibria in the system MgSO 4-H 2O under pressures ranging from ˜0.1 MPa to ˜400 MPa, temperatures from 230 K to 300 K, and compositions up to 22% (by mass) MgSO 4 using a novel high-pressure apparatus, described here for the first time in detail. We have found no evidence for a transition of MgSO 4 hydrates to high-pressure polymorphs, although we have seen the expected transitions in water ice and we have found some evidence of a possible new magnesium sulfate hydrate. The graph of the eutectic melting point vs pressure approximately parallels the melting curve of water ice, except that the freezing-point depression increases slightly with pressure. Brine flows on icy satellites and chondritic asteroids mostly should correspond to eutectic and peritectic compositions (˜17 and ˜21% MgSO 4, respectively, if modeled in the pure system H 2O-MgSO 4; compositions vary somewhat with pressure). Ice phases I and III, MgSO 4 hydrates

  2. Chromium Redox Equilibria in Fluids and Minerals under Hydrothermal and Subduction-zone Conditions

    NASA Astrophysics Data System (ADS)

    Hao, J.; Sverjensky, D. A.; Hazen, R. M.

    2015-12-01

    Chromium mobility and isotopic variations have been reported from a variety of high-temperature environments from hydrothermal to diamond-forming at elevated temperatures and pressures [1, 2, 3]. In addition, experiments under upper mantle conditions reported Cr-rich fluids in equilibrium with chromium oxide (Cr3+2O3) [4]. These studies suggest the need for theoretical models of the aqueous speciation of chromium in fluids and the stabilities of Cr minerals under deep crustal and upper mantle conditions. We estimated the thermodynamic properties of aqueous Cr2+, Cr3+, HCrO4-, CrO42-, and Cr2O72- using published data [5, 6] and the Deep Earth Water Model [7] to predict the different oxidation states of aqueous Cr to 1,000 °C and 5.0 GPa. We show that Cr(II) becomes the major redox state of Cr in hydrothermal fluids at 100 to 400 °C, with log fO2,g at magnetite/hematite over a wide range of pH values. In subduction zones, with log fO2,g at QFM to QFM - 2, a range of Cr redox states (II, III, and VI) may exist at 600 °C and 5 GPa depending on the pH. However, at higher temperatures (1000 °C), aqueous Cr(III) disappears and Cr(II) is favored relative to Cr(VI), again depending on the pH. Our predicted stability of Cr(II) in aqueous fluids at high temperatures suggests new mechanisms for redox/pH dependent Cr isotopic fractionation. We also estimated the thermodynamic properties of Cr(II)- and Cr(III)-garnets with the Sverjensky-Molling equation [8] to investigate the stability of Cr-garnet-fluid equilibria at elevated pressures and temperatures. References: [1] Schoenberg et al., 2008, Chem Geol 249, 294-306; [2] Farkaš et al., 2013, GCA 123, 74-92; [3] Stachel & Harris, 2008, Ore Geol. Rev, 34, 5-32; [4] Klein-BenDavid et al., 2011, Lithos 125, 122-130; [5] Ball & Nordstrom, 1998, J Chem Eng Data 43, 895-918; [6] Johnson & Nelson, 2012, Inorg Chem 51, 6116-6128; [7] Sverjensky et al. 2014, GCA 129, 125-145; [8] Sverjensky & Molling, 1992, Nature 356, 231-234.

  3. Capabilities for measuring physical and chemical properties of rocks at high pressure

    SciTech Connect

    Durham, W.B.

    1990-01-01

    The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.

  4. Vapor-liquid coexistence curves in the critical region and the critical temperatures and densities of 1,1,1,2-tetrafluoroethane (R-134a), 1,1,1-trifluoroethane (R-143a), and 1,1,1,2,3,3-hexafluoropropane (R-236ea)

    SciTech Connect

    Aoyama, H.; Kishizawa, G.; Sato, H.; Watanabe, K.

    1996-09-01

    The vapor-liquid coexistence curves in the critical region of 1,1,1,2-tetrafluoroethane (R-134a), 1,1,1-trifluoroethane (R-143a), and 1,1,1,2,3,3-hexafluoropropane (R-236ea) were measured by a visual observation of the meniscus disappearance in an optical cell. Seventeen saturated-vapor and -liquid densities have been measured for R-134a. Thirty-five saturated-vapor and -liquid densities have been measured for R-143a. Twenty-seven saturated-vapor and -liquid densities have been measured for R-236ea. The level and location of the meniscus, as well as the intensity of the critical opalescence were considered in the determination of the critical temperature and density for each fluid. R-134a was found to have (374.083 {+-} 0.010) K and (509 {+-} 1) kg/m{sup 3}, R-143a, (345.860 {+-} 0.010) K and (434 {+-} 1) kg/m{sup 3}, and R-236ea, (412.375 {+-} 0.015) K and (568 {+-} 1) kg/m{sup 3}.

  5. Remote catalyzation for growth of boron nitride nanotubes by low pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Liangjie; Li, Taotao; Ling, Lin; Luo, Jie; Zhang, Kai; Xu, Yancui; Lu, Huifen; Yao, Yagang

    2016-05-01

    Direct deposition of high purity and quality boron nitride nanotubes (BNNTs) on Si substrate were obtained using low pressure chemical vapor deposition (LPCVD). We find Fe-Mg-O species may act as catalysts for growing BNNTs. This synthesis process conforms to vapor-liquid-solid (VLS) growth mechanism. As-grown BNNTs also show a large optical energy band gap of 6.12 eV, approaching to hexagonal phase BN single crystals. Meanwhile, as-grown BNNTs exhibit an intense UV-emission band located at 345 nm and a weak deep band at 237 nm. Their optoelectronic properties make them have promising for future nanoscale deep-UV light emitting devices.

  6. Ultrasonic speeds in compressed liquid and vapor pressures for 1,1,1,2-tetrafluoroethane

    SciTech Connect

    Takagi, T.

    1996-09-01

    Ultrasonic speeds in the liquid phase of 1,1,1,2-tetrafluoroethane (CF{sub 3}CH{sub 2}F) have been measured from 243.11 K to 333.15 K and from near the saturation line to about 30 MPa. The measurements were made using a sing-around technique employing a fixed path acoustic interferometer operated at a frequency of 2 MHz. The probable uncertainty in the results was no greater than {+-}0.2% except in the low-density region at near the saturation line at higher temperatures. The vapor pressures have also been observed to within {+-}10 kPa by monitoring the acoustic signal at vapor-liquid equilibrium. When these results were combined, the ultrasonic speeds for the saturated liquid were estimated to within {+-}1 m/s.

  7. Subatmospheric vapor pressures evaluated from internal-energy measurements

    SciTech Connect

    Duarte-Garza, H.A. |; Magee, J.W.

    1997-01-01

    Vapor pressures were calculated from measured internal-energy changes in the vapor + liquid two-phase region, {Delta}U{sup (2)}. The method employed a thermodynamic relationship between the derivative quantity ({partial_derivative}U{sup (2)}/{partial_derivative}V){sub T} and the vapor pressure (p{sub {sigma}}) and its temperature derivative ({partial_derivative}p/{partial_derivative}T){sub {sigma}}. This method was applied at temperatures between the triple point and the normal boiling point of three substances: 1,1,1,2-tetrafluoroethane (R134a), pentafluoroethane (R125), and difluoromethane (R32). Agreement with experimentally measured vapor pressures near the normal boiling point (101.325 kPa) was within the experimental uncertainty of approximately {+-}0.04 kPa ({+-}0.04%). The method was applied to R134a to test the thermodynamic consistency of a published p-p-T equation of state with an equation for p{sub {sigma}} for this substance. It was also applied to evaluate published p{sub {sigma}} data which are in disagreement by more than their claimed uncertainty.

  8. Anhydrite Solubility and Ca Isotope Fractionation in the Vapor-Liquid Field of the NaCl-H2O System: Implications for Hydrothermal Vent Fluids at Mid-ocean Ridges

    NASA Astrophysics Data System (ADS)

    Scheuermann, P.; Syverson, D. D.; Higgins, J. A.; Seyfried, W. E., Jr.

    2015-12-01

    Hydrothermal experiments were performed at 410, 420 and 450°C between 180-450 bar to investigate anhydrite (CaSO4) solubility and Ca isotope fractionation in the liquid-vapor stability field of the NaCl-H2O system. Experiments were conducted in flexible gold reaction cells and a fixed volume Ti reactor to reach all pressures between the critical curve and three-phase boundary. During isothermal decompression at 410°C, anhydrite solubility in the liquid phase increases (1 to 9 mmol/kg Ca), whereas the solubility decreases in the vapor phase (130 to < 10 umol/kg Ca). At 410°C and 290-270 bar, the partition coefficient, log Km = log (mv / ml), for Ca decreases from -1.35 to -2.46, and that of SO4 decreases from -1.76 to -2.82. At 420°C the Ca:SO4 ratio of the starting solution was 2:1, and the pH25°C decreases in the liquid and increases in the vapor upon decompression. Ca hydrolysis in the liquid and complex interactions between undetermined aqueous species in the vapor could explain this pattern. At 410 and 450°C, the experiments started with a Ca:SO4 ratio of 1:1. Along the 410°C isotherm, pH25°C initially increases in both the liquid and vapor, potentially caused by precipitation of an H+ bearing salt, such as NaHSO4. 30-40 bar below the critical curve there is a sudden decrease in pH25°C as the putative salt phase may become unstable and dissolve. At 450°C, pH25°C decreases in the vapor and increases in the liquid, as HCl and H2SO4 partition into the vapor. Ca isotope data at 420°C between 375-300 bar indicate that the vapor is isotopically light relative to the liquid. At lower pressures both phases approach the isotopic composition of the coexisting anhydrite, suggesting that dissolved Ca speciation becomes more structurally similar to anhydrite. This study furthers our understanding of elemental partitioning and isotopic fractionation in mineral-fluid systems with implications for mass transfer reactions at/near the magma-hydrothermal boundary at

  9. Kinetic equilibria of relativistic collisionless plasmas in the presence of non-stationary electromagnetic fields

    SciTech Connect

    Cremaschini, Claudio Stuchlík, Zdeněk; Tessarotto, Massimo

    2014-03-15

    The kinetic description of relativistic plasmas in the presence of time-varying and spatially non-uniform electromagnetic (EM) fields is a fundamental theoretical issue both in astrophysics and plasma physics. This refers, in particular, to the treatment of collisionless and strongly-magnetized plasmas in the presence of intense radiation sources. In this paper, the problem is investigated in the framework of a covariant gyrokinetic treatment for Vlasov–Maxwell equilibria. The existence of a new class of kinetic equilibria is pointed out, which occur for spatially-symmetric systems. These equilibria are shown to exist in the presence of non-uniform background EM fields and curved space-time. In the non-relativistic limit, this feature permits the determination of kinetic equilibria even for plasmas in which particle energy is not conserved due to the occurrence of explicitly time-dependent EM fields. Finally, absolute stability criteria are established which apply in the case of infinitesimal symmetric perturbations that can be either externally or internally produced.

  10. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    ERIC Educational Resources Information Center

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  11. Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria.

    PubMed Central

    Higgins, Paul A T; Mastrandrea, Michael D; Schneider, Stephen H

    2002-01-01

    Interactions between subunits of the global climate-biosphere system (e.g. atmosphere, ocean, biosphere and cryosphere) often lead to behaviour that is not evident when each subunit is viewed in isolation. This newly evident behaviour is an emergent property of the coupled subsystems. Interactions between thermohaline circulation and climate illustrate one emergent property of coupling ocean and atmospheric circulation. The multiple thermohaline circulation equilibria that result caused abrupt climate changes in the past and may cause abrupt climate changes in the future. Similarly, coupling between the climate system and ecosystem structure and function produces complex behaviour in certain regions. For example, atmosphere-biosphere interactions in the Sahel region of West Africa lead to multiple stable equilibria. Either wet or dry climate equilibria can occur under otherwise identical forcing conditions. The equilibrium reached is dependent on past history (i.e. initial conditions), and relatively small perturbations to either climate or vegetation can cause switching between the two equilibria. Both thermohaline circulation and the climate-vegetation system in the Sahel are prone to abrupt changes that may be irreversible. This complicates the relatively linear view of global changes held in many scientific and policy communities. Emergent properties of coupled socio-natural systems add yet another layer of complexity to the policy debate. As a result, the social and economic consequences of possible global changes are likely to be underestimated in most conventional analyses because these nonlinear, abrupt and irreversible responses are insufficiently considered. PMID:12079526

  12. Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria.

    PubMed

    Higgins, Paul A T; Mastrandrea, Michael D; Schneider, Stephen H

    2002-05-29

    Interactions between subunits of the global climate-biosphere system (e.g. atmosphere, ocean, biosphere and cryosphere) often lead to behaviour that is not evident when each subunit is viewed in isolation. This newly evident behaviour is an emergent property of the coupled subsystems. Interactions between thermohaline circulation and climate illustrate one emergent property of coupling ocean and atmospheric circulation. The multiple thermohaline circulation equilibria that result caused abrupt climate changes in the past and may cause abrupt climate changes in the future. Similarly, coupling between the climate system and ecosystem structure and function produces complex behaviour in certain regions. For example, atmosphere-biosphere interactions in the Sahel region of West Africa lead to multiple stable equilibria. Either wet or dry climate equilibria can occur under otherwise identical forcing conditions. The equilibrium reached is dependent on past history (i.e. initial conditions), and relatively small perturbations to either climate or vegetation can cause switching between the two equilibria. Both thermohaline circulation and the climate-vegetation system in the Sahel are prone to abrupt changes that may be irreversible. This complicates the relatively linear view of global changes held in many scientific and policy communities. Emergent properties of coupled socio-natural systems add yet another layer of complexity to the policy debate. As a result, the social and economic consequences of possible global changes are likely to be underestimated in most conventional analyses because these nonlinear, abrupt and irreversible responses are insufficiently considered. PMID:12079526

  13. Theory of Perturbed Equilibria for Solving the Grad-Shafranov Equation

    SciTech Connect

    A. Pletzer; L.E. Zakharov

    1999-07-01

    The theory of perturbed magnetohydrodynamic equilibria is presented for different formulations of the tokamak equilibrium problem. For numerical codes, it gives an explicit Newton scheme for solving the Grad-Shafranov equation subject to different constraints. The problem of stability of axisymmetric modes is shown to be a particular case of the equilibrium perturbation theory.

  14. A Note on the Calculation of Concentrations in the Case of Many Simultaneous Equilibria.

    ERIC Educational Resources Information Center

    Feenstra, T. P.

    1979-01-01

    The calculation of concentrations in the case of many simultaneous equilibria can be reduced to a search for a local minimum of a function of n variables, in which n denotes the number of mass balances involved. The method is simple and time-saving, but requires the availability of a computer. (author/BB)

  15. TOWARD A THEORY OF SUSTAINABLE SYSTEMS. FLUID PHASE EQUILIBRIA: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL/STD JOURNAL NRMRL-CIN-1364 Cabezas*, H., and Fath**, B.D. Toward a Theory of Sustainable Systems. Fluid Phase Equilibria (Nakanishi, K., Yasukiko, A., Miyano, Y. (Ed.), Elsevier Science B.V.) 194-197:3-14 (2002). EPA/600/J-02/186, www.elsevier.com/locate/fluid. 03/2...

  16. The Representation of Highly Non-Ideal Phase Equilibria Using Computer Graphics.

    ERIC Educational Resources Information Center

    Charos, Georgios N.; And Others

    1986-01-01

    Previous work focused on use of computer graphics in teaching thermodynamic phase equilibria for classes I and II. Extends this work to include the considerably more non-ideal phase behavior shown by classes III, IV, and V. Student and instructor response has been overwhelmingly positive about the approach. (JN)

  17. New investigation of phase equilibria in the system Al–Cu–Si

    PubMed Central

    Ponweiser, Norbert; Richter, Klaus W.

    2012-01-01

    The phase equilibria and invariant reactions in the system Al–Cu–Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ1 and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu–Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al–Cu and Cu–Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable. PMID:22287828

  18. High-pressure on-line photolysis with NMR detection

    SciTech Connect

    Yonker, C.R.; Wallen, S.L.

    1996-06-01

    The investigation of the photoreversible fulgide Aberchrome-540 as a function of pressure and temperature with the use of nuclear magnetic resonance (NMR) detection is described. This technique demonstrates the novel combination of high-pressure NMR and laser photolysis with the use of fiber optics for the conversion of the fulgide on-line in the instrument. Investigation of the photolysis of Aberchrome-540 to 2.0 kbar and 120 degrees C is reported. Extension of this technique should allow the investigation of photo-initiated reaction kinetics and equilibria as a function of pressure and temperature with simultaneous structural characterization with NMR. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}

  19. Determination of epsomite-hexahydrite equilibria by the humidity-buffer technique at 0.1 MPa with implications for phase equilibria in the system MgSO4-H2O.

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R., 2nd.

    2003-01-01

    Epsomite (MgSO(4).7H(2)O) and hexahydrite (MgSO(4).6H(2)O) are common minerals found in marine evaporite deposits, in saline lakes as precipitates, in weathering zones of coal and metallic deposits, in some soils and their efflorescences, and possibly on the surface of Europa as evaporite deposits. Thermodynamic properties of these two minerals reported in the literature are in poor agreement. In this study, epsomite-hexahydrite equilibria were determined along four humidity-buffer curves at 0.1 MPa and between 25 and 45 degrees C. Results obtained for the reaction epsomite = hexahydrite + H(2)O, as demonstrated by very tight reversals along each humidity buffer, can be represented by ln K(+/- 0.012) = 20.001 - 7182.07/T, where K is the equilibrium constant, and T is temperature in Kelvin. The derived standard Gibbs free energy of reaction is 10.13 +/- 0.07 kJ/mol, which is essentially the same value as that calculated from vapor pressure measurements reported in the literature. However, this value is at least 0.8 kJ/mol lower than those calculated from the data derived mostly from calorimetric measurements.

  20. Experimental phase equilibria of a Mount St. Helens rhyodacite: a framework for interpreting crystallization paths in degassing silicic magmas

    NASA Astrophysics Data System (ADS)

    Riker, Jenny M.; Blundy, Jonathan D.; Rust, Alison C.; Botcharnikov, Roman E.; Humphreys, Madeleine C. S.

    2015-07-01

    We present isothermal (885 °C) phase equilibrium experiments for a rhyodacite from Mount St. Helens (USA) at variable total pressure (25-457 MPa) and fluid composition (XH2Ofl = 0.6-1.0) under relatively oxidizing conditions (NNO to NNO + 3). Run products were characterized by SEM, electron microprobe, and SIMS. Experimental phase assemblages and phase chemistry are consistent with those of natural samples from Mount St. Helens from the last 4000 years. Our results emphasize the importance of pressure and melt H2O content in controlling phase proportions and compositions, showing how significant textural and compositional variability may be generated in the absence of mixing, cooling, or even decompression. Rather, variations in the bulk volatile content of magmas, and the potential for fluid migration relative to surrounding melts, mean that magmas may take varied trajectories through pressure-fluid composition space during storage, transport, and eruption. We introduce a novel method for projecting isothermal phase equilibria into CO2-H2O space (as conventionally done for melt inclusions) and use this projection to interpret petrological data from Mount St. Helens dacites. By fitting the experimental data as empirical functions of melt water content, we show how different scenarios of isothermal magma degassing (e.g., water-saturated ascent, vapor-buffered ascent, and vapor fluxing) can have quite different textural and chemical consequences. We explore how petrological data might be used to infer degassing paths of natural magmas and conclude that melt CO2 content is a much more useful parameter in this regard than melt H2O.

  1. High poloidal beta equilibria in TFTR limited by a natural inboard poloidal field null

    SciTech Connect

    Sabbagh, S.A.; Gross, R.A.; Mauel, M.E.; Navratil, G.A. . Dept. of Applied Physics); Bell, M.G.; Bell, R.; Bitter, M.; Bretz, N.L.; Budny, R.V.; Bush, C.E.; Chance, M.S.; Efthimion, P.C.; Fredrickson, E.D.; Hatcher, R.; Hawryluk, R.J.; Hirshman, S.P.; Janos, A.C.; Jardin, S.C.; Jassby, D.L.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Ow

    1991-07-01

    Recent operation of the Tokamak Fusion Test Reactor TFTR, has produced plasma equilibria with values of {Lambda} {triple bond} {beta}{sub p eq} + l{sub i}/2 as large as 7, {epsilon}{beta}{sub p dia} {triple bond} 2{mu}{sub 0}{epsilon}/{much lt}B{sub p}{much gt}{sup 2} as large as 1.6, and Troyon normalized diamagnetic beta, {beta}{sub N dia} {triple bond} 10{sup 8}<{beta}{sub t}{perpendicular}>aB{sub 0}/I{sub p} as large as 4.7. When {epsilon}{beta}{sub p dia} {approx gt} 1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge which was sustained for many energy confinement times, {tau}{sub E}. The largest values of {epsilon}{beta}{sub p} and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 keV and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and {tau}{sub E} greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L-mode predictions have been achieved. The fusion power gain. Q{sub DD}, reached a values of 1.3 {times} 10{sup {minus}3} in a discharge with I{sub p} = 1 MA and {epsilon}{beta}{sub p dia} = 0.85. A large, sustained negative loop voltage during the steady state portion of the discharge indicates that a substantial non-inductive component of I{sub p} exists in these plasmas. Transport code analysis indicates that the bootstrap current constitutes up to 65% of I{sup p}. Magnetohydrodynamic (MHD) ballooning stability analysis shows that while these plasmas are near, or at the {beta}{sub p} limit, the pressure gradient in the plasma core is in the first region of stability to high-n modes. 24 refs., 10 figs.

  2. High temperature phase equilibria studies in the Bi-Sr-Ca-Cu-O-Ag system

    SciTech Connect

    Margulies, Lawrence

    1999-11-08

    A variety of experimental techniques were utilized to examine the high temperature phase equilibria in the Bi-Sr-Ca-Cu-O-Ag system. Quenching studies were used to determine the liquid solubility of Ag in the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi2212) melt and the details of the peritectic decomposition pathway of Bi2212 as a function on Ag content and oxygen partial pressure (PO{sub 2}). A liquid immiscibility region between oxide and Ag liquids in the 8--98 at% range was found above 900 C. Two eutectics were found in the Bi2212-Ag pseudobinary. On the oxide rich side, a eutectic exists at approximately 4 at% Ag. On the Ag rich side, a eutectic exists at approximately 98 at% Ag at a temperature of 15 C below the melting point of pure Ag. Six distinct solid phases were found to be in equilibrium with the partial melt within the Ag content and PO{sub 2} range studied. The stability of these solid phases were found to be highly sensitive to PO{sub 2}, and to a much lesser extent Ag content. High temperature x-ray diffraction (HTXRD) studies of this system are in conflict with these results. It is suggested that these discrepancies are due to experimental artifacts caused by the significant thermal gradients and lack of full bulk sampling which is inherent in conventional HTXRD designs. In part 2, a new furnace design compatible with synchrotron radiation sources is introduced to address these problems. This design allows for full bulk sampling in a low thermal gradient environment using Debye-Scherrer transmission geometry. Sample spinning is also introduced in the design to eliminate preferred orientation and incomplete powder averaging and allow for quantitative phase analysis and structural refinement. Studies on model systems are presented to demonstrate the capabilities for high resolution structural studies (Al{sub 2}O{sub 3}) and time resolved phase transformation studies (SrCO{sub 3}). Finally, the Bi2212 system is examined to confirm the quenching results

  3. Effect of Fluorine on Near-Liquidus Phase Equilibria of Basalts

    NASA Technical Reports Server (NTRS)

    Filiberto, Justin; Wood, Justin; Loan, Le; Dasgupta, Rajdeep; Shimizu, Nobumichi; Treiman, Allan H.

    2010-01-01

    Volatile species such as H2O, CO2, F, and Cl have significant impact in generation and differentiation of basaltic melts. Thus far experimental work has primarily focused on the effect of water and carbon dioxide on basalt crystallization, liquid-line of descent, and mantle melting [e.g., 1, 2] and the effects of halogens have received far less attention [3-4]. However, melts in the planetary interiors can have non-negligible chlorine and fluorine concentrations. Here, we explore the effects of fluorine on near-liquidus phase equilibria of basalt. We have conducted nominally anhydrous piston cylinder experiments using graphite capsules at 0.6 - 1.5 GPa on an Fe-rich model basalt composition. 1.75 wt% fluorine was added to the starting mix in the form of AgF2. Fluorine in the experimental glass was measured by SIMS and major elements of glass and minerals were analyzed by EPMA. Nominally volatile free experiments yield a liquidus temperature from 1330 C at 0.8GPa to 1400 at 1.6GPa and an olivine(Fo72)-pyroxene(En68)-liquid multiple saturation point at 1.25 GPa and 1375 C. The F-bearing experiments yield a liquiudus temperature from 1260 C at 0.6GPa to 1305 at 1.5GPa and an ol(Fo66)-pyx(En64)-MSP at 1 GPa and 1260 C. This shows that F depresses the basalt liquidus, extends the pyroxene stability field to lower pressure, and forces the liquidus phases to be more Fe-rich. KD(Fe-Mg/mineral-melt) calculated for both pyroxenes and olivines show an increase with increasing F content of the melt. Therefore, we infer that F complexes with Mg in the melt and thus increases the melt s silica activity, depressing the liquidus and changing the composition of the crystallizing minerals. Our study demonstrates that on a weight percent basis, the effect of fluorine is similar to the effect of H2O [1] and Cl [3] on freezing point depression of basalts. But on an atomic fraction basis, the effect of F on liquidus depression of basalts is xxxx compared to the effect of H. Future

  4. Transferable potentials for phase equilibria-united atom description of five- and six-membered cyclic alkanes and ethers.

    PubMed

    Keasler, Samuel J; Charan, Sophia M; Wick, Collin D; Economou, Ioannis G; Siepmann, J Ilja

    2012-09-13

    While the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field has generally been successful at providing parameters that are highly transferable between different molecules, the polarity and polarizability of a given functional group can be significantly perturbed in small cyclic structures, which limits the transferability of parameters obtained for linear molecules. This has motivated us to develop a version of the TraPPE-UA force field specifically for five- and six-membered cyclic alkanes and ethers. The Lennard-Jones parameters for the methylene group obtained from cyclic alkanes are transferred to the ethers for each ring size, and those for the oxygen atom are common to all compounds for a given ring size. However, the partial charges are molecule specific and parametrized using liquid-phase dielectric constants. This model yields accurate saturated liquid densities and vapor pressures, critical temperatures and densities, normal boiling points, heat capacities, and isothermal compressibilities for the following molecules: cyclopentane, tetrahydrofuran, 1,3-dioxolane, cyclohexane, oxane, 1,4-dioxane, 1,3-dioxane, and 1,3,5-trioxane. The azeotropic behavior and separation factor for the binary mixtures of 1,3-dioxolane/cyclohexane and ethanol/1,4-dioxane are qualitively reproduced. PMID:22900670

  5. Effect of Slag Basicity on Phase Equilibria and Selenium and Tellurium Distribution in Magnesia-Saturated Calcium Iron Silicate Slags

    NASA Astrophysics Data System (ADS)

    Johnston, M. D.; Jahanshahi, S.; Zhang, L.; Lincoln, F. J.

    2010-06-01

    New measurements have been made on the phase equilibria of magnesia-saturated CaO-FeOx-SiO2 slags at 1573 K (1300 °C) and an oxygen partial pressure of 10-9 atm. The thermodynamic behavior of selenium (Se) and tellurium (Te) in the slag and the stability of oxide mineral phases within the slag were examined as a function of slag composition. The measured equilibrium distribution of Se and Te between the slag and the copper showed nonlinear dependence on the slag basicity, reaching maxima at CaO/(CaO + SiO2) ratios of about 0.2 and 1 and a minimum at a ratio of about 0.5. The solubility of the copper oxide in the bulk slag also passed through a minimum value at a ratio of about 0.5. Results from drop-quench experiments confirmed the stability of various oxide solid solution phases at 1573 K (1300 °C) that had virtually no solubility for Se and Te. The deduced capacity of the liquid slag for Se was found to be independent of basicity in relatively basic slags, and decreased sharply as SiO2 replaced CaO in relatively acidic slags.

  6. Phase equilibria and NaCu 2O 2 crystal growth in the Na-Cu-O system

    NASA Astrophysics Data System (ADS)

    Maljuk, A. N.; Kulakov, A. B.; Sofin, M.; Capogna, L.; Lin, C. T.; Jansen, M.; Keimer, B.

    2005-02-01

    The phase equilibria in the Cu-rich part of the Na-Cu-O phase diagram have been investigated by DTA-TG and powder X-ray diffraction (XRD) methods at different oxygen pressures. Part of the preliminary Na-Cu-O phase diagram has been built up, and the low-stability-limit of the NaCu 2O 2 phase was established. Based on these data single crystals of NaCu 2O 2 compound were obtained for the first time by the self-flux technique. Powder and single crystal XRD measurements verify the high quality of prepared crystals. All crystals have the orthorhombic structure: a=6.2087(1) Å, b=2.9343(1) Å and c=13.0648(3) Å. The magnetic susceptibility and heat capacity measurements carried out on the NaCu 2O 2 single crystals in the temperature range 2-325 K showed clear evidence of antiferromagnetism at T=12.25 K.

  7. Determination of goslarite-bianchite equilibria by the humidity-buffer technique at 0.1 MPa

    USGS Publications Warehouse

    Chou, I.-Ming; Seal, R.R., II

    2005-01-01

    Goslarite-bianchite equilibria were determined along four humidity-buffer curves at 0.1 MPa and between 27 and 36 ??C. Results, based on tight reversals along each humidity buffer, can be represented by ln K (??0.005)=19.643-7015.38/T, where K is the equilibrium constant and T is temperature in K. Our data are in excellent agreement with several previous vapor-pressure measurements and are consistent with the solubility data reported in the literature. Thermodynamic analysis of these data yields 9.634 (??0.056) kJ mol-1 for the standard Gibbs free energy of reaction, which is in good agreement with the value of 9.658 kJ mol-1 calculated from the thermodynamic data compiled and evaluated by Wagman et al. [Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow. I., Bailey, S.M., Churney, K.L., Nuttal, R.L., 1982. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11, Suppl. 2].

  8. Postperovskite phase equilibria in the MgSiO3–Al2O3 system

    PubMed Central

    Tsuchiya, Jun; Tsuchiya, Taku

    2008-01-01

    We investigate high-P,T phase equilibria of the MgSiO3–Al2O3 system by means of the density functional ab initio computation methods with multiconfiguration sampling. Being different from earlier studies based on the static substitution properties with no consideration of Rh2O3(II) phase, present calculations demonstrate that (i) dissolving Al2O3 tends to decrease the postperovskite transition pressure of MgSiO3 but the effect is not significant (≈-0.2 GPa/mol% Al2O3); (ii) Al2O3 produces the narrow perovskite+postperovskite coexisting P,T area (≈1 GPa) for the pyrolitic concentration (xAl2O3 ≈6 mol%), which is sufficiently responsible to the deep-mantle D″ seismic discontinuity; (iii) the transition would be smeared (≈4 GPa) for the basaltic Al-rich composition (xAl2O3 ≈20 mol%), which is still seismically visible unless iron has significant effects; and last (iv) the perovskite structure spontaneously changes to the Rh2O3(II) with increasing the Al concentration involving small displacements of the Mg-site cations. PMID:19036928

  9. Supply-demand equilibria and the size-number trade-off in spatially structured recreational fisheries.

    PubMed

    Wilson, Kyle L; Cantin, Ariane; Ward, Hillary G M; Newton, Eric R; Mee, Jonathan A; Varkey, Divya A; Parkinson, Eric A; Post, John R

    2016-06-01

    Recreational fishing effort varies across complex inland landscapes (e.g., lake-districts) and appears influenced by both angler preferences and qualities of the fishery resource, like fish size and abundance. However, fish size and abundance have an ecological trade-off within a population, thereby structuring equal-quality isopleths expressing this trade-off across the fishing landscape. Since expressed preferences of recreational anglers (i.e., site-selection of high-quality fishing opportunities among many lakes) can be analogous to optimal foraging strategies of natural predators, adopting such concepts can aid in understanding scale-dependence in fish-angler interactions and impacts of fishing across broad landscapes. Here, we assumed a fish supply-angler demand equilibria and adapted a novel bivariate measure of fishing quality based on fish size and catch rates to assess how recreational anglers influence fishing quality among a complex inland landscape. We then applied this metric to evaluate (1) angler preferences for caught and released fish compared to harvested fish, (2) the nonlinear size-numbers trade-off with uncertainty in both traits, and (3) the spatial-scale of the equilibria across 62 lakes and four independent management regions in British Columbia's (BC) rainbow trout Oncorhynchus mykiss fishery. We found anglers had low preference for caught and released fish (~10% of the value compared to harvested fish), which modified anglers' perception of fishing quality. Hence, fishing quality and angler effort was not influenced simply by total fish caught, but largely by harvested fish catch rates. Fishing quality varied from BC's northern regions (larger fish and more abundant) compared to southern regions (smaller fish and less abundant) directly associated with a 2.5 times increase in annual fishing effort in southern regions, suggesting that latent fishing pressure can structure the size-numbers trade-off in rainbow trout populations. The

  10. Ternary liquid-liquid equilibria of dimethyl carbonate + 2-propanol + water system at 303.15 and 313.15 K

    NASA Astrophysics Data System (ADS)

    Ginting, Rizqy Romadhona; Mustain, Asalil; Tetrisyanda, Rizki; Gunardi, Ignatius; Wibawa, Gede

    2015-12-01

    In this work, liquid-liquid equilibria data of dimethyl carbonate (DMC) + 2-propanol + water system were accurately determined at 303.15 and 313.15 K using stirred and jacketed equilibrium cell under atmospheric pressure. The reliabilities of the experimental data were confirmed using Bachman-Brown correlation giving r-squared value of 0.9993 and 0.9983 at 303.15 and 313.15 K, respectively. Experimental data obtained in this work exhibit Treybal's Type I ternary phase behavior. The selectivity and distribution coefficient of DMC increases with addition of DMC concentration in the organic phase. On the other hand, the effect of temperature to phase boundary was found to be not significant. The data were correlated well using the Non-Random Two Liquid (NRTL) and Universal Quasi-Chemical (UNIQUAC) activity coefficient models with root-mean-square deviation of 1.5% and 1.3%, respectively.

  11. Hemoglobin-oxygen-carbon monoxide equilibria with the MWC model.

    PubMed

    Senozan, N M; DeVore, J A; Lesniewski, E K

    1998-11-16

    Fractional saturation equations for the Monod, Wyman and Changeux model are derived for the case of two distinct ligands bonding to a host molecule with four ligand sites and two conformational states. A variety of useful graphical studies can be derived from these equations when applied to normal human hemoglobin with O2 and CO as ligands. For example, the oxygen transport capability of hemoglobin can be assessed at different environmental CO levels and the concentrations of various liganded species can be displayed as a function of fractional saturation with oxygen. In addition, the CO pressure in the tissue, PCOtissue, can be calculated as a function of the tissue oxygen pressure, PO2tissue, at different environmental levels of CO. In an environment of a given CO concentration, PCOtissue decreases with PO2tissue until a minimum is reached. Further decrease in PO2tissue results in a fairly steep rise in PCOtissue. PMID:9857482

  12. Structure H clathrate hydrate equilibria of methane and adamantane

    SciTech Connect

    Lederhos, J.P.; Mehta, A.P.; Nyberg, G.B.; Narn, K.J.; Sloan, E.D. . Dept. of Chemical Engineering and Petroleum Refining)

    1992-07-01

    In this paper, the first phase equilibrium data are presented for Structure H hydrates. The data represent the initial formation of these hydrates from methane, with adamantane - a previously determined Structure H former. Temperature and pressure conditions are consistent with hydrocarbon production/transportation/ processing facilities. Structure H hydrates are shown to contain molecules indigenous to petroleum, which may not be present in natural gas.

  13. Molecular-thermodynamic framework for asphaltene-oil equilibria

    SciTech Connect

    Wu, J.; Prausnitz, J.M.; Firoozabadi, A.

    1998-05-01

    Asphaltene precipitation is a perennial problem in producing and refining crude oils. To avoid precipitation, it is useful to know the solubility of asphaltenes in petroleum liquids as a function of temperature, pressure and liquid-phase composition. In the novel molecular-thermodynamic framework presented here, both asphaltenes and resins are represented by pseudo-pure components while all other components in the solution are represented by a continuous medium that affects interactions among asphaltene and resin particles. The effect of the medium on asphaltene-asphaltene, resin-asphaltene, resin-resin pair interactions is taken into account through its density and dispersion-force properties. To obtain expressions for the chemical potential of asphaltene and for the osmotic pressure of an asphaltene-containing solution, the SAFT model is used in the framework of McMillan-Mayer theory, which considers hard-sphere repulsive, association and dispersion-force interactions. By assuming that asphaltene precipitation is a liquid-liquid equilibrium process, a variety of experimental observations can be explained, including effects of temperature, pressure, and composition on the phase behavior of asphaltene-containing fluids. For practical quantitative applications, the model outlined here requires molecular parameters that must be estimated from a few experimental data.

  14. Sound-driven fluid dynamics in pressurized carbon dioxide.

    PubMed

    van Iersel, Maikel M; Mettin, Robert; Benes, Nieck E; Schwarzer, Dirk; Keurentjes, Jos T F

    2010-07-28

    Using high-speed visualization we demonstrate that ultrasound irradiation of pressurized carbon dioxide (CO(2)) induces phenomena that do not occur in ordinary liquids at ambient conditions. For a near-critical mixture of CO(2) and argon, sonication leads to extremely fast local phase separation, in which the system enters and leaves the two-phase region with the frequency of the imposed sound field. This phase transition can propagate with the speed of sound, but can also be located at fixed positions in the case of a standing sound wave. Sonication of a vapor-liquid interface creates a fine dispersion of liquid and vapor, irrespective whether the ultrasound horn is placed in the liquid or the vapor phase. In the absence of an interface, sonication of the liquid leads to ejection of a macroscopic vapor phase from the ultrasound horn with a velocity of several meters per second in the direction of wave propagation. The findings reported here potentially provide a tunable and noninvasive means for enhancing mass and heat transfer in high-pressure fluids. PMID:20687647

  15. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect

    Vinayak N. Kabadi

    2000-05-01

    The Vapor Liquid Equilibrium measurement setup of this work was first established several years ago. It is a flow type high temperature high pressure apparatus which was designed to operate below 500 C temperature and 2000 psia pressure. Compared with the static method, this method has three major advantages: the first is that large quantity of sample can be obtained from the system without disturbing the equilibrium state which was established before; the second is that the residence time of the sample in the equilibrium cell is greatly reduced, thus decomposition or contamination of the sample can be effectively prevented; the third is that the flow system allows the sample to degas as it heats up since any non condensable gas will exit in the vapor stream, accumulate in the vapor condenser, and not be recirculated. The first few runs were made with Quinoline-Tetralin system, the results were fairly in agreement with the literature data . The former graduate student Amad used the same apparatus acquired the Benzene-Ethylbenzene system VLE data. This work used basically the same setup (several modifications had been made) to get the VLE data of Ethylbenzene-Quinoline system.

  16. Quantifying pressure variations from petrographic observations

    NASA Astrophysics Data System (ADS)

    Vrijmoed, Johannes C.; Podladchikov, Yuri Y.

    2015-04-01

    The existence of grain scale pressure variations has been established over the last decennia. Mineral reactions are often accompanied by volume and shape changes in a system where much heterogeneity in material properties exists. This gives rise to internal stresses and pressure variation during metamorphic reactions. The residual pressure in inclusions can be measured by Raman spectroscopy, but is restricted to a narrow range of minerals that (potentially) have a well calibrated Raman shift with pressure. Several alternative methods to quantify pressure variations from petrographic observations are presented. We distinguish equilibrium and non-equilibrium methods. Equilibrium methods are based on a newly developed method to predict phase equilibria and composition under a given pressure gradient. The pressure gradient can be found by iteratively matching predicted phase assemblages and composition with petrographic observations. Non-equilibrium methods involve the estimation of pressure variation in initial stages of reaction in which the system may still be isochoric. It then results in the potential pressure buildup for a given unreacted rock for example in the initial stages of dehydration of serpentinite in subduction settings.

  17. Chemical bonding in the outer core: high-pressure electronic structures of oxygen and sulfur in metallic iron

    USGS Publications Warehouse

    Sherman, David M.

    1991-01-01

    The electronic structures of oxygen and sulfur impurities in metallic iron are investigated to determine if pressure, temperature, and composition-induced changes in bonding might affect phase equilibria along the Fe-FeS and Fe-FeO binaries. -from Authors

  18. Ballooning mode stability for self-consistent pressure and current profiles at the H-mode edge

    SciTech Connect

    Miller, R.L.; Lin-Liu, Y.R.; Osborne, T.H.; Taylor, T.S.

    1997-11-01

    The edge pressure gradient (H-mode pedestal) for computed equilibria in which the current density profile is consistent with the bootstrap current may not be limited by the first regime ballooning limit. The transition to second stability is easier for: higher elongation, intermediate triangularity, larger ratio, pedestal at larger radius, narrower pedestal width, higher q{sub 95}, and lower collisionality.

  19. Equilibria Between Cell Membranes and Electrolyte Solution: Effect of Fatal Accidental Hypothermia.

    PubMed

    Petelska, Aneta D; Kotyńska, Joanna; Naumowicz, Monika; Figaszewski, Zbigniew A

    2016-06-01

    Equilibria between the membranes of erythrocytes as well as thrombocytes and solution ions in fatal accidental hypothermia were analyzed using a theoretical four-equilibria model. The model was developed to determinate parameters characterizing cell membrane-surrounding ion interactions: the total surface concentrations of both acidic and basic groups C A, C B, and association constants K AH, K BOH. Knowledge of these parameters was necessary to calculate the theoretical values of surface charge density. The model was validated by curve-fitting the experimental data points to simulated data generated by the model. The experimental and theoretical surface charge density values agree at pH 2-8, at higher pH the deviation was observed. PMID:26843064

  20. Rapidly convergent algorithms for 3-D tandem and stellarator equilibria in the paraxial approximation

    SciTech Connect

    McNamara, B.

    1984-04-01

    Tandem and stellarator equilibria at high ..beta.. have proved hard to compute and the relaxation methods of Bauer et al., Chodura and Schluter, Hirshman, Strauss, and Pearlstein et al. have been slow to converge. This paper reports an extension of the low-..beta.. analytic method of Pearlstein, Kaiser, and Newcomb to arbitrary ..beta.. for tandem mirrors which converges in 10 to 20 iterations. Extensions of the method to stellarator equilibria are proposed and are very close to the analytic method of Johnson and Greene - the stellarator expansion. Most of the results of all these calculations can be adequately described by low-..beta.. approximations since the MHD stability limits occur at low ..beta... The tandem mirror, having weak curvature and a long central cell, allows finite Larmor radius effects to eliminate most ballooning modes and offers the possibility of really high average ..beta... This is the interest in developing such three-dimensional numerical algorithms.

  1. Equilibria, stability and Hamiltonian Hopf bifurcation of a gyrostat in an incompressible ideal fluid

    NASA Astrophysics Data System (ADS)

    Guirao, Juan L. G.; Vera, Juan A.

    2012-10-01

    For a gyrostat in a incompressible ideal fluid, by writing Kirchhoff’s equations as a Lie-Poisson system and using a non-canonical Hamiltonian formulation, we provide the expressions of the equilibria when the gyrostatic momentum is constant with the form l=(0,0,l) and present necessary and sufficient conditions for the stability of some of them via the energy-Casimir method and the study of the linearized equations of the motion. Finally, using a recent geometric method introduced by Hanssmann and Van der Meer, we give a sufficient condition for the existence of a non-degenerate Hamiltonian Hopf bifurcation at those equilibria when the gyrostat is symmetric.

  2. Finding Bounded Rational Equilibria. Part 2; Alternative Lagrangians and Uncountable Move Spaces

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2004-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality characterizing all real-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. It has recently been shown that the same information theoretic mathematical structure, known as Probability Collectives (PC) underlies both issues. This relationship between statistical physics and game theory allows techniques and insights &om the one field to be applied to the other. In particular, PC provides a formal model-independent definition of the degree of rationality of a player and of bounded rationality equilibria. This pair of papers extends previous work on PC by introducing new computational approaches to effectively find bounded rationality equilibria of common-interest (team) games.

  3. Petrogenesis of Mt. Baker Basalts and Andesites: Constraints From Mineral Chemistry and Phase Equilibria

    NASA Astrophysics Data System (ADS)

    Mullen, E.; McCallum, I. S.

    2009-12-01

    Basalts in continental arcs are volumetrically subordinate to andesites and this is the case for Mt. Baker in the northern Cascade magmatic arc. However, basalts provide indirect evidence on mantle compositions and processes that produce magmas parental to the abundant andesites and dacites of the stratocones. Basalts at Mt. Baker erupted from monogenetic vents peripheral to the andesitic stratocone. Flows are variable in composition; some samples would more appropriately be classified as basaltic andesites. The “basalts” have relatively low Mg/(Mg+Fe) indicating that they have evolved from their original compositions. Samples studied are Park Butte, Tarn Plateau, Lk. Shannon, Sulphur Cr. basalts, and Cathedral Crag, Hogback, and Rankin Ridge basaltic andesites. Mt. Baker lavas belong to the calc-alkaline basalt suite (CAB) defined by Bacon et al. (1997) and preserve arc geochemical features. High alumina olivine tholeiite (HAOT) are absent. Equilibrium mineral pairs and whole rock compositions were used to calculate pre-eruptive temperatures, water contents, and redox states of the “basalts.” All samples have zoned olivine phenocrysts with Fo68 to Fo87 cores and chromite inclusions. Cpx and zoned plagioclase occur in all flows, but opx occurs only in Cathedral Crag, Rankin Ridge, and Tarn Plateau. Ti-magnetite and ilmenite coexist in all flows except for Sulphur Cr., Lk. Shannon and Hogback, which contain a single Fe-Ti oxide. Liquidus temperatures range from 1080 to 1232°C and are negatively correlated with water contents. Water contents estimated using liquidus depression due to H2O (0.8 to 5.4 wt.%) agree well with plag core-whole rock equilibria estimates (1.2 to 3.9 wt.%). Park Butte, Sulphur Cr. and Lk. Shannon had <1.5 wt.% H2O, and Cathedral Crag is most hydrous. Redox states from ol-chr pairs (QFM +0.1 to +2.8) and Fe-Ti oxide pairs (QFM -0.6 to +1.8) indicate that Park Butte and Sulphur Cr. are most oxidized and Cathedral Crag most reduced

  4. Swelling equilibria for cationic 2-hydroxyethyl methacrylate (HEMA)-based hydrogels

    SciTech Connect

    Baker, J.P.; Blanch, H.W.; Prausnitz, J.M.

    1993-08-01

    Cationic HEMA-based hydrogels were synthesized by copolymerizing HEMA with [(methacrylamido)propyl]trimethylammonium chloride (MAPTAC). Swelling equilibria were measured in pure water an in aqueous sodium chloride solutions. Hydrogel swelling is an increasing function of the MAPTAC content. A Flory-type swelling model using a concentration-dependent Flory {Chi} parameter semi-qualitatively describes poly(HEMA co-MAPTAC) hydrogel swelling in aqueous sodium chloride.

  5. Chemical equilibria of rare earth oxides in glow-discharge mass spectrometry

    SciTech Connect

    Mei, Y.

    1992-01-01

    This research centers around method development and fundamental exploration of the rare earth elements (REE) in glow discharge mass spectrometry (GDMS). The capability of GDMS to analyze directly solids materials eliminates the sample dissolution and preconcentration steps required by many other methods. The simplicity of sample preparation and instrumental operation makes GDMS a promising analytical technique for the field of earth science. Initial studies were dedicated to improving the detection sensitivity of GDMS in analyzing the REE. This was accomplished by eliminating water contamination, a factor that was found to prevent the conversion of the rare earth oxidized to their atomic form in the glow discharge plasma. Methods experimented for water elimination included the uses of both a cryogenic cooling device and getter reagents. When used to determine the REE concentrations in a standard rock sample, the chemical elimination approach yielded comparable results to that obtained by other analytical methods. Further studies focused on probing the chemical reactions involving the REE and other plasma constituents in the glow discharge. It is proposed that the availability of the atomic REE in the glow discharge is strongly influenced by the oxidant and reductant contents in the plasma. Species that contain oxygen tend to shift the redox equilibria of REE toward the formation of their oxides, whereas species that compete for oxygen help reduce the oxidant content in the plasma, and shift the REE redox equilibria toward the formation of the REE atoms. Factors that govern the reaction processes of the REE equilibria were investigated by means of plasma reagent introduction and time-resolved discharge operation. Results indicate that while redox equilibria between the elemental REE and their monoxides exist on the cathode surface and in the gas phase, interactions occurring in the gas phase are probably the main paths for this equilibration in the glow discharge.

  6. Sheared flow effects on ballooning instabilities in three-dimensional equilibria

    SciTech Connect

    Hegna, C.C.

    2005-12-15

    The stability of ideal magnetohydrodynamic ballooning modes in the presence of sheared flow is investigated for three-dimensional equilibria. Application of ballooning formalism reduces the problem to a partial differential equation in three dimensions that can be solved in the limit of small flow. Analytic calculations demonstrate the stabilizing effect of shear flow. The derived stability criterion generalizes prior work related to axisymmetric equilibrium with sheared toroidal flow.

  7. The global stability of coexisting equilibria for three models of mutualism.

    PubMed

    Georgescu, Paul; Zhang, Hong; Maxin, Daniel

    2016-02-01

    We analyze the dynamics of three models of mutualism, establishing the global stability of coexisting equilibria by means of Lyapunov's second method. This further establishes the usefulness of certain Lyapunov functionals of an abstract nature introduced in an earlier paper. As a consequence, it is seen that the use of higher order self-limiting terms cures the shortcomings of Lotka-Volterra mutualisms, preventing unbounded growth and promoting global stability. PMID:26776263

  8. Admissible Equilibria of Non-neutral Plasmas in a Malmberg-Penning Trap

    SciTech Connect

    Kotelnikov, Igor; Rome, Massimiliano

    2008-08-22

    A 'parallel current constraint' is derived, that in combination with the Poisson equation allows one to select admissible equilibria of non-neutral plasmas in a Malmberg-Penning trap in the presence of a nonuniform and nonaxisymmetric magnetic field. Asymmetry-induced currents (analogous to the Pfirsch-Schlueter currents in Tokamaks) appearing in a non-neutral plasma even in the absence of magnetic drifts are explicitly computed in the case of a uniformly tilted magnetic field.

  9. Admissible equilibria of non-neutral plasmas in a Malmberg-Penning trap.

    PubMed

    Kotelnikov, Igor; Romé, Massimiliano

    2008-08-22

    A "parallel current constraint" is derived, that in combination with the Poisson equation allows one to select admissible equilibria of non-neutral plasmas in a Malmberg-Penning trap in the presence of a nonuniform and nonaxisymmetric magnetic field. Asymmetry-induced currents (analogous to the Pfirsch-Schlüter currents in Tokamaks) appearing in a non-neutral plasma even in the absence of magnetic drifts are explicitly computed in the case of a uniformly tilted magnetic field. PMID:18764629

  10. Three-dimensional tokamak equilibria in the presence of resonant field errors

    SciTech Connect

    Reiman, A.; Monticello, D.

    1992-01-01

    Numerical solutions are described for three-dimensional MHD equilibria in the presence of resonant magnetic field perturbations. The effects of a realistic spectrum of resonant field errors are calculated for a range of current profiles. It is found that field errors of the magnitude existing in present day devices, and contemplated for future devices, can produce a set of magnetic islands occupying a significant fraction of the plasma cross-section.

  11. Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.

    PubMed

    Qin, Sanbo; Zhou, Huan-Xiang

    2016-08-25

    Chemical potential is a fundamental property for determining thermodynamic equilibria involving exchange of molecules, such as between two phases of molecular systems. Previously, we developed the fast Fourier transform (FFT)-based method for Modeling Atomistic Protein-crowder interactions (FMAP) to calculate excess chemical potentials according to the Widom insertion. Intermolecular interaction energies were expressed as correlation functions and evaluated via FFT. Here, we extend this method to calculate liquid-liquid phase equilibria of macromolecular solutions. Chemical potentials are calculated by FMAP over a wide range of molecular densities, and the condition for coexistence of low- and high-density phases is determined by the Maxwell equal-area rule. When benchmarked on Lennard-Jones fluids, our method produces an accurate phase diagram at 18% of the computational cost of the current best method. Importantly, the gain in computational speed increases dramatically as the molecules become more complex, leading to many orders of magnitude in speed up for atomistically represented proteins. We demonstrate the power of FMAP by reporting the first results for the liquid-liquid coexistence curve of γII-crystallin represented at the all-atom level. Our method may thus open the door to accurate determination of phase equilibria for macromolecular mixtures such as protein-protein mixtures and protein-RNA mixtures, that are known to undergo liquid-liquid phase separation, both in vitro and in vivo. PMID:27327881

  12. Theory of spatially non-symmetric kinetic equilibria for collisionless plasmas

    SciTech Connect

    Cremaschini, Claudio; Tessarotto, Massimo

    2013-01-15

    The problem posed by the possible existence/non-existence of spatially non-symmetric kinetic equilibria has remained unsolved in plasma theory. For collisionless magnetized plasmas, this involves the construction of stationary solutions of the Vlasov-Maxwell equations. In this paper, the issue is addressed for non-relativistic plasmas both in astrophysical and laboratory contexts. The treatment is based on a Lagrangian variational description of single-particle dynamics. Starting point is a non-perturbative formulation of gyrokinetic theory, which allows one to construct 'a posteriori' with prescribed order of accuracy an asymptotic representation for the magnetic moment. In terms of the relevant particle adiabatic invariants generalized bi-Maxwellian equilibria are proved to exist. These are shown to recover, under suitable assumptions, a Chapman-Enskog form which permits an analytical treatment of the corresponding fluid moments. In particular, the constrained posed by the Poisson and the Ampere equations are analyzed, both for quasi-neutral and non-neutral plasmas. The conditions of existence of the corresponding non-symmetric kinetic equilibria are investigated. As a notable feature, both astrophysical and laboratory plasmas are shown to exhibit, under suitable conditions, a kinetic dynamo, whereby the equilibrium magnetic field can be self-generated by the equilibrium plasma currents.

  13. Analysis of Complexation Equilibria of Polyacrylic Acid by a Donnan-Based Concept

    PubMed

    Miyajima; Mori; Ishiguro

    1997-03-01

    Complexation equilibria of uni- and divalent metal ions (Ag+, Ca2+, Cu2+, and Pb2+) with polyacrylic acid (PAA) have been studied at various degrees of dissociation (alpha) of PAA under different sodium salt concentration levels at 25°C. Both pH and pM(MZ+ = Ag+, Ca2+, Cu2+, and Pb2+) of equilibrium mixture solutions of MZ+/PAA/Na+ (excess) have been determined concurrently by a potentiometric titration method. The electrostatic effect inherent in the polyion-metal ion binding equilibria has been evaluated by a Donnan-based concept and is corrected for by the use of a nonideality term of acid dissociation equilibria of the polyacid as a probe. For Ag+-PAA and Ca2+-PAA bindings, only monodentate ligand complexes, (MA)(Z-1), have proven to be formed, whereas for Cu2+ and Pb2+ ion bindings, formation of both monodentate and bidentate ligand complexes have been observed. For both Cu2+-PAA and Pb2+-PAA systems, bidentate carboxylate complex formation is predominant at alpha > ca. 0.3, whereas at alpha < ca. 0.3, formation of monodentate carboxylate complexes becomes appreciable as alpha decreases. Stability constants of these complexes together with the intra-molecular complexation equilibrium constants expressed by the ratio of the concentrations of bidentate complexes to monodentate complexes have successfully been evaluated and are compared with each other in order to discuss the multidentate complexation properties of the polycarboxylic acid. PMID:9245334

  14. Catalytic hydrogenation process and apparatus with improved vapor liquid separation

    DOEpatents

    Chervenak, Michael C.; Comolli, Alfred G.

    1980-01-01

    A continuous hydrogenation process and apparatus wherein liquids are contacted with hydrogen in an ebullated catalyst reaction zone with the liquids and gas flowing vertically upwardly through that zone into a second zone substantially free of catalyst particles and wherein the liquid and gases are directed against an upwardly inclining surface through which vertical conduits are placed having inlet ends at different levels in the liquid and having outlet ends at different levels above the inclined surface, such that vapor-rich liquid is collected and discharged through conduits terminating at a higher level above the inclined surface than the vapor-poor liquid which is collected and discharged at a level lower than the inclined surface.

  15. Two-Step Vapor/Liquid/Solid Purification

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1986-01-01

    Vertical distillation system combines in single operation advantages of multiple zone refining with those of distillation. Developed specifically to load Bridgman-Stockbarger (vertical-solidification) growth ampoules with ultrapure tellurium and cadmium, system, with suitable modifications, serves as material refiner. In first phase of purification process, ampoule heated to drive off absorbed volatiles. Second phase, evaporator heated to drive off volatiles in charge. Third phase, slowly descending heater causes distillation from evaporator to growing crystal in ampoule.

  16. Effect of dimensionality on vapor-liquid phase transition

    SciTech Connect

    Singh, Sudhir Kumar

    2014-04-24

    Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  17. Phase equilibria in systems of formates with isobutyl alcohol

    SciTech Connect

    Seselkin, I.V.; Garber, Y.N.; Mironenko, V.F.

    1985-09-01

    The borate method, based on esterification with boric acid, was proposed for isolation of isobutyl alchohol. The method inv olves formation and hydrolysis of alkyl borate esters; in particular, formation and hydrolysis of triisobutyl borate. Esterification of isobutyl alcohol with boric acid is a reversible equilibrium reaction, and therefore in order to obtain high yields the water formed in the reaction must be removed. The presence of other organic compounds, which do not react with boric acid, in the mixture does not affect esterification of the alcohol. The reaction proceeds at 95-100/sup 0/ under atmospheric pressure. It was found that up to 97% of the isobutyl alcohol combines with boric acid. The resultant triisobutyl borate is isolated by ordinary distillation and then hydrolyzed to form boric acid and isobutyl alcohol.

  18. Pressure-composition relations for coexisting gases and liquids and the critical points in the system NaCl-H/sub 2/O at 450, 475, and 500/sup 0/Ccks

    SciTech Connect

    Rosenbauer, R.J.; Bischoff, J.L.

    1987-09-01

    Pressure-temperature-composition (P, T, x) relations for the co-existing vapor and liquid phases in the system NaCl-H/sub 2/O were determined experimentally at 450, 475, and 500/sup 0/C. Data for each isotherm include P-x relations near the critical point and extend to the three-phase assemblage vapor-liquid-halite on the vapor side. On the liquid side the P-x data range from the critical point to the room-temperature halite saturation point (approx. 25 wt.% NaCl). Critical pressures were calculated from measured pressures and compositions and classical theory. The results generally support the few data points of Urusova and Oelander and Liander but differ markedly from the extensive data of Sourirajan and Kennedy.

  19. Priming Silicic Giant Magma Bodies: Finding Evidence for Internal Forcing Versus External Triggering of Supereruptions by Phase Equilibria Modeling.

    NASA Astrophysics Data System (ADS)

    Tramontano, S.; Gualda, G. A. R.; Ghiorso, M. S.; Kennedy, B.

    2015-12-01

    It is important to understand what triggers silicic eruptions because of the implications for modern-day systems. The goal of this project is to use phase equilibria modeling (i.e. rhyolite-MELTS) to determine to what extent magmas within the crust are induced to erupt due to external triggers (e.g. earthquakes; new magma injection; neighboring eruptions) and to what extent they naturally evolve to a point where eruption is inevitable (e.g. by fluid exsolution and decrease in magma strength and density). Whole-rock compositions from four rhyolite tuffs across the globe associated with large or supereruptions (Mamaku Tuff, New Zealand; Peach Spring Tuff, SW USA; early and late-erupted Bishop Tuff, California; and Toba Tuff, Indonesia) are studied using rhyolite-MELTS modeling. Key physical properties of magma are strongly affected by the initial volatile content due to fluid exsolution. By running simulations with varying water contents, we can track the evolution of fluid exsolution during crystallization. Isobaric (constrained temperature change at constant pressure) and isochoric (constrained temperature change at constant volume) models were run for the four compositions. In constrained-pressure scenarios, fluid is free to exsolve as crystallization proceeds, and the total system volume can increase or decrease accordingly; this would require deformation of the surrounding crust to accommodate the magma volume change. In constrained-volume scenarios, bubble exsolution is limited to the volume change due to crystallization; in this case, pressure can decrease or increase (if bubbles are absent or present). For fixed-pressure scenarios, fluid exsolution is more extensive and leads to internal triggering, at least for fluid-saturated conditions; external triggering is more likely in fluid-undersaturated conditions. For fixed-volume scenarios, none of the systems cross a fragmentation threshold for the crystal contents typically observed in natural pumice. If

  20. THERMAL EQUILIBRIA OF MAGNETICALLY SUPPORTED BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Oda, H.; Machida, M.; Nakamura, K. E.; Matsumoto, R.

    2009-05-20

    We present new thermal equilibrium solutions for optically thin and optically thick disks incorporating magnetic fields. The purpose of this paper is to explain the bright hard state and the bright/slow transition observed in the rising phases of outbursts in black hole candidates. On the basis of the results of three-dimensional magnetohydrodynamic simulations, we assume that magnetic fields inside the disk are turbulent and dominated by the azimuthal component and that the azimuthally averaged Maxwell stress is proportional to the total (gas, radiation, and magnetic) pressure. We prescribe the magnetic flux advection rate to determine the azimuthal magnetic flux at a given radius. Local thermal equilibrium solutions are obtained by equating the heating, radiative cooling, and heat advection terms. We find magnetically supported ({beta} = (p {sub gas} + p {sub rad})/p {sub mag} < 1), thermally stable solutions for both optically thin disks and optically thick disks, in which the heating enhanced by the strong magnetic field balances the radiative cooling. The temperature in a low-{beta} disk (T {approx} 10{sup 7}-10{sup 11}K) is lower than that in an advection-dominated accretion flow (or radiatively inefficient accretion flow) but higher than that in a standard disk. We also study the radial dependence of the thermal equilibrium solutions. The optically thin, low-{beta} branch extends to M-dot{approx}>0.1 M-dot{sub Edd}, where M-dot is the mass accretion rate and M-dot{sub Edd} is the Eddington mass accretion rate, in which the temperature anticorrelates with the mass accretion rate. Thus, optically thin low-{beta} disks can explain the bright hard state. Optically thick, low-{beta} disks have the radial dependence of the effective temperature T {sub eff} {proportional_to} piv{sup -3/4}. Such disks will be observed as staying in a high/soft state. Furthermore, limit cycle oscillations between an optically thick low-{beta} disk and a slim disk will occur because

  1. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body’s organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart ...

  2. Blood pressure

    MedlinePlus Videos and Cool Tools

    Normal blood pressure is important for proper blood flow to the body’s organs and tissues. The force of the blood on the walls of the arteries is called blood pressure. Blood pressure is measured both ...

  3. CRYOCHEM, Thermodynamic Model for Cryogenic Chemical Systems: Solid-Vapor and Solid-Liquid-Vapor Phase Equilibria Toward Applications on Titan and Pluto

    NASA Astrophysics Data System (ADS)

    Tan, S. P.; Kargel, J. S.; Adidharma, H.; Marion, G. M.

    2014-12-01

    Until in-situ measurements can be made regularly on extraterrestrial bodies, thermodynamic models are the only tools to investigate the properties and behavior of chemical systems on those bodies. The resulting findings are often critical in describing physicochemical processes in the atmosphere, surface, and subsurface in planetary geochemistry and climate studies. The extremely cold conditions on Triton, Pluto and other Kuiper Belt Objects, and Titan introduce huge non-ideality that prevents conventional models from performing adequately. At such conditions, atmospheres as a whole—not components individually—are subject to phase equilibria with their equilibrium solid phases or liquid phases or both. A molecular-based thermodynamic model for cryogenic chemical systems, referred to as CRYOCHEM, the development of which is still in progress, was shown to reproduce the vertical composition profile of Titan's atmospheric methane measured by the Huygens probe (Tan et al., Icarus 2013, 222, 53). Recently, the model was also used to describe Titan's global circulation where the calculated composition of liquid in Ligeia Mare is consistent with the bathymetry and microwave absorption analysis of T91 Cassini fly-by data (Tan et al., 2014, submitted). Its capability to deal with equilibria involving solid phases has also been demonstrated (Tan et al., Fluid Phase Equilib. 2013, 360, 320). With all those previous works done, our attention is now shifting to the lower temperatures in Titan's tropopause and on Pluto's surface, where much technical development remains for CRYOCHEM to assure adequate performance at low temperatures. In these conditions, solid-vapor equilibrium (SVE) is the dominant phase behavior that determines the composition of the atmosphere and the existing ices. Another potential application is for the subsurface phase equilibrium, which also involves liquid, thus three-phase equilibrium: solid-liquid-vapor (SLV). This presentation will discuss the

  4. Tokamak equilibria and transport based on Grad's thirteen moment description

    SciTech Connect

    Tippett, M.K.

    1992-06-01

    In this thesis, I study collisional transport of a hot magnetically confined plasma in a tokamak. The weakly collisional plasma is modeled by Grad's two-fluid thirteen moment equations. This model provides a better treatment of the stresses and the heat fluxes than do collisional fluid models such as Braginski's. Using physical parameters for a typical tokamak, I estimate the orders of magnitude of various effects. I obtain a reduced system by neglecting small terms in the two-fluid thirteen moment equations. This reduced model includes small particle flows, pressure anisotropy and temperature variation within flux surfaces. The reduced model is compared with standard fluid models. To understand better the behavior of solutions of this system, I expand the solution in a formal series in powers of the small parameter (m{sub e}/m{sub i}){sup 1/4}. Flux coordinates are used to solve the equations in a general axisymmetric geometry. In lowest order, the equilibrium solution consists of a number of arbitrary flux functions together with a Grad-Shafranov equation relating the poloidal flux and the toroidal current. The energy dynamics of the system is complicated and requires determining the solution to high order. As corrections to the lowest order solution are calculated, the equilibrium is extended to successively longer time scales until on the time scale {tau}{sub e}m{sub i}/m{sub e}, time independent solutions are in general not possible. I calculate the time evolution of the lowest order solution on the time scale {tau}m{sub i}/m{sub e}, a time scale consistent with experiment.

  5. Experimental Studies of Phase Equilibria of Meteorites and Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Stolper, Edward M.

    2005-01-01

    The primary theme of this project was the application of experimental petrology and geochemistry to a variety of problems in meteoritics and planetary geology. The studies were designed to help develop constraints on the histories of primitive meteorites and their components, the environments in which they formed and evolved, and to understand quantitatively the processes involved in the evolution of igneous rocks on the earth and other planetary bodies. We undertook several projects relating to the origin of CAIs and chondrules. Systematics in the thermodynamic properties of CAI-like liquids were investigated and used to elucidate speciation of multi-valent cations and sulfide capacity of silicate melts and to constrain redox conditions and the vapor pressures of volatile species over molten chondrules. We experimentally determined vanadium speciation in meteoritic pyroxenes and in pyroxenes crystallized from CAI-like melts under very reducing conditions. We also found that bulk oxygen isotope compositions of chondrules in the moderately unequilibrated LL chondrites are related to the relative timing of plagioclase crystallization. We completed an experimental study on the vaporization of beta-SiC and SiO2 (glass or cristobalite) in reducing gases and established the conditions under which these presolar grains could have survived in the solar nebula. We expanded our technique for determining the thermodynamic properties of minerals and liquids to iron-bearing systems. We determined activity-composition relationships in Pt-Fe, Pt-Cr and Pt-Fe-Cr alloys. Results were used to determine the thermodynamic properties of chromite-picrochromite spinels including the free energy of formation of end-member FeCr2O4. We also established a new approach for evaluating Pt-Fe saturation experiments. We calculated the T-fO2 relationships in equilibrated ordinary chondrites and thereby constrained the conditions of metamorphism in their parent bodies.

  6. Chemical equilibria involved in the oxygen-releasing step of manganese ferrite water-splitting thermochemical cycle

    SciTech Connect

    Seralessandri, L.; Bellusci, M.; Alvani, C.; La Barbera, A.; Padella, F.; Varsano, F.

    2008-08-15

    Sodium ferrimanganite carbonatation reaction was investigated at different temperatures/carbon dioxide partial pressures to evaluate the feasibility of the thermochemical water-splitting cycle based on the MnFe{sub 2}O{sub 4}/Na{sub 2}CO{sub 3}/Na(Mn{sub 1/3}Fe{sub 2/3})O{sub 2} system. After thermal treatments in selected experimental conditions, the obtained powder samples were investigated by using the X-ray diffraction (XRD) technique and Rietveld analysis. Two different lamellar Na{sub 1-x}Mn{sub 1/3}Fe{sub 2/3}O{sub 2-{delta}} phases were observed together with the expected MnFe{sub 2}O{sub 4}/Na{sub 2}CO{sub 3} mixture. Different equilibrium regions among sodium-depleted lamellar phases, manganese ferrite and sodium carbonate were found as a function of the different reaction conditions. A hypothesis concerning the regeneration mechanism of the initial compounds is proposed. Chemical equilibrium between stoichiometric and sub-stoichiometric forms of sodium ferrimanganite and sodium carbonate formation/dissociation appears to be essential factors governing the oxygen-releasing step of the manganese ferrite thermochemical cycle. - Graphical abstract: Na(Mn{sub 1/3}Fe{sub 2/3})O{sub 2} disproportion reaction in the presence of CO{sub 2} was studied. Chemical equilibria among Na{sub 1-x}(Mn{sub 1/3}Fe{sub 2/3})O{sub 2}, MnFe{sub 2}O{sub 4} and Na{sub 2}CO{sub 3} compounds were evidenced and studied by means of Rietveld analysis performed on XRD patterns. Two different sodium-depleted lamellar structures were identified. The role of sodium carbonate formation/dissociation equilibrium in the oxygen-releasing step of the manganese ferrite thermochemical cycle has been highlighted.

  7. Constraints on Ureilite Petrogenesis and Carbon-Metal-Silicate Equilibria on the UPB

    NASA Astrophysics Data System (ADS)

    Goodrich, C. A.; Holloway, J. R.

    1992-07-01

    gases were retained in some carbon phases. 9) Ureilites formed at ~4.55 Ga but both Sm-Nd and Rb-Sr isotopic systematics have been subsequently disturbed. Constraints 1-4 are best met if ureilites are partial melt residues produced by ~25% equilibrium partial melting on an oxygen-isotopically heterogeneous parent body in >=6 distinct melting zones. If there was no global magma ocean, km-sized melting zones would not equilibrate oxygen with one another in 10 m.y. Constraints 5 and 6 appear difficult to reconcile. If the UPB inherited a nebular oxygen isotope-mg correlation how could this correlation have survived partial melting? If the melting zones all experienced approximately the same degree of melting (Mn/Mg, Cr/Mg, and HRE provide evidence for this), and silicate equilibria determined mg, then the original correlation may simply have shifted to higher mg, consistent with the position of the ureilite trend relative to the Allende trends (Fig. 1). However, if mg was depth-dependent then it is unlikely that any oxygen isotope-mg correlation would remain. Also, noble gases in carbon would be lost (violating constraint 8) during carbon redox reactions. All constraints would be better met if graphite-metal-silicate-CO/CO2 equilibrium was not established during partial melting. If graphite was primary but a CO/CO2 fluid phase was not present then there would have been no pressure/depth dependence of fO(sub)2. As long as the pressure was sufficiently high (~100-200 bars) to stabilize the most ferroan ureilite (Fo 76) then the more magnesian ureilites would have been stable in the presence of graphite and metal. On the other hand, constraints 7, 8, and 9 could be neatly met if most of the carbon was not primary but a carbon-metal-noble gas assemblage was added as a late component to the ultramafic rocks. The cohenite-bearing metallic spherules are rare and tiny (10-50 micrometers) compared to interstitial metal (mm-sized irregular grains). They appear to have been droplets

  8. Pressure Sores

    MedlinePlus

    ... may form. Pressure sores are also called bedsores, pressure ulcers and decubitus ulcers. Symptoms What are the symptoms ... do to help pressure sores heal: Relieving the pressure that caused the sore Treating the sore itself Improving nutrition and other conditions to help the sore heal ...

  9. Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: Calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mt. St. Helens

    SciTech Connect

    Symonds, R.B. ); Reed, M.H. )

    1993-10-01

    This paper documents the numerical formulations, thermochemical data base, and possible applications of computer programs, SOLVGAS and GASWORKS, for calculating multicomponent chemical equilibria in gas-solid-liquid systems. SOLVGAS and GASWORKS compute simultaneous equilibria by solving simultaneously a set of mass balance and mass action equations written for all gas species and for all gas-solid or gas-liquid equilibria. The programs interface with a thermo-chemical data base, GASTHERM, which contains coefficients for retrieval of the equilibrium constants from 25[degrees] to 1200[degrees]C. The programs and data base model dynamic chemical processes in 30- to 40-component volcanic-gas systems. The authors can model gas evaporation from magma, mixing of magmatic and hydrothermal gases, precipitation of minerals during pressure and temperature decrease, mixing of volcanic gas with air, and reaction of gases with wall rock. Examples are given of the gas-evaporation-from-magma and precipitation-with-cooling calculations for volcanic gases collected from Mt. St. Helens in September 1981. The authors predict: (1) the amounts of trace elements volatilized from shallow magma, deep magma, and wall rock, and (2) the solids that precipitate from the gas upon cooling. The predictions are tested by comparing them with the measured trace-element concentrations in gases and the observed sublimate sequence. This leads to the following conclusions: (1) most of the trace elements in the Mt. St. Helens gases are volatilized from shallow magma as simple chlorides; (2) some elements (for example, Al, Ca) exist dominantly in rock aerosols, not gases, in the gas stream; (3) near-surface cooling of the gases triggers precipitation of oxides, sulfides, halides, tungstates, and native elements; and (4) equilibrium cooling of the gases to 100[degrees]C causes most trace elements, except for Hg, Sb, and Se, to precipitate from the gas. 94 refs., 30 figs., 7 tabs.

  10. Free-Boundary 3D Equilibria and Resistive Wall Instabilities with Extended-MHD

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.

    2015-11-01

    The interaction of the plasma with external currents, either imposed or induced, is a critical element of a wide range of important tokamak phenomena, including resistive wall mode (RWM) stability and feedback control, island penetration and locking, and disruptions. A model of these currents may be included within the domain of extended-MHD codes in a way that preserves the self-consistency, scalability, and implicitness of their numerical methods. Such a model of the resistive wall and non-axisymmetric coils is demonstrated using the M3D-C1 code for a variety of applications, including RWMs, perturbed non-axisymmetric equilibria, and a vertical displacement event (VDE) disruption. The calculated free-boundary equilibria, which include Spitzer resistivity, rotation, and two-fluid effects, are compared to external magnetic and internal thermal measurements for several DIII-D discharges. In calculations of the perturbed equilibria in ELM suppressed discharges, the tearing response at the top of the pedestal is found to correlate with the onset of ELM suppression. Nonlinear VDE calculations, initialized using a vertically unstable DIII-D equilibrium, resolve in both space and time the currents induced in the wall and on the plasma surface, and also the currents flowing between the plasma and the wall. The relative magnitude of these contributions and the total impulse to the wall depend on the resistive wall time, although the maximum axisymmetric force on the wall over the course of the VDE is found to be essentially independent of the wall conductivity. This research was supported by US DOE contracts DE-FG02-95ER54309, DE-FC02-04ER54698 and DE-AC52-07NA27344.

  11. Nash Equilibria and the Price of Anarchy for Flows over Time

    NASA Astrophysics Data System (ADS)

    Koch, Ronald; Skutella, Martin

    We study Nash equilibria in the context of flows over time. Many results on static routing games have been obtained over the last ten years. In flows over time (also called dynamic flows), flow travels through a network over time and, as a consequence, flow values on edges are time-dependent. This more realistic setting has not been tackled from the viewpoint of algorithmic game theory yet; but there is a rich literature on game theoretic aspects of flows over time in the traffic community.

  12. Phase equilibria in the condensed system n-docosane-cyclododecane- n-decane

    NASA Astrophysics Data System (ADS)

    Shamitov, A. A.; Garkushin, I. K.; Kolyado, A. V.

    2016-07-01

    Phase equilibria in the system n-docosane-cyclododecane-n-decane are studied by means of differential thermal analysis. It is found that the system is of the eutectic type. The temperature of eutectic melting is found to be-34.9°C, the n-docosane content is 3.5 wt %, the n-decane content is 86.5 wt %, and the cyclododecane content is 10.0 wt %. It is concluded that the results can be used to create new optimal heatstorage materials.

  13. Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids

    NASA Technical Reports Server (NTRS)

    Larson, D. J., Jr.

    1975-01-01

    Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.

  14. Stabilization of the stochastically forced equilibria for nonlinear discrete-time systems with incomplete information

    SciTech Connect

    Ryashko, Lev

    2015-11-30

    A stabilization problem of the equilibrium of stochastically forced nonlinear discrete-time system with incomplete information is considered. Our approach uses a regulator which synthesizes the required stochastic sensitivity of the equilibrium. Mathematically, this problem is reduced to the solution of some quadratic matrix equations. A description of attainability sets and algorithms for regulators design is given. The general results are applied to the suppression of unwanted large-amplitude oscillations around the equilibria of the stochastically forced Verhulst model with noisy observations.

  15. The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model

    NASA Astrophysics Data System (ADS)

    Anggriani, N.; Supriatna, A. K.; Soewono, E.

    2015-06-01

    In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.

  16. Evolution of generalized two-dimensional magnetotail equilibria in ideal and resistive MHD

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Sitnov, M. I.; Lyon, J. G.

    2015-03-01

    We present results of two-dimensional (2-D) magnetohydrodynamic (MHD) simulations of the terrestrial magnetotail. A regional adaptation of the Lyon-Fedder-Mobarry global MHD model is used. As initial conditions, we employ a class of asymptotic magnetotail equilibria with and without an accumulation of magnetic flux at the tailward end (a Bz hump). The former have been recently shown by full particle simulations to be unstable to a kinetic mode with formal properties of ion tearing. Thus, our goal here is to investigate the evolution of the same equilibria in the MHD approximation and assist in the physical interpretation of the kinetic simulations. This is additionally motivated by the energy principle considerations which suggest that if the system is unstable kinetically, it may also be unstable ideally. To seek dynamical MHD regimes similar to those observed in kinetic simulations, we implement two sets of boundary conditions (velocity balanced, VB, and momentum balanced, MB), one allowing plasma flows through the boundaries and the other inhibiting such flows. The use of more reflecting MB boundary conditions results in suppression of any significant dynamics, and we see no substantial changes beyond initial equilibrium relaxation. On the other hand, VB boundary conditions allow a more efficient relaxation of initial equilibrium and absorb subsequently generated plasma flows. With these boundary conditions we find the equilibrium without a flux accumulation (i.e., with constant magnetic field component normal to the current sheet) to develop an apparently resistive mode accompanied by tailward plasma flows. At the same time, the equilibria with a Bz hump of sufficiently large amplitude develop a different, ideal, mode characterized by spontaneous generation of earthward plasma flows and an exponential growth of the corresponding electric field. This growth is qualitatively similar to the corresponding fully kinetic simulations although no explosive growth of

  17. Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia integrable system

    NASA Astrophysics Data System (ADS)

    Logacheva, Nina S.

    2012-01-01

    The paper is devoted to a topological analysis of the Kovalevskaya-Yehia integrable case in rigid body dynamics. It is proved that the integral has the Bott property on isoenergy surfaces of the system; the topology of the Liouville foliation in a neighbourhood of degenerate 1-dimensional orbits and equilibria (points of rank 0) is also described. In particular, marked loop molecules are constructed for degenerate 1-dimensional orbits, and a representation in the form of an almost direct product is found for nondegenerate singularities of rank 0. Bibliography: 17 titles.

  18. Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia integrable system

    SciTech Connect

    Logacheva, Nina S

    2012-01-31

    The paper is devoted to a topological analysis of the Kovalevskaya-Yehia integrable case in rigid body dynamics. It is proved that the integral has the Bott property on isoenergy surfaces of the system; the topology of the Liouville foliation in a neighbourhood of degenerate 1-dimensional orbits and equilibria (points of rank 0) is also described. In particular, marked loop molecules are constructed for degenerate 1-dimensional orbits, and a representation in the form of an almost direct product is found for nondegenerate singularities of rank 0. Bibliography: 17 titles.

  19. Phase equilibria and crystal chemistry of rubidium niobates and rubidium tantalates

    NASA Technical Reports Server (NTRS)

    Minor, D. B.; Roth, R. S.; Parker, H. S.; Brower, W. S.

    1977-01-01

    The phase equilibria relations and crystal chemistry of portions of the Rb2O-Nb2O5 and Rb2O-Ta2O5 systems were investigated for structures potentially useful as ionic conductors. A hexagonal tungsten bronze-type (HTB) structure was found in both systems as well as three hexagonal phases with mixed HTB-pyrochlore type structures. Ion exchange experiments between various alkali ions are described for several phases. Unit cell dimensions and X-ray diffraction powder patterns are reported.

  20. Effect of long-range interactions on ion equilibria in liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Dufrêche, J.-F.; Zemb, Th.

    2015-02-01

    We demonstrate here that equilibria of electrolytes between a water phase and an (organic) solvent phase containing amphiphilic extractants depend not only on complexation toward nearest neighbors but also on long range supramolecular interactions (LRI). Taking into account bulk, polarization and chain reorganization terms, we show that the net free energy difference associated with one metal ion transfer from water results from a strong inhibition (>25 kBT/ metal ion) due to colloidal long range interactions competing with differences in complexation considered in surpramolecular chemistry (≈-30 kBT/ metal ion). LRI also influence selectivity.