Science.gov

Sample records for pressure-induced polymorphic transition

  1. First principles study of pressure induced polymorphic phase transition in KNO3

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Vaitheeswaran, G.

    2015-06-01

    We report the structural, elastic, electronic, and vibrational properties of polymorphic phases II and III of KNO3 based on density functional theory (DFT). Using semi-empirical dispersion correction (DFT-D2) method, we predicted the correct thermodynamic ground state of KNO3 and the obtained ground state properties of the polymorphs are in good agreement with the experiments. We further used this method to calculate the elastic constants, IR and Raman spectra, vibrational frequencies and their assignment of these polymorphs. The calculated Tran Blaha-modified Becke Johnson (TB-mBJ) electronic structure shows that both the polymorphic phases are direct band gap insulators with mixed ionic and covalent bonding. Also the TB-mBJ band gaps are improved over standard DFT functionals which are comparable with the available experiments.

  2. First principles study of pressure induced polymorphic phase transition in KNO{sub 3}

    SciTech Connect

    Yedukondalu, N.; Vaitheeswaran, G.

    2015-06-24

    We report the structural, elastic, electronic, and vibrational properties of polymorphic phases II and III of KNO{sub 3} based on density functional theory (DFT). Using semi-empirical dispersion correction (DFT-D2) method, we predicted the correct thermodynamic ground state of KNO{sub 3} and the obtained ground state properties of the polymorphs are in good agreement with the experiments. We further used this method to calculate the elastic constants, IR and Raman spectra, vibrational frequencies and their assignment of these polymorphs. The calculated Tran Blaha-modified Becke Johnson (TB-mBJ) electronic structure shows that both the polymorphic phases are direct band gap insulators with mixed ionic and covalent bonding. Also the TB-mBJ band gaps are improved over standard DFT functionals which are comparable with the available experiments.

  3. Pressure-induced phase transition in pentacene

    NASA Astrophysics Data System (ADS)

    Farina, L.; Brillante, A.; Della Valle, R. G.; Venuti, E.; Amboage, M.; Syassen, K.

    2003-07-01

    We have recently studied two solid phases of bulk pentacene (polymorphs H and C) by means of lattice phonon Raman spectroscopy. The assignment, previously based on lattice dynamics calculations alone, is now verified by X-ray diffraction measurements, conclusively confirming the existence of both polymorphs. Furthermore, Raman phonon spectra indicate a pressure-induced phase transition where the polymorph C (lower density phase) transforms to the H form (higher density phase). The onset pressure for the phase transition is only 0.2 GPa. The phase change is irreversible.

  4. The Pressure-Induced Polymorphic Transformations in Fluconazole.

    PubMed

    Gorkovenko, Ekaterina A; Kichanov, Sergey E; Kozlenko, Denis P; Belushkin, Alexandr V; Wąsicki, Jan; Nawrocik, Wojciech; Mielcarek, Jadwiga; Dubrovinsky, Leonid S; Lathe, Christian; Savenko, Boris N

    2015-12-01

    The structural properties and Raman spectra of fluconazole have been studied by means of X-ray diffraction and Raman spectroscopy at pressures up to 2.5 and 5.5 GPa, respectively. At a pressure of 0.8 GPa, a polymorphic phase transition from the initial form I to a new triclinic form VIII has been observed. At higher pressure of P = 3.2 GPa, possible transformation into another new polymorphic form IX has been detected. The unit cell parameters and volumes, and vibration modes as functions of pressure have been obtained for the different forms of fluconazole. PMID:26367523

  5. Pressure-induced phase transition in CrO2.

    PubMed

    Alptekin, Sebahaddin

    2015-12-01

    The ab initio constant pressure molecular dynamics technique and density functional theory with generalized gradient approximation (GGA) was used to study the pressure-induced phase transition of CrO2. The phase transition of the rutile (P42/mnm) to the orthorhombic CaCl2 (Pnnm) structure at 30 GPa was determined successfully in a constant pressure simulation. This phase transition was analyzed from total energy calculations and, from the enthalpy calculation, occurred at around 17 GPa. Structural properties such as bulk modules, lattice parameters and phase transition were compared with experimental results. The phase transition at 12 ± 3 GPa was in good agreement with experimental results, as was the phase transition from the orthorhombic CaCl2 (Pnnm) to the monoclinic (P21/c) structure also found at 35 GPa. PMID:26541468

  6. Pressure-induced phase transitions and metallization in VO2

    NASA Astrophysics Data System (ADS)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  7. Elasticity and Pressure-induced Phase Transition in Coesite from Experiments and First Principle Calculations

    NASA Astrophysics Data System (ADS)

    Chen, T.; Wang, X.; Qi, X.; Ma, M.; Xu, Z.; Li, B.

    2015-12-01

    Coesite (space group C2/c) is a high-pressure polymorph of quartz. The behavior of coesite under pressure has long been of interest due to its abundance in the Earth's crust and mantle, and its relative simple chemistry but rich polymorphisms under elevated pressure and/or temperature conditions. A most recent Raman spectroscopy study reported two pressure-induced phase transitions at ~23 (coesite-II) and ~35 GPa, respectively. To further understand the properties of these pressure-induced phase transitions, we conducted X-ray diffraction experiments starting with coesite powder in a diamond anvil cell up to 31 GPa, and performed first-principle calculations on coesite, coesite-II (space group P21/n), and stishovite at 0 K up to 45 GPa. X-ray diffraction data show the formation of coesite-II at pressures above 20 GPa, which is consistent with first principles calculations that the enthalpy of coesite-II becomes lower than that of coesite above 21.4 GPa. Coesite is very anisotropic with the a-axis twice more compressible than the b- and c-axis. By comparison, coesite-II is less anisotropic, with a similar compressibility in a-, b-, and c-axis. As analyzed by a third-order Eulerian finite strain equation of state, the bulk modulus of coesite at 21.4 GPa is 180.6 GPa, and that of coesite-II is 140.8 GPa, indicating that coesite-II is much more compressible than coesite. If coesite-coesite-II transition occurs in cold subduction zones, it will change the elasticity as well as anisotropic properties of the subducted MORB, due to the different compressional behavior between coesite and coesite-II.

  8. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    SciTech Connect

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  9. Pressure-induced reversible phase transition in thiourea dioxide crystal

    SciTech Connect

    Wang, Qinglei; Yan, Tingting; Zhu, Hongyang; Cui, Qiliang; Zou, Bo E-mail: zoubo@jlu.edu.cn; Wang, Kai E-mail: zoubo@jlu.edu.cn

    2015-06-28

    The effect of high pressure on the crystal structure of thiourea dioxide has been investigated by Raman spectroscopy and angle-dispersive X-ray diffraction (ADXRD) in a diamond anvil cell up to 10.3 GPa. The marked changes in the Raman spectra at 3.7 GPa strongly indicated a structural phase transition associated with the distortions of hydrogen bonding. There were no further changes up to the maximum pressure of 10.3 GPa and the observed transition was completely reversible when the system was brought back to ambient pressure. This transition was further confirmed by the changes of ADXRD spectra. The high-pressure phase was indexed and refined to an orthorhombic structure with a possible space group Pbam. The results from the first-principles calculations suggested that this phase transition was mainly related to the changes of hydrogen-bonded networks in thiourea dioxide.

  10. Pressure-induced isostructural transition in PdN2

    SciTech Connect

    Aberg, D; Erhart, P; Crowhurst, J; Zaug, J M; Goncharov, A F; Sadigh, B

    2010-03-05

    We show that a synthesized Pd-N compound crystallize into the pyrite structure by comparison of experimental and calculated Raman intensities. The decreasing Raman intensities with decreasing pressure is explained by a closing of the fundamental band gap. We further discuss the experimental decomposition of this compound at 11 GPa in terms of an isostructural transition within the pyrite structure.

  11. Pressure induced structural phase transition in IB transition metal nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Kaurav, Netram; Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-01

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  12. Pressure induced structural phase transition in IB transition metal nitrides compounds

    SciTech Connect

    Soni, Shubhangi; Kaurav, Netram Jain, A.; Shah, S.; Choudhary, K. K.

    2015-06-24

    Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  13. Pressure-Induced Electronic Transition in Black Phosphorus.

    PubMed

    Xiang, Z J; Ye, G J; Shang, C; Lei, B; Wang, N Z; Yang, K S; Liu, D Y; Meng, F B; Luo, X G; Zou, L J; Sun, Z; Zhang, Y; Chen, X H

    2015-10-30

    In a semimetal, both electrons and holes contribute to the density of states at the Fermi level. The small band overlaps and multiband effects engender novel electronic properties. We show that a moderate hydrostatic pressure effectively suppresses the band gap in the elemental semiconductor black phosphorus. An electronic topological transition takes place at approximately 1.2 GPa, above which black phosphorus evolves into a semimetal state that is characterized by a colossal positive magnetoresistance and a nonlinear field dependence of Hall resistivity. The Shubnikov-de Haas oscillations detected in magnetic field reveal the complex Fermi surface topology of the semimetallic phase. In particular, we find a nontrivial Berry phase in one Fermi surface that emerges in the semimetal state, as evidence of a Dirac-like dispersion. The observed semimetallic behavior greatly enriches the material property of black phosphorus and sets the stage for the exploration of novel electronic states in this material. PMID:26565480

  14. Isentropic Compression Loading of HMX and the Pressure-induced Phase Transition at 27 GPa

    SciTech Connect

    Hare, D E; Reisman, D B; Dick, J J; Forbes, J W

    2004-02-25

    The 27 GPa pressure-induced epsilon-phi phase transition in HMX is explored using the Isentropic Compression Experiment (ICE) technique at the Sandia National Laboratories Z-machine facility. Our data indicate that this phase transition is sluggish and if it does occur to any extent under the time scales (200-500 ns) and strain rates (5 x 10{sup 5}) typical of ICE loading conditions, the amount of conversion is small.

  15. Pressure-induced irreversible phase transitions of the monoclinic GdOOH nanorods at ambient temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanchao; Dai, Rucheng; Sui, Zhilei; Chen, Qiao; Wang, Zhongping; Yuan, Xiaodong; Zhang, Zengming; Ding, Zejun

    2014-09-01

    The structural transition of monoclinic GdOOH nanorods was studied by using a diamond anvil cell at room temperature with the probe of Eu3+ ion luminescence under pressures up to 21.4 GPa. The changes of luminescence spectra indicated that a pressure-induced phase transition from the monoclinic phase to the high pressure tetragonal phase occurs at 10.7 GPa for GdOOH nanorods, and the monoclinic GdOOH nanorods are gradually transformed into the tetragonal phase with increasing pressure. After releasing of pressure to the ambient, the high pressure tetragonal phase is retained, and the phase transition of GdOOH nanorods is irreversible.

  16. Pressure-induced phase transitions in GeS under high pressures

    NASA Astrophysics Data System (ADS)

    Dias, Ranga; Yoo, Choong-Shik

    2012-02-01

    We have studied the pressure-induced structural and electronic phase transitions of layered GeS (Pnma) to 30 GPa, using micro-Raman spectroscopy and electrical resistivity measurements in diamond anvil cells. The result shows a steady decrease in resistivity to that of metal at around 18 GPa. The visual appearance of GeS supports the insulator-metal transition: initially black GeS becomes opaque and eventually reflective with increasing pressure. The Raman result indicates that the metallization is preceded by a structural phase transition, presumably to the previously predicted Cmcm structure.

  17. Pressure-induced phase transitions in organic molecular crystals: a combination of x-ray single-crystal and powder diffraction, raman and IR-spectroscopy

    NASA Astrophysics Data System (ADS)

    Boldyreva, E. V.; Sowa, H.; Ahsbahs, H.; Goryainov, S. V.; Chernyshev, V. V.; Dmitriev, V. P.; Seryotkin, Y. V.; Kolesnik, E. N.; Shakhtshneider, T. P.; Ivashevskaya, S. N.; Drebushchak, T. N.

    2008-07-01

    The contribution summarizes the results of recent studies of phase transitions induced by high pressure in a number of molecular organic crystals, such as polymorphs of paracetamol, chlorpropamide, polymorphs of glycine, L- and DL-serine, β-alanine. The main attention is paid to the following topics: (1) Reversible / irreversible transformations; (2) Different behavior of single crystals / powders; (3) The role of pressure-transmitting liquid; (4) The role of the kinetic factors: phase transitions on decompression, or after a long storage at a selected pressure; (5) Isosymmetric phase transitions; (6) The role of the changes in the hydrogen bond networks / intramolecular conformational changes in the phase transitions; (7) Superstructures / nanostructures formed as a result of pressure-induced phase transitions.

  18. Pressure-induced metal-insulator transition in spinel compound CuV 2S 4

    NASA Astrophysics Data System (ADS)

    Okada, H.; Koyama, K.; Hedo, M.; Uwatoko, Y.; Watanabe, K.

    2008-04-01

    In order to investigate the pressure effect on electrical properties of CuV 2S 4, we performed the electrical resistivity measurements under high pressures up to 8 GPa for a high-quality polycrystalline sample. The charge density wave (CDW) transition temperatures increase with increasing pressure. The residual resistivity rapidly increases with increasing pressure over 4 GPa, and the temperature dependence of the electrical resistivity at 8 GPa exhibits a semiconducting behavior below about 150 K, indicating that a pressure-induced metal-insulator transition occurs in CuV 2S 4 at 8 GPa.

  19. Pressure-induced structural transition of CdxZn1-xO alloys

    NASA Astrophysics Data System (ADS)

    Chen, Yabin; Zhang, Shuai; Gao, Weiwei; Ke, Feng; Yan, Jinyuan; Saha, Bivas; Ko, Changhyun; Suh, Joonki; Chen, Bin; Ager, Joel W.; Walukiewicz, Wladek; Jeanloz, Raymond; Wu, Junqiao

    2016-04-01

    CdxZn1-xO alloys, as a transparent conducting oxide, have recently attracted much attention for potential optoelectronic applications. In this letter, we report a hydrostatic pressure-induced phase transition of CdxZn1-xO alloys from the wurtzite to the rocksalt structure and its phase diagram probed using a diamond anvil cell. It is found that the transition pressure, determined by changes in optical and structural properties, depends sensitively on the composition. As the Cd content increases, the critical pressure decreases, until at x = 0.67 where the alloy is intrinsically stable in the rocksalt phase even at ambient pressure. The wurtzite phase is light emitting with a direct bandgap that slightly widens with increasing pressure, while the rocksalt phase has a much wider bandgap that is indirect. The pressure-sensitive light emission and phase transition may find potential applications in fields such as stress sensing and energy storage.

  20. Pressure-induced phase transition and superconductivity in YBa2Cu4O8

    NASA Astrophysics Data System (ADS)

    Souliou, S. M.; Subedi, A.; Song, Y. T.; Lin, C. T.; Syassen, K.; Keimer, B.; Le Tacon, M.

    2014-10-01

    We investigate the pressure and temperature dependence of the lattice dynamics of the underdoped, stoichiometric, high-temperature superconductor YBa2Cu4O8 by means of Raman spectroscopy and ab initio calculations. This system undergoes a reversible pressure-induced structural phase transition around 10 GPa to a collapsed orthorhombic structure that is well reproduced by the calculation. The coupling of the B1g-like buckling phonon mode to the electronic continuum is used to probe superconductivity. In the low pressure phase, self-energy effects through the superconducting transition renormalize this phonon, and the amplitude of this renormalization strongly increases with pressure. Whereas our calculation indicates that this mode's coupling to the electronic system is only marginally affected by the structural phase transition, the aforementioned renormalization is completely suppressed in the high pressure phase, demonstrating that under hydrostatic pressures higher than 10 GPa, superconductivity in YBa2Cu4O8 is greatly weakened or obliterated.

  1. Pressure-induced solidifications of liquid sulfur below and above λ-transition

    NASA Astrophysics Data System (ADS)

    Fei, Tang; Lin-Ji, Zhang; Feng-Liang, Liu; Fei, Sun; Wen-Ge, Yang; Jun-Long, Wang; Xiu-Ru, Liu; Ru, Shen

    2016-04-01

    Two kinds of glassy sulfurs are synthesized by the rapid compression method from liquid sulfur at temperatures below and above the λ -transition point. The glassy sulfur has different colors and transparencies, depending on temperature, which may inherit some structural information from the λ -transition. Raman spectrum studies of these samples show that a large fraction of polymeric chains exist in the glassy sulfur, even in the one solidified from T < T λ . We find that a higher compression rate instead of a higher temperature of the parent liquid captures more polymeric chains. Pressure-induced glassy sulfur presents high thermal stability compared with temperature quenched glassy sulfur and could transform into liquid sulfur directly without crystallization through an abnormal exothermic melting course. High energy x-ray diffraction is utilized to study the local order of the pressure-induced glassy sulfur. Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1530402), the National Natural Science Foundation of China (Grant No. 11004163), the Fundamental Research Funds for the Central Universities, China (Grant No. 2682014ZT31), the Department of Energy National Nuclear Security Administration (Grant No. DE-NA0001974), and the Department of Energy Basic Energy Sciences (Grant Nos. DE-FG02-99ER45775 and DE-AC02-06CH11357).

  2. Quantum Oscillation Signatures of Pressure-induced Topological Phase Transition in BiTeI

    PubMed Central

    Park, Joonbum; Jin, Kyung-Hwan; Jo, Y. J.; Choi, E. S.; Kang, W.; Kampert, E.; Rhyee, J.-S.; Jhi, Seung-Hoon; Kim, Jun Sung

    2015-01-01

    We report the pressure-induced topological quantum phase transition of BiTeI single crystals using Shubnikov-de Haas oscillations of bulk Fermi surfaces. The sizes of the inner and the outer FSs of the Rashba-split bands exhibit opposite pressure dependence up to P = 3.35 GPa, indicating pressure-tunable Rashba effect. Above a critical pressure P ~ 2 GPa, the Shubnikov-de Haas frequency for the inner Fermi surface increases unusually with pressure, and the Shubnikov-de Haas oscillations for the outer Fermi surface shows an abrupt phase shift. In comparison with band structure calculations, we find that these unusual behaviors originate from the Fermi surface shape change due to pressure-induced band inversion. These results clearly demonstrate that the topological quantum phase transition is intimately tied to the shape of bulk Fermi surfaces enclosing the time-reversal invariant momenta with band inversion. PMID:26522628

  3. Pressure-induced structural transition in copper pyrazine dinitrate and implications for quantum magnetism

    NASA Astrophysics Data System (ADS)

    O'Neal, K. R.; Zhou, J.; Cherian, J. G.; Turnbull, M. M.; Landee, C. P.; Jena, P.; Liu, Z.; Musfeldt, J. L.

    2016-03-01

    We combined synchrotron-based infrared and Raman spectroscopies, diamond anvil cell techniques, and first principles calculations to unveil pressure-induced distortions in quasi-one-dimensional Cu(pyz)(NO3)2. The crossover at 0.7 GPa is local in nature whereas the transition at 5 GPa lowers symmetry from P m n a to P 2221 and is predicted to slightly increase magnetic dimensionality. Comparison with prior magnetoinfrared results reveals the striking role of out-of-plane bending of the pyrazine ligand, a finding that we discuss in terms of the possibility of using pressure to bias the magnetic quantum critical transition in this classic S =1 /2 antiferromagnet.

  4. Pressure induced spin transition revealed by iron M{sub 2,3}-edge spectroscopy

    SciTech Connect

    Nyrow, Alexander; Büning, Thomas; Mende, Kolja; Tolan, Metin; Sternemann, Christian; Hiraoka, Nozomu; Desgreniers, Serge; Wilke, Max

    2014-06-30

    We present a method to characterize pressure induced magnetic high to low spin transition in iron sulphide using x-ray Raman scattering spectroscopy at the iron M{sub 2,3}-edge. The advantage of this method is that the observed spectral changes between pressures of 1.7 GPa and 10.1 GPa can be used with the help of atomic multiplet calculations to determine the crystal field splitting parameters associated with the spin transition. We discuss the potential of this M{sub 2,3}-edge spectroscopy to investigate the irons electronic spin state in-situ at the conditions of the inner Earth, i.e., at high temperature and high pressure, providing exciting opportunities for geophysical and materials science applications.

  5. Pressure-Induced Phase Transition in Hydrogen-Bonded Supramolecular Structure: Guanidinium Nitrate

    SciTech Connect

    Wang, Run; Li, Shourui; Wang, Kai; Duan, Defang; Tang, Lingyun; Cui, Tian; Liu, Bingbing; Cui, Qiliang; Liu, Jing; Zou, Bo; Zou, Guangtian

    2010-08-04

    In situ Raman scattering and synchrotron X-ray diffraction have been used to investigate the effects of high pressure on the structural stability of guanidinium nitrate (C(NH{sub 2}){sub 3}{sup +} {center_dot} NO{sub 3}{sup -}, GN), a representative two-dimensional supramolecular architecture of hydrogen-bonded rosette network. This study has confirmed a structural phase transition observed by Raman scattering and X-ray diffraction at {approx}1 GPa and identified it as a space group change from C2 to P2{sub 1}. The high-pressure phase remained stable up to 22 GPa. We discussed the pressure-induced changes in N-H stretching vibration in Raman spectra and proposed that this phase transition is due to the rearrangements of the hydrogen-bonding networks.

  6. Pressure-induced phonon softenings and the structural and magnetic transitions in CrO2

    NASA Astrophysics Data System (ADS)

    Kim, Sooran; Kim, Kyoo; Kang, Chang-Jong; Min, B. I.

    2012-03-01

    To investigate the pressure-induced structural transitions of chromium dioxide (CrO2), phonon dispersions and total-energy band structures are calculated as a function of pressure. The observed structural transition has been theoretically reproduced at P≈10 GPa from the ground-state tetragonal CrO2 (t-CrO2) of the rutile type to orthorhombic CrO2 (o-CrO2) of the CaCl2 type. The half-metallic property is found to be preserved in o-CrO2. The softening of the Raman-active B1g phonon mode, which is responsible for this structural transition, is demonstrated. The second structural transition is found to occur for P⩾61.1 GPa from ferromagnetic (FM) o-CrO2 to nonmagnetic monoclinic CrO2 (m-CrO2) of the MoO2 type, which is related to the softening mode at q=R((1)/(2),0,(1)/(2)). The third structural transition has been identified at P=88.8 GPa from m-CrO2 to cubic CrO2 of the CaF2 type that is a FM insulator.

  7. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of Snl4

    DOE PAGESBeta

    Liu, Hanyu; Tse, John S.; Hu, Michael Y.; Bi, Wenli; Zhao, Jiyong; Alp, E. Ercan; Pasternak, Moshe; Taylor, R. Dean; Lashley, Jason C.

    2015-10-27

    The pressure-induced amorphization and subsequent recrystallization of SnI4 have been investigated using first principles molecular dynamics calculations together with high-pressure 119Sn nuclear resonant inelastic x-ray scattering measurements. Above ~8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ~64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI4 under ambient conditions. Although high pressure structures of SnI4 were thought to be determined by random packing of equal-sized spheres,more » we detected electron charge transfer in each phase. As a result, this charge transfer results in a crystal structure packing determined by larger than expected iodine atoms. (C) 2015 AIP Publishing LLC.« less

  8. Observation of the transition state for pressure-induced BO₃→ BO₄ conversion in glass.

    PubMed

    Edwards, Trenton; Endo, Takatsugu; Walton, Jeffrey H; Sen, Sabyasachi

    2014-08-29

    A fundamental mechanistic understanding of the pressure- and/or temperature-induced facile transformation of the coordination environment of boron is important for changing the physical properties of glass. We have used in situ high-pressure (up to 2 gigapascals) boron-11 solid-state nuclear magnetic resonance spectroscopy in combination with ab initio calculations to investigate the nature of the transition state for the pressure-induced BO3→ BO4 conversion in a borosilicate glass at ambient temperature. The results indicate an anisotropic elastic deformation of the BO3 planar triangle, under isotropic stress, into a trigonal pyramid that likely serves as a precursor for the subsequent formation of a BO4 tetrahedron. PMID:25170146

  9. Pressure-induced phase transitions in Pa metal from first-principles theory

    SciTech Connect

    Soederlind, P.; Eriksson, O.

    1997-11-01

    Protactinium metal is shown to undergo a phase transition to the {alpha}-U orthorhombic structure below 1 Mbar pressure. At higher pressures, the bct phase reenters in the phase diagram and at the highest pressures, an ideal hcp structure becomes stable. Hence, Pa undergoes a sequence of transitions; bct{r_arrow}{alpha}-U{r_arrow}bct{r_arrow}hcp, with the first transition taking place at 0.25 Mbar and the subsequent ones above 1 Mbar. The bct{r_arrow}{alpha}-U transition is triggered by the pressure-induced promotion of the spd valence states to 5f states. In this regard, Pa approaches uranium which at ambient conditions has one more 5f electron than Pa at similar conditions. At higher compression of Pa, the 5f band broadens and electrostatic interactions in combination with Born-Mayer repulsion become increasingly important and this drives Pa to gradually more close-packed structures. At ultrahigh pressures, the balance between electrostatic energy, Born-Mayer repulsion, and one-electron band energy stabilizes the hcp (ideal packing) structure. The electrostatic energy and Born-Mayer repulsion rule out open crystal structures under these conditions in Pa and between the close-packed structures, the hcp structure is shown to be stabilized by filling of the 5f band. {copyright} {ital 1997} {ital The American Physical Society}

  10. Pressure induced structural phase transition of OsB{sub 2}: First-principles calculations

    SciTech Connect

    Ren Fengzhu; Wang Yuanxu; Lo, V.C.

    2010-04-15

    Orthorhombic OsB{sub 2} was synthesized at 1000 deg. C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB{sub 2}. An analysis of the calculated enthalpy shows that orthorhombic OsB{sub 2} can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6{sub 3}/mmc structure (high-pressure phase) is stable for OsB{sub 2}. We expect the phase transition can be further confirmed by the experimental work. - Abstract: Graphical Abstract Legend (TOC Figure): Table of Contents Figure Pressure induced structural phase transition from the orthorhombic structure to the hexagonal one for OsB{sub 2} takes place under 10.8 GPa (0 K), 10.35 GPa (300, 1000 K) by the first-principles predictions.

  11. Microscopic origin of pressure-induced isosymmetric transitions in fluoromanganate cryolites

    NASA Astrophysics Data System (ADS)

    Charles, Nenian; Rondinelli, James M.

    2014-09-01

    Using first-principles density functional theory calculations, we investigate the hydrostatic pressure-induced reorientation of the Mn-F Jahn-Teller bond axis in the fluoride cryolite Na3MnF6. We find that a first-order isosymmetric phase transition (IPT) occurs between crystallographically equivalent monoclinic structures at approximately 2.15 GPa, consistent with earlier experimental studies. Mode-crystallography analyses of the pressure-dependent structures in the vicinity of the transition reveal a clear evolution of the Jahn-Teller bond distortions in cooperation with an asymmetrical stretching of the equatorial fluorine atoms in the MnF6 octahedral units. We identify a significant (70%) change in the orbital occupancy of the eg manifold of the 3d4 Mn(III) to be responsible for the transition, stabilizing one monoclinic P21/n variant over the other. The orbital reconstruction as a driving force for the transition is confirmed by analogous calculations of isostructural 3d0 Na3ScF6, which shows no evidence of an IPT up to 6.82 GPa.

  12. Transformation Mechanism and Kinetics for the Pressure-Induced Phase Transition in Shocked CdS

    SciTech Connect

    Gupta, Y.M.; Knudson, M.D.; Kunz, A.B.

    1999-06-24

    The pressure-induced phase transition in CdS was investigated using picosecond time-resolved electronic spectroscopy in plate impact shock wave experiments. Real-time changes in the electronic spectra were observed, with 100 ps time resolution, in single crystals of CdS shocked along the c and a axes to peak stresses between 35 and 90 kbar (above the phase transition stress of approximately 30 kbar measured in continuum studies). When shocked to stresses above approximately 50 kbar along the crystal c axis and 60 to 70 kbar along the crystal a axis, the crystals undergo a very rapid change in electronic structure, indicating that significant structural changes occur within the first 100 ps. These results, along with previous ns continuum measurements, make a strong case for a metastable state during the phase transition in shocked CdS. Ab-initio periodic Hartree-Fock calculations (with DFT correlation corrections) were employed to examine the compression of CdS and to determine a possible lattice structure for the proposed metastable structure. These results, along with details of the transformation kinetics and orientational dependence, will be discussed. Work supported by ONR.

  13. Ab initio study of pressure-induced magnetic transition in manganese pnictides

    NASA Astrophysics Data System (ADS)

    Prathiba, G.; Naanci, B. Anto; Rajagopalan, M.

    2007-02-01

    We report a density functional calculation on the NiAs-type Mn-based pnictides. The total energy as a function of volume is obtained by means of self-consistent tight-binding linear muffin-tin orbital method by performing spin and non-spin polarized calculation. From the present study, we predict a magnetic-phase transition from ferromagnetic (FM) to non-magnetic (NM) around 49 and 35.7 GPa for MnAs and MnSb, respectively. The pressure-induced transition is found to be a second-order transition. The band structure and density of states (DOS) are plotted for FM and NM states. Apart from this the ground-state properties like magnetic moment, lattice parameter and bulk modulus are calculated and are compared with the available results. Under large volume expansion these compounds exist in zinc-blende (ZB) structure, which shows half metallicity. The magnetic moment and equilibrium lattice constants for ZB structure are obtained as well as band structure and DOS are presented.

  14. Pressure-induced transition in Tl{sub 2}MoO{sub 4}

    SciTech Connect

    Machon, Denis; Friese, Karen; Breczewski, Tomasz; Grzechnik, Andrzej

    2010-11-15

    Tl{sub 2}MoO{sub 4} has been studied under high-pressure by X-ray diffraction, Raman spectroscopy, and optical absorption measurements. A first-order phase transition is observed at 3.5{+-}0.5 GPa. The nature (ordered vs. disordered) of the high-pressure phase strongly depends on the local hydrostatic conditions. Optical absorption measurements tend to show that this transition is concomitant with an electronic structure transformation. Prior to the transition, single crystal X-ray diffraction shows that pressure induces interactions between MoO{sub 4} fragments and the Mo coordination number tends to increase. In addition, the stereoactivity of the lone-pair electrons on the three symmetrically independent Tl-sites is not uniform; while for two sites the stereoactivity decreases with increasing pressures for the third site the stereoactivity increases. - Graphical Abstract: (up) Structural evolutions of Tl{sub 2}MoO{sub 4} in the low-pressure phase. (Down) Optical properties of the high-pressure phase as a function of pressure. Display Omitted

  15. Pressure-Induced Structural and Electronic Transition in Sr2ZnWO6 Double Perovskite.

    PubMed

    Li, Nana; Manoun, Bouchaib; Tang, Lingyun; Ke, Feng; Liu, Fengliang; Dong, Haini; Lazor, Peter; Yang, Wenge

    2016-07-01

    High-pressure structural and electrical properties of Sr2ZnWO6 double perovskite were investigated using in situ angle-dispersive synchrotron X-ray diffraction (XRD), Raman, and alternating current (AC) impedance spectroscopy. A structural transition from monoclinic (P21/n) to triclinic (P1̅) phase around 9 GPa was observed due to the pressure-induced distortion of (W, Zn)O6 octahedron. In situ high-pressure Raman spectroscopy showed the increasing interaction among O-W-O in WO6 octahedron with pressure and a transition pressure consistent with the XRD results. From the AC impedance spectroscopy measurements, the resistivity increased steeply by ∼1 order of magnitude around 11 GPa, indicating an electronic transition accompanying the symmetry change. The increase in the interaction among O-W-O enhances the attraction of O(2-) electrons toward W(6+), thus increasing the covalence, which in turn lowers the charge transfer energy between O(2-) and W(6+) and induces the resistivity increase under high pressure. PMID:27308777

  16. Pressure-induced phase transition and structural properties of CrO2

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Chen, Y. H.; Deng, C. R.; Su, X. F.

    2012-08-01

    The structural properties and pressure-induced phase transitions of CrO2 have been investigated using the pseudopotential plane-wave method based on the density functional theory (DFT). The rutile-type (P42/mnm), CaCl2-type (Pnnm), pyrite-type (Pā3), and CaF2-type (Fm-3m) phases of CrO2 have been considered. The structural properties such as lattice parameters, bulk moduli and its pressure derivative are consistent with the available experimental data. The second-order phase-transition pressure of CrO2 from the rutile phase to CaCl2 phase is 10.9 GPa, which is in good agreement with the experimental result. The sequence of these phases is rutile-type → CaCl2-type → pyrite-type → CaF2-type with the phase-transition pressures 10.9, 23.9, and 144.5 GPa, respectively. The equation of state of different phases has also been presented. It is more difficult to compress with the increase of pressure for different phases of CrO2.

  17. Pressure-induced phase transitions in acentric BaHf(BO{sub 3}){sub 2}

    SciTech Connect

    Mączka, Mirosław; Szymborska-Małek, Katarzyna; Sousa Pinheiro, Gardenia de; Cavalcante Freire, Paulo Tarso; Majchrowski, Andrzej

    2015-08-15

    High-pressure Raman scattering studies revealed that BaHf(BO{sub 3}){sub 2} is more compressible than calcite-type orthoborates and calcite, aragonite or dolomite carbonates. It undergoes a first-order reversible pressure-induced phase transition in the 3.9–4.4 GPa pressure range. Second structural change is observed at 9.2 GPa. The intermediate phase is most likely trigonal. However, Raman results suggest increase in the number of distinct BO{sub 3} groups from two in the ambient pressure phase to at least three in the intermediate phase. This intermediate phase is also strongly compressible and strong pressure dependence of the lattice modes proves that the main changes under pressure occur within the layers built from BaO{sub 6} and HfO{sub 6} octahedra. The second phase transition leads most likely to lowering of the trigonal symmetry, as evidenced by significant increase of the number of observed bands. The pressure coefficients of the Raman bands of the high-pressure phase are relatively small, suggesting more dense arrangement of the metal–oxygen polyhedra and BO{sub 3} groups in this phase. It is worth noting that the high-pressure phase was not reached in the second compression experiment up to 10 GPa. This behavior can be most likely attributed to worse hydrostatic conditions of the first experiment. - Graphical abstract: Raman spectra of BaHf(BO{sub 3}){sub 2} recorded at different pressures during compression showing onset of pressure-induced phase transitions. - Highlights: • High-pressure Raman spectra were measured for BaHf(BO{sub 3}){sub 2.} • BaHf(BO{sub 3}){sub 2} undergoes a reversible first-order phase transition at 3.9–4.4 GPa into a trigonal phase. • The intermediate trigonal phase is strongly compressible second structural transformation is observed at 9.2 GPa under non-perfect hydrostatic conditions.

  18. Pressure-induced phase transitions in acentric BaHf(BO3)2

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Szymborska-Małek, Katarzyna; Sousa Pinheiro, Gardenia de; Cavalcante Freire, Paulo Tarso; Majchrowski, Andrzej

    2015-08-01

    High-pressure Raman scattering studies revealed that BaHf(BO3)2 is more compressible than calcite-type orthoborates and calcite, aragonite or dolomite carbonates. It undergoes a first-order reversible pressure-induced phase transition in the 3.9-4.4 GPa pressure range. Second structural change is observed at 9.2 GPa. The intermediate phase is most likely trigonal. However, Raman results suggest increase in the number of distinct BO3 groups from two in the ambient pressure phase to at least three in the intermediate phase. This intermediate phase is also strongly compressible and strong pressure dependence of the lattice modes proves that the main changes under pressure occur within the layers built from BaO6 and HfO6 octahedra. The second phase transition leads most likely to lowering of the trigonal symmetry, as evidenced by significant increase of the number of observed bands. The pressure coefficients of the Raman bands of the high-pressure phase are relatively small, suggesting more dense arrangement of the metal-oxygen polyhedra and BO3 groups in this phase. It is worth noting that the high-pressure phase was not reached in the second compression experiment up to 10 GPa. This behavior can be most likely attributed to worse hydrostatic conditions of the first experiment.

  19. The pressure induced B1-B2 phase transition of alkaline halides and alkaline earth chalcogenides. A first principles investigation

    SciTech Connect

    Potzel, Oliver; Taubmann, Gerhard

    2011-05-15

    In this work, we considered the pressure induced B1-B2 phase transition of AB compounds. The DFT calculations were carried out for 11 alkaline halides, 11 alkaline earth chalcogenides and the lanthanide pnictide CeP. For both the B1 and the B2 structures of each compound, the energy was calculated as a function of the cell volume. The transition pressure, the bulk moduli and their pressure derivatives were obtained from the corresponding equations of state. The transition path of the Buerger mechanism was described using roots of the transition matrix. We correlated the computed enthalpies of activation to some structure defining properties of the compounds. A fair correlation to Pearsons hardness of the ions was observed. -- Graphical abstract: Pressure induced transition from the B1 structure (left) via the transition state (middle) to the B2 structure (right). Display Omitted highlights: > Pressure induced phase transitions in AB compounds were considered. > Alkaline halides and alkaline earth chalcogenides were treated. > DFT calculations with periodic boundary conditions were applied. > The transition path was described by roots of the transition matrix. > The enthalpy of activation was calculated for numerous compounds.

  20. Phase stability and pressure-induced structural transitions at zero temperature in ZnSiO3 and Zn2SiO4

    NASA Astrophysics Data System (ADS)

    Karazhanov, S. Zh; Ravindran, P.; Vajeeston, P.; Ulyashin, A. G.; Fjellvåg, H.; Svensson, B. G.

    2009-12-01

    Using density functional total energy calculations the structural phase stability and pressure-induced structural transition in different polymorphs of ZnSiO3 and Zn2SiO4 have been studied. Among the considered monoclinic phase with space groups (P 21/c) and (C 2/c), rhombohedral (R\\bar {3}) and orthorhombic (Pbca) modifications the monoclinic phase (P 21/c) of ZnSiO3 is found to be the most stable one. At high pressure monoclinic ZnSiO3 (C 2/c) can co-exist with orthorhombic (Pbca) modification. Differences in equilibrium volume and total energy of these two polymorphs are very small, which indicates that it is relatively easier to transform between these two phases by temperature, pressure or chemical composition. It can also explain the experimentally established result of metastability of the orthorhombic phase under all conditions. The following sequence of pressure-induced structural phase transitions is found for ZnSiO3 polymorphs: monoclinic (P2_{1}/c) \\to monoclinic (C2/c) \\to rhombohedral (R\\bar {3}) . Among the rhombohedral (R\\bar {3} ), tetragonal (I\\bar {4} 2d) , orthorhombic (Pbca), orthorhombic (Imma), cubic (Fd\\bar {3} m) and orthorhombic (Pbnm) modifications of Zn2SiO4, the rhombohedral phase is found to be the ground state. For this chemical composition of zinc silicate the following sequence of structural phase transitions is found: rhombohedral (R\\bar {3}) \\to tetragonal (I\\bar {4} 2d) \\to orthorhombic (Pbca) \\to orthorhombic (Imma) \\to cubic (Fd\\bar {3} m) \\to orthorhombic (Pbnm). Based on the analogy of crystal structures of magnesium and zinc silicates and using the lattice and positional parameters of Mg2SiO4 as input, structural properties of spinel Zn2SiO4 have also been studied.

  1. Phase stability and pressure-induced structural transitions at zero temperature in ZnSiO(3) and Zn(2)SiO(4).

    PubMed

    Karazhanov, S Zh; Ravindran, P; Vajeeston, P; Ulyashin, A G; Fjellvåg, H; Svensson, B G

    2009-12-01

    Using density functional total energy calculations the structural phase stability and pressure-induced structural transition in different polymorphs of ZnSiO(3) and Zn(2)SiO(4) have been studied. Among the considered monoclinic phase with space groups (P 2(1)/c) and (C 2/c), rhombohedral [Formula: see text] and orthorhombic (Pbca) modifications the monoclinic phase (P 2(1)/c) of ZnSiO(3) is found to be the most stable one. At high pressure monoclinic ZnSiO(3) (C 2/c) can co-exist with orthorhombic (Pbca) modification. Differences in equilibrium volume and total energy of these two polymorphs are very small, which indicates that it is relatively easier to transform between these two phases by temperature, pressure or chemical composition. It can also explain the experimentally established result of metastability of the orthorhombic phase under all conditions. The following sequence of pressure-induced structural phase transitions is found for ZnSiO(3) polymorphs: monoclinic [Formula: see text] monoclinic [Formula: see text] rhombohedral [Formula: see text]. Among the rhombohedral ([Formula: see text]), tetragonal [Formula: see text], orthorhombic (Pbca), orthorhombic (Imma), cubic [Formula: see text] and orthorhombic (Pbnm) modifications of Zn(2)SiO(4), the rhombohedral phase is found to be the ground state. For this chemical composition of zinc silicate the following sequence of structural phase transitions is found: rhombohedral [Formula: see text] tetragonal [Formula: see text] orthorhombic [Formula: see text] orthorhombic (Imma) [Formula: see text] cubic [Formula: see text] orthorhombic (Pbnm). Based on the analogy of crystal structures of magnesium and zinc silicates and using the lattice and positional parameters of Mg(2)SiO(4) as input, structural properties of spinel Zn(2)SiO(4) have also been studied. PMID:21832530

  2. Pressure-Induced Glass Transition Probed via the Mobility of Coumarin 1 Fluorescent Molecule.

    PubMed

    Bonetti, Marco

    2016-05-12

    The route to form a glass is generally achieved upon cooling where the slowing down might be interpreted as the trapping of molecules in potential wells. On the other hand, isothermal compression induces a glassy state by modifying the molecular packing ending in jamming. Here, we focus on how isothermal compression perturbs the mobility of a probe molecule in three different host liquids up to the pressure-induced glass transition. By use of the fluorescence recovery technique, the diffusion of the fluorescent molecule Coumarin 1 (C1) is measured in poly(propylene glycol) (PPG-1000M and -2700M), in the fragile van der Waals propylene carbonate (PC), and in hydrogen-bonded methanol and ethanol. High pressures up to 6 GPa are obtained with a diamond anvil cell. In PC at a pressure ∼1.3 GPa close to the glass-transition pressure, the diffusion coefficient of C1 follows an Arrhenius behavior with an ∼5 orders of magnitude increase of the diffusive time. No decoupling from the Stokes-Einstein equation is noticed. A similar exponential behavior is measured in ethanol and methanol but extended to different pressure ranges up to 2.5 and 6.2 GPa, respectively. In PPG-1000M a decoupling from the Stokes-Einstein relation is observed between 0.3 and 0.8 GPa that could be related to a modification of the interaction between polymer segments and the probe molecule. These results might indicate that interaction between probe and dynamic heterogeneities become less important under applied pressure, unlike in the temperature-induced glass transition. PMID:27110923

  3. Pressure-Induced Phase Transition in N-H···O Hydrogen-Bonded Molecular Crystal Oxamide

    SciTech Connect

    Yan, Tingting; Li, Shourui; Wang, Kai; Tan, Xiao; Jiang, Zhangmei; Yang, Ke; Liu, Bingbing; Zou, Guangtian; Zou, Bo

    2012-11-26

    The effect of high pressure on the structural stability of oxamide has been investigated in a diamond anvil cell by Raman spectroscopy up to ~14.6 GPa and by angle-dispersive X-ray diffraction (ADXRD) up to ~17.5 GPa. The discontinuity in Raman shifts around 9.6 GPa indicates a pressure-induced structural phase transition. This phase transition is confirmed by the change of ADXRD spectra with the symmetry transformation from P1⁻ to P1. On total release of pressure, the diffraction pattern returns to its initial state, implying this transition is reversible. We discuss the pressure-induced variations in N-H stretching vibrations and the amide modes in Raman spectra and propose that this phase transition is attributed to the distortions of the hydrogen-bonded networks.

  4. A Novel Pressure-induced Phase Transition in CaZrO3

    SciTech Connect

    Yang, Xue; Li, Quanjun; Liu, Ran; Liu, Bo; Jiang, Shuqing; Yang, Ke; Liu, Jing; Chen, Zhiqiang; Zou, Bo; Cui, Tian; Liu, Bingbing

    2014-04-14

    The high pressure synchrotron X-ray diffraction measurements on CaZrO3 were carried out in a diamond anvil cell up to 50.1 GPa at room temperature. It was found that the orthorhombic phase can be stable up to 30 GPa. A new pressure-induced phase transition was observed in CaZrO3 beyond 30 GPa. The high pressure structure of CaZrO3 was determined to be a monoclinic phase which is distinct from the high pressure structures that were previously reported for other perovskite oxides. Upon release of pressure, the high pressure phase transforms into the initial orthorhombic phase. Likewise, a fit of the compression data to the third-order Birch–Murnaghan equation of state yields a bulk modulus K0 of 193(14) GPa. We propose that the unique distorted structure probably plays a crucial role in the high pressure behavior of CaZrO3. Especially, the distinct phase transformation may be related to the rotation or tilting of the ZrO6 octahedra.

  5. Pressure-induced reversible amorphization and an amorphous–amorphous transition in Ge2Sb2Te5 phase-change memory material

    PubMed Central

    Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev

    2011-01-01

    Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255

  6. Pressure-induced phase transitions in multiferroic RbFe(MoO{sub 4}){sub 2}-Raman scattering study

    SciTech Connect

    Maczka, M.; Ptak, M.; Luz-Lima, C.; Freire, P.T.C.; Paraguassu, W.; Guerini, S.; Hanuza, J.

    2011-10-15

    High pressure Raman scattering experiments were performed on RbFe(MoO{sub 4}){sub 2}. These experiments revealed that two phase transitions take place in RbFe(MoO{sub 4}){sub 2} at very low pressures, i.e. between ambient pressure and 0.2 GPa and between 0.4 and 0.7 GPa. Raman results showed that at the first phase transition the room temperature P3-bar m1 phase transforms into the P3-bar phase, which is also observed at ambient pressure below 190 K. The second pressure-induced phase transition occurs into a low symmetry phase of unknown symmetry. The performed lattice dynamics calculations for the P3-bar m1 phase and ab initio calculation of the structural changes under hydrostatic pressure helped us to get better insights into the mechanism of the observed phase transitions. - Graphical abstract: Raman spectra of RbFe(MoO{sub 4}){sub 2} crystal in the high wavenumber region recorded at different pressures during compression experiment. Highlights: > RbFe(MoO{sub 4}){sub 2} exhibits two pressure-induced phase transitions below 0.7 GPa. > First phase transition is from the P3-bar m1 into P3-bar structure. > Phase transitions in RbFe(MoO{sub 4}){sub 2} are similar as in KFe(MoO{sub 4}){sub 2}. > Transitions' pressures are much lower for the rubidium compound.

  7. Pressure-induced structural phase transition in AlN:Mg and AlN:Co nanowires

    SciTech Connect

    Xu, Yongsheng; Zhu, Hongyang; Ma, Chunli; Zhu, Pinwen; Cong, Ridong; Wu, Xiaoxin; Gao, Wei; Cui, Qiliang

    2013-06-15

    High-pressure behaviors of AlN:Mg and AlN:Co nanowires have been investigated by in situ angle dispersive synchrotron X-ray diffraction up to 41.5 GPa and 38.2 GPa, respectively. Their corresponding pressure-induced wurtzite-to-rocksalt phase transitions start at 17.7 GPa and 15.0 GPa and complete at 33.2 GPa and 31.0 GPa, respectively. The phase-transition routes are not affected by the doped ions, while the phase transition pressures are lower than that of pure AlN nanowires. The distinct high-pressure behaviors are ascribed to the doped ions, which reduce the formation energy of cation vacancies and induce Al vacancies defects together with substitution defects, resulting in lattice distortion and affecting structural stability and phase transition pressure. - Graphical abstract: The high-pressure behaviors of AlN:Mg and AlN:Co nanowires have been investigated by in situ angle dispersive synchrotron X-ray diffraction. - Highlights: • The high-pressure behaviors of AlN:Mg and AlN:Co nanowires have been investigated. • The pressure-induced wurtzite-to-rocksalt phase transitions have been observed. • The phase transition pressures are lower than that of pure AlN nanowires. • The distinct high-pressure behaviors are ascribed to the dopants. • The vacancy defects and substitution defects influence structural stability.

  8. Pressure-induced alpha to omega transition in titanium metal: a systematic study of the effects of uniaxial stress

    SciTech Connect

    Errandonea, D.; Meng, Y.; Somayazulu, M.; Hausermann, D.

    2010-07-13

    The effects of uniaxial stress on the pressure-induced {alpha} {yields} {omega} transition in pure titanium (Ti) are investigated by means of angle dispersive X-ray diffraction in a diamond-anvil cell. Experiments under four different pressure environments reveal that: (1) the onset of the transition depends on the pressure medium used, going from 4.9 GPa (no pressure medium) to 10.5 GPa (argon pressure medium); (2) the {alpha} and {omega} phases coexist over a rather large pressure range, which depends on the pressure medium employed; (3) the hysteresis and quenchability of the {omega} phase is affected by differences in the sample pressure environment; and (4) a short-term laser heating of Ti lowers the {alpha} {yields} {omega} transition pressure. Possible transition mechanisms are discussed in the light of the present results, which clearly demonstrate the influence of uniaxial stress in the {alpha} {yields} {omega} transition.

  9. Pressure Induced Phase Transition (B3-B1) and Elastic Properties of II-Vi ZnSe Semiconductors

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh

    2012-07-01

    We evolve an effective interionic interaction potential (EIoIP) to investigate the pressure induced phase transitions from Zinc blende (B3) to Rocksalt (B1) structure in ZnSe semiconductor. The developed potential consists of the long-range Coulomb and three-body interactions (TBI) and the Hafemeister and Flygare type short-range (SR) overlap repulsion extended upto the second neighbor ions and the van der Waals (vdW) interaction. The three-body interactions arise from the electron-shell deformation when the nearest-neighbor ions overlap and has been employed for detailed studies of pressure-induced phase-transition behavior of ZnSe semiconductors. Our calculated value of the phase transition pressure (Pt) is higher and the magnitude of the discontinuity in volume at the transition pressure is consistent with reported data. The variation of second-order elastic constants with pressure resembles that observed in some binary semiconductors. It is inferred that the vdW interaction is effective in obtaining the Debye temperature, Gruneisen parameter, thermal expansion coefficient and compressibility. It is argued that the model with TBI (model II) has yielded somewhat more realistic predictions of the phase-transition and high-pressure behavior as compared to usual two-body potentials (model I) based on phenomenological approach.

  10. Pressure-induced development of bonding in NiAs type compounds and polymorphism of NiP

    SciTech Connect

    Dera, Przemyslaw; Lazarz, John D.; Lavina, Barbara

    2011-11-07

    A reversible, displacive, pressure-induced structural phase transition has been found to occur in nickel monophosphide NiP at approximately 3.5 GPa by means of in situ synchrotron single-crystal X-ray diffraction. The new phase, with Pearson symbol oC56, assumes an orthorhombic structure with Cmc2{sub 1} space group and unit cell parameters a=23.801(2) {angstrom}, b=5.9238(6) {angstrom}, and c=4.8479(4) {angstrom} at 5.79 GPa. The high-pressure phase is a superstructure of the ambient, oP16 phase with multiplicity of 3.5. The phosphorous sublattice gradually converts from the net of isolated P{sub 2} dimers found in the ambient NiP, towards zig-zag polymeric P{infinity} chains found in MnP-type structures. The transformation involves development of triatomic phosphorous clusters and interconnected Ni slabs with diamondoid topology. The high-pressure phase, which represents intermediate polymerization step, is a commensurately modulated superstructure of the NiAs aristotype. The phase transformation in NiP bears resemblance to the effect of successive substitution of Si or Ge in place of P found in the series of stoichiometric inhomogeneous linear structures in ternary NiP{sub 1-x}Si{sub x} and NiP{sub 1-x}Ge{sub x} systems.

  11. Pressure-induced phase transitions in rubidium azide: Studied by in-situ x-ray diffraction

    SciTech Connect

    Li, Dongmei; Wu, Xiaoxin; Jiang, Junru; Zhang, Jian; Cui, Qiliang; Zhu, Hongyang; Wang, Xiaoli

    2014-08-18

    We present the in-situ X-ray diffraction studies of RbN{sub 3} up to 42.0 GPa at room temperature to supplement the high pressure exploration of alkali azides. Two pressure-induced phase transitions of α-RbN{sub 3} → γ-RbN{sub 3} → δ-RbN{sub 3} were revealed at 6.5 and 16.0 GPa, respectively. During the phase transition of α-RbN{sub 3} → γ-RbN{sub 3}, lattice symmetry decreases from a fourfold to a twofold axis accompanied by a rearrangement of azide anions. The γ-RbN{sub 3} was identified to be a monoclinic structure with C2/m space group. Upon further compression, an orthogonal arrangement of azide anions becomes energetically favorable for δ-RbN{sub 3}. The compressibility of α-RbN{sub 3} is anisotropic due to the orientation of azide anions. The bulk modulus of α-RbN{sub 3} is 18.4 GPa, quite close to those of KN{sub 3} and CsN{sub 3}. By comparing the phase transition pressures of alkali azides, their ionic character is found to play a key role in pressure-induced phase transitions.

  12. Ab initio molecular dynamics simulation of pressure-induced zinc blende to rocksalt phase transition in SiC

    SciTech Connect

    Xiao, Haiyan J.; Gao, Fei; Zu, Xiaotao T.; Weber, William J.

    2009-06-17

    The high-pressure induced phase transformation from the zinc blende to rocksalt structure in SiC has been studied by ab initio molecular dynamics. The simulations show that SiC passes through tetragonal and then monoclinic intermediate states before finally forming the rock salt structure at 160 GPa. The mechanism for this phase transformation agrees well with recent ab initio MD simulations, in which the applied pressure was as high as ~600 GPa, but in the present study the transformation occurs at much lower pressure. It is found that the phase transition has to overcome an energy barrier of 0.44 eV/pair.

  13. First principles study of pressure induced structural phase transition in hydrogen storage material—MgH2

    NASA Astrophysics Data System (ADS)

    Kanagaprabha, S.; Asvinimeenaatci, A. T.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2012-01-01

    First principles calculation were performed using Vienna ab-initio simulation package within the frame work of density functional theory (DFT) to understand the electronic properties of magnesium hydride. At normal pressure, the most stable structure of MgH 2 is rutile type with a wide band gap of 3.52 eV, which agrees well with the available data. A pressure induced semi-conductor to metallic transition at a pressure of 92.54 GPa is predicted. Our results indicate a sequence of pressure induced structural phase transition in MgH 2. The obtained sequence of phase transition was α→γ→β→δ→ε at a pressure of 0.37 GPa, 3.89 GPa,7.23 GPa and 11.26 GPa, respectively. Thus our results indicate that MgH 2 is one of the best hydrogen storage material and the maximum storage capacity achieved was 7.7%.

  14. RAYLEIGH-TAYLOR STRENGTH EXPERIMENTS OF THE PRESSURE-INDUCED alpha->epsilon->alpha' PHASE TRANSITION IN IRON

    SciTech Connect

    Belof, J L; Cavallo, R M; Olson, R T; King, R S; Gray, G T; Holtkamp, D B; Chen, S R; Rudd, R E; Barton, N R; Arsenlis, A; Remington, B A; Park, H; Prisbrey, S T; Vitello, P A; Bazan, G; Mikaelian, K O; Comley, A J; Maddox, B R; May, M J

    2011-08-10

    We present here the first dynamic Rayleigh-Taylor (RT) strength measurement of a material undergoing solid-solid phase transition. Iron is quasi-isentropically driven across the pressure-induced bcc ({alpha}-Fe) {yields} hcp ({var_epsilon}-Fe) phase transition and the dynamic strength of the {alpha}, {var_epsilon} and reverted {alpha}{prime} phases have been determined via proton radiography of the resulting Rayleigh-Taylor unstable interface between the iron target and high-explosive products. Simultaneous velocimetry measurements of the iron free surface yield the phase transition dynamics and, in conjunction with detailed hydrodynamic simulations, allow for determination of the strength of the distinct phases of iron. Forward analysis of the experiment via hydrodynamic simulations reveals significant strength enhancement of the dynamically-generated {var_epsilon}-Fe and reverted {alpha}{prime}-Fe, comparable in magnitude to the strength of austenitic stainless steels.

  15. Pressure-induced hydration and order-disorder transition in a synthetic potassium gallosilicate zeolite with gismondine topology.

    PubMed

    Lee, Yongjae; Kim, Sun Jin; Kao, Chi-Chang; Vogt, Thomas

    2008-03-01

    Two high-pressure phases of a potassium gallosilicate with a gismondine framework (K-GaSi-GIS) were characterized using Rietveld refinements of in-situ high-pressure, high-resolution synchrotron X-ray powder diffraction data. The observed response of the K-GaSi-GIS framework under hydrostatic pressure is a gradual flattening of the so-called "double crankshaft" structural chain units. At pressures below 1.0(1) GPa, additional water molecules from the hydrostatic pressure-transmitting medium are inserted into the potassium-water guest network ("pressure-induced hydration") resulting in a "super-hydrated" high-pressure phase I. As the flattening of the double crankshaft structural units in the GIS framework continues above 1.6 GPa, the ellipticity of the cross-linking 8-ring windows is reduced below a certain threshold, and a disordering of the potassium-water guest structure along the 8-ring channel, characteristic of a disordered high-pressure phase II, is observed. The concerted framework distortion and guest network disordering accommodates the increased hydration level while maintaining the seven-fold coordination environment of the potassium cations to framework oxygen atoms and water molecules. We have thus established the atomistic details of a guest-host order-disorder transition under pressure-induced hydration conditions in a zeolite with GIS framework and compared it to other zeolites during pressure-induced hydration. We find that the structural changes mediated by the extra-framework cations and their coordination environment under PIH conditions are at the core of these different mechanisms and are driving the changes in the ellipticity of pore openings, order-disorder and disorder-order transitions, and framework distortions. PMID:18266365

  16. Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions.

    PubMed

    Lü, Xujie; Yang, Wenge; Quan, Zewei; Lin, Tianquan; Bai, Ligang; Wang, Lin; Huang, Fuqiang; Zhao, Yusheng

    2014-01-01

    Anatase TiO2 is one of the most important energy materials but suffers from poor electrical conductivity. Nb doping has been considered as an effective way to improve its performance in the applications of photocatalysis, solar cells, Li batteries, and transparent conducting oxide films. Here, we report the further enhancement of electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. The phase transition behavior and influence of Nb doping in anatase Nb-TiO2 have been systematically investigated by in situ synchrotron X-ray diffraction and Raman spectroscopy. The bulk moduli are determined to be 179.5, 163.3, 148.3, and 139.0 GPa for 0, 2.5, 5.0, and 10.0 mol % Nb-doped TiO2, respectively. The Nb-concentration-dependent stiffness variation has been demonstrated: samples with higher Nb concentrations have lower stiffness. In situ resistance measurements reveal an increase of 40% in conductivity of quenched Nb-TiO2 in comparison to the pristine anatase phase. The pressure-induced conductivity evolution is discussed in detail in terms of the packing factor model, which provides direct evidence for the rationality of the correlation of packing factors with electron transport in semiconductors. Pressure-treated Nb-doped TiO2 with unique properties surpassing those in the anatase phase holds great promise for energy-related applications. PMID:24320708

  17. Pressure-induced pseudoatom bonding collapse and isosymmetric phase transition in Zr{sub 2}Cu: First-principles predictions

    SciTech Connect

    Ning, Jinliang; Zhang, Xinyu E-mail: riping@ysu.edu.cn; Zhang, Suhong; Sun, Na; Wang, Limin; Ma, Mingzhen; Liu, Riping E-mail: riping@ysu.edu.cn

    2013-12-21

    The structural evolution of tetragonal Zr{sub 2}Cu has been investigated under high pressures up to 70 GPa by means of density functional theory. Our calculations predict a pressure-induced isosymmetric transition where the tetragonal symmetry (I4/mmm) is retained during the entire compression as well as decompression process while its axial ratio (c/a) undergoes a transition from ∼3.5 to ∼4.2 at around 35 GPa with a hysteresis width of about 4 GPa accompanied by an obvious volume collapse of 1.8% and anomalous elastic properties such as weak mechanical stability, dramatically high elastic anisotropy, and low Young's modulus. Crystallographically, the tetragonal axial ratio shift renders this transition analogous to a simple bcc-to-fcc structural transition, which implies it might be densification-driven. Electronically, the ambient Zr{sub 2}Cu is uncovered with an intriguing pseudo BaFe{sub 2}As{sub 2}-type structure, which upon the phase transition undergoes an electron density topological change and collapses to an atomic-sandwich-like structure. The pseudo BaFe{sub 2}As{sub 2}-type structure is demonstrated to be shaped by hybridized dxz + yz electronic states below Fermi level, while the high pressure straight Zr-Zr bonding is accommodated by electronic states near Fermi level with dx{sup 2} − y{sup 2} dominant features.

  18. Pressure-induced Phase Transition in Thiol-capped CdTe Nanoparticles

    SciTech Connect

    Wu, F; Zaug, J; Young, C; Zhang, J Z

    2006-11-29

    Phase transitions for CdTe nanoparticles (NPs) under high pressure up to 37.0 GPa have been studied using fluorescence measurements. The phase transition from cinnarbar to rocksalt phase has been observed in CdTe NPs solution at 5.8 GPa, which is much higher than the phase transition pressure of bulk CdTe (3.8 GPa) and that of CdTe NPs in solid form (0.8 GPa). CdTe NPs solution therefore shows elevated phase transition pressure and enhanced stability against pressure compared with bulk CdTe and CdTe NPs in solid forms. The enhanced stability of CdTe NPs solution has been attributed to possible shape change in the phase transition and/or inhomogeneous strains in nanoparticle solutions.

  19. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of Snl4

    SciTech Connect

    Liu, Hanyu; Tse, John S.; Hu, Michael Y.; Bi, Wenli; Zhao, Jiyong; Alp, E. Ercan; Pasternak, Moshe; Taylor, R. Dean; Lashley, Jason C.

    2015-10-27

    The pressure-induced amorphization and subsequent recrystallization of SnI4 have been investigated using first principles molecular dynamics calculations together with high-pressure 119Sn nuclear resonant inelastic x-ray scattering measurements. Above ~8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ~64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI4 under ambient conditions. Although high pressure structures of SnI4 were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. As a result, this charge transfer results in a crystal structure packing determined by larger than expected iodine atoms. (C) 2015 AIP Publishing LLC.

  20. Mechanisms for pressure-induced crystal-crystal transition, amorphization, and devitrification of SnI{sub 4}

    SciTech Connect

    Liu, H.; Tse, J. S.; Hu, M. Y.; Bi, W.; Zhao, J.; Alp, E. E.; Pasternak, M.; Taylor, R. D.; Lashley, J. C.

    2015-10-28

    The pressure-induced amorphization and subsequent recrystallization of SnI{sub 4} have been investigated using first principles molecular dynamics calculations together with high-pressure {sup 119}Sn nuclear resonant inelastic x-ray scattering measurements. Above ∼8 GPa, we observe a transformation from an ambient crystalline phase to an intermediate crystal structure and a subsequent recrystallization into a cubic phase at ∼64 GPa. The crystalline-to-amorphous transition was identified on the basis of elastic compatibility criteria. The measured tin vibrational density of states shows large amplitude librations of SnI{sub 4} under ambient conditions. Although high pressure structures of SnI{sub 4} were thought to be determined by random packing of equal-sized spheres, we detected electron charge transfer in each phase. This charge transfer results in a crystal structure packing determined by larger than expected iodine atoms.

  1. Structural response in FeCl2 (iron chloride) to pressure-induced electro-magnetic transitions

    SciTech Connect

    Taylor, R D; Rozenberg, G Kh; Pasternak, M P; Gorodetsky, P; Xu, W M; Dubrovinsky, L S; Le Bihan, T L

    2009-01-01

    High pressure (HP) synchrotron x-ray diffraction studies were carried out in FeCl{sub 2} together with resistivity (R) studies, at various temperatures and pressures to 65 GPa using diamond anvil cells. This work follows a previous HP {sup 57}Fe Mossbauer study in which two pressure-induced (PI) electronic transitions were found interpreted as: (i) quenching of the orbital-term contribution to the hyperfine field concurring with a tilting of the magnetic moment by 55 degrees and (ii) collapse of the magnetism concurring with a sharp decrease of the isomer shift (IS). The R(P,T) studies affirm that the cause the collapse of the magnetism is a PI p-d correlation breakdown, leading to an insulator-metal transition at {approx}45 GPa and is not due to a spi-Ir,crossover (S=2 {yields} S=0). The structure response to the pressure evolution of the two electronic phase transitions starting at low pressures (LP), through an intermediate phase (IP) 30-57 GPa, and culminating in a high-pressure phase (HP), P >32 GPa, can clearly be quantified. The IP-HP phases coexist through the 32-57 GPa range in which the HP abundance increases monotonically at the expense of the IP phase. At the LP-IP interface no volume change is detected, yet the c-axis increases and the a-axis shrinks by 0.21 Angstroms and 0.13 Angstroms, respectively. The fit of the equation of state of the combined LP-IP phases yields a bulk modulus K{sub 0} = 35.3(1.8) GPa. The intralayer CI-CI distances increases, but no change is observed in Fe-CI bond-length nor are there substantial changes in the interlayer spacing. The pressure-induced electronic IP-HP transition leads to a first-order structural phase transition characterized by a decrease in Fe-CI bond length and an abrupt drop in V(P) by {approx}3.5% accompanying the correlation breakdown. In this transition no symmetry change is detected,and the XRD data could be satisfactorily fitted with the CdI{sub 2} structure. The bulk modulus of the HP phase is

  2. Structure and pressure-induced ferroelectric phase transition in antiphase domain boundaries of strontium titanate from first principles

    NASA Astrophysics Data System (ADS)

    Kvasov, Alexander; Tagantsev, Alexander K.; Setter, Nava

    2016-08-01

    In this work, using zero kelvin ab initio calculations, we revisit the structure and ferroelectric phase transition in antiphase domain boundaries (APBs) in SrTiO3 (STO), which has been previously addressed in terms of a phenomenological approach. We confirmed the main qualitative conclusion of the phenomenological results that APBs normal to the rotation axis of the oxygen octahedra ("easy" walls) do not exhibit the transition while those parallel to the rotation axis ("hard" walls) do. However, we found the structure of the hard walls to be close to the Ising type in contrast to the phenomenological prediction of the nearly Néel type. We simulated a pressure-induced phase transition in the hard wall. Combining the results of simulation and experimental data on STO, we evaluated the pressure sensitivity of the ferroelectricity in the hard wall at low temperatures to show that it can be suppressed with very small pressure (a few kbar). We also roughly estimated the ferroelectric transition temperature in the hard wall corroborating the result of the phenomenological treatment.

  3. Pressure Induced Phase Transitions In SmVO{sub 4}: An In-Situ Raman Study

    SciTech Connect

    Patel, Nishant N.; Garg, Alka B.; Meenakshi, S.; Pandey, K. K.; Sharma, S. M.; Wani, B. N.

    2010-12-01

    High pressure room temperature Raman investigation on SmVO{sub 4} was carried out up to 19 GPa. The ambient zircon phase was observed to remain stable up to 5.8 GPa. At higher pressure two structural phase transitions were observed at 6.8 GPa and 15.9 GPa respectively. The second phase transition was found to be reversible whereas the intermediate phase was retained on complete pressure release.

  4. Pressure Induced Phase Transitions In SmVO4: An In-Situ Raman Study

    NASA Astrophysics Data System (ADS)

    Patel, Nishant N.; Garg, Alka B.; Meenakshi, S.; Pandey, K. K.; Wani, B. N.; Sharma, S. M.

    2010-12-01

    High pressure room temperature Raman investigation on SmVO4 was carried out up to 19 GPa. The ambient zircon phase was observed to remain stable up to 5.8 GPa. At higher pressure two structural phase transitions were observed at 6.8 GPa and 15.9 GPa respectively. The second phase transition was found to be reversible whereas the intermediate phase was retained on complete pressure release.

  5. Pressure-induced shape change of phospholipid vesicles: implication of compression and phase transition.

    PubMed

    Perrier-Cornet, J-M; Baddóuj, K; Gervais, P

    2005-04-01

    A microscopic study has allowed the analysis of modifications of various shapes acquired by phospholipid vesicles during a hydrostatic pressure treatment of up to 300 MPa. Giant vesicles of dimyristoylphosphatidylcholine / phosphatidylserine (DMPC/PS) prepared at 40 degrees C mainly presented a shape change resembling budding during pressure release. This comportment was reinforced by the incorporation of 1,2-dioleyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or by higher temperature (60 degrees C) processing. The thermotropic main phase transition (L alpha to P beta') of the different vesicles prepared was determined under pressure through a spectrofluorimetric study of 6-dodecanoyl-2-dimethylamino-naphtalene (Laurdan) incorporated into the vesicles' bilayer. This analysis was performed by microfluorescence observation of single vesicles. The phase transition was found to begin at about 80 MPa and 120 MPa for DMPC/PS vesicles at, respectively, 40 degrees C and 60 degrees C. At 60 degrees C the liquid-to-gel transition phase was not complete within 250 MPa. Addition of DMPE at 40 degrees C does not significantly shift the onset boundary of the phase transition but extends the transition region. At 40 degrees C, the gel phase was obtained at, respectively, 110 MPa and 160 MPa for DMPC/PS and DMPC/PS/DOPE vesicles. In comparing volume data obtained from image analysis and Laurdan signal, we assume the shape change is a consequence of the difference between lateral compressibility of the membrane and bulk water. The phase transition contributes to the membrane compression but seems not necessary to induce shape change of vesicles. The high compressibility of the L alpha phase at 60 degrees C allows induction on DMPC/PS vesicles of a morphological transition without phase change. PMID:16245032

  6. Pressure-Induced Tricritical Behavior of the SmA-Cho Transition in COC

    NASA Astrophysics Data System (ADS)

    Shichijyo, Shiro; Okamoto, Toshiyuki; Takemura, Tetuo

    1982-09-01

    The tricritical nature of the smectic-A-cholesteric (SmA-Cho) transition in cholesteryl oleyl carbonate (COC) was investigated by several methods. Differential thermal analysis (DTA) and volume measurement showed the existence of a tricritical point at 3.1± 0.1× 103 kg/cm2 and 74°C, where the first-order transition converted to the second-order one. The dynamic properties were studied by ultrasonic measurement, and the differences in the transition processes were observed with a polarized microscope. Spherulites were observed in the smectic-A phase above the tricritical point. The structure of the spherulites and the morphology effects are discussed.

  7. Pressure induced structural phase transition of OsB 2: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  8. Pressure-induced structural transitions in BN from ab initio metadynamics

    NASA Astrophysics Data System (ADS)

    Hromadová, Liliana; Martoňák, Roman

    2011-12-01

    We report here results of ab initio metadynamics simulations of structural transitions in boron nitride at high pressures. Transitions starting from sp2 bonded (graphite-like) structures are studied in a temperature range from 300 to 3000 K and pressures from 20 to 31 GPa. Rhombohedral boron nitride (r-BN) was found to directly transform at all temperatures into cubic boron nitride (c-BN). Hexagonal boron nitride (h-BN) transforms at T<700 K into wurtzite boron nitride (w-BN). At higher temperatures we found a possible transformation pathway resulting in the fully tetrahedrally (sp3) bonded metastable structure. This structure is tetragonal (P42/mnm) and is an analog of the “bct C4” (I4/mmm) structure recently discussed for carbon. The P42/mnm structure has been predicted theoretically for BN but so far not reported experimentally. We calculate structural, elastic, and electronic properties of this structure and discuss the transition mechanism. We also study the transitions at extreme pressures in the tera-pascal range starting from sp3 bonded c-BN and w-BN structures.

  9. Pressure-induced magnetic transitions with change of the orbital configuration in dimerised systems

    NASA Astrophysics Data System (ADS)

    Korotin, Dmitry M.; Anisimov, Vladimir I.; Streltsov, Sergey V.

    2016-05-01

    We suggest a possible scenario for magnetic transition under pressure in dimerised systems where electrons are localised on molecular orbitals. The mechanism of transition is not related with competition between kinetic energy and on-site Coulomb repulsion as in Mott-Hubbard systems, or between crystal-field splitting and intra-atomic exchange as in classical atomic spin-state transitions. Instead, it is driven by the change of bonding-antibonding splitting on part of the molecular orbitals. In the magnetic systems with few half-filled molecular orbitals external pressure may result in increase of the bonding-antibonding splitting and localise all electrons on low-lying molecular orbitals suppressing net magnetic moment of the system. We give examples of the systems, where this or inverse transition may occur and by means of ab initio band structure calculations predict that it can be observed in α‑MoCl4 at pressure P ~ 11 GPa.

  10. Pressure-induced magnetic transitions with change of the orbital configuration in dimerised systems

    PubMed Central

    Korotin, Dmitry M.; Anisimov, Vladimir I.; Streltsov, Sergey V.

    2016-01-01

    We suggest a possible scenario for magnetic transition under pressure in dimerised systems where electrons are localised on molecular orbitals. The mechanism of transition is not related with competition between kinetic energy and on-site Coulomb repulsion as in Mott-Hubbard systems, or between crystal-field splitting and intra-atomic exchange as in classical atomic spin-state transitions. Instead, it is driven by the change of bonding-antibonding splitting on part of the molecular orbitals. In the magnetic systems with few half-filled molecular orbitals external pressure may result in increase of the bonding-antibonding splitting and localise all electrons on low-lying molecular orbitals suppressing net magnetic moment of the system. We give examples of the systems, where this or inverse transition may occur and by means of ab initio band structure calculations predict that it can be observed in α−MoCl4 at pressure P ~ 11 GPa. PMID:27189206

  11. Pressure induced magnetic and semiconductor–metal phase transitions in Cr2MoO6

    NASA Astrophysics Data System (ADS)

    San-Dong, Guo

    2016-05-01

    We investigate magnetic ordering and electronic structures of Cr2MoO6 under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electronic structures of Cr2MoO6. The insulating nature at the experimental crystal structure is produced, with a band gap of 1.04 eV, and the magnetic moment of the Cr atom is 2.50 μ B, compared to an experimental value of about 2.47 μ B. The calculated results show that an antiferromagnetic inter-bilayer coupling–ferromagnetic intra-bilayer coupling to a ferromagnetic inter-bilayer coupling–antiferromagnetic intra-bilayer coupling phase transition is produced with the pressure increasing. The magnetic phase transition is simultaneously accompanied by a semiconductor–metal phase transition. The magnetic phase transition can be explained by the Mo–O hybridization strength, and ferromagnetic coupling between two Cr atoms can be understood by empty Mo-d bands perturbing the nearest O-p orbital. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS073).

  12. Pressure-induced magnetic transitions with change of the orbital configuration in dimerised systems.

    PubMed

    Korotin, Dmitry M; Anisimov, Vladimir I; Streltsov, Sergey V

    2016-01-01

    We suggest a possible scenario for magnetic transition under pressure in dimerised systems where electrons are localised on molecular orbitals. The mechanism of transition is not related with competition between kinetic energy and on-site Coulomb repulsion as in Mott-Hubbard systems, or between crystal-field splitting and intra-atomic exchange as in classical atomic spin-state transitions. Instead, it is driven by the change of bonding-antibonding splitting on part of the molecular orbitals. In the magnetic systems with few half-filled molecular orbitals external pressure may result in increase of the bonding-antibonding splitting and localise all electrons on low-lying molecular orbitals suppressing net magnetic moment of the system. We give examples of the systems, where this or inverse transition may occur and by means of ab initio band structure calculations predict that it can be observed in α-MoCl4 at pressure P ~ 11 GPa. PMID:27189206

  13. A pressure-induced, magnetic transition in pyrrhotite: Implications for the formation pressure of meteorites and diamonds

    NASA Astrophysics Data System (ADS)

    Gilder, S. A.; Egli, R.; Hochleitner, R.; Roud, S. C.; Volk, M.; Le Goff, M.; de Wit, M.

    2010-12-01

    Meteorites and diamonds encounter high-pressures during their geologic histories. These materials commonly contain magnetic inclusions of pyrrhotite, and because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report magnetic measurements performed at high-pressures on single and multi-domain pyrrhotite. A magnetic hysteresis model based on our observations suggests that multidomain pyrrhotite transforms into single domain-like material, and once in the single domain state, hysteresis loops become progressively squarer and then squatter with increasing pressure, until they ultimately collapse approaching the paramagnetic state at the transition. The ratio of the bulk magnetic coercive force to magnetic remanence for pure pyrrhotite is reversible with pressure and follows a logarithmic law as a function of pressure, which can be used as a magnetic barometer for natural systems.

  14. Plasma-assisted synthesis and pressure-induced structural transition of single-crystalline SnSe nanosheets.

    PubMed

    Zhang, Jian; Zhu, Hongyang; Wu, Xiaoxin; Cui, Hang; Li, Dongmei; Jiang, Junru; Gao, Chunxiao; Wang, Qiushi; Cui, Qiliang

    2015-06-28

    Two-dimensional tin selenide (SnSe) nanosheets were synthesized using a plasma-assisted direct current arc discharge method. The structural characterization indicates that the nanosheets are single-crystalline with an average thickness of ~25 nm and a lateral dimension of 500 nm. The high pressure behaviors of the as-synthesized SnSe nanosheets were investigated by in situ high-pressure synchrotron angle-dispersive X-ray diffraction and Raman scattering up to ~30 GPa in diamond anvil cells at room temperature. A second-order isostructural continuous phase transition (Pnma → Cmcm) was observed at ~7 GPa, which is considerably lower than the transition pressure of bulk SnSe. The reduction of transition pressure is induced by the volumetric expansion with softening of the Poisson ratio and shear modulus. Moreover, the measured zero-pressure bulk modulus of the SnSe nanosheets coincides with bulk SnSe. This abnormal phenomenon is attributed to the unique intrinsic geometry in the nanosheets. The high-pressure bulk modulus is considerably higher than the theoretical value. The pressure-induced morphology change should be responsible for the improved bulk modulus. PMID:26269801

  15. Theoretical investigation of pressure-induced structural transitions in americium using GGA+U and hybrid density functional theory methods

    NASA Astrophysics Data System (ADS)

    Verma, Ashok K.; Modak, P.; Sharma, Surinder M.; Svane, A.; Christensen, N. E.; Sikka, S. K.

    2013-07-01

    First-principles calculations have been performed for americium (Am) metal using the generalized gradient approximation + orbital-dependent onsite Coulomb repulsion via Hubbard interaction (GGA+U) and hybrid density functional theory (HYB-DFT) methods to investigate various ground state properties and pressure-induced structural transitions. Both methods yield equilibrium volume and bulk modulus in good agreement with the experimental results. The GGA+spin orbit coupling+U method reproduced all structural transitions under pressure correctly, but the HYB-DFT method failed to reproduce the observed Am-I to Am-II transition. Good agreement was found between calculated and experimental equations of states for all phases, but the first three phases need larger U (α) parameters (where α represents the fraction of Hartree-Fock exchange energy replacing the DFT exchange energy) than the fourth phase in order to match the experimental data. Thus, neither the GGA+U nor the HYB-DFT methods are able to describe the energetics of Am metal properly in the entire pressure range from 0 GPa to 50 GPa with a single choice of their respective U and α parameters. Low binding-energy peaks in the experimental photoemission spectrum at ambient pressure relate, for some parameter choices, well to peak positions in the calculated density of states function of Am-I.

  16. Pressure-induced magneto-structural transition in iron via a modified solid-state nudged elastic band method

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-03-01

    Materials under pressure may exhibit critical electronic and structural transitions that affect equation of states, as known for superconductors and the magneto-structural transformations of iron with both geophysical and planetary implications. While experiments often use constant-pressure (diamond-anvil cell, DAC) measurements, many theoretical results address a constant-volume transitions, which avoid issues with magnetic collapse but cannot be directly compared to experiment. We establish a modified solid-state nudge elastic band (MSS-NEB) method to handle magnetic systems that may exhibit moment (and volume) collapse during transformation. We apply it to the pressure-induced transformation in iron between the low-pressure body-centered cubic (bcc) and the high-pressure hexagonal close-packed (hcp) phases, find the bcc-hcp equilibrium coexistence pressure and a transitional pathway, and compare to shock and DAC experiments. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under contract DE-AC02-07CH11358.

  17. Pressure-induced normal-incommensurate and incommensurate-commensurate phase transitions in CrOCl

    PubMed Central

    Bykov, Maxim; Bykova, Elena; Dubrovinsky, Leonid; Hanfland, Michael; Liermann, Hanns-Peter; van Smaalen, Sander

    2015-01-01

    The high-pressure behavior of layered CrOCl is shown to be governed by non-bonded interactions between chlorine atoms in relation to a rigid framework composed of Cr and O atoms. The competition between optimizing intra- and interlayer Cl–Cl distances and the general trend towards denser packing defines a novel mechanism for high-pressure phase transitions of inorganic materials. CrOCl possesses an incommensurate phase for 16–51 GPa. Single-crystal x-ray diffraction in a diamond anvil cell provides an accurate description of the evolution of the incommensurate wave with pressure. It thus demonstrates a continuous increase of the amplitude up to 30 GPa, followed by a decrease of the wavelength until a lock-in transition occurs at 51 GPa. PMID:25999303

  18. Pressure Induced Metal-Nonmetal and FCC-BCC Transitions in Calcium*

    NASA Astrophysics Data System (ADS)

    Wang, G. M.; Blaisten-Barojas, E.; Papaconstantopoulos, D. A.

    2001-04-01

    The band structure of fcc and bcc calcium at different densities is obtained with the Augmented Plane Wave (APW) method using a soft-core approximation and Gaspar-Kohn-Sham potential. A tight-binding(TB) model is then built successfully to reproduce the first principles band structure and density of states. Properties examined within TB include bulk modulus, elastic constants, metal-nonmetal transition and fcc to bcc structural transition under pressure. Results are in an excellent agreement with experimental observations. Several dynamical properties of calcium under pressure are further explored with TB molecular dynamics at finite temperature. *Work supported in part by the Office of Naval Research grant N00014-98-1-0832

  19. Spectroscopy of the pressure-induced virtual phase transition in Hg2I2 crystals

    NASA Astrophysics Data System (ADS)

    Markov, Yu. F.; Mirovitskii, V. Yu.; Roginskii, E. M.

    2015-03-01

    Raman spectra of incipient ferroelastics, namely, Hg2I2 crystals, have been investigated over a wide range of hydrostatic pressures. Linear pressure dependences of phonon frequencies have been obtained at P < P c ). It has been found that jumps and breaks are observed in these dependences at the phase transition point P c = 9 kbar. The Grüneisen parameters of the Hg2I2 crystals have been determined and discussed. The Raman spectra of the ferroelastic phase ( P > P c ) in different polarizations exhibit excitation of acoustic vibrations from the X point of the Brillouin zone boundary, including transverse acoustic (TA1 and TA2) and longitudinal acoustic (LA) phonons. The Raman spectra of the ferroelastic phase have been interpreted based on the analysis of the experimental results, and a model of the phase transition in these crystals has been proposed.

  20. High pressure induced phase transition and superdiffusion in anomalous fluid confined in flexible nanopores

    SciTech Connect

    Bordin, José Rafael; Krott, Leandro B. Barbosa, Marcia C.

    2014-10-14

    The behavior of a confined spherical symmetric anomalous fluid under high external pressure was studied with Molecular Dynamics simulations. The fluid is modeled by a core-softened potential with two characteristic length scales, which in bulk reproduces the dynamical, thermodynamical, and structural anomalous behavior observed for water and other anomalous fluids. Our findings show that this system has a superdiffusion regime for sufficient high pressure and low temperature. As well, our results indicate that this superdiffusive regime is strongly related with the fluid structural properties and the superdiffusion to diffusion transition is a first order phase transition. We show how the simulation time and statistics are important to obtain the correct dynamical behavior of the confined fluid. Our results are discussed on the basis of the two length scales.

  1. Pressure-Induced Phase Transition in a Molecule-Based Magnet with Interpenetrating Sublattices

    SciTech Connect

    Fishman, Randy Scott; Shum, William W.; Miller, Joel S.

    2010-01-01

    The molecule-based magnet [Ru2(O2CMe)4]3[Cr(CN)6] contains two interpenetrating sublattices with each sublattice moment confined by anisotropy to a cubic diagonal. At ambient pressure, a field of about 850 Oe rotates the antiferromagnetically-coupled sublattice moments towards the field direction, producing a wasp-waisted magnetization curve. Up to 7 kbar, the sublattice moments increase with pressure due to the enhanced exchange coupling between the Cr and Ru2 spins on each sublattice. Above 7 kbar, the sublattice moment drops by about half and the the linear susceptibility of each sublattice along the cubic diagonal increases dramatically. The most likely explanation for this phase transition is that a high- to low-spin transition on each Ru2 complex reverses and lowers the net spin of each sublattice.

  2. New pressure-induced phase transitions of L-threonine crystal: A Raman spectroscopic study

    NASA Astrophysics Data System (ADS)

    Holanda, R. O.; Lima, J. A.; Freire, P. T. C.; Melo, F. E. A.; Mendes Filho, J.; Polian, A.

    2015-07-01

    L-threonine crystal was studied by Raman spectroscopy under pressure in the spectral range from 50 to 3300 cm-1. The pressure range of a previous study has been extended from 4 to 27.0 GPa. Modifications in the whole spectrum give us evidence of three structural phase transitions undergone by this amino acid as well as two conformational change. The classification of the vibrational modes and the behavior of their frequencies as a function of the pressure are presented.

  3. Pressure-induced Mott transition in an organic superconductor with a finite doping level.

    PubMed

    Oike, H; Miyagawa, K; Taniguchi, H; Kanoda, K

    2015-02-13

    We report the pressure study of a doped organic superconductor with a Hall coefficient and conductivity measurements. We find that maximally enhanced superconductivity and a marginal-Fermi liquid appear around a certain pressure where mobile carriers increase critically, suggesting a possible quantum phase transition between strongly and weakly correlated regimes. This observation points to the presence of a criticality in Mottness for a doped Mott insulator with tunable correlation. PMID:25723239

  4. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    SciTech Connect

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.

  5. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGESBeta

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; et al

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunablemore » transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  6. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  7. Pressure induced tetragonal to monoclinic transition in RbN3 studied from first principles theory

    NASA Astrophysics Data System (ADS)

    Vaitheeswaran, G.; Babu, K. Ramesh

    2014-04-01

    Alkali metal azides are well known for their application as explosives and gas generators. They are used as precursors in synthesis of polymeric nitrogen, an ultimate green high energy density material. Among the alkali metal azides, rubidium azide RbN3 crystallizes in tetragonal structure with linear azide ions arranged in layers and binds through weak dispersive interactions. In this present work, we have studied the structural stability, electronic structure and optical properties of solid RbN3 by using van der Waals corrected density functional theory. We find that the ambient tetragonal structure undergoes a structural transition to monoclinic structure at 0.72 GPa, which is in good agreement with the experimental transition pressure of less than 1 GPa. The phonon frequencies at the gamma point are calculated and found that the lattice mode Eg softens under pressure which may supports the structural phase transition. The electronic band structure and optical properties are calculated by using Tran Blaha-modified Becke Johnson (TB-mBJ) functional and found that solid RbN3 is an insulator with a gap of 5.976 eV and the optical absorption starts with the UV light of wave length 207.5 nm.

  8. Pressure-Induced Irreversible Phase Transition in the Energetic Material Urea Nitrate

    NASA Astrophysics Data System (ADS)

    Li, Shourui; Zou, Bo

    2013-06-01

    The behavior of energetic material Urea Nitrate ((NH2)2 COH+ . NO3-,UN) has been investigated up to the pressure of ~26 GPa. UN exhibits the typical supramolecular structure with uronium cation and nitrate anion held together by multiple hydrogen bonds in the layer. Both Raman and XRD data provide obvious evidence for the distorted phase transition in the pressure range ~9-15 GPa. Further analysis indicates phase II has Pc symmetry. The mechanism for the phase transition involves collapse of the initial 2D supramolecular structure to 3D hydrogen-bonded networks in phase Pc. Importantly, the transition is irreversible and leads to a large reduction in volume on release of pressure. The density in phase Pc has been increased by ~11.8% compared to the phase P21/ c under ambient conditions and therefore phase Pc is expected to have much higher detonation power. This study opens new opportunities for preparing energetic materials with high density combining supramolecular chemistry with high-pressure techniques. Corresponding author. E-mail: zoubo@jlu.edu.cn This work is supported by National Science Foundation of China (NSFC) (Nos. 91227202, and 21073071).

  9. Pressure induced magneto-structural phase transitions in layered RMn2X2 compounds (invited)

    NASA Astrophysics Data System (ADS)

    Kennedy, Shane; Wang, Jianli; Campbell, Stewart; Hofmann, Michael; Dou, Shixue

    2014-05-01

    We have studied a range of pseudo-ternaries derived from the parent compound PrMn2Ge2, substituting for each constituent element with a smaller one to contract the lattice. This enables us to observe the magneto-elastic transitions that occur as the Mn-Mn nearest neighbour distance is reduced and to assess the role of Pr on the magnetism. Here, we report on the PrMn2Ge2-xSix, Pr1-xYxMn2Ge2, and PrMn2-xFexGe2 systems. The pressure produced by chemical substitution in these pseudo-ternaries is inherently non-uniform, with local pressure variations dependent on the local atomic distribution. We find that concentrated chemical substitution on the R or X site (e.g., in Pr0.5Y0.5Mn2Ge2 and PrMn2Ge0.8Si1.2) can produce a separation into two distinct magnetic phases, canted ferromagnetic and canted antiferromagnetic, with a commensurate phase gap in the crystalline lattice. This phase gap is a consequence of the combination of phase separation and spontaneous magnetostriction, which is positive on transition to the canted ferromagnetic phase and negative on transition to the canted antiferromagnetic phase. Our results show that co-existence of canted ferromagnetic and antiferromagnetic phases depends on chemical pressure from the rare earth and metalloid sites, on local lattice strain distributions and on applied magnetic field. We demonstrate that the effects of chemical pressure bear close resemblance to those of mechanical pressure on the parent compound.

  10. The atomistic simulation of pressure-induced phase transition in uranium mononitride

    NASA Astrophysics Data System (ADS)

    Tseplyaev, V. I.; Starikov, S. V.

    2015-11-01

    Phase transition in uranium mononitride (UN) at high pressure has been studied using molecular dynamics. At low pressure, UN has the cubic structure like NaCl (with the space group Fm3̅m). The research based on Gibbs energy calculation shows that cubic UN turns into rhombohedral face-centered structure (with the space group R3̅m) at pressure about 32 GPa. It is shown that parameters of R3̅m-structure change at increasing of the pressure. At various pressures, the parameters of structures with isotropic stress tensor are different.

  11. Pressure induced phase transition and thermo-physical properties in LuX (X = N, P)

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.

    2016-04-01

    Detailed total energy calculations have been performed in lutetium pnictides (LuX, where X = N, P) to understand their high pressure structural stability. In LuN, the ambient rocksalt type structure (B1 phase) transforms to a tetragonal structure (B10 phase) at ∼240 GPa; whereas in LuP the orthorhombic structure (B33, space group Cmcm) emerges as a high pressure structure above 48 GPa. Both the transitions are found to be of first-order type with volume discontinuities of ∼6% and 8.2%, respectively. The high pressure phases B10 and B33 are found to be stable up to 400 GPa, respectively. Further, the structural stability predicted from static lattice calculations has been supported by lattice dynamical stability analysis. The present calculations rule out the B1 to B2 (CsCl type) structural phase transitions predicted to occur at 241 GPa in LuN and at 98 GPa in LuP by previous all-electron calculations (Gupta and Bhat 2013 J. Mol. Model 19 5343–54). The temperature dependence of several thermo-physical properties such as volume, bulk modulus, specific heat and thermal expansion coefficient of the rocksalt structure of these compounds calculated in the present study, using quasi-harmonic approximation, awaits confirmation by experimental studies.

  12. Pressure-induced kinetics of the α to ω transition in zirconium

    SciTech Connect

    Jacobsen, M. K.; Velisavljevic, N.; Sinogeikin, S. V.

    2015-07-14

    Diamond anvil cells (DAC) coupled with x-ray diffraction (XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformations and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the α to ω transformation in zirconium. We observe a clear time and pressure dependence in the martensitic α-ω transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the α-ω transition pressure in zirconium.

  13. X-ray diagnosis of the pressure induced Mott nonmetal-metal transition.

    PubMed

    Lévy, A; Dorchies, F; Benuzzi-Mounaix, A; Ravasio, A; Festa, F; Recoules, V; Peyrusse, O; Amadou, N; Brambrink, E; Hall, T; Koenig, M; Mazevet, S

    2012-02-01

    The evolution of the K-edge x-ray absorption near-edge spectroscopy (XANES) spectrum is investigated for an aluminum plasma expanding from the solid density down to 0.5  g/cm{3}, with temperatures lying from 5 down to 2 eV. The dense plasma is generated by nanosecond laser-induced shock compression. These conditions correspond to the density-temperature region where a metal-nonmetal transition occurs as the density decreases. This transition is directly observed in XANES spectra measurements through the progressive formation of a preedge structure for densities around 1.6  g/cm{3}. Ab initio calculations based on density functional theory and a jellium model have been efficiently tested through direct comparison with the experimental measurements and show that this preedge corresponds to the relocalization of the 3p atomic orbital as the system evolves from a dense plasma toward a partially ionized atomic fluid. PMID:22400937

  14. Pressure-Induced Phase Transitions of Hydrophobically Solvated Block-Copolymer Solutions

    SciTech Connect

    Osaka, Noboru; Shibayama, Mitsuhiro

    2006-02-03

    The structures of poly(2-(2-ethoxy)ethoxyethyl vinyl ether)-block-poly(2-methoxyethyl vinyl ether) in D{sub 2}O have been investigated with small-angle neutron scattering (SANS) as a function of temperature T and pressure P. At ambient pressure, the solution underwent a two-step transition at 40 and 65 deg. C, both of which were convex-upward functions of P having a maximum around P{sub 0}{approx_equal}150 MPa. The first transition was assigned to a microphase separation to form a bcc structure, and the second was to a macrophase separation. Pressurizing at 28 deg. C resulted in a macrophase separation with divergence at 350 MPa. At 45 deg. C, a reentrant microphase separation was observed by increasing P. Differences in the states of hydrophobic solvation in the low (PP{sub 0}) are discussed based on the SANS structure factors.

  15. Pressure-Induced Antifluorite-to-Anticotunnite Phase Transition in Lithium Oxide

    SciTech Connect

    Lazicki, A; Yoo, C; Evans, W J; Pickett, W E

    2006-04-12

    Using synchrotron angle-dispersive x-ray diffraction (ADXD) and Raman spectroscopy on samples of Li{sub 2}O pressurized in a diamond anvil cell, we observed a reversible phase change from the cubic antifluorite ({alpha}, Fm-3m) to orthorhombic anticotunnite ({beta}, Pnma) phase at 50({+-}5) GPa at ambient temperature. This transition is accompanied by a relatively large volume collapse of 5.4 ({+-}0.8)% and large hysteresis upon pressure reversal (P{sub down} at {approx} 25 GPa). Contrary to a recent study, our data suggest that the high-pressure {beta}-phase (B{sub o} = 188 {+-} 12 GPa) is substantially stiffer than the low-pressure {alpha}-phase (B{sub o} = 90 {+-} 1 GPa). A relatively strong and pressure-dependent preferred orientation in {beta}-Li{sub 2}O is observed. The present result is in accordance with the systematic behavior of antifluorite-to-anticotunnite phase transitions occurring in the alkali-metal sulfides.

  16. A pressure-induced, magnetic transition in pyrrhotite: Implications for the formation pressure of meteorites and diamonds

    NASA Astrophysics Data System (ADS)

    Gilder, S. A.; Egli, R.; Hochleitner, R.; Roud, S. C.; Volk, M. W. R.; Le Goff, M.; de Wit, M.

    2012-04-01

    Meteorites and diamonds encounter high pressures during their formation or subsequent evolution. These materials sometimes contain magnetic inclusions of pyrrhotite. Because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report room temperature magnetic measurements on multi- and single domain pyrrhotite under non-hydrostatic pressure up to 4.5 GPa. We find that the ratio of magnetic coercivity and remanence follows a logarithmic law with respect to pressure, which can potentially be used as a geobarometer. Due to the greater thermal expansion of pyrrhotite with respect to diamond, pyrrhotite inclusions in diamond experience a confining pressure at the Earth's surface. Applying our experimentally derived magnetic geobarometer to pyrrhotite-bearing diamonds from Botswana and the Central African Republic suggests the pressures of the pyrrhotite inclusions in the diamonds range from 1.3 to 2.1 GPa. These overpressures constrain the mantle source pressures from 5.4 to 9.5 GPa, depending on which bulk modulus and thermal expansion coefficients of the two phases are used. We are now trying to develop magnetic barometers on other magnetic phases to apply to meteorites, ultimately to constrain the minimum pressure in which the meteorite formed and, hence, information regarding the planetesmal's size, and/or depth, in which the meteorite was derived.

  17. Pressure Induced Structural Phase Transition in Actinide Monophospides: Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Makode, Chandrabhan; Sanyal, Sankar P.

    2011-07-01

    The structural and electronic properties of monophospides of Thorium, Uranium and Neptunium have been investigated using tight binding linear muffin-in-orbital (TB-LMTO) method within the local density approximation (LDA). From present study with the help of total energy calculations it is found that ThP, UP and NpP are stable in NaCl- type structure under ambient pressure. The structure stability of ThP, UP and NpP changes under the application of pressure. We predict a structural phase transition from NaCl-type (B1-phase) structure to CsCl-type (B2-phase) structure for these phospides in the pressure range of 37.0-24.0 GPa (ThP to NpP). The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.

  18. Pressure induced structural phase transition in actinide mono-bismuthides: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Pataiya, J.; Makode, C.; Aynyas, M.; Sanyal, Sankar P.

    2013-06-01

    The structural and electronic properties of mono-bismuthides of Plutonium and Americium have been investigated using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). From present study with the help of total energy calculations it is found that PuBi and AmBi are stable in NaCl - type structure under ambient pressure. The structure stability of PuBi and AmBi changes under the application of pressure. We predict a structural phase transition from NaCl-type (B1-phase) structure to CsCl-type (B2-phase) structure for these phospides in the pressure range of 45 - 4.5 GPa for PuBi and AmBi respectively. The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.

  19. Pressure-Induced Transition of Bilayers in a Nonionic Surfactant Solution.

    PubMed

    Takano, Tetsuo; Kawabata, Youhei; Suzuki, Takuro; Kato, Tadashi

    2015-09-01

    Pressure effects on the bilayers of polyoxyethylene type nonionic surfactant in water have been investigated by means of small- and wide-angle X-ray scattering. It has been found that the Krafft transition from the micellar phase to the lamellar gel phase (Lβ) is induced by pressure. By further pressurizing, the lamellar structural parameters, such as the repeat distance d and Caillé parameter η, discontinuously decrease after taking a maximum. All the SAXS and WAXS results revealed that the Lβ phase is transformed into the higher-ordered lamellar crystal phase (Lc). On the basis of these observations, we have made the T-C and T-P phase diagrams. PMID:26237248

  20. Pressure-induced electronic phase transition in compound EuCu2Ge2

    NASA Astrophysics Data System (ADS)

    Geondzhian, A. Y.; Yaroslavtsev, A. A.; Alekseev, P. A.; Chernikov, R. V.; Gaynanov, B. R.; Baudelet, F.; Nataf, L.; Menushenkov, A. P.

    2016-05-01

    We report the high-pressure XANES study of the electronic phase transition from 4f7 to 4f 6 configuration of europium in the rare-earth compound EuCu2Ge2. The hydrostatic pressure dependence of the europium valence was obtained in a wide pressure range (1-30 GPa) at room temperature. It was found that upon the pressure increase above 20 GPa the europium valence does not reach the integer value +3 but stabilizes at 2.87. The experimental results were supported by the band structure calculations in the framework of DFT, which allowed us to discuss the features of 3d-4f hybridization in this system. The study also compares the mechanisms of external and “chemical” pressure by the Si substitution in Ge site in series EuCu2(SixGe1-x)2.

  1. Comprehensive characterization of temperature- and pressure-induced bilayer phase transitions for saturated phosphatidylcholines containing longer chain homologs.

    PubMed

    Goto, Masaki; Endo, Takuya; Yano, Takahiro; Tamai, Nobutake; Kohlbrecher, Joachim; Matsuki, Hitoshi

    2015-04-01

    Complete elucidation of the phase behavior of phospholipid bilayers requires information on the subtransition from the lamellar crystal (Lc) phase to the gel phase. However, for bilayers of saturated diacylphosphatidylcholines (CnPCs), especially longer chain homologs, equilibration in the Lc phase is known to be very slow. In this study, bilayer phase transitions of three CnPCs with longer acyl chains, C19PC, C20PC and C21PC, were observed by differential scanning calorimetry under atmospheric pressure and by light-transmittance measurements under high pressure. Using lipid samples treated by thermal annealing enabled the observation of the sub-, pre- and main transitions of the C19PC and C20PC bilayers under atmospheric pressure. Only the pre- and main transitions could be observed for the C21PC bilayer due to very slow kinetics of the Lc phase formation for lipids with long acyl chains. The temperature and pressure phase diagrams constructed and phase-transitions quantities (enthalpy, entropy and volume changes) evaluated for these bilayers were compared with one another and with those of bilayers of the CnPC homologs examined in previous studies. These results allowed us (1) to clarify the temperature- and pressure-dependent phase sequence and phase stability of the CnPC (n=12-22) bilayers as a function of the hydrophobicity of the molecules, (2) to prove the presence of a shorter and a longer limit (n=13 and 21) in the acyl chain length for the pressure-induced bilayer interdigitation and (3) to reveal the chain-length dependence of the thermodynamic quantities of the subtransitions including the volume change. PMID:25779604

  2. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    SciTech Connect

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; Ehlers, Georg; Kerbel, O.; Matvienko, V.; Sefat, A. S.; Saporov, B.; Halder, G. J.; Tobin, J. G.

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated with the phase transition.

  3. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    DOE PAGESBeta

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; Ehlers, Georg; Kerbel, O.; Matvienko, V.; Sefat, A. S.; Saporov, B.; Halder, G. J.; Tobin, J. G.

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated withmore » the phase transition.« less

  4. Pressure-induced phase transition in synthetic trioctahedral Rb-mica

    NASA Astrophysics Data System (ADS)

    Comodi, P.; Drábek, M.; Montagnoli, M.; Rieder, M.; Weiss, Z.; Zanazzi, P. F.

    The crystal structure of a synthetic Rb analog of tetra-ferri-annite (Rb-TFA) 1M with the composition Rb0.99Fe2+3.03(Fe3+ 1.04 Si2.96)O10.0(OH)2.0 was determined by the single-crystal X-ray diffraction method. The structure is homooctahedral (space group C2/m) with M1 and M2 occupied by divalent iron. Its unit cell is larger than that of the common potassium trioctahedral mica, and similar lateral dimensions of the tetrahedral and octahedral sheets allow a small tetrahedral rotation angle α=2.23(6)°. Structure refinements at 0.0001, 1.76, 2.81, 4.75, and 7.2 GPa indicate that in some respects the Rb-TFA behaves like all other micas when pressure increases: the octahedra are more compressible than the tetrahedra and the interlayer is four times more compressible than the 2:1 layer. However, there is a peculiar behavior of the tetrahedral rotation angle α: at lower pressures (0.0001, 1.76, 2.81 GPa), it has positive values that increase with pressure [from 2.23(6)° to 6.3(4)°] as in other micas, but negative values -7.5(5)° and -8.5(9)° appear at higher pressures, 4.75 and 7.2 GPa, respectively. This structural evidence, together with electrostatic energy calculations, shows that Rb-TFA has a Franzini A-type 2:1 layer up to at least 2.81 GPa that at higher pressure yields to a Franzini B-type layer, as shown by the refinements at 4.75 and 7.2 GPa. The inversion of the α angle is interpreted as a consequence of an isosymmetric displacive phase transition from A-type to B-type structure between 2.81 and 4.75 GPa. The compressibility of the Rb-TFA was also investigated by single-crystal X-ray diffraction up to a maximum pressure of 10 GPa. The lattice parameters reveal a sharp discontinuity between 3.36 and 3.84 GPa, which was associated with the phase transition from Franzini-A to Franzini-B structure.

  5. Pressure induced structural phase transition and electronic properties of actinide monophospides: Ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Makode, Chandrabhan; Sanyal, Sankar P.

    2011-09-01

    We have investigated the structural and electronic properties of monophospides of thorium, uranium and neptunium. The total energy as a function of volume is obtained by means of the self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). From the present study with the help of total energy calculations it is found that ThP, UP and NpP are stable in NaCl-type structure at ambient pressure. The structural stability of ThP, UP and NpP changes under the application of pressure. We predict a structural phase transition from NaCl-type (B 1-phase) structure to CsCl-type (B 2-phase) structure for these phospides in the pressure range of 37.0-24.0 GPa (ThP-NpP). We also calculate lattice parameter ( a0), bulk modulus ( B0), band structure and density of states. From energy band diagram it is observed that ThP, UP and NpP exhibit metallic behavior. The calculated equilibrium lattice parameters and bulk modulus are in good agreement with experimental and theoretical work.

  6. Pressure responses of portlandite and H-D isotope effects on pressure-induced phase transitions

    NASA Astrophysics Data System (ADS)

    Iizuka, Riko; Kagi, Hiroyuki; Komatsu, Kazuki; Ushijima, Daichi; Nakano, Satoshi; Sano-Furukawa, Asami; Nagai, Takaya; Yagi, Takehiko

    2011-12-01

    The pressure responses of portlandite and the isotope effect on the phase transition were investigated at room temperature from single-crystal Raman and IR spectra and from powder X-ray diffraction using diamond anvil cells under quasi-hydrostatic conditions in a helium pressure-transmitting medium. Phase transformation and subsequent peak broadening (partial amorphization) observed from the Raman and IR spectra of Ca(OH)2 occurred at lower pressures than those of Ca(OD)2. In contrast, no isotope effect was found on the volume and axial compressions observed from powder X-ray diffraction patterns. X-ray diffraction lines attributable to the high-pressure phase remained up to 28.5 GPa, suggesting no total amorphization in a helium pressure medium within the examined pressure region. These results suggest that the H-D isotope effect is engendered in the local environment surrounding H(D) atoms. Moreover, the ratio of sample-to-methanol-ethanol pressure medium (i.e., packing density) in the sample chamber had a significant effect on the increase in the half widths of the diffraction lines, even at pressures below the hydrostatic limit of the pressure medium.

  7. Theoretical investigation of La monopnictides: Electronic properties and pressure-induced phase transition

    SciTech Connect

    Yan, X. Z.; Chen, Y. M.; Kuang, X. Y.; Xiang, S. K.

    2014-08-28

    The NaCl-type La monopnictides are proper reference materials for the study of strongly correlated rare-earth pnictides. Yet, despite the simple crystal structure of this system, traditional density functional theory (DFT) calculations have dramatic failures in describing their electronic properties: DFT severely underestimates the band gaps and thus predicts incorrect transport characters of them. Here, we perform a corrected DFT calculation to rectify this failure. Our results show that LaN, LaP, and LaAs are semiconductor with band gaps of 0.82, 0.25, and 0.12 eV, respectively, and LaSb is semimetallic with an overlap of conduction and valence bands approximately 0.28 eV, in agreement with the available experiments. Additionally, under high-pressure, we find that LaN displays a new sequence of phase-transition, B1 → anti-B10 → B2, which is different from the previous theoretical predictions but consistent with the recent experiment.

  8. Mercury Fluorides under high pressure: Hg as a pressure-induced transition metal

    NASA Astrophysics Data System (ADS)

    Botana, Jorge; Wang, Xiaoli; Yang, Dadong; Ling, Haiqing; Ma, Yangming; Miao, Mao-Sheng

    2014-03-01

    Hg has recently been found experimentally to be capable of forming a chemical compound, HgF4, where it behaves as a transition metal, with an oxidation number of IV, but this molecule is very short lived. In this work we present theoretical evidence obtained through ab initio calculations that higher oxidation states than II can be stabilized in crystalline form for Hg, under extreme pressure. We have performed a structural search and optimization by means of Particle Swarm Optimization and Density Functional Theory for the crystalline series of HgFn (n=3,4,5,6), and then used those data to draw the phase diagram of the equilibrium among those stoichiometries and HgF2 and F2. We have found that from 0 to 38 GPa only the mixture of HgF2 and F2 phases is thermodynamically stable. HgF3 and HgF4 have been found to be thermodynamically stable in different pressure ranges (from 73 GPa to at least 500 GPa and from 38 GPa to 200 GPa , respectively). We have also found that the HgF3 crystal shows a very interesting band structure that suggests it could be a transparent conductor.

  9. Pressure-induced oversaturation and phase transition in zeolitic imidazolate frameworks with remarkable mechanical stability.

    PubMed

    Zhao, Pu; Bennett, Thomas D; Casati, Nicola P M; Lampronti, Giulio I; Moggach, Stephen A; Redfern, Simon A T

    2015-03-14

    Zeolitic imidazolate frameworks (ZIFs) 7 and 9 are excellent candidates for CO2 adsorption and storage. Here, high-pressure X-ray diffraction is used to further understand their potential in realistic industrial applications. ZIF-7 and ZIF-9 are shown be able to withstand high hydrostatic pressures whilst retaining their porosity and structural integrity through a new ferroelastic phase transition. This stability is attributed to the presence of sterically large organic ligands. Results confirm the notable influence of guest occupancy on the response of ZIFs to pressure; oversaturation of ZIFs with solvent molecules greatly decreases their compressibility and increases their resistance to amorphisation. By comparing the behaviours of both ZIFs under high pressure, it is demonstrated that their mechanical stability is not affected by metal substitution. The evacuated ZIF-7 phase, ZIF-7-II, is shown to be able to recover to the ZIF-7 structure with excellent resistance to pressure. Examining the pressure-related structural behaviours of ZIF-7 and ZIF-9, we have assessed the great industrial potential of ZIFs. PMID:25649463

  10. Pressure-induced phase transitions of AX2-type iron pnictides: an ab initio study

    NASA Astrophysics Data System (ADS)

    Wu, X.; Steinle-Neumann, G.; Qin, S.; Kanzaki, M.; Dubrovinsky, L.

    2009-05-01

    An investigation into the high-pressure behavior of AX2-type iron pnictides was conducted using first-principles calculations based on density functional theory within the generalized gradient approximation. Our results demonstrate that a phase transition from the marcasite to the CuAl2 occurs at 108 GPa for FeP2, at 92 GPa for FeAs2, and at 38 GPa for FeSb2, accompanying a semiconductor-to-metal crossover. A linear relationship between bulk moduli and the inverse specific volume is proposed to be B0 = 17 498/V0-45.9 GPa for the marcasite-type phase and B0 = 31 798/V0-67.5 GPa for the CuAl2-type phase. According to the observed structural evolutions, we claim that the regular marcasite transforms to the CuAl2-type phase and the anomalous marcasite transforms to the pyrite-type phase at high pressures.

  11. Picosecond Electronic Spectroscopy to Determine the Transformation Mechanism for the Pressure-Induced Phase Transition in Shocked CdS

    SciTech Connect

    Knudson, M.D.; Gupta, Y.M.; Kunz, A.B.

    1999-07-21

    Plate impact, shock wave experiments provide a unique method to investigate the time-dependent mechanisms and the kinetics associated with pressure-induced phenomena, such as chemical reactions and phase transformations. The very rapid and well defined loading conditions associated with plate-impact experiments permit real-time examination of the shock-induced changes. Further, the ability to propagate the shock wave along various crystallographic directions provides the means to perform careful analysis of the stress and orientational dependence. Recently, an experimental method has been developed to observe real-time changes in the absorption transmission of materials, with 100 or 200 ps resolution, in single-event, plate impact shock experiments [1-4]. These data can provide useful information regarding the material under investigation. In particular, the dependence of the absorption edge on photon energy can distinguish between direct and indirect electronic transitions, and can provide an estimate of the band-gap energy of the material [5]. Along with ab-initio techniques to calculate the electronic structure of a crystalline system, this electronic information can be used to gain insight regarding the crystal structure. As described in Ref. [1,2,4] the wurtzite-to-rocksalt phase transition in cadmium sulfide (CdS) is well suited to investigation through the use of fast electronic spectroscopy; the wurtzite and rocksalt phases exhibit a direct and indirect band gap with band gap energies of 2.5 and 1.5-1.7 eV, respectively [6-8]. The intent of this work was to use picosecond electronic spectroscopy and ab-initio methods to examine the real-time structural changes that occur in the initial stages of the shock-induced wurtzite-to-rocksalt phase transition in single crystal CdS.

  12. Pressure induced phase transitions and metallization of a neutral radical conductor.

    PubMed

    Wong, Joanne W L; Mailman, Aaron; Lekin, Kristina; Winter, Stephen M; Yong, Wenjun; Zhao, Jianbao; Garimella, Subrahmanyam V; Tse, John S; Secco, Richard A; Desgreniers, Serge; Ohishi, Yasuo; Borondics, Ferenc; Oakley, Richard T

    2014-01-22

    The crystal structure and charge transport properties of the prototypal oxobenzene-bridged 1,2,3-bisdithiazolyl radical conductor 3a are strongly dependent on pressure. Compression of the as-crystallized α-phase, space group Fdd2, to 3-4 GPa leads to its conversion into a second or β-phase, in which F-centering is lost. The space group symmetry is lowered to Pbn2₁, and there is concomitant halving of the a and b axes. A third or γ-phase, also space group Pbn2₁, is generated by further compression to 8 GPa. The changes in packing that accompany both phase transitions are associated with an "ironing out" of the ruffled ribbon-like architecture of the α-phase, so that consecutive radicals along the ribbons are rendered more nearly coplanar. In the β-phase the planar ribbons are propagated along the b-glides, while in the γ-phase they follow the n-glides. At ambient pressure 3a is a Mott insulator, displaying high but activated conductivity, with σ(300 K) = 6 × 10(-3) S cm(-1) and E(act) = 0.16 eV. With compression beyond 4 GPa, its conductivity is increased by 3 orders of magnitude, and the thermal activation energy is reduced to zero, heralding the formation of a metallic state. High pressure infrared absorption and reflectivity measurements are consistent with closure of the Mott-Hubbard gap near 4-5 GPa. The results are discussed in the light of DFT calculations on the molecular and band electronic structure of 3a. The presence of a low-lying LUMO in 3a gives rise to high electron affinity which, in turn, creates an electronically much softer radical with a low onsite Coulomb potential U. In addition, considerable crystal orbital (SOMO/LUMO) mixing occurs upon pressurization, so that a metallic state is readily achieved at relatively low applied pressure. PMID:24400662

  13. A coupled cluster and Møller-Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal

    SciTech Connect

    Grüneis, Andreas

    2015-09-14

    We employ Hartree–Fock, second-order Møller-Plesset perturbation, coupled cluster singles and doubles (CCSD) as well as CCSD plus perturbative triples (CCSD(T)) theory to study the pressure induced transition from the rocksalt to the cesium chloride crystal structure in LiH. We show that the calculated transition pressure converges rapidly in this series of increasingly accurate many-electron wave function based theories. Using CCSD(T) theory, we predict a transition pressure for the structural phase transition in the LiH crystal of 340 GPa. Furthermore, we investigate the potential energy surface for this transition in the parameter space of the Buerger path.

  14. Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide.

    PubMed

    Szafrański, Marek; Katrusiak, Andrzej

    2016-09-01

    Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids. PMID:27538989

  15. Charge disproportionation and the pressure-induced insulator–metal transition in cubic perovskite PbCrO3

    PubMed Central

    Cheng, Jinguang; Kweon, K. E.; Larregola, S. A.; Ding, Yang; Shirako, Y.; Marshall, L. G.; Li, Z.-Y.; Li, X.; dos Santos, António M.; Suchomel, M. R.; Matsubayashi, K.; Uwatoko, Y.; Hwang, G. S.; Goodenough, John B.; Zhou, J.-S.

    2015-01-01

    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations. PMID:25624483

  16. Pressure-induced structural phase transition, elastic and thermodynamic properties of ReC under high pressure

    NASA Astrophysics Data System (ADS)

    Lei, Hui-Ru; Zhu, Jun; Hao, Yan-Jun; Zhang, Lin; Zhao, Yu-Xin; Zhan, Guo-Fu

    2015-10-01

    The pressure-induced structural phase transition of rhenium monocarbon (ReC) is investigated via the projector augmented wave (PAW) method with the generalized gradient approximation (GGA). Using the first-principles calculations, the equilibrium structural parameters of ReC in rocksalt (NaCl), cesium chloride (CsCl), zinc blende (ZB), wurtzite (WZ), nickel arsenide (NiAs) and tungsten carbide (WC) types are successfully obtained, and the results are well consistent with other theoretical data. It is firstly noted that WC-ReC translates into CsCl-ReC at 510.50 GPa by analyzing the enthalpy difference versus pressure. From the calculated elastic constants, the aggregate elastic modulus (B, G, E), the Poisson's ratio (σ) and the Debye temperature ΘD of WC-type are also derived. It is observed that all the data of WC-ReC obtained increase monotonically with increasing pressure. Meanwhile, the thermodynamic properties of WC-ReC under high temperature and high pressure are investigated applying nonempirical Debye model in the quasi-harmonic approximation.

  17. Pressure-induced magnetic transition and sound velocities of Fe(3)c : implications for carbon in the earth's inner core.

    SciTech Connect

    Gao, L.; Chen, B.; Wang, J.; Alp, E.E.; Zhao, J.; Lerche, M.; Sturhahn, W.; Scott, H.P.; Huang, F.; Ding, Y.; Sinogeikin, S.V.; Lundstrom, C.C.; Bass, J.D.; Li, J.; X-Ray Science Division; Univ. of Illinois; Carnegie Inst. of Washington; Indiana Univ.

    2008-09-11

    We have carried out nuclear resonant scattering measurements on {sup 57}Fe-enriched Fe{sub 3}C between 1 bar and 50 GPa at 300 K. Synchrotron Moessbauer spectra reveal a pressure-induced magnetic transition in Fe{sub 3}C between 4.3 and 6.5 GPa. On the basis of our nuclear resonant inelastic X-ray scattering spectra and existing equation-of-state data, we have derived the compressional wave velocity V{sub p} and shear wave velocity V{sub s} for the high-pressure nonmagnetic phase, which can be expressed as functions of density ({rho}): V{sub p} (km/s) = -3.99 + 1.29{rho}(g/cm{sup 3}) and V{sub s} (km/s) = 1.45 + 0.24{rho}(g/cm{sup 3}). The addition of carbon to iron-nickel alloy brings density, V{sub p} and V{sub s} closer to seismic observations, supporting carbon as a principal light element in the Earth's inner core.

  18. Pressure-induced semimetal-semiconductor transition and enhancement of thermoelectric performance in α-MgAgSb

    NASA Astrophysics Data System (ADS)

    Miao, Naihua; Zhou, Jian; Sa, Baisheng; Xu, Bin; Sun, Zhimei

    2016-05-01

    Comparable to bismuth telluride, α-MgAgSb-based materials (α-MAS) have been investigated recently as promising candidates for room-temperature thermoelectric energy harvesting and thus various efforts have been devoted to the enhancement of their thermoelectric performance. By utilizing first-principles density functional calculations and Boltzmann transport theory, we report that the thermoelectric properties of α-MAS can be dramatically improved with the application of hydrostatic pressure. This is attributed to a pressure-induced semimetal to semiconductor transition in α-MAS. With the benefit of this pressure-tunable behaviour, the Seebeck coefficient of α-MAS can be manipulated flexibly. Furthermore, we found that, through the combination of applying pressure and p-type doping, the optimal thermoelectric power factor and figure of merit of α-MAS can be enhanced remarkably by 110% at 550 K compared with the intrinsic case. Our results provide an interesting insight and a feasible guideline for the improvement of the thermoelectric properties of α-MAS related materials.

  19. Anatomy of a pressure-induced, ferromagnetic-to-paramagnetic transition in pyrrhotite: Implications for the formation pressure of diamonds

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart A.; Egli, Ramon; Hochleitner, Rupert; Roud, Sophie C.; Volk, Michael W. R.; Le Goff, Maxime; de Wit, Maarten

    2011-10-01

    Meteorites and diamonds encounter high pressures during their formation or subsequent evolution. These materials commonly contain magnetic inclusions of pyrrhotite. Because magnetic properties are sensitive to strain, pyrrhotite can potentially record the shock or formation pressures of its host. Moreover, pyrrhotite undergoes a pressure-induced phase transition between 1.6 and 6.2 GPa, but the magnetic signature of this transition is poorly known. Here we report room temperature magnetic measurements on multidomain and single-domain pyrrhotite under nonhydrostatic pressure. Magnetic remanence in single-domain pyrrhotite is largely insensitive to pressure until 2 GPa, whereas the remanence of multidomain pyrrhotite increases 50% over that of initial conditions by 2 GPa, and then decreases until only 33% of the original remanence remains by 4.5 GPa. In contrast, magnetic coercivity increases with increasing pressure to 4.5 GPa. Below ˜1.5 GPa, multidomain pyrrhotite obeys Néel theory with a positive correlation between coercivity and remanence; above ˜1.5 GPa, it behaves single domain-like yet distinctly different from uncompressed single-domain pyrrhotite. The ratio of magnetic coercivity and remanence follows a logarithmic law with respect to pressure, which can potentially be used as a geobarometer. Owing to the greater thermal expansion of pyrrhotite with respect to diamond, pyrrhotite inclusions in diamonds experience a confining pressure at Earth's surface. Applying our experimentally derived magnetic geobarometer to pyrrhotite-bearing diamonds from Botswana and the Central African Republic suggests the pressures of the pyrrhotite inclusions in the diamonds range from 1.3 to 2.1 GPa. These overpressures constrain the mantle source pressures from 5.4 to 9.5 GPa, depending on which bulk modulus and thermal expansion coefficients of the two phases are used.

  20. Pressure-induced phase transition in Bi2Se3 at 3 GPa: electronic topological transition or not?

    PubMed

    Bera, Achintya; Pal, Koushik; Muthu, D V S; Waghmare, U V; Sood, A K

    2016-03-16

    In recent years, a low pressure transition around P3 GPa exhibited by the A2B3-type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P2.4 GPa followed by structural transitions at ∼ 10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated Z2 invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition. PMID:26881905

  1. Pressure-induced phase transition in Bi2Se3 at 3 GPa: electronic topological transition or not?

    NASA Astrophysics Data System (ADS)

    Bera, Achintya; Pal, Koushik; Muthu, D. V. S.; Waghmare, U. V.; Sood, A. K.

    2016-03-01

    In recent years, a low pressure transition around P∼ 3 GPa exhibited by the {{A}2}{{B}3} -type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P∼ 2.4 GPa followed by structural transitions at  ∼10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P∼ 3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated {{{Z}}2} invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition.

  2. A coupled cluster and Møller-Plesset perturbation theory study of the pressure induced phase transition in the LiH crystal.

    PubMed

    Grüneis, Andreas

    2015-09-14

    We employ Hartree-Fock, second-order Møller-Plesset perturbation, coupled cluster singles and doubles (CCSD) as well as CCSD plus perturbative triples (CCSD(T)) theory to study the pressure induced transition from the rocksalt to the cesium chloride crystal structure in LiH. We show that the calculated transition pressure converges rapidly in this series of increasingly accurate many-electron wave function based theories. Using CCSD(T) theory, we predict a transition pressure for the structural phase transition in the LiH crystal of 340 GPa. Furthermore, we investigate the potential energy surface for this transition in the parameter space of the Buerger path. PMID:26374010

  3. Pressure-induced electronic and magnetic phase transitions in a Mott insulator: Ti-doped C a3R u2O7 bilayer ruthenate

    NASA Astrophysics Data System (ADS)

    Zou, T.; Cao, H. B.; Liu, G. Q.; Peng, J.; Gottschalk, M.; Zhu, M.; Zhao, Y.; Leão, J. B.; Tian, W.; Mao, Z. Q.; Ke, X.

    2016-07-01

    We report the hydrostatic pressure-induced electronic and magnetic phase transitions in a Mott insulator, a bilayer ruthenate C a3(Ru0.97Ti0.03 ) 2O7 , via electronic transport and single crystal neutron diffraction measurements. The system undergoes an insulator-metal transition at a very small hydrostatic pressure ≈0.04 GPa, followed by a magnetic phase transition around 0.3 GPa, suggesting that the low energy charge fluctuation and magnetic ordering couple to the pressure separately in this compound. The a b initio calculations show that the suppressed Ru O6 flattening induced by the pressure reduces the orbital polarization and gives rise to an insulator-metal transition preceding the magnetic phase transition.

  4. Exact matrix treatment of an osmotic ensemble model of adsorption and pressure induced structural transitions in metal organic frameworks.

    PubMed

    Dunne, Lawrence J; Manos, George

    2016-03-14

    Here we present an exactly treated quasi-one dimensional statistical mechanical osmotic ensemble model of pressure and adsorption induced breathing structural transformations of metal-organic frameworks (MOFs). The treatment uses a transfer matrix method. The model successfully reproduces the gas and pressure induced structural changes which are observed experimentally in MOFs. The model treatment presented here is a significant step towards analytical statistical mechanical treatments of flexible metal-organic frameworks. PMID:26514851

  5. X-Ray Diffraction and Mössbauer Spectroscopy Studies of Pressure-Induced Phase Transitions in a Mixed-Valence Trinuclear Iron Complex.

    PubMed

    Madsen, Solveig R; Gunnlaugsson, Haraldur P; Moggach, Stephen A; Eikeland, Espen; Wu, Lai-Chin; Leupold, Olaf; Overgaard, Jacob; Iversen, Bo B

    2016-07-01

    The mixed-valence complex Fe3 O(cyanoacetate)6 (H2 O)3 (1) has been studied by single-crystal X-ray diffraction analysis at pressures up to 5.3(1) GPa and by (synchrotron) Mössbauer spectroscopy at pressures up to 8(1) GPa. Crystal structure refinements were possible up to 4.0(1) GPa. In this pressure range, 1 undergoes two pressure-induced phase transitions. The first phase transition at around 3 GPa is isosymmetric and involves a 60° rotation of 50 % of the cyanoacetate ligands. The second phase transition at around 4 GPa reduces the symmetry from rhombohedral to triclinic. Mössbauer spectra show that the complex becomes partially valence-trapped after the second phase transition. This sluggish pressure-induced valence-trapping is in contrast to the very abrupt valence-trapping observed when compound 1 is cooled from 130 to 120 K at ambient pressure. PMID:27245642

  6. The pressure-induced ringwoodite to Mg-perovskite and periclase post-spinel phase transition: a Bader's topological analysis of the ab initio electron densities

    NASA Astrophysics Data System (ADS)

    Parisi, Filippo; Sciascia, Luciana; Princivalle, Francesco; Merli, Marcello

    2012-02-01

    In order to characterize the pressure-induced decomposition of ringwoodite (γ-Mg2SiO4), the topological analysis of the electron density ρ( r), based upon the theory of atoms in molecules (AIM) developed by Bader in the framework of the catastrophe theory, has been performed. Calculations have been carried out by means of the ab initio CRYSTAL09 code at the HF/DFT level, using Hamiltonians based on the Becke- LYP scheme containing hybrid Hartree-Fock/density functional exchange-correlation terms. The equation of state at 0 K has been constructed for the three phases involved in the post-spinel phase transition (ringwoodite → Mg-perovskite + periclase) occurring at the transition zone-lower mantel boundary. The topological results show that the decomposition of the ringwoodite at high pressures is caused by a conflict catastrophe. Furthermore, topological evidences of the central role played by the oxygen atoms to facilitate the pressure-induced ringwoodite decomposition and the subsequent phase transition have been noticed.

  7. Temperature and pressure-induced valence transitions in YbNi2Ge2 and YbPd2Si2

    NASA Astrophysics Data System (ADS)

    Yamaoka, Hitoshi; Jarrige, Ignace; Tsujii, Naohito; Lin, Jung-Fu; Hiraoka, Nozomu; Ishii, Hirofumi; Tsuei, Ku-Ding

    2010-07-01

    We have measured the temperature and pressure-induced Yb valence transitions in tetragonal YbNi2Ge2 and YbPd2Si2 using x-ray absorption spectroscopy in the partial fluorescence yield mode and resonant x-ray emission spectroscopy. A temperature dependence of the Yb valence on the order of 0.1 has been measured, consistent with the magnetic-susceptibility study. The crossover from the low-temperature state having a stronger mixed valence to a high-temperature local moment behavior is analyzed within the Anderson impurity model. Pressure-induced second-order valence transitions are observed for both compounds with a more gradual transition in YbPd2Si2 than that of YbNi2Ge2 . The mean valences are slightly less than 3+ at ambient pressure but increase with applying pressure. Small variations in the Yb valence on the order of 0.03-0.05 can result in drastic change in the physical properties such as magnetic order and transport properties. Our results show that the Yb valence is noninteger around the quantum critical point.

  8. Pressure-induced isostructural phase transition and correlation of FeAs coordination with the superconducting properties of 111-type Na

    SciTech Connect

    Liu, Qingqing; Yu, Xiaohui; Wang, Xiancheng; Deng, Zheng; Lv, Yuxi; Zhu, Jinlong; Zhang, Sijia; Liu, Haozhe; Yang, Wenge; Wang, Lin; Mao, Hokwang; Shen, Guoyin; Lu, Zhong-Yi; Ren, Yang; Chen, Zhiqiang; Lin, Zhijun; Zhao, Yusheng; Jin, Changqing

    2011-05-25

    The effect of pressure on the crystalline structure and superconducting transition temperature (T{sub c}) of the 111-type Na{sub 1–x}FeAs system using in situ high-pressure synchrotron X-ray powder diffraction and diamond anvil cell techniques is studied. A pressure-induced tetragonal to tetragonal isostructural phase transition was found. The systematic evolution of the FeAs{sub 4} tetrahedron as a function of pressure based on Rietveld refinements on the powder X-ray diffraction patterns was obtained. The nonmonotonic T{sub c}(P) behavior of Na{sub 1–x}FeAs is found to correlate with the anomalies of the distance between the anion (As) and the iron layer as well as the bond angle of As–Fe–As for the two tetragonal phases. This behavior provides the key structural information in understanding the origin of the pressure dependence of T{sub c} for 111-type iron pnictide superconductors. A pressure-induced structural phase transition is also observed at 20 GPa.

  9. An X-ray diffraction study of pressure-induced phase transitions in Bi{sub 2}MoO{sub 6}

    SciTech Connect

    Scott, Paul R.; Crow, J.A.; Maczka, M.; Kruger, M.B.

    2012-10-15

    Synchrotron based X-ray diffraction through a diamond anvil cell was used to determine the equations of state and pressure-induced phase transitions in Bi{sub 2}MoO{sub 6}. It was observed that Bi{sub 2}MoO{sub 6} undergoes a phase transformation at {approx}6.8 GPa. The high-pressure phase can be indexed to the orthorhombic structure and the transition is reversible on decompression from {approx}47 GPa. The bulk moduli of the low and high-pressure phases were calculated, while holding K Prime =4, to be: K=51{+-}1 GPa and K=141.5 {+-}0.1 GPa, respectively. - Graphical abstract: The material Bi{sub 2}MoO{sub 6} was placed inside a diamond anvil cell and then studied under high pressure at beamline X17C of the National Synchrotron Light source. X-ray diffraction data was analyzed using the Rietveld method. Highlights: Black-Right-Pointing-Pointer A high-pressure study of bismuth molybdate was performed. Black-Right-Pointing-Pointer Pressure-induced phase transitions were observed. Black-Right-Pointing-Pointer The low pressure phase bulk modulus was calculated to be K=51{+-}1 GPa. Black-Right-Pointing-Pointer The high pressure phase bulk modulus was calculated to be B=141.5{+-}0.1 GPa.

  10. Study of pressure induced polyamorphic transition in Ce-based ternary BMG using in situ x-ray scattering and electrical conductivity measurement

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ma, C.; Tang, R.; Li, L.; Liu, H.; Gao, C.; Yang, W.

    2015-12-01

    In situ high energy x-ray scattering and electrical conductivity measurements on Ce70Al10Cu20 bulk metallic glass have been conducted using a diamond anvil cell (DAC) in conjunction with synchrotron x-rays or a laboratory electrical measurement system. The relative volumetric change (V/V0) as a function of pressure is inferred using the first sharp diffraction peak (FSDP) and the universal fractional noncubic power law[1]. The result indicates a pressure-induced polyamorphic transition at about 4 GPa in the ternary system. While the observed pressure of such polyamorphic transition in the Ce-base binary BMG is not very sensitive to its composition based on some of the previous studies[2, 3], this study indicates that such transition pressure increases considerably when a new component is added to the system. In the electrical conductivity measurement, a significant resistance change was observed in the pressure range coupled to polyamorphic transition. More discussions will be given regarding the electrical conductivity behavior of this system under high pressure to illustrate the delocalization of 4f electrons as the origin of the observed polyamorphic transition. References: 1. Zeng Q, Kono Y, Lin Y, Zeng Z, Wang J, Sinogeikin SV, Park C, Meng Y, Yang W, Mao H-K (2014) Universal fractional noncubic power law for density of metallic glasses. Physical Review Letters 112: 185502-185502 2. Zeng Q-S, Ding Y, Mao WL, Yang W, Sinogeikin SV, Shu J, Mao H-K, Jiang JZ (2010) Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass. Physical Review Letters 104: 105702-105702 3. Sheng HW, Liu HZ, Cheng YQ, Wen J, Lee PL, Luo WK, Shastri SD, Ma E (2007) Polyamorphism in a metallic glass. Nature Materials DOI: 10.1038/nmat1839.

  11. High-pressure induced phase transitions of Y[subscript 2]O[subscript 3] and Y[subscript 2]O[subscript 3]:Eu[superscript 3+

    SciTech Connect

    Wang, Lin; Pan, Yuexiao; Ding, Yang; Yang, Wenge; Mao, Wendy L.; Sinogeikin, Stanislav V.; Meng, Yue; Shen, Guoyin; Mao, Ho-kwang

    2009-02-23

    We investigated high-pressure induced phase transitions in Y{sub 2}O{sub 3} and Eu-doped Y{sub 2}O{sub 3} (Y{sub 2}O:Eu{sup 3+}) using angular dispersive synchrotron x-ray diffraction, Raman spectroscopy, and photoluminescence (PL). With increasing pressure, we observed a series of phase transformations in Y{sub 2}O{sub 3}:Eu{sup 3+}, which followed a structure sequence of cubic {yields} monoclinic {yields} hexagonal, while Y{sub 2}O{sub 3} followed a sequence of cubic {yields} hexagonal. During decompression, both hexagonal structured Y{sub 2}O{sub 3} and Y{sub 2}O{sub 3}:Eu{sup 3+} transformed into monoclinic phases which were quenchable back to ambient pressure. Raman and PL measurements shed additional light on the different phase transition behavior in these two samples.

  12. Rivastigmine hydrogen tartrate polymorphs: Solid-state characterisation of transition and polymorphic conversion via milling

    NASA Astrophysics Data System (ADS)

    Amaro, Maria Inês; Simon, Alice; Cabral, Lúcio Mendes; de Sousa, Valéria Pereira; Healy, Anne Marie

    2015-11-01

    Rivastigmine (RHT) is an active pharmaceutical ingredient that is used for the treatment of mild to moderately severe dementia in Alzheimer's disease, and is known to present two polymorphic forms and to amorphise upon granulation. To date there is no information in the scientific or patent literature on polymorphic transition and stability. Hence, the aim of the current study was to gain a fundamental understanding of the polymorphic forms by (1) evaluating RHT thermodynamic stability (monotropy or enantiotropy) and (2) investigating the potential for polymorphic transformation upon milling. The two polymorphic and amorphous forms were characterised using X-ray powder diffractometry, thermal analyses, infra-red spectroscopy and water sorption analysis. The polymorphic transition was found to be spontaneous (ΔG0 < 0) and exothermic (ΔH0 < 0), indicative of a monotropic polymorph pair. The kinetic studies showed a fast initial polymorphic transition characterised by a heterogeneous nucleation, followed by a slow crystal growth. Ball milling can be used to promote the polymorphic transition and for the production of RHT amorphous form.

  13. Pressure-induced structural, electronic, and magnetic phase transitions in FeCl2 studied by x-ray diffraction and resistivity measurements

    NASA Astrophysics Data System (ADS)

    Rozenberg, G. Kh.; Pasternak, M. P.; Gorodetsky, P.; Xu, W. M.; Dubrovinsky, L. S.; Le Bihan, T.; Taylor, R. D.

    2009-06-01

    High-pressure (HP) synchrotron x-ray diffraction (XRD) studies were carried out in FeCl2 (TN≈24K) together with resistivity (R) studies at various temperatures and pressures to 65 GPa using diamond-anvil cells. This work follows a previous HP F57e Mössbauer study in which two pressure-induced (PI) electronic transitions were found interpreted as: (i) quenching of the orbital-term contribution to the hyperfine field concurring with a tilting of the magnetic moment by 55° , and (ii) collapse of the magnetism concurring with a sharp decrease in the isomer shift. The R(P,T) studies affirm that the cause of the collapse of the magnetism is a PI p-d correlation breakdown, leading to an insulator-metal transition at ˜45GPa and is not due to a spin crossover (S=2→S=0) . The structure response to the pressure evolution of the two electronic phase transitions starting at low pressures (LP), through an intermediate phase (IP) 30-57 GPa, and culminating in a high-pressure phase, P>32GPa , can clearly be quantified. The IP-HP phases coexist through the 32-57 GPa range in which the HP abundance increases monotonically at the expense of the IP phase. At the LP-IP interface no volume change is detected, yet the c axis increases and the a axis shrinks by 0.21 and 0.13Å , respectively. The fit of the equation of state of the combined LP-IP phases yields a bulk modulus K0=35.3(1.8)GPa . The intralayer Cl-Cl distances increase but no change is observed in Fe-Cl bond length nor are there substantial changes in the interlayer spacing. The pressure-induced electronic IP-HP transition leads to a first-order structural phase transition characterized by a decrease in Fe-Cl bond length and an abrupt drop in V(P) by ˜3.5% accompanying the correlation breakdown. In this transition no symmetry change is detected and the XRD data could be satisfactorily fitted with the CdI2 structure. The bulk modulus of the HP phase is practically the same as that of the LP-IP phases suggesting

  14. Structural properties of pressure-induced structural phase transition of Si-doped GaAs by angular-dispersive X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Lin, Kung-Liang; Lin, Chih-Ming; Lin, Yu-Sheng; Jian, Sheng-Rui; Liao, Yen-Fa; Chuang, Yu-Chun; Wang, Chuan-Sheng; Juang, Jenh-Yih

    2016-02-01

    Pressure-induced phase transitions in n-type silicon-doped gallium arsenide (GaAs:Si ) at ambient temperature were investigated by using angular-dispersive X-ray diffraction (ADXRD) under high pressure up to around 18.6 (1) GPa, with a 4:1 (in volume ratio) methanol-ethanol mixture as the pressure-transmitting medium. In situ ADXRD measurements revealed that n-type GaAs:Si starts to transform from zinc- blende structure to an orthorhombic structure [GaAs-II phase], space group Pmm2, at 16.4 (1) GPa. In contrast to previous studies of pure GaAs under pressure, our results show no evidence of structural transition to Fmmm or Cmcm phase. The fitting of volume compression data to the third-order Birch-Murnaghan equation of state yielded that the zero-pressure isothermal bulk moduli and the first-pressure derivatives were 75 (3) GPa and 6.4 (9) for the B3 phase, respectively. After decompressing to the ambient pressure, the GaAs:Si appears to revert to the B3 phase completely. By fitting to the empirical relations, the Knoop microhardness numbers are between H PK = 6.21 and H A = 5.85, respectively, which are substantially smaller than the values of 7-7.5 for pure GaAs reported previously. A discontinuous drop in the pressure-dependent lattice parameter, N- N distances, and V/ V 0 was observed at a pressure of 11.5 (1) GPa, which was tentatively attributed to the pressure-induced dislocation activities in the crystal grown by vertical gradient freeze method.

  15. Pressure-induced changes in the electron density distribution in α-Ge near the α-β transition

    NASA Astrophysics Data System (ADS)

    Li, Rui; Liu, Jing; Bai, Ligang; Tse, John S.; Shen, Guoyin

    2015-08-01

    Electron density distributions in α-Ge have been determined under high pressure using maximum entropy method with structure factors obtained from single crystal synchrotron x-ray diffraction in a diamond anvil cell. The results show that the sp3 bonding is enhanced with increasing pressure up to 7.7(1) GPa. At higher pressures but below the α-β transition pressure of 11.0(1) GPa, the sp3-like electron distribution progressively weakens with a concomitant increase of d-orbitals hybridization. The participation of d-orbitals in the electronic structure is supported by Ge Kβ2 (4p-1s) x-ray emission spectroscopy measurements showing the reduction of 4s character in the valence band at pressures far below the α-β transition. The gradual increase of d-orbitals in the valence level in the stability field of α-Ge is directly related to the eventual structural transition.

  16. Pressure-Induced Mott Transition Followed by a 24-K Superconducting Phase in BaFe2S3

    NASA Astrophysics Data System (ADS)

    Yamauchi, Touru; Hirata, Yasuyuki; Ueda, Yutaka; Ohgushi, Kenya

    2015-12-01

    We performed high-pressure study for a Mott insulator BaFe2S3 , by measuring dc resistivity and ac susceptibility up to 15 GPa. We found that the antiferromagnetic insulating state at the ambient pressure is transformed into a metallic state at the critical pressure, Pc=10 GPa , and the superconductivity with the optimum Tc=24 K emerges above Pc. Furthermore, we found that the metal-insulator transition (Mott transition) boundary terminates at a critical point around 10 GPa and 75 K. The obtained pressure-temperature (P -T ) phase diagram is similar to those of the organic and fullerene compounds; namely, BaFe2S3 is the first inorganic superconductor in the vicinity of bandwidth control type Mott transition.

  17. Theoretical study of the pressure-induced B3-B1 phase transition in Cd1-xMnxTe

    NASA Astrophysics Data System (ADS)

    Hao, Jun-Hua; Wang, Yu-Fang; Jin, Qing-Hua

    2013-02-01

    The high pressure phase transition in Cd1-xMnxTe (0 ≤ x ≤ 0.5), which is from the cubic zinc-blende structure (B3) to the NaCl structure (B1), is investigated by using first principles spin-polarized LCAO calculations based on the density functional theory (DFT) formalism. The calculations indicate that the transition pressure of the B3-to-B1 structural phase transformation depends on the Mn content of the sample. This result is consistent with the expectation that the substitution of Cd by Mn in CdTe tends to perturb the tetrahedral coordination geometry and thereby to destabilize the B3 structure. Several structural properties (equilibrium lattice constant, bulk modulus, transition pressure, etc.) of Cd1-xMnxTe (x = 0.0, 0.25 and 0.5) CdTe have been calculated, which are in agreement with the previous results.

  18. Pressure-Induced Phase Transition in Guanidinium Perchlorate: A Supramolecular Structure Directed by Hydrogen Bonding and Electrostatic Interactions

    SciTech Connect

    Li, Shourui; Li, Qian; Wang, Kai; Tan, Xiao; Zhou, Mi; Li, Bing; Liu, Bingbing; Zou, Guangtian; Zou, Bo

    2012-01-20

    In situ Raman spectroscopy and synchrotron X-ray diffraction (XRD) experiments have been performed to investigate the response of guanidinium perchlorate (C(NH{sub 2}){sub 3}{sup +} {center_dot} ClO{sub 4}{sup -}, GP) to high pressures of {approx}11 GPa. GP exhibits a typical supramolecular structure of two-dimensional (2D) hydrogen-bonded ionic networks at ambient conditions. A subtle phase transition, accompanied by the symmetry transformation from R3m to C2, has been confirmed by obvious changes in both Raman and XRD patterns at 4.5 GPa. The phase transition is attributed to the competition between hydrogen bonds and close packing of the supramolecular structure at high pressure. Hydrogen bonds have been demonstrated to evolve into a distorted state through the phase transition, accompanied by the reduction in separation of oppositely charged ions in adjacent sheet motifs. A detailed mechanism of the phase transition, as well as the cooperativity between hydrogen bonding and electrostatic interactions, is discussed by virtue of the local nature of the structure.

  19. Pressure-induced structural and magnetic transitions in the infinite-chains iron oxide Sr2FeO3: a first-principle investigation

    NASA Astrophysics Data System (ADS)

    Gui, Hong; Li, Xin; Zhao, Zhenjie; Xie, Wenhui

    2016-02-01

    The pressure-induced transition of Sr2FeO3 was studied by first-principle calculation using density functional theory with the generalized gradient approximation plus on-site coulomb repulsion method. It shows that Sr2FeO3 exhibits a structure transition from Immm to Ammm and at about 35 GPa and then a spin transition from high spin S  =  2 to intermediate spin S  =  1. And it is also revealed that the pressure leads to a change in the Fe three-dimensional electronic configuration from ({{d}{{z2}}}\\uparrow )1({{d}yz}\\uparrow )1({{d}xz}\\uparrow )1({{d}xy}\\uparrow )1({{d}{{x2}-{{y}2}}}\\uparrow )1 ({{d}{{z2}}}\\downarrow )1 under ambient conditions to ({{d}{{z2}}}\\uparrow )1({{d}yz}\\uparrow )1({{d}xz}\\uparrow )1({{d}xy}\\uparrow )1 ({{d}{{x2}-{{y}2}}}\\uparrow ) δ ({{d}yz}\\downarrow )1 ({{d}{{z2}}}\\downarrow ) σ at high pressure, where δ plus σ equals 1.

  20. Pressure-induced phase transitions of exposed curved surface nano-TiO2 with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Huang, Yanwei; Chen, Fengjiao; Li, Xin; Yuan, Ye; Dong, Haini; Samanta, Sudeshna; Yu, Zhenhai; Rahman, Saqib; Zhang, Jun; Yang, Ke; Yan, Shuai; Wang, Lin

    2016-06-01

    We report a unique phase transition in compressed exposed curved surface nano-TiO2 with high photocatalytic activity using in situ synchrotron X-ray diffraction and Raman Spectroscopy. High-pressure studies indicate that the anatase phase starts to transform into baddeleyite phase upon compression at 19.4 GPa, and completely transforms into the baddeleyite phase above 24.6 GPa. Upon decompression, the baddeleyite phase was maintained until the pressure was released to 6.4 GPa and then transformed into the α-PbO2 phase at 2.7 GPa. Together with the results of high-resolution transmission electron microscopy and the pressure-volume relationship, this phase transition's characteristics during the compression-decompression cycle demonstrate that the truncated biconic morphology possessed excellent stability. This study may provide an insight to the mechanisms of stability for high photocatalytic activity of nano-TiO2.

  1. Pressure-induced changes in the electron density distribution in α-Ge near the α-β transition

    SciTech Connect

    Li, Rui; Liu, Jing; Bai, Ligang; Shen, Guoyin; Tse, John S.

    2015-08-17

    Electron density distributions in α-Ge have been determined under high pressure using maximum entropy method with structure factors obtained from single crystal synchrotron x-ray diffraction in a diamond anvil cell. The results show that the sp{sup 3} bonding is enhanced with increasing pressure up to 7.7(1) GPa. At higher pressures but below the α-β transition pressure of 11.0(1) GPa, the sp{sup 3}-like electron distribution progressively weakens with a concomitant increase of d-orbitals hybridization. The participation of d-orbitals in the electronic structure is supported by Ge Kβ{sub 2} (4p-1s) x-ray emission spectroscopy measurements showing the reduction of 4s character in the valence band at pressures far below the α-β transition. The gradual increase of d-orbitals in the valence level in the stability field of α-Ge is directly related to the eventual structural transition.

  2. Revisit of Pressure-Induced Phase Transition in PbSe: Crystal Structure, and Thermoelastic and Electrical Properties.

    PubMed

    Wang, Shanmin; Zang, Chengpeng; Wang, Yongkun; Wang, Liping; Zhang, Jianzhong; Childs, Christian; Ge, Hui; Xu, Hongwu; Chen, Haiyan; He, Duanwei; Zhao, Yusheng

    2015-05-18

    Lead selenide, PbSe, an important lead chalcogenide semiconductor, has been investigated using in-situ high-pressure/high-temperature synchrotron X-ray diffraction and electrical resistivity measurements. For the first time, high-quality X-ray diffraction data were collected for the intermediate orthorhombic PbSe. Combined with ab initio calculations, we find a Cmcm, InI-type symmetry for the intermediate phase, which is structurally more favorable than the anti-GeS-type Pnma. At room temperature, the onset of the cubic-orthorhombic transition was observed at ∼3.5 GPa with a ∼3.4% volume reduction. At an elevated temperature of 1000 K, the reversed orthorhombic-to-cubic transition was observed at 6.12 GPa, indicating a positive Clapeyron slope for the phase boundary. Interestingly, phase-transition induced elastic softening in PbSe was also observed, which can be mainly attributed to the loosely bonded trigonal prisms along the b-axis in the Cmcm structure. In a comparison with the cubic phase, orthorhombic PbSe exhibits a large negative pressure dependence of electrical resistivity. In addition, thermoelastic properties of orthorhombic PbSe have been derived from isothermal compression data, such as the temperature derivative of bulk modulus and thermally induced pressure. PMID:25938257

  3. Pressure-induced structural transition of OsN2 and effect of metallic bonding on its hardness

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Hua; Kuang, Xiao-Yu; Zhong, Ming-Min; Lu, Peng; Mao, Ai-Jie; Huang, Xiao-Fen

    2011-09-01

    Using first-principles calculations, the elastic constant, structural phase transition and effect of metallic bonding on the hardness of OsN2 under high pressure are investigated by means of the pseudopotential plane-waves method. Five candidate structures are chosen to investigate for OsN2, namely, the pyrite, CoSb2-type, marcasite, simple hexagonal and tetragonal structures. A comparison among the formation energies of OsN2 explains the synthesis of OsN2 marcasite under high pressure. On the basis of the third-order Birch-Murnaghan equation of states, the transition pressure Pt (Pt=223 GPa) between the marcasite and simple tetragonal phase is determinated. Elastic constants, shear modulus, Young's modulus, Poisson's ratio and Debye temperature are derived. The calculated values are, generally speaking, in good agreement with experiments and other theoretical calculations. Our calculation indicates that the N-N bond length is one determinative factor for the ultrahigh bulk moduli of the heavy-transition-metal dinitrides. Moreover, based on Mulliken overlap population analysis in first-principles technique, a semiempirical method to evaluate the hardness of multicomponent crystals with partial metallic bonding is presented. The effect of metallic bonding on the hardness of OsN2 is investigated and the hardness shows a gradual decrease rather than increase under compression, which is different from diamond. This is a quantitative investigation on the structural properties of OsN2, and it still awaits experimental confirmation.

  4. Pressure induced tetragonal to monoclinic transition in RbN{sub 3} studied from first principles theory

    SciTech Connect

    Vaitheeswaran, G. Babu, K. Ramesh

    2014-04-24

    Alkali metal azides are well known for their application as explosives and gas generators. They are used as precursors in synthesis of polymeric nitrogen, an ultimate green high energy density material. Among the alkali metal azides, rubidium azide RbN{sub 3} crystallizes in tetragonal structure with linear azide ions arranged in layers and binds through weak dispersive interactions. In this present work, we have studied the structural stability, electronic structure and optical properties of solid RbN{sub 3} by using van der Waals corrected density functional theory. We find that the ambient tetragonal structure undergoes a structural transition to monoclinic structure at 0.72 GPa, which is in good agreement with the experimental transition pressure of less than 1 GPa. The phonon frequencies at the gamma point are calculated and found that the lattice mode Eg softens under pressure which may supports the structural phase transition. The electronic band structure and optical properties are calculated by using Tran Blaha-modified Becke Johnson (TB-mBJ) functional and found that solid RbN{sub 3} is an insulator with a gap of 5.976 eV and the optical absorption starts with the UV light of wave length 207.5 nm.

  5. Pressure induced magneto-structural phase transitions in layered RMn{sub 2}X{sub 2} compounds (invited)

    SciTech Connect

    Kennedy, Shane; Wang, Jianli; Campbell, Stewart; Hofmann, Michael; Dou, Shixue

    2014-05-07

    We have studied a range of pseudo-ternaries derived from the parent compound PrMn{sub 2}Ge{sub 2}, substituting for each constituent element with a smaller one to contract the lattice. This enables us to observe the magneto-elastic transitions that occur as the Mn-Mn nearest neighbour distance is reduced and to assess the role of Pr on the magnetism. Here, we report on the PrMn{sub 2}Ge{sub 2−x}Si{sub x}, Pr{sub 1−x}Y{sub x}Mn{sub 2}Ge{sub 2}, and PrMn{sub 2−x}Fe{sub x}Ge{sub 2} systems. The pressure produced by chemical substitution in these pseudo-ternaries is inherently non-uniform, with local pressure variations dependent on the local atomic distribution. We find that concentrated chemical substitution on the R or X site (e.g., in Pr{sub 0.5}Y{sub 0.5}Mn{sub 2}Ge{sub 2} and PrMn{sub 2}Ge{sub 0.8}Si{sub 1.2}) can produce a separation into two distinct magnetic phases, canted ferromagnetic and canted antiferromagnetic, with a commensurate phase gap in the crystalline lattice. This phase gap is a consequence of the combination of phase separation and spontaneous magnetostriction, which is positive on transition to the canted ferromagnetic phase and negative on transition to the canted antiferromagnetic phase. Our results show that co-existence of canted ferromagnetic and antiferromagnetic phases depends on chemical pressure from the rare earth and metalloid sites, on local lattice strain distributions and on applied magnetic field. We demonstrate that the effects of chemical pressure bear close resemblance to those of mechanical pressure on the parent compound.

  6. Pressure-induced phase transition and electrical properties of thermoelectric Al-doped Mg{sub 2}Si

    SciTech Connect

    Zhao, Jianbao; Tse, John S.; Liu, Zhenxian; Gordon, Robert A.; Takarabe, Kenichi; Reid, Joel

    2015-10-14

    A recent study has shown the thermoelectric performance of Al-doped Mg{sub 2}Si materials can be significantly enhanced at moderate pressure. To understand the cause of this phenomenon, we have performed in situ angle dispersive X-ray diffraction and infrared reflectivity measurements up to 17 GPa at room temperature. Contrary to previous experiment, using helium as a pressure transmission medium, no structural transformation was observed in pure Mg{sub 2}Si. In contrast, a phase transition from cubic anti-fluorite (Fm-3m) to orthorhombic anti-cotunnite (Pnma) was observed in the Al-doped sample at 10 GPa. Infrared reflectivity measurements show the electrical conductivity increases with pressure and is further enhanced after the phase transition. The electron density of states at the Fermi level computed form density functional calculations predict a maximum thermoelectric power factor at 1.9 GPa, which is in good agreement with the experimental observation.

  7. Pressure-induced semiconductor-to-metal transition in Mg2Sn with the modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2015-03-01

    We investigate the energy band gap, dielectric functions and thermoelectric properties of Mg2Sn at hydrostatic pressure by using a modified Becke and Johnson exchange potential. It is very interesting that the energy band gap first increases with increasing pressure, and then decreases. The phonon calculations prove that no structural phase transition under the considered pressure is produced. When the pressure reaches 5.6 GPa, the energy band gap attains the biggest value, which is also a critical pressure with the Mg s-character near the high symmetry X-point transforming from the first conduction band to the second one. When the pressure increases to 50.7 GPa, the energy band gap closes, leading to a semiconductor-to-semimetal transition. As the pressure increases, the main peaks of the real and imaginary part of the dielectric functions of Mg2Sn move toward the high-energy region. The Seebeck coefficient and power factor for p-type doping change little with increasing pressure, but for n-type they vary greatly. The change trend of the Seebeck coefficient and power factor for n-type doping as a function of pressure is conic, whose critical pressure is just 5.6 GPa.

  8. Pressure-induced phase transition in La1–xSmxO0.5F0.5BiS2

    DOE PAGESBeta

    Fang, Y.; Yazici, D.; White, B. D.; Maple, M. B.

    2015-09-15

    Electrical resistivity measurements on La1–xSmxO0.5F0.5BiS2 (x = 0.1, 0.3, 0.6, 0.8) have been performed under applied pressures up to 2.6 GPa from 2 K to room temperature. The superconducting transition temperature Tc of each sample significantly increases at a Sm-concentration dependent pressure Pt, indicating a pressure-induced phase transition from a low-Tc to a high-Tc phase. At ambient pressure, Tc increases dramatically from 2.8 K at x = 0.1 to 5.4 K at x = 0.8; however, the Tc values at P > Pt decrease slightly with x and Pt shifts to higher pressures with Sm substitution. In the normal state,more » semiconducting-like behavior is suppressed and metallic conduction is induced with increasing pressure in all of the samples. Furthermore, these results suggest that the pressure dependence of Tc for the BiS2-based superconductors is related to the lattice parameters at ambient pressure and enable us to estimate the evolution of Tc for SmO0.5F0.5BiS2 under pressure.« less

  9. Pressure-induced phase transition in La1 -xSmxO0.5F0.5BiS2

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Yazici, D.; White, B. D.; Maple, M. B.

    2015-09-01

    Electrical resistivity measurements on La1 -xSmxO0.5F0.5BiS2 (x =0.1 ,0.3 ,0.6 ,0.8 ) have been performed under applied pressures up to 2.6 GPa from 2 K to room temperature. The superconducting transition temperature Tc of each sample significantly increases at a Sm-concentration-dependent pressure Pt, indicating a pressure-induced phase transition from a low-Tc to a high-Tc phase. At ambient pressure, Tc increases dramatically from 2.8 K at x =0.1 to 5.4 K at x =0.8 ; however, the Tc values at P >Pt decrease slightly with x , and Pt shifts to higher pressures with Sm substitution. In the normal state, semiconducting-like behavior is suppressed, and metallic conduction is induced with increasing pressure in all of the samples. These results suggest that the pressure dependence of Tc for the BiS2-based superconductors is related to the lattice parameters at ambient pressure and enable us to estimate the evolution of Tc for SmO0.5F0.5BiS2 under pressure.

  10. Pressure-induced structural phase transition of dense droplet microemulsions studied by small-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Seto, Hideki; Nagao, Michihiro; Kawabata, Youhei; Takeda, Takayoshi

    2001-11-01

    A small-angle x-ray scattering (SAXS) study of dense water-in-oil droplet microemulsions composed of water, decane, and AOT [sodium bis(2-ethylhexyl) sulfosuccinate] was performed in order to clarify phase behavior with applied pressure and the corresponding structural phase transitions. SAXS spectra were collected for pressures between ambient pressure (0.1 MPa) and 80 MPa and droplet volume fraction, φ, from 0.40 to 0.70. With increasing φ, the mean radius of droplets decreased slightly and polydispersity increased. With increasing pressure, the droplet structure transformed to a two-phase system with coexistence of lamellar and droplet structures, independent of the droplet volume fraction. These results suggest that, with increasing pressure, the increasing inter-droplet attractive force controls the pressure variation of the structure.

  11. Pressure-induced phase transitions and structural properties of CoF2: An ab-initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Kürkçü, Cihan; Merdan, Ziya; Öztürk, Hülya

    2016-04-01

    The crystal structure of CoF2 was studied theoretically using first-principles density functional theory (DFT) methods within the generalized gradient approximation (GGA) and local density approximation (LDA) under rapid hydrostatic pressure up to 144 GPa. CoF2 undergoes a structural phase transformation from the rutile-type tetragonal parent phase with space group P42/mnm to the CaCl2-type orthorhombic parent phase with space group Pnnm at 64 GPa with GGA and at 96 GPa with LDA methods. Another phase transformation occurs from the CaCl2-type structure to monoclinic parent phase with space group P21/c at 96 GPa with a GGA method. These phase transitions are also studied by enthalpy and total energy calculations. According to these calculations, we obtained the first phase transformation at about 6.5 GPa both GGA and LDA methods and the later phase transformation at about 45 GPa with the GGA method.

  12. Pressure-induced phonon softening and electronic topological transition in HgBa{sub 2}CuO{sub 4}

    SciTech Connect

    Novikov, D.L.; Katsnelson, M.I.; Yu, J.; Postnikov, A.V.; Freeman, A.J.

    1996-07-01

    Total energy local density calculations for the effects of pressure on the lattice parameters, bond lengths, electronic structure, and {ital A}{sub 1{ital g}} phonon frequency in HgBa{sub 2}CuO{sub 4} have been carried out in order to understand the role of pressure in increasing the {ital T}{sub {ital c}} of mercury-based superconductors. Theoretically determined zero-pressure lattice parameters and phonon frequencies are found to be in good agreement with experiment. An electronic topological transition is found to occur when the van Hove singularity (vHS) is shifted close to the vicinity of {ital E}{sub {ital F}} by pressure which causes considerable phonon softening and anomalous behavior of the {ital c}-axis length, the Hg-O(2) bond, and the Ba {ital z} coordinate. A set of experiments that might be able to detect the presence of the vHS close to {ital E}{sub {ital F}} is proposed. {copyright} {ital 1996 The American Physical Society.}

  13. Prediction of Pressure-Induced Structural Transition and Mechanical Properties of MgY from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Pu, Chun-Ying; Xun, Xian-Chao; Song, Hai-Zhen; Zhang, Fei-Wu; Lu, Zhi-Wen; Zhou, Da-Wei

    2016-01-01

    Using the particle swarm optimization algorithm on crystal structure prediction, we first predict that MgY alloy undergoes a first-order phase transition from CsCl phase to P4/NMM phase at about 55 GPa with a small volume collapse of 2.63%. The dynamical stability of P4/NMM phase at 55 GPa is evaluated by the phonon spectrum calculation and the electronic structure is discussed. The elastic constants are calculated, after which the bulk moduli, shear moduli, Young's modui, and Debye temperature are derived. The brittleness/ductile behavior, and anisotropy of two phases under pressure are discussed in details. Our results show that external pressure can change the brittle behavior to ductile at 10 GPa for CsCl phase and improve the ductility of MgY alloy. As pressure increases, the elastic anisotropy in shear of CsCl phase decreases, while that of P4/NMM phase remains nearly constant. The elastic anisotropic constructions of the directional dependences of reciprocals of bulk modulus and Young's modulus are also calculated and discussed. Supported by the Henan Joint Funds of the National Natural Science Foundation of China under Grant Nos. U1304612, U1404608, the National Natural Science Foundation of China under Grant Nos. 51501093, 51374132, and the Special Fund of the Theoretical Physics of China under Grant No. 11247222, Postdoctoral Science Foundation of China under Grant No. 2015M581767, and Young Core Instructor Foundation of Henan Province under Grant No. 2015GGJS-122

  14. Pressure-Induced Slip-System Transition in Forsterite: Single-Crystal Rheological Properties at Mantle Pressure and Temperature

    SciTech Connect

    Raterron,P.; Chen, J.; Li, L.; Weidner, D.; Cordier, P.

    2007-01-01

    Deformation experiments were carried out in a Deformation-DIA high-pressure apparatus (D-DIA) on oriented Mg2SiO4 olivine (Fo100) single crystals, at pressure (P) ranging from 2.1 to 7.5 GPa, in the temperature (T) range 1373-1677 K, and in dry conditions. These experiments were designed to investigate the effect of pressure on olivine dislocation slip-system activities, responsible for the lattice-preferred orientations observed in the upper mantle. Two compression directions were tested, promoting either [100] slip alone or [001] slip alone in (010) crystallographic plane. Constant applied stress ({sigma}) and specimen strain rates (Formula) were monitored in situ using time-resolved X-ray synchrotron diffraction and radiography, respectively. Transmission electron microscopy (TEM) investigation of the run products reveals that dislocation creep assisted by dislocation climb and cross slip was responsible for sample deformation. A slip transition with increasing pressure, from a dominant [100]-slip to a dominant [001]-slip, is documented. Extrapolation of the obtained rheological laws to upper-mantle P, T, and {sigma} conditions, suggests that [001]-slip activity becomes comparable to [100]-slip activity in the deep upper mantle, while [001] slip is mostly dominant in subduction zones. These results provide alternative explanations for the seismic anisotropy attenuation observed in the upper mantle, and for the 'puzzling' seismic-anisotropy anomalies commonly observed in subduction zones.

  15. Pressure-induced phase transitions of AX(2)-type iron pnictides: an ab initio study.

    PubMed

    Wu, X; Steinle-Neumann, G; Qin, S; Kanzaki, M; Dubrovinsky, L

    2009-05-01

    An investigation into the high-pressure behavior of AX(2)-type iron pnictides was conducted using first-principles calculations based on density functional theory within the generalized gradient approximation. Our results demonstrate that a phase transition from the marcasite to the CuAl(2) occurs at 108 GPa for FeP(2), at 92 GPa for FeAs(2), and at 38 GPa for FeSb(2), accompanying a semiconductor-to-metal crossover. A linear relationship between bulk moduli and the inverse specific volume is proposed to be B(0) = 17 498/V(0)-45.9 GPa for the marcasite-type phase and B(0) = 31 798/V(0)-67.5 GPa for the CuAl(2)-type phase. According to the observed structural evolutions, we claim that the regular marcasite transforms to the CuAl(2)-type phase and the anomalous marcasite transforms to the pyrite-type phase at high pressures. PMID:21825462

  16. Pressure-induced phase-transition and improvement of the microdielectric properties in yttrium-doped SrZrO3

    NASA Astrophysics Data System (ADS)

    Dai, Lidong; Wu, Lei; Li, Heping; Hu, Haiying; Zhuang, Yukai; Liu, Kaixiang

    2016-06-01

    In this study, the effect of pressure on undoped and 5% yttrium-doped SrZrO3 (SZY0 and SZY5) were conducted from the ambient condition to ∼25 \\text{GPa} with a diamond anvil cell. The comparison of the high-pressure Raman spectra of SZY0 and SZY5 indicate that SZY0 displays a rigid structure without any structural modification, whereas for SZY5 a structural transition at ∼15 \\text{GPa} is revealed. Some characteristic physical parameters such as bulk conductivities, grain boundary conductivities, Warburg diffusion coefficient, transference number and bulk relaxation frequency were determined by the high-pressure impedance spectroscopy data. An obvious discontinuous inflexion point (at ∼13 \\text{GPa} ) for SZY5 sample is observable which was also verified the phase-transition of the Raman spectroscopy results. A mixed conduction mechanism for both SZY0 and SZY5 are coexisting for both SZY0 and SZY5 in a wide pressure range. The pressure-induced phase-transition of SZY5 would result in an inversion of conduction mechanism that is characterized by the dominant charge carriers transformation from electron to ion. The Maxwell-Wagner relaxation arising at the interfaces of grain and grain boundary indicates that Y-doping and pressure could make the ions diffusion much easier through the boundaries and finally enhance the dielectric performance of the sample. It is suggested that pressure could be a useful tool to manipulate the microstructure and dielectric performance of polycrystal through altering the grain boundary distribution.

  17. Pressure-induced structural changes and insulator-metal transition in layered bismuth triiodide, BiI3: a combined experimental and theoretical study.

    PubMed

    Devidas, T R; Chandra Shekar, N V; Sundar, C S; Chithaiah, P; Sorb, Y A; Bhadram, V S; Chandrabhas, N; Pal, K; Waghmare, U V; Rao, C N R

    2014-07-01

    Noting that BiI3 and the well-known topological insulator (TI) Bi2Se3 have the same high symmetry parent structures, and that it is desirable to find a wide-band gap TI, we determine here the effects of pressure on the structure, phonons and electronic properties of rhombohedral BiI3. We report a pressure-induced insulator-metal transition near 1.5 GPa, using high pressure electrical resistivity and Raman measurements. X-ray diffraction studies, as a function of pressure, reveal a structural peculiarity of the BiI3 crystal, with a drastic drop in c/a ratio at 1.5 GPa, and a structural phase transition from rhombohedral to monoclinic structure at 8.8 GPa. Interestingly, the metallic phase, at relatively low pressures, exhibits minimal resistivity at low temperatures, similar to that in Bi2Se3. We corroborate these findings with first-principles calculations and suggest that the drop in the resistivity of BiI3 in the 1-3 GPa range of pressure arises possibly from the appearance of an intermediate crystal phase with a lower band-gap and hexagonal crystal structure. Calculated Born effective charges reveal the presence of metallic states in the structural vicinity of rhombohedral BiI3. Changes in the topology of the electronic bands of BiI3 with pressure, and a sharp decrease in the c/a ratio below 2 GPa, are shown to give rise to changes in the slope of phonon frequencies near that pressure. PMID:24934819

  18. Giant Volume Change and Topological Gaps in Temperature- and Pressure-Induced Phase Transitions: Experimental and Computational Study of ThMo2 O8.

    PubMed

    Xiao, Bin; Kegler, Philip; Gesing, Thorsten M; Robben, Lars; Blanca-Romero, Ariadna; Kowalski, Piotr M; Li, Yan; Klepov, Vladislav; Bosbach, Dirk; Alekseev, Evgeny V

    2016-01-18

    By applying high temperature (1270 K) and high pressure (3.5 GPa), significant changes occur in the structural volume and crystal topology of ThMo2 O8 , allowing the formation of an unexpected new ThMo2 O8 polymorph (high-temperature/high-pressure (HT/HP) orthorhombic ThMo2 O8 ). Compared with the other three ThMo2 O8 polymorphs prepared at the ambient pressure (monoclinic, orthorhombic, and hexagonal phases), the molar volume for the quenched HT/HP-orthorhombic ThMo2 O8 is decreased by almost 20 %. As a result of such a dramatic structural transformation, a permanent high-pressure quenchable state is able to be sustained when the pressure is released. The crystal structures of the three ambient ThMo2 O8 phases are based on three-dimensional (3D) frameworks constructed from corner-sharing ThOx (x=6, 8, or 9) polyhedra and MoO4 tetrahedra. The HT/HP-orthorhombic ThMo2 O8 , however, crystallizes in a novel structural topology, exhibiting very dense arrangements of ThO11 and MoO4+1 polyhedra connecting along the crystallographic c axis. The phase transitions among all four of these ThMo2 O8 polymorphs are unveiled and fully characterized with regard to the structural transformation, thermal stability, and vibrational properties. The complementary first principles calculations of Gibbs free energies reveal the underlying energetics of the phase transition, which support the experimental findings. PMID:26626413

  19. Pressure-induced phase transition of Fe{sub 2}TiO{sub 4}: X-ray diffraction and Moessbauer spectroscopy

    SciTech Connect

    Wu Ye; Wu Xiang; Qin Shan

    2012-01-15

    X-ray diffraction and Moessbauer spectroscopy were employed to investigate structural stability of Fe{sub 2}TiO{sub 4} under high pressure. Measurements were performed up to about 24 GPa at room temperature using diamond anvil cell. Experimental results demonstrate that Fe{sub 2}TiO{sub 4} undergoes a series of phase transitions from cubic (Fd3-bar m) to tetragonal (I4{sub 1}/amd) at 8.7 GPa, and then to orthorhombic structure (Cmcm) at 16.0 GPa. The high-pressure phase (Cmcm) of Fe{sub 2}TiO{sub 4} is kept on decompression to ambient pressure. In all polymorphs of Fe{sub 2}TiO{sub 4}, iron cations present a high-spin ferrous property without electric charge exchange with titanium cations at high pressure supported by Moessbauer evidences. - Graphical abstract: A series of phase transition of Fe{sub 2}TiO{sub 4} occurs from cubic (a) to tetragonal (b and c) then to orthorhombic phase (d-f) at high pressure. Highlights: Black-Right-Pointing-Pointer High pressure behaviors of Fe{sub 2}TiO{sub 4} were investigated. Black-Right-Pointing-Pointer Phase transitions were observed from cubic to tetragonal and then to orthorhombic. Black-Right-Pointing-Pointer Orthorhombic phase can be kept on decompression. Black-Right-Pointing-Pointer In all polymorphs of Fe{sub 2}TiO{sub 4}, iron ions are ferrous with high-spin state.

  20. Raman scattering studies of pressure-induced phase transitions in perovskite formates [(CH3)2NH2][Mg(HCOO)3] and [(CH3)2NH2][Cd(HCOO)3

    NASA Astrophysics Data System (ADS)

    Mączka, M.; Almeida da Silva, T.; Paraguassu, W.; Pereira da Silva, K.

    2016-03-01

    Pressure-dependent Raman studies were preformed on two dimethylammonium metal formates, [(CH3)2NH2][Mg(HCOO)3] (DMMg) and [(CH3)2NH2][Cd(HCOO)3] (DMCd). They revealed three pressure-induced transitions in the DMMg near 2.2, 4.0 and 5.6 GPa. These transitions are associated with significant distortion of the anionic framework and the phase transition at 5.6 GPa has also great impact on the DMA+ cation. The DMCd undergoes two pressure-induced phase transitions. The first transition occurred between 1.2 and 2.0 GPa and the second one near 3.6 GPa. The first transition leads to subtle structural changes associated with distortion of anionic framework and the later leads to significant distortion of the framework. In contrast to the DMMg, the third transition associated with distortion of DMA+ cation is not observed for the DMCd up to 7.8 GPa. This difference can be most likely associated with larger volume of the cavity occupied by DMA+ cation in the DMCd and thus weaker interactions between anionic framework and DMA+ cations.

  1. Polymorphic transitions of diborane at sub- and near-megabar pressures

    NASA Astrophysics Data System (ADS)

    Torabi, Amin; Murli, Chitra; Song, Yang; Staroverov, Viktor N.

    2015-09-01

    Recent theoretical investigations of high-pressure structures of diborane have yielded many intriguing predictions which have so far remained untested due to challenges of acquiring experimental data at extreme pressures. Here we report new pressure-induced polymorphic transformations of crystalline diborane observed between 36 and 88 GPa by in situ Raman spectroscopy and interpreted using electronic structure calculations. Two previously unknown phase transitions are identified near 42 and 57 GPa, as evidenced by significant changes in the Raman profiles. The corresponding new phases, labeled IV and V, consist of B2H6 molecules and have triclinic unit cells (P), as deduced through evolutionary structure search and comparison of experimental and simulated Raman spectra. Density-functional calculations suggest that, at pressures above 110 GPa, phase V will form new molecular structures consisting of one-dimensional (BH3)n chains and will become metallic near 138 GPa. Our findings make a significant contribution to the elucidation of the structures and properties of diborane in the near-megabar pressure region.

  2. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Denoual, C.

    2016-07-01

    A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.

  3. Pressure-induced zircon-type to scheelite-type phase transitions in YbPO{sub 4} and LuPO{sub 4}

    SciTech Connect

    Zhang, F.X. Lang, M.; Ewing, R.C. Lian, J.; Wang, Z.W.; Hu, J.; Boatner, L.A.

    2008-10-15

    The tetragonal orthophosphates, YbPO{sub 4} and LuPO{sub 4}, were studied by in situ X-ray diffraction (XRD) at pressures up to 52 and 43 GPa, respectively. A reversible phase transition from the zircon structure-type to the scheelite structure-type was found at {approx}22 GPa for YbPO{sub 4} and 19 GPa for LuPO{sub 4}. Coinciding with the transition from the zircon structure-type to the scheelite structure-type, there is a {approx}10% reduction in volume and a significant increase in the bulk modulus for both compounds. - Graphical abstract: The tetragonal orthophosphates, YbPO{sub 4} and LuPO{sub 4}, show reversible phase transitions from the zircon structure-type to the scheelite structure-type at {approx}22 and 19 Gpa, respectively. Coinciding with the phase transition, there is a {approx}10% reduction in unit cell volume.

  4. Pressure-Induced Phase Transitions in Ammonium Squarate: A Supramolecular Structure Based on Hydrogen-Bonding and [pi]-Stacking Interactions

    SciTech Connect

    Li, Shourui; Wang, Kai; Zhou, Mi; Li, Qian; Liu, Bingbing; Zou, Guangtian; Zou, Bo

    2012-02-06

    We report the results of high-pressure Raman and X-ray diffraction measurements performed on ammonium squarate ((NH{sub 4}){sub 2}C{sub 4}O{sub 4}, AS), a representative supramolecular architecture based on hydrogen bonding and {pi}-stacking interactions, at various pressures up to 19 GPa. Two phase transitions at 2.7 GPa and in the pressure range of 11.1-13.6 GPa were observed. Both Raman and XRD results provide convincing evidence for these two phase transitions. The first phase transition is attributed to the rearrangements of hydrogen-bonding networks, resulting in the symmetry transformation from P2{sub 1}/c to P1. The second one, which is identified as an order-disorder phase transition, arises from significant modifications of squarate rings and random orientations of NH{sub 4}{sup +} cations. The cooperative effects between hydrogen-bonding and {pi}-stacking interactions, as well as mechanisms for the phase transitions, are discussed by virtue of the local structure of AS.

  5. A shock pressure induced phase transition from liquid to solid of cyclohexane using time-resolved coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oguchi, Shiro; Sato, Akira; Kondo, Ken-Ichi; Nakamura, Kazutaka

    2007-06-01

    The liquid-solid phase transition of cyclohexane has been studied under laser shock compression up to 3.8 GPa by using nanosecond time-resolved Coherent Anti-stokes Raman Spectroscopy (CARS) and laser shock compression. The shock wave is generated by irradiation of 10 ns pulsed laser beam on the plasma confinement target and its pressure is estimated from a particle velocity, which is measured by optically recording velocity interferometer system (ORVIS). Higher frequency shift of the Raman peaks (ring-breathing, C-C stretching, and CH2 twist modes) was observed at high pressure. At 3.8 GPa, splitting of the peak (CH2 twist mode) due to change in symmetry of surrounding molecules, which corresponds to phase transition to solid IV, was observed at delay time of 20 ns. Rapid liquid-solid phase transition has been directly observed to occur within 20 ns.

  6. Pressure-Induced Zircon-Type to Scheelite-Type Phase Transition in Orthophosphates YbPO4 and LuPO4

    SciTech Connect

    Zhang, F.; Maik, L; Ewing, R; Lian, J; Wang, Z; Hu, J; Boatner, L

    2008-01-01

    The tetragonal orthophosphates, YbPO4 and LuPO4, were studied by in situ X-ray diffraction (XRD) at pressures up to 52 and 43 GPa, respectively. A reversible phase transition from the zircon structure-type to the scheelite structure-type was found at not, vert, similar22 GPa for YbPO4 and 19 GPa for LuPO4. Coinciding with the transition from the zircon structure-type to the scheelite structure-type, there is a not, vert, similar 10% reduction in volume and a significant increase in the bulk modulus for both compounds.

  7. Predicted pressure-induced spin and electronic transition in double perovskite R2CoMnO6 (R = rare-earth ion)

    NASA Astrophysics Data System (ADS)

    Zhao, Hong Jian; Zhou, Haiyang; Chen, Xiang Ming; Bellaiche, L.

    2015-06-01

    Specific first-principles calculations are performed to predict structural, magnetic and electronic properties of seven double perovskite R2CoMnO6 materials, with R being a rare-earth ion, under hydrostatic pressure. All these compounds are found to undergo a first-order transition from a high spin (HS) to low spin (LS) state at a critical pressure (whose value is dependent on the R ion). Such transition not only results in a significant volume collapse but also yields a dramatic change in electronic structure. More precisely, the HS-to-LS transition is accompanied by a transition from an insulator to a half-metallic state in the R2CoMnO6 compounds having the largest rare-earth ionic radius (i.e., Nd, Sm, Gd and Tb) while it induces a change from an insulator to a semiconductor having a narrow band gap for the smallest rare-earth ions (i.e., R = Dy, Ho and Er). Experiments are called for to confirm these predictions.

  8. Pressure-induced magnetic, structural, and electronic phase transitions in LaFeO{sub 3}: A density functional theory (generalized gradient approximation) + U study

    SciTech Connect

    Javaid, Saqib; Javed Akhtar, M.

    2014-07-14

    We have investigated the behavior of orthoferrite LaFeO{sub 3} at ambient conditions and under pressure using DFT (generalized gradient approximation (GGA)) + U approach. Ground state electronic (band gap) and magnetic properties are considerably improved due to the Hubbard correction. Moreover, the experimentally observed pressure-driven phase transition, namely, the simultaneous occurrence of spin crossover, isostructural volume collapse, and drastic reduction in electrical resistance (electronic phase transition) is nicely described by GGA + U calculations. In particular, despite a sharp drop in resistance, a small band gap still remains in the low spin state indicating an insulator to semiconductor phase transition, in good agreement with the experiments but in contrast to GGA, which predicts metallic behavior in low spin state. We discuss the origin of variation in electronic structure of LaFeO{sub 3} in low spin state as obtained from GGA to GGA + U methods. These results emphasize the importance of correlation effects in describing the pressure-driven phase transition in LaFeO{sub 3} and other rare-earth orthoferrites.

  9. The effect of shear deformations on the transition onset pressure of the bcc to hcp pressure induced martensitic phase transformation in iron.

    NASA Astrophysics Data System (ADS)

    Caspersen, K.; Lew, A.; Ortiz, M.; Carter, E.

    2003-12-01

    At a pressure of approximately 13 GPa iron undergoes a martensitic phase transition from ground state ferro-magnetic bcc to a non-magnetic hcp structure. The exact transformation varies between experiments and is postulated to have a strong dependence on shear stresses during the loading process. To study this shear dependence we have developed a multi-scale model of iron, in which we employ a quantum mechanics based free energy, a kinematically compatible spinodal decomposition of phases, and a dependence on the bcc{<->}hcp transition path(s). Using this model we see that that the predicted transformation pressure for pure hydrostatic compression is much higher than expected, however with the inclusion of small initial shear deformations we see the predicted transformation pressure drop considerably and into the experimentally determined pressure range.

  10. Pressure-induced shift of Tc and structural transition in "122" type pnictide superconductor Ca0.34Na0.66Fe2As2

    NASA Astrophysics Data System (ADS)

    Zhang, Sijia; Zhao, Kan; Yu, Xiaohui; Zhu, Jinlong; Liu, Qingqing; Wang, Xiancheng; Feng, Shaomin; Chen, Zhiqiang; Zhao, Yusheng; Jin, Changqing

    2016-07-01

    The effect of pressure on superconductivity of "122" type Ca1-xNaxFe2As2 (x=0.66) single crystal is investigated through the temperature dependence of resistance measurement. Optimal Na doped (Ca0.34Na0.66)Fe2As2 shows a superconducting transition with Tc ˜ 33 K at ambient pressure. With application of pressure, Tc decreases nearly linearly with dTc/dP ˜ - 1.7K/GPa at pressures lower than 2 GPa, and disappears gradually at higher pressure. The disappearance of superconductivity is also companied with the recovery of standard Fermi liquid behaviors of the normal-state transport properties. Moreover, (Ca0.34Na0.66)Fe2As2 exhibits a tetragonal (T) to collapsed-tetragonal (cT) transition at about 3 GPa. The evolution of non-Fermi liquid behaviors and superconductivity under pressure are both related to the interband fluctuations.

  11. Pressure-induced tuning of phase transition and role of disorder in electrical transport properties of β-SrxV6O15

    NASA Astrophysics Data System (ADS)

    Akrap, Ana; Barišić, Neven; Gaal, Richard; Forró, László

    2007-12-01

    We report the resistivity and thermoelectric power of β-SrxV6O15 , for various stoichiometries, 0.6⩽x⩽1 , and under pressures up to 1.7GPa . The pristine system (x=1) exhibits a semiconductor-insulator transition at 155K , which is evidenced in both resistivity and thermopower and is probably induced by charge ordering. We observe a pronounced change in the nature of the phase transition under pressure and we attribute it to the tuning of the nearest neighbor Coulomb interaction V . At ambient pressure, as the system moves away from stoichiometry to x<1 , disorder is introduced into the strontium sublattice and the phase transition is immediately suppressed. The temperature dependence of the thermoelectric power gradually weakens as the system moves away from x=1 , indicating the importance of disorder. While for x<1 compound thermoelectric power shows evidence of a localized contribution to the conduction, which may involve polaronic effects, the activation energies speak against small polarons in the pristine x=1 compound. We explain our results in a model of conduction through localized states in the off-stoichiometric systems and of thermally activated conduction in the pristine system.

  12. Pressure-induced Pbca-P21/c phase transition of natural orthoenstatite: The effect of high temperature and its geophysical implications

    NASA Astrophysics Data System (ADS)

    Zhang, Jin S.; Reynard, Bruno; Montagnac, Gilles; Bass, Jay D.

    2014-03-01

    In-situ high-pressure (P) high-temperature (T) Raman spectroscopy has been used to investigate the effect of temperature on the high-pressure phase transition of Mg-rich orthoenstatite (OEN) to a newly-discovered P21/c phase (HPCEN2) up to 673 K and 18.2(10) GPa. Two natural orthoenstatite samples were used in this study: near end-member Mg orthoenstatite (Zabargad Island, Egypt), and Al + Fe-bearing orthoenstatite (San Carlos, Arizona). For San Carlos OEN (SC-OEN), the experiment was performed at room temperature, 373, 573 and 673 K; For Zabargad Island OEN (Zabg OEN), experiments were performed at 573 and 673 K. The three phases OEN, HPCEN2, and another high-pressure phase with space group C2/c (denoted by HPCEN) are readily distinguished by a characteristic doublet, triplet, or singlet, respectively, in the 660-680 cm-1 range. Similarly, splitting of a peak near 1100 cm-1 is indicative of an OEN → HPCEN2 transition. For both samples, no phase other than OEN and HPCEN2 was observed within the investigated P-T range. The recovered products after slow cooling for over 24 h from 673 K and 16.6(9) GPa were OEN. The Clapeyron slope (dP/dT) of this transition is bracketed between +0.020 to -0.0026 GPa/K for Zabg-OEN, and +0.0023 to -0.0049 GPa/K for SC-OEN. Our results suggest a possible stability field for HPCEN2 at the bottom of the upper mantle.

  13. A DFT study of pressure-induced phase transitions, structural and electronic properties of Cu2ZnSnS4

    NASA Astrophysics Data System (ADS)

    Zhao, Yifen; Li, Decong; Liu, Zuming

    2016-06-01

    The structural properties, phase transitions, and electronic structures of Cu2ZnSnS4 (CZTS) in the three structures have been researched using the first-principles density functional theory (DFT). The results indicate that the energies of stannite (ST) and pre-mixed Cu-Au (PMCA) CZTS are higher than those of kesterite (KS) CZTS, indicating that the KS CZTS is more stable. We found the phase transition pressure between the KS and ST structures of CZTS is about 32 GPa. Moreover, for KS- and PMCA-CZTS, there exists in the mischcrystal phase between 52 GPa and 65 GPa. The band structures show that the KS- and ST-CZTS are direct band gap semiconductors. The band gaps of three-type CZTS increase with increasing pressure, and the maximum band gap of KS and ST structures for CZTS occurs at 50 GPa. However, PMCA CZTS possesses metal property. Furthermore, the PMCA CZTS translates from metal to the indirect semiconductor with increasing pressure. The results play an important role in future experimental and theoretical work for CZTS materials.

  14. Pressing Induced Polymorphic Phase Transition in Submicron-Sized Gamma-Hmx

    NASA Astrophysics Data System (ADS)

    Lee, K.-Y.; Moore, D. S.

    2007-12-01

    Using Raman spectroscopy, a novel submicron-sized HMX (sm-HMX) was determined to be both the gamma polymorph and stable with respect to conversion to beta-HMX under ambient conditions for at least a year. Pressing of sm-HMX powder in a small diameter pellet press at pressures from 10,000 psi to 31,000 psi and 1 to 5 minute hold times was found to promote the gamma to beta polymorphic phase transition. The fraction converted and rate of conversion versus time after pellet removal from the press, measured using Raman spectroscopy, fit a sigmoidal curve, indicating nucleation and growth as a possible polymorphic transition mechanism.

  15. Pressure induced magnetic phase transition in RhFe3N and IrFe3N: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Puvaneswari, S.; Rajeswarapalanichamy, R.; Manikandan, M.

    2016-05-01

    The structural, electronic, elastic and magnetic properties of RhFe3N and IrFe3N are investigated using ab-initio calculations based on density functional theory as implemented in VASP code within the gradient generalized approximation. The non-spin polarized and spin polarized calculations are performed for these nitrides at normal and high pressures. It is found that these ternary nitrides are stable in ferromagnetic state at normal pressure. The lattice constant and bulk modulus values are calculated. The electronic structure reveals that these nitrides are metallic at normal pressure. The calculated elastic constants indicate that they are mechanically stable at ambient pressure. Ferromagnetic to nonmagnetic phase transition is observed in RhFe3N and IrFe3N at high pressure. Ferromagnetism is quenched in these nitrides at high pressure.

  16. Pressure-induced metallization of silane

    SciTech Connect

    Chen,X.; Struzhkin, V.; Song, Y.; Goncharov, A.; Ahart, M.; Liu, Z.; Mao, H.; Hemley, R.

    2008-01-01

    There is a great interest in electronic transitions in hydrogen-rich materials under extreme conditions. It has been recently suggested that the group IVa hydrides such as methane (CH4), silane (SiH4), and germane (GeH4) become metallic at far lower pressures than pure hydrogen at equivalent densities because the hydrogen is chemically compressed in group IVa hydride compounds. Here we report measurements of Raman and infrared spectra of silane under pressure. We find that SiH4 undergoes three phase transitions before becoming opaque at 27-30 GPa. The vibrational spectra indicate the material transforms to a polymeric (framework) structure in this higher pressure range. Room-temperature infrared reflectivity data reveal that the material exhibits Drude-like metallic behavior above 60 GPa, indicating the onset of pressure-induced metallization.

  17. Experimental Deformation of Olivine Crystals at Mantle P and T: Evidences for a Pressure-Induced Slip Transition and Implications for Upper-Mantle Seismic Anisotropy and Low Viscosity Zone

    NASA Astrophysics Data System (ADS)

    Raterron, P.; Chen, J.; Geenen, T.; Girard, J.

    2009-04-01

    Recent developments in high-pressure deformation devices coupled with synchrotron radiation allow investigating the rheology of mantle minerals and aggregates at the extreme pressure (P) and temperature (T) of their natural occurrence in the Earth. This is particularly true in the case of olivine, which rheology has been recently investigated in the Deformation-DIA apparatus (D-DIA, see Wang et al., 2003, Rev. Scientific Instr., 74, 3002) at upper-mantle P and T conditions. Olivine deforms by dislocation creep in the shallow upper-mantle, as revealed by the seismic velocity anisotropy observed in this region. The attenuation of seismic anisotropy at depth greater than 200 km is interpreted as a pressure-induced change in olivine main deformation mechanism. It was first attributed to a transition from dislocation creep to diffusion creep (Karato and Wu, 1993, Science, 260, 771). This interpretation has been challenged by deformation data obtained at high pressure (P > 3 GPa) in the dislocation creep regime (Couvy et al., 2004, EJM, 16, 877; Raterron et al., 2007, Am. Miner., 92, 1436; Raterron et al., 2009, PEPI, 72, 74), which support a second interpretation: a transition in olivine dominant dislocation slip, from [100] slip at low P to [001] slip at high P (e.g., Mainprice et al., 2005, Nature, 433, 731). Such a P -induced [100]/[001] slip transition is also supported by recent theoretical studies based on first-principle calculations of olivine dislocation slips (Durinck et al., 2005, PCM, 32, 646; Durinck et al., 2007, Eur. J. Mineral., 19, 631). In order to further constrain the effect of pressure on olivine slip system activities, deformation experiments were carried out in poor water condition at P > 5 GPa and T =1400˚ C, on pure forsterite (Fo100) and San Carlos olivine crystals, using the D-DIA at the X17B2 beamline of the NSLS (Upton, NY, USA). Crystals were oriented in order to active either [100] slip alone or [001] slip alone in (010) plane, or both

  18. Pressing induced polymorphic phase transition in submicron-sized gamma-HMX

    NASA Astrophysics Data System (ADS)

    Moore, David; Lee, Kien-Yin

    2007-06-01

    Submicron HMX has been produced and characterized to be less sensitive than impact standard HMX in small-scale sensitivity tests. The sm-HMX was found to be the gamma polymorph and to be stable under ambient conditions for at least a year. Pressing of sm-HMX in a small diameter pellet press at pressures from 10 000 psi to 31 000 psi and 1 to 5 minute hold times was found to promote the gamma to beta polymorphic phase transition. The fraction converted and rate of conversion versus time after pellet removal from the press were found to fit a sigmoidal curve, indicating nucleation and growth as a possible polymorphic transition mechanism.

  19. An Exercise in X-Ray Diffraction Using the Polymorphic Transition of Nickel Chromite.

    ERIC Educational Resources Information Center

    Chipman, David W.

    1980-01-01

    Describes a laboratory experiment appropriate for a course in either x-ray crystallography or mineralogy. The experiment permits the direct observation of a polymorphic transition in nickel chromite without the use of a special heating stage or heating camera. (Author/GS)

  20. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  1. Polymorphic transitions in n-hydrocarbon-water and n-alcohol-water binary systems

    NASA Astrophysics Data System (ADS)

    Mirgorod, Yu. A.

    2014-08-01

    The mixing of hydrocarbons and alcohols in an excess of water is explained by polymorphic transitions similar to crystallization in an ensemble of water clusters. Enthalpies of transitions of 4.90 ± 0.07 and 2.2 ± 0.3 kJ/mol are obtained for solutions of hydrocarbons and alcohols in an excess of water, respectively. It is concluded that the mixing of water in an excess of hydrocarbons and alcohols is similar to evaporation (the breaking of H-bonds) with an enthalpy of 34 ± 1.4 kJ/mol. It is established that a polymorphic transition occurs between two binodals, and is accompanied by the emergence of microphases (concentration fluctuations) of alcohols in water. Binodals and spinodals in an excess of water and alcohol coincide for butyl and other higher alcohols.

  2. Combined synchrotron XRD/Raman measurements: in situ identification of polymorphic transitions during crystallization processes.

    PubMed

    Klimakow, Maria; Leiterer, Jork; Kneipp, Janina; Rössler, Ernst; Panne, Ulrich; Rademann, Klaus; Emmerling, Franziska

    2010-07-01

    A combination of two analytical methods, time-resolved X-ray diffraction (XRD) and Raman spectroscopy, is presented as a novel tool for crystallization studies. An acoustic levitator was employed as sample environment. This setup enables the acquisition of XRD and Raman data in situ simultaneously within a 20 s period and hence permits investigation of polymorphic phase transitions during the crystallization process in different solvents (methanol, ethanol, acetone, dichloromethane, acetonitrile). These real time measurements allow the determination of the phase content from the onset of the first crystalline molecular assemblies to the stable system. To evaluate the capability of this approach, the setup was applied to elucidate the crystallization process of the polymorphic compound nifedipine. The results indicate the existence of solvent-dependent transient phases during the crystallization process. The quality of the data allowed the assignment of the lattice constants of the hitherto unknown crystal structure of the beta-polymorph. PMID:20222693

  3. Polymorphism in α-sexithiophene crystals: relative stability and transition path.

    PubMed

    Klett, Bernhard; Cocchi, Caterina; Pithan, Linus; Kowarik, Stefan; Draxl, Claudia

    2016-06-01

    We present a joint theoretical and experimental study to investigate polymorphism in α-sexithiophene (6T) crystals. By means of density-functional theory calculations, we clarify that the low-temperature phase is favorable over the high-temperature one, with higher relative stability up to 50 meV per molecule. This result is in agreement with our thermal desorption measurements. We also propose a transition path between the high- and low-temperature 6T polymorphs, estimating an upper bound for the energy barrier of about 1 eV per molecule. The analysis of the electronic properties of the investigated 6T crystal structures complements our study. PMID:27181997

  4. Polymorphic phase transitions in systems evolving in a two-dimensional discrete space.

    PubMed

    Gadomski, A

    1999-08-01

    Polymorphic phase transitions in systems evolving in a two-dimensional discrete space have been studied. The driving force of the transitions appears to be a difference between two main energetic contributions: one, related to the thermal activation of the process, and another, being of quantum nature. The former (high temperature limit) is naturally assigned to the expansion (melting) part of the transition, while the latter (low temperature limit) has much in common with the contraction (solidification) part. Between the two main physical states distinguished, there exists a certain state, corresponding to a discontinuity point (pole) in the morphological phase diagram, represented by the well-known Bose-Einstein (Planck) formula, in which the system blows up. This point is related to an expected situation in which the contour of the object under investigation stands for the Brownian or purely diffusional path, with the fractal dimension dw=2, and the situation can be interpreted as some emergence of an intermediate "tetratic" phase. This, in turn, recalls a certain analogy to the equilibrium (order-disorder) phase transition of Kosterlitz-Thouless type, characteristic of, e.g., rough vs rigid interfaces in a two-dimensional space, with some disappearance of interface correlation length at dw=2. Otherwise, the contours of the objects are equivalent to fractional Brownian paths either in superlinear or "turbulent" (dw<2; the expansion case), or sublinear, viz., anomalously slow (dw>2; the contraction case) regimes, respectively. It is hoped that the description offered will serve to reflect properly the main subtleties of the dynamics of the polymorphic transitions in complex "soft-matter" systems, like formation of lipid mesomorphs or diffusional patterns, with nonzero line tension effect. PMID:11969883

  5. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.

    PubMed

    Vanhoorne, V; Bekaert, B; Peeters, E; De Beer, T; Remon, J-P; Vervaet, C

    2016-06-15

    In most formulations processed via continuous twin screw granulation microcrystalline cellulose (MCC) and/or lactose are used as excipients, but mannitol is also a preferred excipient for wet granulation and tableting due to its non-hygroscopicity and inertness. Therefore, the aim of the current study was to investigate the influence of process parameters on critical quality attributes of granules (moisture content, solid state, morphology, size distribution, specific surface area, friability, flowability and hygroscopicity) and tablets (tensile strength and friability) after twin screw granulation of δ-mannitol. The δ-polymorph was selected since a moisture-induced transformation to β-mannitol was observed during batch wet granulation, which exhibited a unique morphology with a large surface area and improved tabletability. A full factorial experimental design was performed, varying screw speed (400-900rpm), granulation temperature (25-40°C), number of kneading elements (6 or 12) and liquid-to-solid (L/S) ratio, on the granulation unit of a ConsiGma™-25 line (a continuous powder-to-tablet manufacturing system). After tray drying the granules were milled and tableted. The results showed that the polymorphic transition from δ- to β-mannitol also occurred during twin screw granulation, although the residence time and L/S ratios were much lower in continuous twin screw granulation compared to batch processing. However, the polymorphic transition was not complete in all experiments and depended on the L/S ratio, screw speed and number of kneading elements. Nevertheless all granules exhibited the unique morphology linked to the polymorphic transition and had a superior tabletability compared to granules produced with β-mannitol as starting material. This was attributed to enhanced plastic deformation of the granules manufactured using δ-mannitol as starting material. In addition, it was concluded that mannitol was granulated via a different mechanism than

  6. Atomistic pathways of the pressure-induced densification of quartz

    NASA Astrophysics Data System (ADS)

    Liang, Yunfeng; Miranda, Caetano R.; Scandolo, Sandro

    2015-10-01

    When quartz is compressed at room temperature it retains its crystal structure at pressures well above its stability domain (0-2 GPa), and collapses into denser structures only when pressure reaches 20 GPa. Depending on the experimental conditions, pressure-induced densification can be accompanied by amorphization; by the formation of crystalline, metastable polymorphs; and can be preceded by the appearance of an intermediate phase, quartz II, with unknown structure. Based on molecular dynamic simulations, we show that this rich phenomenology can be rationalized through a unified theoretical framework of the atomistic pathways leading to densification. The model emphasizes the role played by the oxygen sublattice, which transforms from a bcc-like order in quartz into close-packed arrangements in the denser structures, through a ferroelastic instability of martensitic nature.

  7. Structural study of the Eu3+ environments in fluorozirconate glasses: Role of the temperature-induced and the pressure-induced phase transition processes in the development of a rare earth's local structure model

    NASA Astrophysics Data System (ADS)

    Muñoz-Santiuste, Juan E.; Rodríguez-Mendoza, Ulises R.; González-Platas, Javier; Lavín, Víctor

    2009-04-01

    The correlation between the optical properties of the Eu3+ ions and their local structures in fluorozirconate glasses and glass-ceramics have been analyzed by means of steady-state and time-resolved site-selective laser spectroscopies. Changes in the crystal-field interaction, ranging from weak to medium strength values, are observed monitoring the luminescence and the lifetime of the Eu3+ ions in different local environments in the glass. As key roles in this study, the Eu3+ luminescence in the thermally-induced crystallization of the glass and the pressure-induced amorphization of the crystalline phase of the glass-ceramic experimentally states the existence of a parent local structure for the Eu3+ ions in the glass, identified as the EuZrF7 crystalline phase. Starting from the ab initio single overlap model, crystal-field calculations have been performed in the glass and the glass-ceramic. From the site-selective measurements, the crystal-field parameters sets are obtained, giving a suitable simulation of the F7J (J =0-6) Stark energy level diagram for the Eu3+ ions in the different environments present in the fluorozirconate glass. A simple geometrical model based on a continuous distortion of the parent structure is proposed for the distribution of local environments of the Eu3+ ions in the fluorozirconate glass.

  8. Pressure induced hyperfine shift and broadening rates of the 52S1/2 →62P1/2 and 52S1/2 →62P3/2 transitions of rubidium with He, Ar, CH4, and C2H6

    NASA Astrophysics Data System (ADS)

    Guy, M. R.; Guild, E. M.; Young, J. W.; Sheets, I. O.; Pitz, G. A.

    2016-01-01

    Pressure induced broadening and spectral shift rates have been resolved for the two ground state hyperfine lines in the 52S1/2 →62P1/2 and 52S1/2 →62P3/2 of 85Rb and 87Rb in the presence of 5-50 Torr of helium, argon, methane, and ethane. Broadening rates averaged over the hyperfine components, for the P1/2 transition for He, Ar, CH4, and C2H6 are 60.2, 45.2, 63.8, and 60.4 MHz/Torr, respectively and 50.4, 42.4, 62.0, and 60.4 MHz/Torr for the P3/2 transition. Average spectral shift rates for the P1/2 transition were found to be 15.7, -11.5, -18.1, and -19.9 MHz/Torr for He, Ar, CH4, and C2H6, respectively, and 3.1, -12.6,-21.8, and -19.9 MHz/Torr for the P3/2 transition. Deviation in broadening and shift rates between hyperfine lines was found to be as high as 16 and 7.6 MHz/Torr respectively.

  9. Pressure-induced phase transformation of In2Se3

    NASA Astrophysics Data System (ADS)

    Rasmussen, Anya; Teklemichael, Samuel; Mafi, Elham; Gu, Yi; McCluskey, Matthew

    2013-06-01

    Phase-change memory, with fast read-write speeds and small dimensions, will soon replace flash memory in our cell phones and tablets. This type of memory relies on phase change materials like indium selenide, In2Se3, a III-VI semiconductor that exists in multiple crystalline phases. To achieve controlled switching between phases, it is important to understand both the thermal and elastic properties of In2Se3. Using synchrotron x-ray diffraction and a diamond-anvil cell, a pressure-induced phase transition in powder In2Se3 from the α phase to β phase was discovered at 0.7 GPa. This pressure is an order of magnitude lower than phase-transition pressures in most semiconductors. Raman spectroscopy experiments confirm this result. The bulk moduli are reported for both α and β phases, and the c / a ratio for the β phase is shown to have a nonlinear dependence on pressure.

  10. Pressure-Induced Order in the Gapped Quantum Magnet DTN

    NASA Astrophysics Data System (ADS)

    Mannig, Alexandra; Moeller, Johannes; Zheludev, Andrey; Garlea, V. Ovidiu; Dela Cruz, Clarina; Guguchia, Zurab; Khasanov, Rustem; Morenzoni, Elvezio

    We present muon-spin relaxation, neutron diffraction and magnetic susceptibility data under applied hydrostatic pressure on the organometallic S = 1 quantum magnet NiCl2 . 4 [ SC(NH2)2 ] . The material consists of weakly coupled antiferromagnetic chains and has a spin gap resulting from a large single-ion anisotropy. Our muon spin rotation experiments provide local field dependencies on temperature as well as pressure and allow for the mapping of a detailed phase diagram up to 22kbar. Thus, we demonstrate that the compound may be driven through two subsequent pressure-induced transitions into apparently distinct magnetically ordered phases. Neutron diffraction and susceptibility measurements support those results and show the potential of low-pressure transitions to be investigated by various techniques.

  11. Irreversibility of pressure induced boron speciation change in glass.

    PubMed

    Smedskjaer, Morten M; Youngman, Randall E; Striepe, Simon; Potuzak, Marcel; Bauer, Ute; Deubener, Joachim; Behrens, Harald; Mauro, John C; Yue, Yuanzheng

    2014-01-01

    It is known that the coordination number (CN) of atoms or ions in many materials increases through application of sufficiently high pressure. This also applies to glassy materials. In boron-containing glasses, trigonal BO3 units can be transformed into tetrahedral BO4 under pressure. However, one of the key questions is whether the pressure-quenched CN change in glass is reversible upon annealing below the ambient glass transition temperature (Tg). Here we address this issue by performing (11)B NMR measurements on a soda lime borate glass that has been pressure-quenched at ~0.6 GPa near Tg. The results show a remarkable phenomenon, i.e., upon annealing at 0.9Tg the pressure-induced change in CN remains unchanged, while the pressurised values of macroscopic properties such as density, refractive index, and hardness are relaxing. This suggests that the pressure-induced changes in macroscopic properties of soda lime borate glasses compressed up to ~0.6 GPa are not attributed to changes in the short-range order in the glass, but rather to changes in overall atomic packing density and medium-range structures. PMID:24442182

  12. Irreversibility of Pressure Induced Boron Speciation Change in Glass

    PubMed Central

    Smedskjaer, Morten M.; Youngman, Randall E.; Striepe, Simon; Potuzak, Marcel; Bauer, Ute; Deubener, Joachim; Behrens, Harald; Mauro, John C.; Yue, Yuanzheng

    2014-01-01

    It is known that the coordination number (CN) of atoms or ions in many materials increases through application of sufficiently high pressure. This also applies to glassy materials. In boron-containing glasses, trigonal BO3 units can be transformed into tetrahedral BO4 under pressure. However, one of the key questions is whether the pressure-quenched CN change in glass is reversible upon annealing below the ambient glass transition temperature (Tg). Here we address this issue by performing 11B NMR measurements on a soda lime borate glass that has been pressure-quenched at ~0.6 GPa near Tg. The results show a remarkable phenomenon, i.e., upon annealing at 0.9Tg the pressure-induced change in CN remains unchanged, while the pressurised values of macroscopic properties such as density, refractive index, and hardness are relaxing. This suggests that the pressure-induced changes in macroscopic properties of soda lime borate glasses compressed up to ~0.6 GPa are not attributed to changes in the short-range order in the glass, but rather to changes in overall atomic packing density and medium-range structures. PMID:24442182

  13. Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon-6 Nanofibers

    SciTech Connect

    Liu,Y.; Cui, L.; Guan, F.; Gao, Y.; Hedin, N.; Zhu, L.; Fong, H.

    2007-01-01

    Uniform nylon-6 nanofibers with diameters around 200 nm were prepared by electrospinning. Polymorphic phase transitions and crystal orientation of nylon-6 in unconfined (i.e., as-electrospun) and a high T{sub g} (340 C) polyimide confined nanofibers were studied. Similar to melt-spun nylon-6 fibers, electrospun nylon-6 nanofibers also exhibited predominant, metastable {gamma}-crystalline form, and the {gamma}-crystal (chain) axes preferentially oriented parallel to the fiber axis. Upon annealing above 150 C, {gamma}-form crystals gradually melted and recrystallized into thermodynamically stable {alpha}-form crystals, which ultimately melted at 220 C. Release of surface tension accompanied this melt-recrystallization process, as revealed by differential scanning calorimetry. For confined nanofibers, both the melt-recrystallization and surface tension release processes were substantially depressed; {gamma}-form crystals did not melt and recrystallize into {alpha}-form crystals until 210 C, only 10 C below the T{sub m} at 220 C. After complete melting of nanoconfined crystals at 240 C and recrystallization at 100 C, only {alpha}-form crystals oriented perpendicular to the nanofiber axis were obtained. In the polyimide-confined nanofibers, the Brill transition (from the monoclinic {alpha}-form to a high-temperature monoclinic form) was observed at 180-190 C, which was at least 20 C higher than that in unconfined nylon-6 at {approx}160 C. This, again, was attributed to the confinement effect.

  14. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide

    NASA Astrophysics Data System (ADS)

    Lee, Boeun; Yoon, Chong Seung; Lee, Hae Ri; Chung, Kyung Yoon; Cho, Byung Won; Oh, Si Hyoung

    2014-08-01

    Zn-ion batteries are emerging energy storage systems eligible for large-scale applications, such as electric vehicles. These batteries consist of totally environmentally-benign electrode materials and potentially manufactured very economically. Although Zn/α-MnO2 systems produce high energy densities of 225 Wh kg-1, larger than those of conventional Mg-ion batteries, they show significant capacity fading during long-term cycling and suffer from poor performance at high current rates. To solve these problems, the concrete reaction mechanism between α-MnO2 and zinc ions that occur on the cathode must be elucidated. Here, we report the intercalation mechanism of zinc ions into α-MnO2 during discharge, which involves a reversible phase transition of MnO2 from tunneled to layered polymorphs by electrochemical reactions. This transition is initiated by the dissolution of manganese from α-MnO2 during discharge process to form layered Zn-birnessite. The original tunneled structure is recovered by the incorporation of manganese ions back into the layers of Zn-birnessite during charge process.

  15. On the high-temperature phase transitions of CsH2PO4: A polymorphic transition? A transition to a superprotonic conducting phase?

    NASA Astrophysics Data System (ADS)

    Ortiz, E.; Vargas, R. A.; Mellander, B.-E.

    1999-03-01

    X-ray diffraction, thermogravimetric (TGA), differential scanning calorimetric (DSC), and impedance analysis were used to study the reported high-temperature phase transitions at 107, 149, 230, and 256 °C in crystals of cesium dihydrogen phosphate, CsH2PO4 (CDP). Our results show strong evidence that at all these temperatures, the observed DSC or differential thermal analysis (DTA) endothermic effects appear only as a consequence of a dehydration process starting on the surface of the crystal. Our results thus show that the reported transition at 230 °C is not a polymorphic transition. This means that the monoclinic symmetry, stable at room temperature, with space group P21/m-C2k2, is maintained up to the final decomposition. Moreover, since we have not found any evidence for the existence of a superprotonic high-temperature phase above 230 °C, the high conductivity above 230 °C is thus only a consequence of the dehydration of the crystal surface.

  16. Pressure-induced transformations in molecular crystals

    SciTech Connect

    Taylor, R.D.; Hearne, G.R. |; Pasternak, M.P.

    1995-09-01

    A review is given on the unique features of the Moessbauer spectroscopy (MS) which by virtue of the quadrupole interaction and the lattice dynamics allows one to characterize some structural properties in the pressure-induced amorphous state of molecular crystals. Experiments were performed in GeI{sub 4}, SnI{sub 4} and SnBr{sub 4} by means of {sup 119}Sn and {sup 129}I MS with pressures to 35 GPa at cryogenic temperatures using diamond anvil cells.

  17. Critical behavior of resistivity in the pressure-induced first to second order transition in Pr0.6Ca0.4Mn0.96B0.04O3 (B=Co and Cr) polycrystals

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, R.; Mahendiran, R.; Arumugam, S.

    2015-06-01

    We have investigated the hydrostatic pressure (P) dependence of the resistivity on Pr0.6Ca0.4Mn0.96B0.04O3 (B = Co and Cr) polycrystals. At ambient pressure, the temperature dependence of resistivity [ρ(T)] of both the samples show a first order paramagnetic insulator-ferromagnetic metallic transition at T=TIM. The application of P on both the samples increases the TIM, reduces the resistivity, and suppresses the hysteresis width, indicating a crossover from first to second order transition. The critical pressure, where the first-second order crossover takes place, are 2.02 and 2.40 GPa for Co and Cr doped samples respectively. The critical property of both systems around second order transition is investigated using Fisher-Langer relation and Suezaki-Mori method. The estimated critical exponents are close to the three-dimensional Heisenberg model for the Co doped sample suggesting short range interaction, and the exponents for the Cr doped sample follow the mean field theory suggesting long range ferromagnetic order. Further, the application of P suppresses the high temperature resistivity by reducing high temperature polarons in the case of the Cr doped sample, but it does not happen for the Co doped sample. The application of P helps to examine the stability of polarons in the high temperature regime.

  18. A kinetic and thermodynamic study of seratrodast polymorphic transition by isothermal microcalorimetry.

    PubMed

    Urakami, Koji; Beezer, Anthony E

    2003-05-12

    The development of isothermal microcalorimetry to a study of the kinetic and thermodynamics of polymorphic transitions in seratrodast ((+/-)-7-(3,5,6-trimethyl-1,4-benzoquinon-2-yl)-7-phenylheptanoic acid) Form II is reported. Sieved samples of Form II were allowed to convert to Form I, in a reaction vessel of an isothermal microcalorimeter, under 13, 31, 63 and 93% relative humidity (RH) between 48 and 65 degrees C. The power (Phi, in Watts) versus time curves from the microcalorimeter were integrated into the heat output (q, in Joules) versus time curves to yield fractional extent of Form I converted versus time curves. The change in enthalpy (-5.70 kJmol(-1)) agreed very closely with that obtained by differential scanning calorimetry and solution calorimetry, which indicated that the power measured by the microcalorimeter was due only to the Form II-to-Form I transition. Application of the theoretical kinetic method [J. Am. Ceram. Soc. 55 (1972) 74] revealed that the transition took place via a two-dimensional growth of nuclei mechanism at all the studied relative humidities and temperatures. The rate constant increased with increasing RH and temperature, and with decreasing the particle size of sample. The activation energies obtained from Arrhenius plots were 292, 290, 280 and 284 kJmol(-1), and the extrapolated rate constants at 25 degrees C were also 3.01 x 10(-10), 3.11 x 10(-10), 9.65 x 10(-10) and 3.84 x 10(-9)s(-1) for 13, 31, 63 and 93% RH, respectively. PMID:12711181

  19. Nature of Pressure-induced Insulating States in Simple Metals

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Hemley, Russell

    As experimentally established, all the alkali metals and heavy alkaline earth metals (Ca, Sr and Ba) become progressively less conductive on compression, at least up to some critical limit over a broad pressure range. Of these metals, Li and Na clearly undergo pressure-induced metal-insulator transitions, which may also be called reverse Mott transitions. Here, using group theory arguments and first-principles calculations, we show that such transitions can be understood in terms of band representations introduced by Zak. The valence bands in the insulating states are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms. The character of the Wannier functions is closely related to the degree of s-p(-d) hybridization and reflects multi-center chemical bonding in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as re-entrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of semimetallic phases with flat surface states. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been identified or reported (e.g., Li, Na, and Ca). This research was supported by EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DESC0001057.

  20. Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon 6 Nanofibers

    PubMed Central

    Liu, Yi; Cui, Li; Guan, Fangxiao; Gao, Yi; Hedin, Nyle E.; Zhu, Lei; Fong, Hao

    2008-01-01

    Uniform nylon 6 nanofibers with diameters around 200 nm were prepared by electrospinning. Polymorphic phase transitions and crystal orientation of nylon 6 in unconfined (i.e., as-electrospun) and a high Tg (340 °C) polyimide confined nanofibers were studied. Similar to melt-spun nylon 6 fibers, electrospun nylon 6 nanofibers also exhibited predominant, meta-stable γ crystalline form, and the γ-crystal (chain) axes preferentially oriented parallel to the fiber axis. Upon annealing above 150 °C, γ-form crystals gradually melted and recrystallized into the thermodynamically stable α-form crystals, which ultimately melted at 220 °C. Release of surface tension accompanied this melt-recrystallization process, as revealed by differential scanning calorimetry. For confined nanofibers, both the melt-recrystallization and surface tension release processes were substantially depressed; γ-form crystals did not melt and recrystallize into α-form crystals until 210 °C, only 10 °C below the Tm at 220 °C. After complete melting of nano-confined crystals at 240 °C and recrystallization at 100 °C, only α-form crystals oriented perpendicular to the nanofiber axis were obtained. In the polyimide-confined nanofibers, the Brill transition (from the monoclinic α-form to a high temperature monoclinic form) was observed at 180–190 °C, which was at least 20 °C higher than that in unconfined nylon 6 at approximately 160 °C. This, again, was attributed to the confinement effect. PMID:18698379

  1. Crystalline Morphology and Polymorphic Phase Transitions in Electrospun Nylon 6 Nanofibers.

    PubMed

    Liu, Yi; Cui, Li; Guan, Fangxiao; Gao, Yi; Hedin, Nyle E; Zhu, Lei; Fong, Hao

    2007-01-01

    Uniform nylon 6 nanofibers with diameters around 200 nm were prepared by electrospinning. Polymorphic phase transitions and crystal orientation of nylon 6 in unconfined (i.e., as-electrospun) and a high T(g) (340 degrees C) polyimide confined nanofibers were studied. Similar to melt-spun nylon 6 fibers, electrospun nylon 6 nanofibers also exhibited predominant, meta-stable gamma crystalline form, and the gamma-crystal (chain) axes preferentially oriented parallel to the fiber axis. Upon annealing above 150 degrees C, gamma-form crystals gradually melted and recrystallized into the thermodynamically stable alpha-form crystals, which ultimately melted at 220 degrees C. Release of surface tension accompanied this melt-recrystallization process, as revealed by differential scanning calorimetry. For confined nanofibers, both the melt-recrystallization and surface tension release processes were substantially depressed; gamma-form crystals did not melt and recrystallize into alpha-form crystals until 210 degrees C, only 10 degrees C below the T(m) at 220 degrees C. After complete melting of nano-confined crystals at 240 degrees C and recrystallization at 100 degrees C, only alpha-form crystals oriented perpendicular to the nanofiber axis were obtained. In the polyimide-confined nanofibers, the Brill transition (from the monoclinic alpha-form to a high temperature monoclinic form) was observed at 180-190 degrees C, which was at least 20 degrees C higher than that in unconfined nylon 6 at approximately 160 degrees C. This, again, was attributed to the confinement effect. PMID:18698379

  2. Pressure-Induced Foaming of Metals

    NASA Astrophysics Data System (ADS)

    García-Moreno, Francisco; Mukherjee, Manas; Jiménez, Catalina; Banhart, John

    2015-05-01

    Pressure-induced foaming (PIF) of metals is a foaming technique in which blowing agent free compacted metal powders are foamed. The method consists of heating hot-compacted metallic precursors to above their melting temperature under gas overpressure and foaming them by pressure release. This study focuses on PIF of Al99.7 and AlSi7 alloys under both air or Ar and overpressures up to 9 bar. In situ x-ray radioscopy allows us to follow the foaming process and to perform quantitative analyses of expansion, foam morphology, and coalescence rate. Mass spectrometry helps to identify hydrogen as the foaming gas. Adsorbates on the former powder particles are found to be the primary gas source. Various advantages of this new method are identified and discussed.

  3. Elasticity of Hydrous Olivine Polymorphs: Implications for Seismic Structure of the Transition Zone

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.; Mao, Z.; Jacobsen, S. D.; Jiang, F.; Smyth, J. R.; Holl, C. M.; Frost, D. J.

    2007-12-01

    The presence of water in the upper mantle and transition zone has the potential to explain various phenomena such as shear velocity anomalies or uplift and broadening of the 410-km discontinuity. The presence of H2O in the transition zone has also been frequently invoked to reconcile laboratory elasticity data on olivine polymorphs with seismic data for the amplitude of the 410-km discontinuity (Li et al., 2001; Chambers et al., 2005). Recently, we have measured the single-crystal elastic properties of hydrous olivine (Jacobsen et al., 2006) and a suite of hydrous wadsleyites (Mao et al., 2007a) at ambient conditions and one hydrous wadsleyite composition (0.84 wt% H2O) up to 12 GPa (Mao et al., 2007b). These data provide new constraints on elastic moduli and their pressure derivatives for hydrous olivine and wadsleyite. Using this data, we first examine the effect of H2O on bulk sound velocities under transition zone conditions because anelastic effects can be neglected in this case. At 410 km depth (~13.8 GPa, along a 1400°C adiabat), the bulk sound velocity of wadsleyite with 1 wt% H2O is 3.1% lower than for dry wadsleyite. Comparison of the seismic velocity jump across the 410-km discontinuity with the measured velocity contrast between wadsleyite and olivine provides a means to estimate the olivine abundance at 410-km depth. For mantle wadsleyite with 0.1-0.2 wt% H2O (Huang et al., 2005) and using experimentally determined olivine- wadsleyite H2O partition coefficients, the olivine abundance is found to be 40%, much lower than a pyrolite model. In order for a pyrolite composition to satisfy the seismic data, 1.2 wt. % H2O is needed in wadsleyite- a value greater than its maximum solubility under these conditions. The anomalously steep seismic gradient in the transition zone has been another feature of the region that has long defied explanation. We show that the seismic gradient can be matched if there is a gradient in H2O concentration across the transition

  4. Pressure-induced non-superconducting phase of β-Na0.33V2O5 and the mechanism of high-pressure phase transitions in β-Na0.33V2O5 and β-Li0.33V2O5 at room temperature

    NASA Astrophysics Data System (ADS)

    Grzechnik, A.; Ueda, Y.; Yamauchi, T.; Hanfland, M.; Hering, P.; Potapkin, V.; Friese, K.

    2016-01-01

    The crystal structure of β-Na0.33V2O5 (C2/m, Z  =  6) has been studied on compression to 19 GPa at room temperature using synchrotron single-crystal diffraction in a diamond anvil cell. The vanadate bronze undergoes a phase transition to a non-superconducting phase at about 12 GPa due to changes of polyhedral connectivities in the vanadate framework and due to ordering of the Na+ cations. This novel structure (Cm, Z  =  6) is interpreted as an intermediate stage in the sequence of pressure-induced transformations in the β-A 0.33V2O5 bronzes (A: Li, Na) at room temperature. This study reveals the close relation between the loss of the two-leg ladder V-V system and non-superconducting state of the β-A 0.33V2O5 materials.

  5. Pressure-induced non-superconducting phase of β-Na0.33V2O5 and the mechanism of high-pressure phase transitions in β-Na0.33V2O5 and β-Li0.33V2O5 at room temperature.

    PubMed

    Grzechnik, A; Ueda, Y; Yamauchi, T; Hanfland, M; Hering, P; Potapkin, V; Friese, K

    2016-01-27

    The crystal structure of β-Na0.33V2O5 (C2/m, Z  =  6) has been studied on compression to 19 GPa at room temperature using synchrotron single-crystal diffraction in a diamond anvil cell. The vanadate bronze undergoes a phase transition to a non-superconducting phase at about 12 GPa due to changes of polyhedral connectivities in the vanadate framework and due to ordering of the Na(+) cations. This novel structure (Cm, Z  =  6) is interpreted as an intermediate stage in the sequence of pressure-induced transformations in the β-A0.33V2O5 bronzes (A: Li, Na) at room temperature. This study reveals the close relation between the loss of the two-leg ladder V-V system and non-superconducting state of the β-A0.33V2O5 materials. PMID:26702603

  6. The impact of room temperature polymorphism in K doped NaTaO3 on structural phase transition behaviour

    NASA Astrophysics Data System (ADS)

    Arulnesan, Shamanthini William; Kayser, Paula; Kennedy, Brendan J.; Knight, Kevin S.

    2016-06-01

    Temperature dependent high resolution neutron diffraction studies demonstrate that the sequence and temperatures of the crystallographic phase transitions in NaTaO3 are not impacted by doping with 1% K to form Na0.99K0.01TaO3. Rietveld analysis of the neutron diffraction data shows the structural transitions to be: Pbnm ↔ 723       K Cmcm ↔ 803   K P 4 / nbm ↔ 893   K Pm 3 bar m . The two orthorhombic polymorphs, Pbnm and Cmcm, differ fundamentally in the distortion and tilting of the octahedra, such that they cannot be obtained from each other via a continuous phase transition resulting in their co-existence between RT and 723 K. Chemical doping, does however, dramatically impact on the amount of the metastable Cmcm phase observed at room temperature.

  7. Trichoscopy of Noncicatricial Pressure-induced Alopecia Resembling Alopecia Areata

    PubMed Central

    Papaiordanou, Francine; da Silveira, Bruno Rebelo Lages; Piñeiro-Maceira, Juan; Pirmez, Rodrigo

    2016-01-01

    Pressure-induced alopecia is an unusual cause of hair loss, and reports of its trichoscopic features are scarce. In this paper, we describe a case of pressure-induced alopecia in which trichoscopic and histopathological findings overlap with those described for alopecia areata. PMID:27601865

  8. Trichoscopy of Noncicatricial Pressure-induced Alopecia Resembling Alopecia Areata.

    PubMed

    Papaiordanou, Francine; da Silveira, Bruno Rebelo Lages; Piñeiro-Maceira, Juan; Pirmez, Rodrigo

    2016-01-01

    Pressure-induced alopecia is an unusual cause of hair loss, and reports of its trichoscopic features are scarce. In this paper, we describe a case of pressure-induced alopecia in which trichoscopic and histopathological findings overlap with those described for alopecia areata. PMID:27601865

  9. Pressure-induced recovery of Fourier's law in one-dimensional momentum-conserving systems

    NASA Astrophysics Data System (ADS)

    Sato, Dye SK

    2016-07-01

    We report the two typical models of normal heat conduction in one-dimensional momentum-conserving systems. They show the Arrhenius and the non-Arrhenius temperature dependence. We construct the two corresponding phenomenologies, transition-state theory of thermally activated dissociation and the pressure-induced crossover between two fixed points in fluctuating hydrodynamics. Compressibility yields the ballistic fixed point, whose scaling is observed in Fermi-Pasta-Ulam (FPU) β lattices.

  10. Pressure-induced recovery of Fourier's law in one-dimensional momentum-conserving systems.

    PubMed

    Sato, Dye Sk

    2016-07-01

    We report the two typical models of normal heat conduction in one-dimensional momentum-conserving systems. They show the Arrhenius and the non-Arrhenius temperature dependence. We construct the two corresponding phenomenologies, transition-state theory of thermally activated dissociation and the pressure-induced crossover between two fixed points in fluctuating hydrodynamics. Compressibility yields the ballistic fixed point, whose scaling is observed in Fermi-Pasta-Ulam (FPU) β lattices. PMID:27575085

  11. Pressure-induced metallization of molybdenum disulfide.

    PubMed

    Chi, Zhen-Hua; Zhao, Xiao-Miao; Zhang, Haidong; Goncharov, Alexander F; Lobanov, Sergey S; Kagayama, Tomoko; Sakata, Masafumi; Chen, Xiao-Jia

    2014-07-18

    X-ray diffraction, Raman spectroscopy, and electrical conductivity measurements of molybdenum disulfide MoS(2) are performed at pressures up to 81 GPa in diamond anvil cells. Above 20 GPa, we find discontinuous changes in Raman spectra and x-ray diffraction patterns which provide evidence for isostructural phase transition from 2H(c) to 2H(a) modification through layer sliding previously predicted theoretically. This first-order transition, which is completed around 40 GPa, is characterized by a collapse in the c-lattice parameter and volume and also by changes in interlayer bonding. After the phase transition completion, MoS(2) becomes metallic. The reversibility of the phase transition is identified from all these techniques. PMID:25083660

  12. High-Pressure Induced New Phases and Properties in Typical Molecular Systems

    NASA Astrophysics Data System (ADS)

    Cui, Tian

    2013-06-01

    High pressure introduces new phases by the rearrangement of atoms and reconfigurations of electronic states in materials, often with new physical and chemical phenomena. Study of the new phases in typical molecular systems under high pressure is an interesting subject, such as energy storage materials of solid hydrogen and polymeric nitrogen, hydrogen-rich compound with high-Tc superconductivity under high pressure, high pressure induced metallization of hydrogen, etc. High-pressure structures and pressure-induced phase transitions in the typical molecular solids, such as solid iodine, CHBr3, N2/CN, HBr/HCl, hydrogen-rich compounds (H2S, ZrH2, AsH3, BaReH9, etc.), and group IVA hydrides (Si2H6, Ge2H6, Sn2H6, etc.) are investigated extensively by means of first-principles density functional theory and extensive prediction strategies (molecular dynamics simulation, simulated annealing, soft mode phase transition, random structure-searching method and evolutionary methodology etc.). The new structures and new properties derived from pressure-induced phase transitions in these typical molecular systems have been observed. It is showed that high pressure provides a path for producing new materials with new properties.

  13. Pressure-induced amorphization of La{sub 1/3}TaO{sub 3}

    SciTech Connect

    Noked, O.; Melchior, A.; Shuker, R.; Livneh, T.; Steininger, R.; Kennedy, B.J.; Sterer, E.

    2013-06-15

    La{sub 1/3}TaO{sub 3}, an A-site cation deficient perovskite, has been studied under pressure by synchrotron X-ray powder diffraction and Raman spectroscopy. It undergoes irreversible pressure induced amorphization at P=18.5 GPa. An almost linear unit cell volume decrease vs. pressure is observed from ambient pressure up to the phase transition. The Raman spectroscopy also shows amorphization at the same pressure, with positive shifts of all modes as a function of pressure. The pressure dependence of the E{sub g} and A{sub 1g} Raman modes arising from the octahedral oxygen network is discussed. - Graphical abstract: La{sub 1/3}Tao{sub 3} exhibits linear pressure–volume relation until irreversible pressure induced amorphization at 18.5 Gpa. - Highlights: • La{sub 1/3}TaO{sub 3} has been studied under pressure by synchrotron XRD and Raman spectroscopy. • La{sub 1/3}TaO{sub 3} undergoes irreversible pressure induced amorphization around 18.5 GPa. • The transition is manifested in both XRD and Raman measurements. • A linear P–V relation is observed from ambient pressure up to the phase transition.

  14. Pressure induced reactions amongst calcium aluminate hydrate phases

    SciTech Connect

    Moon, Ju-hyuk; Oh, Jae Eun; Balonis, Magdalena; Glasser, Fredrik P.; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-06-15

    The compressibilities of two AFm phases (straetlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies.

  15. Polymorphic single crystal {r_reversible} single crystal transition in K{sub 0.975}Rb{sub 0.025}NO{sub 3}

    SciTech Connect

    Asadov, Yu. G. Nasirov, E. V.

    2010-09-15

    Polymorphic transformations in K{sub 0.975}Rb{sub 0.025}NO{sub 3} single crystals have been investigated by optical microscopy and X-ray diffraction. The equilibrium temperature between modifications II and III has been determined. It is established that the crystal growth at II {r_reversible} III polymorphic transitions is accompanied by the formation and growth of daughter-modification nuclei in the matrix crystal.

  16. Pressure-induced phase transformations during femtosecond-laser doping of silicon

    NASA Astrophysics Data System (ADS)

    Smith, Matthew J.; Lin, Yu-Ting; Sher, Meng-Ju; Winkler, Mark T.; Mazur, Eric; Gradečak, Silvija

    2011-09-01

    Silicon hyperdoped with chalcogens via femtosecond-laser irradiation exhibits unique near-unity sub-bandgap absorptance extending into the infrared region. The intense light-matter interactions that occur during femtosecond-laser doping produce pressure waves sufficient to induce phase transformations in silicon, resulting in the formation of metastable polymorphic phases, but their exact formation mechanism and influence on the doping process are still unknown. We report direct observations of these phases, describe their formation and distribution, and consider their potential impact on sub-bandgap absorptance. Specifically, the transformation from diamond cubic Si-I to pressure-induced polymorphic crystal structures (amorphous Si, Si-XII, and Si-III) during femtosecond-laser irradiation was investigated using scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy. Amorphous Si, Si-XII, and Si-III were found to form in femtosecond-laser doped silicon regardless of the presence of a gaseous or thin-film dopant precursor. The rate of pressure loading and unloading induced by femtosecond-laser irradiation kinetically limits the formation of pressure-induced phases, producing regions of amorphous Si 20 to 200 nm in size and nanocrystals of Si-XII and Si-III. The surface texturing that occurs during femtosecond-laser irradiation produces inhomogeneous pressure distributions across the surface and causes delayed development of high-pressure silicon polymorphs over many laser pulses. Finally, we find that the polymorph phases disappear during annealing more rapidly than the sub-bandgap absorptance decreases, enabling us to decouple these two processes through post-treatment annealing.

  17. Evidence for charge-trapping inducing polymorphic structural-phase transition in pentacene.

    PubMed

    Ando, Masahiko; Kehoe, Tom B; Yoneya, Makoto; Ishii, Hiroyuki; Kawasaki, Masahiro; Duffy, Claudia M; Minakata, Takashi; Phillips, Richard T; Sirringhaus, Henning

    2015-01-01

    Trapped-charge-induced transformation of pentacene polymorphs is observed by using in situ Raman spectroscopy and molecular dynamics simulations reveal that the charge should be localized in pentacene molecules at the interface with static intermolecular disorder along the long axis. Quantum chemical calculations of the intermolecular transfer integrals suggest the disorder to be large enough to induce Anderson-type localization. PMID:25382806

  18. Pressure-induced polyamorphism in salty water.

    PubMed

    Bove, L E; Klotz, S; Philippe, J; Saitta, A M

    2011-03-25

    We investigated the metastable phase diagram of an ionic salt aqueous solution, LiCl:6D₂O, at high pressure and low temperature by neutron diffraction measurements and computer simulations. We show that the presence of salt triggers a stepwise transformation, under annealing at high pressure, to a new very high-density amorphous form. The transition occurs abruptly at 120 K and 2 GPa, is reversible, and is characterized by a sizeable enthalpy release. Simulations suggest that the polyamorphic transition is linked to a local structural reorganization of water molecules around the Li ions. PMID:21517327

  19. Pressure-induced exotic states in rare earth hexaborides.

    PubMed

    Sun, Liling; Wu, Qi

    2016-08-01

    Finding the exotic phenomena in strongly correlated electron systems (SCESs) and understanding the corresponding microphysics have long been the research frontiers of condensed matter physics. The remarkable examples for the intriguing phenomena discovered in past years include unconventional superconductivity, heavy Fermion behaviors, giant magneto-resistance and so on. A fascinating type of rare earth hexaboride RB6 (R  =  Sm, Yb, Eu and Ce) belongs to a strongly correlated electron system (SCES), but shows unusual ambient-pressure and high-pressure behaviors beyond the phenomena mentioned above. Particularly, the recent discovery of the coexistence of an unusual metallic surface state and an insulating bulk state in SmB6, known to be a Kondo insulator decades ago, by theoretical calculations and many experimental measurements creates new interest for the investigation of the RB6. This significant progress encourages people to revisit the RB6 with an attempt to establish a new physics that links the SCES and the unusual metallic surface state which is a common feature of a topological insulator (TI). It is well known that pressure has the capability of tuning the electronic structure and modifying the ground state of solids, or even inducing a quantum phase transition which is one of the kernel issues in studies of SCESs. In this brief review, we will describe the progress in high pressure studies on the RB6 based on our knowledge and research interests, mainly focusing on the pressure-induced phenomena in YbB6 and SmB6, especially on the quantum phase transitions and their connections with the valence state of the rare earth ions. Moreover, some related high-pressure results obtained from CeB6 and EuB6 are also included. Finally, a summary is given in the conclusions and perspectives section. PMID:27376406

  20. Pressure-induced exotic states in rare earth hexaborides

    NASA Astrophysics Data System (ADS)

    Sun, Liling; Wu, Qi

    2016-08-01

    Finding the exotic phenomena in strongly correlated electron systems (SCESs) and understanding the corresponding microphysics have long been the research frontiers of condensed matter physics. The remarkable examples for the intriguing phenomena discovered in past years include unconventional superconductivity, heavy Fermion behaviors, giant magneto-resistance and so on. A fascinating type of rare earth hexaboride RB6 (R  =  Sm, Yb, Eu and Ce) belongs to a strongly correlated electron system (SCES), but shows unusual ambient-pressure and high-pressure behaviors beyond the phenomena mentioned above. Particularly, the recent discovery of the coexistence of an unusual metallic surface state and an insulating bulk state in SmB6, known to be a Kondo insulator decades ago, by theoretical calculations and many experimental measurements creates new interest for the investigation of the RB6. This significant progress encourages people to revisit the RB6 with an attempt to establish a new physics that links the SCES and the unusual metallic surface state which is a common feature of a topological insulator (TI). It is well known that pressure has the capability of tuning the electronic structure and modifying the ground state of solids, or even inducing a quantum phase transition which is one of the kernel issues in studies of SCESs. In this brief review, we will describe the progress in high pressure studies on the RB6 based on our knowledge and research interests, mainly focusing on the pressure-induced phenomena in YbB6 and SmB6, especially on the quantum phase transitions and their connections with the valence state of the rare earth ions. Moreover, some related high-pressure results obtained from CeB6 and EuB6 are also included. Finally, a summary is given in the conclusions and perspectives section.

  1. Structure family and polymorphous phase transition in the compounds with soft sublattice: Cu2Se as an example.

    PubMed

    Qiu, Wujie; Lu, Ping; Yuan, Xun; Xu, Fangfang; Wu, Lihua; Ke, Xuezhi; Liu, Huili; Yang, Jiong; Shi, Xun; Chen, Lidong; Yang, Jihui; Zhang, Wenqing

    2016-05-21

    Quite a few interesting but controversial phenomena, such as simple chemical composition but complex structures, well-defined high-temperature cubic structure but intriguing phase transition, coexist in Cu2Se, originating from the relatively rigid Se framework and "soft" Cu sublattice. However, the electrical transport properties are almost uninfluenced by such complex substructures, which make Cu2Se a promising high-performance thermoelectric compound with extremely low thermal conductivity and good power factor. Our work reveals that the crystal structure of Cu2Se at the temperature below the phase-transition point (∼400 K) should have a group of candidate structures that all contain a Se-dominated face-centered-cubic-like layered framework but nearly random site occupancy of atoms from the "soft" Cu sublattice. The energy differences among those structures are very low, implying the coexistence of various structures and thus an intrinsic structure complexity with a Se-based framework. Detailed analyses indicate that observed structures should be a random stacking of those representative structure units. The transition energy barriers between each two of those structures are estimated to be zero, leading to a polymorphous phase transition of Cu2Se at increasing temperature. Those are all consistent with experimental observations. PMID:27208953

  2. Structure family and polymorphous phase transition in the compounds with soft sublattice: Cu2Se as an example

    NASA Astrophysics Data System (ADS)

    Qiu, Wujie; Lu, Ping; Yuan, Xun; Xu, Fangfang; Wu, Lihua; Ke, Xuezhi; Liu, Huili; Yang, Jiong; Shi, Xun; Chen, Lidong; Yang, Jihui; Zhang, Wenqing

    2016-05-01

    Quite a few interesting but controversial phenomena, such as simple chemical composition but complex structures, well-defined high-temperature cubic structure but intriguing phase transition, coexist in Cu2Se, originating from the relatively rigid Se framework and "soft" Cu sublattice. However, the electrical transport properties are almost uninfluenced by such complex substructures, which make Cu2Se a promising high-performance thermoelectric compound with extremely low thermal conductivity and good power factor. Our work reveals that the crystal structure of Cu2Se at the temperature below the phase-transition point (˜400 K) should have a group of candidate structures that all contain a Se-dominated face-centered-cubic-like layered framework but nearly random site occupancy of atoms from the "soft" Cu sublattice. The energy differences among those structures are very low, implying the coexistence of various structures and thus an intrinsic structure complexity with a Se-based framework. Detailed analyses indicate that observed structures should be a random stacking of those representative structure units. The transition energy barriers between each two of those structures are estimated to be zero, leading to a polymorphous phase transition of Cu2Se at increasing temperature. Those are all consistent with experimental observations.

  3. Pressure-induced amorphous-to-amorphous reversible transformation in Pr{sub 75}Al{sub 25}

    SciTech Connect

    Lin, C. L.; Ahmad, A. S.; Lou, H. B.; Wang, X. D.; Cao, Q. P.; Jiang, J. Z.; Li, Y. C.; Liu, J.; Hu, T. D.; Zhang, D. X.

    2013-12-07

    A pressure-induced amorphous-to-amorphous reversible transformation was revealed in Pr{sub 75}Al{sub 25} metallic glass (MG) using in situ high-pressure synchrotron x-ray diffraction technique. The transition began at about 21 GPa with a ∼ 5% volume collapse and ended at about 35 GPa. This transition is reversible with hysteresis. Based on the high-pressure behaviors of Ce-based metallic glasses and Pr metal here, we suggest that the pressure-induced polyamorphic transition in Pr{sub 75}Al{sub 25} MG stems from 4f-electron delocalization of Pr metal which leads to abrupt change in bond shortening. These results obtained here provide new insights into the underlying mechanism of the amorphous-to-amorphous phase transition in metallic glasses and will trigger more theoretical and experimental investigations for such transition.

  4. On the pressure induced phase of Na{sub 2}CsC{sub 60}

    SciTech Connect

    Morosin, B.; Schirber, J.E.; Jorgensen, J.D.; Kwei, G.H.; Yildirim, T. |; Fischer, J.E.

    1996-06-01

    Neutron powder diffraction at pressures to 6 kbar in gaseous Ne has been used to study the pressure-induced phase transition and compressibilities of Na{sub 2}CsC{sub 60}. The pressure-induced phase can be achieved by compression to about 5 kbar at room temperature. If cooled, this phase can be retained below 200 K upon release of the pressure. The structure is orthorhombic as previously reported (but may differ in its detailed crystal structure) with lattice constants near 80 K and ambient pressure of a=9.385 A, b=10.06 A, and c=14.36 A. Corresponding linear compressibilities are 0.0004, 0014, and 0.0017 kbar{sup -1}, respectively. Identical pressure temperature cycling results in a superconductor with an unexpectedly low pressure dependence for {Tc} while in this phase. Models for the superconducting behavior of this compound are discussed.

  5. Pressure-induced superconductivity in topological parent compound Bi2Te3

    SciTech Connect

    Zhang, J. L.; Zhang, S. J.; Weng, H. M.; Zhang, W.; Yang, L. X.; Liu, Q. Q.; Feng, S. M.; Wang, X. C.; Yu, R. C.; Cao, L. Z.; Wang, L.; Yang, W. G.; Liu, H. Z.; Zhao, W. Y.; Zhang, S. C.; Dai, X.; Fang, Z.; Jin, C. Q.

    2011-01-04

    We report a successful observation of pressure-induced superconductivity in a topological compound Bi₂Te₃ with Tc of ~3 K between 3 to 6 GPa. The combined high-pressure structure investigations with synchrotron radiation indicated that the superconductivity occurred at the ambient phase without crystal structure phase transition. The Hall effects measurements indicated the hole-type carrier in the pressure-induced superconducting Bi₂Te₃ single crystal. Consequently, the first-principles calculations based on the structural data obtained by the Rietveld refinement of X-ray diffraction patterns at high pressure showed that the electronic structure under pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi₂Te₃ due to the proximity effect between superconducting bulk states and Dirac-type surface states. We also discuss the possibility that the bulk state could be a topological superconductor.

  6. APOE and COMT polymorphisms are complementary biomarkers of status, stability, and transitions in normal aging and early mild cognitive impairment

    PubMed Central

    Dixon, Roger A.; DeCarlo, Correne A.; MacDonald, Stuart W. S.; Vergote, David; Jhamandas, Jack; Westaway, David

    2014-01-01

    Objective: Research has reported associations among selected genetic susceptibility biomarkers and risk of (a) normal cognitive aging decrements, (b) established mild cognitive impairment (MCI), and (c) sporadic Alzheimer's disease (AD). In focusing on the transitional normal-to-early MCI phase, we examine associations among three theoretically relevant polymorphisms (APOE [rs429358, rs7412], BDNF [rs6265], COMT [rs4680]) and both baseline cognitive status (MCI vs. normal aging) and two-wave (four-year) longitudinal stability or change profiles. The latter included three profiles: (a) stable as normal aging, (b) stable or chronic impairment (MCI-to-MCI), and (c) emergence of impairment (normal-to-MCI). Method: Genotyped older adults (n = 237 at baseline; age range = 64–91; 62% women) from the Victoria Longitudinal Study were examined for (a) independent and interactive associations of three genetic polymorphisms with (b) two objectively classified cognitive status groups (not-impaired controls (NIC) and MCI) at (c) both baseline and across a two-wave (four-year) longitudinal interval. Results: First, logistic regression revealed that the presence of at least one APOE ε4 allele (the risk factor for AD) was linked to greater baseline risk of objective MCI. Second, multinomial logistic regression revealed that (a) the presence of an APOE ε4 allele was associated with an increased risk of 4-year MCI status stability (chronicity), and (b) the COMT homozygous risk genotype (G/G or Val/Val) was associated with an increased risk of both MCI-to-MCI stability (chronicity) and emerging NIC-to-MCI conversion. Discussion: Both chronicity and emergence of objectively classified early cognitive impairment may be genetically heterogeneous phenomena, with influences from a panel of both normal cognitive aging (COMT) and AD-related (APOE) polymorphisms. PMID:25249975

  7. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    PubMed Central

    Yu, Tang-Qing; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Vanden-Eijnden, Eric; Tuckerman, Mark

    2014-01-01

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency. PMID:24907992

  8. Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions

    SciTech Connect

    Yu, Tang-Qing Vanden-Eijnden, Eric; Chen, Pei-Yang; Chen, Ming; Samanta, Amit; Tuckerman, Mark

    2014-06-07

    The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett. 107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

  9. Effect of CD44 gene polymorphisms on risk of transitional cell carcinoma of the urinary bladder in Taiwan.

    PubMed

    Weng, Wei-Chun; Huang, Yu-Hui; Yang, Shun-Fa; Wang, Shian-Shiang; Kuo, Wu-Hsien; Hsueh, Chao-Wen; Huang, Ching-Hsuan; Chou, Ying-Erh

    2016-05-01

    The carcinogenesis of transitional cell carcinoma (TCC) of the urinary bladder involves etiological factors, such as ethnicity, the environment, genetics, and diet. Cluster of differentiation (CD44), a well-known tumor marker, plays a crucial role in regulating tumor cell differentiation and metastasis. This study investigated the effect of CD44 single nucleotide polymorphisms (SNPs) on TCC risk and clinicopathological characteristics. Five SNPs of CD44 were analyzed through real-time polymerase chain reaction in 275 patients with TCC and 275 participants without cancer. In this study, we observed that CD44 rs187115 polymorphism carriers with the genotype of at least one G were associated with TCC risk. Furthermore, TCC patients who carried at least one G allele at CD44 rs187115 had a higher stage risk than did patients carrying the wild-type allele (p < 0.05). In addition, The AATAC or GACGC haplotype among the five CD44 sites was also associated with a reduced risk of TCC. In conclusion, our results suggest that CD44 SNPs influence the risk of TCC. Patients with CD44 rs187115 variant genotypes (AG + GG) exhibited a higher risk of TCC; these patients may possess chemoresistance to developing late-stage TCC compared with those with the wild-type genotype. The CD44 rs187115 SNP may predict poor prognosis in patients with TCC. PMID:26662954

  10. Polymorphic transition of solid-fats dispersed systems — its characterization by a novel method and scanning electron microscopy observation

    NASA Astrophysics Data System (ADS)

    Hirokawa, Norio; Ueda, Masahiro; Harano, Yoshio

    1994-08-01

    Solid-fats dispersed systems, such as margarine, butter and cacao-butter, were characterized by a novel method based on liquid permeation under pressure, for the simultaneous measurement of a solid-content ɛ p and an average diameter dp of solid particles (fats crystals) in them. Further, micro-structures of these systems were observed by a scanning electron microscope (SEM). As the result, it has been clarified that the spherical fats crystals of several μm in size appeared in the initial solid-fats products are agglomerates of fine particles of ca. 0.1 μm and that these fine particles are uniformly redispersed during an annealing treatment accompanying the reduction of ɛ p and dp. It is strongly suggested that this phenomenon is caused by a transition of fat crystals into a more stable polymorph.

  11. Dramatically Different Conductivity Properties of Metal-Organic Framework Polymorphs of Tl(TCNQ): An Unexpected Room-Temperature Crystal-to-Crystal Phase Transition

    SciTech Connect

    Avendano, Carolina; Zhang, Zhongyue; Ota, Akira; Zhao, Hanhua; Dunbar, Kim R

    2012-02-07

    Tl(TCNQ) polymorphs with very different charge-transport properties have been isolated, one of which undergoes a remarkable crystal-to-crystal phase transition to the second phase when exposed to ambient water vapor (see picture; TCNQ=tetracyanoquinodimethane).

  12. Pressure-induced superconductivity in europium metal

    SciTech Connect

    Debessai, M.; Matsuoka, T.; Hamlin, J.J.; Bi, W.; Meng, Y.; Shimizu, K.; Schilling, J.S.

    2010-05-24

    Of the 52 known elemental superconductors among the 92 naturally occurring elements in the periodic table, fully 22 only become superconducting under sufficiently high pressure. In the rare-earth metals, the strong local magnetic moments originating from the 4f shell suppress superconductivity. For Eu, however, Johansson and Rosengren have suggested that sufficiently high pressures should promote one of its 4f electrons into the conduction band, changing Eu from a strongly magnetic (J=7/2) 4f{sup 7}-state into a weak Van Vleck paramagnetic (J=0) 4f{sup 6}-state, thus opening the door for superconductivity, as in Am (5f{sup 6}). We report that Eu becomes superconducting above 1.8 K for pressures exceeding 80 GPa, T{sub c} increasing linearly with pressure to 142 GPa at the rate +15 mK/GPa. Eu thus becomes the 53rd elemental superconductor in the periodic table. Synchrotron x-ray diffraction studies to 92 GPa at ambient temperature reveal four structural phase transitions.

  13. Pressure-induced diffusion in natural garnets

    NASA Astrophysics Data System (ADS)

    Floess, David; Vrijmoed, Johannes; Baumgartner, Lukas; Podladchikov, Yuri

    2015-04-01

    Recent efforts in metamorphic petrology suggest that significant pressure gradients exist on the grain-scale and provide tools for its quantification [1,2]. Here we propose that pressure gradients around coesite inclusions induced diffusion of major elements within garnet crystals upon exhumation. This is based on the fact that the molar mass of garnet endmembers vary between 403 and 497 g/mol, thus up to 23 %. Whiteschists from the Dora Maira Massive in the Western Alps underwent eclogite facies metamorphism (3.3-4.3 GPa, 720-780 °C) during the Alpine event at 35 Ma [3]. Coesite included in garnet (py0.96gr0.02alm0.02) during the HP stage was partially transformed to quartz during the subsequent, rapid exhumation (from 3.5 to 1 GPa within 2 Ma [4]). Coesite is preserved by maintaining a high pressure on the inclusion wall due to the large volume change of the phase transition. The surface of the host garnet experiences a lower pressure controlled by the exhumation P-T path. This pressure difference should induce diffusion of major elements in the garnet surrounding the inclusion. Element distribution maps show well-defined Fe-rich, Ca-poor halos surrounding the coesite-inclusions. The observed diffusion profiles are in agreement with predictions, assuming a positive ΔP around the inclusions. The results are based on thermodynamic equilibrium calculations assuming heterogeneous pressure [5]. Hence, the observed profiles are interpreted as an equilibrium state reflecting the pressure (stress) distribution within the crystal and can be used as tool to constrain the exhumation path. Understanding the effect of pressure gradients on diffusion and, alternatively, the generation of pressure due to relaxation of chemical gradients by diffusion, is crucial for interpreting P-T-t paths of zoned minerals correctly. [1] Baumgartner et al. (2010), GSA meeting Denver. [2] Tajčmanová et al. (2014) CMP 32, 195-207. [3] Compagnoni & Rolfo (2003), UHP Metamorphism - EMU notes 5

  14. Single crystal X-ray diffraction study of a mixed-valence gold compound, Cs{sub 2}Au{sup I}Au{sup III}Cl{sub 6} under high pressures up to 18 GPa: Pressure-induced phase transition coupled with gold valence transition

    SciTech Connect

    Matsushita, Nobuyuki Ahsbahs, Hans; Hafner, Stefan S.; Kojima, Norimichi

    2007-04-15

    We performed the single-crystal X-ray diffraction study of a perovskite-type gold mixed-valence compound, Cs{sub 2}Au{sup I}Au{sup III}Cl{sub 6}, under high pressures up to 18 GPa by using a diamond-anvil-cell with helium gas as an ideal hydrostatic pressure-transmitting medium. The lattice parameters and the variable atomic positional parameters were obtained with reasonable accuracy at various pressures. A structural phase transition at ca. 12.5 GPa from I4/mmm to Pm3m was found. The lattice parameters a {sub 0} and c {sub 0}, denoted in the tetragonal cell setting, result in the relationship 2{sup 1/2} a {sub 0}=c {sub 0}, and the superstructure reflections h k l (l is odd), caused by the shift of the Cl ions from the midpoint of the Au ions, disappeared at pressures above the phase transition. Both elongated [Au{sup III}Cl{sub 6}] and compressed [Au{sup I}Cl{sub 6}] octahedra in the low-pressure phase smoothly approach regular octahedra with increasing pressure. Above the structural phase transition at 12.5 GPa, all the [AuCl{sub 6}] octahedra are crystallographically equivalent, which shows that the tetragonal-to-cubic phase transition accompanies the valence transition from the Au{sup I}/Au{sup III} mixed-valence state to the Au{sup II} single-valence state. - Graphical abstract: Single-crystal X-ray diffraction study under high pressures up to 18 GPa by using a diamond-anvil-cell with helium gas as an ideal hydrostatic pressure medium has revealed that a perovskite-type gold mixed-valence compound, Cs{sub 2}Au{sup I}Au{sup III}Cl{sub 6}, exhibits the structural phase transition from tetragonal to cubic at 12.5 GPa accompanying gold valence transition.

  15. Ab initio study of pressure induced structural and electronic properties in uranium monobismuthide

    NASA Astrophysics Data System (ADS)

    Pataiya, Jagdish; Aynyas, Mahendra; Makode, C.; Singh, A.; Sanyal, Sankar P.

    2014-04-01

    We have investigated the pressure induced structural and electronic properties of uranium monobismuthide. The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). We predict structural phase transition from NaCl to CsCl-type structure at a pressure of 4.6 GPa. From energy band diagram it is observed that UBi exhibits metallic behavior. The calculated equilibrium lattice parameter is in good agreement with the experimental and other theoretical work.

  16. Magnetotransport study of the pressure-induced antiferromagnetic phase in FeSe

    NASA Astrophysics Data System (ADS)

    Terashima, Taichi; Kikugawa, Naoki; Kasahara, Shigeru; Watashige, Tatsuya; Matsuda, Yuji; Shibauchi, Takasada; Uji, Shinya

    2016-05-01

    The resistivity ρ and Hall resistivity ρH are measured on FeSe at pressures up to P =28.3 kbar in magnetic fields up to B =14.5 T. The ρ (B ) and ρH(B ) curves are analyzed with multicarrier models to estimate the carrier density and mobility as a function of P and temperature (T ≤110 K). It is shown that the pressure-induced antiferromagnetic transition is accompanied by an abrupt reduction of the carrier density and scattering. This indicates that the electronic structure is reconstructed significantly by the antiferromagnetic order.

  17. On the measurement of pressure induced shift by diode lasers and harmonic detection

    NASA Astrophysics Data System (ADS)

    De Rosa, M.; Ciucci, A.; Pelliccia, D.; Gabbanini, C.; Gozzini, S.; Lucchesini, A.

    1998-02-01

    We present an analysis of the line shape of ro-vibrational molecular absorptions, in case of frequency modulation spectroscopy with diode lasers, and in the presence of a residual amplitude modulation. Subtle effects, such as pressure induced shift, can be measured with sufficient accuracy also for the weak transition lines of the overtone and the combination bands of the molecules, under the proviso of considering the correct fit function in order to avoid possible systematic errors. Some results are given for acetylene overtone absorptions in the derivative spectroscopy limit (small amplitude of modulation) and in the case of large amplitude of modulation.

  18. Pressure-Induced Metallization of the Mott Insulator MnO

    SciTech Connect

    Patterson, J R; Aracne, C M; Jackson, D D; Weir, S T; Malba, V; Baker, P A; Vohra, Y K

    2004-01-12

    High-pressure electrical conductivity experiments have been performed on the Mott insulator MnO to a maximum pressure of 106 GPa. We observe a steady decrease in resistivity to 90 GPa, followed by a large, rapid decrease by a factor of 10{sup 5} between 90 and 106 GPa. Temperature cycling the sample at 87 and 106 GPa shows insulating and metallic behavior at these pressures, respectively. Our observations provide strong evidence for a pressure-induced Mott insulator-to-metal transition with an accompanying magnetic collapse beginning at 90 GPa.

  19. Ab initio study of pressure induced structural and electronic properties in uranium monobismuthide

    SciTech Connect

    Pataiya, Jagdish Makode, C.; Aynyas, Mahendra; Singh, A.; Sanyal, Sankar P.

    2014-04-24

    We have investigated the pressure induced structural and electronic properties of uranium monobismuthide. The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). We predict structural phase transition from NaCl to CsCl-type structure at a pressure of 4.6 GPa. From energy band diagram it is observed that UBi exhibits metallic behavior. The calculated equilibrium lattice parameter is in good agreement with the experimental and other theoretical work.

  20. Pressure-induced disproportionation in CuBr

    NASA Astrophysics Data System (ADS)

    Skelton, E. F.; Webb, A. W.; Qadri, S. B.; Ingalls, R. G.; Traquada, J. M.

    1983-04-01

    CuBr has been pressurized to 8.3 GPa in four separate runs. Prima facie evidence of pressure-induced disproportionation of cuprous bromide into cupric bromide has been observed on release of pressure from 7 GPa. Evidence is also seen of a phase change in CuBr2 above 5.5 GPa.

  1. Polymorphism, phase transitions, and thermal expansion of K3Lu(PO4)2

    SciTech Connect

    Farmer, James Matthew; Boatner, Lynn A; Chakoumakos, Bryan C; Rawn, Claudia J.; Mandrus, D.; Bryan, Jeff C.

    2014-01-01

    Alkali rare-earth double phosphates have been studied for use as long-wavelength scintillators for -ray detection using Si photodiodes. Single-crystal and powder x-ray diffraction (XRD) and powder neutron diffraction have been used to study the structure as a function of temperature. K3Lu(PO4)2 crystallizes with a hexagonal unit cell at room temperature, space group P 3. The Lu ion is six-coordinated to the oxygen atoms of the phosphate groups. Two lower-temperature phases were characterized using single-crystal XRD and powder neutron diffraction. The first transition occurs at 230 K with a transformation to a monoclinic P21/m space group symmetry, and the Lu retains six coordination. The second phase transition occurs at 130 K, with a large change in the cell volume, keeping the same P21/m space group symmetry; however, one of the phosphate groups rotates to increase the coordination of the Lu ion to seven. This is an unusual example of an isosymmetric phase transition with a coordination change, driven by temperature. High-temperature powder neutron diffraction and high-temperature powder XRD have been used to study the thermal expansion of K3Lu(PO4)2 and indicate a large thermal expansion anisotropy. The crystallographic axes with largest changes account for the structural collapse, which rotates the phosphate group to increase the Lu coordination. The lowest temperature form of K3Lu(PO4)2 is the same as the room temperature form for all the lighter RE compounds of the same type, which is not surprising, given the lighter (larger) RE ions would prefer a higher coordination number.

  2. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-02-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL).

  3. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    PubMed Central

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-01-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL). PMID:25716054

  4. Polymorphism and phase transitions of K_3Lu(PO_4)_2

    NASA Astrophysics Data System (ADS)

    Farmer, J. Matt; Boatner, Lynn A.; Chakoumakos, Bryan C.; Mandrus, David; Jin, Rongying

    2001-03-01

    Alkali lanthanide double phosphates have been studied for uses as long-wavelength scintillators for γ-ray detection using Si photodiodes. This family of compounds exhibits layered crystal structures, in the sequence lanthanide, phosphate alkali, alkali, alkali - phosphate. Current research has focused on K_3Lu(PO_4)_2. At room temperature, this compound is hexagonal, P 3 space group symmetry. The Lu ion is six-coordinated to the oxygen atoms of the phosphate groups. Our group has recently characterized two lower-temperature phases of K_3Lu(PO_4)2 using single-crystal XRD and powder neutron diffraction. The first transition occurs at 230 K, with a transformation to monoclinic P 2_1/m space group symmetry, and the Lu still retains six coordination. Another transition occurs at 130 K, with a small change in the cell volume, keeping the same P 2_1/m space group symmetry; however, one of the phosphate groups rotates to increase the coordination of the Lu ion to seven. This new structure is isostructural with the room-temperature form of K_3Yb(PO_4)_2. A heat capacity versus temperature study of K_3Lu(PO_4)2 confirms the transformations and indicates a large thermal hysteresis as the crystals are thermally cycled between 15 and 295 K. Research sponsored by the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC.

  5. Mechanism of pressure-induced gelation of milk.

    PubMed

    Keenan, R D; Young, D J; Tier, C M; Jones, A D; Underdown, J

    2001-07-01

    The pressure-induced gelation of concentrated skimmed milk and milk-sugar mixtures was studied to discover the main components responsible for gelation. The major protein component responsible for gelation is micellar casein. Gelation occurs at similar pressures to casein micelle disintegration in dilute milk, and both can be prevented by inclusion of excess calcium chloride. Transmission electron micrographs show that the protein network is formed from particles with diameters approximately an order of magnitude smaller than those of intact casein micelles. Gelation occurs on decompression and is found to be baroreversible. Concentrations of sugar up to 30% reduce the critical concentration of casein required for gelation, but higher sugar concentrations inhibit gelation. A mechanism of gelation based on the aggregation of casein submicelles formed by pressure-induced disintegration of casein micelles is proposed. Observations on the effect of sucrose on gelation are discussed in terms of the influence of sugars on the solvent quality in aqueous casein systems. PMID:11453781

  6. Pressure-induced depolarization and resonance in Raman scattering of single-crystalline boron carbide

    SciTech Connect

    Guo Junjie; Zhang Ling; Fujita, Takeshi; Chen Mingwei; Goto, Takashi

    2010-02-01

    We report polarized and resonant Raman scattering of single-crystal boron carbide (B{sub 4}C) at high pressures. Significant intensity enhancements of 270 and 1086 cm{sup -1} Raman bands of B{sub 4}C have been observed at quasihydrostatic pressures higher than approx20 GPa. The pressure-induced intensity change of the 1086 cm{sup -1} band is mainly due to the resonance between excitation energy and electronic transition, whereas the intensity change of 270 cm{sup -1} band is caused by the depolarization effect. Importantly, the first-order phase transition has not been found at high quasihydrostatic pressures and all the Raman intensity changes along with the corresponding high-pressure lattice distortion can be recovered during unloading.

  7. Pressure-induced phase transition in La1xSmxO0.5F0.5BiS2

    SciTech Connect

    Fang, Y.; Yazici, D.; White, B. D.; Maple, M. B.

    2015-09-15

    Electrical resistivity measurements on La1–xSmxO0.5F0.5BiS2 (x = 0.1, 0.3, 0.6, 0.8) have been performed under applied pressures up to 2.6 GPa from 2 K to room temperature. The superconducting transition temperature Tc of each sample significantly increases at a Sm-concentration dependent pressure Pt, indicating a pressure-induced phase transition from a low-Tc to a high-Tc phase. At ambient pressure, Tc increases dramatically from 2.8 K at x = 0.1 to 5.4 K at x = 0.8; however, the Tc values at P > Pt decrease slightly with x and Pt shifts to higher pressures with Sm substitution. In the normal state, semiconducting-like behavior is suppressed and metallic conduction is induced with increasing pressure in all of the samples. Furthermore, these results suggest that the pressure dependence of Tc for the BiS2-based superconductors is related to the lattice parameters at ambient pressure and enable us to estimate the evolution of Tc for SmO0.5F0.5BiS2 under pressure.

  8. The origins of pressure-induced phase transformations during the surface texturing of silicon using femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Smith, Matthew J.; Sher, Meng-Ju; Franta, Benjamin; Lin, Yu-Ting; Mazur, Eric; Gradečak, Silvija

    2012-10-01

    Surface texturing of silicon using femtosecond (fs) laser irradiation is an attractive method for enhancing light trapping, but the laser-induced damage that occurs in parallel with surface texturing can inhibit device performance. In this work, we investigate the light-material interaction during the texturing of silicon by directly correlating the formation of pressure-induced silicon polymorphs, fs-laser irradiation conditions, and the resulting morphology and microstructure using scanning electron microscopy, micro-Raman spectroscopy, and transmission electron microscopy. We show that raster scanning a pulsed laser beam with a Gaussian profile enhances the formation of crystalline pressure-induced silicon polymorphs by an order of magnitude compared with stationary pulsed fs-laser irradiation. Based on these observations, we identify resolidification-induced stresses as the mechanism responsible for driving sub-surface phase transformations during the surface texturing of silicon, the understanding of which is an important first step towards reducing laser-induced damage during the texturing of silicon with fs-laser irradiation.

  9. Pressure-induced phase and chemical transformations of lithium peroxide (Li2O2).

    PubMed

    Dunuwille, Mihindra; Kim, Minseob; Yoo, Choong-Shik

    2016-08-28

    We present the pressure-induced phase/chemical changes of lithium peroxide (Li2O2) to 63 GPa using diamond anvil cells, confocal micro-Raman spectroscopy, and synchrotron x-ray diffraction. The Raman data show the emergence of the major vibrational peaks associated with O2 above 30 GPa, indicating the subsequent pressure-induced reversible chemical decomposition (disassociation) in dense Li2O2. The x-ray diffraction data of Li2O2, on the other hand, show no dramatic structural change but remain well within a P63/mmc structure to 63 GPa. Nevertheless, the Rietveld refinement indicates a subtle change in the structural order parameter z of the oxygen position O (13, 23, z) at around 35 GPa, which can be considered as a second-order, isostructural phase transition. The nearest oxygen-oxygen distance collapses from 1.56 Å at ambient condition to 1.48 Å at 63 GPa, resulting in a more ionic character of this layered crystal lattice, 3Li(+)+(LiO2)3 (3-). This structural change in turn advocates that Li2O2 decomposes to 2Li and O2, further augmented by the densification in specific molar volumes. PMID:27586935

  10. Barocaloric effect and the pressure induced solid state refrigerator

    SciTech Connect

    Oliveira, N. A. de

    2011-03-01

    The current refrigerators are based on the heating and cooling of fluids under external pressure variation. The great inconvenience of this refrigeration technology is the damage caused to the environment by the refrigerant fluids. In this paper, we discuss the magnetic barocaloric effect, i.e., the heating or cooling of magnetic materials under pressure variation and its application in the construction of refrigerators using solid magnetic compounds as refrigerant materials and pressure as the external agent. The discussion presented in this paper points out that such a pressure induced solid state refrigerator can be very interesting because it is not harmful to the environment and can exhibit a good performance.

  11. The pressure-induced calcium deposition on crosslinked polyurethanes.

    PubMed

    Shunmugakumar, N; Jayabalan, M

    1992-06-01

    The pressure-induced calcium deposition in crosslinked polyurethane was studied. Two polyurethane systems, IPDI-PTMG/PPG-TMP and SMDI-PTMG/PPG-TMP were subjected to calcification under induced pressure. Calcium deposition in IPDI polymers was linear with the increase of soft segment (PTMG) content whereas in SMDI polymers the reverse trend was observed. Decreased phase mixing and hydrophilicity in the polymer (SMDI based) having increased soft segment content was attributed to the decreased calcification. The enhanced amount of calcium deposition under pressure indicates the possible influence of pressure on calcification. PMID:10078255

  12. Wave numbers and pressure-induced shifts of Ar I atomic lines measured by Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Veza, Damir; Sansonetti, Craig J.; Salit, Marc L.; Travis, John C.

    2012-06-01

    Wave numbers and pressure-induced shifts of 19 blue argon emission lines belonging to the 3p56p-3p54s and 3p55p-3p54s transition arrays were measured with high accuracy using a UV/visible Fourier transform spectrometer (FTS). The measurements were made using electrodeless lamps containing traces of 198Hg and argon at pressures of 33 Pa (1/4 Torr), 400 Pa (3 Torr), 933 Pa (7 Torr) and 1333 Pa (10 Torr). Calibration of the FTS wave number scale was obtained using the four most prominent lines of 198Hg as internal standards. The pressure-induced shifts of the argon emission lines are in reasonable agreement with theoretical predictions. These results are of importance for astronomers and analytical chemists who use argon lines for practical wavelength standards as well as for theoreticians calculating argon-argon interactions and potential energy curves of diatomic argon molecules.

  13. Pressure Induced Local Structure Distortions in Cu(pyz)F2(H2O)2

    SciTech Connect

    Musfeldt, J.L.; Carr, G.; Liu, Z.; Li, S.; Kang, C.L., Jena, P.; Manson, J.L.; Schlueter, J.A. Whangbo, M.H.

    2011-06-06

    We employed infrared spectroscopy along with complementary lattice dynamics and spin density calculations to investigate pressure-driven local structure distortions in the copper coordination polymer Cu(pyz)F{sub 2}(H{sub 2}O){sub 2}. Here, pyz is pyrazine. Our study reveals rich and fully reversible local lattice distortions that buckle the pyrazine ring, disrupt the bc-plane O-H {hor_ellipsis} F hydrogen-bonding network, and reinforce magnetic property switching. The resiliency of the soft organic ring is a major factor in the stability of this material. Interestingly, the collective character of the lattice vibrations masks direct information on the Cu-N and Cu-O linkages through the series of pressure-induced Jahn-Teller axis switching transitions, although Cu-F bond softening is clearly identified above 3 GPa. These findings illustrate the importance of combined bulk and local probe techniques for microscopic structure determination in complex materials.

  14. Pressure-Induced Local Structure Distortions in Cu(pyz)F(2)(H(2)O)(2)

    SciTech Connect

    J Musfeldt; Z Liu; S Li; J Kang; C Lee; P Jena; J Manson; J Schlueter; G Carr; M Whangbo

    2011-12-31

    We employed infrared spectroscopy along with complementary lattice dynamics and spin density calculations to investigate pressure-driven local structure distortions in the copper coordination polymer Cu(pyz)F{sub 2}(H{sub 2}O){sub 2}. Here, pyz is pyrazine. Our study reveals rich and fully reversible local lattice distortions that buckle the pyrazine ring, disrupt the bc-plane O-H {hor_ellipsis} F hydrogen-bonding network, and reinforce magnetic property switching. The resiliency of the soft organic ring is a major factor in the stability of this material. Interestingly, the collective character of the lattice vibrations masks direct information on the Cu-N and Cu-O linkages through the series of pressure-induced Jahn-Teller axis switching transitions, although Cu-F bond softening is clearly identified above 3 GPa. These findings illustrate the importance of combined bulk and local probe techniques for microscopic structure determination in complex materials.

  15. Ab initio study of pressure induced structural and electronic properties in TmPo

    SciTech Connect

    Makode, Chandrabhan Pataiya, Jagdish; Sanyal, Sankar P.; Panwar, Y. S.; Aynyas, Mahendra

    2015-06-24

    We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.

  16. Pressure-induced amorphizations of silica analogues: A probe of the relationship between order and disorder

    SciTech Connect

    Hammack, W.S.

    1993-02-01

    Purpose of these of high pressure investigations is to determine the relationship between order and disorder in amorphous materials using high pressure techniques were used. High pressure x-ray diffraction, electron transmission microscopy, and Raman scattering. Cornell High Energy Synchrotron Source (CHESS) at Ithaca was used to measure x-ray diffraction patterns using Energy-Dispersive X-ray Diffraction. It was shown that the structural ordering in pressure-amorphized solids can be described as defects in curved-space. High-resolution transmissions electron microscopy showed that pressure-amorphized alpha-quartz lacks periodicity at the atomic level. Study of a silicate mineral shows that pressure-induced amorphizations occur because of an impeded phase transition.

  17. Pressure-induced K-Λ crossing in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Ye, Yanxia; Dou, Xiuming; Ding, Kun; Jiang, Desheng; Yang, Fuhua; Sun, Baoquan

    2016-05-01

    The energy band structures and related room temperature exciton transitions of monolayer and bilayer tungsten diselenide (WSe2) are investigated using photoluminescence (PL) spectra under hydrostatic pressure up to 5.42 GPa. For monolayer WSe2, it is found that the conduction band Λ valley is 70 +/- 30 meV higher than the K valley at zero pressure, and the K-Λ valley crossover happens at a pressure of approximately 2.25 GPa. The PL peak of exciton related to the direct K-K interband transition in monolayer and bilayer WSe2 shows a pressure-induced blue-shift at the rates of 31.5 +/- 0.6 and 27 +/- 1 meV GPa-1, respectively. The indirect Λ-K interband transition for monolayer and bilayer WSe2 exhibits a distinctly different pressure response. The pressure coefficient is as small as -3 +/- 6 meV GPa-1 for monolayer, but a much larger value of -22 +/- 1 meV GPa-1 for bilayer WSe2, indicating that the interlayer coupling has a strong effect on the electronic states at the Λ valley.The energy band structures and related room temperature exciton transitions of monolayer and bilayer tungsten diselenide (WSe2) are investigated using photoluminescence (PL) spectra under hydrostatic pressure up to 5.42 GPa. For monolayer WSe2, it is found that the conduction band Λ valley is 70 +/- 30 meV higher than the K valley at zero pressure, and the K-Λ valley crossover happens at a pressure of approximately 2.25 GPa. The PL peak of exciton related to the direct K-K interband transition in monolayer and bilayer WSe2 shows a pressure-induced blue-shift at the rates of 31.5 +/- 0.6 and 27 +/- 1 meV GPa-1, respectively. The indirect Λ-K interband transition for monolayer and bilayer WSe2 exhibits a distinctly different pressure response. The pressure coefficient is as small as -3 +/- 6 meV GPa-1 for monolayer, but a much larger value of -22 +/- 1 meV GPa-1 for bilayer WSe2, indicating that the interlayer coupling has a strong effect on the electronic states at the Λ valley

  18. Pressure-induced crossing of the core levels in 5 d metals

    NASA Astrophysics Data System (ADS)

    Tal, Alexey A.; Katsnelson, Mikhail I.; Ekholm, Marcus; Jönsson, H. Johan M.; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Abrikosov, Igor A.

    2016-05-01

    A pressure-induced interaction between core electrons, the core-level crossing (CLC) transition, has been observed in hcp Os at P ≈400 GPa [L. Dubrovinsky et al., Nature (London) 525, 226 (2015)], 10.1038/nature14681. By carrying out a systematic theoretical study for all metals of the 5 d series (Hf, Ta, W, Re, Os, Ir, Pt, Au) we have found that the CLC transition is a general effect for this series of metals. While in Pt it occurs at ≈1500 GPa , at a pressure substantially higher than in Os, in Ir it occurs already at 80 GPa. Moreover, we predict that in Re the CLC transition may take place already at ambient pressure. We explain the effect of the CLC and analyze the shift of the transition pressure across the series within the Thomas-Fermi model. In particular, we show that the effect has many common features with the atomic collapse in rare-earth elements.

  19. Radiation pressure induced difference-sideband generation beyond linearized description

    NASA Astrophysics Data System (ADS)

    Xiong, Hao; Fan, Yu-Wan; Yang, Xiaoxue; Wu, Ying

    2016-08-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  20. Inhibition of the spontaneous polymorphic transition of pyrazinamide γ form at room temperature by co-spray drying with 1,3-dimethylurea.

    PubMed

    Baaklini, G; Dupray, V; Coquerel, G

    2015-02-01

    The present study focuses on the ability of excipients to induce the crystallization of a specific polymorphic form of pyrazinamide (PZA) and more interestingly, to block the irreversible solid-solid transition of the metastable forms of the PZA to the stable form at room temperature. We outline an experimental protocol for the production of a structurally pure γ form of PZA by means of spray drying. Without any particular treatment, phase transition to δ form was detected after 14 days of storage under ambient conditions. In order to prevent this irreversible phase transition, different excipients were co-spray dried with PZA. By co-spray drying 5% in mass of 1,3-dimethylurea (DMU) with PZA, we noticed its ability in preventing phase transitions and thus to maintain PZA under its γ form up to 12 months of storage at room temperature. Raman spectroscopy evidenced how DMU crystals surround particles of γ PZA which suggest that DMU might interact with the surface of PZA particles, thus blocking the phase transition. On the other hand, the co-spray drying of PZA with the polymerpolyvinylpyrrolidone (PVP) resulted in the crystallization of δ form of PZA. The physical mixture was intact over 12 months of storage at room temperature. PMID:25556055

  1. Pressure-induced K-Λ crossing in monolayer WSe2.

    PubMed

    Ye, Yanxia; Dou, Xiuming; Ding, Kun; Jiang, Desheng; Yang, Fuhua; Sun, Baoquan

    2016-05-19

    The energy band structures and related room temperature exciton transitions of monolayer and bilayer tungsten diselenide (WSe2) are investigated using photoluminescence (PL) spectra under hydrostatic pressure up to 5.42 GPa. For monolayer WSe2, it is found that the conduction band Λ valley is 70 ± 30 meV higher than the K valley at zero pressure, and the K-Λ valley crossover happens at a pressure of approximately 2.25 GPa. The PL peak of exciton related to the direct K-K interband transition in monolayer and bilayer WSe2 shows a pressure-induced blue-shift at the rates of 31.5 ± 0.6 and 27 ± 1 meV GPa(-1), respectively. The indirect Λ-K interband transition for monolayer and bilayer WSe2 exhibits a distinctly different pressure response. The pressure coefficient is as small as -3 ± 6 meV GPa(-1) for monolayer, but a much larger value of -22 ± 1 meV GPa(-1) for bilayer WSe2, indicating that the interlayer coupling has a strong effect on the electronic states at the Λ valley. PMID:27165632

  2. Size dependence of the pressure-induced gamma to alpha structuraltransition in iron oxide nanocrystals

    SciTech Connect

    Clark, S.M.; Prilliman, S.G.; Erdonmez, C.K.; Rockenberger, J.; Zaziski, D.J.; Kwong, J.; Alivisatos, A.P.

    2005-09-01

    The size trend for the pressure-induced gamma-Fe2O3(maghemite) to alpha-Fe2O3 (hematite) structural phase transition in nanocrystals has been observed. The transition pressure was found to increase with decreasing nanocrystal size: 7 nm nanocrystals transformed at 272GPa, 5 nm at 343GPa and 3 nm at 372GPa. Annealing of a bulk sample of gamma-Fe2O3 was found to reduce the transition pressure from 352 to242GPa. The bulk modulus was determined to be 2626GPa for 7 nm nanocrystals of gamma-Fe2O3, which is significantly higher than for the value of 1906 GPa that we measured for bulk samples. For alpha-Fe2O3, the bulk moduli for 7 nm nanocrystals (3365) and bulk (30030) were found to be almost the same within error. The bulk modulus for the gamma phase was found to decrease with decreasing particle size between 10 and 3.2 nm particle size. Values for the ambient pressure molar volume were found within 1 percent to be: 33.0 cm3/mol for bulk gamma-Fe2O3, 32.8 cm3/mol for 7 nm diameter gamma-Fe2O3 nanocrystals, 30.7 cm3/mol for bulk alpha-Fe2O3 and 30.6 cm3/mol for alpha-Fe2O3 nanocrystals.

  3. Pressure-induced transformations in LiCl-H2O at 77 K.

    PubMed

    Ruiz, G N; Bove, L E; Corti, H R; Loerting, T

    2014-09-14

    A systematic study of the properties of high-density amorphous ice (HDA) in the presence of increasing amounts of salt is missing, especially because it is challenging to avoid ice crystallization upon cooling the pressurized liquid. In order to be able to study HDA also in the presence of small amounts of salt, we have investigated the transformation behaviour of quenched aqueous LiCl solutions (mole fraction x < 0.25) upon pressurization in a piston-cylinder setup at 77 K. The sample properties were characterized by in situ dilatometry under high pressure conditions and after recovery by ex situ powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC) at ambient pressure. Two regimes can be identified, with a rather sharp switch at about x = 0.12. At x < 0.12 the samples show the phenomenology also known for pure water samples. They are composed mainly of hexagonal ice (Ih) and experience pressure-induced amorphization to HDA at P > 1 GPa. The observed densification is consistent with the idea that a freeze concentrated LiCl solution of x = 0.14 (R = 6) segregates, which transforms to the glassy state upon cooling, and that the densification is only due to the Ih → HDA transition. Also the XRD patterns and DSC scans are almost unaffected by the presence of the segregated glassy LiCl solution. Upon heating at ambient pressure HDA experiences the polyamorphic transition to low-density amorphous ice (LDA) at ∼120 K, even at x ∼ 0.10. Based on the latent heat evolved in the transition we suggest that almost all water in the sample transforms to an LDA-like state, even the water in the vicinity of the ions. The glassy LiCl solution acts as a spectator that does not shift the transformation temperature significantly and experiences a glass-to-liquid transition at ∼140 K prior to the crystallization to cubic ice. By contrast, at x > 0.12 the phenomenology completely changes and is now dominated by the salt. Hexagonal ice no longer forms upon

  4. First-principles calculations of pressure-induced phase transformation in AlN and GaN

    SciTech Connect

    Xiao, Haiyan Y.; Jiang, X. D.; Duan, G.; Gao, Fei; Zu, Xiaotao T.; Weber, William J.

    2010-06-30

    Ab initio total energy calculations have been carried out to study pressure-induced wurtzite and zinc-blende to rocksalt phase transformation in AlN and GaN. The effects of d electrons on the phase transition pressure and pressure coefficients of band gap have been studied. It is shown that the presence of Ga 3d electrons do have a certain effect on the transition pressure, while other factors such as the variation of charge distribution with pressure should also be considered to explain the higher phase transition pressure for GaN than AlN. Our calculations also show that Ga 3d electrons affect the pressure coefficients of band gap slightly.

  5. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    SciTech Connect

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-03-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

  6. Transdermal deferoxamine prevents pressure-induced diabetic ulcers

    PubMed Central

    Duscher, Dominik; Neofytou, Evgenios; Wong, Victor W.; Maan, Zeshaan N.; Rennert, Robert C.; Januszyk, Michael; Rodrigues, Melanie; Malkovskiy, Andrey V.; Whitmore, Arnetha J.; Galvez, Michael G.; Whittam, Alexander J.; Brownlee, Michael; Rajadas, Jayakumar; Gurtner, Geoffrey C.

    2015-01-01

    There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation. PMID:25535360

  7. Pressure-induced structural evolution and amorphization in Eu3Ga5O12

    NASA Astrophysics Data System (ADS)

    Lin, C. L.; Li, Y. C.; Li, X. D.; Li, R.; Lin, J. F.; Liu, J.

    2013-10-01

    Crystal structural evolution of europium gallium garnet (Eu3Ga5O12; EGG) has been investigated by a combination of synchrotron x-ray diffraction, Raman scattering, and photoluminescence spectroscopy in a high-pressure diamond anvil cell. The cubic garnet EGG mostly collapses into an amorphous state upon compression to 85 GPa at room temperature. High-pressure Raman and photoluminescence spectra indicate that the amorphization process is related to the interaction and deformation of the tetrahedra GaO4 and octahedra GaO6 under compression, leading to the increase of the asymmetry of the local oxygen environment around the Eu3+ site with increasing pressures. The amorphization of EGG is associated with the overlapping of the tetrahedra and octahedra and the increase of the average coordination numbers of the Ga3+ ions in the amorphous state. X-ray diffraction spectra of EGG taken from a laser-heated diamond anvil cell demonstrate that the pressure-induced garnet-to-amorphous transition could result from the kinetic hindrance of a crystal-to-crystal phase transition at room temperature, rather than the decomposition reported earlier.

  8. Pressure-induced structural and electronic changes in α-AlH3

    NASA Astrophysics Data System (ADS)

    Graetz, J.; Chaudhuri, S.; Lee, Y.; Vogt, T.; Muckerman, J. T.; Reilly, J. J.

    2006-12-01

    Pressure-induced structural, electronic, and thermodynamic changes in α-AlH3 were investigated using synchrotron x-ray powder diffraction and density-functional theory. No first-order structural transitions were observed up to 7GPa . However, increasing Bragg peak asymmetry with pressure suggests a possible monoclinic distortion at moderate pressures (1-7GPa) . The pressure-volume relationship was fit to the Birch-Murnaghan equation of state to give a bulk modulus of approximately 40GPa . The reduced cell volume at high pressure is accommodated by octahedral tilting and a decrease of the Al-H bond distance. Ab initio calculations of the free energy indicate that hydrogenation becomes favorable at H2 pressures above 0.7GPa at 300K . Electronic density of states calculations reveal a slight decrease in the band gap with pressure but no evidence of an insulator-to-metal transition predicted by previous high-pressure studies. Calculated Mulliken charges and bond populations suggest a mixed ionic and covalent Al-H bond at 1atm with an increase in covalent character with pressure.

  9. Electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary

    SciTech Connect

    Iamsasri, Thanakorn; Jones, Jacob L.; Tutuncu, Goknur; Uthaisar, Chunmanus; Pojprapai, Soodkhet; Wongsaenmai, Supattra

    2015-01-14

    The electric field-induced phase transitions in Li-modified Na{sub 0.5}K{sub 0.5}NbO{sub 3} at the polymorphic phase boundary (PPB) were observed using in situ X-ray diffraction. The ratio of monoclinic to tetragonal phase fraction was used as an indicator of the extent and reversibility of the phase transitions. The reversibility of the phase transition was greater in compositions further from the PPB. These results demonstrate that the field-induced phase transition is one of the origins of high piezoelectric properties in lead-free ferroelectric materials.

  10. Critical behavior of resistivity in the pressure-induced first to second order transition in Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}B{sub 0.04}O{sub 3} (B=Co and Cr) polycrystals

    SciTech Connect

    Thiyagarajan, R.; Arumugam, S.; Mahendiran, R.

    2015-06-24

    We have investigated the hydrostatic pressure (P) dependence of the resistivity on Pr{sub 0.6}Ca{sub 0.4}Mn{sub 0.96}B{sub 0.04}O{sub 3} (B = Co and Cr) polycrystals. At ambient pressure, the temperature dependence of resistivity [ρ(T)] of both the samples show a first order paramagnetic insulator-ferromagnetic metallic transition at T=T{sub IM}. The application of P on both the samples increases the T{sub IM}, reduces the resistivity, and suppresses the hysteresis width, indicating a crossover from first to second order transition. The critical pressure, where the first-second order crossover takes place, are 2.02 and 2.40 GPa for Co and Cr doped samples respectively. The critical property of both systems around second order transition is investigated using Fisher-Langer relation and Suezaki-Mori method. The estimated critical exponents are close to the three-dimensional Heisenberg model for the Co doped sample suggesting short range interaction, and the exponents for the Cr doped sample follow the mean field theory suggesting long range ferromagnetic order. Further, the application of P suppresses the high temperature resistivity by reducing high temperature polarons in the case of the Cr doped sample, but it does not happen for the Co doped sample. The application of P helps to examine the stability of polarons in the high temperature regime.

  11. Pressure-Induced Amorphisation in San Carlos Olivine: a XANES Study.

    NASA Astrophysics Data System (ADS)

    Kantor, I.; Torchio, R.

    2014-12-01

    Olivine (Mg,Fe)2SiO4 is one of the main rock-forming minerals of the Earth crust and is often used as a model compound of the whole silicate part of our planet. In equilibrium conditions in the Earth interior olivine undergoes a series of phase transitions and further breaks into ferropericlase and bridgmanite phases at about 25 GPa. All these transitions are responsible for major seismic discontinuities in the Earth. However, if olivine in compressed at temperature that is too low to overcome kinetic barrier, it preserves its original structureuntil ~35 GPa and then gradually becomes amorphous. This transformation have been observed before by mean of X-ray diffraction and Raman spectroscopy, but very little is known about the amorphisation mechanism and the local structure of (Mg,Fe)2SiO4 glass under high pressure. We performed a combined XANES and Raman spectroscopic study of a pressure-induced amorphisation is natural olivine sample (Mg0.92Fe0.08)2SiO4 from San Carlos location. Despite the fact that this natural sample has very low iron concentration and therefore absorption jump was quite small (about 0.06), a decent quality XANES spectra were recorded in transmission mode on the energy-dispercive beamline ID24 at the ESRF usind a diamond anvil cell technique. The amorphisation process can be clearly seen in Raman spectra as a significant broadening and further disappearance of the Raman peaks starting from 35-40 GPa, in perfect agreement with the previous literature data. The most interesting result is a dramatic change of the near-edge structure of X-ray absorption spectra. Since XAS is sensitive to the local structure only, one would not expect significant changes in spectra (apart for some broadening) if only long-range order in the material is lost. Our experimental results indicate that pressure-induced amorphisation in olivine is accomplished with a significant variation of the local atomic structure around Fe cation, probably forming effective

  12. Pressure-induced referred pain is expanded by persistent soreness.

    PubMed

    Doménech-García, V; Palsson, T S; Herrero, P; Graven-Nielsen, T

    2016-05-01

    Several chronic pain conditions are accompanied with enlarged referred pain areas. This study investigated a novel method for assessing referred pain. In 20 healthy subjects, pressure pain thresholds (PPTs) were recorded and pressure stimuli (120% PPT) were applied bilaterally for 5 and 60 seconds at the infraspinatus muscle to induce local and referred pain. Moreover, PPTs were measured bilaterally at the shoulder, neck, and leg before, during, and after hypertonic saline-induced referred pain in the dominant infraspinatus muscle. The pressure and saline-induced pain areas were assessed on drawings. Subsequently, delayed onset muscle soreness was induced using eccentric exercise of the dominant infraspinatus muscle. The day-1 assessments were repeated the following day (day 2). Suprathreshold pressure stimulations and saline injections into the infraspinatus muscle caused referred pain to the frontal aspect of the shoulder/arm in all subjects. The 60-second pressure stimulation caused larger referred pain areas compared with the 5-second stimulation (P < 0.01). Compared with pressure stimulation, the saline-induced referred pain area was larger (P < 0.02). After saline-induced pain, the PPTs at the infraspinatus and supraspinatus muscles were reduced (P < 0.05), and the 5-second pressure-induced referred pain area was larger than baseline. Pressure pain thresholds at the infraspinatus and supraspinatus muscles were reduced at day 2 in the delayed onset muscle soreness side (P < 0.05). Compared with day 1, larger pressure and saline-induced referred pain areas were observed on day 2 (P < 0.05). Referred pain to the shoulder/arm was consistently induced and enlarged after 1 day of muscle soreness, indicating that the referred pain area may be a sensitive biomarker for sensitization of the pain system. PMID:26808146

  13. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  14. Pressure-induced isostructural phase transition of a metal-organic framework Co2(4,4'-bpy)3(NO3)4·xH2O

    SciTech Connect

    Zhou, Mi; Wang, Kai; Men, Zhiwei; Sun, Chenglin; Li, Zhanlong; Liu, Bingbing; Zou, Guangtian; Zou, Bo

    2014-07-17

    Based on the 4,4'-bipyridine organic linker, metal–organic frameworks of Co2(4,4'-bpy)3(NO3)4·xH2O (CB-MOF) have been prepared. The pressure-dependent structure evolution of CB-MOF has been investigated up to 11 GPa. An isostructural phase transition was observed at about 6 GPa followed by negative compressibility along the b axis.

  15. Polymorphic transitions in Zn/sub 3/In/sub 2/(Ga, Al)S/sub 6/

    SciTech Connect

    Radautsan, S.I.; Tsiulyanu, I.I.; Lyalikova, R.Yu.; Moldovyan, N.A.; Zhitar', V.F.; Markus, M.M.

    1987-10-01

    To explain the features of the behavior of single crystals of the investigated semiconducting phases, prepared by the chemical-transport method, differential-thermal analysis was carried out with an MOM derivatograph while heating. A significant endothermic effect was detected in the heating curves, which corresponded to a phase transition. From the form of the peak, this transition corresponds to the order-disorder type, which was confirmed by the x-ray structural analysis.

  16. MD modeling of screw dislocation influence upon initiation and mechanism of BCC-HCP polymorphous transition in iron

    NASA Astrophysics Data System (ADS)

    Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.

    2015-09-01

    The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.

  17. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Vaitheeswaran, G.

    2014-06-01

    Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (Rbar{3}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to be the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and Rbar{3} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.

  18. Polymorphism and thermodynamic ground state of silver fulminate studied from van der Waals density functional calculations

    SciTech Connect

    Yedukondalu, N.; Vaitheeswaran, G.

    2014-06-14

    Silver fulminate (AgCNO) is a primary explosive, which exists in two polymorphic phases, namely, orthorhombic (Cmcm) and trigonal (R3{sup ¯}) forms at ambient conditions. In the present study, we have investigated the effect of pressure and temperature on relative phase stability of the polymorphs using planewave pseudopotential approaches based on Density Functional Theory (DFT). van der Waals interactions play a significant role in predicting the phase stability and they can be effectively captured by semi-empirical dispersion correction methods in contrast to standard DFT functionals. Based on our total energy calculations using DFT-D2 method, the Cmcm structure is found to be the preferred thermodynamic equilibrium phase under studied pressure and temperature range. Hitherto Cmcm and R3{sup ¯} phases denoted as α- and β-forms of AgCNO, respectively. Also a pressure induced polymorphic phase transition is seen using DFT functionals and the same was not observed with DFT-D2 method. The equation of state and compressibility of both polymorphic phases were investigated. Electronic structure and optical properties were calculated using full potential linearized augmented plane wave method within the Tran-Blaha modified Becke-Johnson potential. The calculated electronic structure shows that α, β phases are indirect bandgap insulators with a bandgap values of 3.51 and 4.43 eV, respectively. The nature of chemical bonding is analyzed through the charge density plots and partial density of states. Optical anisotropy, electric-dipole transitions, and photo sensitivity to light of the polymorphs are analyzed from the calculated optical spectra. Overall, the present study provides an early indication to experimentalists to avoid the formation of unstable β-form of AgCNO.

  19. Pressure induced metallization of the perovskite Sr{sub 3}Fe{sub 2}O{sub 7}

    SciTech Connect

    Rozenberg, G.K.; Machavariani, G.Y.; Pasternak, M.P.; Milner, A.P.; Hearne, G.R.; Taylor, R.D.; Adler, P.

    1998-12-31

    Electrical, magnetic and structural properties of the antiferromagnetic semiconductor Sr{sub 3}Fe{sub 2}O{sub 7} (Fe{sup 4+}, d{sup 4}) were probed by resistance, Moessbauer spectroscopy (MS) and X-ray diffraction (XRD) measurements to P {approximately} 40 GPa using diamond-anvil cells. A sluggish pressure-induced insulator-metal transition is observed with a clear incipient metallic state at P {ge} 20 GPa. The Fe(IV) 3d magnetic moments remain unaltered across the transition as deduced from MS, and XRD studies show no structural symmetry change to 40 GPa. The results are consistent with carrier delocalization due to p-p gap closure e.g., ligand-to-ligand charge transfer that does not involve the d-states and structural symmetry changes.

  20. Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening.

    PubMed

    Ortiz, Aurélie U; Boutin, Anne; Fuchs, Alain H; Coudert, François-Xavier

    2013-06-01

    We provide the first molecular dynamics study of the mechanical instability that is the cause of pressure-induced amorphization of zeolitic imidazolate framework ZIF-8. By measuring the elastic constants of ZIF-8 up to the amorphization pressure, we show that the crystal-to-amorphous transition is triggered by the mechanical instability of ZIF-8 under compression, due to shear mode softening of the material. No similar softening was observed under temperature increase, explaining the absence of temperature-induced amorphization in ZIF-8. We also demonstrate the large impact of the presence of adsorbate in the pores on the mechanical stability and compressibility of the framework, increasing its shear stability. This first molecular dynamics study of ZIF mechanical properties under variations of pressure, temperature, and pore filling opens the way to a more comprehensive understanding of their mechanical stability, structural transitions, and amorphization. PMID:26283122

  1. Siderite breakdown and pressure induced Fe-C redox reactions

    NASA Astrophysics Data System (ADS)

    Lavina, Barbara; Dera, Przemyslaw; Kim, Eunja; Downs, Robert T.

    2010-05-01

    Siderite, FeCO3, was investigated at high pressure (up to ~ 40 GPa) and high temperature (up to about 2400K) using a laser heated diamond anvil cell. The structure of the sample was probed with a synchrotron monochromatic beam; powder, multigrain and single crystaldiffraction techniques were used according to changing size of the crystallites in the course of the experiment. At about 35 GPa we observed the breakdown of the carbonate into h-Fe3O4 (the orthorhombic high pressure phase of Fe3O4[1]) and undetected carbon phases. We suggest the breakdown was achieved through a redox reaction where the iron formal valence is increased at the expense of the carbon reduction. This observation is in agreement with results of shock experiments on siderite [2-4] in which however the presence of hematite in the starting material prevented to discriminate among possible reactions determining the synthesis of Fe3O4. Oxygen fugacity and the crystal chemistry of deep Earth mineral assemblages exert a major control on ionic speciation, therefore experimental confirmation are necessary to determine the actual redox equilibrium between iron and carbon in the mantle. Remarkably, perovskite strongly favor the partitioning of Fe3+ [5] and so it might favor the C reduction. If the pressure effect on Fe-C redox equilibrium found in this experiment is active in the deep Earth, the speciation of carbon would be strongly affected, in particular, the stability of carbonates and CO2 might be controlled by pressure induced reductions rather than by the stability of the pure phases. Carbon reduction at pressure might account for the greater subduction of carbon with respect to hydrogen [6]. On the other hand uplifting of reduced carbon assembly might release C-O fluids through reduction of Fe3+. Our results suggest that Fe-C redox reactions might have a crucial role on the carbon speciation which has a major importance on deep Earth processes. References [1] Haavik, et al. (2000) American

  2. Pressure-induced variation of structural, elastic, vibrational, electronic, thermodynamic properties and hardness of Ruthenium Carbides

    NASA Astrophysics Data System (ADS)

    Gopalakrishna Pillai, Harikrishnan; Kulangara Madam, Ajith; Natarajan, Sathish; Chandra, Sharat; Mundachali Cheruvalath, Valsakumar

    2016-07-01

    Three of the five structures obtained from the evolutionary algorithm based structure search of Ruthenium Carbide systems in the stoichiometries RuC, Ru2C and Ru3C are relaxed at different pressures in the range 0-200 GPa and the pressure-induced variation of their structural, elastic, dynamical, electronic and thermodynamic properties as well as hardness is investigated in detail. No structural transition is present for these systems in this pressure range. RuC-Zinc blende is mechanically and dynamically unstable close to 100 GPa. RuC-Rhombohedral and Ru3C-Hexagonal retain mechanical and dynamical stability up to 200 GPa. For all three systems the electronic bands and density of states spread out with pressure and the band gap increases with pressure for the semiconducting RuC-Zinc blende. From the computed IR spectrum of RuC-Zinc blende at 50 GPa it is noted that the IR frequency increases with pressure. Using a semi-empirical model for hardness it is estimated that hardness of all three systems consistently increases with pressure. The hardness of RuC-Zinc blende increases towards the superhard regime up to the limiting pressure of its mechanical stability while that of RuC-Rhombohedral becomes 30 GPa at the pressure of 150 GPa.

  3. Pressure Induced Enhancement of Superconductivity in LaRu2P2

    PubMed Central

    Li, Baoxuan; Liu, Jianzhong; Sun, Jian; Li, Sheng; Zhu, Xiyu; Wen, Hai-Hu

    2016-01-01

    To explore new superconductors beyond the copper-based and iron-based systems is very important. The Ru element locates just below the Fe in the periodic table and behaves like the Fe in many ways. One of the common thread to induce high temperature superconductivity is to introduce moderate correlation into the system. In this paper, we report the significant enhancement of superconducting transition temperature from 3.8 K to 5.8 K by using a pressure only of 1.74 ± 0.05 GPa in LaRu2P2 which has an iso-structure of the iron-based 122 superconductors. The ab-initio calculation shows that the superconductivity in LaRu2P2 at ambient pressure can be explained by the McMillan’s theory with strong electron-phonon coupling. However, it is difficult to interpret the enhancement of Tc versus pressure within this picture. Detailed analysis of the pressure induced evolution of resistivity and upper critical field Hc2(T) reveals that the increase of Tc with pressure may be accompanied by the involvement of extra electron-boson interaction. This suggests that the Ru-based system has some commonality as the Fe-based superconductors. PMID:27086696

  4. Pressure induced stiffening, thermal softening of bulk modulus and brittle nature of mercury chalcogenides

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Shriya, Swarna; Sapkale, Raju; Varshney, Meenu; Ameri, M.

    2015-07-01

    The pressure and temperature dependent elastic properties of mercury chalcogenides (HgX; X = S, Se and Te) with pressure induced structural transition from ZnS-type (B3) to NaCl-type (B1) structure have been analyzed within the framework of a model interionic interaction potential with long-range Coulomb and charge transfer interactions, short-range overlap repulsion and van der Waals (vdW) interactions as well as zero point energy effects. Emphasis is on the evaluation of the Bulk modulus with pressure and temperature dependency to yield the Poisson's ratio ν, the Pugh ratio ϕ, anisotropy parameter, Shear and Young's modulus, Lamé's constant, Klein man parameter, elastic wave velocity and Debye temperature. The Poisson's ratio behavior infers that HgX are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations.

  5. Pressure Induced Enhancement of Superconductivity in LaRu2P2

    NASA Astrophysics Data System (ADS)

    Li, Baoxuan; Lu, Pengchao; Liu, Jianzhong; Sun, Jian; Li, Sheng; Zhu, Xiyu; Wen, Hai-Hu

    2016-04-01

    To explore new superconductors beyond the copper-based and iron-based systems is very important. The Ru element locates just below the Fe in the periodic table and behaves like the Fe in many ways. One of the common thread to induce high temperature superconductivity is to introduce moderate correlation into the system. In this paper, we report the significant enhancement of superconducting transition temperature from 3.8 K to 5.8 K by using a pressure only of 1.74 ± 0.05 GPa in LaRu2P2 which has an iso-structure of the iron-based 122 superconductors. The ab-initio calculation shows that the superconductivity in LaRu2P2 at ambient pressure can be explained by the McMillan’s theory with strong electron-phonon coupling. However, it is difficult to interpret the enhancement of Tc versus pressure within this picture. Detailed analysis of the pressure induced evolution of resistivity and upper critical field Hc2(T) reveals that the increase of Tc with pressure may be accompanied by the involvement of extra electron-boson interaction. This suggests that the Ru-based system has some commonality as the Fe-based superconductors.

  6. Pressure Induced Enhancement of Superconductivity in LaRu2P2.

    PubMed

    Li, Baoxuan; Lu, Pengchao; Liu, Jianzhong; Sun, Jian; Li, Sheng; Zhu, Xiyu; Wen, Hai-Hu

    2016-01-01

    To explore new superconductors beyond the copper-based and iron-based systems is very important. The Ru element locates just below the Fe in the periodic table and behaves like the Fe in many ways. One of the common thread to induce high temperature superconductivity is to introduce moderate correlation into the system. In this paper, we report the significant enhancement of superconducting transition temperature from 3.8 K to 5.8 K by using a pressure only of 1.74 ± 0.05 GPa in LaRu2P2 which has an iso-structure of the iron-based 122 superconductors. The ab-initio calculation shows that the superconductivity in LaRu2P2 at ambient pressure can be explained by the McMillan's theory with strong electron-phonon coupling. However, it is difficult to interpret the enhancement of Tc versus pressure within this picture. Detailed analysis of the pressure induced evolution of resistivity and upper critical field Hc2(T) reveals that the increase of Tc with pressure may be accompanied by the involvement of extra electron-boson interaction. This suggests that the Ru-based system has some commonality as the Fe-based superconductors. PMID:27086696

  7. Pressure-Induced Structural and Optical Properties of Organometal Halide Perovskite-Based Formamidinium Lead Bromide.

    PubMed

    Wang, Lingrui; Wang, Kai; Zou, Bo

    2016-07-01

    Organometal halide perovskites (OMHPs) are attracting an ever-growing scientific interest as photovoltaic materials with moderate cost and compelling properties. In this Letter, pressure-induced optical and structural changes of OMHP-based formamidinium lead bromide (FAPbBr3) were systematically investigated. We studied the pressure dependence of optical absorption and photoluminescence, both of which showed piezochromism. Synchrotron X-ray diffraction indicated that FAPbBr3 underwent two phase transitions and subsequent amorphization, leading directly to the bandgap evolution with redshift followed by blueshift during compression. Raman experiments illustrated the high pressure behavior of organic cation and the surrounding inorganic octahedra. Additionally, the effect of cation size and the different intermolecular interactions between organic cation and inorganic octahedra result in the fact that FAPbBr3 is less compressible than the reported methylammonium lead bromide (MAPbBr3). High pressure studies of the structural evolution and optical properties of OMHPs provide important clues in optimizing photovoltaic performance and help to design novel OMHPs with higher stimuli-resistant ability. PMID:27321024

  8. Low-temperature baroplastic processing of graphene-based polymer composites by pressure-induced flow

    NASA Astrophysics Data System (ADS)

    Tang, Wei; He, Cheng-en; Wang, Yuanzhen; Yang, Yingkui; Pong Tsui, Chi

    2014-08-01

    Two-stage emulsion polymerization was employed to synthesize nanoparticles consisting of a low glass transition temperature core of poly(n-butyl acrylate) (PBA) and a glassy poly(methyl methylacrylate) (PMMA) shell. Incorporation of graphene oxide (GO) into the PBA-PMMA latex produced GO/PBA-PMMA composites after demulsification and graphene/PBA-PMMA composites after chemical reduction of GO. The as-prepared powdery materials were processed into thin films by compression molding at room temperature as the result of a pressure-induced mixing mechanism of microphase-separated baroplastics. The presence of oxygen-containing groups for GO sheets contributed to better dispersion and stronger interface with the matrix, thereby showing greater reinforcement efficiency toward polymers compared to graphene sheets. In addition, both Young's modulus and yield strength for all materials increased with applied pressure and processing time due to better flowability, processability and cohesion at higher pressure and longer time. Low-temperature processing under pressure is of significance for energy conservation, recyclability and environmental protection during plastic processing.

  9. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  10. Structural Collapse of the Hydroquinone-Formic Acid Clathrate: A Pressure-Medium-Dependent Phase Transition.

    PubMed

    Eikeland, Espen; Thomsen, Maja K; Madsen, Solveig R; Overgaard, Jacob; Spackman, Mark A; Iversen, Bo B

    2016-03-14

    The energy landscape governing a new pressure-induced phase transition in the hydroquinone-formic acid clathrate is reported in which the host structure collapses, opening up the cavity channels within which the guest molecules migrate and order. The reversible isosymmetric phase transition causes significant changes in the morphology and the birefringence of the crystal. The subtle intermolecular interaction energies in the clathrate are quantified at varying pressures using novel model energies and energy frameworks. These calculations show that the high-pressure phase forms a more stable host network at the expense of less-stable host-guest interactions. The phase transition can be kinetically hindered using a nonhydrostatic pressure-transmitting medium, enabling the comparison of intermolecular energies in two polymorphic structures in the same pressure range. Overall this study illustrates a need for accurate intermolecular energies when analyzing self-assembly structures and supramolecular aggregates. PMID:26879515

  11. High-pressure-induced structural changes, amorphization and molecule penetration in MFI microporous materials: a review.

    PubMed

    Vezzalini, Giovanna; Arletti, Rossella; Quartieri, Simona

    2014-06-01

    This is a comparative study on the high-pressure behavior of microporous materials with an MFI framework type (i.e. natural mutinaite, ZSM-5 and the all-silica phase silicalite-1), based on in-situ experiments in which penetrating and non-penetrating pressure-transmitting media were used. Different pressure-induced phenomena and deformation mechanisms (e.g. pressure-induced over-hydration, pressure-induced amorphization) are discussed. The influence of framework and extra-framework composition and of the presence of silanol defects on the response to the high pressure of MFI-type zeolites is discussed. PMID:24892591

  12. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition Issues for the 1990s" (William Halloran…

  13. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization.

    PubMed

    Salim, Michael A; Willow, Soohaeng Yoo; Hirata, So

    2016-05-28

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  14. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    NASA Astrophysics Data System (ADS)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So

    2016-05-01

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  15. Pressure-induced crystallization of amorphous red phosphorus

    NASA Astrophysics Data System (ADS)

    Rissi, Erin N.; Soignard, Emmanuel; McKiernan, Keri A.; Benmore, Chris. J.; Yarger, Jeffery L.

    2012-03-01

    Structural transitions in amorphous red phosphorus were studied at ambient temperature and pressures up to 12 GPa. Amorphous (red) phosphorus was observed to transform into crystalline black phosphorus at 7.5 ± 0.5 GPa using diamond anvil cell Raman spectroscopy, x-ray diffraction and a direct equation of state (EoS) measurement. The transition was found to be irreversible and the material recovered upon pressure cycling to 10 to 12 GPa was crystalline orthorhombic black phosphorus. A third order Birch-Murnaghan EoS was fit to the data and a bulk modulus (B0) of 11.2 GPa was measured for amorphous red phosphorus.

  16. Genetic susceptibility of methylenetetrahydrofolate reductase (MTHFR) gene C677T, A1298C, and G1793A polymorphisms with risk for bladder transitional cell carcinoma in men.

    PubMed

    Safarinejad, Mohammad Reza; Shafiei, Nayyer; Safarinejad, Shiva

    2011-12-01

    We performed a case-control study of 158 bladder transitional cell carcinoma (TCC) cases and 316 controls to investigate the association between methylenetetrahydrofolate reductase (MTHFR) C677T, A1298G, and G1793A polymorphisms and bladder cancer susceptibility by polymerase chain reaction restriction fragment length polymorphism (PCR-RLFP) technique. The controls were frequency-matched to the cases by age (± 5 years), ethnicity, and smoking status. We also measured serum levels of total homocysteine (tHcy), folate, and vitamin B12. It was found that the 1298AC (odds ratio, OR = 3.74; 95% confidence interval, CI = 2.34-5.47; P = 0.001) and 1298CC (OR = 3.46, 95% CI = 2.37-5.52; P = 0.001) genotypes of MTHFR A1298C were significantly associated with increased risk of bladder TCC. The MTHFR C677T and G1793A polymorphisms were not associated with bladder TCC. After stratification for grade and stage, we observed that the 677TT (OR = 4.47, 95% CI = 2.74-6.72; P = 0.001) and MTHFR 1298CC (OR = 4.78, 95% CI = 2.82-6.89; P = 0.001) genotypes of MTHFR were associated with increased risk of muscle-invasive bladder TCC. We also found that the MTHFR 677CT+1298AA genotypes were associated with an approximately 70% reduction in risk of bladder cancer (OR = 0.31; 95% CI = 0.15-0.68) compared to the combined referent genotype. There were 8 haplotypes and 16 haplotype genotypes based on these three variants. When we used the haplotypes and assumed that the 677T, 1298C, and 1793G alleles were risk alleles, the adjusted odds ratios increased as the number of risk alleles increased: 1.00 for 0-1 variant, 1.88 (1.4-2.7) for any two risk alleles and 2.07 (1.6-2.8) for any three risk alleles. Serum tHcy levels were significantly higher in carriers of the 677T, 1298C, and 1793G alleles compared to noncarriers (all P < 0.01). There was no significant correlation between serum levels of tHcy and folate and bladder cancer risk. Further studies in larger samples size and different

  17. Stress- and pressure-induced iron spin-state crossover in lower mantle minerals

    NASA Astrophysics Data System (ADS)

    Glazyrin, K.; Miyajima, N.; Smith, J.; Lee, K. K.

    2013-12-01

    The spin-state crossover of ferric and ferrous iron is an important feature of major lower mantle minerals, namely magnesium silicate perovskite (Pv) and ferropericlase (Fp). This electronic transition observed in compressed Pv and Fp was initially discovered at ambient temperatures, however it is also expected for the extreme high pressure-high temperature (HP-HT) conditions endemic to planetary interiors, in particular to the Earth's lower mantle. The pressure-induced spin-state crossover of iron in Pv and Fp has been under focus of many studies, however, some aspects have not been explored in great detail. One of these aspects is the influence of non-hydrostatic macro and micro stresses on the spin-state transitions. Hydrostatic pressure is the important thermodynamic property and distinguishing effects of undesirable stresses is important from both a theoretical and experimental point of view. In this work we compress a two-phase polycrystalline mixture containing magnesium silicate Pv (Fe, Al bearing) and Fp. Using high-resolution synchrotron diffraction on laser-heated diamond-anvil cell samples, we explore characteristic signatures for non-hydrostatic stresses and their influence on the spin-state crossover of ferrous and ferric iron in Pv and Fp. We demonstrate how non-hydrostatic stresses affect the starting pressure and width of the ferrous iron spin-state crossover in Fp and compare available literature data with our results with powder and single crystal diffraction data. Finally, we use the dependence of high-spin to low-spin crossover on the ferrous iron concentration in Fp to support a recently predicted gradual decrease of ferrous iron partitioning coefficient value for Pv and Fp under compression. Our results suggest that this change occurs at HP-HT conditions even before the actual spin-state crossover of ferrous iron in Fp.

  18. Pressure-induced collapsed-tetragonal phase in SrCo2As2

    NASA Astrophysics Data System (ADS)

    Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Fabbris, G.; Veiga, L. S. I.; Feng, Yejun; dos Santos, A. M.; Bud'ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.

    2015-12-01

    We present high-energy x-ray diffraction data under applied pressures up to p =29 GPa , neutron diffraction measurements up to p =1.1 GPa , and electrical resistance measurements up to p =5.9 GPa , on SrCo2As2 . Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T =7 K . The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p ≤5.9 GPa and T ≥ 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p ≳5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.

  19. Pressure-induced collapsed-tetragonal phase in SrCo2As2

    DOE PAGESBeta

    Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Fabbris, G.; et al

    2015-12-08

    We present high-energy x-ray diffraction data under applied pressures up to p = 29GPa, neutron diffraction measurements up to p = 1.1GPa, and electrical resistance measurements up to p = 5.9GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for themore » T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p ≤ 5.9 GPa and T ≥ 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p ≳ 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a ca ratio of 2.54. As a result, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.« less

  20. Pressure-induced collapsed-tetragonal phase in SrCo2As2

    SciTech Connect

    Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Feng, Yejun

    2015-12-08

    We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1GPa, and electrical resistance measurements up to p = 5.9GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p 5.9 GPa and T 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.

  1. Pressure-induced change of the electronic state in the tetragonal phase of CaFe2As2

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Yui; Ikeda, Shugo; Kuse, Tetsuji; Kobayashi, Hisao

    2014-07-01

    We have investigated the electronic states of single-crystal CaFe2As2 under hydrostatic pressure using 57Fe Mössbauer spectroscopy and magnetization measurements. The center shift and the quadrupole splitting were refined from observed 57Fe Mössbauer spectra using the single-crystalline sample under pressure at room temperature. A discontinuous decrease in the pressure dependence of the refined center shift was observed at 0.33 GPa without any anomaly in the pressure dependence of the refined quadrupole splitting, indicating a purely electronic state change in CaFe2As2 with a tetragonal structure. Such a change is shown to be reflected in the peak-like anomalies observed in the pressure dependences of the magnetic susceptibility at 0.26 GPa above 150 K. Our results reveal that this pressure-induced electronic state change suppresses the tetragonal-to-orthorhombic structural phase transition accompanied by an antiferromagnetic ordering. We further observed superconductivity in CaFe2As2 below ˜8 K around 0.33 GPa although our sample was not in a single phase at this pressure. These findings suggest that the electronic state change observed in CaFe2As2 with the tetragonal structure is relevant to the appearance of the pressure-induced superconductivity in AFe2As2.

  2. First-principles calculations of the electronic structure, phase transition and properties of ZrSiO4 polymorphs

    SciTech Connect

    Du, Jincheng; Devanathan, Ramaswami; Corrales, Louis R.; Weber, William J.

    2012-05-01

    First-principles periodic density functional theory (DFT) calculations have been performed to understand the electronic structure, chemical bonding, phase transition, and physical properties of the mineral zircon (in the chemical composition of ZrSiO4) and its high pressure phase reidite. Temperature effect on phase transition and thermal–mechanical properties such as heat capacity and bulk modulus have been studied by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local density approximation (LDA) and generalized gradient approximation (GGA) DFT functionals have been systematically compared in predicting the structure and property of this material. It is found that the LDA functional provides a better description of the equilibrium structure and bulk modulus, while GGA predicts a transition pressure closer to experimental values. Both functionals correctly predict the relative stability of the two phases, with GGA giving slightly larger energy differences. The calculated band structures show that both zircon and reidite have indirect bandgaps and the reidite phase has a narrower bandgap than the zircon phase. The electronic density of states and atomic charges analyses show that bonding in the high-pressure reidite phase has a stronger covalent character.

  3. First Principle Calculations of the Electronic Structure, Phase Transition and Properties of ZrSiO4 Polymorphs

    SciTech Connect

    Du, Jincheng; Devanathan, Ram; Corrales, L Rene; Weber, William J

    2012-01-01

    First principle periodic density functional theory (DFT) calculations have been performed to understand the electronic structure, chemical bonding, phase transition, and physical properties of the zircon (in the chemical composition of ZrSiO4) and its high pressure phase reidite. Temperature effect on phase transition and thermal-mechanical properties such as heat capacity and bulk modulus have been studied by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local density approximation (LDA) and generalized gradient approximation (GGA) DFT functionals have been systematically compared in predicting the structure and property of this material. It is found that the LDA functional provides a better description of the equilibrium structure and bulk modulus, while GGA predicts a transition pressure closer to experimental values. Both functionals correctly predict the relative stability of the two phases, with GGA giving slightly larger energy differences. The calculated band structures show that both zircon and reidite have indirect bandgaps and the reidite phase has a narrower bandgap than the zircon phase. The atomic charges determined using the Bader method show that bonding in reidite has a stronger covalent character.

  4. Phase transition and vapochromism in molecular assemblies of a polymorphic zinc(II) Schiff-base complex.

    PubMed

    Oliveri, Ivan Pietro; Malandrino, Graziella; Di Bella, Santo

    2014-09-15

    This paper reports for the first time the irreversible thermally induced phase transition, accompanied by color change, and the vapochromic behavior of an amphiphilic, Lewis acidic Zn(II) Schiff-base complex, through detailed X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and optical absorption studies. The unprecedented irreversible phase transition for such kind of complexes is associated with a thermal, lamellar-to-hexagonal columnar structural transition, which involves a different arrangement of each molecular unit within the assembled structure, H- and J-type aggregates, respectively, responsible for the thermochromic behavior. The vapochromism, investigated either in powder samples or in thermally annealed cast films, is related to the formation of 1:1 adducts upon exposure to vapors of strong Lewis bases and implies dramatic optical absorption variations and naked-eye observation of the change in color from red-brown to red. The chemisorption process is fast, completely reversible, reproducible, and selective for amines. The reversible switching of the chemisorption-desorption process in cast films is demonstrated by successive cycles, amine exposure and subsequent heating, by monitoring the substantial optical absorption changes in the visible region. Vapochromism of this material can potentially be used to detect vapors of volatile amines. PMID:25148651

  5. Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process

    NASA Astrophysics Data System (ADS)

    Kumar, S. Girish; Rao, K. S. R. Koteswara

    2014-09-01

    Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The non-aqueous route and ball milling-induced titania transformation is briefly

  6. Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process.

    PubMed

    Kumar, S Girish; Rao, K S R Koteswara

    2014-10-21

    Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The non-aqueous route and ball milling-induced titania transformation is briefly

  7. Pressure-induced structural transformation of CaC2.

    PubMed

    Wang, Lu; Huang, Xiaoli; Li, Da; Huang, Yanping; Bao, Kuo; Li, Fangfei; Wu, Gang; Liu, Bingbing; Cui, Tian

    2016-05-21

    The high pressure structural changes of calcium carbide CaC2 have been investigated with Raman spectroscopy and synchrotron X-ray diffraction (XRD) techniques in a diamond anvil cell at room temperature. At ambient conditions, two forms of CaC2 co-exist. Above 4.9 GPa, monoclinic CaC2-ii diminished indicating the structural phase transition from CaC2-ii to CaC2-i. At about 7.0 GPa, both XRD patterns and Raman spectra confirmed that CaC2-i transforms into a metallic Cmcm structure which contains polymeric carbon chains. Along with the phase transition, the isolated C2 dumbbells are polymerized into zigzag chains resulting in a large volume collapse with 22.4%. Above 30.0 GPa, the XRD patterns of CaC2 become featureless and remain featureless upon decompression, suggesting an irreversible amorphization of CaC2. PMID:27208957

  8. Pressure-induced structural transformation of CaC2

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Huang, Xiaoli; Li, Da; Huang, Yanping; Bao, Kuo; Li, Fangfei; Wu, Gang; Liu, Bingbing; Cui, Tian

    2016-05-01

    The high pressure structural changes of calcium carbide CaC2 have been investigated with Raman spectroscopy and synchrotron X-ray diffraction (XRD) techniques in a diamond anvil cell at room temperature. At ambient conditions, two forms of CaC2 co-exist. Above 4.9 GPa, monoclinic CaC2-ii diminished indicating the structural phase transition from CaC2-ii to CaC2-i. At about 7.0 GPa, both XRD patterns and Raman spectra confirmed that CaC2-i transforms into a metallic Cmcm structure which contains polymeric carbon chains. Along with the phase transition, the isolated C2 dumbbells are polymerized into zigzag chains resulting in a large volume collapse with 22.4%. Above 30.0 GPa, the XRD patterns of CaC2 become featureless and remain featureless upon decompression, suggesting an irreversible amorphization of CaC2.

  9. Pressure-induced metathesis reaction to sequester Cs.

    PubMed

    Im, Junhyuck; Seoung, Donghoon; Lee, Seung Yeop; Blom, Douglas A; Vogt, Thomas; Kao, Chi-Chang; Lee, Yongjae

    2015-01-01

    We report here a pressure-driven metathesis reaction where Ag-exchanged natrolite (Ag16Al16Si24O80·16H2O, Ag-NAT) is pressurized in an aqueous CsI solution, resulting in the exchange of Ag(+) by Cs(+) in the natrolite framework forming Cs16Al16Si24O80·16H2O (Cs-NAT-I) and, above 0.5 GPa, its high-pressure polymorph (Cs-NAT-II). During the initial cation exchange, the precipitation of AgI occurs. Additional pressure and heat at 2 GPa and 160 °C transforms Cs-NAT-II to a pollucite-related, highly dense, and water-free triclinic phase with nominal composition CsAlSi2O6. At ambient temperature after pressure release, the Cs remains sequestered in a now monoclinic pollucite phase at close to 40 wt % and a favorably low Cs leaching rate under back-exchange conditions. This process thus efficiently combines the pressure-driven separation of Cs and I at ambient temperature with the subsequent sequestration of Cs under moderate pressures and temperatures in its preferred waste form suitable for long-term storage at ambient conditions. The zeolite pollucite CsAlSi2O6·H2O has been identified as a potential host material for nuclear waste remediation of anthropogenic (137)Cs due to its chemical and thermal stability, low leaching rate, and the large amount of Cs it can contain. The new water-free pollucite phase we characterize during our process will not display radiolysis of water during longterm storage while maintaining the Cs content and low leaching rate. PMID:25515673

  10. Kinetic control in the synthesis of metastable polymorphs: Bixbyite-to-Rh2O3(II)-to-corundum transition in In2O3

    NASA Astrophysics Data System (ADS)

    Bekheet, Maged F.; Schwarz, Marcus R.; Kroll, Peter; Gurlo, Aleksander

    2015-09-01

    An example for kinetic control of a solid-state phase transformation, in which the system evolves via the path with the lowest activation barrier rather than ending in the thermodynamically most favorable state, has been demonstrated. As a case study, the phase transitions of indium sesquioxide (In2O3) have been guided by theoretical calculations and followed in situ under high-pressure high-temperature conditions in multi-anvil assemblies. The corundum-type rh-In2O3 has been synthesized from stable bixbyite-type c-In2O3 in two steps: first generating orthorhombic Rh2O3-II-type o‧-In2O3 which is thermodynamically stable at 8.5 GPa/850 °C and, thereafter, exploiting the preferred kinetics in the subsequent transformation to the rh-In2O3 during decompression. This synthesis strategy of rh-In2O3 was confirmed ex situ in a toroid-type high-pressure apparatus at 8 GPa and 1100 °C. The pressure-temperature phase diagrams have been constructed and the stability fields of In2O3 polymorphs and the crystallographic relationship between them have been discussed.

  11. Crystal structure of larnite {beta}-Ca{sub 2}SiO{sub 4} and specific features of polymorphic transitions in dicalcium orthosilicate

    SciTech Connect

    Yamnova, N. A. Zubkova, N. V.; Eremin, N. N.; Zadov, A. E.; Gazeev, V. M.

    2011-03-15

    The crystal structure of larnite, a natural analog of synthetic {beta}-Ca{sub 2}SiO{sub 4}, has been determined: a = 5.5051(3) Angstrom-Sign , b = 6.7551(3) Angstrom-Sign , c = 9.3108(5) Angstrom-Sign , {beta} = 94.513(4){sup o}, sp. gr. P2{sub 1}/n, Z = 4, and R{sub 1} = 0.0532 for 1071 reflections with I > 2{sigma} (I). Larnite was found in skarn xenoliths (Lakargi, Kabardino-Balkaria, Russia). The mineral structure is based on a heteropolyhedral glaserite-like framework of interconnected Ca polyhedra and isolated [SiO{sub 4}] tetrahedra. Based on an analysis of the layer-by-layer packing of atoms in the structures of larnite and other Ca{sub 2}SiO{sub 4} polymorphs, the structural features and mechanisms of transitions from high-temperature ({alpha}, {alpha} Prime {sub L}, and {alpha} Prime {sub H}) to low-temperature ({beta} and {gamma}) Ca{sub 2}SiO{sub 4} modifications, as well as their relationship with natural glaserite-like orthosilicates (merwinite Ca{sub 3}Mg[SiO{sub 4}]{sub 2} and bredigite Ca{sub 7}Mg[SiO{sub 4}]{sub 4}), have been considered. The most likely atomic arrangement in hypothetical Ca{sub 2}SiO{sub 4} models has been calculated by the method of atomistic potentials.

  12. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    PubMed Central

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-01-01

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure–structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219

  13. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets.

    PubMed

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-01-01

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials. PMID:27426219

  14. Effect of disorder on the pressure-induced superconducting state of CeAu 2Si 2

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Giriat, G.; Scheerer, G. W.; Lapertot, G.; Jaccard, D.

    2015-03-01

    CeAu2Si2 is a newly discovered pressure-induced heavy fermion superconductor, which shows very unusual interplay between superconductivity and magnetism under pressure. Here we compare the results of high-pressure measurements on single-crystalline CeAu2Si2 samples with different levels of disorder. It is found that while the magnetic properties are essentially sample independent, superconductivity is rapidly suppressed when the residual resistivity of the sample increases. We show that the depression of bulk Tc can be well understood in terms of pair breaking by nonmagnetic disorder, which strongly suggests an unconventional pairing state in pressurized CeAu2Si2 . Furthermore, increasing the level of disorder leads to the emergence of another phase transition at T* within the magnetic phase, which might be in competition with superconductivity.

  15. Reversible switching between pressure-induced amorphization and thermal-driven recrystallization in VO2(B) nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Zhu, Jinlong; Yang, Wenge; Wen, Ting; Pravica, Michael; Liu, Zhenxian; Hou, Mingqiang; Fei, Yingwei; Kang, Lei; Lin, Zheshuai; Jin, Changqing; Zhao, Yusheng

    2016-07-01

    Pressure-induced amorphization (PIA) and thermal-driven recrystallization have been observed in many crystalline materials. However, controllable switching between PIA and a metastable phase has not been described yet, due to the challenge to establish feasible switching methods to control the pressure and temperature precisely. Here, we demonstrate a reversible switching between PIA and thermally-driven recrystallization of VO2(B) nanosheets. Comprehensive in situ experiments are performed to establish the precise conditions of the reversible phase transformations, which are normally hindered but occur with stimuli beyond the energy barrier. Spectral evidence and theoretical calculations reveal the pressure-structure relationship and the role of flexible VOx polyhedra in the structural switching process. Anomalous resistivity evolution and the participation of spin in the reversible phase transition are observed for the first time. Our findings have significant implications for the design of phase switching devices and the exploration of hidden amorphous materials.

  16. Pressure-induced amorphization of charge ordered spinel AlV{sub 2}O{sub 4} at low temperature

    SciTech Connect

    Malavi, Pallavi S. Karmakar, S. Sharma, S. M.; Maurizio, P.

    2014-04-24

    Structural properties of charge ordered spinel AlV{sub 2}O{sub 4} have been investigated under high pressure at low temperature (80K) by synchrotron based x-ray diffraction measurements. It is observed that upon increasing pressure the structure becomes progressively disordered due to the distortion of the AlO{sub 4} tetrahedral unit and undergoes amorphization above ∼12 GPa. While releasing pressure, the rhombohedral phase is only partially recovered at a much lower pressure (below 5 GPa). Within the stability of the rhombohedral phase, the distortion in the vanadium heptamer increases monotonically with pressure, suggesting enhanced charge ordering. This result is in sharp contrast with the recent observation of pressure-induced frustration in the charge ordered state leading to structural transition to the cubic phase at room temperature [JPCM 25, 292201, 2013].

  17. Pressure induced iron spin state changes in MgGeO3 Perovskite and Post-perovskite

    NASA Astrophysics Data System (ADS)

    Sarkar, Kanchan; Shukla, Gaurav; Topsakal, Mehmet; Wentzcovitch, Renata

    2015-03-01

    MgGeO3-perovskite is a low pressure analog of MgSiO3-perovskite, the main Earth forming phase, and is used to shed light on several phenomena that occur in MgSiO3, particularly the post-perovskite transition. As such, experimental investigations of spin state changes in Fe-bearing MgGeO3 might help to clarify some aspects of this phenomenon in MgSiO3. Using DFT+U calculations, we have investigated pressure induced spin state changes in Fe2+ and Fe3+ in MgGeO3 perovskite and post-perovskite and their effect on the post-perovskite transition. We uncover a direct relationship between average Fe-O bond-lengths and spin transition pressures in all cases. The effect of iron on the post-perovskite transitions in these phases can also be related to the average Fe-O bond lengths. Research supported by NSF/EAR and NSF/CAREER.

  18. Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading.

    PubMed

    Hong, Xinguo; Duffy, Thomas S; Ehm, Lars; Weidner, Donald J

    2015-12-01

    The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS) of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. The internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au. PMID:26570982

  19. Pressure-induced phase transformation of In2Se3

    NASA Astrophysics Data System (ADS)

    Rasmussen, Anya M.; Teklemichael, Samuel T.; Mafi, Elham; Gu, Yi; McCluskey, Matthew D.

    2013-02-01

    In2Se3 has potential as a phase-change material for memory applications. Understanding its phase diagram is important to achieve controlled switching between phases. Using x-ray diffraction and a diamond-anvil cell, the pressure-dependent structural properties of In2Se3 powder were studied at room temperature. α-In2Se3 transforms into the β phase at 0.7 GPa, an order of magnitude lower than phase-transition critical pressures in typical semiconductors. The β phase persists upon decompression to ambient pressure. Raman spectroscopy experiments confirm this result. The bulk moduli are reported and the c/a ratio for the β phase is shown to have a highly nonlinear dependence on pressure.

  20. Pressure-induced structural changes in NH4Br.

    PubMed

    Huang, Yanping; Huang, Xiaoli; Li, Wenbo; Wang, Lu; Wu, Gang; Zhao, Zhonglong; Duan, Defang; Bao, Kuo; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2015-08-14

    We report angle dispersive X-ray diffraction (XRD) measurements and Raman spectroscopy on NH4Br up to 70.0 GPa at room temperature. Three thermodynamically stable phases (phases II, IV, and V) are confirmed and a new possible phase (phase VI) of P21/m symmetry is proposed whose structure was established from Rietveld refinement of synchrotron XRD data for the first time. The phase sequence observed in NH4Br is in accordance with phase II → IV → V → VI. Phase V transforms into phase VI at about 57.8 GPa with a huge volume reduction of 30%. Still, the intramolecular distances are analyzed to better understand the nature of structures. The H-H interactions become markedly more important as the N-Br distances are compacted, which is probably the reason of the kink of symmetric stretching band (ν1) at the transition pressure. PMID:26277143

  1. Pressure-induced topological phases of KNa2Bi

    PubMed Central

    Sklyadneva, I. Yu.; Rusinov, I. P.; Heid, R.; Bohnen, K.-P.; Echenique, P. M.; Chulkov, E. V.

    2016-01-01

    We report an ab initio study of the effect of hydrostatic pressure and uniaxial strain on electronic properties of KNa2Bi, a cubic bialkali bismuthide. It is found that this zero-gap semimetal with an inverted band structure at the Brillouin zone center can be driven into various topological phases under proper external pressure. We show that upon hydrostatic compression KNa2Bi turns into a trivial semiconductor with a conical Dirac-type dispersion of electronic bands at the point of the topological transition while the breaking of cubic symmetry by applying a uniaxial strain converts the compound into a topological insulator or into a three-dimensional Dirac semimetal with nontrivial surface Fermi arcs depending on the sign of strain. The calculated phonon dispersions show that KNa2Bi is dynamically stable both in the cubic structure (at any considered pressures) and in the tetragonal phase (under uniaxial strain). PMID:27064116

  2. Pressure-induced structural changes in NH4Br

    NASA Astrophysics Data System (ADS)

    Huang, Yanping; Huang, Xiaoli; Li, Wenbo; Wang, Lu; Wu, Gang; Zhao, Zhonglong; Duan, Defang; Bao, Kuo; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2015-08-01

    We report angle dispersive X-ray diffraction (XRD) measurements and Raman spectroscopy on NH4Br up to 70.0 GPa at room temperature. Three thermodynamically stable phases (phases II, IV, and V) are confirmed and a new possible phase (phase VI) of P21/m symmetry is proposed whose structure was established from Rietveld refinement of synchrotron XRD data for the first time. The phase sequence observed in NH4Br is in accordance with phase II → IV → V → VI. Phase V transforms into phase VI at about 57.8 GPa with a huge volume reduction of 30%. Still, the intramolecular distances are analyzed to better understand the nature of structures. The H-H interactions become markedly more important as the N-Br distances are compacted, which is probably the reason of the kink of symmetric stretching band (ν1) at the transition pressure.

  3. Pressure-induced topological phases of KNa2Bi

    NASA Astrophysics Data System (ADS)

    Sklyadneva, I. Yu.; Rusinov, I. P.; Heid, R.; Bohnen, K.-P.; Echenique, P. M.; Chulkov, E. V.

    2016-04-01

    We report an ab initio study of the effect of hydrostatic pressure and uniaxial strain on electronic properties of KNa2Bi, a cubic bialkali bismuthide. It is found that this zero-gap semimetal with an inverted band structure at the Brillouin zone center can be driven into various topological phases under proper external pressure. We show that upon hydrostatic compression KNa2Bi turns into a trivial semiconductor with a conical Dirac-type dispersion of electronic bands at the point of the topological transition while the breaking of cubic symmetry by applying a uniaxial strain converts the compound into a topological insulator or into a three-dimensional Dirac semimetal with nontrivial surface Fermi arcs depending on the sign of strain. The calculated phonon dispersions show that KNa2Bi is dynamically stable both in the cubic structure (at any considered pressures) and in the tetragonal phase (under uniaxial strain).

  4. Pressure-induced topological phases of KNa2Bi.

    PubMed

    Sklyadneva, I Yu; Rusinov, I P; Heid, R; Bohnen, K-P; Echenique, P M; Chulkov, E V

    2016-01-01

    We report an ab initio study of the effect of hydrostatic pressure and uniaxial strain on electronic properties of KNa2Bi, a cubic bialkali bismuthide. It is found that this zero-gap semimetal with an inverted band structure at the Brillouin zone center can be driven into various topological phases under proper external pressure. We show that upon hydrostatic compression KNa2Bi turns into a trivial semiconductor with a conical Dirac-type dispersion of electronic bands at the point of the topological transition while the breaking of cubic symmetry by applying a uniaxial strain converts the compound into a topological insulator or into a three-dimensional Dirac semimetal with nontrivial surface Fermi arcs depending on the sign of strain. The calculated phonon dispersions show that KNa2Bi is dynamically stable both in the cubic structure (at any considered pressures) and in the tetragonal phase (under uniaxial strain). PMID:27064116

  5. Pressure-induced transformations in computer simulations of glassy water

    NASA Astrophysics Data System (ADS)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  6. Pressure-induced transformations in computer simulations of glassy water.

    PubMed

    Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas

    2013-11-14

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water. PMID:24320281

  7. Incorporation of uranium in pyrochlore oxides and pressure-induced phase transitions

    SciTech Connect

    Zhang, F.X.; Lang, M.; Tracy, C.; Ewing, R.C.; Gregg, D.J.; Lumpkin, G.R.

    2014-11-15

    Uranium-doped gadolinium zirconates with pyrochlore structure were studied at ambient and high-pressure conditions up to 40 GPa. The bonding environment of uranium in the structure was determined by x-ray photoelectron and Raman spectroscopies and x-ray diffraction. The uranium valence for samples prepared in air is mainly U{sup 6+}, but U{sup 4+} is present in pyrochlores fabricated in an argon atmosphere. Rietveld refinement of the XRD pattern suggests that uranium ions in pyrochlores are on the 16d site in 6-fold coordination with oxygen. At pressures greater than 22 GPa, the pyrochlore structure transformed to a cotunnite-type phase. The cotunnite high-pressure phase transformed to a defect fluorite structure on the release of pressure. - Graphical abstract: In U-bearing pyrochlore, U ions mainly occupy the 16d site and replace the smaller Zr{sup 4+}, part of the oxygen will occupy the 8b site, which is empty to most pyrochlores. At pressure of 22 GPa, the pyrochlore lattice is not stable and transforms to a cotunnite-type structure. The high-pressure structure is not stable and transform to a fluorite or back to the pyrochlore structure when pressure is released. - Highlights: • We found that U ions mainly occupy the smaller cation site in U-bearing pyrochlore. • Pyrochlore structure is not stable at pressure of more than 20 GPa. • The quenched sample has a pyrochlore or a disordered fluorite structure.

  8. Pressure induced ionic-superionic transition in silver iodide at ambient temperature

    NASA Astrophysics Data System (ADS)

    Han, Y. H.; Wang, H. B.; Troyan, I. A.; Gao, C. X.; Eremets, M. I.

    2014-01-01

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω-1cm-1 could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag+ ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ˜3.4 × 10-4-8.6 × 10-4 cm2/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag+ ions, have been determined and it was suggested that Ag+ ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω-1cm-1. Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  9. Pressure induced ionic-superionic transition in silver iodide at ambient temperature.

    PubMed

    Han, Y H; Wang, H B; Troyan, I A; Gao, C X; Eremets, M I

    2014-01-28

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω(-1)cm(-1) could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag(+) ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ∼3.4 × 10(-4)-8.6 × 10(-4) cm(2)/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag(+) ions, have been determined and it was suggested that Ag(+) ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω(-1)cm(-1). Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature. PMID:25669568

  10. Pressure-induced phase transition of Cs 2 (TCNQ) 3 crystals revealed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsuzaki, S.; Matsushita, Y.; Sano, M.

    1990-06-01

    The pressure dependence of the C= C stretching vibrations was studied for Cs 2(TCNQ) 3, which has trimeric stacks with localized electrons on the specific TCNQ sites at ambient pressure. Two Raman bands of the neutral and ionic TCNQ sites are found to merge discontinously to a single band at 43 kbar. The spectral change suggests delocalization of the conduction electrons.

  11. Study of Five Pubertal Transition-Related Gene Polymorphisms as Risk Factors for Premature Coronary Artery Disease in a Chinese Han Population

    PubMed Central

    Tang, Chengchun; Ma, Genshan; Wei, Li; Chen, Zhong

    2015-01-01

    transition-related gene polymorphisms, we identified an association between rs1254337 and premature CAD in a Chinese Han population. PMID:26305337

  12. The quality of high pressure-induced and heat-induced yuzu marmalade

    NASA Astrophysics Data System (ADS)

    Kuwada, Hiroko; Jibu, Yuri; Teramoto, Ai; Fuchigami, Michiko

    2010-12-01

    Yuzu is a typical Japanese citrus with a desirable smell. The objectives of this study are to establish a process for pressure-induced marmalade (without both heating or the addition of pectin) and compare it with heat-induced marmalade. Sliced peel (flavedo) was soaked in 2% citric acid solution (pH 2.0). Albedo, endocarp and juice sacs were homogenized with 0.3% citric acid solution (pH 2.5). After soaking for 24 h, these were mixed and 50% or 60% sucrose of the total weight was added, then pressurized at 500 MPa or boiled (process A). Process B: all processing was done at pH 2.7. Peel of high pressure-induced marmalade maintained a natural color. Flavedo in heat-induced marmalade was softer than that of pressure-induced marmalade. There was no difference in viscosity between heat-induced and high pressure-induced marmalade. High pressure-induced marmalade with 50% sugar was preferred by a sensory test because fresh flavor and color were maintained.

  13. Pressure-induced conformational switch of an interfacial protein.

    PubMed

    Johnson, Quentin R; Lindsay, Richard J; Nellas, Ricky B; Shen, Tongye

    2016-06-01

    A special class of proteins adopts an inactive conformation in aqueous solution and activates at an interface (such as the surface of lipid droplet) by switching their conformations. Lipase, an essential enzyme for breaking down lipids, serves as a model system for studying such interfacial proteins. The underlying conformational switch of lipase induced by solvent condition is achieved through changing the status of the gated substrate-access channel. Interestingly, a lipase was also reported to exhibit pressure activation, which indicates it is drastically active at high hydrostatic pressure. To unravel the molecular mechanism of this unusual phenomenon, we examined the structural changes induced by high hydrostatic pressures (up to 1500 MPa) using molecular dynamics simulations. By monitoring the width of the access channel, we found that the protein undergoes a conformational transition and opens the access channel at high pressures (>100 MPa). Particularly, a disordered amphiphilic α5 region of the protein becomes ordered at high pressure. This positive correlation between the channel opening and α5 ordering is consistent with the early findings of the gating motion in the presence of a water-oil interface. Statistical analysis of the ensemble of conformations also reveals the essential collective motions of the protein and how these motions contribute to gating. Arguments are presented as to why heightened sensitivity to high-pressure perturbation can be a general feature of switchable interfacial proteins. Further mutations are also suggested to validate our observations. Proteins 2016; 84:820-827. © 2016 Wiley Periodicals, Inc. PMID:26967808

  14. Shock pressures induced in condensed matter by laser ablation

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Tierney, Thomas E.; Kopp, Roger A.; Gammel, J. Tinka

    2004-03-01

    The Trident laser was used to induce shock waves in samples of solid elements, with atomic numbers ranging from Be to Au, using pulses of 527 nm light around 1 ns long with irradiances of the order of 0.1 to 10 PW/m2. States induced by the resulting ablation process were investigated using laser Doppler velocimetry to measure the velocity history of the opposite surface. By varying the energy in the laser pulse, relations were inferred between the irradiance and the induced pressure. For samples in vacuo, an irradiance constant in time does not produce a constant pressure. Radiation hydrodynamics simulations were used to investigate the relationship between the precise pulse shape and the pressure history. In this regime of time and irradiance, it was possible to reproduce the experimental data to within their uncertainty by including conductivity-dependent deposition of laser energy, heat conduction, gray radiation diffusion, and three temperature hydrodynamics in the treatment of the plasma, with ionizations calculated using the Thomas-Fermi equation. States induced in the solid sample were fairly insensitive to the details of modeling in the plasma, so Hugoniot points may be estimated from experiments of this type given a reasonable model of the plasma. More useful applications include the generation of dynamic loading to investigate compressive strength and phase transitions, and for sample recovery.

  15. Pressure-induced polymerization of P(CN){sub 3}

    SciTech Connect

    Gou, Huiyang E-mail: tstrobel@ciw.edu; Kim, Duck Young; Strobel, Timothy A. E-mail: tstrobel@ciw.edu; Yonke, Brendan L.; Epshteyn, Albert; Smith, Jesse S.

    2015-05-21

    Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN){sub 3}, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder X-ray diffraction measurements taken during compression show that molecular P(CN){sub 3} is highly compressible, with a bulk modulus of 10.0 ± 0.3 GPa, and polymerizes into an amorphous solid above ∼10.0 GPa. Raman and IR spectra, together with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp{sup 2} character, similar to known carbon nitrides, resulting in a novel phosphorous carbon nitride (PCN) polymeric phase, which is recoverable to ambient pressure.

  16. Shock pressures induced in condensed matter by laser ablation.

    PubMed

    Swift, Damian C; Tierney, Thomas E; Kopp, Roger A; Gammel, J Tinka

    2004-03-01

    The Trident laser was used to induce shock waves in samples of solid elements, with atomic numbers ranging from Be to Au, using pulses of 527 nm light around 1 ns long with irradiances of the order of 0.1 to 10 PW/m(2). States induced by the resulting ablation process were investigated using laser Doppler velocimetry to measure the velocity history of the opposite surface. By varying the energy in the laser pulse, relations were inferred between the irradiance and the induced pressure. For samples in vacuo, an irradiance constant in time does not produce a constant pressure. Radiation hydrodynamics simulations were used to investigate the relationship between the precise pulse shape and the pressure history. In this regime of time and irradiance, it was possible to reproduce the experimental data to within their uncertainty by including conductivity-dependent deposition of laser energy, heat conduction, gray radiation diffusion, and three temperature hydrodynamics in the treatment of the plasma, with ionizations calculated using the Thomas-Fermi equation. States induced in the solid sample were fairly insensitive to the details of modeling in the plasma, so Hugoniot points may be estimated from experiments of this type given a reasonable model of the plasma. More useful applications include the generation of dynamic loading to investigate compressive strength and phase transitions, and for sample recovery. PMID:15089414

  17. Pressure-induced amorphization of antiferromagnetic FePO 4

    NASA Astrophysics Data System (ADS)

    Pasternak, M. P.; Rozenberg, G. Kh.; Milner, A. P.; Amanowicz, M.; Brister, K. E.; Taylor, R. D.

    1998-03-01

    In this paper we describe for the first time an unusual phenomenon, occurring in FePO 4 ( TN=25 K), where pressure drives the crystalline low-pressure phase (I) into two, coexisting antiferromagnetic states; one amorphous designated as IIa, the other crystalline (IIb) with an enhanced coordination number. This is unlike the case of berlinite (AlPO 4), which completely amorphizes above 15 GPa. Measurements were carried out with Mössbauer Spectroscopy (MS) and X-ray diffraction (XRD) at CHESS, over the pressure range 0-30 GPa. XRD shows that the double transformation starts at ˜2 GPa reaching saturation at 7 GPa. MS, however, show that the FePO 4-I phase coexists to the highest pressure, indicating possible formation of clusters with sizes undetected by XRD. The abundance of the FePO 4 IIa and IIb phases are about equal. Both XRD and the new TN (=60 K) value obtained by MS, show that the FePO 4-IIa phase is isostructural to CrVO 4. No change is observed in the relative abundance of the three phases at P>7 GPa in which the I-phase constitutes about 10% of the total. The TN value of the FePO 4-II phases increases with increasing pressure, from 50 K at 2.5 GPa to 65 at 25 GPa. The pressure transitions at room temperature are not reversible; after pressure release to ambient value, the FePO 4-I is completely restored only after heat treatment in air at T=700°C.

  18. Dynamic Response of Viscoelastic Plates to High Pressure Induced by Bubble Collapse

    NASA Astrophysics Data System (ADS)

    Gong, S.; Klaseboer, E.; Lou, J.

    2013-06-01

    The numerical simulations of viscoelastic plates to high pressure induced by underwater explosion bubble will be presented in this paper. The boundary-element method (BEM) is used to simulate the physical process of the explosive bubble growth, contraction and collapse. The finite element method (FEM) is used to calculate the viscoelastic plates response to the high pressure induced by underwater explosion bubble. The interaction of the viscoelastic plates and the underwater explosion bubble is simulated numerically via the coupled BEM-FEM. The computational procedure for the prediction of dynamic response of the viscoelastic plates to the high pressure induced by underwater explosion bubble is demonstrated. The case studies are conducted to examine the effects of different charge weights and locations on dynamic response of the viscoelastic plate. The results from this study may provide some insights into to the problem of viscoelastic structures subjected to underwater explosion bubble, which might be useful for potential applications in biomedicine or marine industry.

  19. Pressure-induced collapsed-tetragonal phase in SrCo2As2 at ambient temperature

    NASA Astrophysics Data System (ADS)

    Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, A.; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Bud'Ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.; Fabbris, G.; Feng, Y.; Veiga, L. S. I.; Dos Santos, A. M.

    Our recent high-energy (HE) high-pressure (HP) x-ray powder diffraction measurements on tetragonal (T) SrCo2As2 have revealed a first-order pressure-induced structural phase transition to a collapsed tetragonal (cT) phase with a reduction in c by -7.9% and the c / a ratio by -9.9%. The T and cT phases coexist for applied pressures 6 GPa to 18 GPa at 7 K. Resistance measurements up to 5.9 GPa and down to 1.8 K signatures likely associated with the cT phase above 5.5 GPa and found no evidence for superconductivity. Neutron diffraction data show no evidence of magnetic order up to 1.1 GPa. Here, we show that the T to cT transition occurs around 6.8 GPa at ambient temperature, and that the transition is nearly temperature-independent from 300 K down to 7 K, which indicates a steep p - T phase line. Work at Ames Lab. was supported by US DOE, BES, DMSE under DE-AC02-07CH11358. This research used resources at the APS and ORNL, US DOE, SC, User Facilities.

  20. Zeta-Fe2O3--A new stable polymorph in iron(III) oxide family.

    PubMed

    Tuček, Jiří; Machala, Libor; Ono, Shigeaki; Namai, Asuka; Yoshikiyo, Marie; Imoto, Kenta; Tokoro, Hiroko; Ohkoshi, Shin-ichi; Zbořil, Radek

    2015-01-01

    Iron(III) oxide shows a polymorphism, characteristic of existence of phases with the same chemical composition but distinct crystal structures and, hence, physical properties. Four crystalline phases of iron(III) oxide have previously been identified: α-Fe2O3 (hematite), β-Fe2O3, γ-Fe2O3 (maghemite), and ε-Fe2O3. All four iron(III) oxide phases easily undergo various phase transformations in response to heating or pressure treatment, usually forming hexagonal α-Fe2O3, which is the most thermodynamically stable Fe2O3 polymorph under ambient conditions. Here, from synchrotron X-ray diffraction experiments, we report the formation of a new iron(III) oxide polymorph that we have termed ζ-Fe2O3 and which evolved during pressure treatment of cubic β-Fe2O3 (Ia3 space group) at pressures above 30 GPa. Importantly, ζ-Fe2O3 is maintained after pressure release and represents the first monoclinic Fe2O3 polymorph (I2/a space group) that is stable at atmospheric pressure and room temperature. ζ-Fe2O3 behaves as an antiferromagnet with a Néel transition temperature of ~69 K. The complex mechanism of pressure-induced transformation of β-Fe2O3, involving also the formation of Rh2O3-II-type Fe2O3 and post-perovskite-Fe2O3 structure, is suggested and discussed with respect to a bimodal size distribution of precursor nanoparticles. PMID:26469883

  1. Zeta-Fe2O3 - A new stable polymorph in iron(III) oxide family

    NASA Astrophysics Data System (ADS)

    Tuček, Jiří; Machala, Libor; Ono, Shigeaki; Namai, Asuka; Yoshikiyo, Marie; Imoto, Kenta; Tokoro, Hiroko; Ohkoshi, Shin-Ichi; Zbořil, Radek

    2015-10-01

    Iron(III) oxide shows a polymorphism, characteristic of existence of phases with the same chemical composition but distinct crystal structures and, hence, physical properties. Four crystalline phases of iron(III) oxide have previously been identified: α-Fe2O3 (hematite), β-Fe2O3, γ-Fe2O3 (maghemite), and ɛ-Fe2O3. All four iron(III) oxide phases easily undergo various phase transformations in response to heating or pressure treatment, usually forming hexagonal α-Fe2O3, which is the most thermodynamically stable Fe2O3 polymorph under ambient conditions. Here, from synchrotron X-ray diffraction experiments, we report the formation of a new iron(III) oxide polymorph that we have termed ζ-Fe2O3 and which evolved during pressure treatment of cubic β-Fe2O3 ( space group) at pressures above 30 GPa. Importantly, ζ-Fe2O3 is maintained after pressure release and represents the first monoclinic Fe2O3 polymorph (I2/a space group) that is stable at atmospheric pressure and room temperature. ζ-Fe2O3 behaves as an antiferromagnet with a Néel transition temperature of ~69 K. The complex mechanism of pressure-induced transformation of β-Fe2O3, involving also the formation of Rh2O3-II-type Fe2O3 and post-perovskite-Fe2O3 structure, is suggested and discussed with respect to a bimodal size distribution of precursor nanoparticles.

  2. The use of intermolecular potential functions in fitting pressure induced spectra

    NASA Technical Reports Server (NTRS)

    Goorvitch, D.; Silvaggio, P. M.; Boese, R. W.

    1981-01-01

    An example is presented which demonstrates the importance of using physically realistic derivatives of the intermolecular potential when fitting pressure-induced spectra. The use of nonrealistic derivatives may mask second-order temperature effects in the theory. As the temperature decreases, the intermolecular potential may have an important angular dependence.

  3. Pressure induced structural changes in the potential hydrogen storage compound ammonia borane: A combined X-ray, neutron and theoretical investigation

    SciTech Connect

    Kumar, Ravhi S.; Ke, Xuezhi; Zhang, Jianzhong; Lin, Zhijun; Vogel, Sven C.; Hartl, Monika; Sinogeikin, Stanislav; Daemen, Luke; Cornelius, Andrew L.; Chen, Changfeng; Zhao, Yusheng

    2010-10-22

    The crystal structure of NH{sub 3}BH{sub 3} was investigated using synchrotron high pressure X-ray diffraction (HPXRD) up to 27 GPa and neutron diffraction up to 5 GPa. Density functional theoretical (DFT) calculations were carried out simultaneously for comparison. The results confirm a pressure induced phase transition from the tetragonal I4mm phase to a high pressure orthorhombic Cmc21 phase around 1.22 GPa. Further increase of pressure above 8 GPa, we observed a second structural transition from Cmc21 to a triclinic P1 phase which are reversible with small hysteresis. The transition pressures and the bulk modulus obtained experimentally are in good agreement with theory.

  4. Pressure-Dependent Polymorphism and Band-Gap Tuning of Methylammonium Lead Iodide Perovskite.

    PubMed

    Jiang, Shaojie; Fang, Yanan; Li, Ruipeng; Xiao, Hai; Crowley, Jason; Wang, Chenyu; White, Timothy J; Goddard, William A; Wang, Zhongwu; Baikie, Tom; Fang, Jiye

    2016-05-23

    We report the pressure-induced crystallographic transitions and optical behavior of MAPbI3 (MA=methylammonium) using in situ synchrotron X-ray diffraction and laser-excited photoluminescence spectroscopy, supported by density functional theory (DFT) calculations using the hybrid functional B3PW91 with spin-orbit coupling. The tetragonal polymorph determined at ambient pressure transforms to a ReO3 -type cubic phase at 0.3 GPa. Upon continuous compression to 2.7 GPa this cubic polymorph converts into a putative orthorhombic structure. Beyond 4.7 GPa it separates into crystalline and amorphous fractions. During decompression, this phase-mixed material undergoes distinct restoration pathways depending on the peak pressure. In situ pressure photoluminescence investigation suggests a reduction in band gap with increasing pressure up to ≈0.3 GPa and then an increase in band gap up to a pressure of 2.7 GPa, in excellent agreement with our DFT calculation prediction. PMID:27101324

  5. Pressure-induced phase transformations of PbCO3 by X-ray diffraction and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Jing; Wu, Xiang; Qin, Shan; Li, Yan-chun

    2016-01-01

    By employing synchrotron radiation, X-ray diffraction and Raman spectroscopy, the high pressure structural transformations of lead carbonate PbCO3 was investigated in diamond anvil cells up to ∼50 GPa at room temperature. Three pressure-induced transitions have been observed at ∼8.5, ∼15 and ∼26 GPa, respectively. The transition from PbCO3-I to PbCO3-II is a displacive transformation featured with anti-rotation of [CO3]2- triangles. PbCO3-II is a metastable phase because the [CO3]2- groups are in a unfixed state until they reach the equilibrium positions in PbCO3-III. PbCO3-III adopts a monoclinic symmetry with primitive lattice, and tendentiously exhibits a more compressible b-axis relative to c-axis. Isothermal pressure-volume relationship of PbCO3-III is well described by the Birch-Murnaghan equation of state with K0 = 131(4) GPa, ? (fixed) and V0 = 246(1) Å3. However, little information on the crystal structure of PbCO3-IV can be extracted from the present experiment. The transformation process of PbCO3 exhibits similarity to that of calcite and dolomite.

  6. Measurements of argon broadened Lorentz width and pressure-induced line shift coefficients in the nu4 band of (C-12)H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1989-01-01

    Room temperature argon broadened halfwidth and pressure-induced line shift coefficients have been determined for 118 transitions in the nu4 band of (C-12)H4 from analysis of high resolution laboratory absorption spectra recorded with the McMath Fourier transform spectrometer operated on Kitt Peak by the National Solar Observatory. Transitions up to J-double-prime = 12 have been measured using a nonlinear least-squares spectral fitting procedure. The variation of the measured halfwidth coefficients with symmetry type and rotational quantum number is very similar to that measured previously for N2 and air broadening, but the absolute values of the argon broadening coefficients are all smaller. On average, the ratio of the argon broadened halfwidth coefficient to the corresponding N2 broadened halfwidth coefficient is 0.877 + or - 0.017 (2 Sigma). More than 95 percent of the pressure-induced shifts are negative with values ranging from -0.0081 to +0.0055/cm atm. The pressure shifts in argon are nearly equal to corresponding values measured previously in N2 and air.

  7. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid

    PubMed Central

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-01-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa; an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2. PMID:27527241

  8. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid.

    PubMed

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-01-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa; an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2. PMID:27527241

  9. Pressure-induced topological insulating behavior in the ternary chalcogenide Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Sa, Baisheng; Zhou, Jian; Song, Zhitang; Sun, Zhimei; Ahuja, Rajeev

    2011-08-01

    We unraveled the pressure-induced topological insulating behavior in Ge2Sb2Te5 (GST) by means of ab initio calculations. We have shown that the spin-orbit interaction separates the twofold degenerate Ge pxpy Sb pxpy Te pxpy state to an upper and a lower level and enhances the energy level of Ge s Sb s Te pz/Ge pz Sb pz Te s states. Consequently, the sign of parity changes by inversing the characterizations of conduction band minimum and valence band maximum in a certain range of pressures. Moreover, the surface band structure with the Dirac cone feature was observed. The present results suggest that GST-related materials are a new family of pressure-induced topological insulators.

  10. Combined system for the compensation of the solar pressure-induced disturbing torque for geostationary satellites

    NASA Astrophysics Data System (ADS)

    Shmatov, S. I.; Mordvinkin, A. S.

    2014-12-01

    The problem is considered of determining the shape and dimensions of the passive component in a combined system for offsetting the solar pressure-induced disturbing torque for geostationary spacecraft with asymmetrical solar arrays. The problem statement, numerical solution algorithm, and calculated results are presented. The resulting shape, the study suggests, not only has the required compensation properties but is also the most efficient from the standpoint of manufacture and functional reliability.

  11. Origin of Pressure-induced Superconducting Phase in KxFe2−ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    PubMed Central

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun’ichiro

    2016-01-01

    Pressure dependence of the electronic and crystal structures of KxFe2−ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase. PMID:27499373

  12. Origin of Pressure-induced Superconducting Phase in KxFe2-ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy.

    PubMed

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun'ichiro

    2016-01-01

    Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase. PMID:27499373

  13. Origin of Pressure-induced Superconducting Phase in KxFe2‑ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun’Ichiro

    2016-08-01

    Pressure dependence of the electronic and crystal structures of KxFe2‑ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.

  14. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity

    DOE PAGESBeta

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; Yang, Youyou; Wang, Yajie; Wu, Jiajia; Dong, Xiao; Wang, Chun -Hai; Tulk, Christopher A.; Molaison, Jamie J.; et al

    2016-08-17

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C66– are identified with gas chromatography-mass spectrometry and several other techniques,more » which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 107 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  15. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe.

    PubMed

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A; Vasiliev, Alexander N; Park, Tuson

    2015-01-01

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444

  16. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe

    PubMed Central

    Jung, Soon-Gil; Kang, Ji-Hoon; Park, Eunsung; Lee, Sangyun; Lin, Jiunn-Yuan; Chareev, Dmitriy A.; Vasiliev, Alexander N.; Park, Tuson

    2015-01-01

    We investigate the relation of the critical current density (Jc) and the remarkably increased superconducting transition temperature (Tc) for the FeSe single crystals under pressures up to 2.43 GPa, where the Tc is increased by ~8 K/GPa. The critical current density corresponding to the free flux flow is monotonically enhanced by pressure which is due to the increase in Tc, whereas the depinning critical current density at which the vortex starts to move is more influenced by the pressure-induced magnetic state compared to the increase of Tc. Unlike other high-Tc superconductors, FeSe is not magnetic, but superconducting at ambient pressure. Above a critical pressure where magnetic state is induced and coexists with superconductivity, the depinning Jc abruptly increases even though the increase of the zero-resistivity Tc is negligible, directly indicating that the flux pinning property compared to the Tc enhancement is a more crucial factor for an achievement of a large Jc. In addition, the sharp increase in Jc in the coexisting superconducting phase of FeSe demonstrates that vortices can be effectively trapped by the competing antiferromagnetic order, even though its antagonistic nature against superconductivity is well documented. These results provide new guidance toward technological applications of high-temperature superconductors. PMID:26548444

  17. Pressure-induced amorphization in orthorhombic Ta{sub 2}O{sub 5}: An intrinsic character of crystal

    SciTech Connect

    Li, Quanjun; Zhang, Huafang; Cheng, Benyuan; Liu, Ran; Liu, Bo; Zou, Bo; Cui, Tian; Liu, Bingbing; Liu, Jing; Chen, Zhiqiang

    2014-05-21

    The phase transition of orthorhombic Ta{sub 2}O{sub 5} was investigated by in situ synchrotron X-ray diffraction and Raman spectroscopy. The orthorhombic phase transforms into an amorphous form completely at 24.7 GPa. A bulk modulus B{sub 0} = 139 (9) GPa for the orthorhombic Ta{sub 2}O{sub 5} is derived from the P-V data. We suggest that the pressure-induced amorphization (PIA) in Ta{sub 2}O{sub 5} can be attributed to the unstability of the a axis under high pressure leads to the connections of polyhedral breaking down and even triggers disorder of the whole crystal frame. These results demonstrate that the PIA is an intrinsic character of Ta{sub 2}O{sub 5} which depends on its orthorhombic crystal structure rather than nanosize effects. This study provides a new kind of bulk material for investigating PIA in metal oxides.

  18. Zeta-Fe2O3 – A new stable polymorph in iron(III) oxide family

    PubMed Central

    Tuček, Jiří; Machala, Libor; Ono, Shigeaki; Namai, Asuka; Yoshikiyo, Marie; Imoto, Kenta; Tokoro, Hiroko; Ohkoshi, Shin-ichi; Zbořil, Radek

    2015-01-01

    Iron(III) oxide shows a polymorphism, characteristic of existence of phases with the same chemical composition but distinct crystal structures and, hence, physical properties. Four crystalline phases of iron(III) oxide have previously been identified: α-Fe2O3 (hematite), β-Fe2O3, γ-Fe2O3 (maghemite), and ε-Fe2O3. All four iron(III) oxide phases easily undergo various phase transformations in response to heating or pressure treatment, usually forming hexagonal α-Fe2O3, which is the most thermodynamically stable Fe2O3 polymorph under ambient conditions. Here, from synchrotron X-ray diffraction experiments, we report the formation of a new iron(III) oxide polymorph that we have termed ζ-Fe2O3 and which evolved during pressure treatment of cubic β-Fe2O3 ( space group) at pressures above 30 GPa. Importantly, ζ-Fe2O3 is maintained after pressure release and represents the first monoclinic Fe2O3 polymorph (I2/a space group) that is stable at atmospheric pressure and room temperature. ζ-Fe2O3 behaves as an antiferromagnet with a Néel transition temperature of ~69 K. The complex mechanism of pressure-induced transformation of β-Fe2O3, involving also the formation of Rh2O3-II-type Fe2O3 and post-perovskite-Fe2O3 structure, is suggested and discussed with respect to a bimodal size distribution of precursor nanoparticles. PMID:26469883

  19. Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu-Cl hybrid perovskite.

    PubMed

    Jaffe, Adam; Lin, Yu; Mao, Wendy L; Karunadasa, Hemamala I

    2015-02-01

    Pressure-induced changes in the electronic structure of two-dimensional Cu-based materials have been a subject of intense study. In particular, the possibility of suppressing the Jahn-Teller distortion of d(9) Cu centers with applied pressure has been debated over a number of decades. We studied the structural and electronic changes resulting from the application of pressures up to ca. 60 GPa on a two-dimensional copper(II)-chloride perovskite using diamond anvil cells (DACs), through a combination of in situ powder X-ray diffraction, electronic absorption and vibrational spectroscopy, dc resistivity measurements, and optical observations. Our measurements show that compression of this charge-transfer insulator initially yields a first-order structural phase transition at ca. 4 GPa similar to previous reports on other Cu(II)-Cl perovskites, during which the originally translucent yellow solid turns red. Further compression induces a previously unreported phase transition at ca. 8 GPa and dramatic piezochromism from translucent red-orange to opaque black. Two-probe dc resistivity measurements conducted within the DAC show the first instance of appreciable conductivity in Cu(II)-Cl perovskites. The conductivity increases by 5 orders of magnitude between 7 and 50 GPa, with a maximum measured conductivity of 2.9 × 10(-4) S·cm(-1) at 51.4 GPa. Electronic absorption spectroscopy and variable-temperature conductivity measurements indicate that the perovskite behaves as a 1.0 eV band-gap semiconductor at 39.7 GPa and has an activation energy for electronic conduction of 0.232(1) eV at 40.2 GPa. Remarkably, all these changes are reversible: the material reverts to a translucent yellow solid upon decompression, and ambient pressure powder X-ray diffraction data taken before and after compression up to 60 GPa show that the original structure is maintained with minimal hysteresis. PMID:25580620

  20. Energy Spectrum of La3Lu2Ga3O12:Cr3+ and Its Pressure-Induced R-Line-Shift Reversal

    NASA Astrophysics Data System (ADS)

    Ma, Dong-Ping; Chen, Ju-Rong

    2005-12-01

    By means of both the theory for pressure-induced shifts (PS) of energy spectra and the theory for shifts of energy spectra due to electron-phonon interaction (EPI), the normal-pressure energy spectra of α and β centers of Cr3+ ions for LLGG:Cr3+ and the PS's of R1 lines and U band of these centers have been calculated at 10 K, respectively. The total calculated results are in very good agreement with the experimental data. For LLGG:Cr3+, the pressure-induced low-high crystal-field transition and the reversal of R1-line PS take place. The pressure-dependent variation of Rmixel (2E-4T2) [mixing-degree of |t22(3T1)e4T2 rangle and |t23 2Erangle base-wavefunctions in the wavefunction of R1 state without EPI] plays a key role for the reversal of R1-line PS. The behavior of the pure electronic PS of R1 line is quite different from that of the PS of R1 line due to EPI. It is the combined effect of them that gives rise to the total PS of R1 line. The comparison between R1-line PS's of GSGG:Cr3+ and LLGG:Cr3+ has been made. It is found that a peak of R1-line PS appears at Rmixel (2E-4T2) ≈ 0.08.

  1. Pressure-induced phonon freezing in the ZnSeS II-VI mixed crystal: phonon-polaritons and ab initio calculations.

    PubMed

    Hajj Hussein, R; Pagès, O; Polian, A; Postnikov, A V; Dicko, H; Firszt, F; Strzałkowski, K; Paszkowicz, W; Broch, L; Ravy, S; Fertey, P

    2016-05-25

    Near-forward Raman scattering combined with ab initio phonon and bond length calculations is used to study the 'phonon-polariton' transverse optical modes (with mixed electrical-mechanical character) of the II-VI ZnSe1-x S x mixed crystal under pressure. The goal of the study is to determine the pressure dependence of the poorly-resolved percolation-type Zn-S Raman doublet of the three oscillator [1  ×  (Zn-Se), 2  ×  (Zn-S)] ZnSe0.68S0.32 mixed crystal, which exhibits a phase transition at approximately the same pressure as its two end compounds (~14 GPa, zincblende  →  rocksalt), as determined by high-pressure x-ray diffraction. We find that the intensity of the lower Zn-S sub-mode of ZnSe0.68S0.32, due to Zn-S bonds vibrating in their own (S-like) environment, decreases under pressure (Raman scattering), whereas its frequency progressively converges onto that of the upper Zn-S sub-mode, due to Zn-S vibrations in the foreign (Se-like) environment (ab initio calculations). Ultimately, only the latter sub-mode survives. A similar 'phonon freezing' was earlier evidenced with the well-resolved percolation-type Be-Se doublet of Zn1-x Be x Se (Pradhan et al 2010 Phys. Rev. B 81 115207), that exhibits a large contrast in the pressure-induced structural transitions of its end compounds. We deduce that the above collapse/convergence process is intrinsic to the percolation doublet of a short bond under pressure, at least in a ZnSe-based mixed crystal, and not due to any pressure-induced structural transition. PMID:27114448

  2. Pressure-induced phonon freezing in the ZnSeS II–VI mixed crystal: phonon–polaritons and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Hajj Hussein, R.; Pagès, O.; Polian, A.; Postnikov, A. V.; Dicko, H.; Firszt, F.; Strzałkowski, K.; Paszkowicz, W.; Broch, L.; Ravy, S.; Fertey, P.

    2016-05-01

    Near-forward Raman scattering combined with ab initio phonon and bond length calculations is used to study the ‘phonon–polariton’ transverse optical modes (with mixed electrical–mechanical character) of the II–VI ZnSe1‑x S x mixed crystal under pressure. The goal of the study is to determine the pressure dependence of the poorly-resolved percolation-type Zn–S Raman doublet of the three oscillator [1  ×  (Zn–Se), 2  ×  (Zn–S)] ZnSe0.68S0.32 mixed crystal, which exhibits a phase transition at approximately the same pressure as its two end compounds (~14 GPa, zincblende  →  rocksalt), as determined by high-pressure x-ray diffraction. We find that the intensity of the lower Zn–S sub-mode of ZnSe0.68S0.32, due to Zn–S bonds vibrating in their own (S-like) environment, decreases under pressure (Raman scattering), whereas its frequency progressively converges onto that of the upper Zn–S sub-mode, due to Zn–S vibrations in the foreign (Se-like) environment (ab initio calculations). Ultimately, only the latter sub-mode survives. A similar ‘phonon freezing’ was earlier evidenced with the well-resolved percolation-type Be–Se doublet of Zn1‑x Be x Se (Pradhan et al 2010 Phys. Rev. B 81 115207), that exhibits a large contrast in the pressure-induced structural transitions of its end compounds. We deduce that the above collapse/convergence process is intrinsic to the percolation doublet of a short bond under pressure, at least in a ZnSe-based mixed crystal, and not due to any pressure-induced structural transition.

  3. High hydrostatic pressure induces counterclockwise to clockwise reversals of the Escherichia coli flagellar motor.

    PubMed

    Nishiyama, Masayoshi; Sowa, Yoshiyuki; Kimura, Yoshifumi; Homma, Michio; Ishijima, Akihiko; Terazima, Masahide

    2013-04-01

    The bacterial flagellar motor is a reversible rotary machine that rotates a left-handed helical filament, allowing bacteria to swim toward a more favorable environment. The direction of rotation reverses from counterclockwise (CCW) to clockwise (CW), and vice versa, in response to input from the chemotaxis signaling circuit. CW rotation is normally caused by binding of the phosphorylated response regulator CheY (CheY-P), and strains lacking CheY are typically locked in CCW rotation. The detailed mechanism of switching remains unresolved because it is technically difficult to regulate the level of CheY-P within the concentration range that produces flagellar reversals. Here, we demonstrate that high hydrostatic pressure can induce CW rotation even in the absence of CheY-P. The rotation of single flagellar motors in Escherichia coli cells with the cheY gene deleted was monitored at various pressures and temperatures. Application of >120 MPa pressure induced a reversal from CCW to CW at 20°C, although at that temperature, no motor rotated CW at ambient pressure (0.1 MPa). At lower temperatures, pressure-induced changes in direction were observed at pressures of <120 MPa. CW rotation increased with pressure in a sigmoidal fashion, as it does in response to increasing concentrations of CheY-P. Application of pressure generally promotes the formation of clusters of ordered water molecules on the surfaces of proteins. It is possible that hydration of the switch complex at high pressure induces structural changes similar to those caused by the binding of CheY-P. PMID:23417485

  4. Phase with pressure-induced shuttlewise deformation in dense solid atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takahiro; Nagara, Hitose; Oda, Tatsuki; Suzuki, Naoshi; Shimizu, Katsuya

    2014-09-01

    A phase which shows pressure-induced shuttlewise structural deformation between orthorhombic Fddd and tetragonal I41/amd structures has been predicted in solid atomic hydrogen by means of the first-principles calculations, including harmonic zero-point energy contributions of proton motions. The Fddd structure is formed by shear distortion from the I41/amd structure, and the angle specifying the distortion changes with pressure in the range 84-96∘ around 90∘, which corresponds to I41/amd. In the shuttlewise deforming phase, the electron-phonon interaction is enhanced owing to phonon softenings, which brings about superconductivity at elevated temperatures.

  5. Liquid polymorphism, order-disorder transitions and anomalous behavior: A Monte Carlo study of the Bell-Lavis model for water

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.; Szortyka, Marcia M.; Barbosa, Marcia C.; Henriques, Vera B.

    2009-10-01

    The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution.

  6. Pressure-induced local structure distortions in Cu(pyz)F{sub 2}(H{sub 2}O){sub 2}.

    SciTech Connect

    Musfeldt, J. L.; Liu, Z.; Li, S.; Kang, J.; Lee, C.; Jena, P.; Manson, J. L.; Schlueter, J. A.; Carr, G. L.; Whangbo, M.-H.

    2011-06-06

    We employed infrared spectroscopy along with complementary lattice dynamics and spin density calculations to investigate pressure-driven local structure distortions in the copper coordination polymer Cu(pyz)F{sub 2}(H{sub 2}O){sub 2}. Here, pyz is pyrazine. Our study reveals rich and fully reversible local lattice distortions that buckle the pyrazine ring, disrupt the bc-plane O-H {hor_ellipsis} F hydrogen-bonding network, and reinforce magnetic property switching. The resiliency of the soft organic ring is a major factor in the stability of this material. Interestingly, the collective character of the lattice vibrations masks direct information on the Cu-N and Cu-O linkages through the series of pressure-induced Jahn-Teller axis switching transitions, although Cu-F bond softening is clearly identified above 3 GPa. These findings illustrate the importance of combined bulk and local probe techniques for microscopic structure determination in complex materials.

  7. Pressure-induced amorphizations of silica analogues: A probe of the relationship between order and disorder. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect

    Hammack, W.S.

    1993-02-01

    Purpose of these of high pressure investigations is to determine the relationship between order and disorder in amorphous materials using high pressure techniques were used. High pressure x-ray diffraction, electron transmission microscopy, and Raman scattering. Cornell High Energy Synchrotron Source (CHESS) at Ithaca was used to measure x-ray diffraction patterns using Energy-Dispersive X-ray Diffraction. It was shown that the structural ordering in pressure-amorphized solids can be described as defects in curved-space. High-resolution transmissions electron microscopy showed that pressure-amorphized alpha-quartz lacks periodicity at the atomic level. Study of a silicate mineral shows that pressure-induced amorphizations occur because of an impeded phase transition.

  8. Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide l-Ala-l-Pro-Gly·H2O Revealed by Adiabatic Calorimetry

    PubMed Central

    Markin, Alexey V.; Markhasin, Evgeny; Sologubov, Semen S.; Ni, Qing Zhe; Smirnova, Natalia N.; Griffin, Robert G.

    2015-01-01

    We demonstrate application of precise adiabatic vacuun calorimetry to observation of phase transition in the tripeptide l-alanyl-l-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuun calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide. PMID:25588051

  9. Pressure-induced stiffness of Au nanoparticles to 71 GPa under quasi-hydrostatic loading

    NASA Astrophysics Data System (ADS)

    Hong, Xinguo; Duffy, Thomas S.; Ehm, Lars; Weidner, Donald J.

    2015-12-01

    The compressibility of nanocrystalline gold (n-Au, 20 nm) has been studied by x-ray total scattering using high-energy monochromatic x-rays in the diamond anvil cell under quasi-hydrostatic conditions up to 71 GPa. The bulk modulus, K 0, of the n-Au obtained from fitting to a Vinet equation of state is ~196(3) GPa, which is about 17% higher than for the corresponding bulk materials (K 0: 167 GPa). At low pressures (<7 GPa), the compression behavior of n-Au shows little difference from that of bulk Au. With increasing pressure, the compressive behavior of n-Au gradually deviates from the equation of state (EOS) of bulk gold. Analysis of the pair distribution function, peak broadening and Rietveld refinement reveals that the microstructure of n-Au is nearly a single-grain/domain at ambient conditions, but undergoes substantial pressure-induced reduction in grain size until 10 GPa. The results indicate that the nature of the internal microstructure in n-Au is associated with the observed EOS difference from bulk Au at high pressure. Full-pattern analysis confirms that significant changes in grain size, stacking faults, grain orientation and texture occur in n-Au at high pressure. We have observed direct experimental evidence of a transition in compressional mechanism for n-Au at ~20 GPa, i.e. from a deformation dominated by nucleation and motion of lattice dislocations (dislocation-mediated) to a prominent grain boundary mediated response to external pressure. The internal microstructure inside the nanoparticle (nanocrystallinity) plays a critical role for the macro-mechanical properties of nano-Au.

  10. Pressure-induced drastic collapse of a high oxygen coordination shell in quartz-like α-GeO2

    NASA Astrophysics Data System (ADS)

    Dong, Juncai; Zhang, Xiaoli; Zhang, Qian; Wu, Ye; Wu, Xiang; Wu, Ziyu; Chen, Dongliang

    2014-02-01

    With the combination of a single crystal diamond anvil cell and a polycapillary half-lens, the local structural evolution around germanium in tetrahedrally networked quartz-like α-GeO2 has been investigated using extended x-ray absorption fine structure spectroscopy of up to 14 GPa by multiple-scattering analysis method. While the first shell Ge-O bond distances show a slight contraction with increasing pressure, the third shell Ge-O bond distances are found to decrease dramatically. The sluggish lengthening of the first shell Ge-O bond distances, initiated by coordination increase from fourfold to sixfold, occurs in the 7-14 GPa range just when the third shell Ge-O bond distances fall in the region of the second shell Ge-Ge bond distances. Moreover, these features are accompanied by the closing of intertetrahedral Ge-O-Ge angles and the opening of two intratetrahedral O-Ge-O angles, whose topological configuration surprisingly exhibits a helical chirality along the c axis that is opposite to the double helices of the corner-linked GeO4 tetrahedra. These results suggest that the high-pressure phase transitions in quartz and quartz-like materials could be associated with a structural instability that is driven by the drastic collapse of the next-nearest-neighbour anion shell, which is consistent with the emergence of high-symmetry anion sublattice. Our findings provide crucial insights into the densification mechanisms of quartz-like oxides, which would have broad implications for our understanding of the metastability of various post-quartz crystalline phases and pressure-induced amorphization.

  11. Elastic behavior and pressure-induced structure evolution of topaz up to 45 GPa

    NASA Astrophysics Data System (ADS)

    Gatta, G. D.; Morgenroth, W.; Dera, P.; Petitgirard, S.; Liermann, H.-P.

    2014-09-01

    The behavior of a natural topaz, Al2.00Si1.05O4.00(OH0.26F1.75), has been investigated by means of in situ single-crystal synchrotron X-ray diffraction up to 45 GPa. No phase transition or change in the compressional regime has been observed within the pressure-range investigated. The compressional behavior was described with a third-order Birch-Murnaghan equation of state (III-BM-EoS). The III-BM-EoS parameters, simultaneously refined using the data weighted by the uncertainties in P and V, are as follows: K V = 158(4) GPa and K V ' = 3.3(3). The confidence ellipse at 68.3 % (Δχ2 = 2.30, 1σ) was calculated starting from the variance-covariance matrix of K V and K' obtained from the III-BM-EoS least-square procedure. The ellipse is elongated with a negative slope, indicating a negative correlation of the parameters K V and K V ', with K V = 158 ± 6 GPa and K V ' = 3.3 ± 4. A linearized III-BM-EoS was used to obtain the axial-EoS parameters (at room- P), yielding: K( a) = 146(5) GPa [ β a = 1/(3 K( a)) = 0.00228(6) GPa-1] and K'( a) = 4.6(3) for the a-axis; K( b) = 220(4) GPa [ β b = 0.00152(4) GPa-1] and K'( b) = 2.6(3) for the b-axis; K( c) = 132(4) GPa [ β c = 0.00252(7) GPa-1] and K'( c) = 3.3(3) for the c-axis. The elastic anisotropy of topaz at room- P can be expressed as: K( a): K( b): K( c) = 1.10:1.67:1.00 ( β a: β b: β c = 1.50:1.00:1.66). A series of structure refinements have been performed based on the intensity data collected at high pressure, showing that the P-induced structure evolution at the atomic scale is mainly represented by polyhedral compression along with inter-polyhedral tilting. A comparative analysis of the elastic behavior and P/ T-stability of topaz polymorphs and "phase egg" (i.e., AlSiO3OH) is carried out.

  12. Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition.

    PubMed

    Shieh, Sean R; Jarrige, Ignace; Wu, Min; Hiraoka, Nozomu; Tse, John S; Mi, Zhongying; Kaci, Linada; Jiang, Jian-Zhong; Cai, Yong Q

    2013-11-12

    Knowledge of the high-pressure behavior of carbon dioxide (CO2), an important planetary material found in Venus, Earth, and Mars, is vital to the study of the evolution and dynamics of the planetary interiors as well as to the fundamental understanding of the C-O bonding and interaction between the molecules. Recent studies have revealed a number of crystalline polymorphs (CO2-I to -VII) and an amorphous phase under high pressure-temperature conditions. Nevertheless, the reported phase stability field and transition pressures at room temperature are poorly defined, especially for the amorphous phase. Here we shed light on the successive pressure-induced local structural changes and the molecular-to-nonmolecular transition of CO2 at room temperature by performing an in situ study of the local electronic structure using X-ray Raman scattering, aided by first-principle exciton calculations. We show that the transition from CO2-I to CO2-III was initiated at around 7.4 GPa, and completed at about 17 GPa. The present study also shows that at ~37 GPa, molecular CO2 starts to polymerize to an extended structure with fourfold coordinated carbon and minor CO3 and CO-like species. The observed pressure is more than 10 GPa below previously reported. The disappearance of the minority species at 63(± 3) GPa suggests that a previously unknown phase transition within the nonmolecular phase of CO2 has occurred. PMID:24167283

  13. Pressure induced variation of second harmonic efficiency of K3B6O10Cl

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Kong, Lingyao; Zhao, Xiaoyan; Lv, Zhenlong; Li, Tongwei; Ju, Wei Wei; You, Jinghan; Bai, Ying

    2013-09-01

    K3B6O10Cl is a perovskite-like nonlinear optical (NLO) crystal, which exhibits large second harmonic generation (SHG) response. Based on density-functional theory, we investigate the influence of pressure on SHG tensor of K3B6O10Cl. At zero pressure, the non-centrosymmetric distortion of K3B6O10Cl from BO4 tetrahedron results in the similar SHG tensor to β-BaB2O4 (BBO). At 50 GPa, the ClK6 octahedron distortion of K3B6O10Cl becomes the main source of SHG and give similar SHG tensor to LiNbO3. Therefore, pressure induces K3B6O10Cl from a BBO-like NLO material to a LiNbO3-like NLO material.

  14. Pressure-Induced Crack Propagation Behavior in a Particle-Reinforced Composite

    NASA Astrophysics Data System (ADS)

    Ha, Jae-Seok; Kim, Jae-Hoon

    An experimental investigation was conducted to study pressure-induced crack propagation behavior of a particle-reinforced composite (PRC) under various pressurization rate conditions. A pre-cracked specimen of a metallic particle-reinforced rubbery composite was fixed in a holder which is installed in a windowed test chamber, and then high compressed nitrogen gas rapidly pressurized the chamber and the specimen. Chamber pressures were measured during the test, and detailed sequences of crack initiation and propagation were recorded by a high-speed digital video camera. Pressure vs. time traces were obtained from test results, and pressurization rates were defined from them. The crack propagation contours and lengths under various pressurization rates were observed through a stereoscopic microscope. Also, a progression of the crack initiation and propagation was observed by the sequences of the crack recorded by the high-speed digital video camera.

  15. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    NASA Astrophysics Data System (ADS)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  16. Chemical trend of pressure-induced metallization in alkaline earth hydrides

    SciTech Connect

    Zhang, Sijia; Chen, Xiao-Jia; Zhang, Rui-Qin; Lin, Hai-Qing

    2010-09-02

    The pressure-induced metallization of alkaline earth hydrides was systematically investigated using ab initio methods. While BeH{sub 2} and MgH{sub 2} present different semimetallic phases, CaH{sub 2}, SrH{sub 2}, and BaH{sub 2} share the same metallic phase (P6/mmm). The metallization pressure shows an attractive decrease with each increment of metal radius, and this trend is well correlated with both the electronegativity of alkaline earth metals and the band gap of alkaline earth hydrides at ambient pressure. Our results are consistent with current experimental data, and the obtained trend has significant implications for designing and engineering metallic hydrides for energy applications.

  17. Pressure Induced Amorphization in Garnets investigated by X-ray Diffraction and Spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Vohra, Yogesh K.

    1996-03-01

    We report the first direct observation of pressure induced amorphization in garnets GGG and GSGG at ambient temperature(both are Cr^3+, Nd^3+ doped). Laser spectroscopic studies show abrupt disappearance of fluorescent emission peaks at high pressure due to loss of the long range order. The amorphization was confirmed by the synchrotron x-ray diffraction studies at X-17C, NSLS. The amorphization pressure for GSGG is 58±3GPa and for GGG is 90±5GPa. The transformation pressures for the garnets are correlated to the strength of the crystal field. The amorphous phase can be quenched at ambient conditions. The amorphization phenomenon in garnets is explained on the basis of a three-level thermodynamic model. (Supported by NSF Grant No. DMR-9403832)

  18. Analysis of solar radiation pressure induced coupled librations of a gravity stabilized axisymmetric satellite

    NASA Technical Reports Server (NTRS)

    Shrivastava, S. K.; Hablani, H. B.

    1979-01-01

    This paper presents an analysis of solar radiation pressure induced coupled librations of gravity stabilized cylindrical spacecraft with a special reference to geostationary communication satellites. The Lagrangian approach is used to obtain the corresponding equations of motion. The solar induced torques are assumed to be free of librational angles and are represented by their Fourier expansion. The response and periodic solutions are obtained through linear and nonlinear analyses, using the method of harmonic balance in the latter case. The stability conditions are obtained using Routh-Hurwitz criteria. To establish the ranges of validity the analytic response is compared with the numerical solution. Finally, values of the system parameters are suggested to make the satellite behave as desired. Among these is a possible approach to subdue the solar induced roll resonance. It is felt that the approximate analysis presented here should significantly reduce the computational efforts involved in the design and stability analysis of the systems.

  19. Pressure-induced dehydration and the structure of ammonia hemihydrate-II

    NASA Astrophysics Data System (ADS)

    Wilson, C. W.; Bull, C. L.; Stinton, G.; Loveday, J. S.

    2012-03-01

    The structure of the crystalline ammonia-bearing phase formed when ammonia monohydrate liquid is compressed to 3.5(1) GPa at ambient temperature has been solved from a combination of synchrotron x-ray single-crystal and neutron powder-diffraction studies. The solution reveals that rather than having the ammonia monohydrate (AMH) composition as had been previously thought, the structure has an ammonia hemihydrate composition. The structure is monoclinic with spacegroup P21/c and lattice parameters a = 3.3584(5) Å, b = 9.215(1) Å, c = 8.933(1) Å and β = 94.331(8)° at 3.5(1) GPa. The atomic arrangement has a crowned hexagonal arrangement and is a layered structure with long N-D⋯N hydrogen bonds linking the layers. The existence of pressure-induced dehydration of AMH may have important consequences for the behaviour and differentiation of icy planets and satellites.

  20. Suckdown, fountain lift, and pressures induced on several tandem jet V/STOL configurations

    NASA Technical Reports Server (NTRS)

    Bellavia, David C.; Wardwell, Douglas A.; Corsiglia, Victor R.; Kuhn, Richard E.

    1991-01-01

    As part of a program to improve the methods for predicting the suckdown and hot gas ingestion for jet V/STOL aircraft in ground effect, a data base is being created that provides a systematic variation of parameters so that a new empirical prediction procedure can be developed. The first series of tests in this program was completed. Suckdown, fountain lift, and pressures induced on several two-jet V/STOL configurations are described. It is one of three reports that present the data obtained from tests conducted at Lockheed Aeronautical Systems-Rye Canyon Facility and in the High Bay area of the 40 by 80 foot wind tunnel complex at NASA Ames Research Center.

  1. Confined H2O molecules as local probes of pressure-induced amorphisation in faujasite.

    PubMed

    Catafesta, Jadna; Alabarse, Frederico; Levelut, Claire; Isambert, Aude; Hébert, Philippe; Kohara, Shinji; Maurin, David; Bantignies, Jean-Louis; Cambon, Olivier; Creff, Gaëlle; Roy, Pascale; Brubach, Jean-Blaise; Hammouda, Tahar; Andrault, Denis; Haines, Julien

    2014-06-28

    Confined H2O molecules act as local probes for depressurization phenomena during the pressure induced amorphisation of faujasite NaX at which the OH stretching frequency first decreases and then increases almost to its room pressure value upon further compression. Pair distribution function (PDF) analysis provides evidence that amorphisation corresponds to a collapse of the structure around hydrated sodium cations with strong distortion of the secondary building units (double six-membered rings, sodalite cages). Both the use of guest molecules as local probes in far- and mid-infrared spectroscopy, where we correlate intermolecular water H bonding vibrations and internal mode behaviour under confinement, and PDF analysis could be of great use to study the mechanical behaviour of other hydrated materials. PMID:24816994

  2. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity

    SciTech Connect

    Corbitt, Thomas; Ottaway, David; Innerhofer, Edith; Pelc, Jason; Mavalvala, Nergis

    2006-08-15

    We report on experimental observation of radiation-pressure induced effects in a high-power optical cavity. These effects play an important role in next-generation gravitational wave detectors, as well as in quantum nondemolition interferometers. We measure the properties of an optical spring, created by coupling of an intense laser field to the pendulum mode of a suspended mirror, and also the parametric instability (PI) that arises from the coupling between acoustic modes of the cavity mirrors and the cavity optical mode. We measure an unprecedented optical rigidity of K=(3.08{+-}0.09)x10{sup 4} N/m, corresponding to an optical rigidity that is 6000 times stiffer than the mechanical stiffness, and PI strength R{approx_equal}3. We measure the unstable nature of the optical spring resonance, and demonstrate that the PI can be stabilized by feedback to the frequency of the laser source.

  3. Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity

    SciTech Connect

    Umeyama, Daiki; Hagi, Keisuke; Ogiwara, Naoki; Horike, Satoshi E-mail: kitagawa@icems.kyoto-u.ac.jp; Tassel, Cedric; Kageyama, Hiroshi; Higo, Yuji; Kitagawa, Susumu E-mail: kitagawa@icems.kyoto-u.ac.jp

    2014-12-01

    The proton conductivity of a dense coordination polymer (CP) was investigated under high-pressure conditions. Impedance measurements under high pressures revealed that the proton conductivity of the CP decreased more than 1000-fold at pressures of 3–7 GPa and that the activation energy for proton conduction almost doubled compared with that at ambient pressure. A synchrotron X-ray study under high pressure identified the amorphization process of the CP during compression, which rationally explains the decrease in conductivity and increase in activation energy. This phenomenon is categorized as reversible pressure-induced amorphization of a dense CP and is regarded as a demonstration of the coupling of the mechanical and electrical properties of a CP.

  4. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  5. Pressure-induced amorphization, elastic instability, and soft modes in [alpha]-quartz

    SciTech Connect

    Binggeli, N. , PHB-Ecublens, 1015 Lausanne ); Keskar, N.R.; Chelikowsky, J.R. )

    1994-02-01

    Pressure-induced amorphization has been observed in a number of oxide crystals, including [alpha]-quartz. We have examined the properties of quartz as a function of pressure using classical interatomic potentials, and [ital ab] [ital initio] pseudopotentials. With both approaches we find that the quartz structure becomes mechanically unstable in the 20--35 GPa range. The instability is reflected in a soft zone-edge phonon mode which occurs in the same pressure range. We have analyzed the microscopic origin of the softenings, and relate them to the presence of an oxygen close-packed cubic arrangement in the quartz high-pressure structure. Within this close-packed arrangement, the silicon cations exhibit an instability between fourfold and sixfold coordination sites.

  6. Crystal Polymorphs of Barbital: News about a Classic Polymorphic System

    PubMed Central

    2013-01-01

    Barbital is a hypnotic agent that has been intensely studied for many decades. The aim of this work was to establish a clear and comprehensible picture of its polymorphic system. Four of the six known solid forms of barbital (denoted I0, III, IV, and V) were characterized by various analytical techniques, and the thermodynamic relationships between the polymorph phases were established. The obtained data permitted the construction of the first semischematic energy/temperature diagram for the barbital system. The modifications I0, III, and V are enantiotropically related to one another. Polymorph IV is enantiotropically related to V and monotropically related to the other two forms. The transition points for the pairs I0/III, I0/V, and III/IV lie below 20 °C, and the transition point for IV/V is above 20 °C. At room temperature, the order of thermodynamic stability is I0 > III > V > IV. The metastable modification III is present in commercial samples and has a high kinetic stability. The solid-state NMR spectra provide information on aspects of crystallography (viz., the asymmetric units and the nature of hydrogen bonding). The known correlation between specific N–H···O=C hydrogen bonding motifs of barbiturates and certain IR characteristics was used to predict the H-bonded pattern of polymorph IV. PMID:24283960

  7. Multispectrum Analysis of 12CH4 in the v4 Band: I. Air-Broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing

    NASA Technical Reports Server (NTRS)

    Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi

    2009-01-01

    Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.

  8. Air- and Self-Broadened Half Widths, Pressure-Induced Shifts, and Line Mixing in the Nu(sub 2) Band of (12)CH4

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Benner, D. Chris; Pedroi-Cross, A.; Devi, V. Malathy

    2013-01-01

    Lorentz self- and air-broadened half width and pressure-induced shift coefficients and their dependences on temperature have been measured from laboratory absorption spectra for nearly 130 transitions in the nu(sub 2) band of (12)CH4. In addition line mixing coefficients (using the relaxation matrix element formalism) for both self- and airbroadening were experimentally determined for the first time for a small number of transitions in this band. Accurate line positions and absolute line intensities were also determined. These parameters were obtained by analyzing high-resolution (approx. 0.003 to 0.01 per cm) laboratory spectra of high-purity natural CH4 and air-broadened CH4 recorded at temperatures between 226 and 297 K using the McMath-Pierce Fourier transform spectrometer (FTS) located at the National Solar Observatory on Kitt Peak, Arizona. A multispectrum nonlinear least squares technique was used to fit short (5-15 per cm) spectral intervals in 24-29 spectra simultaneously. Parameters were determined for nu(sub 2) transitions up to J" = 16. The variations of the measured broadening and shift parameters with the rotational quantum number index and tetrahedral symmetry species are examined. The present results are also compared with previous measurements available in the literature.

  9. Polymorphic light eruption

    MedlinePlus

    ... outdoors. Wear a sun hat. Wear sunglasses with UV protection. Use a lip balm with sunscreen. Alternative Names Polymorphic light eruption; Photodermatosis; PMLE Images Polymorphic light eruption on ...

  10. Persistent Fe moments in the normal-state collapsed-tetragonal phase of the pressure-induced superconductor Ca0.67Sr0.33Fe2As2

    NASA Astrophysics Data System (ADS)

    Jeffries, J. R.; Butch, N. P.; Lipp, M. J.; Bradley, J. A.; Kirshenbaum, K.; Saha, S. R.; Paglione, J.; Kenney-Benson, C.; Xiao, Y.; Chow, P.; Evans, W. J.

    2014-10-01

    Using nonresonant Fe Kβ x-ray emission spectroscopy, we reveal that Sr substitution into CaFe2As2 decouples the Fe moment from the volume collapse transition, yielding a collapsed-tetragonal, paramagnetic normal state out of which superconductivity develops. X-ray diffraction measurements implicate the c-axis lattice parameter as the controlling criterion for the Fe moment, promoting a generic description for the appearance of pressure-induced superconductivity in the alkaline-earth-based 122 ferropnictides (AFe2As2). The evolution of Tc with pressure lends support to theories for superconductivity involving unconventional pairing mediated by magnetic fluctuations.

  11. Real-Time Imaging of Fluorescent Flagellar Filaments of Rhizobium lupini H13-3: Flagellar Rotation and pH-Induced Polymorphic Transitions

    PubMed Central

    Scharf, Birgit

    2002-01-01

    The soil bacterium Rhizobium lupini H13-3 has complex right-handed flagellar filaments with unusual ridged, grooved surfaces. Clockwise (CW) rotation propels the cells forward, and course changes (tumbling) result from changes in filament speed instead of the more common change in direction of rotation. In view of these novelties, fluorescence labeling was used to analyze the behavior of single flagellar filaments during swimming and tumbling, leading to a model for directional changes in R. lupini. Also, flagellar filaments were investigated for helical conformational changes, which have not been previously shown for complex filaments. During full-speed CW rotation, the flagellar filaments form a propulsive bundle that pushes the cell on a straight path. Tumbling is caused by asynchronous deceleration and stops of individual filaments, resulting in dissociation of the propulsive bundle. R. lupini tumbles were not accompanied by helical conformational changes as are tumbles in other organisms including enteric bacteria. However, when pH was experimentally changed, four different polymorphic forms were observed. At a physiological pH of 7, normal flagellar helices were characterized by a pitch angle of 30°, a pitch of 1.36 μm, and a helical diameter of 0.50 μm. As pH increased from 9 to 11, the helices transformed from normal to semicoiled to straight. As pH decreased from 5 to 3, the helices transformed from normal to curly to straight. Transient conformational changes were also noted at high viscosity, suggesting that the R. lupini flagellar filament may adapt to high loads in viscous environments (soil) by assuming hydrodynamically favorable conformations. PMID:12374832

  12. Pressure-induced near infrared spectra response as a valuable source of information for soft tissue classification

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Bürmen, Miran; Bregar, Maksimilijan; Pernuš, Franjo; Likar, Boštjan

    2013-04-01

    Acquiring near infrared spectra in vivo usually requires a fiber-optic probe to be pressed against the tissue. The applied pressure can significantly affect the optical properties of the underlying tissue, and thereby the acquired spectra. The existing studies consider these effects to be distortions. In contrast, we hypothesize that the pressure-induced spectral response is site- and tissue-specific, providing additional information for the tissue classification. For the purpose of this study, a custom system was designed for dynamic pressure control and rapid acquisition of spectra. The pressure-induced spectral response was studied at three proximate skin sites of the human hand. The diffuse reflectance and scattering were found to decrease with the applied contact pressure. In contrast, the concentrations of chromophores, and consequently the absorption, increased with the applied contact pressure. The pressure-induced changes in the tissue optical properties were found to be site-specific and were modeled as a polynomial function of the applied contact pressure. A quadratic discriminant analysis classification of the tissue spectra acquired at the three proximate skin sites, based on the proposed pressure-induced spectral response model, resulted in a high (90%) average classification sensitivity and specificity, clearly supporting the working hypothesis.

  13. Simultaneous Pressure-Induced Magnetic and Valence Transitions in Type-I Clathrate Eu8Ga16Ge30

    NASA Astrophysics Data System (ADS)

    Onimaru, Takahiro; Tsutsui, Satoshi; Mizumaki, Masaichiro; Kawamura, Naomi; Ishimatsu, Naoki; Avila, Marcos A.; Yamamoto, Shuhei; Yamane, Haruki; Suekuni, Koichiro; Umeo, Kazunori; Kume, Tetsuji; Nakano, Satoshi; Takabatake, Toshiro

    2014-01-01

    We have performed X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectroscopy (XAS) measurements at pressures up to 17 GPa for the clathrate Eu8Ga16Ge30 (Curie temperature TC = 36 K). The temperature dependence of the XMCD spectra agrees well with that of the DC magnetization at ambient pressure. The TC is gradually enhanced with increasing pressures up to 13.3 GPa, and the divalent state of the Eu ions with J = 7/2 remains stable, but at 17 GPa the XMCD intensity is strongly suppressed and a spectral weight corresponding to the trivalent state of Eu ions (with no magnetic moment) appears in the XAS spectrum. The concurrent change from the type-I clathrate structure to an amorphous phase has been observed by X-ray diffraction experiment. We conclude that the amorphization of this compound induces the mixed valence state, which collapses the ferromagnetism.

  14. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model

    NASA Astrophysics Data System (ADS)

    Wong, Jessina; Jahn, David A.; Giovambattista, Nicolas

    2015-08-01

    We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - TMCT)-γ as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, TMCT = 209 K and γ = 2.14, very close to the corresponding experimental values TMCT = 221 K

  15. Kinetic control in the synthesis of metastable polymorphs: Bixbyite-to-Rh{sub 2}O{sub 3}(II)-to-corundum transition in In{sub 2}O{sub 3}

    SciTech Connect

    Bekheet, Maged F.; Schwarz, Marcus R.; Kroll, Peter; Gurlo, Aleksander

    2015-09-15

    An example for kinetic control of a solid-state phase transformation, in which the system evolves via the path with the lowest activation barrier rather than ending in the thermodynamically most favorable state, has been demonstrated. As a case study, the phase transitions of indium sesquioxide (In{sub 2}O{sub 3}) have been guided by theoretical calculations and followed in situ under high-pressure high-temperature conditions in multi-anvil assemblies. The corundum-type rh-In{sub 2}O{sub 3} has been synthesized from stable bixbyite-type c-In{sub 2}O{sub 3} in two steps: first generating orthorhombic Rh{sub 2}O{sub 3}-II-type o′-In{sub 2}O{sub 3} which is thermodynamically stable at 8.5 GPa/850 °C and, thereafter, exploiting the preferred kinetics in the subsequent transformation to the rh-In{sub 2}O{sub 3} during decompression. This synthesis strategy of rh-In{sub 2}O{sub 3} was confirmed ex situ in a toroid-type high-pressure apparatus at 8 GPa and 1100 °C. The pressure–temperature phase diagrams have been constructed and the stability fields of In{sub 2}O{sub 3} polymorphs and the crystallographic relationship between them have been discussed. - Graphical abstract: In situ energy-dispersive XRD patterns in multi-anvil assemblies show the sequence of phase transition c-In{sub 2}O{sub 3}→o′-In{sub 2}O{sub 3}→rh-In{sub 2}O{sub 3} under particular pressure and temperature conditions. The tick marks refer to the calculated Bragg positions of bixbyite-type (c-In{sub 2}O{sub 3}), Rh{sub 2}O{sub 3}-II-type (o–-In2O{sub 3}) and corundum-type (rh-In{sub 2}O{sub 3}). - Highlights: • The solid-state synthesis methods can be employed for obtaining metastable phases. • The phase transition of In{sub 2}O{sub 3} was guided by DFT calculations. • The phase transition of In{sub 2}O{sub 3} was followed in situ under HP–HT conditions. • Orthorhombic o′-In{sub 2}O{sub 3} polymorph was synthesized from c-In{sub 2}O{sub 3} at 8.5 GPa/850 °C. • Metastable rh

  16. High-pressure-induced water penetration into 3-­isopropylmalate dehydrogenase

    PubMed Central

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH. PMID:22349232

  17. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure.

    PubMed

    Spaulding, Dylan K; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-01-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis. PMID:25484135

  18. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    NASA Astrophysics Data System (ADS)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  19. A direct method for the correction of pressure-induced scrambling of polarized fluorescence intensities.

    PubMed

    Targowski, P; Davenport, L

    1999-10-15

    A simple and direct method for the simultaneous correction of steady-state polarized fluorescence intensities, depolarized (or scrambled) by the effects of applied hydrostatic pressure, is described. In the method discussed here, it is not necessary to first determine the scrambling factors from a separate experiment with a dye immobilized in a rigid medium. Rather correction for depolarizing effects of the high-pressure spectroscopy cell windows is achieved by direct recalculation of the measured polarized data obtained for the sample of interest at the time of data collection. This method of correction is tested for common fluorescent dyes 1, 6-diphenyl-1,3,5-hexatriene (DPH) and 9,10-diphenylanthracene in glycerol where their rotational behavior is well understood. In addition, the pressure-induced "melt" profile for the more complicated biologically relevant system of DPH imbedded within dipalmitoylphosphatidylcholine small unilamellar vesicles has been reexamined. While the method discussed here is used for the correction of steady-state polarized data, it may be easily adapted for use in time-resolved polarized fluorescence measurements. Advantages and limitations of the new correction method are discussed. PMID:10527523

  20. Pressure-induced frustration in charge ordered spinel AlV₂O₄.

    PubMed

    Kalavathi, S; Raju, Selva Vennila; Williams, Quentin; Sahu, P Ch; Sastry, V S; Sahu, H K

    2013-07-24

    AlV2O4 is the only spinel compound so far known that exists in the charge ordered state at room temperature. It is known to transform to a charge frustrated cubic spinel structure above 427 ° C. The presence of multivalent V ions in the pyrochlore lattice of the cubic spinel phase brings about the charge frustration that is relieved in the room temperature rhombohedral phase by the clustering of vanadium into a heptamer molecular unit along with a lone V atom. The present work is the first demonstration of pressure-induced frustration in the charge ordered state of AlV2O4. Synchrotron powder x-ray diffraction studies carried out at room temperature on AlV2O4 subjected to high pressure in a diamond anvil cell show that the charge ordered rhombohedral phase becomes unstable under the application of pressure and transforms to the frustrated cubic spinel structure. The frustration is found to be present even after pressure recovery. The possible role of pressure on vanadium t2g orbitals in understanding these observations is discussed. PMID:23803292

  1. Pressure-Induced Shifts of R1 and R2 Lines of YAG:Cr3+

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng-Jie; Ma, Dong-Ping

    2006-04-01

    By means of improved ligand-field theory, the ``pure electronic'' pressure-induced shifts (PS's) and the PS's due to electron-phonon interaction (EPI) of R1 line and R2 line of YAG:Cr3+ have been calculated, respectively. The calculated results are in very good agreement with the experimental data. It is demonstrated that the admixture of |t22(3T1)e4T2rangle and |t232Erangle bases in the wavefunction of R1 level of YAG:Cr3+ and its change with pressure play a key role for the PS of R1 line. The behaviors of the ``pure electronic'' PS of R1 line and the PS of R1 line due to EPI are different. It is the combined effect of them that gives rise to the total PS of R1 line, which has satisfactorily explained the experimental results. The systematic analyses and comparisons between the feature of R1-line PS of YAG:Cr3+ and the ones of three laser crystals (GSGG:Cr3+, GGG:Cr3+ and ruby) have been made, and the origin of the difference between them has been revealed.

  2. PPARγ Ligands Decrease Hydrostatic Pressure-Induced Platelet Aggregation and Proinflammatory Activity

    PubMed Central

    Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling

    2014-01-01

    Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940

  3. Pressure-induced polymerization of carbon monoxide: disproportionation and synthesis of an energetic lactonic polymer

    SciTech Connect

    Evans, W J; Lipp, M J; Yoo, C; Herberg, J L; Maxwell, R S; Nicol, M F

    2005-10-04

    We have studied pressure-induced chemical reactions in carbon monoxide using both a diamond-anvil cell and a modified large volume press. Our spectroscopic data reveal that carbon monoxide disproportionates into molecular CO{sub 2} and a solid lactone-type polymer; photochemically above 3.2 GPa, thermochemically above 5 GPa at 300K, or at 3 GPa and {approx}2000K as achieved by laser heating. The solid product can be recovered at ambient conditions with a high degree of conversion, measured to be up to 95% of the original CO. Its fundamental chemical structure includes {beta}-lactone and conjugated C=C, which can be considered a severely modified polymeric carbon suboxide with open ladders and smaller five-membered rings. The polymer is metastable at ambient conditions, spontaneously liberating CO{sub 2} gases exothermically. We find that the recovered polymer has a high energy density, 1-8 KJ/g, and is very combustible. We estimate the density of recovered CO polymer to be at least 1.65 g/cm cm{sup 3}.

  4. Pressure-induced Co2+ photoluminescence quenching in MgAl2O4

    NASA Astrophysics Data System (ADS)

    Nataf, Lucie; Rodríguez, Fernando; Valiente, Rafael

    2012-09-01

    This work investigates the electronic structure and photoluminescence (PL) of Co2+-doped MgAl2O4 and their pressure dependence by time-resolved spectroscopy. The variations of the visible absorption band and its associated emission at 663 nm (τ = 130 ns at ambient conditions) with pressure/temperature can be explained on the basis of a configurational energy model. It provides an interpretation for both the electronic structure and the excited-state phenomena yielding photoluminescence emission and the subsequent quenching. We show that there is an excited-state crossover (ESCO) [4T1(P)↔2E(G)] at ambient pressure, which is responsible for the evolution of the emission spectrum from a broadband emission between 300 K and 100 K to a narrow-line emission at lower temperatures. Contrary to expectations from the Tanabe-Sugano diagram, instead of enhancing ESCO phenomena, pressure reduces PL and even suppresses it (PL quenching) above 6 GPa. We explain such variations in terms of pressure-induced nonradiative relaxation to lower excited states: 2E(G)→4T1(F). The variation of PL intensity and its associated lifetime with pressure supports the proposed interpretation.

  5. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.

    PubMed Central

    Bonev, B B; Morrow, M R

    1995-01-01

    The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure. PMID:8527666

  6. Hydrostatic pressure-induced conformational changes in phosphatidylcholine headgroups: a 2H NMR study.

    PubMed

    Bonev, B B; Morrow, M R

    1995-08-01

    The effects of pressure and temperature on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phosphocholine headgroup conformations were examined using deuterium nuclear magnetic resonance. Isothermal compression was found to produce a decrease in the choline alpha deuteron quadrupole splitting and increases in the choline beta and gamma deuteron quadrupole splittings. A similar counterdirectional change, seen in the presence of positive surface charge, has been attributed to tilting of the headgroup away from the bilayer surface in response to the torque exerted on the phosphocholine dipole by positive surface charges. The direction of the change in headgroup deuteron quadrupole splitting is consistent with the pressure-induced reduction in area per lipid in the liquid crystalline phase, which can be inferred from the ordering of phospholipid acyl chains under comparable conditions. The temperature dependences of the headgroup deuteron quadrupole splittings were also examined. It was found that at elevated pressure, the alpha splitting was insensitive to temperature, whereas the beta and gamma splittings decreased. The response of the beta deuteron splitting to temperature was found to be weaker at elevated pressure than at ambient pressure. PMID:8527666

  7. Pressure-Induced Phase Transformation, Reversible Amorphization, and Anomalous Visible Light Response in Organolead Bromide Perovskite.

    PubMed

    Wang, Yonggang; Lü, Xujie; Yang, Wenge; Wen, Ting; Yang, Liuxiang; Ren, Xiangting; Wang, Lin; Lin, Zheshuai; Zhao, Yusheng

    2015-09-01

    Hydrostatic pressure, as an alternative of chemical pressure to tune the crystal structure and physical properties, is a significant technique for novel function material design and fundamental research. In this article, we report the phase stability and visible light response of the organolead bromide perovskite, CH3NH3PbBr3 (MAPbBr3), under hydrostatic pressure up to 34 GPa at room temperature. Two phase transformations below 2 GPa (from Pm3̅m to Im3̅, then to Pnma) and a reversible amorphization starting from about 2 GPa were observed, which could be attributed to the tilting of PbBr6 octahedra and destroying of long-range ordering of MA cations, respectively. The visible light response of MAPbBr3 to pressure was studied by in situ photoluminescence, electric resistance, photocurrent measurements and first-principle simulations. The anomalous band gap evolution during compression with red-shift followed by blue-shift is explained by the competition between compression effect and pressure-induced amorphization. Along with the amorphization process accomplished around 25 GPa, the resistance increased by 5 orders of magnitude while the system still maintains its semiconductor characteristics and considerable response to the visible light irradiation. Our results not only show that hydrostatic pressure may provide an applicable tool for the organohalide perovskites based photovoltaic device functioning as switcher or controller, but also shed light on the exploration of more amorphous organometal composites as potential light absorber. PMID:26284441

  8. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  9. Pressure-induced dehydration and the structure of ammonia hemihydrate-II.

    PubMed

    Wilson, C W; Bull, C L; Stinton, G; Loveday, J S

    2012-03-01

    The structure of the crystalline ammonia-bearing phase formed when ammonia monohydrate liquid is compressed to 3.5(1) GPa at ambient temperature has been solved from a combination of synchrotron x-ray single-crystal and neutron powder-diffraction studies. The solution reveals that rather than having the ammonia monohydrate (AMH) composition as had been previously thought, the structure has an ammonia hemihydrate composition. The structure is monoclinic with spacegroup P2(1)/c and lattice parameters a = 3.3584(5) Å, b = 9.215(1) Å, c = 8.933(1) Å and β = 94.331(8)° at 3.5(1) GPa. The atomic arrangement has a crowned hexagonal arrangement and is a layered structure with long N-D···N hydrogen bonds linking the layers. The existence of pressure-induced dehydration of AMH may have important consequences for the behaviour and differentiation of icy planets and satellites. PMID:22401451

  10. Pressure-induced zigzag phosphorus chain and superconductivity in boron monophosphide

    PubMed Central

    Zhang, Xinyu; Qin, Jiaqian; Liu, Hanyu; Zhang, Shiliang; Ma, Mingzhen; Luo, Wei; Liu, Riping; Ahuja, Rajeev

    2015-01-01

    We report on the prediction of the zinc-blende structure BP into a novel C2/m phase from 113 to 208 GPa which possesses zigzag phosphorus chain structure, followed by another P42/mnm structure above 208 GPa above using the particle-swarm search method. Strong electron-phonon coupling λ in compressed BP is found, in particular for C2/m phase with the zigzag phosphorus chain, which has the highest λ (0.56–0.61) value among them, leading to its high superconducting critical temperature Tc (9.4 K–11.5 K), which is comparable with the 4.5 K to 13 K value of black phosphorus phase I (orthorhombic, Cmca). This is the first system in the boron phosphides which shows superconductivity from the present theoretical calculations. Our results show that pressure-induced zigzag phosphorus chain in BP exhibit higher superconducting temperature TC, opening a new route to search and design new superconductor materials with zigzag phosphorus chains. PMID:25737341

  11. Buoyancy and Pressure Induced Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    NASA Astrophysics Data System (ADS)

    Jaluria, Yogesh; Tamm, Gunnar Olavi

    2014-11-01

    An experimental investigation was conducted to study buoyancy and pressure induced flow of hot gases in vertical shafts to model smoke propagation in elevator and ventilation shafts of high rise building fires. Various configurations were tested with regard to natural and forced ventilation imposed at the upper and lower surfaces of the vertical shaft. The aspect ratio was taken at a typical value of 6. From a lower vent, the inlet conditions for smoke and hot gases were varied in terms of the Reynolds and Grashof numbers. The forced ventilation at the upper or lower boundary was of the same order as the bulk shaft flow. Measurements were taken within the shaft to allow a detailed study of the steady state flow and thermal fields established for various shaft configurations and inlet conditions, from which optimal means for smoke alleviation in high rise building fires may be developed. Results indicated a wall plume as the primary transport mechanism for smoke propagating from the inlet towards the exhaust region. Recirculation and entrainment dominated at high inlet Grashof number flows, while increased inlet Reynolds numbers allowed greater mixing in the shaft. The development and stability of these flow patterns and their effects on the smoke behavior were assessed for several shaft configurations with different inlet conditions. The comparisons indicated that the fastest smoke removal and lowest overall shaft temperatures occur for a configuration with natural ventilation at the top surface and forced ventilation up from the shaft bottom.

  12. Fabrication of high performance thin-film transistors via pressure-induced nucleation

    PubMed Central

    Kang, Myung-Koo; Kim, Si Joon; Kim, Hyun Jae

    2014-01-01

    We report a method to improve the performance of polycrystalline Si (poly-Si) thin-film transistors (TFTs) via pressure-induced nucleation (PIN). During the PIN process, spatial variation in the local solidification temperature occurs because of a non-uniform pressure distribution during laser irradiation of the amorphous Si layer, which is capped with an SiO2 layer. This leads to a four-fold increase in the grain size of the poly-Si thin-films formed using the PIN process, compared with those formed using conventional excimer laser annealing. We find that thin films with optimal electrical properties can be achieved with a reduction in the number of laser irradiations from 20 to 6, as well as the preservation of the interface between the poly-Si and the SiO2 gate insulator. This interface preservation becomes possible to remove the cleaning process prior to gate insulator deposition, and we report devices with a field-effect mobility greater than 160 cm2/Vs. PMID:25358809

  13. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3

    NASA Astrophysics Data System (ADS)

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C.; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-01

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications.

  14. In vivo monitoring of external pressure induced hemodynamics in skin tissue using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Hequn; Wang, Ruikang K.

    2015-03-01

    Characterization of the relationship between external pressure and blood flow is important in the examination of pressure-induced disturbance in tissue microcirculation. Optical coherence tomography (OCT) angiography is a promising imaging technique, capable of providing the noninvasive extraction of functional vessels within the skin tissue with capillary-scale resolution. Here, we present a feasibility study of OCT angiography to monitor effect of external pressures on blood perfusion in human skin tissue in vivo. Graded external pressure is loaded normal to the surface of the nailfold tissue of a healthy human. The incremental loading is applied step by step and then followed by an immediate release. Concurrent OCT imaging of the nailfold is performed during the pre/post loading. Blood perfusion images including baseline (at pre-loading) and corresponding tissue strain maps are calculated from 3D OCT dataset obtained at the different applied pressures, allowing visualization of capillary perfusion events at stressed nailfold tissue. The results indicate that the perfusion progressively decreases with the constant increase of tissue strain. Reactive hyperemia is occurred right after the removal of the pressure corresponding to quick drop of the increased strain. The perfusion is returned to the baseline level after a few minutes. These findings suggest that OCT microangiography may have great potential for quantitatively assessing tissue microcirculation in the locally pressed tissue in vivo.

  15. Pressure-induced reversal between thermal contraction and expansion in ferroelectric PbTiO3.

    PubMed

    Zhu, Jinlong; Zhang, Jianzhong; Xu, Hongwu; Vogel, Sven C; Jin, Changqing; Frantti, Johannes; Zhao, Yusheng

    2014-01-01

    Materials with zero/near zero thermal expansion coefficients are technologically important for applications in thermal management and engineering. To date, this class of materials can only be produced by chemical routes, either by changing chemical compositions or by composting materials with positive and negative thermal expansion. Here, we report for the first time a physical route to achieve near zero thermal expansion through application of pressure. In the stability field of tetragonal PbTiO3 we observed pressure-induced reversals between thermal contraction and expansion between ambient pressure and 0.9 GPa. This hybrid behavior leads to a mathematically infinite number of crossover points in the pressure-volume-temperature space and near-zero thermal expansion coefficients comparable to or even smaller than those attained by chemical routes. The observed pressures for this unusual phenomenon are within a small range of 0.1-0.9 GPa, potentially feasible for designing stress-engineered materials, such as thin films and nano-crystals, for thermal management applications. PMID:24424396

  16. Pressure-induced phase transformations in alkali-metal hydrides calculated using an improved linear-muffin-tin-orbital-atomic-sphere-approximation energy scheme

    NASA Astrophysics Data System (ADS)

    Rodriguez, C. O.; Methfessel, M.

    1992-01-01

    A scheme for the calculation of total energies from first principles is described which is intermediate between the popular linear muffin-tin-orbital method in the atomic-sphere approximation (LMTO-ASA) and an exact full-potential treatment. The local-density total energy is evaluated accurately for the output charge density from the ASA potential. This method is applied to the study of static structural properties and the pressure-induced phase transformation from B1 (NaCl-structure) to B2 (CsCl-structure) phases for the partially ionic alkaki-metal hydrides NaH and KH and the alkali halide NaCl. Good agreement with experimental transition pressures and volumes is obtained. The series NaH, KH, and NaCl shows the observed strong cation and weak anion dependence. Charge densities and band structures are given at zero and high pressure. Calculated energy-volume curves for LiH show no transition up to 1 Mbar, in agreement with experimental data.

  17. Compressibility and pressure-induced phase transformation of Ti3GeC2

    NASA Astrophysics Data System (ADS)

    Wang, Zhongwu; Zha, C. S.; Barsoum, M. W.

    2004-10-01

    In order to explore the large shear-strain-induced polymorph, α-Ti3GeC2 polycrystals were investigated by using a synchrotron radiation source to 64GPa under nonhydrostatic state. Upon compression to 26.6GPa, α-Ti3GeC2 starts to transform to β-Ti3GeC2. As compared to α-Ti3GeC2, the cell parameter a of β-Ti3GeC2 is slightly shorter, and both c and c /a larger. These two polymorphs exhibit similar compressibility. The bulk modulus is calculated to be 179(±10)GPa at a fixed K'=4.0. This is lower than that of Ti3SiC2, and close to that of Ti3Si0.5Ge0.5C2. The compressibilities of these two Ti3GeC2 polymorphs do not display an apparent anisotropy, and differ from the large anisotropies observed from Ti3SiC2 and Ti3Si0.5Ge0.5C2.

  18. A novel method to detect pressure-induced sensor attenuations (PISA) in an artificial pancreas.

    PubMed

    Baysal, Nihat; Cameron, Fraser; Buckingham, Bruce A; Wilson, Darrell M; Chase, H Peter; Maahs, David M; Bequette, B Wayne

    2014-11-01

    Continuous glucose monitors (CGMs) provide real-time interstitial glucose concentrations that are essential for automated treatment of individuals with type 1 diabetes. Miscalibration, noise spikes, dropouts, or pressure applied to the site (e.g., lying on the site while sleeping) can cause inaccurate glucose signals, which could lead to inappropriate insulin dosing decisions. These studies focus on the problem of pressure-induced sensor attenuations (PISAs) that occur overnight and can cause undesirable pump shut-offs in a predictive low glucose suspend system. The algorithm presented here uses real-time CGM readings without knowledge of meals, insulin doses, activity, sensor recalibrations, or fingerstick measurements. The real-time PISA detection technique was tested on outpatient "in-home" data from a predictive low-glucose suspend trial with over 1125 nights of data. A total of 178 sets were created by using different parameters for the PISA detection algorithm to illustrate its range of available performance. The tracings were reviewed via a web-based analysis tool by an engineer with an extensive expertise on analyzing clinical datasets and ~3% of the CGM readings were marked as PISA events which were used as the gold standard. It is shown that 88.34% of the PISAs were successfully detected by the algorithm, and the percentage of false detections could be reduced to 1.70% by altering the algorithm parameters. Use of the proposed PISA detection method can result in a significant decrease in undesirable pump suspensions overnight, and may lead to lower overnight mean glucose levels while still achieving a low risk of hypoglycemia. PMID:25316716

  19. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute

    NASA Astrophysics Data System (ADS)

    Sarma, Rahul; Paul, Sandip

    2012-09-01

    Molecular dynamics simulations are performed to study the effects of increasing trimethylamine-N-oxide (TMAO) concentration on the pressure-induced dissolution of hydrophobic solutes immersed in water. Such systems are of interest mainly because pressure increases the dissolution of hydrophobic protein interior causing protein denaturation and TMAO acts to offset the protein denaturing effect of high hydrostatic pressures. In view of this, in this study, methane molecules are considered as model hydrophobic molecules and simulations are performed for four independent TMAO solutions each at four different pressures ranging from 2 to 8 kbar. From potentials of mean force calculations, it is found that application of pressure reduces the free energy difference between contact minimum (CM) and solvent-separated (SSM) minimum of hydrophobic solute, suggesting dissolution at high pressures. TMAO, on the other hand, increases the relative stability of CM state of methane molecules relative to its SSM state. High packing efficiency of water molecules around the hydrophobic solute at high pressure is observed. Also observed are TMAO-induced enhancement of water structure and direct hydrogen-bonding interaction between TMAO and water and the correlated dehydration of hydrophobic solute. From hydrogen bond properties and dynamics calculations, it is observed that pressure increases average number of water-water hydrogen bonds while reduces their life-times. In contrast, TMAO reduces water-water hydrogen bonding but enhances their life-times. These results suggest that TMAO can reduce water penetration into the protein interior by enhancing water structure and also forming hydrogen bonds with water and hence counteracts protein unfolding.

  20. Pressure-induced changes in Ca2+-channel excitability in Paramecium.

    PubMed

    Otter, T; Salmon, E D

    1985-07-01

    The behaviour of swimming Paramecium is markedly affected by hydrostatic pressure (50-200 atm, 1 atm = 101 325 Pa). To investigate whether pressure might alter behaviour by acting directly on specific ion channels that mediate the behavioural responses, we examined the effects of K+, Na+ and Ba2+ ions on swimming speed and the reversal response during pressurization and decompression. If pressure acted on the channels that transport these ions, then the pressure-induced responses of swimming Paramecium should be exaggerated or diminished, according to which ions were present in the experimental buffer. Pressurization to 100 atm in standard buffer inhibited the brief reversal of swimming direction that occurred at atmospheric pressure when a paramecium encountered the wall of the pressure chamber. To determine whether pressure impaired mechanoreceptor function or directly blocked the Ca2+-channels that control ciliary reversal, we added Ba2+ or Na+ to standard buffer to induce multiple spontaneous reversals. Pressurization blocked these reversals, suggesting that channel opening is directly inhibited by pressure. Decompression in standard buffer elicited momentary ciliary reversal and backward swimming. Buffers with a high ratio of K+ to Ca2+ suppressed this response, and the decompression-induced reversal was exaggerated in the presence of Ba2+ or Na+, consistent with the effects that these ions are known to have on Paramecium's reversal response. These data imply that, upon decompression, the Ca2+-channels that mediate ciliary reversal open transiently. In addition to blocking the reversal response, pressurization slowed forward swimming. By examining the response to pressurization of Paramecium immobilized by Ni2+, we found that hydrostatic pressure apparently slows swimming by reorientating the direction of ciliary beat. PMID:2415653

  1. Effect of epithelium ATP release on cyclic pressure-induced airway mucus secretion

    PubMed Central

    Tong, Jin; Zhou, Xiang-dong; Perelman, Juliy M.; Kolosov, Victor P.

    2013-01-01

    The cyclic mechanical effect of airflow during breathing creates the optimal airway hydration state. MUC (mucin) 5AC is an important component of the airway mucus. The formation of MUC5AC is related to ATP and intracellular calcium in the epithelial cells. In this study, we evaluated the effect of ATP release from intracellular calcium in epithelial cells on cyclic pressure-induced mucus secretion in the airway. 16HBE (human bronchial epithelial cells) were cultured in vitro on cyclically tilted cultured plates and divided into five groups: control, tilt, tilt and BAPTA–AM (1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid–acetoxymethyl ester), tilt and EGTA and tilt and RB-2 (reactive blue-2). The shear stress and compressive stress were induced by the surface tension of the liquid, atmospheric pressure and liquid gravity. Cell activity, MUC5AC mRNA expression level, MUC5AC protein expression level and ATP release and intracellular calcium changes were measured with the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay, RT–PCR (reverse transcription–PCR), HPLC and inverted fluorescence microscope, respectively. We detected that cyclic pressure significantly increased MUC5AC secretion and ATP release. The enhanced ATP release could be inhibited by both BAPTA–AM and RB-2, while EGTA did not have a suppressive effect. BAPTA–AM, EGTA and RB-2 did not obviously inhibit MUC5AC mRNA expression. Cyclic pressure did not induce MUC5AC secretion in the airway mucus epithelium via Ca2+-dependent ATP release, and nearly all Ca2+ was provided by stored intracellular Ca2+. PMID:24329423

  2. Effect of epithelium ATP release on cyclic pressure-induced airway mucus secretion.

    PubMed

    Tong, Jin; Zhou, Xiang-Dong; Perelman, Juliy M; Kolosov, Victor P

    2013-12-16

    The cyclic mechanical effect of airflow during breathing creates the optimal airway hydration state. Mucin (MUC) 5AC is an impotent component of the airway mucus. The formation of MUC5AC is related to adenosine triphosphate (ATP) and intracellular calciumin the epithelial cells. In this study, we evaluated the effect of ATP release from and intracellular calcium in epithelial cells on cyclic pressure-induced mucus secretion in the airway. Human bronchial epithelial cells (16HBE) were cultured in vitro on cyclically tilted cultured plates and divided into 5 groups: control, tilt, tilt and BAPTA-AM, tilt and EGTA, and tilt and RB-2. The shear stress and compressive stress were induced by the surface tension of the liquid, atmospheric pressure and liquid gravity. Cell activity, MUC5AC mRNA expression level, MUC5AC protein expression level and ATP release, and intracellular calcium changes were measured with the MTT assay, RT-PCR, high performance liquid chromatography (HPLC) and inverted fluorescence microscope, respectively. We detected that cyclic pressure significantly increased MUC5AC secretion and ATP release. The enhanced ATP release could be inhibited by both BAPTA-AM and RB-2, while EGTA did not have a suppressive effect. BAPTA-AM, EGTA, and RB-2 did not obviously inhibit MUC5AC mRNA expression.Cyclic pressure did not induce MUC5AC secretion in the airway mucus epithelium via Ca2+-dependent ATP release, and nearly all Ca2+ was provided by stored intracellular Ca2+. PMID:24329423

  3. Moessbauer studies of pressure-induced amorphization in the molecular crystal SnBr{sub 4}

    SciTech Connect

    Hearne, G.R.; Pasternak, M.P. |; Taylor, R.D.

    1995-10-01

    A single line spectrum is characteristic of the Moessbauer data obtained in the 0--5 GPa range, indicating the preservation of fourfold symmetry of the SnBr{sub 4} molecule in the crystal. Above 5 GPa, near {ital P}{sub {ital c}}, a {ital quadruple} {ital interaction} takes place concurrent with a dramatic increase in the {ital recoil{minus}free} {ital fraction} $({ital f})---. The value of the quadrupole splitting reaches a maximum of 0.9 mm/s at {ital P}{similar_to}15 GPa and remains constant thereafter. By {similar_to}9 GPa the absorption area, which is proportional to {ital f}, increases by 30--40 % over the lowest pressure value and then remains constant at higher pressure. These results are consistent with the formation of a molecular species, e.g., a (SnBr{sub 4}){sub 2} dimer, lacking the {ital T}{sub {ital d}} symmetry at the original Sn{sup 4+} site and having optical phonons {ital hard} enough not to be excited by the nuclear recoil process. Molecular association into (SnBr{sub 4}){sub 2} dimers, the building block of the high-pressure disordered state, also explains many of the experimental features of the Raman data. Upon decompression, Moessbauer (and Raman) data suggest that these dimers dissociate into monomers at {similar_to}5 GPa; however, a disordered structure of SnBr{sub 4} persists as pressure is decreased further. Crystallization is fully recovered below 1 GPa. The nature of the pressure-induced amorphization of the insulator SnBr{sub 4} is discussed in terms of the structural and valence properties of the analogous metallic SnI{sub 4}.

  4. Pressure-induced hemolysis of in vivo aged human erythrocytes is enhanced by inhibition of water transport via aquaporin-1

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takeo; Miyauchi, Shin; Isahara, Yasuyuki

    2013-06-01

    Human erythrocytes are fractionated into young, intermediate, and old cells according to their densities. Pressure-induced hemolysis reflects sensitively membrane perturbations. Therefore, the hemolysis of erythrocytes at 200 MPa was examined using fractionated cells. Pressure-induced hemolysis of old (or in vivo aged) erythrocytes was enhanced, compared with those of young and intermediate cells which showed the same hemolytic values. Flow cytometric analysis showed less fragmentation of old erythrocytes under pressure. Moreover, the water transport through the membrane was suppressed in old erythrocytes than intermediate ones. The low permeability of water in old erythrocytes was confirmed by osmotic hemolysis using a hypotonic buffer. These results suggest that water transport via aquaporin-1 (AQP1) is inhibited in old erythrocytes. As the number of AQP1 molecules remained constant in old erythrocytes, the function of AQP1 may be reduced.

  5. Kinetic Trapping of Metastable Amino Acid Polymorphs

    PubMed Central

    2015-01-01

    Second harmonic generation (SHG) microscopy measurements indicate that inkjet-printed racemic solutions of amino acids can produce nanocrystals trapped in metastable polymorph forms upon rapid solvent evaporation. Polymorphism impacts the composition, distribution, and physico-kinetic properties of organic solids, with energetic arguments favoring the most stable polymorph. In this study, unfavored noncentrosymmetric crystal forms were observed by SHG microscopy. Polarization-dependent SHG measurement and synchrotron X-ray microdiffraction analysis of individual printed drops are consistent with formation of homochiral crystal production. Fundamentally, these results provide evidence supporting the ubiquity of Ostwald’s Rule of Stages, describing the hypothesized transitioning of crystals between metastable polymorphic forms in the early stages of crystal formation. Practically, the presence of homochiral metastable forms has implications on chiral resolution and on solid form preparations relying on rapid solvent evaporation. PMID:24451055

  6. Kinetic trapping of metastable amino acid polymorphs.

    PubMed

    Chowdhury, Azhad U; Dettmar, Christopher M; Sullivan, Shane Z; Zhang, Shijie; Jacobs, Kevin T; Kissick, David J; Maltais, Thora; Hedderich, Hartmut G; Bishop, Patricia A; Simpson, Garth J

    2014-02-12

    Second harmonic generation (SHG) microscopy measurements indicate that inkjet-printed racemic solutions of amino acids can produce nanocrystals trapped in metastable polymorph forms upon rapid solvent evaporation. Polymorphism impacts the composition, distribution, and physico-kinetic properties of organic solids, with energetic arguments favoring the most stable polymorph. In this study, unfavored noncentrosymmetric crystal forms were observed by SHG microscopy. Polarization-dependent SHG measurement and synchrotron X-ray microdiffraction analysis of individual printed drops are consistent with formation of homochiral crystal production. Fundamentally, these results provide evidence supporting the ubiquity of Ostwald's Rule of Stages, describing the hypothesized transitioning of crystals between metastable polymorphic forms in the early stages of crystal formation. Practically, the presence of homochiral metastable forms has implications on chiral resolution and on solid form preparations relying on rapid solvent evaporation. PMID:24451055

  7. Pressure-induced Γ-X electron-transfer rates in a (GaAs)15/(AlAs)5 superlattice

    NASA Astrophysics Data System (ADS)

    Nunnenkamp, J.; Reimann, K.; Kuhl, J.; Ploog, K.

    1991-10-01

    Time-resolved measurements on pressure-induced type-II Γ-X electron transfer in a (GaAs)15/(AlAs)5 superlattice have been performed using the femtosecond pump-and-probe technique. In the case of type-II character, the measured transfer times τΓ-X depend on the energy separation ΔΓX of Γ and X states as τ-1Γ-X~(ΔΓX)1/2, showing that the transfer process consists of (1) relaxation and quasithermalization of the electrons and holes in the GaAs, and (2) transfer of the electrons to the AlAs layer. Well above the crossover pressure Pc the scattering rates are independent of the carrier density. Near Pc=1.2 GPa, a carrier-induced type-I-type-II crossover leads to a shift of Pc towards lower pressures, giving Pc~=0.9 GPa at 1.5×1012 cm-2. This value Pcdyn is explained in terms of the different band-gap renormalizations of the direct Γ and indirect X-point transitions. The renormalization of the X state is found to be twice as large as the Γ-state renormalization.

  8. Glass polymorphism in glycerol-water mixtures: II. Experimental studies.

    PubMed

    Bachler, Johannes; Fuentes-Landete, Violeta; Jahn, David A; Wong, Jessina; Giovambattista, Nicolas; Loerting, Thomas

    2016-04-20

    We report a detailed experimental study of (i) pressure-induced transformations in glycerol-water mixtures at T = 77 K and P = 0-1.8 GPa, and (ii) heating-induced transformations of glycerol-water mixtures recovered at 1 atm and T = 77 K. Our samples are prepared by cooling the solutions at ambient pressure at various cooling rates (100 K s(-1)-10 K h(-1)) and for the whole range of glycerol mole fractions, χg. Depending on concentration and cooling rates, cooling leads to samples containing amorphous ice (χg ≥ 0.20), ice (χg ≤ 0.32), and/or "distorted ice" (0 < χg ≤ 0.38). Upon compression, we find that (a) fully vitrified samples at χg ≥ 0.20 do not show glass polymorphism, in agreement with previous works; (b) samples containing ice show pressure-induced amorphization (PIA) leading to the formation of high-density amorphous ice (HDA). PIA of ice domains within the glycerol-water mixtures is shown to be possible only up to χg ≈ 0.32 (T = 77 K). This is rather surprising since it has been known that at χg < 0.38, cooling leads to phase-separated samples with ice and maximally freeze-concentrated solution of χg ≈ 0.38. Accordingly, in the range 0.32 < χg < 0.38, we suggest that the water domains freeze into an interfacial ice, i.e., a highly-distorted form of layered ice, which is unable to transform to HDA upon compression. Upon heating samples recovered at 1 atm, we observe a rich phase behavior. Differential scanning calorimetry indicates that only at χg ≤ 0.15, the water domains within the sample exhibit polyamorphism, i.e., the HDA-to-LDA (low-density amorphous ice) transformation. At 0.15 < χg ≤ 0.38, samples contain ice, interfacial ice, and/or HDA domains. All samples (χg ≤ 0.38) show: the crystallization of amorphous ice domains, followed by the glass transition of the vitrified glycerol-water domains and, finally, the melting of ice at high temperatures. Our work exemplifies the complex "phase" behavior of glassy binary

  9. Glass polymorphism in glycerol–water mixtures: II. Experimental studies

    PubMed Central

    Bachler, Johannes; Fuentes-Landete, Violeta; Jahn, David A.; Wong, Jessina; Giovambattista, Nicolas

    2016-01-01

    We report a detailed experimental study of (i) pressure-induced transformations in glycerol–water mixtures at T = 77 K and P = 0–1.8 GPa, and (ii) heating-induced transformations of glycerol–water mixtures recovered at 1 atm and T = 77 K. Our samples are prepared by cooling the solutions at ambient pressure at various cooling rates (100 K s–1–10 K h–1) and for the whole range of glycerol mole fractions, χ g. Depending on concentration and cooling rates, cooling leads to samples containing amorphous ice (χ g ≥ 0.20), ice (χ g ≤ 0.32), and/or “distorted ice” (0 < χ g ≤ 0.38). Upon compression, we find that (a) fully vitrified samples at χ g ≥ 0.20 do not show glass polymorphism, in agreement with previous works; (b) samples containing ice show pressure-induced amorphization (PIA) leading to the formation of high-density amorphous ice (HDA). PIA of ice domains within the glycerol–water mixtures is shown to be possible only up to χ g ≈ 0.32 (T = 77 K). This is rather surprising since it has been known that at χ g < 0.38, cooling leads to phase-separated samples with ice and maximally freeze-concentrated solution of χ g ≈ 0.38. Accordingly, in the range 0.32 < χ g < 0.38, we suggest that the water domains freeze into an interfacial ice, i.e., a highly-distorted form of layered ice, which is unable to transform to HDA upon compression. Upon heating samples recovered at 1 atm, we observe a rich phase behavior. Differential scanning calorimetry indicates that only at χ g ≤ 0.15, the water domains within the sample exhibit polyamorphism, i.e., the HDA-to-LDA (low-density amorphous ice) transformation. At 0.15 < χ g ≤ 0.38, samples contain ice, interfacial ice, and/or HDA domains. All samples (χ g ≤ 0.38) show: the crystallization of amorphous ice domains, followed by the glass transition of the vitrified glycerol–water domains and, finally, the melting of ice at high temperatures. Our work exemplifies the complex

  10. Multispectrum Analysis of the v4 Band of CH3CN: Positions, Intensities, Self and N2 Broadening and Pressure-Induced Shifts

    SciTech Connect

    Rinsland, Curtis P; Devi, V M; Benner, D C; Blake, Thomas A; Sams, Robert L; Brown, Linda R; Kleiner, Isabelle; Dehayem-kamadjeu, A; Muller, H S; Gamache, R R; Niles, Danielle L; Masiello, Tony

    2008-04-01

    A multispectrum nonlinear least squares fitting technique has been applied to measure accurate zero-pressure line center positions, Lorentz self- and N2-broadening coefficients and self- and N2-pressure-induced shift coefficients in the parallel ν4 band of CH3CN near 920 cm-1. Fifteen high-resolution (0.0029 cm-1) laboratory absorption spectra of pure and N2-broadened CH3CN recorded at room temperature using the Bruker IFS 125HR Fourier transform spectrometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, U.S.A. were analyzed simultaneously. Short spectral intervals containing manifolds of transitions from the same value of J have been fitted together. In all, we have obtained high precision line positions, absolute line intensities, self- and N2-broadening coefficients for P(44) through P(3) and R(0) through R(46) manifolds. All measurements have been fitted successfully assuming a Voigt line shape. Preliminary fits of line intensities up to J = 47 using one principal dipole moment derivative and three Herman-Wallis terms are reported. The results are not fully satisfactory due to perturbations caused by interactions with other bands. The total intensity obtained from this prediction by summing individual line intensities for the v4 band region has been compared with the integrated absorption coefficient reported for the v4 band from lower resolution spectra measured at the same laboratory facility. The variations of N2 broadening, self-broadening, N2- shift and self-shift coefficients with the J and K quantum numbers have been measured for the first time. N2-broadening coefficients decrease with increasing J and K. Some self-broadening coefficients are very large (up to ~2 cm-1 atm-1 at 294 K). Ratios of N2-broadening coefficients to self-broadening coefficients show a compact distribution with rotational quantum number in both the P- and R-branches that range from ~0.45 to 15 with a maxima ratio near J"=13. Pressure-induced

  11. Strong cooperative coupling of pressure-induced magnetic order and nematicity in FeSe.

    PubMed

    Kothapalli, K; Böhmer, A E; Jayasekara, W T; Ueland, B G; Das, P; Sapkota, A; Taufour, V; Xiao, Y; Alp, E; Bud'ko, S L; Canfield, P C; Kreyssig, A; Goldman, A I

    2016-01-01

    A hallmark of the iron-based superconductors is the strong coupling between magnetic, structural and electronic degrees of freedom. However, a universal picture of the normal state properties of these compounds has been confounded by recent investigations of FeSe where the nematic (structural) and magnetic transitions appear to be decoupled. Here, using synchrotron-based high-energy x-ray diffraction and time-domain Mössbauer spectroscopy, we show that nematicity and magnetism in FeSe under applied pressure are indeed strongly coupled. Distinct structural and magnetic transitions are observed for pressures between 1.0 and 1.7 GPa and merge into a single first-order transition for pressures ≳1.7 GPa, reminiscent of what has been found for the evolution of these transitions in the prototypical system Ba(Fe1-xCox)2As2. Our results are consistent with a spin-driven mechanism for nematic order in FeSe and provide an important step towards a universal description of the normal state properties of the iron-based superconductors. PMID:27582003

  12. Pressure-Induced Confined Metal from the Mott Insulator Sr3 Ir2 O7

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Yang, Liuxiang; Chen, Cheng-Chien; Kim, Heung-Sik; Han, Myung Joon; Luo, Wei; Feng, Zhenxing; Upton, Mary; Casa, Diego; Kim, Jungho; Gog, Thomas; Zeng, Zhidan; Cao, Gang; Mao, Ho-kwang; van Veenendaal, Michel

    2016-05-01

    The spin-orbit Mott insulator Sr3Ir2O7 provides a fascinating playground to explore insulator-metal transition driven by intertwined charge, spin, and lattice degrees of freedom. Here, we report high-pressure electric resistance and resonant inelastic x-ray scattering measurements on single-crystal Sr3Ir2O7 up to 63-65 GPa at 300 K. The material becomes a confined metal at 59.5 GPa, showing metallicity in the a b plane but an insulating behavior along the c axis. Such an unusual phenomenon resembles the strange metal phase in cuprate superconductors. Since there is no sign of the collapse of spin-orbit or Coulomb interactions in x-ray measurements, this novel insulator-metal transition is potentially driven by a first-order structural change at nearby pressures. Our discovery points to a new approach for synthesizing functional materials.

  13. Pressure-Induced Confined Metal from the Mott Insulator Sr_{3}Ir_{2}O_{7}.

    PubMed

    Ding, Yang; Yang, Liuxiang; Chen, Cheng-Chien; Kim, Heung-Sik; Han, Myung Joon; Luo, Wei; Feng, Zhenxing; Upton, Mary; Casa, Diego; Kim, Jungho; Gog, Thomas; Zeng, Zhidan; Cao, Gang; Mao, Ho-Kwang; van Veenendaal, Michel

    2016-05-27

    The spin-orbit Mott insulator Sr_{3}Ir_{2}O_{7} provides a fascinating playground to explore insulator-metal transition driven by intertwined charge, spin, and lattice degrees of freedom. Here, we report high-pressure electric resistance and resonant inelastic x-ray scattering measurements on single-crystal Sr_{3}Ir_{2}O_{7} up to 63-65 GPa at 300 K. The material becomes a confined metal at 59.5 GPa, showing metallicity in the ab plane but an insulating behavior along the c axis. Such an unusual phenomenon resembles the strange metal phase in cuprate superconductors. Since there is no sign of the collapse of spin-orbit or Coulomb interactions in x-ray measurements, this novel insulator-metal transition is potentially driven by a first-order structural change at nearby pressures. Our discovery points to a new approach for synthesizing functional materials. PMID:27284666

  14. Pressure-induced changes in the dielectric response of polymer relaxors

    SciTech Connect

    Hilczer, B.; Szafranski, M.; Hilczer, A.

    2012-01-30

    The effect of hydrostatic pressure on the dielectric response of P(VDF/TrFE)(50/50) irradiated with fast electrons has been studied. A non-linear upward shift of the glass transition temperature T{sub g} and the Curie temperature T{sub C} of the polymer relaxors was observed under pressure with the initial slope dT{sub g}/dp being considerably smaller than dT{sub C}/dp. Moreover, pressure was found to reduce the contribution to the low-frequency dielectric absorption originating from segmental motions in the amorphous phase whereas the contribution related to ferroelectric-paraelectric transition and that of polar nanoclusters in the crystalline phase were found to be enhanced.

  15. Search for pressure-induced superconductivity in CeFeAsO and CeFePO iron pnictides

    SciTech Connect

    Zocco, D. A.; Baumbach, R. E.; Hamlin, J. J.; Janoschek, M.; Lum, I. K.; McGuire, Michael A; Safa-Sefat, Athena; Sales, Brian C; Jin, Rongying; Mandrus, David; Jeffries, J. R.; Weir, S. T.; Vohra, Y. K.; Maple, M. B.

    2011-01-01

    The CeFeAsO and CeFePO iron pnictide compounds were studied via electrical transport measurements under high pressure. In CeFeAsO polycrystals, the magnetic phases involving the Fe and Ce ions coexist for hydrostatically applied pressures up to 15 GPa, and with no signs of pressure-induced superconductivity up to 50 GPa for the less hydrostatic pressure techniques. For the CeFePO single crystals, pressure further stabilizes the Kondo screening of the Ce 4f-electron magnetic moments.

  16. Pressure-Induced Alterations in PEDF and PEDF-R Expression: Implications for Neuroprotective Signaling in Glaucoma

    PubMed Central

    Lee, Sean J; Duncan, D’Anne S; Echevarria, Franklin D; McLaughlin, William M; Hatcher, Jeremy B; Sappington, Rebecca M

    2015-01-01

    Introduction Alterations in neuron-glia signaling are implicated in glaucoma, a neurodegenerative disease characterized by retinal ganglion cell (RGC) death. Pigment epithelium derived factor (PEDF) is a secreted protein with potential neuroprotective qualities in retinal disease, including chronic ocular hypertension. Here we sought to determine whether moderate, short-term elevations in IOP alter PEDF signaling and whether pressure-induced PEDF signaling directly impacts RGC apoptosis. Methods In retina from naïve mice and mice with unilateral, microbead-induced glaucoma, we examined expression and cell type-specific localization of PEDF and its receptor (PEDF-R), using quantitative PCR and immunohistochemistry. Using primary cultures of purified RGCs and Müller cells, we examined cell type-specific expression of PEDF in response to 48 hours of elevated hydrostatic pressure, using multiplex ELISA and immunocytochemistry. We also measured pressure-induced apoptosis of RGCs in the presence or absence of atglistatin, a potent and selective inhibitor of PEDF-R, and recombinant PEDF, using TUNEL assays. Results PEDF and PEDF-R are constitutively expressed in naïve retina, primarily in the ganglion cell and nerve fiber layers. Elevated IOP increases PEDF and PEDF-R expression, particularly associated with RGCs and Müller cells. Elevated pressure in vitro increased PEDF secretion by 6-fold in RGCs and trended towards an increase in expression by Müller cells, as compared to ambient pressure. This was accompanied by changes in the subcellular localization of PEDF-R in both cell types. Inhibition of PEDF signaling with atglistatin increased pressure-induced apoptosis in RGCs and treatment with recombinant PEDF inhibited pressure-induced apoptosis, both in a dose-dependent manner. Conclusion Our findings suggest that moderate, short-term elevations in IOP promote PEDF signaling via up-regulation of both PEDF and PEDF-R. Based on in vivo and in vitro studies, this PEDF

  17. Pressure-induced quenching of the charge-density-wave state observed by x-ray diffraction

    SciTech Connect

    Sacchetti, A.

    2010-05-03

    We report an x-ray diffraction study on the charge-density-wave (CDW) LaTe{sub 3} and CeTe{sub 3} compounds as a function of pressure. We extract the lattice constants and the CDW modulation wave-vector, and provide direct evidence for a pressure-induced quenching of the CDW phase. We observe subtle differences between the chemical and mechanical compression of the lattice. We account for these with a scenario where the effective dimensionality in these CDW systems is dependent on the type of lattice compression and has a direct impact on the degree of Fermi surface nesting and on the strength of fluctuation effects.

  18. Pressure-induced superconductivity in a three-dimensional topological material ZrTe5.

    PubMed

    Zhou, Yonghui; Wu, Juefei; Ning, Wei; Li, Nana; Du, Yongping; Chen, Xuliang; Zhang, Ranran; Chi, Zhenhua; Wang, Xuefei; Zhu, Xiangde; Lu, Pengchao; Ji, Cheng; Wan, Xiangang; Yang, Zhaorong; Sun, Jian; Yang, Wenge; Tian, Mingliang; Zhang, Yuheng; Mao, Ho-Kwang

    2016-03-15

    As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Using resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges. The superconducting transition temperature Tc increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum Tc of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement, and theoretical calculations enable a complete understanding of the emerging exotic properties in 3D topological materials under extreme environments. PMID:26929327

  19. Pressure-induced superconductivity in a three-dimensional topological material ZrTe5

    NASA Astrophysics Data System (ADS)

    Zhou, Yonghui; Wu, Juefei; Ning, Wei; Li, Nana; Du, Yongping; Chen, Xuliang; Zhang, Ranran; Chi, Zhenhua; Wang, Xuefei; Zhu, Xiangde; Lu, Pengchao; Ji, Cheng; Wan, Xiangang; Yang, Zhaorong; Sun, Jian; Yang, Wenge; Tian, Mingliang; Zhang, Yuheng; Mao, Ho-kwang

    2016-03-01

    As a new type of topological materials, ZrTe5 shows many exotic properties under extreme conditions. Using resistance and ac magnetic susceptibility measurements under high pressure, while the resistance anomaly near 128 K is completely suppressed at 6.2 GPa, a fully superconducting transition emerges. The superconducting transition temperature Tc increases with applied pressure, and reaches a maximum of 4.0 K at 14.6 GPa, followed by a slight drop but remaining almost constant value up to 68.5 GPa. At pressures above 21.2 GPa, a second superconducting phase with the maximum Tc of about 6.0 K appears and coexists with the original one to the maximum pressure studied in this work. In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopy combined with theoretical calculations indicate the observed two-stage superconducting behavior is correlated to the structural phase transition from ambient Cmcm phase to high-pressure C2/m phase around 6 GPa, and to a mixture of two high-pressure phases of C2/m and P-1 above 20 GPa. The combination of structure, transport measurement, and theoretical calculations enable a complete understanding of the emerging exotic properties in 3D topological materials under extreme environments.

  20. Polymorphism Control in Nanostructured Metal Oxides

    NASA Astrophysics Data System (ADS)

    Sood, Shantanu

    Polymorphic phase transformations are common to all nanocrystalline binary metal oxides. The polymorphic nature of such metal oxides makes available a large number of phases with differing crystal structures, each stable under certain conditions of temperature, pressure, and/or particle size. These different crystal structures translate to unique physical and chemical properties for each structural class of polymorphs. Thus predicting when polymorphic phase transitions are likely to occur becomes important to the synthesis of stable functional materials with desired properties. Theoretical calculations using a heuristic approach have resulted in an accurate estimation of the critical particle size predicting metastable to stable phase transitions. This formula is applied to different case studies: for anatase to rutile titania; gamma-Alumina to alpha-Alumina; and tetragonal to monoclinic zirconia. The theoretical values calculated have been seen to be very close to the experimental results from the literature. Manifestation of the effect of phase transitions in nanostructured metal oxides was provided in the study of metastable to stable phase transitions in WO3. Nanowires of tungsten trioxide have been synthesized in-situ inside an electron microscope. Such structure of tungsten trioxide result due to a metastable to stable phase transformation, from the cubic to the monoclinic phase. The transformation is massive and complete. The structures formed are unique one-dimensional nanowires. Such a method can be scaled inside any equipment equipped with an electron gun, for example lithography systems either using STEM or E-beam lithography. Another study on nanowire formation in binary metal oxides involved the synthesis of stable orthorhombic MoO3 by means of blend electrospinning. Both a traditional single jet electrospinning set up and a novel high-throughput process to get high aspect ratio nanowires. The latter is a jet-controlled and flow controlled

  1. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  2. Pressure induced novel-phenomena in Mott insulator Ca2RuO4

    NASA Astrophysics Data System (ADS)

    Yamauchi, Yohei; Nakamura, Fumihiko; Sakaki, Mariko; Takemoto, Tetsuo; Suzuki, Takashi; Alireza, Patricia L.; Maeno, Yoshiteru

    2010-12-01

    In order to explore unconventional superconductivity, we have studied pressure effect on a 4d-electron Mott insulator Ca2RuO4. Pressurisation to Ca2RuO4 above 0.5 GPa transforms it from a Mott insulator to a metal with a ferromagnetic ground state. The itinerancy of the ferromagnetic state at 2 GPa is quantitatively evidenced by the magnetisation process at 2 K. Moreover, the pressure phase diagram of this system suggests the existence of a ferromagnetic quantum phase transition at ˜10 GPa.

  3. Synthesis, Structure, and Pressure-Induced Polymerization of Li 3 Fe(CN) 6 Accompanied with Enhanced Conductivity

    DOE PAGESBeta

    Li, Kuo; Zheng, Haiyan; Hattori, Takanori; Sano-Furukawa, Asami; Tulk, Christopher A.; Molaison, Jamie; Feygenson, Mikhail; Ivanov, Ilia N.; Yang, Wenge; Mao, Ho-kwang

    2015-11-17

    By providing a new route to synthesize inorganic/organic conductors with tunable composition and properties, pressure-induced polymerization of charged triple-bond monomers like acetylide and cyanide could lead to formation of a conductive metal–carbon network composite. The industry application of this promising synthetic method is mainly limited by the reaction pressure needed, which is often too high to be reached for gram amounts of sample. Here we successfully synthesized highly conductive Li3Fe(CN)6 at maximum pressure around 5 GPa and used in situ diagnostic tools to follow the structural and functional transformations of the sample, including in situ X-ray and neutron diffraction andmore » Raman and impedance spectroscopy, along with the neutron pair distribution function measurement on the recovered sample. The cyanide anions start to react around 1 GPa and bond to each other irreversibly at around 5 GPa, which are the lowest reaction pressures in all known metal cyanides and within the technologically achievable pressure range for industrial production. Moreover, the conductivity of the polymer is above 10–3 S·cm–1, which reaches the range of conductive polymers. Our investigation suggests that the pressure-induced polymerization route is practicable for synthesizing some types of functional conductive materials for industrial use, and further research like doping and heating can hence be motivated to synthesize novel materials under lower pressure and with better performances.« less

  4. Pressure-induced amorphization of YVO₄:Eu³⁺ nanoboxes.

    PubMed

    Ruiz-Fuertes, J; Gomis, O; León-Luis, S F; Schrodt, N; Manjón, F J; Ray, S; Santamaría-Pérez, D; Sans, J A; Ortiz, H M; Errandonea, D; Ferrer-Roca, C; Segura, A; Martínez-García, D; Lavín, V; Rodríguez-Mendoza, U R; Muñoz, A

    2016-01-15

    A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu(3+) nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu(3+) photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two (5)D0-->(7)F0 photoluminescence peaks confirms the existence of two local environments for Eu(3+), at least for the low-pressure phase. One environment is the expected for substituting Y(3+) and the other is likely a disordered environment possibly found at the surface of the nanoboxes. PMID:26618997

  5. Giant pressure-induced volume collapse in the pyrite mineral MnS2

    PubMed Central

    Kimber, Simon A. J.; Salamat, Ashkan; Evans, Shaun R.; Jeschke, Harald O.; Muthukumar, Kaliappan; Tomić, Milan; Salvat-Pujol, Francesc; Valentí, Roser; Kaisheva, Maria V.; Zizak, Ivo; Chatterji, Tapan

    2014-01-01

    Dramatic volume collapses under pressure are fundamental to geochemistry and of increasing importance to fields as diverse as hydrogen storage and high-temperature superconductivity. In transition metal materials, collapses are usually driven by so-called spin-state transitions, the interplay between the single-ion crystal field and the size of the magnetic moment. Here we show that the classical mineral hauerite (MnS2) undergoes an unprecedented collapse driven by a conceptually different magnetic mechanism. Using synchrotron X-ray diffraction we show that cold compression induces the formation of a disordered intermediate. However, using an evolutionary algorithm we predict a new structure with edge-sharing chains. This is confirmed as the thermodynamic ground state using in situ laser heating. We show that magnetism is globally absent in the new phase, as low-spin quantum moments are quenched by dimerization. Our results show how the emergence of metal–metal bonding can stabilize giant spin-lattice coupling in Earth’s minerals. PMID:24706831

  6. Atomic structure and pressure-induced phase transformations in a phase-change alloy

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their

  7. Pressure-induced structural changes in NH{sub 4}Br

    SciTech Connect

    Huang, Yanping; Huang, Xiaoli; Li, Wenbo; Wang, Lu; Wu, Gang; Zhao, Zhonglong; Duan, Defang; Bao, Kuo; Zhou, Qiang; Liu, Bingbing; Cui, Tian

    2015-08-14

    We report angle dispersive X-ray diffraction (XRD) measurements and Raman spectroscopy on NH{sub 4}Br up to 70.0 GPa at room temperature. Three thermodynamically stable phases (phases II, IV, and V) are confirmed and a new possible phase (phase VI) of P2{sub 1}/m symmetry is proposed whose structure was established from Rietveld refinement of synchrotron XRD data for the first time. The phase sequence observed in NH{sub 4}Br is in accordance with phase II → IV → V → VI. Phase V transforms into phase VI at about 57.8 GPa with a huge volume reduction of 30%. Still, the intramolecular distances are analyzed to better understand the nature of structures. The H–H interactions become markedly more important as the N–Br distances are compacted, which is probably the reason of the kink of symmetric stretching band (ν{sub 1}) at the transition pressure.

  8. Pressure-induced amorphization of ionic liquid [HMIM][PF6

    NASA Astrophysics Data System (ADS)

    Ren, Yufen; Li, Haining; Zhu, Xiang; Chen, Liucheng; Su, Lei; Yang, Kun; Yang, Guoqiang; Wang, Hua

    2015-06-01

    Phase behavior of ionic liquid [HMIM][PF6] has been investigated under high pressure up to 5.6 GPa at room temperature. The results indicated that [HMIM][PF6] might experience a phase transition at about 3.4 GPa upon compression, which could be identified as solidification to superpressurized glass by ruby R1 line broadening measurement and synchrotron X-ray diffraction (XRD) patterns. For conformational equilibrium, the fraction of all-anti (AAAA) conformer increased upon compression, while the conformational change was independent of temperature. These facts indicated that there were large differences of the structure in response to the extreme conditions, especially in the structure of the cation.

  9. Pressure-induced structures of Si-doped HfO{sub 2}

    SciTech Connect

    Fancher, Chris M.; Nelson, Matthew; Jones, Jacob L.; Zhao, Lili; Bai, Ligang; Shen, Guoyin

    2015-06-21

    The effect of hydrostatic pressure on the structure of Si-doped HfO{sub 2} (Si:HfO{sub 2}) was studied by using a diamond anvil cell in combination with high-energy X-ray diffraction at a synchrotron source. Diffraction data were measured in situ during compression up to pressures of 31 GPa. Si:HfO{sub 2} with 3, 5, and 9 at. % Si were found to undergo a monoclinic to orthorhombic transition at pressures between 7 and 15 GPa. Whole pattern analysis was carried out using nonpolar (Pbca) and polar (Pca2{sub 1}) crystallographic models to investigate the symmetry of the observed high-pressure orthorhombic phase. Rietveld refinement results cannot discriminate a reliable difference between the Pbca and Pca2{sub 1} structures as they nearly equally model the measured diffraction data. The pressure dependent lattice parameters, relative volume, and spontaneous strain are reported.

  10. Pressure-induced metallization and amorphization in V O2(A ) nanorods

    NASA Astrophysics Data System (ADS)

    Cheng, Benyuan; Li, Quanjun; Zhang, Huafang; Liu, Ran; Liu, Bo; Yao, Zhen; Cui, Tian; Liu, Jing; Liu, Zhenxian; Sundqvist, Bertil; Liu, Bingbing

    2016-05-01

    A metallic state enabled by the metal-insulator transition (MIT) in single crystal V O2(A ) nanorods is demonstrated, which provides important physical foundation in experimental understanding of MIT in V O2 . The observed tetragonal metallic state at ˜28 GPa should be interpreted as a distinct metastable state, while increasing pressure to ˜32 GPa, it transforms into a metallic amorphous state completely. The metallization is due to V 3 d orbital electrons delocalization, and the amorphization is attributed to the unique variation of V-O-V bond angle. A metallic amorphous V O2 state is found under pressure, which is beneficial to explore the phase diagram of V O2 . Furthermore, this work proves the occurrence of both the metallization and amorphization in octahedrally coordinated materials.

  11. Magnetic Precursor of the Pressure-Induced Superconductivity in Fe-Ladder Compounds

    NASA Astrophysics Data System (ADS)

    Chi, Songxue; Uwatoko, Yoshiya; Cao, Huibo; Hirata, Yasuyuki; Hashizume, Kazuki; Aoyama, Takuya; Ohgushi, Kenya

    2016-07-01

    The pressure effects on the antiferromagentic orders in iron-based ladder compounds CsFe2Se3 and BaFe2S3 have been studied using neutron diffraction. With identical crystal structure and similar magnetic structures, the two compounds exhibit highly contrasting magnetic behaviors under moderate external pressures. In CsFe2Se3 the ladders are brought much closer to each other by pressure, but the stripe-type magnetic order shows no observable change. In contrast, the stripe order in BaFe2S3 undergoes a quantum phase transition where an abrupt increase of Néel temperature by more than 50% occurs at about 1 GPa, accompanied by a jump in the ordered moment. With its spin structure unchanged, BaFe2S3 enters an enhanced magnetic phase that bears the characteristics of an orbital selective Mott phase, which is the true neighbor of superconductivity emerging at higher pressures.

  12. Magnetic Precursor of the Pressure-Induced Superconductivity in Fe-Ladder Compounds.

    PubMed

    Chi, Songxue; Uwatoko, Yoshiya; Cao, Huibo; Hirata, Yasuyuki; Hashizume, Kazuki; Aoyama, Takuya; Ohgushi, Kenya

    2016-07-22

    The pressure effects on the antiferromagentic orders in iron-based ladder compounds CsFe_{2}Se_{3} and BaFe_{2}S_{3} have been studied using neutron diffraction. With identical crystal structure and similar magnetic structures, the two compounds exhibit highly contrasting magnetic behaviors under moderate external pressures. In CsFe_{2}Se_{3} the ladders are brought much closer to each other by pressure, but the stripe-type magnetic order shows no observable change. In contrast, the stripe order in BaFe_{2}S_{3} undergoes a quantum phase transition where an abrupt increase of Néel temperature by more than 50% occurs at about 1 GPa, accompanied by a jump in the ordered moment. With its spin structure unchanged, BaFe_{2}S_{3} enters an enhanced magnetic phase that bears the characteristics of an orbital selective Mott phase, which is the true neighbor of superconductivity emerging at higher pressures. PMID:27494496

  13. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    SciTech Connect

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  14. Hydrostatic pressure induced three-dimensional Dirac semimetal in black phosphorus

    NASA Astrophysics Data System (ADS)

    Gong, Peng-Lai; Liu, Da-Yong; Yang, Kai-Shuai; Xiang, Zi-Ji; Chen, Xian-Hui; Zeng, Zhi; Shen, Shun-Qing; Zou, Liang-Jian

    2016-05-01

    We present the first-principles studies on the hydrostatic pressure effect of the electronic properties of black phosphorus. We show that the energy bands crossover around the critical pressure Pc=1.23 GPa; with increasing pressure, the band reversal occurs at the Z point and evolves into 4 twofold-degenerate Dirac cones around the Z point, suggesting that pressured black phosphorus is a 3D Dirac semimetal. With further increasing pressure the Dirac cones in the Γ -Z line move toward the Γ point and evolve into two hole-type Fermi pockets, and those in the Z -M lines move toward the M point and evolve into two tiny electron-type Fermi pockets, and a band above the Z -M line sinks below EF and contributes four electron-type pockets. A clear Lifshitz transition occurs at Pc from semiconductor to 3D Dirac semimetal. Such a 3D Dirac semimetal is protected by the nonsymmorphic space symmetry of bulk black phosphorus. These suggest the bright perspective of black phosphorus for optoelectronic and electronic devices due to its easy modulation by pressure.

  15. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs.

    PubMed

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K; Rüegg, Christian; Susner, Michael A; Sefat, Athena S; Zhigadlo, Nikolai D; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5 < or ~  p < or ~ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc(3.2) as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  16. Pressure-induced transformations of onion-like carbon nanospheres up to 48 GPa

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Yao, Mingguang; Fan, Xianhong; Zhao, Shijia; Chen, Shuanglong; Gong, Chen; Yuan, Ye; Liu, Ran; Liu, Bingbing

    2015-01-01

    Raman spectra of onion-like carbon nanospheres (OCNSs) have been studied under pressure up to 48 GPa. A transformation related to a change from sp2 to sp3 bonding of carbons in OCNSs was observed at pressures above 20 GPa. The Raman spectra exhibit some vibrational features similar to those of the theoretically proposed Z-carbon phase of cold-compressed graphite, while the transition pressure is obviously higher than that for graphite. In contrast to the transformations in compressed graphite, interlayer bonds are formed on the nanoscale between buckled layers in OCNSs under pressure due to the concentric configuration, and sp2-sp3 conversion is incomplete even up to 48 GPa. This is confirmed by TEM observations on the decompressed samples. Moreover, the onion-like carbon structure is extremely stable and can be recovered even after a compression cycle to 48 GPa. This high stability, beyond that of other sp2 carbon materials, is related to the unique onion-like configuration and to the interlayer bonding. The transformed material should have excellent mechanical properties so that it can sustain very high pressure.

  17. Pressure-induced changes in the electronic structure of americium metal

    SciTech Connect

    Soderlind, P; Moore, K T; Landa, A; Bradley, J A

    2011-02-25

    We have conducted electronic-structure calculations for Am metal under pressure to investigate the behavior of the 5f-electron states. Density-functional theory (DFT) does not reproduce the experimental photoemission spectra for the ground-state phase where the 5f electrons are localized, but the theory is expected to be correct when 5f delocalization occurs under pressure. The DFT prediction is that peak structures of the 5f valence band will merge closer to the Fermi level during compression indicating presence of itinerant 5f electrons. Existence of such 5f bands is argued to be a prerequisite for the phase transitions, particularly to the primitive orthorhombic AmIV phase, but does not agree with modern dynamical-mean-field theory (DMFT) results. Our DFT model further suggests insignificant changes of the 5f valence under pressure in agreement with recent resonant x-ray emission spectroscopy, but in contradiction to the DMFT predictions. The influence of pressure on the 5f valency in the actinides is discussed and is shown to depend in a non-trivial fashion on 5f band position and occupation relative to the spd valence bands.

  18. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    PubMed Central

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Rüegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-01-01

    The recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p  3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p  7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc  1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5  p  7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs. PMID:26346548

  19. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    DOE PAGESBeta

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; et al

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreasesmore » upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.« less

  20. Pressure-Induced Enhanced Magnetic Anisotropy in Mn(N(CN)2)2

    SciTech Connect

    Quintero, P. A.; Rajan, D.; Peprah, M. K.; Brinzari, T. V.; Fishman, Randy Scott; Talham, Daniel R.; Meisel, Mark W.

    2015-01-01

    Using DC and AC magnetometry, the pressure dependence of the magnetization of the threedimensional antiferromagnetic coordination polymer Mn(N(CN)2)2 was studied up to 12 kbar and down to 8 K. The magnetic transition temperature, Tc, increases dramatically with applied pressure (P), where a change from Tc(P = ambient) = 16:0 K to Tc(P = 12:1 kbar) = 23:5 K was observed. In addition, a marked difference in the magnetic behavior is observed above and below 7.1 kbar. Specifically, for P < 7:1 kbar, the differences between the field-cooled and zero-field-cooled (fc-zfc) magnetizations, the coercive field, and the remanent magnetization decrease with increasing pressure. However, for P > 7:1 kbar, the behavior is inverted. Additionally, for P > 8:6 kbar, minor hysteresis loops are observed. All of these effects are evidence of the increase of the superexchange interaction and the appearance of an enhanced exchange anisotropy with applied pressure.

  1. Pressure-induced transformations in PrVO4 and SmVO4 and isolation of high-pressure metastable phases.

    PubMed

    Errandonea, Daniel; Achary, S Nagabhusan; Pellicer-Porres, Julio; Tyagi, Avesh K

    2013-05-01

    Zircon-type PrVO4 and SmVO4 have been studied by high-pressure Raman spectroscopy up to 17 GPa. The occurrence of phase transitions has been detected when compression exceeds 6 GPa. The transformations are not reversible. Raman spectra of the high-pressure phases show similarities with those expected for a monazite-type phase in PrVO4 and a scheelite-type phase in SmVO4.The high-pressure phases have been also synthesized using a large-volume press and recovered at ambient conditions. X-ray diffraction measurements of the metastable products recovered after decompression confirms the monazite (PrVO4) and scheelite (SmVO4) structures of the high-pressure phases. Based upon optical properties of the reported new polymorphs, novel applications for rare-earth vanadates are proposed, including photocatalytic hydrogen production. PMID:23600563

  2. Pressure-Induced Concurrent Transformation to an Amorphous and Crystalline Phase in Berlinite-Type FePO{sub 4}

    SciTech Connect

    Pasternak, M.P.; Rozenberg, G.K.; Milner, A.P.; Amanowicz, M.; Zhou, T.; Schwarz, U.; Syassen, K.; Dean Taylor, R.; Hanfland, M.; Brister, K.

    1997-12-01

    X-ray diffraction, Raman scattering, and M{umlt o}ssbauer spectroscopy provide a diverse description of the high pressure behavior of berlinite-type FePO{sub 4} . At a pressure of 2.5(5) GPa, a transformation to a coexisting new crystalline (chp) and amorphous (ahp) phase is observed with about equal abundance. The chp phase is identified as a VCrO{sub 4} type, where Fe{sup III } and P{sup V} ions, respectively, are sixfold and fourfold coordinated. In the 6{endash}25GPa range and after decompression, the relative abundance of the chp and ahp phases remains unchanged. These phenomena of concurrent amorphous and crystalline transformations at low hydrostatic pressure and stable abundance ratio over a large pressure range are unique in pressure-induced structural transformations of SiO{sub 2} analogs. {copyright} {ital 1997} {ital The American Physical Society}

  3. Polymorphism of triphenyl phosphite

    NASA Astrophysics Data System (ADS)

    Baran, J.; Davydova, N. A.; Drozd, M.

    2014-03-01

    The glass-forming liquid triphenyl phosphite (TPP) has recently attracted much attention due to the possible existence of a polyamorphism, i.e., the existence of two or more amorphous phases. In the present work we provide experimental evidence of the existence of a polymorphism in TPP. In addition to the already known conventional crystalline phase, which melts at 299.1 K, it has been found that TPP can crystallize in another polymorphic phase. The new polymorph can be obtained from the liquid phase due to direct cooling from the room temperature up to 245 K where it is held for 15 min and then heated up to 270 K. At 270 K crystallization of the new polymorph occurs, which melts at 291.6 K.

  4. The old problems of glass and the glass transition, and the many new twists.

    PubMed Central

    Angell, C A

    1995-01-01

    In this paper I review the ways in which the glassy state is obtained both in nature and in materials science and highlight a "new twist"--the recent recognition of polymorphism within the glassy state. The formation of glass by continuous cooling (viscous slowdown) is then examined, the strong/fragile liquids classification is reviewed, and a new twist-the possibility that the slowdown is a result of an avoided critical point-is noted. The three canonical characteristics of relaxing liquids are correlated through the fragility. As a further new twist, the conversion of strong liquids to fragile liquids by pressure-induced coordination number increases is demonstrated. It is then shown that, for comparable systems, it is possible to have the same conversion accomplished via a first-order transition within the liquid state during quenching. This occurs in the systems in which "polyamorphism" (polymorphism in the glassy state) is observed, and the whole phenomenology is accounted for by Poole's bond-modified van der Waals model. The sudden loss of some liquid degrees of freedom through such weak first-order transitions is then related to the polyamorphic transition between native and denatured hydrated proteins, since the latter are also glass-forming systems--water-plasticized, hydrogen bond-cross-linked chain polymers (and single molecule glass formers). The circle is closed with a final new twist by noting that a short time scale phenomenon much studied by protein physicists-namely, the onset of a sharp change in d/dT ( is the Debye-Waller factor)--is general for glass-forming liquids, including computer-simulated strong and fragile ionic liquids, and is closely correlated with the experimental glass transition temperature. The latter thus originates in strong anharmonicity in certain components of the vibrational density of states, which permits the system to access the multiple minima of its configuration space. The connection between the anharmonicity

  5. Study of Mg{sub x}Cd{sub 1−x}O applying density functional theory: Stability, structural phase transition and electronic properties

    SciTech Connect

    Joshi, K.B.; Paliwal, U.; Galav, K.L.; Trivedi, D.K.; Bredow, T.

    2013-08-15

    Stability of B1 and B2 phases of Mg{sub x}Cd{sub 1−x}O is studied by calculating the formation energy within the framework of density functional theory applying the crystalline-orbital program package. Structural and electronic properties of the two polymorphs are reported for x=0.25, 0.50 and 0.75. The equilibrium lattice constants and bulk moduli are computed. Enthalpy calculations show pressure induced B1→B2 phase transitions at 92 GPa, 138 GPa and 212 GPa, respectively, for Mg{sub 0.25}Cd{sub 0.75}O, Mg{sub 0.50}Cd{sub 0.50}O and Mg{sub 0.75}Cd{sub 0.25}O compositions. Formation energy of ternary oxides in the B1 phase is negative with respect to mixing of B2-MgO with B1-CdO. Mixing B1-MgO with B2-CdO also leads to negative formation energy in Cd rich B1 phase ternary oxides (0≤x≤0.5). Band structure calculations predict direct band gaps in the B1 phase and indirect band gaps in the B2 phase ternary oxides. Mulliken population analysis is performed for the two polymorphs to study the charge transfer. - Graphical abstract: Diagram reveals trends in formation energy while mixing B2-MgO with B1-CdO to form B1-Mg{sub x}Cd{sub 1−x}O. Formation energies obtained from mixing isostructural and nonisostructural components are also shown. Display Omitted - Highlights: • Lattice constants and bulk moduli are computed for Mg{sub 0.25}Cd{sub 0.75}O, Mg{sub 0.50}Cd{sub 0.50}O and Mg{sub 0.75}Cd{sub 0.25}O compositions. • Enthalpy calculations signify pressure induced B1→B2 phase transitions at 92 GPa, 138 GPa and 212 GPa, respectively, in Mg{sub 0.25}Cd{sub 0.75}O, Mg{sub 0.50}Cd{sub 0.50}O and Mg{sub 0.75}Cd{sub 0.25}O. • Band structure calculations predict direct band gaps in the B1 phase ternary oxides. • In the B2 phase ternary oxides band structure calculations show valence band maximum along the Γ–X direction and the conduction band minimum at the Γ point of symmetry.

  6. Source duration of stress and water-pressure induced seismicity derived from experimental analysis of P wave pulse width in granite

    NASA Astrophysics Data System (ADS)

    Masuda, K.

    2013-12-01

    Pulse widths of P waves in granite, measured in the laboratory, were analyzed to investigate source durations of rupture processes for water-pressure induced and stress-induced microseismicity. Much evidence suggests that fluids in the subsurface are intimately linked to faulting processes. Studies of seismicity induced by water injection are thus important for understanding the trigger mechanisms of earthquakes as well as for engineering applications such as hydraulic fracturing of rocks at depth for petroleum extraction. Determining the cause of seismic events is very important in seismology and engineering; however, water-pressure induced seismic events are difficult to distinguish from those induced by purely tectonic stress. To investigate this problem, we analyzed the waveforms of acoustic emissions (AEs) produced in the laboratory by both water-pressure induced and stress-induced microseismicity. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of about 70% of fracture strength, to the rock sample under 40 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emissions (AEs) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 17 MPa until macroscopic fracture occurred. We analysed AE waveforms produced by stress-induced AEs which occurred before the water-injection and by water-pressure induced AEs which occurred after the water-injection. Pulse widths were measured from the waveform traces plotted from the digital data. To investigate the source duration of the rupture process, we estimated the pulse width at the source and normalized by event magnitude to obtain a scaled pulse width at the source. After the effects of event size and hypocentral distance were removed from observed pulse widths, the ratio of the scaled source durations of water-pressure

  7. Four new polymorphic forms of suplatast tosilate.

    PubMed

    Nagai, Keiko; Ushio, Takanori; Miura, Hidenori; Nakamura, Takashi; Moribe, Kunikazu; Yamamoto, Keiji

    2014-01-01

    We found four new polymorphic forms (γ-, ε-, ζ-, and η-forms) of suplatast tosilate (ST) by recrystallization and seeding with ST-analogous compounds; three polymorphic forms (α-, β-, and δ-forms) of ST have been previously reported. The physicochemical properties of these new forms were investigated using infrared (IR) spectroscopy, solid-state nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and powder X-ray diffractometry. The presence of hydrogen bonds in the new forms was assessed from the IR and solid-state NMR spectra. The crystal structures of the ε- and η-forms were determined from their powder X-ray diffraction data using the direct space approach and the Monte Carlo method, followed by Rietveld refinement. The structures determined for the ε- and η-forms supported the presence of hydrogen bonds between the ST molecules, as the IR and solid-state NMR spectra indicated. The thermodynamic characteristics of the seven polymorphic forms were evaluated by determining the solubility of each form. The α-form was the most insoluble in 2-propanol at 35°C, and was thus concluded to be the most stable form. The ε-form was the most soluble, and a polymorphic transition from the ε- to the α-form was observed during solubility testing. PMID:24211359

  8. Origin of electrical improvement of amorphous TaInZnO TFT by oxygen thermo-pressure-induced process

    NASA Astrophysics Data System (ADS)

    Du Ahn, Byung; Rim, You Seung; Kim, Hyun Jae; Lim, Jun Hyung; Chung, Kwun-Bum; Park, Jin-Seong

    2014-03-01

    Novel amorphous oxide semiconductor thin film transistors (AOS-TFTs) have already stepped up as an alternative solution for application in mass-produced active matrix organic light-emitting diodes, as well as flexible and transparent electronics. However, the factors related to the device properties (mobility (μsat) and stability (ΔVth)) are still unclear. Since most factors are strongly related to oxygen elements, the versatile thermo-pressure-induced process (TPP) has been applied to improve novel TaInZnO TFT performances with regard to mobility and stability by controlling the oxygen pressure, resulting in the optimum values (improving μsat by 50% and ΔVth by 30%). It is found that the TPP may suppress the occupied trap states as well as increase the unoccupied trapping states in tantalum indium zinc oxide subgap states, depending on the oxygen pressure in TPP. In addition, the origin of the improvement is unveiled with x-ray photoemission and x-ray adsorption spectroscopy (XAS). The TPP in AOS-TFTs can effectively improve and be used to manipulate device properties such as mobility and stability easily. X-ray photoelectron spectroscopy and XAS as a defect state analyser may also provide understanding of the origins of device instability as well as evolutionary electrical improvement in AOS-TFTs.

  9. High-temperature- and high-pressure-induced formation of the Laves-phase compound XeS2

    NASA Astrophysics Data System (ADS)

    Yan, Xiaozhen; Chen, Yangmei; Xiang, Shikai; Kuang, Xiaoyu; Bi, Yan; Chen, Haiyan

    2016-06-01

    We explore the reactivity of xenon with sulfur under high pressure, using unbiased structure searching techniques combined with first-principles calculations, which identify a stable XeS2 compound crystallized in a Laves phase with hypercoordinated (16-fold) Xe at 191 GPa and 0 K. Taking the thermal effects into account, we find that increasing the temperature could further stabilize it. The formation of XeS2 is a consequence of pressure-induced charge transfer from Xe to S atoms and the delocalization of Xe 5 p and S 3 p electrons. Meanwhile, the stabilization into a Laves phase of XeS2 is the result of delocalized chemical bonding and the need for optimum structure packing. The present discussion of the formation mechanism in XeS2 is general, and conclusions can be used to understand the formation of other Laves-phase compounds and the Xe chemistry that allows closed-shell Xe to participate in chemical reactions.

  10. Mechanism of pressure-induced thermostabilization of proteins: Studies of glutamate dehydrogenases from the hyperthermophile Thermococcus litoralis

    PubMed Central

    Sun, Michael M.C.; Caillot, Raphaele; Mak, Gary; Robb, Frank T.; Clark, Douglas S.

    2001-01-01

    In this study, we investigated the effect of pressure on protein structure and stability at high temperature. Thermoinactivation experiments at 5 and 500 atm were performed using the wild-type (WT) enzyme and two single mutants (D167T and T138E) of the glutamate dehydrogenase (GDH) from the hyperthermophile Thermococcus litoralis. All three GDHs were stabilized, although to different degrees, by the application of 500 atm. Interestingly, the degree of pressure stabilization correlated with GDH stability as well as the magnitude of electrostatic repulsion created by residues at positions 138 and 167. Thermoinactivation experiments also were performed in the presence of trehalose. Addition of the sugar stabilized all three GDHs; the degree of sugar-induced thermostabilization followed the same order as pressure stabilization. Previous studies suggested a mechanism whereby the enzyme adopts a more compact and rigid structure and volume fluctuations away from the native state are diminished under pressure. The present results on the three GDHs allowed us to further confirm and refine the proposed mechanism for pressure-induced thermostabilization. In particular, we propose that pressure stabilizes against thermoinactivation by shifting the equilibrium between conformational substates of the GDH hexamer, thus inhibiting irreversible aggregation. PMID:11514665

  11. A first-principles study of pressure-induced phase transformation in a rare-earth formate framework.

    PubMed

    Bhat, Soumya S; Li, Wei; Cheetham, Anthony K; Waghmare, Umesh V; Ramamurty, Upadrasta

    2016-07-28

    Among the panoply of exciting properties that metal-organic frameworks (MOFs) exhibit, fully reversible pressure-induced phase transformations (PIPTs) are particularly interesting as they intrinsically relate to the flexibility of MOFs. Recently, a number of MOFs have been reported to exhibit this feature, which is attributed to bond rearrangement with applied pressure. However, the experimental assessment of whether a given MOF exhibits PIPT or not requires sophisticated instruments as well as detailed structural investigations. Can we capture such low pressure transformations through simulations is the question we seek to answer in this paper. For this, we have performed first-principles calculations based on the density functional theory, on a MOF, [tmenH2][Y(HCOO)4]2 (tmenH2(2+) = N,N,N',N'-tetramethylethylenediammonium). The estimated lattice constants for both the parent and product phases of the PIPT agree well with the earlier experimental results available for the same MOF with erbium. Importantly, the results confirm the observed PIPT, and thus provide theoretical corroborative evidence for the experimental findings. Our calculations offer insights into the energetics involved and reveal that the less dense phase is energetically more stable than the denser phase. From detailed analyses of the two phases, we correlate the changes in bonding and electronic structure across the PIPT with elastic and electronic conduction behavior that can be verified experimentally, to develop a deeper understanding of the PIPT in MOFs. PMID:27355370

  12. Thrombophilic polymorphisms in Israel.

    PubMed

    Zoossmann-Diskin, Avshalom; Gazit, Ephraim; Peleg, Leah; Shohat, Mordechai; Turner, David

    2008-01-01

    Three thrombophilic polymorphisms, FV G1691A, FII G20210A and MTHFR C677T were investigated in Israeli populations by FRET, (fluorescence resonance energy transfer) real-time PCR. We observe extensive variability in the frequencies of each of the polymorphisms, as has been observed in the study of other polymorphisms in these populations. Very high allele frequencies for FV G1691A (the highest 0.087 in Turkish and Greek Jews) and FII G20210A (the highest 0.061 in Georgian Jews) in some of the Israeli populations justify a clinical investigation to assess their risk for venous thrombosis. Principal Coordinates Analysis demonstrates that the Jewish populations are interspersed among the non-Jewish populations. The resemblance of some Jewish populations to certain non-Jewish populations coincides with findings based on classical markers. PMID:18583164

  13. Disappearing Polymorphs Revisited

    PubMed Central

    Bučar, Dejan-Krešimir; Lancaster, Robert W; Bernstein, Joel

    2015-01-01

    Nearly twenty years ago, Dunitz and Bernstein described a selection of intriguing cases of polymorphs that disappear. The inability to obtain a crystal form that has previously been prepared is indeed a frustrating and potentially serious problem for solid-state scientists. This Review discusses recent occurrences and examples of disappearing polymorphs (as well as the emergence of elusive crystal forms) to demonstrate the enduring relevance of this troublesome, but always captivating, phenomenon in solid-state research. A number of these instances have been central issues in patent litigations. This Review, therefore, also highlights the complex relationship between crystal chemistry and the law. PMID:26031248

  14. Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg,Fe)O.

    PubMed

    Jacobsen, Steven D; Spetzler, Hartmut; Reichmann, Hans J; Smyth, Joseph R

    2004-04-20

    The emerging picture of Earth's deep interior from seismic tomography indicates more complexity than previously thought. The presence of lateral anisotropy and heterogeneity in Earth's mantle highlights the need for fully anisotropic elasticity data from mineral physics. A breakthrough in high-frequency (gigahertz) ultrasound has resulted in transmission of pure-mode elastic shear waves into a high-pressure diamond-anvil cell using a P-to-S elastic-wave conversion. The full elastic tensor (c(ij)) of high-pressure minerals or metals can be measured at extreme conditions without optical constraints. Here we report the effects of pressure and composition on shear-wave velocities in the major lower-mantle oxide, magnesiowüstite-(Mg,Fe)O. Magnesiowüstite containing more than approximately 50% iron exhibits pressure-induced c(44) shear-mode softening, indicating an instability in the rocksalt structure. The oxide closer to expected lower-mantle compositions ( approximately 20% iron) shows increasing shear velocities more similar to MgO, indicating that it also should have a wide pressure-stability field. A complete sign reversal in the c(44) pressure derivative points to a change in the topology of the (Mg,Fe)O phase diagram at approximately 50-60% iron. The relative stability of Mg-rich (Mg,Fe)O and the strong compositional dependence of shear-wave velocities (and partial differential c(44)/ partial differential P) in (Mg,Fe)O implies that seismic heterogeneity in Earth's lower mantle may result from compositional variations rather than phase changes in (Mg,Fe)O. PMID:15079080

  15. CFD Study of the Hydrocarbon Boost Low-Pressure Inducer and Kicker in the Presence of a Circumferential Groove

    NASA Technical Reports Server (NTRS)

    Coker, Robert

    2011-01-01

    Results are presented of a computational fluid dynamics (CFD) study done in support of Marshall Space Flight Center's (MSFC) sub-scale water flow experiments of the Hydrocarbon Boost (HCB) Oxidizer Turbopump (OTP) being developed by the Air Force Research Laboratory (AFRL) and Aerojet. A circumferential groove may be added to the pump to reduce synchronous cavitation and subsequent bearing loads at a minimal performance cost. However, the energy may reappear as high order cavitation (HOC) that spans a relatively large frequency range. Thus, HOC may have implications for the full-scale OTP inducer in terms of reduced structural margin at higher mode frequencies. Simulations using the LOCI/Stream CFD program were conducted in order to explore the fluid dynamical impact of the groove on the low-pressure inducer and kicker. It was found that the circumferential groove has minimal head performance impact, but causes back-flowing high-swirl fluid to interact with the nearly-axial incoming fluid just above the inducer blades. The high-shear interface between the fluids is Kelvin-Helmholtz unstable, resulting in trains of low pressure regions or 'pearls' forming near the upstream edge of the groove. When the static pressure in these regions becomes low enough and they get cut by the blade leading edge, HOC is thought to occur. Although further work is required, the numerical models indicate that HOC will occur in the runbox of the AFRL/Aerojet HCB OTP. Comparisons to the ongoing water flow experiments will be discussed, as well as possible designs that may mitigate HOC while continuing to reduce synchronous cavitation. December 2011 MSS/LPS/SPS Joint Subcommittee Meeting ABSTRACT SUBMITTAL FORM

  16. Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg,Fe)O

    PubMed Central

    Jacobsen, Steven D.; Spetzler, Hartmut; Reichmann, Hans J.; Smyth, Joseph R.

    2004-01-01

    The emerging picture of Earth's deep interior from seismic tomography indicates more complexity than previously thought. The presence of lateral anisotropy and heterogeneity in Earth's mantle highlights the need for fully anisotropic elasticity data from mineral physics. A breakthrough in high-frequency (gigahertz) ultrasound has resulted in transmission of pure-mode elastic shear waves into a high-pressure diamond-anvil cell using a P-to-S elastic-wave conversion. The full elastic tensor (cij) of high-pressure minerals or metals can be measured at extreme conditions without optical constraints. Here we report the effects of pressure and composition on shear-wave velocities in the major lower-mantle oxide, magnesiowüstite-(Mg,Fe)O. Magnesiowüstite containing more than ≈50% iron exhibits pressure-induced c44 shear-mode softening, indicating an instability in the rocksalt structure. The oxide closer to expected lower-mantle compositions (≈20% iron) shows increasing shear velocities more similar to MgO, indicating that it also should have a wide pressure-stability field. A complete sign reversal in the c44 pressure derivative points to a change in the topology of the (Mg,Fe)O phase diagram at ≈50–60% iron. The relative stability of Mg-rich (Mg,Fe)O and the strong compositional dependence of shear-wave velocities (and ∂c44/∂P) in (Mg,Fe)O implies that seismic heterogeneity in Earth's lower mantle may result from compositional variations rather than phase changes in (Mg,Fe)O. PMID:15079080

  17. Enzyme polymorphisms in Canarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifty-two accessions of Canarium involving seven species, C. ovatum, C. album, C. megalanthum, C. harveyi, C. indicum, C. mehenbethene, and C. odontophyllum were studied for isozyme polymorphisms. Starch gel electrophoresis with a histidine-citrate buffer system (pH 6.5) was employed to assay six en...

  18. Polymorphous Perversity in Texts

    ERIC Educational Resources Information Center

    Johnson-Eilola, Johndan

    2012-01-01

    Here's the tricky part: If we teach ourselves and our students that texts are made to be broken apart, remixed, remade, do we lose the polymorphous perversity that brought us pleasure in the first place? Does the pleasure of transgression evaporate when the borders are opened?

  19. Investigation of Uranium Polymorphs

    SciTech Connect

    Sweet, Lucas E.; Henager, Charles H.; Hu, Shenyang Y.; Johnson, Timothy J.; Meier, David E.; Peper, Shane M.; Schwantes, Jon M.

    2011-08-01

    The UO3-water system is complex and has not been fully characterized, even though these species are common throughout the nuclear fuel cycle. As an example, most production schemes for UO3 result in a mixture of up to six or more different polymorphic phases, and small differences in these conditions will affect phase genesis that ultimately result in measureable changes to the end product. As a result, this feature of the UO3-water system may be useful as a means for determining process history. This research effort attempts to better characterize the UO3-water system with a variety of optical techniques for the purpose of developing some predictive capability for estimating process history in polymorphic phases of unknown origin. Three commercially relevant preparation methods for the production of UO3 were explored. Previously unreported low temperature routes to β- and γ-UO3 were discovered. Raman and fluorescence spectroscopic libraries were established for pure and mixed polymorphic forms of UO3 in addition to the common hydrolysis products of UO3. An advantage of the sensitivity of optical fluorescence microscopy over XRD has been demonstrated. Preliminary aging studies of the α and γ forms of UO3 have been conducted. In addition, development of a 3-D phase field model used to predict phase genesis of the system was initiated. Thermodynamic and structural constants that will feed the model have been gathered from the literature for most of the UO3 polymorphic phases.

  20. Polymorphic Protein Crystal Growth: Influence of Hydration and Ions in Glucose Isomerase.

    PubMed

    Gillespie, C M; Asthagiri, D; Lenhoff, A M

    2014-01-01

    Crystal polymorphs of glucose isomerase were examined to characterize the properties and to quantify the energetics of protein crystal growth. Transitions of polymorph stability were measured in poly(ethylene glycol)/NaCl solutions, and one transition point was singled out for more detailed quantitative analysis. Single crystal x-ray diffraction was used to confirm space groups and identify complementary crystal structures. Crystal polymorph stability was found to depend on the NaCl concentration, with stability transitions requiring > 1 M NaCl combined with a low concentration of PEG. Both salting-in and salting-out behavior was observed and was found to differ for the two polymorphs. For NaCl concentrations above the observed polymorph transition, the increase in solubility of the less stable polymorph together with an increase in the osmotic second virial coefficient suggests that changes in protein hydration upon addition of salt may explain the experimental trends. A combination of atomistic and continuum models was employed to dissect this behavior. Molecular dynamics simulations of the solvent environment were interpreted using quasi-chemical theory to understand changes in protein hydration as a function of NaCl concentration. The results suggest that protein surface hydration and Na(+) binding may introduce steric barriers to contact formation, resulting in polymorph selection. PMID:24955067

  1. Epitaxial stabilization and phase instability of VO2 polymorphs

    DOE PAGESBeta

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-20

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. Bymore » investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. In conclusion, our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.« less

  2. Epitaxial stabilization and phase instability of VO2 polymorphs

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices.

  3. Epitaxial stabilization and phase instability of VO2 polymorphs

    PubMed Central

    Lee, Shinbuhm; Ivanov, Ilia N.; Keum, Jong K.; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  4. Epitaxial stabilization and phase instability of VO2 polymorphs.

    PubMed

    Lee, Shinbuhm; Ivanov, Ilia N; Keum, Jong K; Lee, Ho Nyung

    2016-01-01

    The VO2 polymorphs, i.e., VO2(A), VO2(B), VO2(M1) and VO2(R), have a wide spectrum of functionalities useful for many potential applications in information and energy technologies. However, synthesis of phase pure materials, especially in thin film forms, has been a challenging task due to the fact that the VO2 polymorphs are closely related to each other in a thermodynamic framework. Here, we report epitaxial stabilization of the VO2 polymorphs to synthesize high quality single crystalline thin films and study the phase stability of these metastable materials. We selectively deposit all the phases on various perovskite substrates with different crystallographic orientations. By investigating the phase instability, phonon modes and transport behaviours, not only do we find distinctively contrasting physical properties of the VO2 polymorphs, but that the polymorphs can be on the verge of phase transitions when heated as low as ~400 °C. Our successful epitaxy of both VO2(A) and VO2(B) phases, which are rarely studied due to the lack of phase pure materials, will open the door to the fundamental studies of VO2 polymorphs for potential applications in advanced electronic and energy devices. PMID:26787259

  5. Temperature effects on surface pressure-induced changes in rat skin perfusion: implications in pressure ulcer development.

    PubMed

    Patel, S; Knapp, C F; Donofrio, J C; Salcido, R

    1999-07-01

    The effect of varying local skin temperature on surface pressure-induced changes in skin perfusion and deformation was determined in hairless fuzzy rats (13.5+/-3 mo, 474+/-25 g). Skin surface pressure was applied by a computer-controlled plunger with corresponding skin deformation measured by a linear variable differential transformer while a laser Doppler flowmeter measured skin perfusion. In Protocol I, skin surface perfusion was measured without heating (control, T=28 degrees C), with heating (T=36 degrees C), for control (probe just touching skin, 3.7 mmHg), and at two different skin surface pressures, 18 mmHg and 73 mmHg. Heating caused perfusion to increase at control and 18 mmHg pressure, but not at 73 mmHg. In Protocol II, skin perfusion was measured with and without heating as in Protocol I, but this time skin surface pressure was increased from 3.7 to 62 mmHg in increments of 3.7 mmHg. For unheated skin, perfusion increased as skin surface pressure increased from 3.7 to 18 mmHg. Further increases in surface pressure caused a decrease in perfusion until zero perfusion was reached for pressures over 55 mmHg. Heating increased skin perfusion for surface pressures from 3.7 to 18 mmHg, but not for pressures greater than 18 mmHg. After the release of surface pressure, the reactive hyperemia peak of perfusion increased with heating. In Protocol III, where skin deformation (creep and relaxation) was measured during the application of 3.7 and 18 mmHg, heating caused the tissue to be stiffer, allowing less deformation. It was found that for surface pressures below 18 mmHg, increasing skin temperature significantly increased skin perfusion and tissue stiffness. The clinical significance of these findings may have relevance in evaluating temperature and pressure effects on skin blood flow and deformation as well as the efficacy of using temperature as a therapeutic modality in the treatment of pressure ulcers. PMID:10659802

  6. Mössbauer studies of pressure-induced amorphization in the molecular crystal SnBr4

    NASA Astrophysics Data System (ADS)

    Hearne, G. R.; Pasternak, M. P.; Taylor, R. D.

    1995-10-01

    . Crystallization is fully recovered below 1 GPa. The nature of the pressure-induced amorphization of the insulator SnBr4 is discussed in terms of the structural and valence properties of the analogous metallic SnI4.

  7. Absence of nematic order in the pressure-induced intermediate phase of the iron-based superconductor B a0.85K0.15F e2A s2

    NASA Astrophysics Data System (ADS)

    Zheng, Yan; Tam, Pok Man; Hou, Jianqiang; Böhmer, Anna E.; Wolf, Thomas; Meingast, Christoph; Lortz, Rolf

    2016-03-01

    The hole doped Fe-based superconductors B a1-xAxF e2A s2 (where A =Na or K) show a particularly rich phase diagram. It was observed that an intermediate reentrant tetragonal phase, in which the C4 fourfold rotational symmetry is restored, forms within the orthorhombic antiferromagnetically ordered stripe-type spin density wave state above the superconducting transition [S. Avci et al., Nat. Commun. 5, 3845 (2014);, 10.1038/ncomms4845 A. E. Böhmer et al., Nat. Commun. 6, 7911 (2015), 10.1038/ncomms8911]. A similar intermediate phase was reported to appear if pressure is applied to underdoped B a1-xKxF e2A s2 [E. Hassinger et al., Phys. Rev. B 86, 140502(R) (2012), 10.1103/PhysRevB.86.140502]. Here we report data of the electric resistivity, Hall effect, specific heat, and the thermoelectric Nernst and Seebeck coefficients measured on a B a0.85K0.15F e2A s2 single crystal under pressure up to 5.5 GPa. The data reveal a coexistence of the intermediate phase with filamentary superconductivity. The Nernst coefficient shows a large signature of nematic order that coincides with the stripe-type spin density wave state up to optimal pressure. In the pressure-induced intermediate phase the nematic order is removed, thus confirming that its nature is a reentrant tetragonal phase.

  8. Polymorphism of phosphoric oxide

    USGS Publications Warehouse

    Hill, W.L.; Faust, G.T.; Hendricks, S.B.

    1943-01-01

    The melting points and monotropic relationship of three crystalline forms of phosphoric oxide were determined by the method of quenching. Previous vapor pressure data are discussed and interpreted to establish a pressure-temperature diagram (70 to 600??) for the one-component system. The system involves three triple points, at which solid, liquid and vapor (P4O10) coexist in equilibrium, namely: 420?? and 360 cm., 562?? and 43.7 cm. and 580?? and 55.5 cm., corresponding to the hexagonal, orthorhombic and stable polymorphs, respectively, and at least two distinct liquids, one a stable polymer of the other, which are identified with the melting of the stable form and the hexagonal modification, respectively. Indices of refraction of the polymorphs and glasses were determined. The density and the thermal, hygroscopic and structural properties of the several phases are discussed.

  9. Facts and fictions about polymorphism.

    PubMed

    Cruz-Cabeza, Aurora J; Reutzel-Edens, Susan M; Bernstein, Joel

    2015-12-01

    We present new facts about polymorphism based on (i) crystallographic data from the Cambridge Structural Database (CSD, a database built over 50 years of community effort), (ii) 229 solid form screens conducted at Hoffmann-La Roche and Eli Lilly and Company over the course of 8+ and 15+ years respectively and (iii) a dataset of 446 polymorphic crystals with energies and properties computed with modern DFT-d methods. We found that molecular flexibility or size has no correlation with the ability of a compound to be polymorphic. Chiral molecules, however, were found to be less prone to polymorphism than their achiral counterparts and compounds able to hydrogen bond exhibit only a slightly higher propensity to polymorphism than those which do not. Whilst the energy difference between polymorphs is usually less than 1 kcal mol(-1), conformational polymorphs are capable of differing by larger values (up to 2.5 kcal mol(-1) in our dataset). As overall statistics, we found that one in three compounds in the CSD are polymorphic whilst at least one in two compounds from the Roche and Lilly set display polymorphism with a higher estimate of up to three in four when compounds are screened intensively. Whilst the statistics provide some guidance of expectations, each compound constitutes a new challenge and prediction and realization of targeted polymorphism still remains a holy grail of materials sciences. PMID:26400501

  10. [Polymorphs of clopidogrel bisulfate].

    PubMed

    Liu, Yi; Huang, Hai-Wei; Wu, Jian-Min; Shi, Ya-Qin; Yang, La-Hu

    2013-08-01

    This paper is to report the polymorphism of raw materials of clopidogrel bisulfate at home and abroad. By the analysis of Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (p-XRD), samples are roughly classified into two groups, except one patent material. And the differential scanning calorimeter (DSC) examination showed more detailed information for these materials. The results of the study could provide comprehensive basis for the quality evaluation of clopidogrel bisulfate. PMID:24187849

  11. Simplicity in Pressure-induced Structural Change in Multi-component Silicate Melts in Earth's Interiors: Insights from Multi-nuclear NMR and Multi-edge Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Lee, S.

    2011-12-01

    The chemical differentiation of the primary mantle was controlled by the properties of silicate melts at high pressure. These properties vary non-linearly with changes in pressure. Whereas the key to understanding these complex and non-linear changes in melt properties is the degree of melt-polymerization [e.g. non-bridging oxygen (NBO) fraction] at high pressure, the nature of changes in the melt structure at high pressures remains poorly constrained. While the NBO fraction at 1 atm is often regarded as a chemical constraint from which other properties of melt structure are predicted, the systematic relation between NBO fraction at high pressure and melt composition has not been available. The advances in multi-nuclear NMR and multi-edge inelastic x-ray scattering allow us to obtain details of the pressure-induced changes in the degree of melt polymerization and cation coordination number in multi-component melts up to 40 GPa (e.g. Lee Proc. Nat. Aca. Sci. 2011, 108, 6847; Sol. St. NMR. 2010, 38, 45; Lee et al. Phys. Rev. Lett. 2009, 103, 095501; Proc. Nat. Aca. Sci. 2008, 105, 7925). Here, we show that the fraction of highly coordinated Al in multi-component silicate melts at a given pressure vary nonlinearly with variations of NBO/T: [5,6]Al fraction at 8 GPa increases with decreasing degree of melt polymerization from ~8% for fully polymerized albite melt (NBO/T=0) to ~37% for partially depolymerized melt (NBO/T=0.29). Then it gradually decreases to ~15% with further increase in NBO/T of 0.67. This observed trend at a given pressure indicates competing densification mechanisms involving steric hindrance vs. changes of NBO fraction in the silicate melts. Furthermore, we also show that NBO fraction of silicate melts decreases slightly with increasing pressure at lower pressures but it abruptly increases with a further increase in pressure, regardless of composition. By introducing the transition pressure in which the NBO fraction is expected to be 50% of the

  12. Iron spin transition in Earth's mantle

    SciTech Connect

    Speziale, S.; Milner, A.; Lee, V. E.; Clark, S. M.; Pasternak, M. P.; Jeanloz, R.

    2015-02-06

    High-pressure Mössbauer spectroscopy on several compositions across the (Mg,Fe)O magnesiowüstite solid solution confirms that ferrous iron (Fe2+) undergoes a high-spin to low-spin transition at pressures and for compositions relevant to the bulk of the Earth's mantle. High-resolution x-ray diffraction measurements document a volume change of 4–5% across the pressure-induced spin transition, which is thus expected to cause seismological anomalies in the lower mantle. The spin transition can lead to dissociation of Fe-bearing phases such as magnesiowüstite, and it reveals an unexpected richness in mineral properties and phase equilibria for the Earth's deep interior.

  13. Pressure-induced collapsed-tetragonal phase in SrCo2As2

    SciTech Connect

    Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Fabbris, G.; Veiga, L. S. I.; Feng, Yejun; dos Santos, A. M.; Bud'ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.

    2015-12-08

    We present high-energy x-ray diffraction data under applied pressures up to p = 29GPa, neutron diffraction measurements up to p = 1.1GPa, and electrical resistance measurements up to p = 5.9GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p ≤ 5.9 GPa and T ≥ 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p ≳ 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a ca ratio of 2.54. As a result, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.

  14. A DFT study on the correlation between topology and Bader charges: Part IV, on the change of atomic charges in polymorphic transitions - A case study on CaCl2

    NASA Astrophysics Data System (ADS)

    Beck, Horst P.

    2016-02-01

    Referring to the experimental results of high pressure experiments of Léger et al. (1998) we have calculated the energies of all phases observed for CaCl2 within the DFT formalism using the VASP package, and we have retrieved enthalpies and transition pressures. All phases can be considerably compressed or dilated without much change in energy. This energetic "softness" could even be quantified. We classify the high temperature TiO2-type structure and the PbCl2-type one at highest pressures as the energetically "softest" ones and the SrI2-type one as the "hardest". We furthermore discuss the energy density (E/V) of the different phases and redefine it as a fictive cohesive pressure within these structures. Pursuing our earlier approaches we have analysed the charges of the atoms in the different CaCl2 phases and their change on compression or dilation. On comparing the gradients of the charge curves we define a sort of "charge hardness" which will generally depend on the type of cation-anion pair but also on their topological connection in the respective structures. We speculate that exhausting the "charge softness or hardness" of individual ions in such arrangements may initiate the structural reorganization at the transition pressures.

  15. Intricate relationship between pressure-induced electronic and structural transformations in FeCr2S4

    NASA Astrophysics Data System (ADS)

    Amiel, Y.; Rozenberg, G. Kh.; Nissim, N.; Milner, A.; Pasternak, M. P.; Hanfland, M.; Taylor, R. D.

    2011-12-01

    Electrical-transport, magnetic and structural properties of the ferrimagnetic semiconductor FeCr2S4 (TN = 170 K) have been studied by electrical resistance, R(P, T), 57Fe Mössbauer spectroscopy (MS), and synchrotron x-ray diffraction to 20 GPa using diamond anvil cells. It was found that the local maximum, Rmax(P) on the R(T) curve, corresponding to the colossal magnetoresistance effect, is substantially reduced and broadened with pressure increase accompanied by a shift to higher temperatures and finally disappears at ˜7 GPa, the highest pressure of the single, high-spin spinel phase designated as LP1. Suppression of Rmax(P) precedes a gap closure leading to metallization at ˜7 GPa. The 7-10 GPa range is a coexistence pressure zone composed of three phases: (i) LP1, a paramagnetic spinel (SG Fd3m); (ii) LP2, a nonmagnetic isostructural spinel; and (iii) HP1, a high-spin Cr3S4 (SG I2/m) type structure. Based on MS and R(P, T) studies it was concluded that the Mott transition is responsible for the onset of metallization (correlation breakdown) coinciding with the collapse of Fe2+ moments. The shortening of the Fe-O bond length due to the electronic transition leads to a volume decrease of the low pressure (LP) phase by ˜1%. This electronic transition initiates a structural instability of the spinel structure resulting in a first-order phase transition into HP1, a post-spinel with Cr3S4-like structure. The onset of HP1 is accompanied by the Fe2+ 4 → 6 coordination number increase resulting in an additional ˜12% volume reduction. In the coexistence zone the post-spinel phase is paramagnetic, but at P > 10 GPa an isostructural transition takes place and Fe2+ becomes nonmagnetic, as evidenced from the large drop of the isomer shift and of the quadrupole splitting. The structural transition is irreversible with the isothermal pressure decrease, and the Cr3S4-like structure remains upon full release of pressure at 300 K. Interestingly at decompression the high

  16. An Experiment in Physical Chemistry: Polymorphism and Phase Stability in Acetaminophen (Paracetamol)

    ERIC Educational Resources Information Center

    Myrick, Michael L.; Baranowski, Megan; Profeta, Luisa T. M.

    2010-01-01

    Differential scanning calorimetry analyses of two easily prepared polymorphs of acetaminophen (also known as paracetamol) are recorded. The density of the forms can be found in the literature. Rules for heats of transition, heats of fusion, and density, as well as methods for determining the solid-solid transition temperature between the forms,…

  17. Mitochondrial DNA hypervariable region 1 polymorphism in Singapore Chinese population.

    PubMed

    Shee, Cheng-Yap; Chong, Michelle S M; Ng, Irene; Chia, Tet-Fatt

    2005-03-01

    Sequence polymorphisms of hypervariable region 1 were analyzed in 100 unrelated Singaporean Chinese. Ninety-five different haplotypes resulting from 113 variable sites were found between nucleotide positions 16045 and 16364. Single nucleotide polymorphism at nucleotide positions 16223, 16045, 16129, 16362 and 16189 was amongst the five highest frequencies observed in the sequences, whilst the most frequent haplotype was 16045-16223. Based on polymorphic sites observed at HV1, haplogroups A, F1a, M7b1, B5a and D4b were the most commonly observed clusters. The haplotype, nucleotide diversity and the average number of nucleotide differences were found to be 0.999, 0.028 and 9.082, respectively. The cytosine-stretch region located around nucleotide position 16189 was observed in 22% of this population sample. Transitions were found to be more predominant than transversions. PMID:15708338

  18. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  19. Superconducting Bi2Te: Pressure-induced universality in the (Bi2)m(Bi2Te3)n series

    DOE PAGESBeta

    Stillwell, Ryan L.; Jeffries, Jason R.; Jenei, Zsolt; Weir, Samuel T.; Vohra, Yogesh K.

    2016-03-09

    Using high-pressure magnetotransport techniques we have discovered superconductivity in Bi2Te, a member of the infinitely adaptive (Bi2)m(Bi2Te3)n series, whose end members, Bi and Bi2Te3, can be tuned to display topological surface states or superconductivity. Bi2Te has a maximum Tc = 8.6 K at P = 14.5 GPa and goes through multiple high pressure phase transitions, ultimately collapsing into a bcc structure that suggests a universal behavior across the series. High-pressure magnetoresistance and Hall measurements suggest a semi-metal to metal transition near 5.4 GPa, which accompanies the hexagonal to intermediate phase transition seen via x-ray diffraction measurements. In addition, the linearitymore » of Hc2 (T) exceeds the Werthamer-Helfand-Hohenberg limit, even in the extreme spin-orbit scattering limit, yet is consistent with other strong spin-orbit materials. Furthermore, considering these results in combination with similar reports on strong spin-orbit scattering materials seen in the literature, we suggest the need for a new theory that can address the unconventional nature of their superconducting states.« less

  20. Structural transition in the magnetoelectric ZnC r2S e4 spinel under pressure

    NASA Astrophysics Data System (ADS)

    Efthimiopoulos, I.; Liu, Z. T. Y.; Khare, S. V.; Sarin, P.; Tsurkan, V.; Loidl, A.; Popov, D.; Wang, Y.

    2016-05-01

    Τhe magnetoelectric ZnC r2S e4 spinel, with space group F d 3 ¯m , undergoes a reversible first-order structural transition initiating at 17 GPa, as revealed by our high-pressure x-ray diffraction studies at room temperature. We tentatively assign the high-pressure modification to an A M o2S4 -type phase, a distorted variant of the monoclinic C r3S4 structure. Furthermore, our Raman investigation provides evidence for a pressure-induced insulator-metal transition. Our density functional theory calculations successfully reproduce the structural transition. They indicate significant band gap and magnetic moment reduction accompanying the pressure-induced structural modification. We discuss our findings in conjunction with the available high-pressure results on other Cr-based chalcogenide spinels.