Science.gov

Sample records for pressurized hot water

  1. Pressurized water nuclear reactor system with hot leg vortex mitigator

    SciTech Connect

    Lau, L.K.S.

    1990-09-18

    This patent describes an improvement in a pressurized water nuclear reactor system having a reactor pressure vessel, at least one steam generator, a hot leg conduit for charging of hot fluid from the reactor pressure vessel to the steam generator, and at least one cold leg conduit for return of cool fluid from the steam generator back to the reactor pressure vessel. The improvement comprises a residual heat removal device wherein: the hot leg has an inside diameter D{sub 1}; a first section of residual heat removal conduit is provided, having an inside diameter D{sub 2}, a first end for receipt of fluid from the hot leg, and a second end; a second section of residual heat removal conduit is provided connected to the reactor pressure vessel; a pump interconnects the second end of the first section of residual heat removal conduit with the second section of residual heat removal conduit; and a step nozzle of an inside diameter D{sub 3} and a length L interconnects the hot leg to the first end of the first section of residual heat removal conduit, with D{sub 3}/D{sub 1} {ge} 0.55, with D{sub 3}/D{sub 2}1.9 and L/D{sub 3} {ge} 1.44.

  2. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOEpatents

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  3. Hydrolysis of Tifton 85 bermudagrass in a pressurized batch hot water reactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Ethanol production from grass is desirable due to the large amount of biomass it produces. However, a pretreatment is necessary before fermentation to increase ethanol yield. Tifton 85 bermudagrass was treated with a newly designed pressurized batch hot water reactor. Multiple temperatur...

  4. In hot water, again

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Watkins, Sheila

    2009-10-01

    Regarding Norman Willcox's letter about the problems of using solar panels for domestic heating (August p21), I also have thermal solar panels installed. However, contrary to his disappointing experience, I have found that they provide my family with a useful amount of hot water. In our system, the solar energy is used to heat a store of water, which has no other source of heat. Mains-pressure cold water passes through this store via a heat exchanger, removing heat from it and warming up. If the water becomes warm enough, an unpowered thermostatic valve allows it to go straight to the hot taps (mixing it with cold if it is too hot). However, if it is not hot enough, then the water is directed first through our previously installed gaspowered combination boiler and then to the taps.

  5. Characterization of pressurized hot water extracts of grape pomace: chemical and biological antioxidant activity.

    PubMed

    Vergara-Salinas, J R; Vergara, Mauricio; Altamirano, Claudia; Gonzalez, Álvaro; Pérez-Correa, J R

    2015-03-15

    Pressurized hot water extracts obtained at different temperatures possess different compositions and antioxidant activities and, consequently, different bioactivities. We characterized two pressurized hot water extracts from grape pomace obtained at 100°C (GPE100) and 200°C (GPE200) in terms of antioxidant activity and composition, as well as protective effect on cell growth and mitochondrial membrane potential (Δψm) in a HL-60 cell culture under oxidative conditions. GPE100 extracts were richer in polyphenols and poorer in Maillard reaction products (MRPs) than were GPE200 extracts. Moreover, hydroxymethylfurfural was detected only in GPE200. Both extracts exhibited similar protective effects on cell growth (comparable to the effect of trolox). In addition, GPE100 strongly decreased the Δψm loss, reaching values even lower than those of the control culture. This protective effect may be related to its high polyphenols content. At the highest concentration assessed, both extracts showed strong cytotoxicity, especially GPE200. This cytotoxicity could be related to their MRPs content. PMID:25308643

  6. Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy.

    PubMed

    Sťavíková, Lenka; Polovka, Martin; Hohnová, Barbora; Karásek, Pavel; Roth, Michal

    2011-09-30

    Pressurized hot water extraction (PHWE) was employed to prepare extracts from dried grape skin of two wine grape varieties (St. Laurent and Alibernet) at various temperatures (from 40 up to 120°C) and amounts of sample (0.5, 1.0 and 1.5 g). To assess the antioxidant activity of the extracts, electron paramagnetic resonance (EPR) spectroscopy was applied involving DPPH and ABTS(+) assays. Other extract characteristics including HPLC profile of anthocyanins and total phenolic compound content were obtained as well. PHWE has also been compared with earlier results of extractions of the same grape skin samples with compressed methanol and compressed ethanol under the conditions of pressurized fluid extraction (PFE). From this comparison, PHWE emerges as the more benign and efficient extraction method to recover valuable phenolic antioxidants from grape skins for the prospective use in functional food supplements. PMID:21872083

  7. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  8. Acidified pressurized hot water for the continuous extraction of cadmium and lead from plant materials prior to ETAAS

    NASA Astrophysics Data System (ADS)

    Morales-Muñoz, S.; Luque-García, J. L.; Luque de Castro, M. D.

    2003-01-01

    Acidified and pressurized hot water is proposed for the continuous leaching of Cd and Pb from plants prior to determination by electrothermal atomic absorption spectrometry. Beech leaves (a certified reference material—CRM 100—where the analytes were not certified) were used for optimizing the method by a multivariate approach. The samples (0.5 g) were subjected to dynamic extraction with water modified with 1% v/v HNO 3 at 250 °C as leachant. A kinetics study was performed in order to know the pattern of the extraction process. The method was validated with a CRM (olive leaves, 062 from the BCR) where the analytes had been certified. The agreement between the certified values and those found using the proposed method demonstrates its usefulness. The repeatability and within-laboratory reproducibility were 3.7 and 2.3% for Cd and 1.04% and 6.3% for Pb, respectively. The precision of the method, together with its efficiency, rapidity, and environmental acceptability, makes it a good alternative for the determination of trace metals in plant material.

  9. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    NASA Technical Reports Server (NTRS)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  10. An on-line method for pressurized hot water extraction and enzymatic hydrolysis of quercetin glucosides from onions.

    PubMed

    Lindahl, Sofia; Liu, Jiayin; Khan, Samiullah; Karlsson, Eva Nordberg; Turner, Charlotta

    2013-06-27

    A novel environmentally sound continuous-flow hot water extraction and enzymatic hydrolysis method for determination of quercetin in onion raw materials was successfully constructed using a stepwise optimization approach. In the first step, enzymatic hydrolysis of quercetin-3,4'-diglucoside to quercetin was optimized using a three level central composite design considering temperature (75-95°C), pH (3-6) and volume concentration of ethanol (5-15%). The enzyme used was a thermostable β-glucosidase variant (termed TnBgl1A_N221S/P342L) covalently immobilized on either of two acrylic support-materials (Eupergit(®) C 250L or monolithic cryogel). Optimal reaction conditions were irrespective of support 84°C, 5% ethanol and pH 5.5, and at these conditions, no significant loss of enzyme activity was observed during 72 h of use. In a second step, hot water extractions from chopped yellow onions, run at the optimal temperature for hydrolysis, were optimized in a two level design with respect to pH (2.6 and 5.5), ethanol concentration (0 and 5%) and flow rate (1 and 3 mL min(-1)) Obtained results showed that the total quercetin extraction yield was 1.7 times higher using a flow rate of 3 mL min(-1) (extraction time 90 min), compared to a flow rate of 1 mL min(-1) (extraction time 240 min). Presence of 5% ethanol was favorable for the extraction yield, while a further decrease in pH was not, not even for the extraction step alone. Finally, the complete continuous flow method (84°C, 5% ethanol, pH 5.5, 3 mL min(-1)) was used to extract quercetin from yellow, red and shallot onions and resulted in higher or similar yield (e.g. 8.4±0.7 μmol g(-1) fresh weight yellow onion) compared to a conventional batch extraction method using methanol as extraction solvent. PMID:23764443

  11. Solar hot-water system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design data brochure describes domestic solar water system that uses direct-feed system designed to produce 80 gallons of 140 F hot water per day to meet needs of single family dwelling. Brochure also reviews annual movements of sun relative to earth and explains geographic considerations in collector orientation and sizing.

  12. Optimisation of the hot conditioning of carbon steel surfaces of primary heat transport system of Pressurized Heavy Water Reactors using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiran Kumar, M.; Gaonkar, Krishna; Ghosh, Swati; Kain, Vivekanand; Bojinov, Martin; Saario, Timo

    2010-06-01

    Hot conditioning operation of the primary heat transport system is an important step prior to the commissioning of Pressurized Heavy Water Reactors. One of the major objectives of the operation is to develop a stable and protective magnetite layer on the inner surfaces of carbon steel piping. The correlation between stable magnetite film growth on carbon steel surfaces and the period of exposure to hot conditioning environment is generally established by a combination of weight change measurements and microscopic/morphological observations of the specimens periodically removed during the operation. In the present study, electrochemical impedance spectroscopy (EIS) at room temperature is demonstrated as an alternate, quantitative technique to arrive at an optimal duration of the exposure period. Specimens of carbon steel were exposed for 24, 35 and 48 h during hot conditioning of primary heat transport system of two Indian PHWRs. The composition and morphology of oxide films grown during exposure was characterized by X-ray diffraction and optical microscopy. Further, ex situ electrochemical impedance spectra of magnetite films formed after each exposure were measured, in 1 ppm Li + electrolyte at room temperature as a function of potential in a range of -0.8 to +0.3 VSCE. The defect density of the magnetite films formed after each exposure was estimated by Mott-Schottky analysis of capacitances extracted from the impedance spectra. Further the ionic resistance of the oxide was also extracted from the impedance spectra. Defect density was observed to decrease with increase in exposure time and to saturate after 35 h, indicating stabilisation of the barrier layer part of the magnetite film. The values of the ionic transport resistance start to increase after 35-40 h of exposure. The quantitative ability of EIS technique to assess the film quality demonstrates that it can be used as a supplementary tool to the thickness and morphological characterizations of samples

  13. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (ESTSC)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  14. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments Database

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  15. Arsenic species determination in human scalp hair by pressurized hot water extraction and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Morado Piñeiro, Andrés; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2013-02-15

    Analytical methods for the determination of total arsenic and arsenic species (mainly As(III) and As(V)) in human scalp hair have been developed. Inductively coupled plasma-mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) coupled to ICP-MS have been used for total arsenic and arsenic species determination, respectively. The proposed methods include a "green", fast, high efficient and automated species leaching procedure by pressurized hot water extraction (PHWE). The operating parameters for PHWE including modifier concentration, extraction temperature, static time, extraction steps, pressure, mean particle size, diatomaceous earth (DE) mass/sample mass ratio and flush volume were studied using design of experiments (Plackett-Burman design PBD). Optimum condition implies a modifier concentration (acetic acid) of 150 mM and powdered hair samples fully mixed with diatomaceous earth (DE) as a dispersing agent at a DE mass/sample mass ratio of 5. The extraction has been carried out at 100°C and at an extraction pressure of 1500 psi for 5 min in four extraction step. Under optimised conditions, limits of quantification of 7.0, 6.3 and 50.3 ng g(-1) for total As, As(III) and As(V), respectively were achieved. Repeatability of the overall procedure (4.4, 7.2 and 2.1% for total As, As(III) and As(V), respectively) was achieved. The analysis of GBW-07601 (human hair) certified reference material was used for validation. The optimised method has been finally applied to several human scalp hair samples. PMID:23598040

  16. OT2_rvisser_2: Hot water in hot cores

    NASA Astrophysics Data System (ADS)

    Visser, R.

    2011-09-01

    As matter flows from the ice-cold envelope onto a forming protostar, it heats up from temperatures of 10 K to more than 100 K. The region where the temperature exceeds 100 K (the hot core or hot corino) is where the molecular envelope connects with both the seedling circumstellar disk and the bipolar outflow. As the envelope contracts from larger scales, a lot of material passes through the hot core before accreting onto the disk. The hot core is therefore a crucial step in establishing the physical and chemical properties of planetary building blocks. However, little is yet known about hot cores. How large and how massive are they? How hot are they? Are they exposed to strong UV or X-ray fluxes? We propose the rotationally excited 3(12)-3(03) line of H2-18O at 1095.6 GHz (E_up = 249 K) as a novel probe into the properties of hot cores. This line was detected as a narrow emission feature (FWHM ~4 km/s) in a deep integration (5 hr) in the Class 0 protostar NGC1333 IRAS2A. Comparing the line intensity to radiative transfer models, we find a tentative H2-16O hot core abundance of 4x10^-6. This is a factor of 50 lower than one would expect from simple evaporation of water ice above 100 K. Why is the hot core of IRAS2A so much "drier" than expected? Is most of the water destroyed by UV photons and/or X-rays? We propose to measure the water abundance in the hot cores of a sample of five additional Class 0 and I protostars by obtaining deep integrations of the 3(12)-3(03) lines of H2-16O and H2-18O. This mini-survey will reveal whether NGC1333 IRAS2A is unique in having a "dry" hot core, or whether "dry" hot cores are a common feature of low-mass embedded protostars. If they are a common feature, it means they are a more hostile environment than previously thought, with high fluxes of destructive UV photons and X-rays.

  17. Basics of Solar Heating & Hot Water Systems.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  18. Solar Energy for Space Heating & Hot Water.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  19. Design data brochure: Solar hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  20. Water Pressure. Water in Africa.

    ERIC Educational Resources Information Center

    Garrett, Carly Sporer

    The Water in Africa Project was realized over a 2-year period by a team of Peace Corps volunteers. As part of an expanded, detailed design, resources were collected from over 90 volunteers serving in African countries, photos and stories were prepared, and standards-based learning units were created for K-12 students. This unit, "Water Pressure,"…

  1. Dynamical Crossover in Hot Dense Water: The Hydrogen Bond Role.

    PubMed

    Ranieri, Umbertoluca; Giura, Paola; Gorelli, Federico A; Santoro, Mario; Klotz, Stefan; Gillet, Philippe; Paolasini, Luigi; Koza, Michael Marek; Bove, Livia E

    2016-09-01

    We investigate the terahertz dynamics of liquid H2O as a function of pressure along the 450 K isotherm, by coupled quasielastic neutron scattering and inelastic X-ray scattering experiments. The pressure dependence of the single-molecule dynamics is anomalous in terms of both microscopic translation and rotation. In particular, the Stokes-Einstein-Debye equations are shown to be violated in hot water compressed to the GPa regime. The dynamics of the hydrogen bond network is only weakly affected by the pressure variation. The time scale of the structural relaxation driving the collective dynamics increases by a mere factor of 2 along the investigated isotherm, and the structural relaxation strength turns out to be almost pressure independent. Our results point at the persistence of the hydrogen bond network in hot dense water up to ice VII crystallization, thus questioning the long-standing perception that hydrogen bonds are broken in liquid water under the effect of compression. PMID:27479235

  2. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  3. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  4. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply...

  5. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply...

  6. Water vapor pressure calculation.

    PubMed

    Hall, J R; Brouillard, R G

    1985-06-01

    Accurate calculation of water vapor pressure for systems saturated with water vapor can be performed using the Goff-Gratch equation. A form of the equation that can be adapted for computer programming and for use in electronic databases is provided. PMID:4008425

  7. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made in the development of a solar hot water and space heating system is described in four quarterly reports. The program schedules, technical status and other program activities from 6 October 1976 through 30 September 1977 are provided.

  8. Cavitation pressure in water

    NASA Astrophysics Data System (ADS)

    Herbert, Eric; Balibar, Sébastien; Caupin, Frédéric

    2006-10-01

    We investigate the limiting mechanical tension (negative pressure) that liquid water can sustain before cavitation occurs. The temperature dependence of this quantity is of special interest for water, where it can be used as a probe of a postulated anomaly of its equation of state. After a brief review of previous experiments on cavitation, we describe our method which consists in focusing a high amplitude sound wave in the bulk liquid, away from any walls. We obtain highly reproducible results, allowing us to study in detail the statistics of cavitation, and to give an accurate definition of the cavitation threshold. Two independent pressure calibrations are performed. The cavitation pressure is found to increase monotonically from -26MPa at 0°C to -17MPa at 80°C . While these values lie among the most negative pressures reported in water, they are still far away from the cavitation pressure expected theoretically and reached in the experiment by Angell and his group [Zheng , Science 254, 829 (1991)] (around -120MPa at 40°C ). Possible reasons for this discrepancy are considered.

  9. Motel solar-hot-water system with nonpressurized storage--Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Modular roof-mounted copper-plated arrays collect solar energy; heated water drains from them into 1,000 gallon nonpressurized storage tank which supplies energy to existing pressurized motel hot water lines. System provides 65 percent of hot water demand. Report described systems parts and operation, maintenance, and performance and provides warranty information.

  10. Solar-powered hot-water system

    NASA Technical Reports Server (NTRS)

    Collins, E. R.

    1979-01-01

    Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

  11. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the water heater to the amount of energy consumed by the water heater as measured during the thermal... 10 Energy 3 2014-01-01 2014-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF...

  12. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the water heater to the amount of energy consumed by the water heater as measured during the thermal... 10 Energy 3 2012-01-01 2012-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF...

  13. Residential hot water distribution systems: Roundtablesession

    SciTech Connect

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  14. Prototype solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  15. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the amount of energy consumed by the water heater as measured during the thermal efficiency test... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF...

  16. Prototype solar domestic hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Construction of a double wall heat exchanger using soft copper tube coiled around a hot water storage tank was completed and preliminary tests were conducted. Solar transport water to tank potable water heat exchange tests were performed with a specially constructed test stand. Work was done to improve the component hardware and system design for the solar water heater. The installation of both a direct feed system and a double wall heat exchanger system provided experience and site data to enable informative decisions to be made as the solar market expands into areas where freeze protection is required.

  17. Hot water, fresh beer, and salt

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  18. Alternatives for reducing hot-water bills

    SciTech Connect

    Bennington, G.E.; Spewak, P.C.

    1981-06-01

    A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

  19. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water immersion treatment schedules. 305.22... Hot water immersion treatment schedules. (a) T102-d. (1) Fruit must be grown and treated in Hawaii. (2) Fruit must be submerged at least 4 inches below the water's surface in a hot water immersion...

  20. When hot water freezes before cold

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2009-01-01

    I suggest that the origin of the Mpemba effect (the freezing of hot water before cold) is due to freezing-point depression by solutes, either gaseous or solid, whose solubility decreases with increasing temperature so that they are removed when water is heated. The solutes are concentrated ahead of the freezing front by zone refining in water that has not been heated, reducing the temperature of the freezing front, and thereby reducing the temperature gradient and heat flux, slowing the progress of the freezing front. I present a simple calculation of this effect, and suggest experiments to test this hypothesis.

  1. Hot and cold water issues deftly described.

    PubMed

    Baillie, Jonathan

    2016-02-01

    Speaking at a Legionella Control Association Open Day on 9 October last year in Tamworth, Mike Quest, an LCA director and Committee Member who is an independent water hygiene and safety consultant and an NHS Authorising Engineer, presented his standpoint on effective risk assessment and monitoring of complex hot and cold water systems. He also focused on some of the challenges for engineering and estates teams in maintaining water temperatures within 'safe limits' in modern buildings, with reference to the complications he had seen in a hospital project he has recently been working on. PMID:27017660

  2. High temperature hot water distribution system study

    SciTech Connect

    1996-12-01

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  3. Combined grate and hot water heater

    SciTech Connect

    Milano, E.

    1984-09-25

    A combined grate and hot water heater for a fireplace which can be easily fabricated using conventional parts, easily installed and easily used is disclosed. The combined grate and hot water heater includes a rectangular shaped cradle for holding combustible materials to be burned which is sized and configured to fit into the fire chamber of the fireplace and a set of supporting legs for supporting the cradle on the floor of the fire chamber in spaced apart relationship. The cradle is made of a plurality of longitudinally extending and laterally extending heavy duty cast iron pipes interconnected by suitable pipe couplings so as to be in fluid communication with one another. A water inlet pipe and a water outlet pipe are connected to and in fluid communication with the pipes in the cradle for supplying water to be heated into the pipes and then allowing exit of the water after it has circulated through the pipes and has been heated by the fire produced on burning of the combustible materials. An inverted U shaped pipe section also made of heavy duty cast iron is coupled in fluid communication with the pipes in the cradle and extends vertically upward into the flue of the fireplace to utilize the heat present in the flue to further heat the water circulated through the pipes.

  4. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device...

  5. Installation package for a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  6. Legionella Infection Risk from Domestic Hot Water

    PubMed Central

    Montagna, M. Teresa; Romano-Spica, Vincenzo; Stampi, Serena; Stancanelli, Giovanna; Triassi, Maria; Neglia, Rachele; Marchesi, Isabella; Fantuzzi, Guglielmina; Tatò, Daniela; Napoli, Christian; Quaranta, Gianluigi; Laurenti, Patrizia; Leoni, Erica; De Luca, Giovanna; Ossi, Cristina; Moro, Matteo; D’Alcalà, Gabriella Ribera

    2004-01-01

    We investigated Legionella and Pseudomonas contamination of hot water in a cross-sectional multicentric survey in Italy. Chemical parameters (hardness, free chlorine, and trace elements) were determined. Legionella spp. were detected in 33 (22.6%) and Pseudomonas spp. in 56 (38.4%) of 146 samples. Some factors associated with Legionella contamination were heater type, tank distance and capacity, water plant age, and mineral content. Pseudomonas presence was influenced by water source, hardness, free chlorine, and temperature. Legionella contamination was associated with a centralized heater, distance from the heater point >10 m, and a water plant >10 years old. Furthermore, zinc levels of <20 μg/L and copper levels of >50 μg/L appeared to be protective against Legionella colonization. Legionella species and serogroups were differently distributed according to heater type, water temperature, and free chlorine, suggesting that Legionella strains may have a different sensibility and resistance to environmental factors and different ecologic niches. PMID:15109413

  7. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  8. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  9. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  10. Hot water, fresh beer, and salt

    SciTech Connect

    Crawford, F.S. Physics Department, University of California, Berkeley, CA )

    1990-11-01

    In the hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO{sub 2}) provided you first (a) get rid of much of the excess CO{sub 2} so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, Do ionizing particles produce bubbles in fresh beer '' is answered experimentally.

  11. A three-fluid model for the simulation of counter-current stratified flows in the hot leg of a pressurized water reactor

    SciTech Connect

    Ben Hadj Ali, A.; Laurien, E.

    2012-07-01

    A three-fluid model of counter-current air-water flow is suggested. The accurate prediction of droplet entrainment in two-phase flows is relevant to calculate interfacial exchange between the fluids. The present study delivers a model based on the constitutive physics for droplet separation considering re-entrainment of the dispersed water droplets into the continuous water film. A monodisperse distribution of the droplets is taken into account by means of a transport equation for the droplet number density in order to determine the droplet size. (authors)

  12. Getting into hot water Problematizing hot water service demand: The case of Old Cairo

    NASA Astrophysics Data System (ADS)

    Culhane, Thomas Henry

    This dissertation analyzes hot water demand and service infrastructure in two neighboring but culturally distinct communities of the urban poor in the inner-city area of central Cairo. The communities are the Historic Islamic Cairo neighborhood of Darb Al Ahmar at the foot of Al-Azhar park, and the Zurayib neighborhood of Manshiyat Nasser where the Coptic Zabaleen Recyclers live. The study focuses on the demand side of the hot water issue and involves consideration of built-environment infrastructures providing piped water, electricity, bottled gas, sewage, and the support structures (wiring and plumbing) for consumer durables (appliances such as hot water heaters, stoves, refrigerators, air conditioners) as well as water pumps and water storage tanks. The study asks the questions "How do poor communities in Cairo value hot water" and "How do cost, infrastructure and cultural preferences affect which attributes of hot water service are most highly preferred?". To answer these questions household surveys based primarily on the World Bank LSMS modules were administered by professional survey teams from Darb Al Ahmar's Aga Khan Trust for Culture and the Zabaleen's local NGO "Spirit of Youth" in their adjacent conununities in and surrounding historic Cairo. In total 463 valid surveys were collected, (231 from Darb Al Ahmar, 232 from the Zabaleen). The surveys included a contingent valuation question to explore Willingness to Pay for improved hot water service; the surveys queried household assets as proxies for income. The dissertation's findings reveal that one quarter of the residents of Darb Al Ahmar and two-thirds of the residents of Manshiyet Nasser's Zabaleen lack conventional water heating service. Instead they employ various types of stoves and self-built contraptions to heat water, usually incurring considerable risk and opportunity costs. However the thesis explores the notion that this is rational "satisficing" behavior; despite the shortcomings of such self

  13. Effects of pressure and temperature on hot pressing a sialon

    NASA Technical Reports Server (NTRS)

    Yeh, H. C.

    1977-01-01

    Mixed powders (60 m/o Al2O3-40 m/o Si3N4) were hot pressed at temperatures and pressures from 1360 to 1750 C and 3.5 to 27.5 MPa (0.5 to 4.0 ksi). Fully dense sialon bodies are obtainable at temperatures and pressures as low as 1550 C and 0.5 ksi. The fully dense bodies contain Beta prime and x-phase. There is some evidence that plastic deformation has contributed to densification.

  14. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion

    SciTech Connect

    Sears, R.E.; Griswold, G.H.; Fankhanel, M.O.; Kastner, C.E.; Pontium, D.H.

    1992-11-01

    Efficiencies in advanced power generation systems such as integrated gasification combined cycle, pressurized fluidized bed combustion and integrated gasification fuel cells can be maximized by feeding hot fuel gas or flue gas to the power block. However, advanced gas turbines have strict particulate requirements to minimize wear on the blades due to the close tolerances used to maximize the efficiency of the turbomachinery. Molten Carbonate Fuel Cells also have strict particulate requirements to prevent blinding of the electrodes. Therefore, one of the main barriers to developing these advanced power generation systems is the removal of particulates in a hot gas stream. Although the development of several high temperature/pressure PCD systems has been ongoing for the past several years, long term operation under realistic conditions for advanced power generation has been limited. The demonstration of reliable operation is critical to the commercialization of PCD technology for advanced power generation. The conceptual design of the Hot Gas Cleanup Test Facility Project was expanded to include additional modules to better address the scope of the Cooperative Agreement with the DOE/METC. The expanded test facility, referred to as the Power Systems Development Facility, will provide a flexible test location in which the development of advanced power system components, the evaluation of advanced turbine and fuel cell configurations, and the integration and control issues of these systems. The facility is intended to provide direct support for upcoming DOE demonstrations of power generation technologies utilizing hot stream cleanup and will provide a resource for rigorous testing and performance assessment of hot stream cleanup devices now being developed with the support of DOE/METC.

  15. Liquid Hot Water Pretreatment of Cellulosic Biomass

    NASA Astrophysics Data System (ADS)

    Kim, Youngmi; Hendrickson, Rick; Mosier, Nathan S.; Ladisch, Michael R.

    Lignocellulosic biomass is an abundant and renewable resource for fuel ethanol production. However, the lignocellulose is recalcitrant to enzymatic hydrolysis because of its structural complexity. Controlled-pH liquid hot water (LHW) pretreatment of cellulosic feedstock improves its enzymatic digestibility by removing hemicellulose and making the cellulose more accessible to cellulase enzymes. The removed hemicellulose is solubilized in the liquid phase of the pretreated feedstock as oligosaccharides. Formation of monomeric sugars during the LHW pretreatment is minimal. The LHW pretreatment is carried out by cooking the feedstock in process water at temperatures between 160 and 190°C and at a pH of 4-7. No additional chemicals are needed. This chapter presents the detailed procedure of the LHW pretreatment of lignocellulosic biomass.

  16. Getting into hot water Problematizing hot water service demand: The case of Old Cairo

    NASA Astrophysics Data System (ADS)

    Culhane, Thomas Henry

    This dissertation analyzes hot water demand and service infrastructure in two neighboring but culturally distinct communities of the urban poor in the inner-city area of central Cairo. The communities are the Historic Islamic Cairo neighborhood of Darb Al Ahmar at the foot of Al-Azhar park, and the Zurayib neighborhood of Manshiyat Nasser where the Coptic Zabaleen Recyclers live. The study focuses on the demand side of the hot water issue and involves consideration of built-environment infrastructures providing piped water, electricity, bottled gas, sewage, and the support structures (wiring and plumbing) for consumer durables (appliances such as hot water heaters, stoves, refrigerators, air conditioners) as well as water pumps and water storage tanks. The study asks the questions "How do poor communities in Cairo value hot water" and "How do cost, infrastructure and cultural preferences affect which attributes of hot water service are most highly preferred?". To answer these questions household surveys based primarily on the World Bank LSMS modules were administered by professional survey teams from Darb Al Ahmar's Aga Khan Trust for Culture and the Zabaleen's local NGO "Spirit of Youth" in their adjacent conununities in and surrounding historic Cairo. In total 463 valid surveys were collected, (231 from Darb Al Ahmar, 232 from the Zabaleen). The surveys included a contingent valuation question to explore Willingness to Pay for improved hot water service; the surveys queried household assets as proxies for income. The dissertation's findings reveal that one quarter of the residents of Darb Al Ahmar and two-thirds of the residents of Manshiyet Nasser's Zabaleen lack conventional water heating service. Instead they employ various types of stoves and self-built contraptions to heat water, usually incurring considerable risk and opportunity costs. However the thesis explores the notion that this is rational "satisficing" behavior; despite the shortcomings of such self

  17. Catalytic Behavior of Dense Hot Water

    SciTech Connect

    Wu, C J; Fried, L E; Yang, L H; Goldman, N; Bastea, S

    2008-06-05

    Water is known to exhibit fascinating physical properties at high pressures and temperatures. Its remarkable structural and phase complexity suggest the possibility of exotic chemical reactivity under extreme conditions, though this remains largely unstudied. Detonations of high explosives containing oxygen and hydrogen produce water at thousands of K and tens of GPa, similar to conditions of giant planetary interiors. These systems thus provide a unique means to elucidate the chemistry of 'extreme water'. Here we show that water plays an unexpected role in catalyzing complex explosive reactions - contrary to the current view that it is simply a stable detonation product. Using first-principles atomistic simulations of the detonation of high explosive pentaerythritol tetranitrate (PETN), we discovered that H{sub 2}O (source), H (reducer) and OH (oxidizer) act as a dynamic team that transports oxygen between reaction centers. Our finding suggests that water may catalyze reactions in other explosives and in planetary interiors.

  18. Design package for solar domestic hot water system

    SciTech Connect

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  19. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to apply heat or cold to an area of the body. (b) Classification. Class I (general controls). The... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device...

  20. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.

  1. Organic compounds in hot-water-soluble fractions from water repellent soils

    NASA Astrophysics Data System (ADS)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes < C20) were extracted through desorption of complex colloids stabilized as micelles in dissolved organic carbon (DOC). Water repellency was completely eliminated by hot water under high pressure. The molecular composition of HWSC can play a critical role in stabilization and destabilization of soil organic matter (SOM), particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  2. High-pressure combinatorial process integrating hot isostatic pressing.

    PubMed

    Fujimoto, Kenjiro; Morita, Hiroki; Goshima, Yuji; Ito, Shigeru

    2013-12-01

    A high-pressure combinatorial process integrating hot isostatic pressing (HIP) was developed by providing a reaction vessel with a high-pressure tightness based on a commercial flange. The reaction vessel can be used up to 200 MPa and 500 °C under HIP processing condition. Preparation of spinel-type MgAl2O4 from Mg(OH)2, Al(OH)3 and AlOOH was performed using the reaction vessel under 200 MPa and 500 °C as demonstration. The entire powder library was characterized using powder X-ray diffraction patterns, and the single phase of spinel-type MgAl2O4 was obtained from Mg(OH)2+Al(OH)3. These assessments corresponded with previously published data. PMID:24168067

  3. Bonding changes in hot fluid hydrogen at megabar pressures

    PubMed Central

    Subramanian, Natarajan; Goncharov, Alexander F.; Struzhkin, Viktor V.; Somayazulu, Maddury; Hemley, Russell J.

    2011-01-01

    Raman spectroscopy in laser-heated diamond anvil cells has been employed to probe the bonding state and phase diagram of dense hydrogen up to 140 GPa and 1,500 K. The measurements were made possible as a result of the development of new techniques for containing and probing the hot, dense fluid, which is of fundamental importance in physics, planetary science, and astrophysics. A pronounced discontinuous softening of the molecular vibron was found at elevated temperatures along with a large broadening and decrease in intensity of the roton bands. These phenomena indicate the existence of a state of the fluid having significantly modified intramolecular bonding. The results are consistent with the existence of a pressure-induced transformation in the fluid related to the presence of a temperature maximum in the melting line as a function of pressure. PMID:21447715

  4. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (incorporated by reference; see 46 CFR 53.01-1) except as noted otherwise in this section. (b) Hot water heating... 46 Shipping 2 2011-10-01 2011-10-01 false Relief valve requirements for hot water boilers... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-2 Relief...

  5. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (incorporated by reference; see 46 CFR 53.01-1) except as noted otherwise in this section. (b) Hot water heating... 46 Shipping 2 2013-10-01 2013-10-01 false Relief valve requirements for hot water boilers... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-2 Relief...

  6. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (incorporated by reference; see 46 CFR 53.01-1) except as noted otherwise in this section. (b) Hot water heating... 46 Shipping 2 2012-10-01 2012-10-01 false Relief valve requirements for hot water boilers... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-2 Relief...

  7. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference; see 46 CFR 53.01-1) except as noted otherwise in this section. (b) Hot water heating... 46 Shipping 2 2010-10-01 2010-10-01 false Relief valve requirements for hot water boilers... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-2 Relief...

  8. 46 CFR 53.05-2 - Relief valve requirements for hot water boilers (modifies HG-400.2).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (incorporated by reference; see 46 CFR 53.01-1) except as noted otherwise in this section. (b) Hot water heating... 46 Shipping 2 2014-10-01 2014-10-01 false Relief valve requirements for hot water boilers... (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-2 Relief...

  9. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  10. Design package for solar domestic hot water system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The initial design of a solar domestic hot water system is considered. The system performance specification and detailed design drawings are included. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished site data acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  11. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  12. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  13. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  14. Solar Hot Water for Motor Inn--Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report describes solar domestic-hot-water heater installation at LaQuinta Motor Inn, Texas City, Texas which furnished 63% of total hot-water load of new 98-unit inn. Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.

  15. Preliminary design package for Sunspot Domestic Hot Water Heating System

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design review includes a drawing list, auto-control logic, measurement definitions, and other document pertaining to the solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control transport, auxiliary energy, and site data acquisition.

  16. Water cooled static pressure probe

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T. (Inventor); Eves, John W. (Inventor); Reece, Garland D. (Inventor); Geissinger, Steve L. (Inventor)

    1991-01-01

    An improved static pressure probe containing a water cooling mechanism is disclosed. This probe has a hollow interior containing a central coolant tube and multiple individual pressure measurement tubes connected to holes placed on the exterior. Coolant from the central tube symmetrically immerses the interior of the probe, allowing it to sustain high temperature (in the region of 2500 F) supersonic jet flow indefinitely, while still recording accurate pressure data. The coolant exits the probe body by way of a reservoir attached to the aft of the probe. The pressure measurement tubes are joined to a single, larger manifold in the reservoir. This manifold is attached to a pressure transducer that records the average static pressure.

  17. Residential solar hot water system--Tempe, Arizona

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Domestic hot water for single story home is heated by two 4 by 8 foot solar collectors. Solar energy saved 5.54 million Btu in six month period; savings with increased water consumption would be significantly higher.

  18. Solar Hot Water for an Industrial Laundry--Fresno, California

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report describes an integrated wastewater-heat recovery system and solar preheating system to supply part of hot-water requirements of an industrial laundry. Large retrofit solar-water-heating system uses lightweight collectors.

  19. New printed circuit heat exchanger with S-shaped fins for hot water supplier

    SciTech Connect

    Ngo, Tri Lam; Kato, Yasuyoshi; Nikitin, Konstantin; Tsuzuki, Nobuyoshi

    2006-08-15

    A new PCHE with an S-shaped fin configuration was applied to a hot water supplier in which cold water of 7{sup o}C is warmed to 90{sup o}C through heat-exchange with supercritical CO{sub 2} of 118{sup o}C and 11.5MPa pressure. The fin and plate configurations were determined using 3D CFD simulations for the CO{sub 2} side and H{sub 2}O side and the thermal-hydraulic performance of hot water supplier was evaluated. Compared with a hot water supplier that is currently used in a residential heat pump, the new PCHE provides about 3.3 times less volume; and lower pressure drop by 37% in the CO{sub 2} side and by 10 times in H{sub 2}O side. (author)

  20. Solar hot water system installed at Day's Lodge, Atlanta, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Atlanta, Georgia is described. This system provides for 81 percent of the total hot water demand. There are two separate systems, each serving one building of the lodge (total of 65 suites). The entire system contains only potable city water. The 1024 square feet of Grumman Sunstream Model 332 liquid flat plate collectors and the outside piping drain whenever the collector plates approach freezing or when power is interrupted. Solar heated water from the two above ground cement lined steel tanks (1000 gallon tank) is drawn into the electric Domestic Hot Water (DHW) tanks as hot water is drawn. Electric resistance units in the DHW tanks top off the solar heated water, if needed, to reach thermostat setting.

  1. When does hot water freeze faster then cold water? A search for the Mpemba effect

    NASA Astrophysics Data System (ADS)

    Brownridge, James D.

    2011-01-01

    It is possible to consistently observe hot water freezing faster than cold water under certain conditions. All conditions except the initial temperature of water specimens must be the same and remain so during cooling, and the cold water must supercool to a temperature significantly lower than the temperature to which the hot water supercools. For hot water at an initial temperature of >≈80 °C and cold water at <≈20 °C, the cold water must supercool to a temperature of at least ≈5.5 °C, lower than the temperature to which hot water supercools. With these conditions satisfied, we observed initially hot water freezing before the initially cold water 28 times in 28 attempts. If the cold water does not supercool, it will freeze before the hot water because it always cools to 0 °C first regardless of the initial temperatures.

  2. Cycle Simulation of HotWater Fired Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Esaki, Shuji; Iramina, Kazuyasu; Kobayashi, Takahiro; Ohnou, Masayuki; Kaneko, Toshiyuki; Soga, Takashi

    The design limits were examined to determine the lowest temperature for hot water that can be used as a heat source to drive a hot water fired absorption chiller. Advantage was taken of the fact that the cycle calculation method using the minimum temperature difference is quite effective. This minimum temperature difference was the lower of the two temperature differences used to get the logarithmic mean temperature difference that need to design the evaporator, absorber, condenser and generator in an absorption refrigerator. This report proposes a new solution algorithm employing this minimum temperature difference to make a cycle simulation of the hot water fired absorption chiller. It shows the lowest usable temperature for hot water and makes clear the chilled water and cooling water temperature conditions that can provide the lowest temperature.

  3. Tool for Generating Realistic Residential Hot Water Event Schedules: Preprint

    SciTech Connect

    Hendron, B.; Burch, J.; Barker, G.

    2010-08-01

    The installed energy savings for advanced residential hot water systems can depend greatly on detailed occupant use patterns. Quantifying these patterns is essential for analyzing measures such as tankless water heaters, solar hot water systems with demand-side heat exchangers, distribution system improvements, and recirculation loops. This paper describes the development of an advanced spreadsheet tool that can generate a series of year-long hot water event schedules consistent with realistic probability distributions of start time, duration and flow rate variability, clustering, fixture assignment, vacation periods, and seasonality. This paper also presents the application of the hot water event schedules in the context of an integral-collector-storage solar water heating system in a moderate climate.

  4. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Two prototype solar heating and hot water systems for use in single-family dwellings or commercial buildings were designed. Subsystems included are: collector, storage, transport, hot water, auxiliary energy, and government-furnished site data acquisition. The systems are designed for Yosemite, California, and Pueblo, Colorado. The necessary information to evaluate the preliminary design for these solar heating and hot water systems is presented. Included are a proposed instrumentation plan, a training program, hazard analysis, preliminary design drawings, and other information about the design of the system.

  5. Recovery of energy from geothermal brine and other hot water sources

    DOEpatents

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  6. View of Inverted Siphon crossing Hot Water (or White) Canyon. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Inverted Siphon crossing Hot Water (or White) Canyon. Looking northeast - Childs-Irving Hydroelectric Project, Irving System, Inverted Siphon, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  7. Temperature field study of hot water circulation pump shaft system

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.

  8. Prototype solar heating and cooling systems, including potable hot water

    NASA Technical Reports Server (NTRS)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  9. Solar hot water system installed at Anderson, South Carolina

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the solar energy hot water system installed in the Days Inns of America, Inc., at Anderson, South Carolina. The building is a low-rise, two-story 114-room motel. The solar system was designed to provide 40 percent of the total hot water demand. The collector is a flat plate, liquid with an area of 750 square feet. Operation of this system was begun in November 1977, and has performed flawlessly for one year.

  10. Motel solar-hot-water system--Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report describes system which meets 64 percent of hot water requirements of 120 room motel. Key system components include 1,000 square foot, roof-mounted collector array, 1,000 gallon storage tank, tube-in-shell heat exchanger, and three domestic hot-water tanks. Report contains calibration instructions for differential temperature controllers, shutdown procedures, and operation guidelines, performance analysis, and manufacturers' maintenance literature.

  11. Solar hot water system installed at Las Vegas, Nevada

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A solar energy hot water system installed in a motor inn at Las Vegas, Nevada is described. The inn is a three story building with a flat roof for installation of the solar panels. The system consists of 1,200 square feet of liquid flat plate collectors, a 2,500 gallon insulated vertical steel storage tank, two heat exchangers, and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  12. Hot-water controller lowers cost of hospitality

    SciTech Connect

    Not Available

    1985-10-01

    A 150-unit Oregon motel cut its hot water heating bills by $7800 in three months after installing a new computer device designed to reduce fuel consumption in central water heating systems. By constantly adjusting water temperature to demand, the controller minimizes standby heat loss and pays for itself in record time - in this case, just one month.

  13. Synthesis of bacterial cellulose using hot water extracted wood sugars.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Gardner, Douglas J

    2015-06-25

    Bacterial cellulose (BC), a type of nanopolymer produced by Acetobacter xylinum is a nanostructured material with unique properties and wide applicability. However, a standard medium used for the cultivation of BC, the Hestrin-Schramm medium, is expensive and prevents wide scale extension of BC applications. In this research, a relatively low-cost culture media was successfully developed from wood hot water extracts for the Acetobacter xylinus 23769 strain. Hot water extract (HWE) is a residual material originating from pulp mills and lignocellulosic biorefineries and consists of mainly monomeric sugars, organic acids and organics. The effects of different pH (5, 6, 7 and 8) and temperatures (26, 28 and 30°C) were also examined in this research. There were no significant differences in the crystallinity and the recorded Iα fraction of cellulose produced between Hestrin-Schramm and the HWE medium. The maximum production of 0.15g/l of BC was obtained at a pH of 8 and temperature of 28°C. Glucose and xylose in the HWE were the main nutrient sources utilized in all BC cultivations based on high-pressure liquid chromatography (HPLC) results. HWE was shown to be a suitable carbon source for BC production, and a process was established for BC production from lignocellulosic feedstocks without using any modification of the HWE. HWE is an abundant and relatively inexpensive forest by-product. Using HWE for BC production could reduce burdens on the environment and also, achieve the goal of large scale BC production at low cost without using added culture nutrients. PMID:25839803

  14. TYPICAL HOT WATER DRAW PATTERNS BASED ON FIELD DATA

    SciTech Connect

    Lutz, Jim; Melody, Moya

    2012-11-08

    There is significant variation in hot water use and draw patterns among households. This report describes typical hot water use patterns in single-family residences in North America. We found that daily hot water use is highly variable both among residences and within the same residence. We compared the results of our analysis of the field data to the conditions and draw patterns established in the current U.S. Department of Energy (DOE) test procedure for residential water heaters. The results show a higher number of smaller draws at lower flow rates than used in the test procedure. The data from which the draw patterns were developed were obtained from 12 separate field studies. This report describes the ways in which we managed, cleaned, and analyzed the data and the results of our data analysis. After preparing the data, we used the complete data set to analyze inlet and outlet water temperatures. Then we divided the data into three clusters reflecting house configurations that demonstrated small, medium, or large median daily hot water use. We developed the three clusters partly to reflect efforts of the ASHRAE standard project committee (SPC) 118.2 to revise the test procedure for residential water heaters to incorporate a range of draw patterns. ASHRAE SPC 118.2 has identified the need to separately evaluate at least three, and perhaps as many as five, different water heater capacities. We analyzed the daily hot water use data within each cluster in terms of volume and number of hot water draws. The daily draw patterns in each cluster were characterized using distributions for volume of draws, duration of draws, time since previous draw, and flow rates.

  15. Modeling patterns of hot water use in households

    SciTech Connect

    Lutz, J.D.; Liu, Xiaomin; McMahon, J.E.

    1996-11-01

    This report presents a detailed model of hot water use patterns in individual household. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies. 21 refs., 3 figs., 10 tabs.

  16. Modeling patterns of hot water use in households

    SciTech Connect

    Lutz, James D.; Liu, Xiaomin; McMahon, James E.; Dunham, Camilla; Shown, Leslie J.; McCure, Quandra T.

    1996-01-01

    This report presents a detailed model of hot water use patterns in individual households. The model improves upon an existing model by including the effects of four conditions that were previously unaccounted for: the absence of a clothes washer; the absence of a dishwasher; a household consisting of seniors only; and a household that does not pay for its own hot water use. Although these four conditions can significantly affect residential hot water use, and have been noted in other studies, this is the first time that they have been incorporated into a detailed model. This model allows detailed evaluation of the impact of potential efficiency standards for water heaters and other market transformation policies.

  17. Is hot water immersion an effective treatment for marine envenomation?

    PubMed Central

    Atkinson, P R T; Boyle, A; Hartin, D; McAuley, D

    2006-01-01

    Envenomation by marine creatures is common. As more people dive and snorkel for leisure, the incidence of envenomation injuries presenting to emergency departments has increased. Although most serious envenomations occur in the temperate or tropical waters of the Indo‐Pacific region, North American and European waters also provide a habitat for many stinging creatures. Marine envenomations can be classified as either surface stings or puncture wounds. Antivenom is available for a limited number of specific marine creatures. Various other treatments such as vinegar, fig juice, boiled cactus, heated stones, hot urine, hot water, and ice have been proposed, although many have little scientific basis. The use of heat therapies, previously reserved for penetrating fish spine injuries, has been suggested as treatment for an increasing variety of marine envenomation. This paper reviews the evidence for the effectiveness of hot water immersion (HWI) and other heat therapies in the management of patients presenting with pain due to marine envenomation. PMID:16794088

  18. Ultra-High-Pressure Water

    NASA Astrophysics Data System (ADS)

    French, Martin; Redmer, Ronald; Mattsson, Thomas R.

    2008-03-01

    We present the first all-electron QMD simulations of water in the ultra-high-pressure regime up to conditions typical for the deep interior of Jupiter and Saturn. We calculate the equation of state and the Hugoniot curve and study the structural properties via pair correlation functions and self-diffusion coefficients. In the ultra-dense superionic phase, we find a continuous transition in the protonic structure. Water at conditions of Jupiter's core (i.e. 20000 K, 50 Mbar, 11 g/cm^3) forms a fluid dense plasma. Supported by the DFG within SFB 652. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Not Available

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Seventh Quarter of the First Budget Period, April 1 through June 30, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion will include the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams. Combustion Gas Turbine; Fuel Cell and associated gas treatment; and Externally Fired Gas Turbine/Water Augmented Gas Turbine. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  20. Small-scale Geothermal Power Plants Using Hot Spring Water

    NASA Astrophysics Data System (ADS)

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three

  1. Hot water epilepsy: a benign and unrecognized form.

    PubMed

    Ioos, C; Fohlen, M; Villeneuve, N; Badinand-Hubert, N; Jalin, C; Cheliout-Heraut, F; Pinard, J M

    2000-02-01

    Hot water epilepsy is a reflex epilepsy. Seizures are provoked by hot water, and result from the association of both cutaneous and heat stimuli. Described mainly in India and Japan, the condition seems to be rare in Europe, where it occurs in young children. We report five infants aged from 6 months to 2 years. They had brief seizures during bathing with activity arrest, hypotonia, and vasoactive modification; clonic movements were observed. A simple treatment-decreasing the bath temperature-can be sufficient. Sometimes an antiepileptic drug is required. Seizure course and psychomotor development are favorable. Hot water epilepsy is a benign form of epilepsy. Its incidence could be underestimated because of confusion with febrile convulsions, vagal fits, or aquagenic urticaria. PMID:10695897

  2. Mycobacterium avium complex in day care hot water systems, and persistence of live cells and DNA in hot water pipes.

    PubMed

    Bukh, Annette S; Roslev, Peter

    2014-04-01

    The Mycobacterium avium complex (MAC) is a group of opportunistic human pathogens that may thrive in engineered water systems. MAC has been shown to occur in drinking water supplies based on surface water, but less is known about the occurrence and persistence of live cells and DNA in public hot water systems based on groundwater. In this study, we examined the occurrence of MAC in hot water systems of public day care centers and determined the persistence of live and dead M. avium cells and naked DNA in model systems with the modern plumbing material cross-linked polyethylene (PEX). The occurrence of MAC and co-occurrence of Legionella spp. and Legionella pneumophila were determined using cultivation and qPCR. Co-occurrences of MAC and Legionella were detected in water and/or biofilms in all hot water systems at temperatures between 40 and 54 °C. Moderate correlations were observed between abundance of culturable MAC and that of MAC genome copies, and between MAC and total eubacterial genome copies. No quantitative relationship was observed between occurrence of Legionella and that of MAC. Persistence in hot water of live and dead M. avium cells and naked DNA was studied using PEX laboratory model systems at 44 °C. Naked DNA and DNA in dead M. avium cells persisted for weeks. Live M. avium increased tenfold in water and biofilms on PEX. The results suggest that water and biofilms in groundwater-based hot water systems can constitute reservoirs of MAC, and that amplifiable naked DNA is relatively short-lived, whereas PEX plumbing material supports persistence and proliferation of M. avium. PMID:24272032

  3. Solar domestic hot water system installed at Texas City, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This is the final technical report of the solar energy system located at LaQuinta Motor Inn, Texas City, Texas. The system was designed to supply 63 percent of the total hot water load for a new 98 unit motor inn. The solar energy system consists of a 2100 square feet Raypack liquid flat plate collector subsystem and a 2500 gallon storage subsystem circulating hot water producing 3.67 x 10 to the 8th power Btu/year. Abstracts from the site files, specification references, drawings, installation, operation, and maintenance instructions are included.

  4. Pouring 'Cold Water' on Hot Accretion

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.

    1995-09-01

    The extensive recrystallization of type-6 OC has been interpreted as having resulted either from prograde thermal metamorphism of initially cold, unequilibrated material [1,2] or from autometamorphism due to slow cooling of material that accreted while still hot (1000-1200 K). Although the physical implausibility of hot accretion has been addressed [3], no comprehensive evaluation has been made of arguments in its favor. As shown below, these arguments are based on incomplete data, flawed experiments or improbable interpretations. Correlation between petrologic type and Ca in low-Ca pyroxene. Models of prograde metamorphism assume that, with increasing temperature, opx acquires Ca at the expense of diopside. Analyses of pyroxene in 10 H chondrites showed no correlation between Ca in pyroxene cores and increasing petrologic type [4], but more extensive data sets show such correlations [1,5,6]. A review of data for 51 OC [7] shows a progressive increase in the Wo content of low-Ca pyroxene with petrologic type: Wo 0.4-1.2 in type-3 and -4; Wo 1.2-1.6 in type-5; and Wo 1.6-2.2 in type-6. Striated opx. Undeformed striated opx were interpreted as having formed from inverted protopyroxene during slow cooling [8]; striated opx from H4 Quenggouk were found to convert into normal opx within 1 week during annealing at 1100 K [9]. Because prograde metamorphism probably lasted ~60 Ma [10], there should be no striated opx remaining in type-4 or -5 OC. However, samples of 99% twinned clinopyroxene (analogous to that in chondrules in type-3 OC) annealed for >3 weeks at <=1250 K exhibited only very minor inversion to opx [11-13]. These experiments are consistent with prograde metamorphism; it seems likely that Quenggouk pyroxene probably had a substantial proportion of opx lamellae to begin with. Spinodal decomposition textures and cooling rates. Spinodal decomposition textures in pyroxene in type 4-5 OC were observed to have the same periodicities as those in type-3 OC [14]; it

  5. Hot-film static-pressure probe for surveying flow fields

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Weinstein, L. M.

    1981-01-01

    A static pressure probe employing hot-film sensors has been developed for the rapid measurement of the static pressure fields surrounding analytic shapes in hypersonic flows. The hot-film probe is a modification of the standard static pressure probe, consisting of a front hot-film sensor operated as a resistance thermometer, a rear sensor operated at an overheat ratio of 1.5 to 1.8 and a small sonic orifice installed inside the tubing of a conventional device. The probe has been calibrated in helium and air over a range of temperatures and pressures in a bell jar apparatus, with a repeatability of the data to within + or - 0.015 mm Hg. Comparative tests of the hot-film and conventional static pressure probes in a hypersonic helium wind tunnel at Mach 20 and various Reynolds numbers have indicated the settling time of the hot-film probe to be on the order of milliseconds, as compared with 30 sec for the conventional probe. The pressures measured by the two probes were found to be within 10% of each other. Although the hot-film probe makes flow-field static pressure surveys more practical in blowdown hypersonic wind tunnels, viscous and flow angle effects still must be assessed under the conditions of use.

  6. LARGO hot water system thermal performance test report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The thermal performance tests and results on the LARGO Solar Hot Water System under natural environmental conditions is presented. Some objectives of these evaluations are to determine the amount of energy collected, the amount of energy delivered to the household as contributed by solar power supplied to operate the system and auxiliary power to maintain tank temperature at proper level, overall system efficiency and to determine temperature distribution within the tank. The Solar Hot Water system is termed a Dump-type because of the draining system for freeze protection. The solar collector is a single glazed flat plate. An 82-gallon domestic water heater is provided as the energy storage vessel. Water is circulated through the collector and water heater by a 5.3 GPM capacity pump, and control of the pump motor is achieved by a differential temperature controller.

  7. Resistance of Legionella to disinfection in hot water distribution systems.

    PubMed

    Saby, S; Vidal, A; Suty, H

    2005-01-01

    The efficiency of various disinfection treatments against Legionella was tested on a hot water distribution system (HWDS) pilot unit. The results demonstrated clearly that most Legionella in the networks were fixed in the biofilm at the surface of the pipe (more than 98% for each loop). Chemical treatments (continuous chlorination, hyperchlorination, hydrogen peroxide and peracetic acid mixing) commonly used for the eradication of Legionella in hot water distribution networks appeared to be inadequate for eradicating the bacteria in the biofilm. Unfortunately, the biofilm contained most of the pathogens in an HWDS whereas legislation is only restricted to the Legionella concentration in the water phase. Thermal treatment appeared to be efficient to disinfect most of the biofilm but seemed to promote the biofilm re-growth as well. It was then concluded that the best solution to prevent Legionella contamination in hot water distribution systems would be to have perfect control of the temperature in the networks (temperature > 55 degrees C at all points). Nevertheless, in many cases it is difficult to have such control, so during the time necessary to modify networks, the best solution to control Legionella proliferation appears to be to apply a treatment shock (thermal or chlorination as a function of pipe characteristics). These treatments must be followed by a continuous chlorination that is totally controlled and equipped with alarm systems. This study demonstrates that biofilm sampling devices must be installed in hot water distribution systems to anticipate Legionella contamination and correctly determine the efficiency of the treatments. PMID:16312947

  8. Effectiveness of an ammonia-water mixture turbine system to hot water heat source

    SciTech Connect

    Suzuki, Takashi; Noguchi, Hideki; Amano, Yoshiharu; Hashizume, Takumi; Akiba, Masashi; Tanzawa, Yoshiaki; Usui, Akira

    1999-07-01

    An ammonia-water mixture (AWM) turbine system is proposed in the paper. The authors call this Waseda ammonia-water Mixture Turbine System (W-MTS). The paper presents some results of the investigation for design of a bottoming cycle that is supplied steam as heat source. The results of the cycle simulation show that the W-MTS is superior to the other simple Kalina cycles (KCS1 and KCS34) to pressurized hot water and steam as a latent and a sensible heat source at a temperature of 160 C. The main components of the W-MTS are a heat recovery vapor generator, two condensers, an AWM turbine and two separators. The W-MTS features two simple Kalina cycles, KCS-1 and KCS-34. The W-MTS behaves like KCS-1 at low ammonia mass fraction region, and like KCS-34 at high ammonia mass fraction region. The W-MTS shows the higher output power rather than the two simple Kalina cycles at all over the ammonia mass fraction. The W-MTS is expected to be effective with the heat recovery of two preheaters in a AWM-vapor generation not only to sensible heat sources, such as exhaust gas that comes from gas turbine, hot water from a waste heat recovery system, etc., but also latent heat source e.g. steam. The results of the simulation show that the ammonia mass fraction at the inlet of the heat recovery vapor generator, turbine inlet pressure and temperature in the separator are the key parameters for optimizing the operating conditions of the cycles. In the temperature rage between 120 C and 200 C, the W-MTS generates more power rather than two simple Kaline cycles.

  9. Solar Hot Water Heating by Natural Convection.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  10. Factors that Determine Zeolite Stability in Hot Liquid Water.

    PubMed

    Zhang, Lu; Chen, Kuizhi; Chen, Banghao; White, Jeffery L; Resasco, Daniel E

    2015-09-16

    The susceptibility of zeolites to hot liquid water may hamper their full utilization in aqueous phase processes, such as those involved in biomass conversion and upgrading reactions. Interactions of zeolites with water strongly depend on the presence of hydrophilic moieties including Brønsted acid sites (BAS), extraframework cations, and silanol defects, which facilitate wetting of the surface. However, it is not clear which of these moieties are responsible for the susceptibility of zeolites to liquid water. Previous studies have offered contradictory explanations because the role of each of these characteristics has not been investigated independently. In this work, a systematic comparison has been attempted by relating crystallinity losses to the variation of each of the five zeolite characteristics that may influence their stability in liquid water, including number of BAS, Si-O-Si bonds, framework type, silanol defects, and extraframework Al. In this study, we have systematically monitored the crystallinity changes of a series of HY, H-ZSM-5, and H-β zeolite samples with varying Si/Al ratio, density of BAS, zeolite structure, and density of silanol defects upon exposure to liquid water at 200 °C. The results of this comparison unambiguously indicate that the density of silanol defects plays the most crucial role in determining susceptibility of zeolites to hot liquid water. By functionalizing the silanol defects with organosilanes, the hydrophobicity of defective zeolite is increased and the tolerance to hot liquid water is significantly enhanced. PMID:26301890

  11. Installation package for SIMS prototype system 2, solar hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The prototype system 2 solar hot water was designed for use in a single family dwelling and consists of the following subsystems: collector, storage, energy transport, and control. Guidelines are presented for utilization in the development of detailed installation plans and specifications. Instruction on operation, maintenance, and repair of the system is discussed.

  12. 9. Tower building. Hot water tap floor shown. Mixing vat ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Tower building. Hot water tap floor shown. Mixing vat at center level. Juices mix and flow and left lower level. Copper kettles are down below view level. Looking toward front of building. - Tivoli-Union Brewery, 1320-1348 Tenth Street, Denver, Denver County, CO

  13. Hot Water for Motor Inn--Garland, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    35-page report describes solar collector system and its operation and presents projected system performance. Details calibration and maintenance procedures and lists and describes equipment that makes up system. System provides hot water for laundry, for showers and sinks in inn rooms.

  14. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The preliminary design review on the development of a multi-family solar heating and domestic hot water prototype system is presented. The report contains the necessary information to evaluate the system. The system consists of the following subsystems: collector, storage, transport, control and Government-furnished site data acquisition.

  15. Preliminary design package for solar hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This package includes technical information, schematics, drawings and brochures of the solar hot water system. This system consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  16. LOFTrelated semiscale test scene. Water has been dyed red. Hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT-related semiscale test scene. Water has been dyed red. Hot steam blowdown exits semiscale at TAN-609 at A&M complex. Edge of building is along left edge of view. Date: 1971. INEEL negative no. 71-376 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. 17. Same floor as hot water vats looking towards the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Same floor as hot water vats looking towards the front of the building. These have to do with grain from upper floor judging from ceiling to floor progression. Note nice iron work. - Tivoli-Union Brewery, 1320-1348 Tenth Street, Denver, Denver County, CO

  18. Fiber-Optic Photoelastic Device Senses Pressure Of Hot Gas

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.; Wesson, L. N.

    1995-01-01

    Fiber-optic/photoelastic device measures gas pressures up to 600 psi at operating temperatures as high as 1,100 degrees C. Pressure on fused-silica sensing element gives rise to birefringence via photoelastic effect. Polarization of light changed by birefringence; change in polarization measured and used to infer pressure causing it. Device prototype of gas-pressure sensor for aircraft engine. Mounted in engine at or near desired measurement point, where it responds to both time-varying and steady components of pressure.

  19. Predictive modeling for hot water inactivation of planktonic and biofilm-associated Sphingomonas parapaucimobilis to support hot water sanitization programs.

    PubMed

    Kaatz Wahlen, Laura; Parker, Al; Walker, Diane; Pasmore, Mark; Sturman, Paul

    2016-08-01

    Hot water sanitization is a common means to maintain microbial control in process equipment for industries where microorganisms can degrade product or cause safety issues. This study compared the hot water inactivation kinetics of planktonic and biofilm-associated Sphingomonas parapaucimobilis at temperatures relevant to sanitization processes used in the pharmaceutical industry, viz. 65, 70, 75, and 80°C. Biofilms exhibited greater resistance to hot water than the planktonic cells. Both linear and nonlinear statistical models were developed to predict the log reduction as a function of temperature and time. Nonlinear Michaelis-Menten modeling provided the best fit for the inactivation data. Using the model, predictions were calculated to determine the times at which specific log reductions are achieved. While ≥80°C is the most commonly cited temperature for hot water sanitization, the predictive modeling suggests that temperatures ≥75°C are also effective at inactivating planktonic and biofilm bacteria in timeframes appropriate for the pharmaceutical industry. PMID:27319816

  20. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  1. Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate

    NASA Astrophysics Data System (ADS)

    Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.

    2016-08-01

    In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.

  2. Thousands of Public Pools, Hot Tubs Closed for Dirty Water: CDC

    MedlinePlus

    ... news/fullstory_158927.html Thousands of Public Pools, Hot Tubs Closed for Dirty Water: CDC Inspections in ... force the closure of thousands of public pools, hot tubs and water playgrounds every year, according to ...

  3. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  4. Radionuclides in hot mineral spring waters in Jordan.

    PubMed

    Saqan, S A; Kullab, M K; Ismail, A M

    2001-01-01

    Hot mineral springs in Jordan are very attractive to people who seek physical healing but they are unaware of natural radioactive elements that may be contained in the hot mineral water. The activities of the natural radioactive isotopes were measured and the concentrations of the parents of their natural radioactive series were calculated. The measured radionuclides were 234Th, 226Ra, 214Pb, 214Bi, 228Ac, 228Th, 212Pb, 212Bi and 208Tl. In addition the activities of 235U and 40K were measured. The activities ranged from 0.14 to 34.8 Bq/l, while the concentrations of parent uranium and thorium isotopes ranged from 3.0 x 10(-3) to 0.59 mg/l. The results were compared with those for drinking water. PMID:11202689

  5. Calibrating/testing meters in hot water test bench VM7

    NASA Astrophysics Data System (ADS)

    Kling, E.; Stolt, K.; Lau, P.; Mattiasson, K.

    A Hot Water Test Bench, VM7, has been developed and constructed for the calibration and testing of volume and flowmeters, in a project at the National Volume Measurement Laboratory at the Swedish National Testing and Research Institute. The intended area of use includes use as a reference at audit measurements, e.g. for accredited laboratories, calibration of meters for the industry and for the testing of hot water meters. The objective of the project, which was initiated in 1989, was to design equipment with stable flow and with a minimal temperature drop even at very low flow rates. The principle of the design is a closed system with two pressure tanks at different pressures. The water is led from the high pressure tank through the test object and the volume standard, in the form of master meters or a piston prover alternatively, to the low pressure tank. Calibrations/tests are made comparing the indication of the test object to that of master meters covering the current flow rate. These are, in the same test cycle, calibrated to the piston prover. Alternatively, the test object can be calibrated directly to the piston prover.

  6. Preliminary design package for solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The preliminary design review on the development of two prototype solar heating and hot water systems is presented. The information contained in this report includes system certification, system functional description, system configuration, system specification, system performance and other documents pertaining to the progress and the design of the system. This system, which is intended for use in the normal single-family residence, consists of the following subsystems: collector, storage, control, transport, and Government-furnished Site Data Acquisition.

  7. Transit time of mixed high pressure injection water and primary loop water in pressurized water reactor cold legs

    SciTech Connect

    Sun, B.H.; Oh, S.; Rothe, P.H.

    1984-03-01

    During an overcooling transient in a pressurized water reactor, cold water from the high pressure injection (HPI) mixes with the hot primary coolant in the cold leg. The transit time is a gauge for the assessment of the time and the velocity of the mixed flow that passes through the cold leg to the downcomer. Existing data from mixing tests at the Electric Power Research Institute (EPRI)/CREARE and EPRI/SAI facilities are analyzed. By means of models for HPI jet entrainment as well as the propagation of a gravity current, dimensionless correlations have been developed for the transit time and cold water front velocity at stagnant loop flow conditions. Based on this transit time correlation for stagnant loop flow and the limiting condition for large loop flow, a general correlation has been developed to account for the loop flow effect on transit time. These correlations unify a wide range of data obtained from five geometrically different test sections with two fluids (pure water and saline solution). In addition to the geometric factors, the governing dimensionless parameters for the transit time are the HPI jet Froude number, the Froude number for the cold-leg channel, and the ratio of loop flow to HPI flow.

  8. Antioxidant activities of hot water extracts from various spices.

    PubMed

    Kim, Il-Suk; Yang, Mi-Ra; Lee, Ok-Hwan; Kang, Suk-Nam

    2011-01-01

    Recently, the natural spices and herbs such as rosemary, oregano, and caraway have been used for the processing of meat products. This study investigates the antioxidant activity of 13 spices commonly used in meat processing plants. The hot water extracts were then used for evaluation of total phenolic content, total flavonoids content and antioxidant activities. Our results show that the hot water extract of oregano gave the highest extraction yield (41.33%) whereas mace (7.64%) gave the lowest. The DPPH radical scavenging ability of the spice extracts can be ranked against ascorbic acid in the order ascorbic acid > clove > thyme > rosemary > savory > oregano. The values for superoxide anion radical scavenging activities were in the order of marjoram > rosemary > oregano > cumin > savory > basil > thyme > fennel > coriander > ascorbic acid. When compared to ascorbic acid (48.72%), the hydroxyl radical scavenging activities of turmeric and mace were found to be higher (p < 0.001). Clove had the highest total phenolic content (108.28 μg catechin equivalent (CE)/g). The total flavonoid content of the spices varied from 324.08 μg quercetin equivalent (QE)/g for thyme to 3.38 μg QE/g for coriander. Our results indicate that hot water extract of several spices had a high antioxidant activity which is partly due to the phenolic and flavonoid compounds. This provides basic data, having implications for further development of processed food products. PMID:21747728

  9. Hot water drench treatment for control of reniform nematodes in potted dracaena

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A continuous hot water drench treatment was evaluated for disinfesting potted dracaena of reniform nematodes, Rotylenchulus reniformis. Modifications were made to a hot water shower container to allow the delivery of a continuous stream of hot water directly to the media and roots of infested plant...

  10. Solar domestic hot water system manual for Day's Inn, Garland, Texas

    SciTech Connect

    Not Available

    1981-05-01

    The solar domestic hot water system installed at Day's Inn, I-30 and 6222 Beltline, Garland, Texas is described. The system is a solar collector array used to provide from 39.9% in December, to 84.7% in August, of the domestic hot water usage of the Day's Inn in Garland, Texas. The system is an automatic draindown design employing an atmospheric vented storage tank for storing the hot water collected by the 998 sq. ft. collector array. The system's major components and features are: 44 Daystar 1400 collectors, gross square footage of 998 sq. ft.; 1000 gallon vented storage tank; 3 B and G pumps: one for the collection loop, one for transfer of energy from the thermal storage tank to the shell side of the B and G heat exchanger; the third to circulate water from the three existing DHW tanks through the tube side of the heat exchanger; 3 one-inch Taco automatic valves to control the heating of water through existing DHW tanks; vacuum breakers to ensure draindown when main circulator pump stops running; pressure gauges installed across each pump so that system flow rates can be set and read periodically as a preventive maintenance check; collector angle of 30/sup 0/.

  11. Solar heating and hot water system installed at Listerhill, Alabama

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Solar system was installed into a new building and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  12. A model of force balance in Jupiter's magnetodisc including hot plasma pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Achilleos, N.; Cowley, S. W. H.

    2015-12-01

    We present an iterative vector potential model of force balance in Jupiter's magnetodisc that includes the effects of hot plasma pressure anisotropy. The fiducial model produces results that are consistent with Galileo magnetic field and plasma data over the whole radial range of the model. The hot plasma pressure gradient and centrifugal forces dominate in the regions inward of ˜20 RJ and outward of ˜50 RJ, respectively, while for realistic values of the pressure anisotropy, the anisotropy current is either the dominant component or at least comparable with the hot plasma pressure gradient current in the region in between. With the inclusion of hot plasma pressure anisotropy, the ˜1.2 and ˜2.7° shifts in the latitudes of the main oval and Ganymede footprint, respectively, associated with variations over the observed range of the hot plasma parameter Kh, which is the product of hot pressure and unit flux tube volume, are comparable to the shifts observed in auroral images. However, the middle magnetosphere is susceptible to the firehose instability, with peak equatorial values of βh∥e-βh⊥e≃1 - 2, for Kh=2.0 - 2.5 × 107 Pa m T-1. For larger values of Kh,βh∥e-βh⊥e exceeds 2 near ˜25 RJ and the model does not converge. This suggests that small-scale plasmoid release or "drizzle" of iogenic plasma may often occur in the middle magnetosphere, thus forming a significant mode of plasma mass loss, alongside plasmoids, at Jupiter.

  13. Legionella Contamination in Hot Water of Italian Hotels

    PubMed Central

    Borella, Paola; Montagna, Maria Teresa; Stampi, Serena; Stancanelli, Giovanna; Romano-Spica, Vincenzo; Triassi, Maria; Marchesi, Isabella; Bargellini, Annalisa; Tatò, Daniela; Napoli, Christian; Zanetti, Franca; Leoni, Erica; Moro, Matteo; Scaltriti, Stefania; Ribera D'Alcalà, Gabriella; Santarpia, Rosalba; Boccia, Stefania

    2005-01-01

    A cross-sectional multicenter survey of Italian hotels was conducted to investigate Legionella spp. contamination of hot water. Chemical parameters (hardness, free chlorine concentration, and trace element concentrations), water systems, and building characteristics were evaluated to study risk factors for colonization. The hot water systems of Italian hotels were strongly colonized by Legionella; 75% of the buildings examined and 60% of the water samples were contaminated, mainly at levels of ≥103 CFU liter−1, and Legionella pneumophila was the most frequently isolated species (87%). L. pneumophila serogroup 1 was isolated from 45.8% of the contaminated sites and from 32.5% of the hotels examined. When a multivariate logistic model was used, only hotel age was associated with contamination, but the risk factors differed depending on the contaminating species and serogroup. Soft water with higher chlorine levels and higher temperatures were associated with L. pneumophila serogroup 1 colonization, whereas the opposite was observed for serogroups 2 to 14. In conclusion, Italian hotels, particularly those located in old buildings, represent a major source of risk for Legionnaires' disease due to the high frequency of Legionella contamination, high germ concentration, and major L. pneumophila serogroup 1 colonization. The possible role of chlorine in favoring the survival of Legionella species is discussed. PMID:16204491

  14. A Realistic Hot Water Draw Specification for Rating Solar Water Heaters

    SciTech Connect

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. This paper proposes a more realistic ratings draw that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. Presented at the 2012 World Renewable Energy Forum; Denver, Colorado; May 13-17, 2012.

  15. Subsurface temperature trend in response to exploitation of thermal water in Jiashi Hot Spring, northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Wenfu; Chiang, Hsiehtang

    2015-04-01

    Temperature monitoring provides important information for sustainable management of a geothermal field. Previous studies show that decline of aquifer pressure is an obviously indicator of overexploitation for a thermal aquifer. However, many thermal water producing aquifers don't show pressure declining but with subtle temperature change. How to detect the temperature trend is an important topic for sustainable management of a geothermal field. In this study, we use borehole temperatures measured over a half year interval from 2011 to 2014 and Mann-Kendall method to determine the trends of subsurface temperature in Jiashi Hot Spring, northeastern Taiwan. Our results show that trends of subsurface temperature are related to the hydrogeology and flow field of groundwater. Flow directions of groundwater/thermal water are impacted by exploitation of thermal water of production wells, according to the depths and distribution. Repeatedly measured borehole temperature profiles provide important information to depict the trends of subsurface temperature change.

  16. Domestic hot water consumption of the developed and developing communities in South Africa

    SciTech Connect

    Meyer, J.P.

    1999-07-01

    Domestic hot water consumption for five different types of dwellings in the developed and developing communities of the Johannesburg Metropolitan Area, South Africa, are determined with measurements over a period of one year (1996) in more than 770 dwellings. The hot water consumption was taken monthly with the exception of 310 dwellings where the measurements were logged, resulting in hourly hot water consumptions. The results of the two types of measurements are presented: first, hot water consumption per person per day for the different months of a year; second, hourly hot water consumption per person per day as a function of winter weekdays.

  17. Water-Based Pressure-Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.

    2006-01-01

    Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).

  18. Water Delivery--It's All about Pressure

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2005-01-01

    There is a great deal of wisdom in the old saying "water seeks its level." In fact, the concept has bearing on a very practical side of human life as well, since the public water delivery system is based on it. In this article, the author discusses the concept behind water pressure and describes how the water systems work based on this concept.…

  19. Effects of applied pressure on hot-pressing of Beta-SiC

    NASA Technical Reports Server (NTRS)

    Kinoshita, M.; Matsumura, H.; Iwasa, M.; Hayami, R.

    1984-01-01

    The effects of applied pressure on the densification during hot pressing of beta-SiC compacts were investigated. Beta-SiC powder is Starck made and has the average particle size of about 0.7 micrometer. Hot pressing experiments were carried out in graphite dies at temperatures of 1700 deg to 2300 deg C and at the pressures up to 1000 kg/sq cm. The compacts containing 1 weight percent B4C were examined. Sintered compacts were examined for microstructure and the Rockwell A-scale hardness was measured. The B4C addition was very effective to mitigate the hot pressing conditions. It is found that densification goes with the strengthening of the bonding and does not occur in particle deformation due to concentrated stress.

  20. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01

    In this project, the ARIES Building America team collected apartment temperature data from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. Data was analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating in an effort to answer the question, "What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?" This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort.

  1. Water-Based Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Ingram, JoAnne L.; Jordan, Jeffrey D.; Watkins, A. Neal; Leighty, Bradley D.

    2004-01-01

    Preparation and performance of a water-based pressure sensitive paint (PSP) is described. A water emulsion of an oxygen permeable polymer and a platinum porphyrin type luminescent compound were dispersed in a water matrix to produce a PSP that performs well without the use of volatile, toxic solvents. The primary advantages of this PSP are reduced contamination of wind tunnels in which it is used, lower health risk to its users, and easier cleanup and disposal. This also represents a cost reduction by eliminating the need for elaborate ventilation and user protection during application. The water-based PSP described has all the characteristics associated with water-based paints (low toxicity, very low volatile organic chemicals, and easy water cleanup) but also has high performance as a global pressure sensor for PSP measurements in wind tunnels. The use of a water-based PSP virtually eliminates the toxic fumes associated with the application of PSPs to a model in wind tunnels.

  2. Determining Atmospheric Pressure Using a Water Barometer

    NASA Astrophysics Data System (ADS)

    Lohrengel, C. Frederick; Larson, Paul R.

    2012-12-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the mass of the water that is used as the fluid medium in the barometer. Simple calculations based upon the mass of water collected from the barometer yield the mass of the atmosphere per square unit of area at the site where the experiment is conducted.

  3. Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters

    SciTech Connect

    1983-02-01

    The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

  4. Water making hot rocks soft: How hydrothermal alteration affects volcano stability

    NASA Astrophysics Data System (ADS)

    Ball, J. L.

    2015-12-01

    My research involves using numerical models of groundwater flow and slope stability to determine how long-term hydrothermal alteration in stratovolcanoes can cause increases in pore fluid pressure that lead to edifice collapse. Or in simpler terms: We can use computers to figure out how and why water that moves through hot rocks changes them into softer rocks that want to fall down. It's important to pay attention to the soft rocks even if they look safe because this can happen a long time after the stuff that makes them hot goes away or becomes cool. Wet soft rocks can go very far from high places and run over people in their way. I want show where the soft wet rocks are and how they might fall down so people will be safer.

  5. Fractionation of sugar cane with hot, compressed, liquid water

    SciTech Connect

    Allen, S.G.; Kam, L.C.; Zemann, A.J.; Antal, M.J. Jr.

    1996-08-01

    Sugar-cane bagasse and leaves (10--15 g oven-dry basis) were fractionated without size reduction by a rapid (45 s to 4 min), immersed percolation using only hot (190--230 C), compressed (P > P{sub sat}), liquid water (0.6--1.2 kg). Over 50% of the biomass could be solubilized. All of the hemicellulose, together with much of the acid-insoluble lignin in the bagasse (>60%), was solubilized, while less than 10% of the cellulose entered the liquid phase. Moreover, recovery of the hemicellulose as monomeric sugars (after a mild posthydrolysis) exceeded 80%. Less than 5% of the hemicellulose was converted to furfural. Percolation beyond that needed to immerse the biomass in hot liquid water did not result in increased solubilization. The yield of lignocellulosic residue was also not sensitive to the form of the sugar cane used (bagasse or leaves) or its moisture content (8--50%). Commercial applications for this fractionation process include the pretreatment of lignocellulosics for bioconversion to ethanol and the production of pulp and paper products.

  6. Accounting for "hot spots" and "hot moments" in soil carbon models for water-limited ecosystems

    NASA Astrophysics Data System (ADS)

    O'Donnell, Frances; Caylor, Kelly

    2010-05-01

    Soil organic carbon (SOC) dynamics in water-limited ecosystems are complicated by the stochastic nature of rainfall and patchy structure of vegetation, which can lead to "hot spots" and "hot moments" of high biological activity. Non-linear models that use spatial and temporal averages of forcing variables are unable to account for these phenomena and are likely to produce biased results. In this study we present a model of SOC abundance that accounts for spatial heterogeneity at the plant scale and temporal variability in soil moisture content at the daily scale. We approximated an existing simulation-based model of SOC dynamics as a stochastic differential equation driven by multiplicative noise that can be solved numerically for steady-state sizes of three SOC pools. We coupled this to a model of water balance and SOC input rate at a point for a given cover type, defined by the number of shrub and perennial grass root systems and canopies overlapping the point. Using a probabilistic description of vegetation structure based on a two dimensional Poisson process, we derived analytical expressions for the distribution of cover types across a landscape and produced weighted averages of SOC stocks. An application of the model to a shortgrass steppe ecosystem in Colorado, USA, replicated empirical data on spatial patterns and average abundance of SOC, whereas a version of the model using spatially averaged forcing variables overestimated SOC stocks by 12%. The model also successfully replicated data from paired desert grassland sites in New Mexico, USA, that had and had not been affected by woody plant encroachment, indicating that the model could be a useful tool for understanding and predicting the effect of woody plant encroachment on regional carbon budgets. We performed a theoretical analysis of a simplified version of the model to estimate the bias introduced by using spatial averages of forcing variables to model SOC stocks across a range of climatic conditions

  7. Optimum hot water temperature for absorption solar cooling

    SciTech Connect

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R.; Zacarias, A.

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  8. Hot electron dominated rapid transverse ionization growth in liquid water.

    PubMed

    Brown, Michael S; Erickson, Thomas; Frische, Kyle; Roquemore, William M

    2011-06-20

    Pump/probe optical-transmission measurements are used to monitor in space and time the ionization of a liquid column of water following impact of an 800-nm, 45-fs pump pulse. The pump pulse strikes the 53-μm-diameter column normal to its axis with intensities up to 2 × 10(15) W/cm2. After the initial photoinization and for probe delay times < 500 fs, the neutral water surrounding the beam is rapidly ionized in the transverse direction, presumably by hot electrons with initial velocities of 0.55 times the speed of light (relativistic kinetic energy of ~100 keV). Such velocities are unusual for condensed-matter excitation at the stated laser intensities. PMID:21716461

  9. Water solubility in pyrope at high pressures

    NASA Astrophysics Data System (ADS)

    Mookherjee, M.; Karato, S.-

    2006-12-01

    To address how much water is stored within the Earth's mantle, we need to understand the water solubility in the nominally anhydrous minerals. Much is known about olivine and pyroxene. Garnet is another important component, approaching 40% by volume in the transition zone. Only two studies on water solubility in pyrope at high-pressures exist which contradict each other. Lu and Keppler (1997) observed increase in water solubility in a natural pyrope up to 200 ppm wt of water, till 10 GPa. They concluded that the proton is located in the interstitial site. Withers et al. (1998) on the contrary, observed increasing water content in Mg-rich pyrope till 6 GPa, then sudden decrease of water, beyond detection, at 7 GPa. Based on infrared spectra, Withers et al. (1998), concluded hydrogarnet (Si^{4+} replaced by 4H+ to form O4H4) substitution in synthetic magnesium rich pyrope. They argued that at high pressure owing to larger volume, hydrogarnet substitution is unstable and water is expelled out of garnet. In transition zone conditions, however, majorite garnet seems to contain around 600-700 ppm wt of water (Bolfan-Casanova et al. 2000; Katayama et al. 2003). The cause for such discrepancy is not clear and whether garnet could store a significant amount of water at mantle condition is unconstrained. In order to understand the solubility mechanism of water in pyrope at high-pressure, we have conducted high- pressure experiments on naturally occurring single crystals of pyrope garnet (from Arizona, Aines and Rossman, 1984). To ascertain water-saturated conditions, we use olivine single-crystal as an internal standard. Preliminary results indicate that natural pyrope is capable of dissolving water at high-pressures, however, water preferentially enters olivine than in pyrope. We are undertaking systematic study to estimate the solubility of water in pyrope as a function of pressure. This will enable us to develop solubility models to understand the defect mechanisms

  10. Water-Pressure Distribution on Seaplane Float

    NASA Technical Reports Server (NTRS)

    Thompson, F L

    1929-01-01

    The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)

  11. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    SciTech Connect

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  12. Hot-wire calibration in a nonisothermal incompressible pressure variant flow

    NASA Astrophysics Data System (ADS)

    Hugo, Ronald J.; Nowlin, Scott R.; Eaton, Frank D.; Bishop, Kenneth P.; McCrae, Kimberley A.

    1999-08-01

    The calibration procedure for a hot-wire anemometer system operating in a non-isothermal pressure-variant flow field is presented. Sensing of atmospheric velocity and temperature fluctuations from an altitude-variant platform using hot- wire anemometry equipment operating in both constant- temperature and constant-current modes requires calibration for velocity, temperature, and atmospheric pressure variations. Calibration tests to provide the range of velocity, temperature and pressure variations anticipated during Air Force Research Lab, Directed Energy Directorate- sponsored kite/tethered-balloon experiments were conducted and the result of these tests presented. The calibration tests were performed by placing the kite/tethered-balloon sensor package on a vehicle and driving from Kirtland AFB, NM to the top of Sandia Crest, a 10678 ft mountain range to the east of Albuquerque, NM. By varying the velocity of the van and conducting the test at different times of the day, variations in velocity, temperature and pressure within the range of those encountered during the kite/tethered-balloon experiments were obtained. The method of collapsing the calibration data is presented. Problems associated with collecting hot-wire anemometry data in a non-laboratory environment are discussed. Example data sets of temperature and velocity collected during the kite/tethered-balloon experiments are presented.

  13. A modular solar system provides hot water for alligator farm

    SciTech Connect

    Healey, H.M. )

    1994-03-01

    This article describes an 8,000 ft[sup 2] (743 m[sup 2]), site-built, large volume, Integral Collector Storage (ICS) solar water heating system installed at the farm to preheat water for the building washdown as part of a Florida Energy Office demonstration project. The project utilized at Foster Farms was a Shallow Solar Pond (SSP)--a modular, site-built, solar water heating system capable of providing in excess of 5,000 heated gallons (19 m[sup 3]) per day. During the past 10 years, a large number of solar systems have been proposed to provide economical hot water for industrial processes. Most of these water heating systems have proven to be too costly or too complex to compete with the traditional water heating methods using conventional fuels. Technology initiated at Lawrence Livermore Laboratory and expanded upon by the Tennessee Valley Authority was shown to have outstanding potential in Florida. This technology, which was utilized at Foster Farms, consists of a site-built large-volume ICAS system called the Shallow Solar Pond. Shallow Solar Pond (SSP) systems utilize the modular approach in which modules, built in a standardized size, are tied together to supply the required load. The SSP module can be ground mounted or installed on a roof. Each SSP module is typically 16 ft (5 m) wide and up to 200 ft (61 m) in length. The module contains one or two flat waterbags similar to a waterbed. The bags rest on a layer of insulation or bed of sand inside concrete or fiberglass curbs. The bag is protected against damage and heat loss by greenhouse-type glazing. A typical 200 ft [times] 16 ft (61 m [times] 5 m) pond, filled to a 4 in. (10 cm) depth, holds approximately 8,000 gallons (30 m[sup 3]) of water.

  14. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  15. 7 CFR 305.21 - Hot water dip treatment schedule for mangoes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water dip treatment schedule for mangoes. 305.21... Hot water dip treatment schedule for mangoes. Mangoes may be treated using schedule T102-a: (a) Fruit... the treatment. (c) Water in the treatment tank must be treated or changed regularly to...

  16. High pressure water jet cutting and stripping

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  17. High pressure water jet mining machine

    DOEpatents

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  18. Water chemistry of hot waters of Umut geothermal field (SW Turkey)

    NASA Astrophysics Data System (ADS)

    Avşar, Özgür; Türe, Orkun

    2014-05-01

    Umut geothermal field is located on Menderes graben which is one of the most active geothermal regions of Turkey. In order to delineate the chemistry of the waters of Umut geothermal field, fourteen samples were taken from four wells and ten from hot springs. Discharge temperatures of the waters range from 20 to 120 °C. According to the results of chemical analyses, the waters are Na+K - HCO3 type. Cation geothermometer calculations revealed a reservoir temperature greater than 200 °C for Umut geothermal field waters. Stable isotope analyses results indicates that the waters are meteoric in origin.

  19. Constraining the Dynamical Importance of Hot Gas and Radiation Pressure in Quasar Outflows Using Emission Line Ratios

    NASA Astrophysics Data System (ADS)

    Stern, Jonathan; Faucher-Giguère, Claude-André; Zakamska, Nadia L.; Hennawi, Joseph F.

    2016-03-01

    Quasar feedback models often predict an expanding hot gas bubble that drives a galaxy-scale outflow. In many circumstances this hot gas radiates inefficiently and is therefore difficult to observe directly. We present an indirect method to detect the presence of a hot bubble using hydrostatic photoionization calculations of the cold (∼ {10}4 {{K}}) line-emitting gas. We compare our calculations with observations of the broad line region, the inner face of the torus, the narrow line region (NLR), and the extended NLR, and thus constrain the hot gas pressure at distances 0.1 {{pc}}{--}10 {{kpc}} from the center. We find that emission line ratios observed in the average quasar spectrum are consistent with radiation-pressure-dominated models on all scales. On scales \\lt 40 {{pc}} a dynamically significant hot gas pressure is ruled out, while on larger scales the hot gas pressure cannot exceed six times the local radiation pressure. In individual quasars, ≈25% of quasars exhibit NLR ratios that are inconsistent with radiation-pressure-dominated models, although in these objects the hot gas pressure is also unlikely to exceed the radiation pressure by an order of magnitude or more. The derived upper limits on the hot gas pressure imply that the instantaneous gas pressure force acting on galaxy-scale outflows falls short of the time-averaged force needed to explain the large momentum fluxes \\dot{p}\\gg {L}{{AGN}}/c inferred for galaxy-scale outflows. This apparent discrepancy can be reconciled if optical quasars previously experienced a buried, fully obscured phase during which the hot gas bubble was more effectively confined and during which galactic wind acceleration occurred.

  20. Installation package for a domestic solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The installation of two prototype solar heating and hot water systems is described. The systems consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy.

  1. Residential solar hot water: Determinants of demand in New Hampshire

    NASA Astrophysics Data System (ADS)

    Downes, Mary A.

    As New Hampshire pursues public policy goals embedded in the Renewable Portfolio Standard, the Regional Greenhouse Gas Initiative, the Climate Action Plan, and other legislation and documentation, many advocates and policy makers are looking for reductions in fossil fuel use in the residential sector. This paper analyzes the results of a survey of New Hampshire residents undertaken in the autumn of 2009 regarding attitudes toward energy policy, and willingness to invest in renewable energy. Regarding residential solar hot water, the survey finds that the price at which half of New Hampshire homeowners would consider purchasing such a system is $5536. Seriousness of commitment is also tested, showing significant barriers to follow-through. These barriers and potential means of overcoming them are examined, based on concepts from economics and related fields. The paper concludes with recommendations for further research.

  2. Conversion of lignocellulosics pretreated with liquid hot water to ethanol

    SciTech Connect

    Walsum, G.P. van; Laser, M.S.; Lynd, L.R.

    1996-12-31

    Lignocellulosic materials pretreated using liquid hot water (LHW) (220{degrees}C, 5 MPa, 120 s) were fermented to ethanol by batch simultaneous saccharification and fermentation (SSF) using Saccharomyces cerevisiae in the presence of Trichoderma reesei cellulose. SSF of sugarcane bagasse (as received), aspen chips (smallest dimension 3 mm), and mixed hardwood flour (-60 +70 mesh) resulted in 90% conversion to ethanol in 2-5 d at enzyme loadings of 15-30 FPU/g. In most cases, 90% of the final conversion was achieved within 75 h of inoculation. Comminution of the pretreated substrates did not affect the conversion to ethanol. The hydrolysate produced from the LHW pretreatment showed slight inhibition of batch growth of S. cerevisiae. Solids pretreated at a concentration of 100 g/L were as reactive as those pretreated at a lower concentration, provided that the temperature was maintained at 220{degrees}C. 51 refs., 3 figs., 4 tabs.

  3. Reliability assessment of solar domestic hot water systems

    NASA Astrophysics Data System (ADS)

    Wang, P. Y.; Wolosewicz, R. M.

    This paper presents reliability and mean-time-between-failure studies of six generic solar domestic hot water systems. Failure rate data for system components were obtained from product literature or from consumer product industries. Reliability block diagrams are employed for the analyses, and exponential distribution functions are assumed for individual components. Since some components do not operate continuously, a duty-cycle factor is developed and defined as the ratio of operating time to total mission time. To accommodate systems experiencing different duty cycles, an averaged duty cycle is introduced to estimate mean lives. Large variations in system reliability and mean life were found and result from wide failure-rate bands for some of the components.

  4. Liquid Hot Water Pretreatment of Olive Tree Pruning Residues

    NASA Astrophysics Data System (ADS)

    Cara, Cristóbal; Romero, Inmaculada; Oliva, Jose Miguel; Sáez, Felicia; Castro, Eulogio

    Olive tree pruning generates an abundant, renewable lignocellulose residue, which is usually burnt on fields to prevent propagation of vegetal diseases, causing economic costs and environmental concerns. As a first step in an alternative use to produce fuel ethanol, this work is aimed to study the pretreatment of olive tree pruning residues by liquid hot water. Pretreatment was carried out at seven temperature levels in the range 170-230°C for 10 or 60 min. Sugar recoveries in both solid and liquid fractions resulting from pretreatment as well as enzymatic hydrolysis yield of the solid were used to evaluate pretreatment performance. Results show that the enzyme accessibility of cellulose in the pretreated solid fraction increased with pretreatment time and temperature, although sugar degradation in the liquid fraction was concomitantly higher.

  5. Low cost sonoluminescence experiment in pressurized water

    NASA Astrophysics Data System (ADS)

    Bernal, L.; Insabella, M.; Bilbao, L.

    2012-06-01

    We present a low cost design for demostration and mesurements of light emmision from a sonoluminescence experiment. Using presurized water introduced in an acrylic cylinder and one piezoelectric from an ultrasonic cleaner, we are able to generate cavitacion zones with emission of light. The use of argon to pressurize the water improves the emission an the light can be seen at naked eye in a softlit ambient.

  6. Cold Water Jets on a Hot Si surface

    NASA Astrophysics Data System (ADS)

    Park, Ji Yong; Min, Chang-Ki; Cahill, David; Granick, Steve

    2010-03-01

    We are using a femtosecond pump-probe apparatus to study heat transfer when a pulsed jet of liquid water impinges on a hot Pt-coated Si surface (Leidenfrost Effect). The light source in the experiment is a 100 mW Er:fiber laser operating at a wavelength of λ=1550 nm; the total volume of the pulsed water jet is ˜0.9 mm^3. The temperature change within the Si substrate at a distance of 50 microns from the interface is measured by a novel time-resolved thermometry based on two-photon absorption. We measure the thermal conductance of the water layer within 50 nm of the interface by time-domain thermo-reflectance; changes in the thermal conductance provide a direct measurement of the contact time of the liquid. We convert the integral of the temperature excursion to the energy transferred using a Green's function solution of heat conduction in the Si substrate. Both the energy transferred and contact time show a smooth evolution from high values at 110C to low values at 210C without any clear indication of a Leidenfrost point.

  7. Water quality parameters associated with prevalence of Legionella in hot spring facility water bodies.

    PubMed

    Huang, Shih-Wei; Hsu, Bing-Mu; Wu, Shu-Fen; Fan, Cheng-Wei; Shih, Feng-Cheng; Lin, Yung-Chang; Ji, Dar-Der

    2010-09-01

    Some species of Legionella are recognized as opportunistic potential human pathogens, such as Legionella pneumophila, which causes legionnaires disease. Indeed, outbreaks of legionellosis are frequently reported in areas in which the organism has been spread via aerosols from contaminated institutional water systems. Contamination in hot tubs, spas and public baths are also possible. As a result, in this study, we investigated the distribution of Legionella at six hot spring recreation areas throughout Taiwan. Legionella were detected in all six hot spring recreation areas, as well as in 20 of the 72 samples that were collected (27.8%). Seven species of Legionella identified from samples by the direct DNA extraction method were unidentified Legionella spp., Legionella anisa, L. pneumophila, Legionella erythra, Legionella lytica, Legionella gresilensis and Legionella rubrilucen. Three species of Legionella identified in the samples using the culture method were L. pneumophila, unidentified Legionella spp. and L. erythra. Legionella species were found in water with temperatures ranging from 22.7 °C to 48.6 °C. The optimal pH appeared to range from 5.0 to 8.0. Taken together, the results of this survey confirmed the ubiquity of Legionella in Taiwan spring recreational areas. Therefore, a long-term investigation of the health of workers at hot spring recreational areas and the occurrence of Legionella in hot spring recreational areas throughout Taiwan are needed. PMID:20727568

  8. Carbonate Ion-Enriched Hot Spring Water Promotes Skin Wound Healing in Nude Rats

    PubMed Central

    Liang, Jingyan; Kang, Dedong; Wang, Yingge; Yu, Ying; Fan, Jianglin; Takashi, En

    2015-01-01

    Hot spring or hot spa bathing (Onsen) is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C) on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C) control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds. PMID:25671581

  9. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    PubMed

    Liang, Jingyan; Kang, Dedong; Wang, Yingge; Yu, Ying; Fan, Jianglin; Takashi, En

    2015-01-01

    Hot spring or hot spa bathing (Onsen) is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C) on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C) control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds. PMID:25671581

  10. Pressure probe and hot-film probe rsponses to acoustic excitation in mean flow

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Jones, M. G.

    1986-01-01

    An experiment was conducted to compare the relative responses of a hot-film probe and a pressure probe positioned in a flow duct carrying mean flow and progressive acoustic waves. The response of each probe was compared with that of a condenser-type microphone flush mounted in the duct wall for flow Mach numbers up to about 0.5. The response of the pressure probe was less than that of the flush-mounted microphone by not more than about 2.1 dB at the highest centerline Mach number. This decreased response of the probe can likely be attributed to flow-induced impedance changes at the probe sensor orifices. The response of the hot-film probe, expressed in terms of fluctuating pressure, was greater than that of the flush-mounted microphone by as much as 6.0 dB at the two higher centerline Mach numbers. Removal of the contribution from fluctuating temperature in the hot-film analytical model greatly improved the agreement between the two transducer responses.

  11. Feasibility study and roadmap to improve residential hot water distribution systems

    SciTech Connect

    Lutz, James D.

    2004-03-31

    Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

  12. Investigating the Mpemba Effect: When Hot Water Freezes Faster than Cold Water

    ERIC Educational Resources Information Center

    Ibekwe, R. T.; Cullerne, J. P.

    2016-01-01

    Under certain conditions a body of hot liquid may cool faster and freeze before a body of colder liquid, a phenomenon known as the Mpemba Effect. An initial difference in temperature of 3.2 °C enabled warmer water to reach 0 °C in 14% less time than colder water. Convection currents in the liquid generate a temperature gradient that causes more…

  13. Thermal shock fracture of hot silicon carbide immersed in water

    NASA Astrophysics Data System (ADS)

    Lee, Youho; McKrell, Thomas J.; Kazimi, Mujid S.

    2015-12-01

    High purity CVD-SiC, considered as a nuclear grade cladding material, exhibits thermal shock tolerance ˜1260 °C in room temperature water and beyond it (>1260 °C) in saturated water. Being thinner than the tested specimen thickness (1.5 mm × 2.0 mm), the actual cladding (0.57 mm) is anticipated to exhibit enhanced thermal shock tolerance. This implies that thermal shock alone may not shatter the SiC cladding in reflood. Level of fuel rod internal pressure will be a decisive factor in predicting cladding fracture during reflood. Decreasing water subcooling significantly reduces thermal shock fracture danger of ceramic materials. Thermal shock experiments showed strength retention for both pressureless sintered-SiC and CVD SiC, as well as Al2O3 samples quenched from temperatures up to 1260 °C in saturated water. Solid-liquid contacts during nucleate and transition boiling, and boiling incipience upon water bath entering are a highly probable origin of thermal shock fracture in water quenching.

  14. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  15. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  16. Stability of amorphous silica-alumina in hot liquid water.

    PubMed

    Hahn, Maximilian W; Copeland, John R; van Pelt, Adam H; Sievers, Carsten

    2013-12-01

    Herein, the hydrothermal stability of amorphous silica-alumina (ASA) is investigated under conditions relevant for the catalytic conversion of biomass, namely in liquid water at 200 °C. The hydrothermal stability of ASA is much higher than that of pure silica or alumina. Interestingly, the synthetic procedure used plays a major role in its resultant stability: ASA prepared by cogelation (CG) lost its microporous structure, owing to hydrolysis of the siloxane bonds, but the resulting mesoporous material still had a considerable surface area. ASA prepared by deposition precipitation (DP) contained a silicon-rich core and an aluminum-rich shell. In hot liquid water, the latter structure was transformed into a layer of amorphous boehmite, which protected the particle from further hydrolysis. The surface area showed relatively minor changes during the transformation. Independent of the synthetic method used, the ASAs retained a considerable concentration of acid sites. The concentration of acid sites qualitatively followed the changes in surface area, but the changes were less pronounced. The performance of different ASAs for the hydrolysis of cellobiose into glucose is compared. PMID:24124062

  17. Dynamics of microdroplets over the surface of hot water

    NASA Astrophysics Data System (ADS)

    Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

    2015-01-01

    When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 μm ii) they levitate above the water surface by 10 ~ 100 μm iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

  18. Dynamics of microdroplets over the surface of hot water

    PubMed Central

    Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

    2015-01-01

    When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 μm; ii) they levitate above the water surface by 10 ~ 100 μm; iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s; and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet. PMID:25623086

  19. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  20. Pressure-induced polyamorphism in salty water.

    PubMed

    Bove, L E; Klotz, S; Philippe, J; Saitta, A M

    2011-03-25

    We investigated the metastable phase diagram of an ionic salt aqueous solution, LiCl:6D₂O, at high pressure and low temperature by neutron diffraction measurements and computer simulations. We show that the presence of salt triggers a stepwise transformation, under annealing at high pressure, to a new very high-density amorphous form. The transition occurs abruptly at 120 K and 2 GPa, is reversible, and is characterized by a sizeable enthalpy release. Simulations suggest that the polyamorphic transition is linked to a local structural reorganization of water molecules around the Li ions. PMID:21517327

  1. Pressurized water reactor flow skirt apparatus

    DOEpatents

    Kielb, John F.; Schwirian, Richard E.; Lee, Naugab E.; Forsyth, David R.

    2016-04-05

    A pressurized water reactor vessel having a flow skirt formed from a perforated cylinder structure supported in the lower reactor vessel head at the outlet of the downcomer annulus, that channels the coolant flow through flow holes in the wall of the cylinder structure. The flow skirt is supported at a plurality of circumferentially spaced locations on the lower reactor vessel head that are not equally spaced or vertically aligned with the core barrel attachment points, and the flow skirt employs a unique arrangement of hole patterns that assure a substantially balanced pressure and flow of the coolant over the entire underside of the lower core support plate.

  2. Rotating shell eggs immersed in hot water for the purpose of pasteurization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasteurization of shell eggs for inactivation of Salmonella using hot water immersion can be used to improve their safety. The rotation of a shell egg immersed in hot water has previously been simulated by computational fluid dynamics (CFD); however, experimental data to verify the results do not ex...

  3. Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The performance of a Solar Hot Water System at a laundry in Fresno, California is described. The system features an integrated wastewater heat recovery subsystem and a solar preheating system designed to supply a part of the hot water requirements. Performance data for a six month period are projected to an annual savings of $18,703.

  4. Development of Standardized Domestic Hot Water Event Schedules for Residential Buildings

    SciTech Connect

    Hendron, R.; Burch, J.

    2008-08-01

    The Building America Research Benchmark is a standard house definition created as a point of reference for tracking progress toward multi-year energy savings targets. As part of its development, the National Renewable Energy Laboratory has established a set of domestic hot water events to be used in conjunction with sub-hourly analysis of advanced hot water systems.

  5. LABORATORY STUDY ON THE USE OF HOT WATER TO RECOVER LIGHT OILY WASTES FROM SANDS

    EPA Science Inventory

    This laboratory research project investigated the use of hot water to recover oily contaminants that are less dense than water, highly viscous at ambient temperatures, and essentially nonvolatile. Displacement experiments were conducted at constant temperatures in the range from ...

  6. Risk of Burns from Eruptions of Hot Water Overheated in Microwave Ovens

    MedlinePlus

    ... Products Risk of Burns from Eruptions of Hot Water Overheated in Microwave Ovens Share Tweet Linkedin Pin ... What Can Consumers Do to Avoid Super-Heated Water? Follow the precautions and recommendations found in the ...

  7. Thousands of Public Pools, Hot Tubs Closed for Dirty Water: CDC

    MedlinePlus

    ... of Public Pools, Hot Tubs Closed for Dirty Water: CDC Inspections in 5 states found kiddie pools ... might be dipping their toes into poorly treated water, U.S. health officials warned Thursday. Serious health and ...

  8. Supercooling and the Mpemba effect: When hot water freezes quicker than cold

    NASA Astrophysics Data System (ADS)

    Auerbach, David

    1995-10-01

    Temperature measurements taken near vessel walls show that initially hot water may well begin to freeze quicker than cold. This is not, as previously surmised, due to the cooling history of the water (e.g., air expulsion during heating). Rather, supercooling virtually always takes place. On those occasions where the cold water supercools sufficiently more than the hot the Mpemba scenario is the following: The hot water supercools, but only slightly, before spontaneously freezing. Superficially it looks completely frozen. The cold water (in larger volume than that of the hot sample) supercools to a lower local temperature than the hot before it spontaneously freezes. This scenario can occur more often for ambient cooling temperatures between -6 °C and -12 °C.

  9. Tritium issues in commercial pressurized water reactors

    SciTech Connect

    Jones, G.

    2008-07-15

    Tritium has become an important radionuclide in commercial Pressurized Water Reactors because of its mobility and tendency to concentrate in plant systems as tritiated water during the recycling of reactor coolant. Small quantities of tritium are released in routine regulated effluents as liquid water and as water vapor. Tritium has become a focus of attention at commercial nuclear power plants in recent years due to inadvertent, low-level, chronic releases arising from routine maintenance operations and from component failures. Tritium has been observed in groundwater in the vicinity of stations. The nuclear industry has undertaken strong proactive corrective measures to prevent recurrence, and continues to eliminate emission sources through its singular focus on public safety and environmental stewardship. This paper will discuss: production mechanisms for tritium, transport mechanisms from the reactor through plant, systems to the environment, examples of routine effluent releases, offsite doses, basic groundwater transport and geological issues, and recent nuclear industry environmental and legal ramifications. (authors)

  10. 3D Plasma Equilibrium and Stability with Hot Particle Anisotropic Pressure

    SciTech Connect

    Cooper, W. A.; Graves, J. P.; Hirshman, S. P.; Merkel, P.; Kisslinger, J.; Wobig, H. F. G.; Watanabe, K. Y.; Narushima, Y.

    2008-11-01

    The anisotropic pressure free-boundary three-dimsnsional (3D) equilibrium code ANI-MEC with nested magnetic flux surfaces has been developed as an extension of the VMEC2000 code. The preconditioning algorithm included is exploited to allow the computation of equilibrium states with radial force balance error improvements exceeding 4 orders of magnitude compared with the non-conditioned results. Large off-axis energetic particle deposition has been applied in a 2-field period quasiaxisymmetric stellarator reactor at <{beta}>{approx_equal}4.5% to test the limitations of the code. The hot particle pressures are roughly uniform around the flux surfaces when p{sub parallel}>p{sub perpendicular}. The fast particle perpendicular pressures localise in the region of deposition for p{sub perpendicular}>p{sub parallel}, while the energetic particle parallel pressures concentrate on the low-field side. Two anisotropic pressure models for global fluid stability implemented in the TERPSICHORE code have been applied to the LHD Heliotron for a sequence of equilibria with fixed <{beta}{sub dia}>{approx_equal}5%(<{beta}{sub th}>{approx_equal}3.5%) varying the fast particle temperature ratio T{sub parallel}/T{sub perpendicular}. Global magnetohydrodynamic modes are quasi-stable according to the model with rigid hot particle layers, while they become stabilised according to the fully interacting energetic particle model with increasing T{sub parallel}/T{sub perpendicular}. As T{sub parallel}/T{sub perpendicular} approaches 3, however, the n = 1 mode family becomes unstable. A transition from a nearly stable quasi-external ballooning-interchange structure to a weakly unstable internal kink mode takes place. The investigation of beam-driven fusion in a Heliotron system is broached. A background plasma with cold ions and warm electrons at <{beta}{sub ith}>{approx_equal}1% is examined with fixed T{sub parallel}/T{sub perpendicular} = 10 in which the hot particle contribution to <{beta

  11. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  12. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    SciTech Connect

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  13. PRESSURIZED WATER REACTOR CORE WITH PLUTONIUM BURNUP

    DOEpatents

    Puechl, K.H.

    1963-09-24

    A pressurized water reactor is described having a core containing Pu/sup 240/ in which the effective microscopic neutronabsorption cross section of Pu/sup 240/ in unconverted condition decreases as the time of operation of the reactor increases, in order to compensate for loss of reactivity resulting from fission product buildup during reactor operation. This means serves to improve the efficiency of the reactor operation by reducing power losses resulting from control rods and burnable poisons. (AEC)

  14. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    SciTech Connect

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  15. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly report, April--June 1995

    SciTech Connect

    1995-08-01

    This quarterly technical progress report summarizes the work completed during the first quarter, April 1 through June 30, 1995. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasificafion and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel continued at a good pace during the quarter.

  16. A Hot Water Bottle for Aging Neutron Stars?

    NASA Astrophysics Data System (ADS)

    Rajagopal, Krishna

    We understand many of the properties of the densest phase of quark matter rigorously from first principles QCD. However, the nature of the second-most-dense phase of quark matter remains unclear. A recently proposed candidate for this phase features both neutrino emissivity and specific heat that are parametrically enhanced relative to those of all other proposed phases of dense matter -- quark or nuclear. If present within a layer of a neutron star, it would control the cooling of the star. The neutrino-dominated cooling would look like standard Direct-URCA as the two enhancements cancel, but old stars, say tens of millions of years and older, would stay orders of magnitude warmer than in any other scenario. Most of my talk will consist of explaining this abstract. At the end, I will explain why it currently remains unclear whether this hot water bottle phase really is the second-densest form of quark matter, and will discuss an alternative possibility.

  17. Hydrolysis kinetics of tulip tree xylan in hot compressed water.

    PubMed

    Yoon, Junho; Lee, Hun Wook; Sim, Seungjae; Myint, Aye Aye; Park, Hee Jeong; Lee, Youn-Woo

    2016-08-01

    Lignocellulosic biomass, a promising renewable resource, can be converted into numerous valuable chemicals post enzymatic saccharification. However, the efficacy of enzymatic saccharification of lignocellulosic biomass is low; therefore, pretreatment is necessary to improve the efficiency. Here, a kinetic analysis was carried out on xylan hydrolysis, after hot compressed water pretreatment of the lignocellulosic biomass conducted at 180-220°C for 5-30min, and on subsequent xylooligosaccharide hydrolysis. The weight ratio of fast-reacting xylan to slow-reacting xylan was 5.25 in tulip tree. Our kinetic results were applied to three different reaction systems to improve the pretreatment efficiency. We found that semi-continuous reactor is promising. Lower reaction temperatures and shorter space times in semi-continuous reactor are recommended for improving xylan conversion and xylooligosaccharide yield. In the theoretical calculation, 95% of xylooligosaccharide yield and xylan conversion were achieved simultaneously with high selectivity (desired product/undesired product) of 100 or more. PMID:27208738

  18. Hot-compressed water extraction of polysaccharides from soy hulls.

    PubMed

    Liu, Hua-Min; Wang, Fei-Yun; Liu, Yu-Lan

    2016-07-01

    The polysaccharides of soy hulls were extracted by hot-compressed water at temperatures of 110 from 180°C and various treatment times (10-150min) in a batch system. It was determined that a moderate temperature and short time are suitable for the preparation of polysaccharides. The structure of xylan and the inter- and intra-chain hydrogen bonding of cellulose fibrils in the soy hulls were not significantly broken down. The polysaccharides obtained were primarily composed of α-L-arabinofuranosyl units, 4-O-methyl-glucuronic acid units and α-D-galactose units attached with substituted units. A sugar analysis indicated that arabinose was the major component, constituting 35.6-46.9% of the polysaccharide products extracted at 130°C, 140°C, and 150°C. This investigation contributes to the knowledge of the polysaccharides of soy by-products, which can reduce the environmental impact of waste from the food industries. PMID:26920272

  19. Archaeoglobus fulgidus Isolated from Hot North Sea Oil Field Waters

    PubMed Central

    Beeder, Janiche; Nilsen, Roald Kåre; Rosnes, Jan Thomas; Torsvik, Terje; Lien, Torleiv

    1994-01-01

    A hyperthermophilic sulfate reducer, strain 7324, was isolated from hot (75°C) oil field waters from an oil production platform in the Norwegian sector of the North Sea. It was enriched on a complex medium and isolated on lactate with sulfate. The cells were nonmotile, irregular coccoid to disc shaped, and 0.3 to 1.0 μm wide. The temperature for growth was between 60 and 85°C with an optimum of 76°C. Lactate, pyruvate, and valerate plus H2 were utilized as carbon and energy sources with sulfate as electron acceptor. Lactate was completely oxidized to CO2. The cells contained an active carbon monoxide dehydrogenase but no 2-oxoglutarate dehydrogenase activity, indicating that lactate was oxidized to CO2 via the acetyl coenzyme A/carbon monoxide dehydrogenase pathway. The cells produced small amounts of methane simultaneously with sulfate reduction. F420 was detected in the cells which showed a blue-green fluorescence at 420 nm. On the basis of morphological, physiological, and serological features, the isolate was classified as an Archaeoglobus sp. Strain 7324 showed 100% DNA-DNA homology with A. fulgidus Z, indicating that it belongs to the species A. fulgidus. Archaeoglobus sp. has been selectively enriched and immunomagnetically captured from oil field waters from three different platforms in the North Sea. Our results show that strain 7324 may grow in oil reservoirs at 70 to 85°C and contribute to hydrogen sulfide formation in this environment. Images PMID:16349231

  20. Slumped glass optics for x-ray telescopes: advances in the hot slumping assisted by pressure

    NASA Astrophysics Data System (ADS)

    Salmaso, B.; Brizzolari, C.; Basso, S.; Civitani, M.; Ghigo, M.; Pareschi, G.; Spiga, D.; Tagliaferri, G.; Vecchi, G.

    2015-09-01

    Slumped Glass Optics is a viable solution to build future X-ray telescopes. In our laboratories we use a direct hot slumping approach assisted by pressure, in which the glass optical surface is in contact with the mould, and a pressure is applied to enforce the replication of the mould shape on the glass optical surface. Several prototypes have been already produced and tested in X-rays, showing a continuous improvement in our technology. In this paper, we present the advances in our technology, in terms of slumped glass foils quality and expected performances upon an ideal integration. By using Eagle XG glass foils and Zerodur K20 for the slumping mould, we have fine tuned several process parameters: we present a critical analysis correlating the changes in the process to the improvements in different spatial frequency ranges encompassing the profile and roughness measurements. The use of a re-polished K20 mould, together with the optimized process parameters, lead to the latest result of glass foils with expected performance of less than 3 arcsec in single reflection at 1 keV X-ray energy. This work presents all the relevant steps forward in the hot slumping technology assisted by pressure, aimed at reaching angular resolutions of 5 arcsec for the whole mirror assembly.

  1. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  2. Mixing of hydrothermal water and groundwater near hot springs, Yellowstone National Park (USA): hydrology and geochemistry

    NASA Astrophysics Data System (ADS)

    Gibson, Matthew L.; Hinman, Nancy W.

    2013-06-01

    Studies of hot springs have focused mainly on the properties of fluids and solids. Fewer studies focus on the relationship between the hot springs and groundwater/surface-water environments. The differences in temperature and dissolved solids between hot-spring water and typical surface water and groundwater allow interactions to be traced. Electromagnetic terrain (EMT) conductivity is a nonintrusive technique capable of mapping mixing zones between distinct subsurface waters. These interactions include zones of groundwater/surface-water exchange and groundwater mixing. Herein, hydrogeological techniques are compared with EMT conductivity to trace hot-spring discharge interactions with shallow groundwater and surface water. Potentiometric-surface and water-quality data determined the hydrogeochemistry of two thermally influenced areas in Yellowstone National Park, Wyoming (USA). Data from the sites revealed EMT conductivity contrasts that reflected the infiltration of conductive hot-spring discharge to local groundwater systems. The anomalies reflect higher temperatures and conductivity for Na+-Cl--rich hydrothermal fluids compared to the receiving groundwater. EMT conductivity results suggested hot springs are fed by conduits largely isolated from shallow groundwater; mixing of waters occurs after hot-spring discharge infiltrates groundwater from the surface and, generally, not by leakage in the subsurface. A model was proposed to explain the growth of sinter mounds.

  3. Assessing nitrogen pressures on European surface water

    NASA Astrophysics Data System (ADS)

    Grizzetti, B.; Bouraoui, F.; de Marsily, G.

    2008-12-01

    The European environmental legislation on water, in particular the 2000 Water Framework Directive, requires the evaluation of nutrient pressures and the assessment of mitigation measures at the river basin scale. Models have been identified as tools that can contribute to fulfill these requirements. The objective of this research was the implementation of a modeling approach (Geospatial Regression Equation for European Nutrient losses (GREEN)) to assess the actual nitrogen pressures on surface water quality at medium and large basin scale (European scale) using readily available data. In particular the aim was to estimate diffuse nitrogen emissions into surface waters, contributions by different sources (point and diffuse) to the nitrate load in rivers, and nitrogen retention in river systems. A comprehensive database including nutrient sources and physical watershed characteristics was built at the European scale. The modeling partially or entirely covered some of the larger and more populated European river basins, including the Danube, Rhine, Elbe, Weser, and Ems in Germany, the Seine and Rhone in France, and the Meuse basin shared by France and Belgium. The model calibration was satisfactory for all basins. The source contribution to the in-stream nitrogen load, together with the diffuse nitrogen emissions and river nitrogen retention were estimated and were found to be in the range of values reported in the literature. Finally, the model results were extrapolated to estimate the diffuse nitrogen emission and source apportionment at the European scale.

  4. Microstructure and Texture of Y123 Ceramics after Hot Deformation by Torsion Under Pressure

    NASA Astrophysics Data System (ADS)

    Imayev, M. F.; Kabirova, D. B.; Pavlova, V. V.

    2015-10-01

    The method of EBSD analysis has been used to investigate the microstructure and texture of the YBa2Cu3O7-х (Y123) ceramics, deformed by hot torsion under quasi-hydrostatic pressure. It is shown that the local average grain size does not depend on the distance to the center of the sample. The texture along a radius of the samples is inhomogeneous. The presence of a ring-shaped region with very weak texture has been detected both in a sample with strong texture and in a sample with weak average texture.

  5. Aquatic Ecosystem Exposure Associated with Atmospheric Mercury Deposition: Importance of Watershed and Water Body Hot Spots and Hot Moments

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Golden, H. E.

    2008-12-01

    Atmospheric deposition of divalent mercury (Hg(II)) is the often the primary driving force for mercury contamination in fish tissue, resulting in mercury exposure to wildlife and humans. In lake systems associated with small watersheds, direct deposition to the water surface is typically the dominant mercury loading source; however, in lake systems with large watersheds and river systems, these inputs may be relatively small compared to loadings from the watershed via erosion and surface runoff. Within each system, transformation of the deposited mercury into the environmentally relevant form, methylmercury (MeHg), proceeds at different rates largely regulated by physical characteristics such as watershed land use types and water body hydraulic residence times, as water body chemistry, such as pH and trophic status Therefore, to fully represent mercury exposure in aquatic ecosystems, we must couple watershed models with water body models and explore where, why, and when hot spots and hot moments of transformation and transport occur. Here we link the simulated atmospheric mercury deposition results from the Community Multi-Scale Air Quality (CMAQ) model, a spatially distributed grid-based watershed mercury (Hg) model (GBMM), and the Water Quality Analysis Simulation Program (WASP). We use this multi-media modeling framework to simulate mercury species cycling over time for the different river reaches and watersheds within the Cape Fear River Basin, North Carolina. Through these simulations we investigate the importance of specific watershed and surface water system characteristics in simulating MeHg exposure concentrations. Because GBMM is a spatially-distributed model we are able to investigate the importance of such factors (i.e., watershed area, land-use types, and land-use percentages) in transporting and transforming deposited mercury. We present how particular land-use types and land-use change influence total loading and total mercury concentrations, how

  6. Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect

    SciTech Connect

    Vuataz, F.D.; Goff, F.

    1987-12-01

    On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

  7. Water, Vapor, and Salt Dynamics in a Hot Repository

    SciTech Connect

    Bahrami, Davood; Danko, George; Walton, John

    2007-07-01

    The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

  8. Static Characteristics of Absorption Chiller-Heater Supplying Cold and Hot Water Simultaneously

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Irie, Tomoyoshi

    Absorption chiller-heaters which can supply both chilled water and hot water at the same time, are used for cooling and heating air conditioning systems. In this paper, we classified absorption cold and hot water generating cycles and control methods, studied these absorption cycles by cycle simulation. In economizer cycle, condensed refrigerant which heats hot water is transported to cooling cycle and used effectively for cooling chilled water, Concerning with transported condensed refrigerant, there are two methods, all condensed refrigerant or required refrigerant for cooling are transported to cooling cycle, and required refrigerant method is better for energy saving. Adding improvement of solution control to this economizer cycle, simultaneous cold and hot water supplying chiller-heaters have good characteristics of energy saving in the all region.

  9. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products.

    PubMed

    Zhuang, Xinshu; Wang, Wen; Yu, Qiang; Qi, Wei; Wang, Qiong; Tan, Xuesong; Zhou, Guixiong; Yuan, Zhenhong

    2016-01-01

    Pretreatment is an essential prerequisite to overcome recalcitrance of biomass and enhance the ethanol conversion efficiency of polysaccharides. Compared with other pretreatment methods, liquid hot water (LHW) pretreatment not only reduces the downstream pressure by making cellulose more accessible to the enzymes but minimizes the formation of degradation products that inhibit the growth of fermentative microorganisms. Herein, this review summarized the improved LHW process for different biomass feedstocks, the decomposition behavior of biomass in the LHW process, the enzymatic hydrolysis of LHW-treated substrates, and production of high value-added products and ethanol. Moreover, a combined process producing ethanol and high value-added products was proposed basing on the works of Guangzhou Institute of Energy Conversion to make LHW pretreatment acceptable in the biorefinery of cellulosic ethanol. PMID:26403722

  10. Production and recovery of monosaccharides from lignocellulose hot water extracts in a pulp mill biorefinery.

    PubMed

    Sainio, Tuomo; Kallioinen, Mari; Nakari, Olli; Mänttäri, Mika

    2013-05-01

    Processing of hemicelluloses obtained with pressurized hot water extraction (PHWE) from Scots pine to monosaccharides and other chemicals was investigated experimentally. A process scheme consisting of ultrafiltration, acid hydrolysis, and chromatographic separation was proposed and evaluated. A two-stage ultrafiltration was found necessary for efficient fractionation of the wood extract. It was shown that the monosaccharides can be released from a concentrated hemicellulose fraction with sulfuric acid hydrolysis without a significant loss of yield due to decomposition of monosaccharides. Acid hydrolysate was successfully fractionated with ion exchange chromatography and the hydrolysis acid was recovered for reuse. The product fractions obtained include polyphenols and high molar mass hemicelluloses (from UF stage 1), arabinose (from UF stage 2), as well as acetic acid and a mixture of monosaccharides (xylose, galactose, mannose, glucose) from chromatography. PMID:23069608

  11. Preliminary results from hot-water drilling and borehole instrumentation on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Doyle, S. H.; Christoffersen, P.; Hubbard, B. P.; Young, T. J.; Hofstede, C. M.; Box, J.; Todd, J.; Bougamont, M. H.; Hubbard, A.

    2015-12-01

    As part of the Subglacial Access and Fast Ice Research Experiment (SAFIRE) pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of fast-flowing, marine-terminating Store Glacier (70° N, ~1000 m elevation). Despite the boreholes freezing within hours, 4 wired sensor strings were successfully deployed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological sub- or en-glacial connection between them. The sensors, which were all connected to loggers at the surface by cables, operated for between ~30 and 80+ days before indications suggest that the cables stretched and then snapped - with the lowermost sensors failing first. The records obtained from these sensors reveal (i) high and increasing water pressure varying diurnally close to overburden albeit of a small magnitude (~ 0.3 m H2O), (ii) a minimum extrapolated englacial temperature of -21°C with above-freezing temperatures at the bed, and (iv) high rates of internal deformation and strain increasing towards the bed as evinced by increasing tilt with depth. These borehole observations are complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys.

  12. Solar heating and hot water system installed at Cherry Hill, New Jersey

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  13. Pressurised hot water extraction with on-line particle formation by supercritical fluid technology.

    PubMed

    Andersson, J M; Lindahl, S; Turner, C; Rodriguez-Meizoso, I

    2012-10-15

    In this work, an on-line process for pressurised hot water extraction (PHWE) of antioxidants from plants as well as drying of the extract in one step by particle formation based on the use of supercritical carbon dioxide (SC-CO(2)) has been developed. This process has been called WEPO®, water extraction and particle formation on-line. With this process, dried extracts from onion with the same composition of quercetin derivatives as non-dried extracts have been obtained as a fine powder with spherical particles from 250 nm to 4 μm in diameter. The major compounds present in the extract were quercetin-3,4'-diglucoside, quercetin-4'-glucoside and quercetin. An auxiliary inert gas (hot N(2)) was used to enhance the drying process. Parameters such as temperature (120 °C), SC-CO(2) and N(2) pressures (80 and 12.5 bar, respectively) and flow rate of SC-CO(2) (10 ml/min), have been settled by trial-and-error in order to achieve a fine and constant spray formation. Water content, size and morphology, antioxidant capacity and quercetin content of the particles were studied to evaluate the efficiency of the WEPO process. Results were compared with the ones from extracts obtained by continuous flow PHWE followed by freeze-drying. Results showed that both processes gave similar results in terms of antioxidant capacity, concentration of quercetin derivatives and water content, while only WEPO was able to produce defined spherical particles smaller than 4 μm. PMID:23442613

  14. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  15. Fabrication and characterization of Si3N4 ceramics without additives by high pressure hot pressing

    NASA Technical Reports Server (NTRS)

    Shimada, M.; Tanaka, A.; Yamada, T.; Koizumi, M.

    1984-01-01

    High pressure hot-pressing of Si3N4 without additives was performed using various kinds of Si3N4 powder as starting materials, and the relation between densification and alpha-beta phase transformation was studied. The temperature dependences of Vickers microhardness and fracture toughness were also examined. Densification of Si3N4 was divided into three stages, and it was found that densification and phase transformation of Si3N4 under pressure were closely associated. The results of the temperature dependence of Vickers microhardness indicated that the high-temperature hardness was strongly influenced not only by the density and microstructure of sintered body but also by the purity of starting powder. The fracture toughness values of Si3N4 bodies without additives were 3.29-4.39 MN/m to the 3/2 power and independent of temperature up to 1400 C.

  16. Final report : testing and evaluation for solar hot water reliability.

    SciTech Connect

    Caudell, Thomas P.; He, Hongbo; Menicucci, David F.; Mammoli, Andrea A.; Burch, Jay

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  17. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas. Final report

    SciTech Connect

    1980-08-01

    The solar heating system is designed to supply a major portion of the space and water heating requirements for a newly built Shoney's Big Boy Restaurant which was installed with completion occurring in December 1979. The restaurant has a floor space of approximately 4,650 square feet and requires approximately 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10/sup 6/ Btu/yr (specified) building heating and hot water heating. Designer - Energy Solutions, Incorporated. Contractor - Stephens Brothers, Incorporated. This report includes extracts from site files, specification references for solar modifications to existing building heating and hot water systems, drawings installation, operation and maintenance instructions.

  18. Building America Top Innovations 2012: Model Simulating Real Domestic Hot Water Use

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research that is improving domestic hot water modeling capabilities to more effectively address one of the largest energy uses in residential buildings.

  19. Design package for a complete residential solar space heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  20. Solar hot water system installed at Las Vegas, Nevada. Final report

    SciTech Connect

    1981-01-01

    The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  1. Hourly use profiles for solar domestic hot water heaters in the National Solar Data Network

    NASA Astrophysics Data System (ADS)

    Barvir, E. J.; Doak, L. G.; Waterman, R. E.; Gervasio, C.

    Daily hot water rates of consumption and the Hourly Profiles of Daily Hot Water Consumption for single and multiple family dwellings are provided. These new statistics obtained from the National Solar Data Network (NSDN) are significantly different from the statistics currently being used in TRNSYS, SOLCOST and F-Chart. The NSDN statistics suggest that both the daily demand and hourly use profiles used in performance models should be revised.

  2. Hourly use profiles for solar domestic hot water heaters in the National Solar Data Network

    NASA Astrophysics Data System (ADS)

    Barvir, E. J.; Doak, L. G.; Waterman, R. E.; Gervasio, C.

    Daily hot water rates of consumption and the Hourly Profiles of Daily Hot Water Consumption for single and multiple family dwellings are provided in this paper. These new statistics obtained from the National Solar Data Network (NSDN) are significantly different from the statistics currently being used in TRNSYS, SOLCOST and F-Chart. The NSDN statistics suggest that both the daily demand and hourly use profiles used in performance models should be revised.

  3. Design of Recycle Pressurized Water Reactor with Heavy Water Moderation

    SciTech Connect

    Hibi, Koki; Uchita, Masato

    2004-03-15

    This study presents the conceptual design of the recycle pressurized water reactor (RPWR), which is an innovative PWR fueled with mixed oxide, moderated by heavy water, and having breeding ratios around 1.1. Most of the systems of RPWR can employ those of PWRs. The RPWR has no boric acid systems and has a small tritium removal system. The construction and operation costs would be similar to those of current PWRs. Heavy water cost has decreased drastically with up-to-date producing methods. The reliability of the systems of the RPWR is high, and the research and development cost for RPWR is very low because the core design is fundamentally based on the current PWR technology.

  4. Hot spots and hot moments in riparian zones: potential for improved water quality management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite considerable heterogeneity over space and time, biogeochemical and hydrological processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. Recently, these heterogeneous processes have been co...

  5. Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling.

    PubMed

    Kim, Sun Min; Dien, Bruce S; Tumbleson, M E; Rausch, Kent D; Singh, Vijay

    2016-09-01

    Efficient pretreatment is essential for economic conversion of lignocellulosic feedstocks into monosaccharides for biofuel production. To realize high sugar yields with low inhibitor concentrations, hot water or dilute acid pretreatment followed by disk milling is proposed. Corn stover at 20% solids was pretreated with hot water at 160-200°C for 4-8min with and without subsequent milling. Hot water pretreatment and disk milling acted synergistically to improve glucose and xylose yields by 89% and 134%, respectively, compared to hot water pretreatment alone. Hot water pretreated (180°C for 4min) and milled samples had the highest glucose and xylose yields among all hot water pretreated and milled samples, which were comparable to samples pretreated with 0.55% dilute acid at 160°C for 4min. However, samples pretreated with 1% dilute acid at 150°C for 4min and disk milled had the highest observed glucose (87.3%) and xylose yields (83.4%). PMID:27289063

  6. Hot water extraction with in situ wet oxidation: kinetics of PAHs removal from soil.

    PubMed

    Dadkhah, Ali A; Akgerman, Aydin

    2006-09-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions--with and without in situ wet oxidation--were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 degrees C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments. PMID:16621253

  7. Comparison of water wash, trimming, and combined hot water and lactic acid treatments for reducing bacteria of fecal origin on beef carcasses.

    PubMed

    Castillo, A; Lucia, L M; Goodson, K J; Savell, J W; Acuff, G R

    1998-07-01

    Cleaning treatments, such as high-pressure water wash at 35 degrees C or trim, alone and combined with sanitizing treatments, such as hot water (95 degrees C at the source), warm (55 degrees C) 2% lactic acid spray, and combinations of these two sanitizing methods, were compared for their effectiveness in reducing inoculated numbers (5.0 to 6.0 log CFU/cm2) of Salmonella typhimurium, Escherichia coli O157:H7, aerobic plate counts, Enterobacteriaceae, total coliforms, thermotolerant coliforms, and generic E. coli on hot beef carcass surface areas in a model carcass spray cabinet. Log reductions in numbers of all tested organisms by water wash or trim alone were significantly smaller than the log reductions obtained by the different combined treatments. Regardless of the cleaning treatment (water wash or trim) or surface area, the range for mean log reductions by hot water was from 4.0 to > 4.8 log CFU/cm2, by lactic acid spray was from 4.6 to > 4.9 log CFU/cm2, by hot water followed by lactic acid spray was from 4.5 to > 4.9 log CFU/cm2, and by lactic acid spray followed by hot water was from 4.4 to > 4.6 log CFU/cm2, for S. typhimurium and E. coli O157:H7. Identical reductions were obtained for thermotolerant coliforms and generic E. coli. No differences in bacterial reductions were observed for different carcass surface regions. Water wash and trim treatments caused spreading of the contamination to other areas of the carcass surface while providing an overall reduction in fecal or pathogenic contamination on carcass surface areas. This relocated contamination after either water wash or trim was most effectively reduced by following with hot water and then lactic acid spray. This combined treatment yielded 0% positive samples for S. typhimurium, E. coli O157:H7, thermotolerant coliforms, and generic E. coli on areas outside the inoculated areas, whereas percent positive samples after applying other combined treatments ranged from 22 to 44% for S. typhimurium, 0 to

  8. Development of a fluid friction control valve for pressure letdown in hot dirty gas streams

    SciTech Connect

    Novack, M.

    1990-09-01

    Control valves required for pressure letdown service in future commercial coal conversion plants will be subjected to severe service at a temperature and pressure as high as 1800{degree}F and 800 psig, respectively, in a gaseous environment leading to valve erosion and corrosion. This report describes the design and development of a fluid friction control valve (FFCV) for these severe pressure reduction applications. The FFCV is designed to dissipate friction-induced energy losses uniformly over an extended surface flow path, and thus eliminate pressure reduction taking place in a single-step process. This important feature of the FFCV, by which the fluid mixture velocity is significantly reduced, has the potential of minimizing or even eliminating the problems associated with conventional-type control valves. The component parts of the FFCV exposed to the hot gas flow stream were fabricated from Inconel Alloy 625, a high strength nickel-chromium-molybdenum alloy used in high temperature corrosive environments. The FFCV underwent combined parametric and endurance tests at temperatures and pressures of up to 1500 F and 1000 psig, respectively, at gas stream flowrates of up to 100 lb/hr. To simulate abrasive ash/char particulate as found in conversion plant gas streams, three forms of silica powders were used. Over the course of 53 test runs, the FFCV was subjected to a cumulative endurance test duration of 164 hours, of which 55 hours were with silica particulate in the gas stream. During these tests the FFCV maintained its structural integrity and operated without clogging or jamming. Upon completion of testing, examination of the internal valve surfaces exposed to the gas stream showed no discernable erosion. 1 ref., 23 figs., 3 tabs.

  9. Hot granules medium pressure forming process of AA7075 conical parts

    NASA Astrophysics Data System (ADS)

    Dong, Guojiang; Zhao, Changcai; Peng, Yaxin; Li, Ying

    2015-05-01

    High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d 0 is 0.57, is formed in one process at 250°C. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy.

  10. Buoyancy and Pressure Induced Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    NASA Astrophysics Data System (ADS)

    Jaluria, Yogesh; Tamm, Gunnar Olavi

    2014-11-01

    An experimental investigation was conducted to study buoyancy and pressure induced flow of hot gases in vertical shafts to model smoke propagation in elevator and ventilation shafts of high rise building fires. Various configurations were tested with regard to natural and forced ventilation imposed at the upper and lower surfaces of the vertical shaft. The aspect ratio was taken at a typical value of 6. From a lower vent, the inlet conditions for smoke and hot gases were varied in terms of the Reynolds and Grashof numbers. The forced ventilation at the upper or lower boundary was of the same order as the bulk shaft flow. Measurements were taken within the shaft to allow a detailed study of the steady state flow and thermal fields established for various shaft configurations and inlet conditions, from which optimal means for smoke alleviation in high rise building fires may be developed. Results indicated a wall plume as the primary transport mechanism for smoke propagating from the inlet towards the exhaust region. Recirculation and entrainment dominated at high inlet Grashof number flows, while increased inlet Reynolds numbers allowed greater mixing in the shaft. The development and stability of these flow patterns and their effects on the smoke behavior were assessed for several shaft configurations with different inlet conditions. The comparisons indicated that the fastest smoke removal and lowest overall shaft temperatures occur for a configuration with natural ventilation at the top surface and forced ventilation up from the shaft bottom.

  11. Hot water surface pasteurisation of lamb carcasses: microbial effects and cost-benefit considerations.

    PubMed

    Hauge, Sigrun J; Wahlgren, Magnus; Røtterud, Ole-Johan; Nesbakken, Truls

    2011-03-15

    Although hot water pasteurisation of carcasses is accepted as a general intervention in USA, this is not the case in Europe. The aims of this study were (i) to evaluate the microbiological effects of hot water pasteurisation of lamb carcasses, both after slaughtering and dressing and following subsequent chilling and storage; (ii) to discuss hot water pasteurisation from a public health and cost-benefit perspective; (iii) to discuss the benefits of hot water pasteurisation compared with use of separate meat processing streams for high-risk carcasses; (iv) to evaluate the use of recycled hot water in a hygienic context and in relation to EU regulations; and (v) to consider the technological and sensory aspects of hot water pasteurisation of lamb carcasses. Samples were collected from 420 naturally contaminated lamb carcasses, with 50% of the carcasses (n=210) subject to hot water pasteurisation at 82 °C for 8s immediately after slaughter. Surface swab samples from 4500 cm² areas on carcasses were collected at slaughter, after chilling for 24 h, and after chilling for five days. The microbial analyses included Escherichia coli, Enterobacteriaceae, Bacillus cereus, Clostridium perfringens and aerobic plate count (APC). A resuscitation step using Tryptone Soya Agar was included in the microbiological analyses. Hot water pasteurisation significantly reduced the levels of E. coli, Enterobacteriaceae, B. cereus and APC (all P<0.001). E. coli colony forming unit (CFU) reduction was 99.5%, corresponding to a reduction of 1.85 log CFU per carcass. E. coli was isolated from 66% of control carcasses and from 26% of pasteurised carcasses. After 24h storage, the reduction in E. coli was increased to 2.02 log, and after five days E. coli could not be isolated from the pasteurised carcasses. These results suggest that surface pasteurisation could be an important and efficient procedure (critical control point) for reducing generic E. coli and thereby shiga toxin-producing E

  12. Still too hot: Examination of water temperature and water heater characteristics 24 years after manufacturers adopt voluntary temperature setting

    PubMed Central

    Shields, Wendy C.; McDonald, Eileen; Frattaroli, Shannon; Zhu, Jeffrey; Perry, Elise C.; Gielen, Andrea C.

    2013-01-01

    Objective Although water heater manufacturers adopted a voluntary standard in the 1980’s to pre-set thermostats on new water heaters to 120°F, tap water scald burns cause an estimated 1,500 hospital admissions and 100 deaths per year in the United States. This study reports on water temperatures in 976 urban homes and identifies water heater and household characteristics associated with having safe temperatures. Methods The temperature of the hot water, type and size of water heater, date of manufacture and the setting of the temperature gauge were recorded. Demographic data including number of people living in the home and home ownership were also recorded. Results Hot water temperature was unsafe in 41% of homes. Homeowners were more likely to have safer hot water temperature (≤ 120°F) than renters (63% vs. 54%; p<0.01). For 11% of gas water heaters, the water temperature was ≥ 130°F, although the gauge was set at less than 75% of its maximum setting. In a multivariate logistic regression, electric water heaters were more likely to have safe hot water temperatures than gas water heaters (OR=4.99; p<0.01). Water heaters with more gallons per person in the household were more likely to be at or below the recommended 120°F. Conclusions Our results suggest that hot water temperatures remain dangerously high for a substantial proportion of urban homes despite the adoption of voluntary standards to preset temperature settings by manufacturers. This research highlights the need for improved prevention strategies such as installing thermostatic mixing valves to ensure a safer temperature. PMID:23514986

  13. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.

  14. Low-Cost Solar Domestic Hot Water Systems for Mild Climates

    SciTech Connect

    Burch, J.; Christensen, C.; Merrigan, T.; Hewett, R.; Jorgensen, G.

    2005-01-01

    In FY99, Solar Heating and Lighting set the goal to reduce the life-cycle cost of saved-energy for solar domestic hot water (SDHW) systems in mild climates by 50%, primarily through use of polymer technology. Two industry teams (Davis Energy Group/SunEarth (DEG/SE) and FAFCO) have been developing un-pressurized integral-collector-storage (ICS) systems having load-side heat exchangers, and began field-testing in FY04. DEG/SE?s ICS has a rotomolded tank and thermoformed glazing. Based upon manufacturing issues, costs, and poor performance, the FAFCO team changed direction in late FY04 from an un-pressurized ICS to a direct thermosiphon design based upon use of pool collectors. Support for the teams is being provided for materials testing, modeling, and system testing. New ICS system models have been produced to model the new systems. A new ICS rating procedure for the ICS systems is undergoing testing and validation. Pipe freezing, freeze protection valves, and overheating have been tested and analyzed.

  15. Investigating the Mpemba Effect: when hot water freezes faster than cold water

    NASA Astrophysics Data System (ADS)

    Ibekwe, R. T.; Cullerne, J. P.

    2016-03-01

    Under certain conditions a body of hot liquid may cool faster and freeze before a body of colder liquid, a phenomenon known as the Mpemba Effect. An initial difference in temperature of 3.2 °C enabled warmer water to reach 0 °C in 14% less time than colder water. Convection currents in the liquid generate a temperature gradient that causes more rapid heat loss by surface radiation and evaporation than obtains for uniform temperature. This more rapid cooling enables the initially warmer liquid to overtake the cooler liquid, reaching 0 °C earlier and freezing first. Liquid cooling under natural convection follows a five-fourths power law (temperature of liquid T , temperature of surroundings {{T}a} , cooling constant k ): \\frac{\\text{d}T}{\\text{d}t}=k{{≤ft(T-{{T}a}\\right)}\\frac{5{4}}} . In this investigation we found that with evaporation this becomes a four-thirds power law:

  16. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    SciTech Connect

    Springer, David; Seitzler, Matt; Backman, Christine; Weitzel, Elizabeth

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  17. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOEpatents

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  18. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  19. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  20. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  1. Measured electric hot water standby and demand loads from Pacific Northwest homes

    SciTech Connect

    Pratt, R.G.; Ross, B.A.

    1991-11-01

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  2. Conjugation of Hot-Melt Extrusion with High-Pressure Homogenization: a Novel Method of Continuously Preparing Nanocrystal Solid Dispersions.

    PubMed

    Ye, Xingyou; Patil, Hemlata; Feng, Xin; Tiwari, Roshan V; Lu, Jiannan; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Majumdar, Soumyajit; Neupane, Dipesh; Mishra, Sanjay R; Repka, Michael A

    2016-02-01

    Over the past few decades, nanocrystal formulations have evolved as promising drug delivery systems owing to their ability to enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, conventional methods of preparing nanocrystal formulations, such as spray drying and freeze drying, have some drawbacks including high cost, time and energy inefficiency, traces of residual solvent, and difficulties in continuous operation. Therefore, new techniques for the production of nanocrystal formulations are necessary. The main objective of this study was to introduce a new technique for the production of nanocrystal solid dispersions (NCSDs) by combining high-pressure homogenization (HPH) and hot-melt extrusion (HME). Efavirenz (EFZ), a Biopharmaceutics Classification System class II drug, which is used for the treatment of human immunodeficiency virus (HIV) type I, was selected as the model drug for this study. A nanosuspension (NS) was first prepared by HPH using sodium lauryl sulfate (SLS) and Kollidon® 30 as a stabilizer system. The NS was then mixed with Soluplus® in the extruder barrel, and the water was removed by evaporation. The decreased particle size and crystalline state of EFZ were confirmed by scanning electron microscopy, zeta particle size analysis, and differential scanning calorimetry. The increased dissolution rate was also determined. EFZ NCSD was found to be highly stable after storage for 6 months. In summary, the conjugation of HPH with HME technology was demonstrated to be a promising novel method for the production of NCSDs. PMID:26283197

  3. Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA

    USGS Publications Warehouse

    King, S.A.; Behnke, S.; Slack, K.; Krabbenhoft, D.P.; Nordstrom, D.K.; Burr, M.D.; Striegl, R.G.

    2006-01-01

    Ultra-clean sampling methods and approaches typically used in pristine environments were applied to quantify concentrations of Hg species in water and microbial biomass from hot springs of Yellowstone National Park, features that are geologically enriched with Hg. Microbial populations of chemically-diverse hot springs were also characterized using modern methods in molecular biology as the initial step toward ongoing work linking Hg speciation with microbial processes. Molecular methods (amplification of environmental DNA using 16S rDNA primers, cloning, denatured gradient gel electrophoresis (DGGE) screening of clone libraries, and sequencing of representative clones) were used to examine the dominant members of microbial communities in hot springs. Total Hg (THg), monomethylated Hg (MeHg), pH, temperature, and other parameters influential to Hg speciation and microbial ecology are reported for hot springs water and associated microbial mats. Several hot springs indicate the presence of MeHg in microbial mats with concentrations ranging from 1 to 10 ng g-1 (dry weight). Concentrations of THg in mats ranged from 4.9 to 120,000 ng g-1 (dry weight). Combined data from surveys of geothermal water, lakes, and streams show that aqueous THg concentrations range from l to 600 ng L-1. Species and concentrations of THg in mats and water vary significantly between hot springs, as do the microorganisms found at each site. ?? 2006.

  4. Hot compressed water extraction curve for palm oil and beta carotene concentration

    NASA Astrophysics Data System (ADS)

    Sharizan, M. S. M.; Azian, M. N.; Yoshiyuki, Y.; Kamal, A. A. M.; Che Yunus, M. A.

    2016-06-01

    Hot compressed water extraction (HCWE) is a promising green alternative for palm oil milling. The kinetic characteristic of HCWE for palm oil and it β-carotene concentration was experimentally investigated in this study at the different temperature and pressure. Semi-batch HCW extractor from 120 to 180 oC and 30 to 50 bar was used to evaluated the process for 60 mins of extraction in 10 mins interval. The results obtain using the HCWE process was compared with other extraction method. The oil extraction achieved the maximum extraction rate within 20 mins of extraction in most of the condition and starting to decrease until 60 mins of extraction time. The extraction rate for β-carotene was achieved the maximum rate in 10 mins and starting to decrease until 30 mins. None of β-carotene concentration had been extracted out from the palm oil mesocarp after 30 mins of extraction in all condition. The oil recovery of using HCWE was relatively low compare with the mechanical screw press, subcritical R134b, supercritical carbon dioxide and hexane extraction due to the oil loses in the oil-water emulsion. However, the β-carotene concentration in extracted oil using HCWE was improved compare with commercial crude palm oil (CPO) and subcritical R134a extraction.

  5. Solar heating and domestic hot water system installed at North Dallas High School. Final report

    SciTech Connect

    Not Available

    1980-05-01

    This Document is the Final Technical Report of the Solar Energy System located at the North Dallas High School, Dallas, Texas. The system is designed as a retrofit in a three story with basement, concrete frame high school building. The building was air conditioned with an electric drive 300-ton chilled water central system in 1973. The building contains 126,000 square feet and the solar energy system will preheat 100 percent of domestic hot water and supply 47.5 percent of annual building heating requirements. During the building cooling seasons, the solar energy system will supply 100 percent of domestic hot water. The solar energy system consists of 4800 square feet (320 panels) Lennox/Honeywell flat plate liquid collector subsystem, and a 10,000 gallon steel tank storage subsystem circulating hot water producing 686.6 x 10/sup 6/ Btu/year (specified) building heating and domestic hot water heating. The start up date is December 4, 1979. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are presented.

  6. PRESSURE EQUILIBRIUM BETWEEN THE LOCAL INTERSTELLAR CLOUDS AND THE LOCAL HOT BUBBLE

    SciTech Connect

    Snowden, S. L.; Chiao, M.; Collier, M. R.; Porter, F. S.; Thomas, N. E.; Galeazzi, M.; Uprety, Y.; Ursino, E.; Koutroumpa, D.; Lallement, R.; Puspitarini, L.; Lepri, S. T.; McCammon, D.; Morgan, K.; Walsh, B. M.

    2014-08-10

    Three recent results related to the heliosphere and the local interstellar medium (ISM) have provided an improved insight into the distribution and conditions of material in the solar neighborhood. These are the measurement of the magnetic field outside of the heliosphere by Voyager 1, the improved mapping of the three-dimensional structure of neutral material surrounding the Local Cavity using extensive ISM absorption line and reddening data, and a sounding rocket flight which observed the heliospheric helium focusing cone in X-rays and provided a robust estimate of the contribution of solar wind charge exchange emission to the ROSAT All-Sky Survey 1/4 keV band data. Combining these disparate results, we show that the thermal pressure of the plasma in the Local Hot Bubble (LHB) is P/k = 10, 700 cm{sup –3} K. If the LHB is relatively free of a global magnetic field, it can easily be in pressure (thermal plus magnetic field) equilibrium with the local interstellar clouds, eliminating a long-standing discrepancy in models of the local ISM.

  7. Cold Helium Pressurization for Liquid Oxygen / Liquid Methane Propulsion Systems: Fully-Integrated Initial Hot-Fire Test Results

    NASA Technical Reports Server (NTRS)

    Morehead, R. L.; Atwell, M. J.; Melcher, J. C.; Hurlbert, E. A.

    2016-01-01

    A prototype cold helium active pressurization system was incorporated into an existing liquid oxygen (LOX) / liquid methane (LCH4) prototype planetary lander and hot-fire tested to collect vehicle-level performance data. Results from this hot-fire test series were used to validate integrated models of the vehicle helium and propulsion systems and demonstrate system effectiveness for a throttling lander. Pressurization systems vary greatly in complexity and efficiency between vehicles, so a pressurization performance metric was also developed as a means to compare different active pressurization schemes. This implementation of an active repress system is an initial sizing draft. Refined implementations will be tested in the future, improving the general knowledge base for a cryogenic lander-based cold helium system.

  8. Environmental effects of poly(phenylene ether) blends after long-term exposure to potable hot water

    NASA Astrophysics Data System (ADS)

    Maclean, Steven

    In recent years, engineering thermoplastic resins have been contemplated for use in a variety pressurized fluid handling components such as potable water delivery pipes, fitting and valves. In this research, rigid blends of glassy poly(phenylene ether) (PPE) polymer are studied to assess their suitability in long-term, potable, hot water environments. Three distinct PPE-based model compounds were prepared for this research: (i) a 50/50 blend of PPE and high impact polystyrene (HIPS); (ii) a 50/50 blend of PPE and HIPS with the inclusion of an anti-oxidant package and; (iii) a blend consisting of capped PPE, crystal polystyrene and styrene-ethyelene-butylene-styrene (SEBS) rubber. A fourth engineering thermoplastic, namely bisphenol-A polysulfone (PSU), was incorporated into the study as a benchmark material due to its proven reliability in hot water applications. Aging experiments were carried out for 8,000 hours in an 80°C water bath and an 80°C convection oven to characterize physical property retention and degradation mechanisms in each material. During water bath immersion, excessive, non-Fickian water diffusion occurred in both PPE/HIPS blends which led to water clustering and disc shaped microcavities on the order of 50 to 100 mum in diameter. These voids in the bulk caused appreciable losses in tensile elongation and fatigue resistance. The capped PPE/PS/SEBS blend, however, managed water uptake more effectively and its chemistry deterred water clustering. With further improvements to the formulation, such as larger rubber domains or an alternative impact modifier, the capped PPE blend may be able to offer physical property retention equal to that of PSU. With the exception of slight craze formation at sharp specimen edges during hot water immersion, the PSU material proved to be an exceptional material candidate throughout the entire experimentation. Surprisingly long-term hot water exposure did not cause gross chemical degradation in any of the materials

  9. Deparaffinization of formalin-fixed paraffin-embedded tissue blocks using hot water instead of xylene.

    PubMed

    Kalantari, Narges; Bayani, Masomeh; Ghaffari, Taraneh

    2016-08-15

    This study aimed to deparaffinize formalin-fixed paraffin-embedded (FFPE) tissues using hot water instead of xylene and measuring the quantity and quality of the extracted DNA from the respective tissues. To deparaffinize the tissue sections with hot water, small sections were exposed to 90 °C distilled sterile water. After 25 FFPE tissue samples were deparaffinized with the hot water method, DNA was then extracted. The mean of optical density and the ratio of absorbance of the DNA solution were 220.01 ± 36.1 ng/μl and 1.65 ± 0.1, respectively. Polymerase chain reaction (PCR) analysis of the toll-like receptor 4(TLR4) gene showed that the method can be used as a tool for different applications. PMID:27287960

  10. Hot-water treatments for control of Planococcus ficus (Homoptera: Pseudococcidae) on dormant grape cuttings.

    PubMed

    Haviland, David R; Bentley, Walter J; Daane, Kent M

    2005-08-01

    Hot-water immersions were tested for control of mealybug Planococcus ficus (Signoret), on dormant grape cuttings used for nursery stock. A range of hot-water temperatures (47-58 degrees C) were evaluated at immersion periods of 2, 5, 10, or 20 min, by using a total of 353,720 mealybugs across all treatments. A 5-min immersion at 51 degrees C is effective in killing > 99% of P. ficus. At or above this immersion period and temperature, there was no difference in mealybug stage mortality. We evaluated a commercial operation, which used a 5-min immersion in each of three water tanks: preheating (30.0 +/- 3 degrees C), hot-water (52.8 +/- 0.3 degrees C), and cooling (23 +/- 3 degrees C). The commercial procedure provided 99.8-100% mealybug control in each of three separate trials. PMID:16156560

  11. Use of submersible pressure transducers in water-resources investigations

    USGS Publications Warehouse

    Freeman, Lawrence A.; Carpenter, Michael C.; Rosenberry, Donald O.; Rousseau, Joseph P.; Unger, Randy; McLean, John S.

    2004-01-01

    Submersible pressure transducers, developed in the early 1960s, have made the collection of water-level and pressure data much more convenient than former methods. Submersible pressure transducers, when combined with electronic data recorders have made it possible to collect continuous or nearly continuous water-level or pressure data from wells, piezometers, soil-moisture tensiometers, and surface water gages. These more frequent measurements have led to an improved understanding of the hydraulic processes in streams, soils, and aquifers. This manual describes the operational theory behind submersible pressure transducers and provides information about their use in hydrologic investigations conducted by the U.S. Geological Survey.

  12. Evaluation of the impact of hot water treatment on the sensory quality of fresh tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Minimizing the effects of chilling injury during shelf-life is important for maintaining the sensory quality of fresh tomato fruit. Postharvest hot water treatments within certain limits of exposure time and water temperature have been shown to increase the resistance of tomatoes to chilling injury....

  13. Solar energy meets 50 pecent of motel hot water needs--Key West, Florida

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Final report describes domestic water preheat installed in 148 room motel. Equipment meets 50 percent of needs when motel is 100 percent occupied; equivalently, it supplies 100 percent of hot water when occupancy is 50 percent. System consists of 1,400 square feet of flat plate liquid solar collectors, storage tanks, pump, controller, and hardware.

  14. Monitoring of hot water plume movements in an aquifer with borehole/surface resistivity measurements

    SciTech Connect

    Tsang, C.F.; Wilt, M.J.

    1985-05-01

    In this study a simulation of a downhole/surface resistivity experiment to map a hot water plume was performed using a three-dimensional computer code. A fixed amount of hot water was placed in an aquifer between 45 and 70 m below ground surface and resistivity measurements were made at the surface using a current electrode in the hot water body. Results indicate that the anomaly is much greater using the downhole electrode than for surface arrays and that the data may be used to roughly characterize the hot water mass and its boundaries. Several cases involving different plume boundaries were studied and results indicate that the downhole/surface measurements are not very sensitive to differences in the boundary geometry although a rough determination of the boundary position is possible. For the case where the hot water plume is moving relative to the downhole current electrode until it completely leaves the electrode behind, the anomaly size is smaller but the shape allows for good discrimination of the near-side boundary.

  15. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  16. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  17. Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    SciTech Connect

    Lu, Alison; McMahon, James; Masanet, Eric; Lutz, Jim

    2008-08-13

    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union's Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory's Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller.

  18. Stress and Fracture Mechanics Analyses of Boiling Water Reactor and Pressurized Water Reactor Pressure Vessel Nozzles

    SciTech Connect

    Yin, Shengjun; Bass, Bennett Richard; Stevens, Gary; Kirk, Mark

    2011-01-01

    This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle3 3. PWR inlet nozzle; ; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. The above nozzle designs were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-license (EOL) to require evaluation as part of establishing the allowed limits on heatup, cooldown, and hydrotest (leak test) conditions. These nozzles analyzed represent one each of the nozzle types potentially requiring evaluation. The purpose of the analyses performed on these nozzle designs was as follows: To model and understand differences in pressure and thermal stress results using a two-dimensional (2-D) axi-symmetric finite element model (FEM) versus a three-dimensional (3-D) FEM for all nozzle types. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated; To verify the accuracy of a selected linear elastic fracture mechanics (LEFM) hand solution for stress intensity factor for a postulated nozzle corner crack for both thermal and pressure loading for all nozzle types; To assess the significance of attached piping loads on the stresses in the nozzle corner region; and To assess the significance of applying pressure on the crack face with respect to the stress intensity factor for a postulated nozzle corner crack.

  19. Infections Acquired via Fresh Water: From Lakes to Hot Tubs.

    PubMed

    Ayi, Bertha

    2015-12-01

    This chapter is unique in its focus on infections that are acquired in water. For those who like to swim and spend time in water parks and pools, the exposure to water and therefore the risk of infection is higher. Recreational water illnesses are illnesses related to recreation in water. Of these recreational water illnesses, infections are the most common because water laden with microorganisms or contaminated by human activity gains access to healthy tissue through the skin and body orifices. Infection occurs by inhalation, ingestion, or direct invasion of the respiratory and gastrointestinal tract. Gastrointestinal infections are the most common. This chapter discusses skin and soft tissue infections, ocular infections, urinary tract infections, pulmonary infections, central nervous system infections, and disseminated infections that can occur as people come into contact with natural nonmarine water bodies as well as manmade aquatic environments. Most of these infections are mild but can occasionally be life threatening. There is a focus on the latest methods to treat these infections. Pseudomonas aeruginosa is a very common pathogen in water. The chapter discusses P. aeruginosa dermatitis at length and also looks at keratitis and pneumonia caused by this organism. The chapter also discusses the latest treatments for primary amoebic meningoencephalitis, a severe life-threatening illness with a high mortality, caused by Naegleria fowleri. Finally, there is an in-depth discussion of the notorious gastrointestinal illnesses such as norovirus and Cryptosporidium parvum that can affect large numbers of people at a time. PMID:27337285

  20. Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1970-01-01

    Under favorable conditions the chemistry of hot springs may give reliable indications of subsurface temperatures and circulation patterns. These chemical indicators can be classified by the type of process involved: {A table is presented}. All these indicators have certain limitations. The silica geothermometer gives results independent of the local mineral suite and gas partial pressures, but may be affected by dilution. Alkali ratios are strongly affected by the local mineral suite and the formation of complex ions. Carbonate-chloride ratios are strongly affected by subsurface PCO2. The relative concentration of volatiles can be very misleading in high-pressure liquid systems. In Yellowstone National Park most thermal waters issue from hot, shallow aquifers with pressures in excess of hydrostatic by 2 to 6 bars and with large flows (the flow of hot spring water from the Park is greater than 4000 liters per second). These conditions should be ideal for the use of chemical indicators to estimate aquifer temperatures. In five drill holes aquifer temperatures were within 2??C of that predicted from the silica content of nearby hot springs; the temperature level off at a lower value than predicted in only one hole, and in four other holes drilling was terminated before the predicted aquifer temperature was reached. The temperature-Na/K ratio relationship does not follow any published experimental or empirical curve for water-feldspar or water-clay reactions. We suspect that ion exchange reactions involving zeolites in the Yellowstone rocks result in higher Na/K ratios at given temperatures than result from feldspar or clay reactions. Comparison of SiO2 and Cl/(HCO3 + CO3) suggest that because of higher subsurface PCO2 in Upper Geyser Basin a given Cl/(HCO3 + CO3) ratio there means a higher temperature than in Lower Geyser Basin. No correlation was found in Yellowstone Park between the subsurface regions of highest temperature and the relative concentration of volatile

  1. 22. Fire Protection Water Pump (low pressure), view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Fire Protection Water Pump (low pressure), view to the southwest. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  2. Performance of Generator of Absorption Refrigerating Machine Powered by Hot Water

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Usui, Sanpei; Ouchi, Tomihisa; Fukuda, Tamio

    For 70 kW generator of absorption refrigerating machine powered by the hot water, lifted liquid rate of the bubble lift pump has a maximum value at some vapor flow rate of refrigerant and hot water inlet temperature. This is in agreement with results of small size bubble lift pump. Maximum lifted liquid rate G0 is correlated by the equation G0 = 5, 000σ1.5, where σ is the degree of submergence. In this case, diameter of pump tube was 41.6mm, and length of it were 1,300 and 1,500mm. The range of hot water inlet temperature was 78 - 100°C. Multitube heat flux of first generator is about two times that of second generator at the same superheat.

  3. In Hot Water: Thermoelectric Power and Thermal Pollution

    NASA Astrophysics Data System (ADS)

    Madden, N. T.

    2010-12-01

    The use of surface water for thermoelectric power plant cooling significantly impacts river water temperatures, posing risks to aquatic ecosystems. In addition, surface water temperatures in summer can exceed limits for power plant compliance with thermal effluent limitations, jeopardizing energy security during periods of peak power demand. For example, Brown's Ferry Nuclear Plant in Alabama curtailed power production by 50% for over 40 days in July-August of 2010 when river temperatures exceeded 90°F. Future increases in surface water temperatures due to climate change may further endanger energy security. This study examines summer intake and outflow water temperature data reported by power plants during peak production months across the United States to determine the impact of thermoelectric power plants on surface water temperatures in the summer. Initial results indicate that U.S. coal plants (n= 625) raised water temperatures by an average of 17°F (± 12°F) and discharged cooling water with median peak temperatures of 100°F (± 13°F) in the summer of 2005, the last year when this data was reliably reported. Further analysis will extend the time period of this study from 2000-2005 and expand the scope to various energy sources and cooling technologies. In addition, we explore regional variation to assess the relative threat that thermal pollution poses to energy security across the U.S.

  4. Investigation and Construction of a Thermosyphoning Solar Hot Water System

    ERIC Educational Resources Information Center

    Johnson, Harvey

    1978-01-01

    Describes how a thermosyphoning solar water heater capable of heating 110 kilogram of water to 80 degree Celsius and maintaining this temperature for 24 hours was constructed by four students in the fifth form of Sekolah Date Abdul Razak, Seremban, Malaysia in 1976. (HM)

  5. Comparison of six generic solar domestic hot water systems

    SciTech Connect

    Farrington, R.B.; Murphy, L.M.; Noreen, D.L.

    1980-04-01

    The cost effectiveness of residential solar water heating is explored by analyzing six different system types. A figure of merit (that considers both performance and cost) is calculated for each system, providing information for both researchers and industry. Thermosyphon water heaters are determined to be the most cost effective option, and their wider application is recommended once a reliable draindown technique is developed.

  6. Keep out of hot water when remotely monitoring boilers

    SciTech Connect

    Kolbus, J.W.

    1994-11-01

    Everyone recognizes the importance of maintaining the proper water level in boilers and other steam equipment. Operators have long relied on devices such as water-level gages, mounted directly to boiler drums or to safety water columns attached to the drums, to show the level of the water, thus enabling them to keep it at a safe level, and assuring optimum fuel utilization. Advances in monitoring and control systems have made it possible to do the job more easily and efficiently, with accurate water-level readings clearly on display to operators who may be up to 1,000 ft away from the steam equipment. Today, there are a number of types of remote level-indicating devices in the marketplace--including electric, fiber-optic, manometric, and mechanical systems. In this article, the author describes the advantages and disadvantages of each. But to put their use in context, the paper first considers the requirements of the ASME Boiler Code.

  7. [Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  8. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; hot Gas Cleanup Units to mate to all gas streams; and Combustion Gas Turbine. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

  9. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    SciTech Connect

    1996-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  10. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Not Available

    1992-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/Pressurized Circulating Fluidized Bed Gas Source; Hot Gas Cleanup Units to mate to all gas streams; Combustion Gas Turbine; and Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility.

  11. Carrier concentration modulation by hot pressing pressure in n-type nanostructured Bi(Se)Te alloy

    NASA Astrophysics Data System (ADS)

    Chan, Tsung-ta E.; LeBeau, James M.; Venkatasubramanian, Rama; Thomas, Peter; Stuart, Judy; Koch, Carl C.

    2013-09-01

    We demonstrate experimentally that an optimal hot pressing pressure is required for high thermoelectric power factor in different n-type Bi(Se)Te alloys for a given processing temperature. This phenomenon is attributed to the variations in carrier concentration, which changes the Seebeck coefficient and therefore the power factor. The variations could arise from the difference in the concentration of charged antisite defects as their formation energy changes with pressures. Furthermore, modifications of the energy gap resulting from the lattice distortions at high pressure also likely play a role.

  12. Hot water systems as sources of Legionella pneumophila in hospital and nonhospital plumbing fixtures.

    PubMed

    Wadowsky, R M; Yee, R B; Mezmar, L; Wing, E J; Dowling, J N

    1982-05-01

    Samples obtained from plumbing systems of hospitals, nonhospital institutions and homes were cultured for Legionella spp. by plating the samples directly on a selective medium. Swab samples were taken from the inner surfaces of faucet assemblies (aerators, spouts, and valve seats), showerheads, and shower pipes. Water and sediment were collected from the bottom of hot-water tanks. Legionella pneumophila serogroups 1, 5, and 6 were recovered from plumbing fixtures of the hospitals and nonhospital institutions and one of five homes. The legionellae (7 to 13,850 colony-forming units per ml) were also present in water and sediment from hot-water tanks maintained at 30 to 54 degrees C, but not in those maintained at 71 and 77 degrees C. Legionella micdadei was isolated from one tank. Thus legionellae are present in hot-water tanks which are maintained at warm temperatures or whose design results in warm temperatures at the bottom of the tanks. We hypothesize that hot-water tanks are a breeding site and a major source of L. pneumophila for the contamination of plumbing systems. The existence of these bacteria in the plumbing systems and tanks was not necessarily associated with disease. The extent of the hazard of this contamination needs to be delineated. PMID:7103477

  13. Preparation of Substrate for Flavorant from Chicken Bone Residue with Hot-Pressure Process.

    PubMed

    Wang, Jin-Zhi; Dong, Xian-Bing; Yue, Jian-Ying; Zhang, Chun-Hui; Jia, Wei; Li, Xia

    2016-03-01

    Hot-pressure extraction (HPE), which is regarded as a "green" technology, was applied to extract nutrients (protein, collagen, and minerals) from chicken bone residue (CBR). Amino acids (AA), color, and volatile flavor compounds of chicken bone extract (CBE) were also investigated. Results showed that contents of protein, total soluble solids, minerals, and collagen of CBE were positively correlated with extraction time and temperature. High ratios of protein (83.51%) and collagen (96.81%) were obtained with 135 °C and 120 min. Essential AA accounted for 31.03% to 47.73% of total AA in CBE. The percentage of bitter AA in TAA decreased from 28.94% to 25.02% at 0 min to 20.19% and 21.41% at 120 min, although fresh AA increased from 46.35% to 50.84% (0 min) to 53.14% (120 min) at 130 and 135 °C, respectively, indicating CBE was nutritionally beneficial with good flavor. Color and volatile flavor of CBE improved significantly after extraction, although calcium in CBE (4.2 to 4.8 mg/100 g) was relatively low compared with that of CBR (1078 mg/100 g). It can be concluded that HPE is a promising way to transform CBR into a nutritious flavorant substrate, but it is not an efficient way to extract calcium. PMID:26809140

  14. HOT WATER DISPLACEMENT FOR THE RECOVERY OF VISCOUS OIL

    EPA Science Inventory

    The relative permeability curves that have been calculated from the displacement data so far show changes in the relative permeabilities of oil and water with temperature. Currently, saturated hydraulic conductivity determinations are being made as function of temperature for th...

  15. Sr isotope diversity of hot spring and volcanic lake waters from Zao volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiromasa; Ohba, Tsukasa; Fujimaki, Hirokazu

    2007-09-01

    The ratio of 87Sr/ 86Sr was measured from different water samples of thermal/mineral (hot spring as well as crater lake) and meteoric origins, in order to specify the location and to verify the detailed model of a volcano-hydrothermal system beneath Zao volcano. The ratio showed a trimodal distribution for the case of thermal/mineral water: 0.7052-0.7053 (Type A, Zao hot spring), 0.7039-0.7043 (Type B, Okama crater lake and Shin-funkiko hot spring), and 0.7070-0.7073 (Type C, Gaga, Aone, and Togatta hot springs), respectively. However, in comparison, the ratio was found to be higher for meteoric waters (0.7077-0.7079). The water from the central volcanic edifice (Type B) was found to be similar to that of nearby volcanic rocks in their Sr isotopic ratio. This indicates that the Sr in water was derived from shallow volcanic rocks. The 87Sr/ 86Sr ratio for water from the Zao hot spring (Type A) was intermediate between those of the pre-Tertiary granitic and the Quaternary volcanic rocks, thus suggesting that the water had reacted with both volcanic and granitic rocks. The location of the vapor-liquid separation was determined as the boundary of the pre-Tertiary granitic and the Quaternary volcanic rocks by comparing the results of this strontium isotopic study with those of Kiyosu and Kurahashi [Kiyosu, Y., Kurahashi, M., 1984. Isotopic geochemistry of acid thermal waters and volcanic gases from Zao volcano in Japan. J. Volcanol. Geotherm. Res. 21, 313-331.].

  16. Effectiveness of a Hot Water Drench for the Control of Foliar Nematodes Aphelenchoides fragariae in Floriculture

    PubMed Central

    Jagdale, Ganpati B.; Grewal, Parwinder S.

    2004-01-01

    Effectiveness of a hot water drench for the control of Aphelenchoides fragariae infesting hosta (Hosta sp.) and ferns (Matteuccia pensylvanica) was studied. Drenching with hot water at 70 °C and 90 °C in October reduced (P < 0.05) A. fragariae in the soil but not in the leaves relative to the control (25 °C) 300 days after treatment (DAT). Plants drenched with 90 °C water had lower numbers of nematode-infected leaves per plant than those treated with 25 °C and 70 °C water (P < 0.05). Hot water treatments had no adverse effect on the growth parameters of hosta. Boiling water (100 °C) applied once a month for 3 consecutive months (April, May, June) consistently reduced the number of infected leaves and the severity of infection relative to the control 150 DAT in hosta but not in ferns (P < 0.05). Boiling water (100 °C) caused a 67% reduction in A. fragariae population in hosta leaves, 50% in fern fronds, and 61% to 98% in the soil over the control 150 DAT. A boiling water drench had no effect on the fern growth but caused 49% and 22% reduction in the number and size of hosta leaves, respectively, over the control in 2002. We conclude that 90 °C water soil drench in the autumn or early spring could prove effective in managing foliar nematodes on hosta in nurseries and landscapes. PMID:19262787

  17. Hot-water aquifer storage: A field test

    NASA Technical Reports Server (NTRS)

    Parr, A. D.; Molz, F. J.; Andersen, P. F.

    1980-01-01

    The basic water injection cycle used in a large-scale field study of heat storage in a confined aquifer near Mobile, Alabama is described. Water was pumped from an upper semi-confined aquifer, passed through a boiler where it was heated to a temperature of about 55 C, and injected into a medium sand confined aquifer. The injection well has a 6-inch (15-cm) partially-penetrating steel screen. The top of the storage formation is about 40 meters below the surface and the formation thickness is about 21 meters. In the first cycle, after a storage period of 51 days, the injection well was pumped until the temperature of the recovered water dropped to 33 c. At that point 55,300 cubic meters of water had been withdrawn and 66 percent of the injected energy had been recovered. The recovery period for the second cycle continued until the water temperature was 27.5 C and 100,100 cubic meters of water was recovered. At the end of the cycle about 90 percent of the energy injected during the cycle had been recovered.

  18. Aerosols containing Legionella pneumophila generated by shower heads and hot-water faucets.

    PubMed Central

    Bollin, G E; Plouffe, J F; Para, M F; Hackman, B

    1985-01-01

    Shower heads and hot-water faucets containing Legionella pneumophila were evaluated for aerosolization of the organism with a multistage cascade impaction air sampler. Air was collected above two shower doors and from the same rooms approximately 3 ft (91 cm) from the shower doors while the hot water was running. Low numbers (3 to 5 CFU/15 ft3 [0.43 m3] of air) of L. pneumophila were recovered above both shower doors, but none was recovered from the air in either room outside the shower door. Approximately 90% (7 of 8 CFU) of the L. pneumophila recovered were trapped in aerosol particles between 1 and 5 micron in diameter. Air was collected 1 to 3 ft (30 to 91 cm) from 14 sinks while the hot water was running. Low numbers (1 to 5 CFU/15 ft3 of air) were recovered from 6 of 19 air samples obtained. Approximately 50% (6 of 13 CFU) of the organisms recovered were trapped in aerosol particles between 1 and 8 microns in diameter. Shower heads and hot-water taps containing L. pneumophila can aerosolize low numbers of the organism during routine use. The aerosol particle size is small enough to penetrate to the lower human respiratory system. Thus, these sites may be implicated as a means of transmission of L. pneumophila from potable water to the patient. PMID:4091548

  19. Clean subglacial access: prospects for future deep hot-water drilling

    PubMed Central

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  20. Clean subglacial access: prospects for future deep hot-water drilling.

    PubMed

    Makinson, Keith; Pearce, David; Hodgson, Dominic A; Bentley, Michael J; Smith, Andrew M; Tranter, Martyn; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John; Siegert, Martin J

    2016-01-28

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  1. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    SciTech Connect

    Not Available

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  2. Hot-water heating system having an air eliminator

    SciTech Connect

    Pompei, F.

    1984-06-26

    An improved forced-liquid flow, circulatory system for removing gas entrained or dissolved in the liquid. The system includes a circulatory liquid-flow network and means for forcing the liquid to flow through the circulatory network. A by-pass line is situated around the region where the lowest gas solubility in the liquid occurs in the circulatory network. Such lowest gas solubility occurs at the point of generally highest temperature and lowest pressure, as determined most precisely by Henry's Law. Gas-liquid separator means is located in the by-pass line. The separator means separates the gas from the liquid and expels the gas from the circulatory network.

  3. Disparity in disinfection byproducts concentration between hot and cold tap water.

    PubMed

    Liu, Boning; Reckhow, David A

    2015-03-01

    The quality of water entering a distribution system may differ substantially from the quality at the point of exposure to the consumer. This study investigated temporal variations in the levels of regulated and non-regulated disinfection byproducts (DBPs) in cold and hot tap water in a home on a medium-sized municipal water system. In addition, samples were collected directly from the water plant with some being held in accordance with a simulated distribution system (SDS) test protocol. The location for this work was a system in western Massachusetts, USA that uses free chlorine as a final disinfectant. Very little short term variability of DBPs at the point of entry (POE) was observed. The concentration of DBPs in the time-variable SDS test was similar to concentrations in the cold water tap. For most DBPs, the concentrations continued to increase as the cold water tap sample was held for the time-variable SDS incubation period. However, the impact of heating on DBP levels was compound specific. For example, the concentrations of trihalomethanes (THMs), dichloroacetic acid (DCAA) and chloropicrin (CP) were substantially higher in the hot water tap than in the cold water time-variable SDS samples. In contrast, the concentration of trichloroacetic acid (TCAA) was lower in the heated hot tap water, but about equal to that observed in the cold tap water. The situation was more pronounced for dichloroacetonitrile (DCAN), bromodichloroacetic acid (BDCAA), bromochloroacetic acid (BCAA) and 1,1,1-trichloropropanone (TCP), which all showed lower concentrations in the hot water then in either of the cold water samples (instantaneous or time-variable SDS). The latter was viewed as a clear indication of thermally-induced decomposition. The ratio of unknown total organic halide (UTOX) to TOX was substantially lower in the hot tap water as the THM to TOX ratio became correspondingly larger. The results of this study show that DBP exposure in the home is not well represented by

  4. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    SciTech Connect

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality in Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.

  5. Dairy farm hot water: an economic evaluation of solar collectors vs. heat exchangers

    SciTech Connect

    Heid, W.G. Jr.; Williams, E.V.

    1982-01-01

    Two alternative systems for heating water - solar collectors and heat exchangers - were compared to determine the more economical choice by dairy farmers. Btu requirements and discounted payback were estimated for three dairy herd sizes, 40, 90, and 140 cows. The analysis was performed for two locations in Kansas, Dodge City and Topeka. These locations were chosen because their average daily insolation is around 600,000 Btu/ft/sup 2/ which is representative of many of the dairying regions in the western half of the United States. Both the solar hot water and the heat exchanger systems analyzed in this study were sized according to manufacturer specifications. For the basic analysis, it was assumed that the solar collector system was 52% efficient and supplied a solar fraction of about 50%. Performance of the heat exchanger was measured at three levels, 60, 70, and 80%. The fraction of Btu requirements supplied varied with herd size. Herd size is an important factor to consider as farmers select the more appropriate alternative technology. Discounted payback for heat exchangers decreased rapidly as herd size increased, reaching 1 to 2 years, with tax credits, for the 140-cow herd size. Because less hot water per cow is needed in large dairies, heat exchangers will supply a large percentage of the hot water requirements for a 140-cow herd dairy. Heat exchangers appear to be ideally suited, both technically and economically, for commercial-sized dairy herds. Conversely, the discounted payback for solar hot water systems was about the same for all three herd sizes and above the payback level of heat exchangers even at the small herd size. Only for herds of less than 40 cows are solar hot water systems competitive with heat exchangers.

  6. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas. Final report

    SciTech Connect

    1980-11-01

    The building has approximately 5600 square feet of conditioned space. Solar energy is used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system has an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water is the transfer medium that delivers solar energy to a tube-in-shell heat exchanger that in turn delivers solar-heated water to a 1100 gallon pressurized hot water storage tank. When solar energy is insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provides auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are included.

  7. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Not Available

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

  8. Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana

    USGS Publications Warehouse

    Leonard, Robert B.; Janzer, Victor J.

    1978-01-01

    Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross alpha activity and the concentration of adium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60°C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background activity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta activity. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from siliceous veins by ascending thermal waters and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

  9. Economic evaluation of a solar hot-water-system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Analysis shows economic benefits at six representative sites using actual data from Tempe, Arizona and San Diego, California installations. Model is two-tank cascade water heater with flat-plate collector array for single-family residences. Performances are forecast for Albuquerque, New Mexico; Fort Worth, Texas; Madison, Wisconsin; and Washington, D.C. Costs are compared to net energy savings using variables for each site's environmental conditions, loads, fuel costs, and other economic factors; uncertainty analysis is included.

  10. Don't Let Legal Issues Put You in Hot Water! A Safety and Liability Primer

    ERIC Educational Resources Information Center

    Zirkle, Chris

    2013-01-01

    Providing a safe classroom and laboratory environment should be the first priority of any career-technical and technology/engineering education instructor. Doing so not only increases the opportunity for student learning, but it also keeps instructors "out of hot water" with respect to legal issues of liability. In today's litigious society, where…

  11. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720...

  12. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720...

  13. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720...

  14. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720...

  15. System design package for SIMS prototype system 2, solar hot water

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Information necessary to evaluate the design and assembly of a solar hot water system is presented. A prototype system designed for use in a single family dwelling is investigated in terms of the following subsystems: collector, storage, energy transport, and control.

  16. 21 CFR 890.5720 - Water circulating hot or cold pack.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water circulating hot or cold pack. 890.5720 Section 890.5720 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5720...

  17. AEROSOLS CONTAINING 'LEGIONELLA PNEUMOPHILA' GENERATED BY SHOWER HEADS AND HOT-WATER FAUCETS

    EPA Science Inventory

    Shower heads and hot-water faucets containing Legionella pneumophila were evaluated for aerosolization of the organism with a multistage cascade impaction air sampler. Air was collected above two shower doors and from the same rooms approximately 3 ft (91 cm) from the shower door...

  18. Inactivation of salmonella in shell eggs by hot water immersion and its effect on quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal inactivation kinetics of heat resistant strains of Salmonella Enteritidis in shell eggs processed by hot water immersion were determined, and the effects of the processing on egg quality were evaluated. Shell eggs were inoculated with a composite of heat resistant Salmonella Enteritidis (SE)...

  19. Efficacy of brown sugar flotation and hot water methods for detecting Rhagoletis indifferens (Dipt., Tephritidae) larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The brown sugar flotation and hot water methods are accepted procedures for detecting larval western cherry fruit fly, Rhagoletis indifferens Curran, in sweet cherry [Prunus avium (L.) L.] and could be included in a systems approach for showing the absence of larvae in fruit. The methods require cr...

  20. Sulfuric acid and hot water treatments enhance ex vitro and in vitro germination of Hibiscus seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of Hibiscus dasycalyx S. F. Blake & Shiller, a federally listed candidate endangered species and native to North America, and two variants of Hibiscus acetosella Welw. ex. Hiern were scarified using sulfuric acid and hot water. The effects of the scarification methods on in vitro and ex vitro ...

  1. Hot water surface pasteurization for inactivating Salmonella on surfaces of mature green tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of salmonellosis have been associated with the consumption of tomatoes contaminated with Salmonella. Commercial washing processes for tomatoes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop a hot water surface pasteurization pro...

  2. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Detailed information regarding the design and installation of a heating and hot water system in a commercial application is given. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  3. Evaluation of the impact of hot water treatment on the sensory quality of fresh tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Minimizing the effects of chilling injury during shelf-life is important for maintaining the sensory quality of fresh tomato fruit. Postharvest hot water treatments within certain limits of exposure time and temperature have been shown to increase resistance of tomatoes to chilling injury. Mature-gr...

  4. Spattering and Crackle of Hot Cooking Oil with Water: A Classroom Demonstration and Discussion

    ERIC Educational Resources Information Center

    Pinto, Gabriel; Gauthier, Carmen V.

    2009-01-01

    Any student that has spent time in the kitchen knows that hot vegetable oil will pop and spatter violently after coming into contact with water such as that on the surface of foods (meat, fish, potatoes, etc.). This well-known effect can be used as an instructional resource to promote cooperative, active, and inquiry-based learning about central…

  5. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... as required by 46 CFR part 52 or part 53, as applicable. Electric hot water supply boilers that meet... requirements of UL 174 or UL 1453 (both incorporated by reference, see 46 CFR 63.05-1), and are protected by the relief device(s) required in 46 CFR 53.05-2 do not have to meet any other requirements of...

  6. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... as required by 46 CFR part 52 or part 53, as applicable. Electric hot water supply boilers that meet... requirements of UL 174 or UL 1453 (both incorporated by reference, see 46 CFR 63.05-1), and are protected by the relief device(s) required in 46 CFR 53.05-2 do not have to meet any other requirements of...

  7. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... as required by 46 CFR part 52 or part 53, as applicable. Electric hot water supply boilers that meet... requirements of UL 174 or UL 1453 (both incorporated by reference, see 46 CFR 63.05-1), and are protected by the relief device(s) required in 46 CFR 53.05-2 do not have to meet any other requirements of...

  8. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... as required by 46 CFR part 52 or part 53, as applicable. Electric hot water supply boilers that meet... requirements of UL 174 or UL 1453 (both incorporated by reference, see 46 CFR 63.05-1), and are protected by the relief device(s) required in 46 CFR 53.05-2 do not have to meet any other requirements of...

  9. 46 CFR 63.25-3 - Electric hot water supply boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... as required by 46 CFR part 52 or part 53, as applicable. Electric hot water supply boilers that meet... requirements of UL 174 or UL 1453 (both incorporated by reference, see 46 CFR 63.05-1), and are protected by the relief device(s) required in 46 CFR 53.05-2 do not have to meet any other requirements of...

  10. Verification test report on a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information is provided on the development, qualification and acceptance verification of commercial solar heating and hot water systems and components. The verification includes the performances, the efficiences and the various methods used, such as similarity, analysis, inspection, test, etc., that are applicable to satisfying the verification requirements.

  11. Solar heating and hot water system installed at Alderson Broaddus College, Philippi, West Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data needed necessary to evaluate the design and operation of a solar energy heating and hot water system installed in a commercial application are presented. The information includes system descriptions, acceptance test data, schematics, as built drawing, problems encountered, all solutions and photographs of the system at various stages of completion.

  12. Compliance testing of hot-water and steam boilers, Shaw Afb, South Carolina. Final report

    SciTech Connect

    Garrison, J.A.

    1989-02-01

    At the request of HQ TAC/DEEV, personnel of the USAFOEHL Air Quality Function conducted source testing of eighteen small hot water and steam boilers to determine stack-gas moisture content and velocity. The data obtained during the survey was necessary for boiler operating application.

  13. Non-invasive treatment of intractable posterior epistaxis with hot-water irrigation.

    PubMed

    Schlegel-Wagner, Christoph; Siekmann, Ulrich; Linder, Thomas

    2006-03-01

    Posterior nose bleeding is a frequent and challenging emergency. The authors report their experience using hot water irrigation as a non-invasive treatment option for posterior epistaxis. Between January 2003 and January 2005 a group of 103 patients were enrolled in this prospective study evaluating the effectiveness of a "hot water irrigation" technique to control acute posterior nose bleeding. All patients with posterior epistaxis were included, whereas anterior epistaxis was controlled using conventional methods. The patient's nose was initially anaesthetized with topical Tetracain 4% (without vasoconstriction) and a modified epistaxis-balloon-catheter was introduced into the bleeding nasal cavity obstructing the choana. The bleeding nasal cavity was continuously irrigated using 500 ml of 50 degrees C hot water. In a total of 84 patients (82%) the bleeding was successfully and permanently stopped. Forty-seven of these patients (56%) regularly took antiplatelet agents or anticoagulants. The method failed in 19 of 103 patients (18%). In the group with unsuccessful irrigation, 11 patients (58%) were receiving treatment with antiplatelet agents or anticoagulants. Their proportion was not different from the successfully treated group. The success rate of hot water irrigation as non-invasive treatment of posterior epistaxis appears at least as effective as conventional methods. However it avoids painful packing, hospitalizations, or immediate surgery, and allows the patient to breath normally through his open nasal cavities. PMID:16550958

  14. Antiinflammatory Activity of Hot Water Infusion of Nyctanthes arbo-tristis Flowers

    PubMed Central

    Ratnasooriya, W. D.; Jayakody, J. R. A. C.; Handunnetti, S. M.; Ratnasooriya, C. D. T.; Weerasekera, K. R.

    2015-01-01

    In Sri Lankan ethnomedicate it is claimed the flowers of Nyctanthes arbo-tristis is effective in the treatment of inflammatory conditions but this has not been scientifically validated. This experiment was carried to investigate the antinflammatory potential of hot water infusion of Nyctanthes arbo-tristis flowers. Oral antiinflammatory activity of hot water infusion of Nyctanthes arbo-tristis flowers (concentrations: 3.75, 7.5, 12.5 and 18.75 mg/kg) was assessed in rats using both acute (carrageenan-induced paw oedema assay) and chronic (formaldehyde induced-paw oedema and cotton pellet-granuloma tests) inflammatory models. In an attempt to investigate its mode of action, antihistamine activity (by wheal test), inhibition of prostaglandin synthesis (by enteropooling test), inhibition of Tumor necrosis factorα secretion (using human mononuclear cells), and suppression of vascular permeability (acetic acid-induced vascular permeability test) and cytotoxicity (Evans blue test) were assessed. In the carrageenan-induced paw oedema test, hot water infusion simultaneously suppressed both initial and late stages of inflammation in an inversely dose related manner. Hot water infusion also inhibited paw oedema in formalin and cotton pellet granuloma tests. In addition, this infusion exhibited marked anti histamine activity, prostaglandin synthesis inhibition and suppression of vascular permeability. These findings scientifically support the traditional use of Nyctanthes arbo-tristis flowers in treatment of inflammatory conditions. PMID:26798178

  15. Mango fruit aroma volatile production following quarantine hot water treatment and subsequent ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mangos are an important tropical fruit crop worldwide that are appreciated for their attractive peel and flesh colors, juicy texture, sweetness, and unique aroma. Mangos exported to the U.S. receive quarantine hot water treatment (QHWT) at 46.1 °C for 65 to 110 min (depending on fruit shape and size...

  16. Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot water treatment (HWT) of fruit is an effective approach for managing postharvest decay of fruits and vegetables. In the present study, the effects of HWT (45 degrees C for 10 min) on the growth of Botrytis cinerea and Penicillium expansum in vitro, and gray (B. cinerea) and blue mold (P. expans...

  17. Economic evaluation of a solar hot-water system--Palm Beach County, Florida

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report projects solar-energy costs and savings for residential hot-water system over 20 year period. Evaluation uses technical and economic models with inputs based on working characteristics of installed system. Primary analysis permits calculation of economic viability for four other U.S. sites.

  18. Solar hot water heating system for education, with real savings for the institution. Final report

    SciTech Connect

    Menz, P.

    1980-10-01

    The project consisted of installing a complete solar system for the pre-heating of hot water for showers and kitchen facilities at Cumberland County College in Vineland, New Jersey. The system included about 150 square feet of collector and measuring instruments to record the functional parameters and monitor the performance. An estimate of yearly energy savings and a budget are provided. (BCS)

  19. NORTH PORTAL-HOT WATER CIRCULATION PUMP CALCULATION-SHOP BUILDING #5006

    SciTech Connect

    R. Blackstone

    1996-01-25

    The purpose of this design analysis and calculation is to size a circulating pump for the service hot water system in the Shop Building 5006, in accordance with the Uniform Plumbing Code (Section 4.4.1) and U.S. Department of Energy Order 6430.1A-1540 (Section 4.4.2). The method used for the calculation is based on Reference 5.2. This consists of determining the total heat transfer from the service hot water system piping to the surrounding environment. The heat transfer is then used to define the total pumping capacity based on a given temperature change in the circulating hot water as it flows through the closed loop piping system. The total pumping capacity is used to select a pump model from manufacturer's literature. This established the head generation for that capacity and particular pump model. The total length of all hot water supply and return piping including fittings is then estimated from the plumbing drawings which defines the pipe friction losses that must fit within the available pump head. Several iterations may be required before a pump can be selected that satisfies the head-capacity requirements.

  20. Mixing Hot and Cold Water Streams at a T-Junction

    ERIC Educational Resources Information Center

    Sharp, David; Zhang, Mingqian; Xu, Zhenghe; Ryan, Jim; Wanke, Sieghard; Afacan, Artin

    2008-01-01

    A simple mixing of a hot- and cold-water stream at a T-junction was investigated. The main objective was to use mass and energy balance equations to predict mass low rates and the temperature of the mixed stream after the T-junction, and then compare these with the measured values. Furthermore, the thermocouple location after the T-junction and…

  1. Solar heating and domestic hot water system installed at North Dallas High School

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at the North Dallas High School, Dallas, Texas is discussed. The system is designed as a retrofit in a three story with basement, concrete frame high school building. Extracts from the site files, specification references for solar modification to existing building heating and domestic hot water systems, drawings, installation, operation and maintenance instructions are included.

  2. Dry heat and hot water treatments for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of low- and high-temperature dry heat, and hot water treatments, for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum was investigated. Naturally infected seeds from Louisiana were air-heated in incubators set at temperatures of 30, 35, and 40 degrees C for up to 24 we...

  3. Solar heating and hot water system installed at Charlotte Memorial Hospital, Charlotte, North Carolina. Final report

    SciTech Connect

    1981-05-01

    Included in this report is detailed information regarding the design and installation of a heating and hot water system in a commercial application. This information includes descriptions of system and building, design philosophy, control logic operation modes, design and installation drawing and a brief description of problems encountered and their solutions.

  4. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  5. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    DOEpatents

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  6. The effect of pore water pressure on debris flow dynamics

    NASA Astrophysics Data System (ADS)

    Okura, Y.; Parker, G.; Marr, J. G.; Yu, B.; Ochiai, H.

    2003-12-01

    Pore-water likely plays an important role to reduce shear force in debris flow. In experiments, we observed pore-water pressure during flow to clarify the relationship between the flow speed and pore water pressure which would be affected by flow depth and particle size distribution. Soil materials were prepared with mixing materials of sand, silt and clay. Pore-water pressure on the flume bed, flow depth, velocity and run out distance was observed, and the following results were quantitatively obtained in this series of experiments. 1. A positive relation was observed between strain rate and pore-water pressure ratio in the flow. The strain rate and pressure ratio were dimensionless parameters of the ratios of surface velocity to flow depth and pore-water pressure head to flow depth, respectively. This relationship indicated that shear resistance decreased as the pressure potential leading to acceleration of flow velocity increased. 2. A positive relation was also observed between flow depth and pore-water pressure ratio. This indicated that the pore pressure diffusion became increasingly obstructed as the flow depth increased. 3. The pore-water pressure ratio tended to increase with the uniformity coefficient of debris flow materials. The reason for this might have been that smaller particles suspended in the flow increased pore-water pressure, and the wider range of particle distribution effectively prevented pore-water pressure diffusion. 4. There was an apparently negative correlation between the equivalent coefficient of frictions and the pressure ratios. Equivalent friction is apparent friction during flow. The most likely reason for this is that shear resistance would decrease and run out distance increase as the pressure ratio increased. These results indicated that the effect of pore water fluctuations should be one of the most important factors affecting the shear resistance in debris flows. This work was supported by the National Science Foundation

  7. Lattuce growth and water use in closed, low pressure environment

    NASA Astrophysics Data System (ADS)

    Fowler, P.; Rygalov, V.; Wheeler, R.; Bucklin, R.; Schumacher, N.

    Lettuce (Lactuca sativa L.) cv. Waldmann's Green plants were grown in a clear, hemispherical enclosure at a reduced atmospheric pressure to study the potential for using low pressure greenhouses on planetary missions. The atmosphere was maintained at 25 kPa total pressure, with ˜20 kPa of N_2, ˜5 kPa of O_2, and between 0.1 and 0.2 kPa of CO_2, supplied by CO_2 injection and a feed-back control system. A closed water cycle was maintained inside the low pressure greenhouse by recycling condensed humidity back to the plants, and only adding external water to offset water vapor leakage and uptake in the plant tissue. All plants were grown in a granular, arcillite medium (calcined clay chips), with nutrients supplied by adding time-release fertilizer (Osmocote 20-20-20). Plants were harvested after 45 days, averaging 237 g fresh mass, and 23.7 g dry mass. No obvious adverse effects were noted on the plants, with the exception of some minor "tip-burn" injury to some leaves. Additional studies are planned to compare growth and water flux (evapotranspiration) rates at higher pressures. Preliminary results suggest that water fluxes should be lower at the higher pressures provided equal vapor pressure deficits can be maintained. The results suggest that vegetative crops such as lettuce should grow well at reduced pressures if adequate water, nutrients, and CO_2 are provided.

  8. Production of the IXO glass segmented mirrors by hot slumping with pressure assistance: tests and results

    NASA Astrophysics Data System (ADS)

    Proserpio, L.; Ghigo, M.; Basso, S.; Conconi, P.; Citterio, O.; Civitani, M.; Negri, R.; Pagano, G.; Pareschi, G.; Salmaso, B.; Spiga, D.; Tagliaferri, G.; Terzi, L.; Zambra, A.; Parodi, G.; Martelli, F.; Bavdaz, M.; Wille, E.

    2011-09-01

    The large dimensions of the future X-ray telescopes, with diameters ranging from 3.5 m and up to several meters, will require the adoption of segmented optics and hence the development of new technologies for their manufacturing. These technologies are based on lightweight materials and structures to comply with the mass constrains imposed by the launcher. The Astronomical Observatory of Brera (INAF-OAB) is involved in the development of a glass shaping technology for the production of grazing incidence segmented optics to be employed onboard the next generation of Xray Observatories. This technique, named "Hot slumping technology with pressure", is based on the viscosity change of the glass with the temperature: by applying a suitable thermal cycle the viscosity of the glass is decreased enough to allow its slumping on a mould so to replicate its shape without significantly degrade its surface finishing. Following this replication approach, it is possible to obtain, with the same mould, a number of equal mirror segments that will be integrated and aligned in the telescope aperture so to create a mirror shell in configuration Wolter I. The entire study has been financed by ESA in the context of the International X-ray Observatory (IXO) mission with the aim of developing a back-up technology for the IXO mirror manufacturing. The study started in 2009 and it is scheduled to finish in 2012 with the production of representative module prototypes, named POC and XOU_BB. After a brief review of past results, this paper reports the latest advancement in the slumping of Schott glass D263 foils on Fused Silica and Zerodur moulds and its status as for summer 2011.

  9. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    SciTech Connect

    Not Available

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  10. The Mpemba effect: When can hot water freeze faster than cold?

    NASA Astrophysics Data System (ADS)

    Jeng, Monwhea

    2006-06-01

    We review the Mpemba effect, where initially hot water freezes faster than initially cold water. Although the effect might appear impossible, it has been observed in numerous experiments and was discussed by Aristotle, Francis Bacon, Roger Bacon, and Descartes. It has a rich and fascinating history, including the story of the secondary school student, Erasto Mpemba, who reintroduced the effect to the twentieth century scientific community. The phenomenon is simple to describe and illustrates numerous important issues about the scientific method: the role of skepticism in scientific inquiry, the influence of theory on experiment and observation, the need for precision in the statement of a scientific hypothesis, and the nature of falsifiability. Proposed theoretical mechanisms for the Mpemba effect and the results of contemporary experiments on the phenomenon are surveyed. The observation that hot water pipes are more likely to burst than cold water pipes is also discussed.

  11. Preliminary examination of oil bonding at sand surfaces and its influence on hot water separation

    SciTech Connect

    Hupka, J.; Budzich, M.; Miller, J.D.

    1991-12-31

    The efficiency of water-based separation of oil from sand particles is dependent on the nature of the oil-sand association and a preliminary examination of this bonding has been completed. The degree of hydration of the sand surface at the time of contact with oil was related to the subsequent efficiency of the oil-sand separation process. Variables which influence hot water separation were correlated by multiple linear regression, and a second order experimental model was obtained. The processing temperature appeared to be the most significant variable, followed by digestion time and pH. Oil-coated sand particles which had intrinsic water left on their surface during sample preparation were easily processed in hot water separation experiments, and 64 to 90% of the oil was removed. On the other hand, only 1 to 23% separation and oil recovery was possible when a calcinated sand-oil mixture was used.

  12. Preliminary examination of oil bonding at sand surfaces and its influence on hot water separation

    SciTech Connect

    Hupka, J.; Budzich, M.; Miller, J.D.

    1991-01-01

    The efficiency of water-based separation of oil from sand particles is dependent on the nature of the oil-sand association and a preliminary examination of this bonding has been completed. The degree of hydration of the sand surface at the time of contact with oil was related to the subsequent efficiency of the oil-sand separation process. Variables which influence hot water separation were correlated by multiple linear regression, and a second order experimental model was obtained. The processing temperature appeared to be the most significant variable, followed by digestion time and pH. Oil-coated sand particles which had intrinsic water left on their surface during sample preparation were easily processed in hot water separation experiments, and 64 to 90% of the oil was removed. On the other hand, only 1 to 23% separation and oil recovery was possible when a calcinated sand-oil mixture was used.

  13. Analysis on the similarity between steel ladles and hot-water models regarding natural convection phenomena

    NASA Astrophysics Data System (ADS)

    Liviu, Pascu; Adriana, Putan; Vasile, Putan; Alina, Lascutoni

    2012-09-01

    The similarity between steel ladles and hot water model regarding natural convection phenomena has been analyzed through examination of the numerical solutions of turbulent Navier-Stokes partial differential equations governing the phenomena in question. Key similarity criteria for non-isothermal physical modeling of steel ladles with hot-water models have been derived as Frm = Frp and (β∇T)m = (β∇T)p where the subscript m and p stand for the water model and the prototype steel ladle, respectively. Accordingly, appropriate conditions fulfilling the above criteria, such as model size, water temperature, time scale factor and the scale factor of boundary heat loss fluxes, have been proposed and discussed.

  14. Solar heating and hot water system installed at Saint Louis, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  15. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Valley View)

    SciTech Connect

    1980-09-01

    The solar hot water system installed in the Days Inns of America, Inc., Days Inn Motel (120 rooms), I-35/2276 Valley View Lane, Dallas, Texas is described. The solar system was designed by ILI Incorporated to provide 65 percent of the total domestic hot water (DHW) demand. The Solar Energy Products, model CU-30WW liquid (water) flat plate collector (1000 square feet) system automatically drains into the 1000 gallon steel storage tank when the solar pump is not running. This system is one of eleven systems planned. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers. The operation of this system was begun March 11, 1980. The solar components were partly funded ($15,000 of 30,000 cost) by a Department of Energy grant.

  16. Active space heating and hot water supply with solar energy

    SciTech Connect

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  17. Operation manual: solar hot water preheat, Henry's Lake State Park. Final technical report

    SciTech Connect

    Not Available

    1985-01-01

    Instructions for the assembling of the panel array and start-up procedures for the water heater are provided. The preheat system is designed for the months of May through September and provides 75% of hot water for an 800 gal/day use. The panels are disassembled and stored during the winter months. Information on troubleshooting the system, a set of as built plans and warranty material are included.

  18. Thermal performance of a photographic laboratory process: Solar Hot Water System

    NASA Technical Reports Server (NTRS)

    Walker, J. A.; Jensen, R. N.

    1982-01-01

    The thermal performance of a solar process hot water system is described. The system was designed to supply 22,000 liters (5,500 gallons) per day of 66 C (150 F) process water for photographic processing. The 328 sq m (3,528 sq. ft.) solar field has supplied 58% of the thermal energy for the system. Techniques used for analyzing various thermal values are given. Load and performance factors and the resulting solar contribution are discussed.

  19. Changes in antioxidant and fruit quality in hot water-treated ‘Hom Thong’ banana fruit during storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of hot water treatment on antioxidant phytochemicals and fruit quality were investigated in banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) by immersing fruits in hot water (50 'C) for 10 min, before storage at 25 'C for 10 days or 14 'C for 8 da...

  20. Cancer incidence among population utilizing geothermal hot water: a census-based cohort study.

    PubMed

    Kristbjornsdottir, Adalbjorg; Rafnsson, Vilhjalmur

    2013-12-15

    The aim of the study was to assess whether utilization of geothermal hot-water is associated with risk of cancer. The cohort from census was followed from 1981 to 2010 in nation-wide death and cancer registries. The moving apart of American-Eurasian tectonic plates, observed in Iceland, results in high volcanic activity. The definition of the study populations was based on geological information. The target population was inhabitants of communities located on bedrock younger than 3.3 million years, utilizing hot-water supply generated from geothermal wells since 1972. The two reference populations were inhabitants of communities without this hot-water supply located on areas with less volcanic/geothermal activity, and bedrock older than 3.3 million years. Hazard ratio (HR), and 95% confidence intervals (CI) were adjusted for age, gender, education, housing, reproductive factors and smoking. HR in the geothermal hot-water supply areas for all cancer was 1.15 (95% CI 1.05-1.25) as compared with nongeothermal areas. The HR for breast cancer was 1.40 (1.12-1.75), prostate cancer 1.61 (1.29-2.00), kidney cancer 1.64 (1.11-2.41), lymphatic and haematopoietic tissue cancers 1.45 (1.08-1.95), and for basal cell carcinoma (BCC) of the skin 1.46 (1.16-1.82). Positive exposure-response relations were observed between the risk of these cancers and the degree of volcanic/geothermal activity in the reference areas. Increased incidence of all cancers, breast, prostate, kidney cancer and BCC of the skin was found among the population utilizing geothermal hot-water for decades. More precise information on exposure is needed in future studies. PMID:23733434

  1. Quality of fresh-cut 'Kent' mango slices prepared from hot water or non hot water treated fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quarantine heat treatment consisting of exposure to 46°C water for 65 to 110 minutes (depending on cultivar and fruit size) is mandated by USDA-APHIS for all mangoes (Mangifera indica L.) entering the United States. Heat treatments may affect ripening processes and induce resistance to chilling in...

  2. Case studies on developing local industry by using hot spring water and geothermal energy

    SciTech Connect

    Sasaki, Akira; Umetsu, Yoshio; Narita, Eiichi

    1997-12-31

    We have investigated the new ways to develop local industries by using hot spring water, geothermal water and geothermal energy from the Matsukawa Geothermal Power Plant in Iwate Prefecture, which is the first geothermal power plant established in Japan. The new dyeing technique, called {open_quotes}Geothermal Dyeing{close_quotes} was invented in which hydrogen sulfide in the water exhibited decoloration effect. By this technique we succeeded to make beautiful color patterns on fabrics. We also invented the new way to make the light wight wood, called {open_quotes}Geo-thermal Wood{close_quotes} by using hot spring water or geothermal water. Since polysaccharides in the wood material were hydrolyzed and taken out during the treatment in the hot spring water, the wood that became lighter is weight and more porous state. On the bases of these results, we have produced {open_quotes}Wooded Soap{close_quotes} on a commercial scale which is the soap, synthesized in the pore of the treated wood in round slice. {open_quotes}Collapsible Wood Cabin{close_quotes} was also produced for enjoyable outdoor life by using the modified properties of Geothermal Wood.

  3. Evaluation of pressurized water cleaning systems for hardware refurbishment

    NASA Technical Reports Server (NTRS)

    Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.

    1995-01-01

    Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'

  4. Promising freeze protection alternatives in solar domestic hot water systems

    SciTech Connect

    Bradley, D.E.

    1997-12-31

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  5. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    SciTech Connect

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-03-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH.

  6. Carbon Dioxide in Exoplanetary Atmospheres: Rarely Dominant Compared to Carbon Monoxide and Water in Hot, Hydrogen-dominated Atmospheres

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Lyons, James R.

    2016-02-01

    We present a comprehensive study of the abundance of carbon dioxide in exoplanetary atmospheres in hot, hydrogen-dominated atmospheres. We construct novel analytical models of systems in chemical equilibrium that include carbon monoxide, carbon dioxide, water, methane and acetylene and relate the equilibrium constants of the chemical reactions to temperature and pressure via the tabulated Gibbs free energies. We prove that such chemical systems may be described by a quintic equation for the mixing ratio of methane. By examining the abundances of these molecules across a broad range of temperatures (spanning equilibrium temperatures from 600 to 2500 K), pressures (via temperature-pressure profiles that explore albedo and opacity variations) and carbon-to-oxygen ratios, we conclude that carbon dioxide is subdominant compared to carbon monoxide and water. Atmospheric mixing does not alter this conclusion if carbon dioxide is subdominant everywhere in the atmosphere. Carbon dioxide and carbon monoxide may attain comparable abundances if the metallicity is greatly enhanced, but this property is negated by temperatures above 1000 K. For hydrogen-dominated atmospheres, our generic result has the implication that retrieval studies may wish to set the subdominance of carbon dioxide as a prior of the calculation and not let its abundance completely roam free as a fitting parameter, because it directly affects the inferred value of the carbon-to-oxygen ratio and may produce unphysical conclusions. We discuss the relevance of these implications for the hot Jupiter WASP-12b and suggest that some of the previous results are chemically impossible. The relative abundance of carbon dioxide to acetylene is potentially a sensitive diagnostic of the carbon-to-oxygen ratio.

  7. Getting into hot water: sick guppies frequent warmer thermal conditions.

    PubMed

    Mohammed, Ryan S; Reynolds, Michael; James, Joanna; Williams, Chris; Mohammed, Azad; Ramsubhag, Adesh; van Oosterhout, Cock; Cable, Jo

    2016-07-01

    Ectotherms depend on the environmental temperature for thermoregulation and exploit thermal regimes that optimise physiological functioning. They may also frequent warmer conditions to up-regulate their immune response against parasite infection and/or impede parasite development. This adaptive response, known as 'behavioural fever', has been documented in various taxa including insects, reptiles and fish, but only in response to endoparasite infections. Here, a choice chamber experiment was used to investigate the thermal preferences of a tropical freshwater fish, the Trinidadian guppy (Poecilia reticulata), when infected with a common helminth ectoparasite Gyrodactylus turnbulli, in female-only and mixed-sex shoals. The temperature tolerance of G. turnbulli was also investigated by monitoring parasite population trajectories on guppies maintained at a continuous 18, 24 or 32 °C. Regardless of shoal composition, infected fish frequented the 32 °C choice chamber more often than when uninfected, significantly increasing their mean temperature preference. Parasites maintained continuously at 32 °C decreased to extinction within 3 days, whereas mean parasite abundance increased on hosts incubated at 18 and 24 °C. We show for the first time that gyrodactylid-infected fish have a preference for warmer waters and speculate that sick fish exploit the upper thermal tolerances of their parasites to self medicate. PMID:26965895

  8. The development of a roof integrated solar hot water system.

    SciTech Connect

    Menicucci, David F.; Moss, Timothy A.; Palomino, G. Ernest

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRPs industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRPs market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  9. Solar hot water system installed at Day's Inn Motel, Savannah, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar System was designed to provide 50 percent of the total Domestic Hot Water (DHW) demand. Liquid Flat Plate Collectors (900 square feet) are used for the collector subsystem. The collector subsystem is closed loop, using 50 percent Ethylene Glycol solution antifreeze for freeze protection. The 1,000 gallon fiber glass storage tank contains two heat exchangers. One of the heat exchangers heats the storage tank with the collector solar energy. The other heat exchanger preheats the cold supply water as it passes through on the way to the Domestic Hot Water (DHW) tank heaters. Electrical energy supplements the solar energy for the DHW. The Collector Mounting System utilizes guy wires to structurally tie the collector array to the building.

  10. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    SciTech Connect

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Days Inn Motel (120 rooms) I-95 and Cagle Road, Jacksonville, Florida, is described. The solar system was designed by ILI, Incorporated to provide 65 percent of the hot water demand. The system is one of eleven systems planned under this grant. Water (in the Solar Energy Products, Model CU-30ww liquid flat plate collector (900 square feet) system) automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature. This system was turned on June 19, 1979. The solar components were partly funded ($15,823 of $31,823 cost) by the Department of Energy.

  11. Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996

    SciTech Connect

    1996-12-31

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

  12. Targeted Removal of Ant Colonies in Ecological Experiments, Using Hot Water

    PubMed Central

    Tschinkel, Walter R.; King, Joshua R.

    2007-01-01

    Ecological experiments on fire ants cannot, or should not, use poison baits to eliminate the fire ants because such baits are not specific to fire ants, or even to ants. Hot water is an extremely effective and specific killing agent for fire ant colonies, but producing large amounts of hot water in the field, and making the production apparatus mobile have been problematical. The construction and use of a charcoal-fired kiln made from a 55-gal. oil drum lined with a sand-fireclay mixture is described. An automobile heater fan powered from a 12-v battery provided a draft. Dual bilge pumps pumped water from a large tank through a long coil of copper tubing within the kiln to produce 4 to 5 l. of hot water per min. The hot water was collected in 20 l. buckets and poured into fire ant nests previously opened by piercing with a stick. The entire assembly was transported in and operated from the back of a pickup truck. Five experimental plots containing 32 to 38 colonies of the fire ant, Solenopsis invicta, Buren (Hymenoptera: Formicidae), were treated with hot water over a period of two years. All colonies on the treatment plots were treated twice with hot water early in 2004, reducing their numbers to zero. However new colonies were formed, and mature colonies expanded into the plots. A third treatment was made in the spring of 2005, after which fire ant populations were suppressed for over a year. Whereas the 5 control plots contained a total of 166 mostly large colonies, the 5 treatment plots contained no live colonies at all. Averaged over a two-year period, a 70% reduction in total number of colonies was achieved (P < 0.001) on the treatment plots, and a 93% reduction of large, mature colonies. Over this same time span, the number of colonies in control plots remained stable. The reduction in colony numbers on the treatment plots was reflected in the pitfall trap samples that recorded a 60% reduction in fire ants. PMID:20233079

  13. Performance Evaluation of Pressure Transducers for Water Impacts

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  14. Applications of the compensating pressure theory of water transport.

    PubMed

    Canny, M

    1998-07-01

    Some predictions of the recently proposed theory of long-distance water transport in plants (the Compensating Pressure Theory) have been verified experimentally in sunflower leaves. The xylem sap cavitates early in the day under quite small water stress, and the compensating pressure P (applied as the tissue pressure of turgid cells) pushes water into embolized vessels, refilling them during active transpiration. The water potential, as measured by the pressure chamber or psychrometer, is not a measure of the pressure in the xylem, but (as predicted by the theory) a measure of the compensating pressure P. As transpiration increases, P is increased to provide more rapid embolism repair. In many leaf petioles this increase in P is achieved by the hydrolysis of starch in the starch sheath to soluble sugars. At night P falls as starch is reformed. A hypothesis is proposed to explain these observations by pressure-driven reverse osmosis of water from the ground parenchyma of the petiole. Similar processes occur in roots and are manifested as root pressure. The theory requires a pump to transfer water from the soil into the root xylem. A mechanism is proposed by which this pump may function, in which the endodermis acts as a one-way valve and a pressure-confining barrier. Rays and xylem parenchyma of wood act like the xylem parenchyma of petioles and roots to repair embolisms in trees. The postulated root pump permits a re-appraisal of the work done by evaporation during transpiration, leading to the proposal that in tall trees there is no hydrostatic gradient to be overcome in lifting water. Some published observations are re-interpreted in terms of the theory: doubt is cast on the validity of measurements of hydraulic conductance of wood; vulnerability curves are found not to measure the cavitation threshold of water in the xylem, but the osmotic pressure of the xylem parenchyma; if measures of xylem pressure and of hydraulic conductance are both suspect, the accepted

  15. High-pressure injection injury with river water.

    PubMed

    Greenberg, M I

    1978-06-01

    A case of high pressure injection and laceration of the calf with river water is reported, the first such case appearing in the literature. As with high pressure injection of grease, paint, paint thinner, mineral spirits, diesel oil, gasoline, and turpentine, this injury is a surgical emergency. All patients must be admitted for surgical debridement, irrigation, parenteral antibiotics, and observation. River water, contaminated by sewage and industrial wastes, has great irritative and infective potential. PMID:661048

  16. Where Did the Water Go?: Boyle's Law and Pressurized Diaphragm Water Tanks

    ERIC Educational Resources Information Center

    Brimhall, James; Naga, Sundar

    2007-01-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be…

  17. Development of Simulation System for Hot Gas Filtration by Ceramic Candle Filters on High Temperature and/or High Pressure Conditions

    SciTech Connect

    Park, S.J.; Lim, J.H.; Kim, S.D.; Choi, H.K.; Park, H,S.; Park, Y.O.

    2002-09-19

    Hot gas filtration from industrial processes offers various advantages in terms of improvement of process efficiencies, heat recovery and protection of plant installation. Especially hot gas filtration is an essential technology for pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC).

  18. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  19. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  20. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  1. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  2. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  3. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  4. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  5. Dialysate purification after introduction of automated hot water disinfection system to central dialysis fluid delivery system.

    PubMed

    Ogawa, Tomonari; Matsuda, Akihiko; Yamaguchi, Yumiko; Sasaki, Yusuke; Kanayama, Yuki; Maeda, Tadaaki; Noiri, Chie; Hasegawa, Hajime; Matsumura, Osamu; Mitarai, Tetsuya

    2012-01-01

    Most dialysis clinics in Japan have mainly adopted the central dialysis fluid delivery system (CDDS) to provide constant treatment to many patients. Chemical disinfection is the major maintenance method of the CDDS. Our clinic introduced an automated hot water disinfection system that used the heat conduction effect to disinfect a reverse osmosis (RO) device and dialysis fluid supply equipment. Endotoxin level and the amount of viable bacteria often showed abnormal values before introduction of this system. After its introduction, weekly disinfection resulted in endotoxin levels and the amount of viable bacteria lower than measurement sensitivity. In hot water disinfection, water heated to 90°C in the RO tank flows into the dialysis fluid supply equipment. The maximum temperature inside the tank of the supply equipment is 86.3°C. (We confirmed that the temperature was maintained at 80°C or more for 10 minutes or more during the monitoring.) Dialysate purification was maintained even after introduction of the automated hot water disinfection system and the dialysate could be supplied stably by the CDDS. Therefore, this disinfection system might be very useful in terms of both cost and safety, and can be used for dialysis treatment of multiple patients. PMID:22370682

  6. Water Production and Release in Comets from Hot-Band Fluorescence near 2.9 microns.

    NASA Astrophysics Data System (ADS)

    Dello Russo, N.; DiSanti, M. A.; Magee-Sauer, K.; Gibb, E.; Mumma, M. J.

    2002-09-01

    Water is the dominant ice in most (perhaps all) comets and its sublimation controls the release of other volatiles within 3-4 AU of the sun. For this reason, the volatile activity of a comet and the abundances of minor species are often expressed relative to water production. Severe atmospheric extinction makes direct detection of water in comets difficult from ground-based observatories - its strong transitions terminate in the ground vibrational level that is highly populated in Earth's atmosphere, causing absorption of the incident photons. To avoid such extinction, we target water lines in non-resonance fluorescence - direct absorption of sunlight excites molecules from the lowest vibrational level (000) to a higher vibrational level, followed by cascade into an intermediate level that is not significantly populated in the atmosphere. This approach has been used to successfully detect water in ten comets using lines from hot-bands in the 2, 2.9, and 5-micron regions. Detection of water lines from several different hot-bands helps in the determination of accurate water production rates and allows temperature-dependent fluorescence models for individual hot-bands to be tested for internal consistency. The 2.9-micron region is particularly diagnostic since a dense grouping of strong lines can be detected from several hot-bands. We have been able to perform high-resolution studies of parent volatiles at infrared wavelengths with the Near Infrared Spectrometer (NIRSPEC) at Keck 2 and the Cryogenic Echelle Spectrometer (CSHELL) at the NASA IRTF. Both instruments provide spectral resolution sufficient to resolve individual ro-vibrational lines (R 20,000). Here we present water production rates, rotational temperatures, and ortho-to-para ratios in Oort cloud comets C/1999 H1 (Lee), C/1999 S4 (LINEAR), C/2001 A2 (LINEAR), and C/2002 C1 (Ikeya-Zhang) derived from hot-band emissions near 2.9-microns using NIRSPEC and CSHELL. This work was supported by the NASA Planetary

  7. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  8. Water dynamics and retrogradation of ultrahigh pressurized wheat starch.

    PubMed

    Doona, Christopher J; Feeherry, Florence E; Baik, Moo-Yeol

    2006-09-01

    The water dynamics and retrogradation kinetics behavior of gelatinized wheat starch by either ultrahigh pressure (UHP) processing or heat are investigated. Wheat starch completely gelatinized in the condition of 90, 000 psi at 25 degrees C for 30 min (pressurized gel) or 100 degrees C for 30 min (heated gel). The physical properties of the wheat starches were characterized in terms of proton relaxation times (T2 times) measured using time-domain nuclear magnetic resonance spectroscopy and evaluated using commercially available continuous distribution modeling software. Different T2 distributions in both micro- and millisecond ranges between pressurized and heated wheat starch gels suggest distinctively different water dynamics between pressurized and heated wheat starch gels. Smaller water self-diffusion coefficients were observed for pressurized wheat starch gels and are indicative of more restricted translational proton mobility than is observed with heated wheat starch gels. The physical characteristics associated with changes taking place during retrogradation were evaluated using melting curves obtained with differential scanning calorimetry. Less retrogradation was observed in pressurized wheat starch, and it may be related to a smaller quantity of freezable water in pressurized wheat starch. Starches comprise a major constituent of many foods proposed for commercial potential using UHP, and the present results furnish insight into the effect of UHP on starch gelatinization and the mechanism of retrogradation during storage. PMID:16939331

  9. Hot compressed water pretreatment of oil palm fronds to enhance glucose recovery for production of second generation bio-ethanol.

    PubMed

    Goh, Chun Sheng; Lee, Keat Teong; Bhatia, Subhash

    2010-10-01

    This work presents the pretreatment of oil palm fronds (OPF) using hot compressed water (HCW) to enhance sugar recovery in enzymatic hydrolysis. A central, composite rotatable design was used to optimize the effect of reaction temperature, reaction time and liquid-solid ratio on the pretreatment process. All variables were found to significantly affect the glucose yield. A quadratic polynomial equation was used to model glucose yield by multiple regression analysis, using response surface methodology (RSM). Using a 10 bar pressurized reactor, the optimum conditions for pretreatment of OPF were found at 178 degrees C, 11.1 min and a liquid-solid ratio of 9.6. The predicted glucose yield was 92.78 wt.% at the optimum conditions. Experimental verification of the optimum conditions gave a glucose yield in good agreement with the estimated value of the model. PMID:20471249

  10. Hot water extraction and steam explosion as pretreatments for ethanol production from spruce bark.

    PubMed

    Kemppainen, Katariina; Inkinen, Jenni; Uusitalo, Jaana; Nakari-Setälä, Tiina; Siika-aho, Matti

    2012-08-01

    Spruce bark is a source of interesting polyphenolic compounds and also a potential but little studied feedstock for sugar route biorefinery processes. Enzymatic hydrolysis and fermentation of spruce bark sugars to ethanol were studied after three different pretreatments: steam explosion (SE), hot water extraction (HWE) at 80 °C, and sequential hot water extraction and steam explosion (HWE+SE), and the recovery of different components was determined during the pretreatments. The best steam explosion conditions were 5 min at 190 °C without acid catalyst based on the efficiency of enzymatic hydrolysis of the material. However, when pectinase was included in the enzyme mixture, the hydrolysis rate and yield of HWE bark was as good as that of SE and HWE+SE barks. Ethanol was produced efficiently with the yeast Saccharomyces cerevisiae from the pretreated and hydrolysed materials suggesting the suitability of spruce bark to various lignocellulosic ethanol process concepts. PMID:22613888

  11. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?

    PubMed Central

    Wilcox, Christie L.; Yanagihara, Angel A.

    2016-01-01

    Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes. PMID:27043628

  12. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  13. Hot water epilepsy: Phenotype and single photon emission computed tomography observations

    PubMed Central

    Patel, Mehul; Satishchandra, Parthasarathy; Aravinda, Hanumanthapura; Bharath, Rose D.; Sinha, Sanjib

    2014-01-01

    We studied the anatomical correlates of reflex hot water epilepsy (HWE) using multimodality investigations viz. magnetic resonance imaging (MRI), electroencephalography (EEG), and single photon emission computed tomography (SPECT). Five men (mean age: 27.0 ΁ 5.8 years) with HWE were subjected to MRI of brain, video-EEG studies, and SPECT scan. These were correlated with phenotypic presentations. Seizures could be precipitated in three patients with pouring of hot water over the head and semiology of seizures was suggestive of temporal lobe epilepsy. Ictal SPECT showed hyperperfusion in: left medial temporal — one, left lateral temporal — one, and right parietal — one. Interictal SPECT was normal in all five patients and did not help in localization. MRI and interictal EEG was normal in all the patients. The clinical and SPECT studies suggested temporal lobe as the seizure onset zone in some of the patients with HWE. PMID:25506178

  14. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations?

    PubMed

    Wilcox, Christie L; Yanagihara, Angel A

    2016-04-01

    Cnidarian envenomations are an important public health problem, responsible for more deaths than shark attacks annually. For this reason, optimization of first-aid care is essential. According to the published literature, cnidarian venoms and toxins are heat labile at temperatures safe for human application, which supports the use of hot-water immersion of the sting area(s). However, ice packs are often recommended and used by emergency personnel. After conducting a systematic review of the evidence for the use of heat or ice in the treatment of cnidarian envenomations, we conclude that the majority of studies to date support the use of hot-water immersion for pain relief and improved health outcomes. PMID:27043628

  15. Comparison of some results of program SHOW with other solar hot water computer programs

    NASA Astrophysics Data System (ADS)

    Young, M. F.; Baughn, J. W.

    The SHOW (solar hot water) computer program is capable of simulating both one and two tank designs of thermosiphon and pumped solar domestic hot water systems. SHOW differs in a number of ways from other programs, the most notable of which is the emphasis on a thermal/hydraulic model of the stratified storage tank. The predicted performance for a typical two tank pumped system, computed by Program SHOW are compared, with results computed using F-CHART and TRNSYS. The results show fair to good agreement between the various computer programs when comparing the annual percent solar contributions. SHOW is also used to compute the expected performance of a two tank thermosiphon system and to compare its performance to the two tank pumped system.

  16. Solar hot water system installed at Quality Inn, Key West, Florida

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  17. Anti-ulcer effect of the hot water extract of black tea (Camellia sinensis).

    PubMed

    Maity, S; Vedasiromoni, J R; Ganguly, D K

    1995-06-01

    The effect of the hot water extract of black tea (Camellia sinensis (L.) O. Kuntze, Theaceae) on ulceration induced by various ulcerogens and by cold restraint stress (CRS) was investigated in albino rats. While prior administration of tea extract for 7 days significantly reduced the incidence of ulcer, ulcer number and ulcer index produced by aspirin, indomethacin, ethanol, reserpine and CRS, it failed to inhibit the ulcers induced by serotonin and histamine. Tea extract also favourably altered the changes in acid and peptic activity of gastric secretion induced by aspirin, indomethacin, ethanol, reserpine and CRS. The observations suggest that the hot water extract of black tea possesses anti-ulcer activity, probably mediated through prostaglandins. PMID:7564415

  18. Heat tracing as a tool for locating and quantifying hydrological hot spots and hot moments that impact surface water and groundwater quality

    NASA Astrophysics Data System (ADS)

    Lautz, L.; Briggs, M. A.; Gordon, R.; Irvine, D. J.; McKenzie, J. M.; Ribaudo, R.; Hare, D. K.

    2014-12-01

    Hot spots and hot moments of biogeochemical transformations in stream ecosystems are often driven by rapid water exchange across the streambed interface. Few field methods are available for quantifying variability of hydrologic exchange rates across the streambed interface through space and time at high resolution. Advances in heat tracing provide opportunities for improved assessment of the paired spatial and temporal structure of heterogeneity in water flux and chemistry in the hyporheic zone. Here, we present a synthesis of heat transport monitoring and modeling studies aimed at improving spatial and temporal characterization of water exchange across the bed interface. Hot spots of water and solute exchange at the bed interface are quantified in the field at the reach scale by integrating high-resolution streambed temperature maps with point measurements of water flux inferred from 1D temperature profiles. The effectiveness and potential errors of this methodology are explored through numerical groundwater flow and heat transport modeling. Hot moments of water and solute exchange are quantified in the field using high-resolution distributed temperature sensing, paired with 1D heat transport modeling and detailed water quality profiles. The effectiveness and potential errors of quantifying temporal variability in water flux using heat tracing are explored through controlled laboratory experiments. Our results demonstrate the enormous potential for using heat tracing to quantify spatial and temporal changes in water flux across the bed interface at high resolution. The methods presented take advantage of inexpensive temperature sensors and user-friendly modeling methods, such as VFLUX, making heat tracing a good option for field practitioners interested in observing spatial and temporal heterogeneity of water flux at the bed interface.

  19. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion.

    PubMed

    Sing, David K; Fortney, Jonathan J; Nikolov, Nikolay; Wakeford, Hannah R; Kataria, Tiffany; Evans, Thomas M; Aigrain, Suzanne; Ballester, Gilda E; Burrows, Adam S; Deming, Drake; Désert, Jean-Michel; Gibson, Neale P; Henry, Gregory W; Huitson, Catherine M; Knutson, Heather A; des Etangs, Alain Lecavelier; Pont, Frederic; Showman, Adam P; Vidal-Madjar, Alfred; Williamson, Michael H; Wilson, Paul A

    2016-01-01

    Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures. PMID:26675732

  20. Inactivation of Salmonella in Shell Eggs by Hot Water Immersion and Its Effect on Quality.

    PubMed

    Geveke, David J; Gurtler, Joshua B; Jones, Deana R; Bigley, Andrew B W

    2016-03-01

    Thermal inactivation kinetics of heat resistant strains of Salmonella Enteritidis in shell eggs processed by hot water immersion were determined and the effects of the processing on egg quality were evaluated. Shell eggs were inoculated with a composite of heat resistant Salmonella Enteritidis (SE) strains PT8 C405, 2 (FSIS #OB030832), and 6 (FSIS #OB040159). Eggs were immersed in a circulating hot water bath for various times and temperatures. Come-up time of the coldest location within the egg was 21 min. SE was reduced by 4.5 log at both hot water immersion treatments of 56.7 C for 60 min and 55.6 °C for 100 min. Decimal reduction times (D-values) at 54.4, 55.6, and 56.7 °C were 51.8, 14.6, and 9.33 min, respectively. The z-value was 3.07 °C. Following treatments that resulted in a 4.5 log reduction (56.7 °C/60 min and 55.6 °C/100 min), the surviving population of SE remained static during 4 wk of refrigerated storage. After processing under conditions resulting in 4.5 log reductions, the Haugh unit and albumen height significantly increased (P < 0.01) and yolk index significantly decreased (P < 0.05). The shell dynamic stiffness significantly increased (P < 0.05), while static compression shell strength showed no significant difference (P < 0.05). Vitelline membrane strength significantly increased (P < 0.05); although, no significant difference (P < 0.05) was observed in vitelline membrane elasticity. In summary, the hot water immersion process inactivated heat resistant SE in shell eggs by 4.5 log, but also significantly affected several egg quality characteristics. PMID:26878421

  1. System Design Package for SIMS Prototype System 3, Solar Heating and Domestic Hot Water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A collation of documents and drawings are presented that describe a prototype solar heating and hot water system using liquid flat plate collectors and a gas or electric furnace energy subsystem. The system was designed for installation into a single-family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with information sufficient to assemble a similar system.

  2. Five-city economics of a solar hot-water-system

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Report projects energy savings and system costs for five sites using analysis of actual solar energy installation performance in Togus, Maine. Maine system supplies 75 percent of hot water needed for single-family residence; economic payback period is 19 years. Benefits for all sites depend on maintenance or decrease of initial investment required and continuing increase in cost of conventional energy. Report includes analysis weighing potential changes in variables used to evaluate system profitability.

  3. System design package for IBM system one: solar heating and domestic hot water

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.

  4. Pressure: the politechnics of water supply in Mumbai.

    PubMed

    Anand, Nikhil

    2011-01-01

    In Mumbai, most all residents are delivered their daily supply of water for a few hours every day, on a water supply schedule. Subject to a more precarious supply than the city's upper-class residents, the city's settlers have to consistently demand that their water come on “time” and with “pressure.” Taking pressure seriously as both a social and natural force, in this article I focus on the ways in which settlers mobilize the pressures of politics, pumps, and pipes to get water. I show how these practices not only allow settlers to live in the city, but also produce what I call hydraulic citizenship—a form of belonging to the city made by effective political and technical connections to the city's infrastructure. Yet, not all settlers are able to get water from the city water department. The outcomes of settlers' efforts to access water depend on a complex matrix of socionatural relations that settlers make with city engineers and their hydraulic infrastructure. I show how these arrangements describe and produce the cultural politics of water in Mumbai. By focusing on the ways in which residents in a predominantly Muslim settlement draw water despite the state's neglect, I conclude by pointing to the indeterminacy of water, and the ways in which its seepage and leakage make different kinds of politics and publics possible in the city. PMID:22171410

  5. Analytical Analysis of the Effect of the Radiation Pressure on Planetary Exospheres: Application to Earth, Mars, Titan and Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I. S.; Mazelle, C. X.

    2014-12-01

    Because of rare collisions, the motion of light species (H, H2) in the planetary exospheres is essentially determined by the external forces: the gravitation from the planet and the radiation pressure, ... Currently, the only analytical model used to model exospheric neutral density profiles is the well-known Chamberlain model which takes into account only the gravity. In this work and in the same way as Chamberlain, we solve rigorously and analytically, based on the Hamiltonian mechanics and Liouville theorem, the additional effect of the radiation pressure in particular for hydrogen (the model works for any species sensitive to the radiation pressure) on the structure of the exosphere and on the density profiles of ballistic particles. This approach was initially developed by Bishop and Chamberlain (1989) only in the Sun-planet direction. We extend it here to the whole exosphere with a 2D model. Also, we determine analytically the escape flux on the dayside at SZA=0, which can be compared with the Jeans' escape flux. We thus show that the radiation pressure induces : strong density asymmetries at high altitudes in the planetary exospheres, leading to the phenomenon of geotail at Earth for example the natural existence of an external limit (or exopause) for the exosphere, whose location is analytically determined an increase of the exospheric densities compared with Chamberlain profiles without radiation pressure (e.g. up to +150% at 5 Martian radius) a significant increase of the thermal escape flux (up to 30/35% for Earth/Mars today), until a «blow-off » regime with a constant escape flux for an extreme radiation pressure. The influence of the radiation pressure on the escape flux may thus bring conditions on the size of primary atmospheres, because of a strong radiation pressure in the Sun's young years. Finally, we show that this model may be applied to exoplanets, in particular to the hot Jupiters that are also subject to additional effects: centrifugal

  6. Analysis of the effect of the radiation pressure on planetary exospheres : application to Earth, Mars, Titan and hot Jupiters

    NASA Astrophysics Data System (ADS)

    Beth, Arnaud; Garnier, Philippe; Toublanc, Dominique; Mazelle, Christian; Dandouras, Iannis

    2015-04-01

    Because of rare collisions, the motion of light species (H, H2) in the planetary exospheres is essentially determined by the external forces: the gravitation from the planet and the radiation pressure, ... Currently, the only analytical model used to model exospheric neutral density profiles is the well-known Chamberlain model which takes into account only the gravity. In this work and in the same way as Chamberlain, we solve rigorously and analytically, based on the Hamiltonian mechanics and Liouville theorem, the additional effect of the radiation pressure in particular for hydrogen (the model works for any species sensitive to the radiation pressure) on the structure of the exosphere and on the density profiles of ballistic particles. This approach was initially developed by Bishop and Chamberlain (1989) only in the Sun-planet direction. We extend it here to the whole exosphere with a 2D model. Also, we determine analytically the escape flux on the dayside at SZA=0, which can be compared with the Jeans' escape flux. We thus show that the radiation pressure induces : 1. strong density asymmetries at high altitudes in the planetary exospheres, leading to the phenomenon of geotail at Earth for example 2. the natural existence of an external limit (or exopause) for the exosphere, whose location is analytically determined 3. an increase of the exospheric densities compared with Chamberlain profiles without radiation pressure (e.g. up to +150% at 5 Martian radius) 4. a significant increase of the thermal escape flux (up to 30/35% for Earth/Mars today), until a «blow-off » regime with a constant escape flux for an extreme radiation pressure. The influence of the radiation pressure on the escape flux may thus bring conditions on the size of primary atmospheres, because of a strong radiation pressure in the Sun's young years. Finally, we show that this model may be applied to exoplanets, in particular to the hot Jupiters that are also subject to additional effects

  7. Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project

    SciTech Connect

    Jager, A.R.

    1996-03-01

    It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

  8. [Cool/Hot target effect of the water fog infrared stealth].

    PubMed

    Du, Yong-cheng; Yang, Li; Zhang, Shi-cheng; Yang, Zhen; Hu, Shuang-xi

    2012-08-01

    Artificial spray fog will come into being cool target because of the strong evaporation and convection but weak radiation heat flux, when it is used for defence of infrared imaging guided missile. Also, when it is the contrary condition, the water fog will come into being hot target. In order to open out the phenomenon particularly, a math model which can account for the cool/hot effect produced by water fog shielding the thermal radiation is established by coupling the calculation of radiation transfer equation and energy conversation equation, based on the Mie theory. This model is proved to be accurate in comparison with the Monte-Carlo method and Lambert-Beer' law. The water fog is seemed as absorbing, emitting and anisotropic scattering medium, and the medium radiation, multiple scattering, target radiation flux, and environment influence such as the conductivity, convection turbulent heat diffusion and evaporation is calculated. The phenomenon of cool/hot target effect can be shown in detail with this model. PMID:23156782

  9. Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System

    PubMed Central

    Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric

    2012-01-01

    Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326

  10. Performance Analysis of a Hot Water Supply System with a CO2 Heat Pump by Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Takemura, Kazuhisa; Ito, Koichi

    Heat pumps using CO2 as a natural refrigerant have been developed and are expected to contribute to energy saving in hot water supply. In residential applications, CO2 heat pumps are used in combination with hot water storage tanks. The objective of this series of papers is to analyze the overall performance of a hot water supply system composed of a CO2 heat pump and a hot water storage tank by numerical simulation. In the 1st report, a simulation model of a CO2 heat pump is created based on thermodynamic equations and measured data for an existing CO2 heat pump. In addition, the performance of a CO2 heat pump is clarified in relation to the air temperature as well as the inlet and outlet water temperatures.

  11. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    SciTech Connect

    Weitzel, E.; Hoeschele, E.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  12. Unique wood-fired system for domestic hot water generation. Final report

    SciTech Connect

    Not Available

    1981-09-01

    This project has proven that it is possible to construct in a home workshop situation, a simple, durable, reasonably modest-cost stove and heat-exchanger which will conveniently generate wood-fueled hot water year-round to meet household needs and daily demand schedules. Included with this report are the illustrations, descriptions, and details which should make it possible for someone with the proper skills to construct their own system. However, before rushing out to buy copper and steel, it would be important for anyone to consider the costs, benefits, and possible alternatives available. Whatever the source of hot water, conservation is a major way of saving energy and money. Some major ways of conserving are to add extra insulation to the water heater tank, turning the heating elements down to 115 to 120/sup 0/F thermostat settings, using a timer to turn on the elements only during the time of day that hot water will be needed, using warm or cold water for laundry, and using flow-restricting shower heads. These measures can save up to 50% of the energy previously used, with very little investment. Total costs for the system using an existing water heater for the storage tank could range from $200 to over $1000. Assuming free firewood, at current utility prices this would make a pay-back period for original investment of only 8 months to 3 years 4 months for the average family. Considering these costs, one might reasonably wonder if it would be worthwhile to purchase and use a wood-fired system which would save only a dollar or less per daily use. This would amount to a rate of savings pay equal to no more than the minimum wage for the time involved.

  13. Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts

    NASA Astrophysics Data System (ADS)

    Nichols, A. R. L.; Carroll, M. R.; Höskuldsson, Á.

    2002-08-01

    Water contents have been measured in basaltic glasses from submarine and subglacial eruption sites along the Reykjanes Ridge and Iceland, respectively, in order to evaluate the hypothesis of Schilling et al. [Phil. Trans. R. Soc. London A 56 (1980) 147-178] that hot spots are also wet spots. Having erupted under pressure the water contents measured in these samples are potentially unaffected by degassing. After correcting these water contents for the effects of crystallisation (to give H 2O(8) values) they indicate that the concentration of water in the source regions increases from 165 ppm at the southern end of the Reykjanes Ridge to between 620 and 920 ppm beneath Iceland. This suggests that Iceland is a wet spot and the H 2O(8) values indicate that its influence on basalt compositions increases northwards along the Reykjanes Ridge from ˜61°N (650 km from the plume centre) towards Iceland. The existence of wetter Icelandic source regions have important implications for mantle melting, as enrichments of this magnitude depress the mantle solidus, increasing the degree of melting at a given temperature. Therefore the enhanced rates of volcanism on Iceland may be a result of wetter sources in addition to a thermal anomaly beneath Iceland.

  14. Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet

    PubMed Central

    2010-01-01

    Background Lotus (Nelumbo nucifera) leaf has been used to treat obesity. The purpose of this study was to investigate the antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in high fat diet-induced obese rats. Methods Four week-old male Sprague-Dawley rats were randomly divided into four groups with 8 rats in each group for a period of 6 weeks (normal diet, N group; high fat diet, HF group; high fat diet + lotus leaf hot water extract, HFL group; high fat diet + lotus leaf hot water extract + taurine, HFLT group). Lotus leaf hot water extract was orally administrated to HFL and HFLT groups and the same amount of distilled water was orally administered (400 mg/kg/day) to N and HF groups. Taurine was supplemented by dissolving in feed water (3% w/v). Results The body weight gain and relative weights of epididymal and retroperitoneal adipose tissues were significantly lower in N, HFL and HFLT groups compared to HF group. HFL and HFLT groups showed lower concentrations of total cholesterol, triglyceride and low density lipoprotein cholesterol in serum. HFLT group showed higher the ratio of high density lipoprotein cholesterol/total cholesterol compared to HFL group. HFLT group showed better blood lipid profiles compared to HFL group. Conclusions Lotus leaf hot water extract with taurine supplementation showed antiobesity and hypolipidemic effects in high fat diet-induced obese rats, which was more effective than lotus leaf hot water extract alone. PMID:20804619

  15. Water cycles in closed ecological systems: effects of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  16. Water cycles in closed ecological systems: effects of atmospheric pressure.

    PubMed

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems. PMID:12481804

  17. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  18. Heavy metal accumulation in hot water tanks in a region experiencing coal waste pollution and comparison between regional water systems

    SciTech Connect

    Wigginton, A.; McSpirit, S.; Sims, C.D.

    2007-10-15

    In 2000, a coal slurry impoundment failure in Martin County, Kentucky, caused concerns about contaminants entering municipal water supplies. Water samples taken from impacted and reference area hot water tanks often exceeded US EPA drinking water guidelines. Concentrations of As, Cd, Cr, Cu, Fe, Mn, and Pb had maxima of 119; 51.9; 154; 170,000; 976,000; 8,710; and 12,700 {mu}g/L, respectively. Significantly different metal accumulation between counties indicated this procedure's utility for assessing long-term municipal water quality. Correlations between metal concentrations were strong and consistent for As, Ba, Cd, Cr, Co, and Fe indicating that some metals accumulate proportionally with others.

  19. Solar production of industrial process hot water: operation and evaluation of the Campbell Soup hot water solar facility. Final report, September 1, 1979-December 10, 1980

    SciTech Connect

    Kull, J. I.; Niemeyer, W. N.; Youngblood, S. B.

    1980-12-01

    The operation and evaluation of a solar hot water facility designed by Acurex Corporation and installed (November 1977) at the Campbell Soup Company Sacramento, California canning plant is summarized. The period of evaluation was for 12 months from October 1979 through September 1980. The objective of the work was to obtain additional, long term data on the operation and performance of the facility. Minor modifications to the facility were completed. The system was operated for 15 months, and 12 months of detailed data were evaluated. The facility was available for operation 99% of the time during the last 8 months of evaluation. A detailed description of the solar facility and of the operating experience is given, and a summary of system performance for the 12 month operation/evaluation period is presented. Recommendations for large-scale solar facilities based on this project's experience are given, and an environmental impact assessment for the Campbell Soup solar facility is provided. (WHK)

  20. Solar hot water system installed at Days Inn Motel, Dallas, Texas

    SciTech Connect

    Not Available

    1980-09-01

    The solar energy hot water system installed in the Days Inn of America, Inc., Days Inn Motel (100 rooms), I-635/2753 Forrest Lane, Dallas, Texas is described. The solar system was designed by ILI, Inc., to provide 65% of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector is 1000 square feet of solar energy products, Model CU-30W array. Water in the collector system automatically drains into the 1000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make up DHW tank standby losses. All pumps are controlled by differential temperature. Operation of this system was begun March 11, 1980. The solar components were partly funded ($15,000 of $30,000 cost) by the Department of Energy Grant.

  1. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    SciTech Connect

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  2. Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah

    SciTech Connect

    Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

    1980-02-01

    Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

  3. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.

  4. Removal of Cr(VI) from chromium contaminated sites by washing with hot water

    SciTech Connect

    Ososkov, V.; Bozzelli, J.W.; Kebbekus, B.B.

    1994-12-31

    Extraction of chromium from a mixture of ore processing residue and soil (slag) by hot water and dilute alkali (0.01M NaOH) washing is studied. It was found that hexavalent chromium, which is the most dangerous and mobile form of chromium, can be effectively removed (95--99%) from slag by washing with these extraction solutions. The extracting liquid can be reused after removing the Cr(VI) ions by ion-exchange technologies. Trivalent chromium is strongly adsorbed by clay minerals and remains in the residue after this mild extraction. The hot water or mild hot alkali washing is recommended as a rapid and inexpensive treatment for chromium-contaminated sites to prevent chromium(VI) migration through soils into groundwater or dispersion as a dust into the atmosphere. Cr(III) remaining in the residue may then be left on-site, preferably with the addition of a reducing agent to prevent conversion to CR(VI) until further clean up is mandated.

  5. Design of virtual SCADA simulation system for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  6. Heat of freezing for supercooled water: measurements at atmospheric pressure.

    PubMed

    Cantrell, Will; Kostinski, Alexander; Szedlak, Anthony; Johnson, Alexandria

    2011-06-16

    Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds. PMID:21087023

  7. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    ERIC Educational Resources Information Center

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  8. Effect of hot water treatment of beef trimmings on processing characteristics and eating quality of ground beef.

    PubMed

    Pietrasik, Z; Gaudette, N J; Klassen, M

    2016-03-01

    The effect of hot water treatment of beef trimmings on the processing characteristics, shelf-life and consumer acceptability of ground beef was evaluated. Hot water treatment (85°C for 40s) substantially enhanced the microbial quality of trimmings during refrigerated storage and this was independent of the fat level of the trimmings. Treatment had no effect on the oxidative stability of trimmings stored up to 7days, ground beef displayed in a retail cabinet for up to 3days, and had minimal effect on textural properties. Instrumental results demonstrate that ground beef from hot water treated trimmings was slightly lighter and tended to have less red color compared to non-treated beef. These color differences did not impact the consumer acceptance of raw patties, and in addition, hot water treatment did not significantly affect the consumer acceptability of cooked patty attributes. PMID:26610290

  9. Fate of a few selected trace elements in pressurized fluidized-bed gasification and hot gas cleanup

    SciTech Connect

    Mojtahedi, W.; Salo, K.

    1996-12-31

    Increasingly more stringent environmental regulations have focused attention on the emissions of the so-called air toxics toxic trace elements (As, Be, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb, Se). In this paper, the results of an experimental program designed to measure the emissions of a few selected trace elements from a 15 MW{sub th} pressurized fluidized bed gasification pilot plant are reported and discussed. The pilot plant is equipped with an advanced hot gas cleanup train which includes a two fluidized-bed reactor system for high-temperature, high-pressure external sulfur removal and a filtration unit housing porous, rigid ceramic candle filters. The trace element concentrations in the fuel, bottom ash, and filter ash are determined and the results compared with EPA regulatory levels.

  10. Bioluminescence-based imaging technique for pressure measurement in water

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasunori; Tanaka, Yasufumi

    2011-07-01

    The dinoflagellate Pyrocystis lunula emits light in response to water motion. We developed a new imaging technique for measuring pressure using plankton that emits light in response to mechanical stimulation. The bioluminescence emitted by P. lunula was used to measure impact water pressure produced using weight-drop tests. The maximum mean luminescence intensity correlated with the maximum impact pressure that the cells receive when the circadian and diurnal biological rhythms are appropriately controlled. Thus, with appropriate calibration of experimentally determined parameters, the dynamic impact pressure can be estimated by measuring the cell-flash distribution. Statistical features of the evolution of flash intensity and the probability distribution during the impacting event, which are described by both biological and mechanical response parameters, are also discussed in this paper. The practical applicability of this bioluminescence imaging technique is examined through a water drop test. The maximum dynamic pressure, occurring at the impact of a water jet against a wall, was estimated from the flash intensity of the dinoflagellate.

  11. Dynamics of Nano-Confined Water under Pressure

    SciTech Connect

    Omar Diallo, Souleymane; Jazdzewska, Monika; Palmer, Jeremy; Mamontov, Eugene; Gubbins, Dr. K. E.; Sliwinska-Bartkowiak, M

    2013-01-01

    We report a study of the effects of pressure on the diffusivity of water molecules confined in single- wall carbon nanotubes (SWNT) with average mean pore diameter of 16 A. The measurements were carried out using high-resolution neutron scattering, over the temperature range 220 T 260 K, and at two pressure conditions: ambient and elevated pressure. The high pressure data were collected at constant volume on cooling, with P varying from 1.92 kbar at temperature T = 260 K to 1.85 kbar at T = 220 K. Analysis of the observed dynamic structure factor S(Q, E) reveals the presence of two relaxation processes, a faster diffusion component (FC) associated with the motion of caged or restricted molecules, and a slower component arising from the free water molecules diffusing within the SWNT matrix. While the temperature dependence of the slow relaxation time exhibits a Vogel-Fulcher-Tammann law and is non-Arrhenius in nature, the faster component follows an Arrhenius exponential law at both pressure conditions. The application of pressure remarkably slows down the overall molecular dynamics, in agreement with previous observations, but most notably affects the slow relaxation. The faster relaxation shows marginal or no change with pressure within the experimental conditions.

  12. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    SciTech Connect

    Krishnan, S.; Bhasin, V.; Mahajan, S.C.

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  13. High pressure processing with hot sauce flavoring enhances sensory quality for raw oysters (Crassostrea virginica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the feasibility of flavoring raw oysters by placing them under pressure in the presence of selected flavorings. Hand-shucked raw oysters were processed at high pressure (600 MPa), in the presence or absence of (Sriracha®) flavoring, and evaluated by a trained sensory panel 3 an...

  14. Impact of an extreme dry and hot summer on water supply security in an alpine region.

    PubMed

    Vanham, D; Fleischhacker, E; Rauch, W

    2009-01-01

    Climate change will induce an increasing drought risk in western and southern Europe and a resulting increase in water stress. This paper investigates the impact of both the extreme hot and dry summer of 2003 and the PRUDENCE CHRM climate change scenario summer for 2071-2100 on the monthly water balance (available water resources versus water demand) within the Kitzbueheler Region in the Austrian Alps. As a baseline period the climate normal period from 1961 to 1990 was chosen. In both summer scenarios total flow and ground water recharge decrease substantially, due to the decrease in precipitation and increase in evapotranspiration However, regional water availability is still sufficient to serve all water demand stakeholders. As a result of decreased snow cover duration, flow seasonality changes within the CHRM scenario. Especially springs are very vulnerable to these climatological conditions; average local groundwater recharge is reduced by 20% up to 70% within both scenarios. Due to the hydrogeological characteristics of the case study area and the typical small structured alpine water supply infrastructure, local deficits can occur. But also groundwater aquifers in the valleys show a decrease in water availability. These results are supported by observations made in 2003 throughout Austria and Switzerland. PMID:19214001

  15. Surface chemistry features in the hot water processing of Utah tar sand

    SciTech Connect

    Misra, M.; Aguilar, R.; Miller, J.D.

    1981-01-01

    The hot water processing of Utah tar sand involves two important steps in the process sequence, phase disengagement (digestion) and phase separation (flotation). Inasmuch as phase separation is accomplished by flotation, the hydrophobic/hydrophilic balance at the surface of the bitumen droplets was studied in conjunction with the system's solution chemistry and the results correlated with the flotation response. Contact angle measurements of solvent extracted bitumen revealed a moderate hydrophobic character; however, air bubble attachment at the surface of bitumen obtained from a hot water concentrate was difficult and required long induction times. These results suggest that the phase separation by flotation is dependent on air bubble entrapment by bitumen droplets rather than attachment due to surface hydrophobicity. In addition, identification of surface functional groups and components solubilized during hot water digestion was attempted using IR and NMR spectra. Strong absorption peaks at 1708 cm/sup -1/, and 2855 cm/sup -1/ for the solubilized components together with NMR spectra indicate the presence of dissolved paraffinic carboxylates, the amount of which increased as the digestion pH was increased. Potentiometric titration of the water soluble constituents indicated an acid dissociation constant of pK/sub a/ approx. = 5 which would be expected for such carboxylate species. This phenomenon appears to account, in part, for the polar bitumen surface and the hydrophilic character of the digested bitumen. These and other results indicate that phase disengagement during digestion and bitumen hydrophobicity may be mutually exclusive effects and reinforce the notion that flotation separation is achieved by entrapment of air bubbles in the viscous bitumen droplets. 10 figures.

  16. Disjoining pressure isotherms of water-in-bitumen emulsion films.

    PubMed

    Taylor, Shawn D; Czarnecki, Jan; Masliyah, Jacob

    2002-08-01

    In the oil sands industry, undesirable water-in-oil emulsions are often formed during the bitumen recovery process where water is used to liberate bitumen from sand grains. Nearly all of the water is removed except for a small percentage (approximately 1 to 2%), which remains in the solvent-diluted bitumen as micrometer-sized droplets. Knowledge of the colloidal forces that stabilized these water droplets would help to increase our understanding of how these emulsions are stabilized. In this study, the thin liquid film-pressure balance technique has been used to measure isotherms of disjoining pressure in water/toluene-diluted bitumen/water films at five different toluene-bitumen mass ratios. Even though a broad range of mass ratios was studied, only two isotherms are obtained, indicating a possible change in the molecular orientation of surfactant molecules at the bitumen/water interfaces. At low toluene-bitumen mass ratios, the film stability appears to be due to a strong, short-range steric repulsion created by a surfactant bilayer. Similar isotherms were obtained for water/toluene-diluted asphaltene/water films, indicating that the surface active material at the interface probably originated from the asphaltene fraction of the bitumen. However, unlike the bitumen films, films of toluene-diluted asphaltenes often formed very rigid interfaces similar to the "protective skin" described by other researcher. PMID:16290773

  17. Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing

    PubMed Central

    Rhoads, William J.; Pruden, Amy; Edwards, Marc A.

    2016-01-01

    Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23–24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular. PMID:26985908

  18. Convective Mixing in Distal Pipes Exacerbates Legionella pneumophila Growth in Hot Water Plumbing.

    PubMed

    Rhoads, William J; Pruden, Amy; Edwards, Marc A

    2016-01-01

    Legionella pneumophila is known to proliferate in hot water plumbing systems, but little is known about the specific physicochemical factors that contribute to its regrowth. Here, L. pneumophila trends were examined in controlled, replicated pilot-scale hot water systems with continuous recirculation lines subject to two water heater settings (40 °C and 58 °C) and three distal tap water use frequencies (high, medium, and low) with two pipe configurations (oriented upward to promote convective mixing with the recirculating line and downward to prevent it). Water heater temperature setting determined where L. pneumophila regrowth occurred in each system, with an increase of up to 4.4 log gene copies/mL in the 40 °C system tank and recirculating line relative to influent water compared to only 2.5 log gene copies/mL regrowth in the 58 °C system. Distal pipes without convective mixing cooled to room temperature (23-24 °C) during periods of no water use, but pipes with convective mixing equilibrated to 30.5 °C in the 40 °C system and 38.8 °C in the 58 °C system. Corresponding with known temperature effects on L. pneumophila growth and enhanced delivery of nutrients, distal pipes with convective mixing had on average 0.2 log more gene copies/mL in the 40 °C system and 0.8 log more gene copies/mL in the 58 °C system. Importantly, this work demonstrated the potential for thermal control strategies to be undermined by distal taps in general, and convective mixing in particular. PMID:26985908

  19. Mechanical simulation of the pressure and the relaxation to thermal equilibrium of a hot and dense rare gas cluster.

    PubMed

    Gross, A; Levine, R D

    2006-11-30

    A cold atomic cluster can be very rapidly heated and compressed by a hypersonic impact at a hard surface. The impact can be simulated by computing a classical trajectory for the motion of the atoms. By suddenly confining the hot and dense cluster within a rigid container, it is possible to monitor the time evolution of the force acting on the faces of the container. It is found that the pressure computed this way very rapidly decays to a time-independent value. After a somewhat longer time, this value reproduces the value for the pressure computed as the sum of the kinetic and internal pressures. This agreement is expected for a system in equilibrium. These observations support the conclusion that there is a fast relaxation to thermal equilibrium in these essentially hard-sphere systems. The deviation from equilibrium is primarily due to the propagation of shock waves within the cluster. The equilibrium pressure can reach up to the megabar range. PMID:17125378

  20. Development of Metallic Filters for Hot Gas Cleanup in Pressurized Fluidized Bed Combustion Applications

    SciTech Connect

    Anderson, I.E.; Gleeson, B.; Terpstra, R.L.

    2002-09-19

    Alternative alloys derived from the wide array of aerospace superalloys will be developed for hot gas filtration to improve on both ceramic filters and ''first-generation'' iron aluminide metallic filter materials. New high performance metallic filters should offer the benefits of non-brittle mechanical behavior at all temperatures, including ambient temperature, and improved resistance to thermal fatigue compared to ceramic filter elements, thus improving filter reliability. A new powder processing approach also will be established that results in lightweight metallic filters with high permeability and weldability for enhanced capability for filter system manufacturing.

  1. Ultra-high pressure water jet: Baseline report

    SciTech Connect

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  2. Interpretations of water pressure response during the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Ohmachi, T.; Inoue, S.

    2012-04-01

    Water pressure change have been recorded during the 2011 Tohoku earthquake (Mw9.0) by two ocean-bottom pressure gauges of the JAMSTEC cabled observatory off Hokkaido, and they have been interpreted in terms of the tsunami numerical simulation. The acquired data have demonstrated that two kinds of water waves involved in the tsunami generation process from the 2011 Tohoku earthquake; that is, one is water waves preceding the tsunami having relatively short period to the tsunami and the other is long period wave well known as tsunami. Their features are summarized in order as, 1. As for the tsunami, it was detected 20 min after the main shock by the water pressure gauges located approximately 400 km north from the earthquake epicenter. The first arrival tsunami had a maximum height of 0.6 m and its period of about 40 min. There is no significant difference except for the arrival time among two ocean-bottom pressure gauges. The tsunami had a gentle rise followed by a solitary wave with a height of about 3 m and duration of about 5min in the other similar ocean-bottom pressure gauges deployed near the tsunami source (e.g., Maeda et al., 2011), whereas such a solitary wave was not recorded by the JAMSTEC ocean-bottom pressure gauges. This feature might be attributed to the tectonic mechanism. Difference of the tsunami features between two observatories are attributed not only to the source distance but also the directivity of the tsunami energy, because the JAMSTEC cabled observatory was located parallel to the seismic fault strike direction. 2. The water waves preceding the tsunami were detected in an early stage of the water pressure change. Comparing water pressure together with the data of the ocean-bottom seismometers nearby, it has been revealed that this is associated with the forced oscillation response of water layer by ground motion acceleration, i.e., hydro-dynamic response. This kind of waves was seemingly attributed to a moderate-to-large ocean

  3. Pressure of massless hot scalar theory in the boundary effective theory framework

    SciTech Connect

    Bessa, A.; Brandt, F. T.; Carvalho, C. A. A. de; Fraga, E. S.

    2011-04-15

    We use the boundary effective theory approach to thermal field theory in order to calculate the pressure of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared physics, and is essentially nonperturbative. To lowest order, the main ingredient is the solution of the free Euler-Lagrange equation with nontrivial (time) boundary conditions. We derive a resummed pressure, which is in good agreement with recent calculations found in the literature, following a very direct and compact procedure.

  4. Dielectric constant of water at very high temperature and pressure

    PubMed Central

    Pitzer, Kenneth S.

    1983-01-01

    Pertinent statistical mechanical theory is combined with the available measurements of the dielectric constant of water at high temperature and pressure to predict that property at still higher temperature. The dielectric constant is needed in connection with studies of electrolytes such as NaCl/H2O at very high temperature. PMID:16593342

  5. Hot pressing of polycrystals of high-pressure phases of mantle minerals in multi-anvil apparatus

    NASA Astrophysics Data System (ADS)

    Gwanmesia, Gabriel D.; Li, Baosheng; Liebermann, Robert C.

    1993-06-01

    In the 1960s, E. Schreiber and his colleagues pioneered the use of hot-pressed polycrystalline aggregates for studies of the pressure and temperature dependence of the elastic wave velocities in minerals. We have extended this work to the high-pressure polymorphs of mantle minerals by developing techniques to fabricate large polycrystalline specimens in a 2000-ton uniaxial split-sphere apparatus. A new cell assembly has been developed to extend this capability to pressures of 20 GPa and temperatures of 1700°C. Key elements in the new experimental design include: a telescopic LaCrO3 for T>1200°C; Toshiba Tungaloy grade F tungsten carbide anvils; and the use of homogeneous glasses or seeded powder mixtures as starting material to enhance reactivity and maximize densities. Cell temperatures are linearly related to electrical power to 1700°C and uniform throughout the 3 mm specimens. Pressure calibrations at 25°C and 1700°C are identical to 15 GPa. Cylindrical specimens of the beta and spinel phases of Mg2SiO4, stishovite (SiO2-rutile), and majorite-pyrope garnets have been synthesized within their stability fields in runs of 1 4 hr duration and recovered at ambient conditions by simultaneously decompressing and cooling along a computer-controlled P-T path designed to preserve the high-pressure phase and to relax intergranualar stress in the polycrystalline aggregate. These specimens are single-phased, fine-grained (<5 micron), free of microcracks and preferred orientation, and have bulk densities greater than 99% of X-ray density. The successful fabrication of these high-quality polycrystalline specimens has made possible experiments to determine the pressure dependence of acoustic velocities in the ultrasonics laboratory of S. M. Rigden and I. Jackson at the Australian National University.

  6. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    SciTech Connect

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  7. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    NASA Astrophysics Data System (ADS)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  8. Chemical and physical degradation of glass fiber reinforced cross-linked polyester immersed in hot water

    SciTech Connect

    Hamada, H.; Maekawa, Z.I.; Ikuta, N.; Kiyosumi, K.; Tanimoto, T.; Morii, T.

    1994-12-31

    This study deals with chemical and physical degradation behavior of randomly oriented E-glass fiber continuous strand mat reinforced cross-linked polyester immersed in hot water at 80 and 95 C. The specimens were immersed in hot water for 3, 10, 30, 100, 300, 1000, 3000 and 4000h. Weight change measurement, three-point bending and infrared measurement were performed for the specimens after the immersion. Changes of the weight gain indicated the Fickian diffusion at early immersion time, and after that, it indicated the non-Fickian diffusion with a gradual progress of debonding between fiber and matrix. This degradation of the interface caused a remarkable increase of the weight loss, which was never observed in neat resin. The bending modulus decreased with increase of the weight gain at early immersion time, however, it kept constant at longer immersion time both at 80 C and at 95 C. The constant modulus level at 80C was higher than that at 95 C. At longer immersion time at 80 C, the modulus decreased again to the same level at 95C. The results of infrared measurement suggested the difference of degradation mechanism between early immersion time and longer immersion time. At early immersion time, the resin changed physically by swelling and extraction of polymer with water penetration. Such differences of degradation affected the reduction of modulus. Moreover, the effect of the debonding at the interface on the modulus was discussed by the finite element analysis by introducing the damage mechanics.

  9. Thermal Energy Storage using PCM for Solar Domestic Hot Water Systems: A Review

    NASA Astrophysics Data System (ADS)

    Khot, S. A.; Sane, N. K.; Gawali, B. S.

    2012-06-01

    Thermal energy storage using phase chase materials (PCM) has received considerable attention in the past two decades for time dependent energy source such as solar energy. From several experimental and theoretical analyses that have been made to assess the performance of thermal energy storage systems, it has been demonstrated that PCM-based systems are reliable and viable options. This paper covers such information on PCMs and PCM-based systems developed for the application of solar domestic hot water system. In addition, economic analysis of thermal storage system using PCM in comparison with conventional storage system helps to validate its commercial possibility. From the economic analysis, it is found that, PCM based solar domestic hot water system (SWHS) provides 23 % more cumulative and life cycle savings than conventional SWHS and will continue to perform efficiently even after 15 years due to application of non-metallic tank. Payback period of PCM-based system is also less compared to conventional system. In conclusion, PCM based solar water heating systems can meet the requirements of Indian climatic situation in a cost effective and reliable manner.

  10. Pressure effect on water dynamics in tert-butyl alcohol/water solutions

    NASA Astrophysics Data System (ADS)

    Calandrini, Vania; Deriu, Antonio; Onori, Giuseppe; Paciaroni, Alessandro; Telling, Mark T. F.

    2006-09-01

    We report here a quasi-elastic neutron scattering (QENS) investigation of the effect of pressure on the diffusivity properties of water in a dilute aqueous solution of hydrophobic molecules (tert-butyl alcohol, TBA). The experiment was performed at fixed TBA concentration (0.02 molar fraction) by varying pressure from 1 to 2000 bar at two different temperatures (268 and 278 K). The quasi-elastic line-shapes have been analysed in terms of a model based on the memory function formalism. Our data indicate that, on increasing pressure up to 2000 bar, the diffusion coefficient of water in the TBA/water mixture exhibits a relative increase larger than that of pure water under the same thermodynamic conditions. The extent of this effect increases with decreasing temperature. The observed behaviour is described in terms of pressure-induced distortions of the H-bonded random network of liquid water.

  11. Passive safety injection experiments with a large-scale pressurized water reactor simulator

    SciTech Connect

    Yonomoto, Taisuke; Kukita, Yutaka; Anoda, Yoshinari; Asaka, Hideaki

    1995-03-01

    Two experiments were conducted at the ROSA-V/ Large-Scale-Test-Facility to investigate thermal-hydraulic behavior of a gravity-driven passive injection system for a pressurized water reactor under cold-leg small break loss-of-coolant accident conditions. The injection system, used in the tests, consisted of a tank located above the reactor vessel, an injection line, and pressure balance lines. The two tests were conducted using the same break area, corresponding to 2.5% of the scaled cold-leg cross-sectional area, and different actuation logic for the automatic depressurization system (ADS). Both experimental results showed an accumulation of hot water in the upper part of the tank due to the natural circulation, followed by a continuous water level drop, and the existence of a slightly superheated liquid layer near the water surface. Because of the differences in the ADS actuation logic, the system depressurization behavior was different between the two tests. Much larger injection rates from the tank were obtained for the test that experienced the larger depressurization rate. The liquid temperature distributions obtained from these tests were predicted well by an analytical model proposed in a previous paper.

  12. Statistical physics and liquid water at negative pressures

    NASA Astrophysics Data System (ADS)

    Stanley, H. Eugene; Barbosa, M. C.; Mossa, S.; Netz, P. A.; Sciortino, F.; Starr, F. W.; Yamada, M.

    2002-11-01

    Angell and his collaborators have underscored the importance of studying water under all extremes of pressure-squeezing to high pressures and stretching to negative pressures. Here we review recent results of molecular dynamics simulations of two models of liquid water, the extended simple point charge (SPC/E) and the Mahoney-Jorgensen transferable intermolecular potential with five points (TIP5P), which is closer to real water than previously proposed classical pairwise additive potentials. In particular, we describe simulations of the TIP5P model for a wide range of deeply supercooled states, including both positive and negative pressures, which reveal (i) the existence of a non-monotonic “nose-shaped” temperature of maximum density (TMD) line and a non-reentrant spinodal, (ii) the presence of a low-temperature phase transition. The TMD that changes slope from negative to positive as P decreases and, notably, the point of crossover between the two behaviors is located at ambient pressure (temperature ≈ 4° C, and density ≈ 1 g/cm3). We also describe simulations of the dynamics of the SPC/E model, which reveal (iii) the dynamics at negative pressure shows a minimum in the diffusion constant D when the density is decreased at constant temperature, complementary to the known maximum of D at higher pressures, and (iv) the loci of minima of D relative to the spinodal shows that they are inside the thermodynamically metastable regions of the phase diagram. These dynamical results reflect the initial enhancement and subsequent breakdown of the tetrahedral structure and of the hydrogen bond network as the density decreases.

  13. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  14. Solar energy hot water heating and electric utilities. A model validation

    NASA Astrophysics Data System (ADS)

    1981-10-01

    TRNSYS is a residential solar simulation program designed to provide detailed simulations of individual solar systems composed of almost any presently used residential solar technology. The model is described and a validation of the model is presented using a group of domestic solar hot water systems in the metropolitan Philadelphia area. The collection and reduction of the data used is discussed, and the TRNSYS modeling of the systems is presented. The model results are given and a sensitivity analysis of the models was performed to determine the effect of input changes on the electric auxiliary backup consumption.

  15. Study on the behavior and mechanism of polycarbonate with hot-water aging

    NASA Astrophysics Data System (ADS)

    Kong, L. P.; Zhao, Y. X.; Zhou, C. H.; Huang, Y. H.; Tang, M.; Gao, J. G.

    2016-07-01

    The present work was concerned with hot-water aging behavior and mechanism of Bisphenol A polycarbonate (PC) used as food and packaging materials. It indicated that with the aging time prolonged, PC sample had internal defects and the mechanical properties of PC materials changed not too much, molecular weight decreased, thermal stability declined. Phenolic hydroxyl absorption intensity enhanced in IR spectra and the maximum absorption wavelength red shift of benzene in UV-Vis spectra, the level of BPA increased. The color change of PC sample was not apparent.

  16. A field study of the survival of Legionella pneumophila in a hospital hot-water system.

    PubMed Central

    Farrell, I. D.; Barker, J. E.; Miles, E. P.; Hutchison, J. G.

    1990-01-01

    The colonization, survival and control of Legionella pneumophila in a hospital hot-water system was examined. The organism was consistently isolated from calorifier drain-water samples at temperatures of 50 degrees C or below, despite previous chlorination of the system. When the temperature of one of two linked calorifiers was raised to 60 degrees C, by closing off the cold-water feed, the legionella count decreased from c. 10(4) c.f.u./l to an undetectable level. However, 10 min after turning on the cold-water feed which produced a fall in calorifier temperature, the count in the calorifier drain water returned to its original level. Investigations revealed that the cold-water supply was continually feeding the calorifiers with L. pneumophila. Simple modifications in the design of the system were made so that the cold-water feed no longer exceeds 20 degrees C; these measures have considerably reduced the number of L. pneumophila reaching the calorifiers. PMID:2189741

  17. Development test procedure High Pressure Water Jet System

    SciTech Connect

    Crystal, J.B.

    1995-06-05

    Development testing will be performed on the water jet cleaning fixture to determine the most effective arrangement of water jet nozzles to remove contamination from the surfaces of canisters and other debris. The following debris may be stained with dye to simulate surface contaminates: Mark O, Mark I, and Mark II Fuel Storage Canisters (both stainless steel and aluminum), pipe of various size, (steel, stainless, carbon steel and aluminum). Carbon steel and stainless steel plate, channel, angle, I-beam and other surfaces, specifically based on the Scientific Ecology Group (SEG) inventory and observations of debris within the basin. Test procedure for developmental testing of High Pressure Water Jet System.

  18. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  19. Contribution of Water to Pressure and Cold Denaturation of Proteins

    NASA Astrophysics Data System (ADS)

    Bianco, Valentino; Franzese, Giancarlo

    2015-09-01

    The mechanisms of cold and pressure denaturation of proteins are matter of debate and are commonly understood as due to water-mediated interactions. Here, we study several cases of proteins, with or without a unique native state, with or without hydrophilic residues, by means of a coarse-grain protein model in explicit solvent. We show, using Monte Carlo simulations, that taking into account how water at the protein interface changes its hydrogen bond properties and its density fluctuations is enough to predict protein stability regions with elliptic shapes in the temperature-pressure plane, consistent with previous theories. Our results clearly identify the different mechanisms with which water participates to denaturation and open the perspective to develop advanced computational design tools for protein engineering.

  20. Water under inner pressure: a dielectric spectroscopy study.

    PubMed

    Angulo-Sherman, Abril; Mercado-Uribe, Hilda

    2014-02-01

    Water is the most studied substance on Earth. However, it is not completely understood why its structural and dynamical properties give rise to some anomalous behaviors. Some of them emerge when experiments at low temperatures and/or high pressures are performed. Here we report dielectric measurements on cold water under macroscopically constrained conditions, i.e., water in a large container at constant volume that cannot freeze below the melting point. The inner pressure in these conditions shifts the α relaxation peak to similar frequencies as seen in ice Ih. At 267 K we observe a peculiar response possibly due to the Grotthuss mechanism. At 251 K (the triple point) ice III forms. PMID:25353481

  1. Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program

    SciTech Connect

    Pratt, R.G.; Ross, B.A.

    1991-11-01

    The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

  2. How important is hydrotherapy? Effects of dynamic action of hot spring water as a rehabilitative treatment for burn patients in Switzerland.

    PubMed

    Moufarrij, S; Deghayli, L; Raffoul, W; Hirt-Burri, N; Michetti, M; de Buys Roessingh, A; Norberg, M; Applegate, L A

    2014-12-31

    Burn rehabilitation using hydrotherapy can have multiple benefits for the burn patient. The therapy uses specific mineral enriched hot spring water and water jets with varied hydro-pressure to combat hypertrophy, inflammatory reaction signs, abnormal pigmentation, and, more specifically, redness and scarring. Standard operating procedures for burn rehabilitation have been developed and integrated into the Standard of Care at the CHUV hospital using localized hydro-mechanical stimulation of burn sites (20 minutes of alternating anatomical sites) followed by constant pressure large-bore and filiform showers targeting specific scarred areas. These therapeutic regimens are repeated daily for 2 to 3 weeks. Patients showed lasting effects from this regimen (up to 3-6 months), the results becoming permanent with more uniform skin structure, color and visco-elasticity in addition to a decrease in pruritus. The specifications of clinical protocols are described herein along with the virtues of hot spring hydro-pressure therapy for burn rehabilitation. The use of hydrotherapy, which has been a controversial topic among burn units across the world, is also discussed. In North America, hydrotherapy is defined only within the scope of in-patient wound cleansing and is thought to lead to microbial auto-contamination and bacterial resistance. In Switzerland and France the emphasis of hydrotherapy is on rehabilitation after the wound has closed. PMID:26336365

  3. How important is hydrotherapy? Effects of dynamic action of hot spring water as a rehabilitative treatment for burn patients in Switzerland

    PubMed Central

    Moufarrij, S.; Deghayli, L.; Raffoul, W.; Hirt-Burri, N.; Michetti, M.; de Buys Roessingh, A.; Norberg, M.; Applegate, L.A.

    2014-01-01

    Summary Burn rehabilitation using hydrotherapy can have multiple benefits for the burn patient. The therapy uses specific mineral enriched hot spring water and water jets with varied hydro-pressure to combat hypertrophy, inflammatory reaction signs, abnormal pigmentation, and, more specifically, redness and scarring. Standard operating procedures for burn rehabilitation have been developed and integrated into the Standard of Care at the CHUV hospital using localized hydro-mechanical stimulation of burn sites (20 minutes of alternating anatomical sites) followed by constant pressure large-bore and filiform showers targeting specific scarred areas. These therapeutic regimens are repeated daily for 2 to 3 weeks. Patients showed lasting effects from this regimen (up to 3-6 months), the results becoming permanent with more uniform skin structure, color and visco-elasticity in addition to a decrease in pruritus. The specifications of clinical protocols are described herein along with the virtues of hot spring hydro-pressure therapy for burn rehabilitation. The use of hydrotherapy, which has been a controversial topic among burn units across the world, is also discussed. In North America, hydrotherapy is defined only within the scope of in-patient wound cleansing and is thought to lead to microbial auto-contamination and bacterial resistance. In Switzerland and France the emphasis of hydrotherapy is on rehabilitation after the wound has closed. PMID:26336365

  4. Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions

    NASA Astrophysics Data System (ADS)

    Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.

    2016-04-01

    This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy. Between 2004 and 2006, four fuel segments were irradiated, with on-line recording of centerline temperature and rod pressure of the two instrumented rods and intermittent non-destructive hot-cell investigations of the other two non-instrumented rods. At the end of 2006, the instrumented rods were unloaded for hot-cell investigations. The hot-cell investigations reduced uncertainties in the power history to build a reliable and consistent irradiation history which can be used to assess and validate fuel performance codes. The on-line recorded temperatures of the instrumented rods are presented in this paper and are compared to corresponding calculations on the basis of the power history. One of the non-instrumented rods was re-inserted in the reactor in 2012 and attained a peak burnup level of 37 GWd/tHM by the end of 2014. The combined data set of on-line measurements and post irradiation examinations enables further code validation. In this context, the results of the in-house MACROS code of SCK·CEN have been compared with the experimental results. The code contains dedicated (Th,Pu)O2 models for the calculation of the thermal conductivity as a function of the burnup and models that determine the radial power profile within the pellet.

  5. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    PubMed

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure. PMID:25265908

  6. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA

    DOE PAGESBeta

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; et al

    2016-07-07

    A record fuel hot-spot pressure Phs = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility (NIF), these implosions achieved a Lawson parameter ~60% of the value required for ignition [A. Bose et al., Phys. Rev. E (in press)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is ~40%more » lower. Furthermore, three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.« less

  7. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; Collins, T. J. B.; Craxton, R. S.; Davis, A. K.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu Johnson, M.; Glebov, V. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Jacobs-Perkins, D.; Janezic, R.; Karasik, M.; Keck, R. L.; Kelly, J. H.; Kessler, T. J.; Knauer, J. P.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Obenschain, S. P.; Petrasso, R. D.; Radha, P. B.; Rice, B.; Rosenberg, M. J.; Schmitt, A. J.; Schmitt, M. J.; Seka, W.; Shmayda, W. T.; Shoup, M. J.; Shvydky, A.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Ulreich, J.; Wittman, M. D.; Woo, K. M.; Yaakobi, B.; Zuegel, J. D.

    2016-07-01

    A record fuel hot-spot pressure Phs=56 ±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ˜60 % of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  8. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  9. Impact of chlorinated disinfection on copper corrosion in hot water systems

    NASA Astrophysics Data System (ADS)

    Montes, J. Castillo; Hamdani, F.; Creus, J.; Touzain, S.; Correc, O.

    2014-09-01

    In France, hot water quality control inside buildings is occasionally ensured by disinfection treatments using temperature increases or addition of sodium hypochlorite (between 0.5 ppm and 1 ppm residual free chlorine). This disinfectant is a strong oxidiser and it could interact with metallic pipes usually used in hot water systems. This work deals with the study of the impact of these treatments on the durability of copper pipes. The objective of this work was to investigate the influence of sodium hypochlorite concentration and temperature on the copper corrosion mechanism. Copper samples were tested under dynamic and static conditions of ageing with sodium hypochlorite solutions ranging from 0 to 100 ppm with temperature at 50 °C and 70 °C. The efficiency of a corrosion inhibitor was investigated in dynamic conditions. Visual observations and analytical analyses of the internal surface of samples was studied at different ageing duration. Corrosion products were characterised by X-ray diffraction and Raman spectroscopy. Temperature and disinfectant were found to considerably affect the copper corrosion mechanism. Surprisingly, the corrosiveness of the solution was higher at lower temperatures. The temperature influences the nature of corrosion products. The protection efficiency is then strongly depend on the nature of the corrosion products formed at the surface of copper samples exposed to the aggressive solutions containing different concentration of disinfectant.

  10. High performance in low-flow solar domestic hot water systems

    SciTech Connect

    Dayan, M.

    1997-12-31

    Low-flow solar hot water heating systems employ flow rates on the order of 1/5 to 1/10 of the conventional flow. Low-flow systems are of interest because the reduced flow rate allows smaller diameter tubing, which is less costly to install. Further, low-flow systems result in increased tank stratification. Lower collector inlet temperatures are achieved through stratification and the useful energy produced by the collector is increased. The disadvantage of low-flow systems is the collector heat removal factor decreases with decreasing flow rate. Many solar domestic hot water systems require an auxiliary electric source to operate a pump in order to circulate fluid through the solar collector. A photovoltaic driven pump can be used to replace the standard electrical pump. PV driven pumps provide an ideal means of controlling the flow rate, as pumps will only circulate fluid when there is sufficient radiation. Peak performance was always found to occur when the heat exchanger tank-side flow rate was approximately equal to the average load flow rate. For low collector-side flow rates, a small deviation from the optimum flow rate will dramatically effect system performance.

  11. High-Pressure Hot-Gas Self-Acting Floating Ring Shaft Seal for Liquid Rocket Turbopumps. [tapered bore seals

    NASA Technical Reports Server (NTRS)

    Burcham, R. E.; Diamond, W. A.

    1980-01-01

    Design analysis, detail design, fabrication, and experimental evaluation was performed on two self acting floating ring shaft seals for a rocket engine turbopump high pressure 24132500 n/sq m (3500 psig) hot gas 533 K 9500 F) high speed 3142 rad/sec (30000 rmp) turbine. The initial design used Rayleigh step hydrodynamic lift pads to assist in centering the seal ring with minimum rubbing contact. The final design used a convergent tapered bore to provide hydrostatic centering force. The Rayleigh step design was tested for 107 starts and 4.52 hours total. The leakage was satisfactory; however, the design was not acceptable due to excessive wear caused by inadequate centering force and failure of the sealing dam caused by erosion damage. The tapered bore design was tested for 370 starts and 15.93 hours total. Satisfactory performance for the required life of 7.5 hours per seal was successfully demonstrated.

  12. Global hot spots of biological invasions: evaluating options for ballast-water management.

    PubMed

    Drake, John M; Lodge, David M

    2004-03-22

    Biological invasions from ballast water are a severe environmental threat and exceedingly costly to society. We identify global hot spots of invasion based on worldwide patterns of ship traffic. We then estimate the rate of port-to-port invasion using gravity models for spatial interactions, and we identify bottlenecks to the regional exchange of species using the Ford-Fulkerson algorithm for network flows. Finally, using stochastic simulations of different strategies for controlling ballast-water introductions, we find that reducing the per-ship-visit chance of causing invasion is more effective in reducing the rate of biotic homogenization than eliminating key ports that are the epicentres for global spread. PMID:15156914

  13. Global hot spots of biological invasions: evaluating options for ballast-water management.

    PubMed Central

    Drake, John M.; Lodge, David M.

    2004-01-01

    Biological invasions from ballast water are a severe environmental threat and exceedingly costly to society. We identify global hot spots of invasion based on worldwide patterns of ship traffic. We then estimate the rate of port-to-port invasion using gravity models for spatial interactions, and we identify bottlenecks to the regional exchange of species using the Ford-Fulkerson algorithm for network flows. Finally, using stochastic simulations of different strategies for controlling ballast-water introductions, we find that reducing the per-ship-visit chance of causing invasion is more effective in reducing the rate of biotic homogenization than eliminating key ports that are the epicentres for global spread. PMID:15156914

  14. Comparison of some results of program SHOW with other solar hot water computer programs

    NASA Astrophysics Data System (ADS)

    Young, M. F.; Baughn, J. W.

    Subroutines and the driver program for the simulation code SHOW (solar hot water) for solar thermosyphon systems are discussed, and simulations are compared with predictions by the F-CHART and TRNSYS codes. SHOW has the driver program MAIN, which defines the system control logic for choosing the appropriate system subroutine for analysis. Ten subroutines are described, which account for the solar system physical parameters, the weather data, the manufacturer-supplied system specifications, mass flow rates, pumped systems, total transformed radiation, load use profiles, stratification in storage, an electric water heater, and economic analyses. The three programs are employed to analyze a thermosiphon installation in Sacramento with two storage tanks. TRNSYS and SHOW were in agreement and lower than F-CHARt for annual predictions, although significantly more computer time was necessary to make TRNSYS converge.

  15. Evaporation and heating of a single suspended coal-water slurry droplet in hot gas streams

    SciTech Connect

    Shi-chune, Y.; Liu, L.

    1982-01-01

    The evaporation, heating, and burning of single coal-water slurry droplets are studied. The coal selected in this study is Pittsburgh Seam number 8 coal which is a medium volatile caking bituminous coal. The droplet is suspended on a microthermocouple and exposed to a hot gas stream. Temperature measurement and microscopic observation are performed in the parametric studies. The duration of water evaporation in CWS droplets decreases with the reduction of the droplet size, increasing of coal weight fraction, and increasing of gas temperature and velocity. The duration of heat-up is always significant due to the agglomeration. The CWS droplets are generally observed to swell like popcorn during heating. A model for the formation of the popped swelling is proposed and discussed.

  16. Enhancement of natural circulation type domestic solar hot water system performance by using a wind turbine

    NASA Astrophysics Data System (ADS)

    Ramasamy, K. K.; Srinivasan, P. S. S.

    2011-08-01

    Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted. A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop. The windmill driven pump circulates the water through the collector. The system with necessary instrumentation is tested over a day. Tests on Natural Circulation System (NCS) mode and Wind Assisted System (WAS) mode are carried out during January, April, July and October, 2009. Test results of a clear day are reported. Daily average efficiency of 25-28 % during NCS mode and 33-37 % during WAS mode are obtained. With higher wind velocities, higher collector flow rates and hence higher efficiencies are obtained. In general, WAS mode provides improvements in efficiency when compared to NCS mode.

  17. In hot water: effects of temperature-dependent interiors on the radii of water-rich super-Earths

    NASA Astrophysics Data System (ADS)

    Thomas, Scott W.; Madhusudhan, Nikku

    2016-05-01

    Observational advancements are leading to increasingly precise measurements of super-Earth masses and radii. Such measurements are used in internal structure models to constrain interior compositions of super-Earths. It is now critically important to quantify the effect of various model assumptions on the predicted radii. In particular, models often neglect thermal effects, a choice justified by noting that the thermal expansion of a solid Earth-like planet is small. However, the thermal effects for water-rich interiors may be significant. We have systematically explored the extent to which thermal effects can influence the radii of water-rich super-Earths over a wide range of masses, surface temperatures, surface pressures and water mass fractions. We developed temperature-dependent internal structure models of water-rich super-Earths that include a comprehensive temperature-dependent water equation of state. We found that thermal effects induce significant changes in their radii. For example, for super-Earths with 10 per cent water by mass, the radius increases by up to 0.5 R⊕ when the surface temperature is increased from 300 to 1000 K, assuming a surface pressure of 100 bar and an adiabatic temperature gradient in the water layer. The increase is even larger at lower surface pressures and/or higher surface temperatures, while changing the water fraction makes only a marginal difference. These effects are comparable to current super-Earth radial measurement errors, which can be better than 0.1 R⊕. It is therefore important to ensure that the thermal behaviour of water is taken into account when interpreting super-Earth radii using internal structure models.

  18. ENVIRONMENTAL ASSESSMENT OF A LOW-EMISSION OIL-FIRED RESIDENTIAL HOT WATER CONDENSING HEATING SYSTEM. VOLUME I: TECHNICAL RESULTS

    EPA Science Inventory

    The report gives results of a test program measuring air and water emissions from a high-efficiency hot-water residential heating system of European design, utilizing a condensing flue gas system and a low emission burner. Criteria and noncriteria emissions, including trace eleme...

  19. Temperature diagnostic to identify high risk areas and optimize Legionella pneumophila surveillance in hot water distribution systems.

    PubMed

    Bédard, Emilie; Fey, Stéphanie; Charron, Dominique; Lalancette, Cindy; Cantin, Philippe; Dolcé, Patrick; Laferrière, Céline; Déziel, Eric; Prévost, Michèle

    2015-03-15

    Legionella pneumophila is frequently detected in hot water distribution systems and thermal control is a common measure implemented by health care facilities. A risk assessment based on water temperature profiling and temperature distribution within the network is proposed, to guide effective monitoring strategies and allow the identification of high risk areas. Temperature and heat loss at control points (water heater, recirculation, representative points-of-use) were monitored in various sections of five health care facilities hot water distribution systems and results used to develop a temperature-based risk assessment tool. Detailed investigations show that defective return valves in faucets can cause widespread temperature losses because of hot and cold water mixing. Systems in which water temperature coming out of the water heaters was kept consistently above 60 °C and maintained above 55 °C across the network were negative for Legionella by culture or qPCR. For systems not meeting these temperature criteria, risk areas for L. pneumophila were identified using temperature profiling and system's characterization; higher risk was confirmed by more frequent microbiological detection by culture and qPCR. Results confirmed that maintaining sufficiently high temperatures within hot water distribution systems suppressed L. pneumophila culturability. However, the risk remains as shown by the persistence of L. pneumophila by qPCR. PMID:25622002

  20. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY... of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial...) Testing and Calculations. Determine the energy efficiency of each covered product by conducting the...

  1. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY... of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial...) Testing and Calculations. Determine the energy efficiency of each covered product by conducting the...

  2. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY... of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial...) Testing and Calculations. Determine the energy efficiency of each covered product by conducting the...

  3. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY... of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial...) Testing and Calculations. Determine the energy efficiency of each covered product by conducting the...

  4. 10 CFR 431.106 - Uniform test method for the measurement of energy efficiency of commercial water heaters and hot...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY... of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial...) Testing and Calculations. Determine the energy efficiency of each covered product by conducting the...

  5. Economic Assessment of Home Co-generation System with PEFC Based on Survey of Hot-water Demand

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Hino, Norio; Kasugai, Shiori; Suzuoki, Yasuo

    This paper provides a case study of the performance and the economy of micro co-generation system (μCGS) for residential use based on a time series data on the hot-water demand obtained with 1 minute interval for one year. Assuming a simple constant output operation of PEFC, we calculated the composition of hot-water supply from PEFC and backup boiler. When μCGS is equipped with 100L hot-water storage tank, many portions of hot-water output of the PEFC were wasted although the backup boiler must assist to meet the demand concentrated within a short period. Annually, about 88% of the hot-water demand was met by the PEFC and the rest 12% was met by the backup boiler. Even in this case, the primary energy consumption was small as compared to the conventional energy system, because the electricity output from the PEFC could be fully utilized in the household or grid. However, because of a relatively higher price of city gas, the variable energy cost in μCGS was higher than that in the conventional system in the summer season. When the unit cost of PEFC is reduced to about 120, 000 yen/kWe by a mass production, the annual cost on μCGS could be small relative to the conventional system.

  6. Integrated operation of a pressurized gasifier, hot gas desulfurization system and turbine simulator

    SciTech Connect

    Bevan, S.; Najewicz, D.; Gal, E.; Furman, A.H.; Ayala, R.; Feitelberg, A.

    1994-10-01

    The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. This technology will ultimately be incorporated into advanced Integrated Gasification Combined Cycle (IGCC) power generation systems. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at F conditions (2,350 F rotor inlet temperature) and (2) to quantify the combustion characteristics and emissions of such a combustor. Testing of the GE HGCU system has been underway since December 1990. The two most recent tests, Test 5 and Test 6, represent the latest advancements in regenerator configuration, type of sorbent, and chloride control systems. Test 5 was based on the use of zinc titanate sorbent and included a revised regenerator configuration and a sodium bicarbonate injection system for chloride control. Test 6 incorporated the use of Z-Sorb, a chloride guard in the regenerator recycle loop, and further modifications to the regenerator internal configuration. This report describes the test conditions in detail and discusses the test results.

  7. Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei

    2016-08-01

    Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.

  8. How deep, how hot: comparing pressure and temperature estimates from amphibole and rhyolite-MELTS thermobarometry

    NASA Astrophysics Data System (ADS)

    Pamukcu, A. S.; Gualda, G. A.

    2013-12-01

    Accurately constraining the pressure and temperature of magma residence is problematic, but it is key to understanding the structure and evolution of magmatic systems. Various thermometers exist (Fe-Ti oxides, Ti-in-zircon, Zr-in-sphene, etc.), but there are fewer barometers that can be applied to volcanic rocks. Most barometers capitalize on amphibole, a relatively common mineral whose composition is sensitive to pressure and temperature changes. Glass composition is a function of pressure for magmas saturated in quartz and feldspar, and a new thermobarometer based on rhyolite-MELTS simulations using glass (matrix glass and crystal-hosted glass inclusions) compositions has been recently proposed. We compare results from amphibole and matrix glass thermobarometry. We focus on outflow high-silica rhyolite pumice from the Peach Spring Tuff (CA-NV-AZ, USA), which are characterized by sanidine+plagioclase×quartz+amphibole+sphene in a high-silica rhyolite glass matrix. Compositional variations in amphibole are slight and described by edenite and Ti-Tschermak substitution, with little Al-Tschermak substitution, suggesting small changes in temperature but not in pressure. Plagioclase compositions are also nearly homogeneous. Thus, we expect thermobarometry results to cluster around a single pressure and temperature, making these samples excellent candidates for comparing thermobarometers. Amphibole×plagioclase thermobarometry reveals: - Amphibole-plagioclase: results vary widely depending on the calibration (e.g. 150-420 MPa, 520-730 °C); combined Anderson & Smith (1995) barometer with Holland & Blundy (1990) thermometer is most consistent, suggesting crystallization at 230 MPa, 680 °C. - Amphibole-only: calibrations give significantly different results (75-115 MPa, 770-960 °C [Ridolfi et al. 2010]; 400-950 MPa, 800-950°C [Ridolfi & Renzulli 2012]). Results suggest the recent re-calibration is particularly unreliable for these rocks, and the earlier calibration is

  9. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.

    PubMed

    Pham, An; Barisik, Murat; Kim, BoHung

    2013-12-28

    We conducted non-equilibrium molecular dynamics simulations to investigate Kapitza length at solid/liquid interfaces under the effects of bulk liquid pressures. Gold and silicon were utilized as hydrophilic and hydrophobic solid walls with different wetting surface behaviors, while the number of confined liquid water molecules was adjusted to obtain different pressures inside the channels. The interactions of solid/liquid couples were reparameterized accurately by measuring the water contact angle of solid substrates. In this paper, we present a thorough analysis of the structure, normal stress, and temperature distribution of liquid water to elucidate thermal energy transport across interfaces. Our results demonstrate excellent agreement between the pressures of liquid water in nano-channels and published thermodynamics data. The pressures measured as normal stress components were characterized using a long cut-off distance reinforced by a long-range van der Waals tail correction term. To clarify the effects of bulk liquid pressures on water structure at hydrophilic and hydrophobic solid surfaces, we defined solid/liquid interface spacing as the distance between the surface and the peak value of the first water density layer. Near the gold surface, we found that interface spacing and peak value of first water density layer were constant and did not depend on bulk liquid pressure; near the silicon surface, those values depended directly upon bulk liquid. Our results reveal that the pressure dependence of Kapitza length strongly depends on the wettability of the solid surface. In the case of the hydrophilic gold surface, Kapitza length was stable despite increasing bulk liquid pressure, while it varied significantly at the hydrophobic silicon surface. PMID:24387383

  10. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces

    SciTech Connect

    Pham, An; Kim, BoHung; Barisik, Murat

    2013-12-28

    We conducted non-equilibrium molecular dynamics simulations to investigate Kapitza length at solid/liquid interfaces under the effects of bulk liquid pressures. Gold and silicon were utilized as hydrophilic and hydrophobic solid walls with different wetting surface behaviors, while the number of confined liquid water molecules was adjusted to obtain different pressures inside the channels. The interactions of solid/liquid couples were reparameterized accurately by measuring the water contact angle of solid substrates. In this paper, we present a thorough analysis of the structure, normal stress, and temperature distribution of liquid water to elucidate thermal energy transport across interfaces. Our results demonstrate excellent agreement between the pressures of liquid water in nano-channels and published thermodynamics data. The pressures measured as normal stress components were characterized using a long cut-off distance reinforced by a long-range van der Waals tail correction term. To clarify the effects of bulk liquid pressures on water structure at hydrophilic and hydrophobic solid surfaces, we defined solid/liquid interface spacing as the distance between the surface and the peak value of the first water density layer. Near the gold surface, we found that interface spacing and peak value of first water density layer were constant and did not depend on bulk liquid pressure; near the silicon surface, those values depended directly upon bulk liquid. Our results reveal that the pressure dependence of Kapitza length strongly depends on the wettability of the solid surface. In the case of the hydrophilic gold surface, Kapitza length was stable despite increasing bulk liquid pressure, while it varied significantly at the hydrophobic silicon surface.

  11. Water vapor pressure should be addressed in Potomac study

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    In Bruce Doe's article, “A Potomac Perspective on the Growing Global Greenhouse” (Eos, January 5,1999), a statement is made in the next to last paragraph that “other climatic parameters such as precipitation can correlate better than temperature among the five sites.” It would be expected that precipitation, and in particular the partial pressure of water vapor, should correlate with the carbon dioxide greenhouse effect. It was pointed out by W. G. Egan and coworkers in 1991 that there is an inverse relationship between carbon dioxide and water vapor partial pressure, seen both in laboratory experiments and at all worldwide Global Monitoring for Climate Change monitoring stations. Specific examples were presented for Cold Bay, Alaska and Palmer Station, Antarctica monthly and annually

  12. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  13. Pressure-induced transformations in computer simulations of glassy water

    NASA Astrophysics Data System (ADS)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  14. Pressure-induced transformations in computer simulations of glassy water.

    PubMed

    Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas

    2013-11-14

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water. PMID:24320281

  15. Water in Olivine and its High-Pressure Polymorphs

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Jacobsen, S. D.; Bina, C. R.; Reichart, P.; Moser, M.; Dollinger, G.; Hauri, E. H.

    2014-12-01

    Theory and high-pressure experiments imply a significant water storage capacity of nominally anhydrous minerals (NAMs), such as olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. The presence of water, dissolved as OH into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. The first direct evidence for hydration of the transition zone has recently been reported by Pearson et al. (2014) and Schmandt et al. (2014). Knowledge of absolute water contents in NAMs is essential for modeling the Earth's interior water cycle. To take advantage of IR spectroscopy as highly sensitive water quantification tool, mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry (SIMS), Raman spectroscopy or proton-proton(pp)-scattering. Broad beam pp-scattering has been performed on double-polished mm-sized mineral platelets (Thomas et al. 2008), but until recently analysis was not feasible for smaller samples synthetized in high-pressure apparati. Here we present first results from pp-scattering microscopy studies on μm-sized single crystals of hydrous olivine, wadsleyite and ringwoodite, which were synthesized at various pressure-temperature conditions in a multi-anvil press. The method allows us to quantify 3D distributions of atomic hydrogen in μm dimensions. These self-calibrating measurements were carried out at the nuclear microprobe SNAKE at the Munich tandem accelerator lab using a 25 MeV proton microbeam. We provide hydrogen depth-profiles, hydrogen maps and H2O concentrations. Pp-scattering data and results from independent Raman and SIMS analyses are in good agreement. Water contents for a set of high-pressure polymorphs with varying Fe-concentrations range from 0

  16. Excess pore water pressure due to ground surface erosion

    NASA Astrophysics Data System (ADS)

    Llewellyn Smith, Stefan; Gagniere, Steven

    2015-11-01

    Erosional unloading is the process whereby surface rocks and soil are removed by external processes, resulting in changes to water pressure within the underlying aquifer. We consider a mathematical model of changes in excess pore water pressure as a result of erosional unloading. Neuzil and Pollock (1983) studied this process in the case where the water table initially coincides with the surface. In contrast, we analyze an ideal aquifer which is initially separated from the ground surface by an unsaturated zone. The model is solved using Laplace Transform methods in conjunction with a boost operator derived by King (1985). The boost operator is used to boost the solution (in the Laplace domain) to a frame of reference moving at constant velocity with respect to the original frame. We use our solution to analyze the evolution of the pressure during erosion of the aquifer itself for small and large erosion rates. We also examine the flux at the upper boundary as a function of time and present a quasi-steady approximation valid for very small erosion rates in the appendix.

  17. Integrated operation of a pressurized fixed-bed gasifier, hot gas desulfurization system, and turbine simulator

    SciTech Connect

    Bevan, S.; Ayala, R.E.; Feitelberg, A.; Furman, A.

    1995-11-01

    The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. The HGCU Program is based on the design and demonstration of the HGCU system in a test facility made up of a pilot-scale fixed bed gasifier, a HGCU system, and a turbine simulator in Schenectady, NY, at the General Electric Research and Development Center. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at 2,350 F rotor inlet temperature and (2) to quantify the combustion characteristics and emissions on low-Btu fuel gas. The turbine simulator program also includes the development and operation of experimental combustors based on the rich-quench-lean concept (RQL) to minimize the conversion of ammonia and other fuel-bound nitrogen species to NO{sub x} during combustion. The HGCU system and turbine simulator have been designed to process approximately 8,000 lb/hr of low heating value fuel gas produced by the GE fixed bed gasifier. The HGCU system has utilized several mixed metal oxide sorbents, including zinc ferrite, zinc titanate, and Z-Sorb, with the objective of demonstrating good sulfur removal and mechanical attrition resistance as well as economic cost characteristics. Demonstration of halogen removal and the characterization of alkali and trace metal concentrations in the fuel gas are subordinate objectives of the overall program. This report describes the results of several long-duration pilot tests.

  18. Anomalies in bulk supercooled water at negative pressure.

    PubMed

    Pallares, Gaël; El Mekki Azouzi, Mouna; González, Miguel A; Aragones, Juan L; Abascal, José L F; Valeriani, Chantal; Caupin, Frédéric

    2014-06-01

    Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144-6154], or emanate from a critical point terminating a liquid-liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727-737]. At positive pressure, the LMκT has escaped observation because it lies in the "no man's land" beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man's land at negative pressure. PMID:24843177

  19. Anomalies in bulk supercooled water at negative pressure

    PubMed Central

    Pallares, Gaël; El Mekki Azouzi, Mouna; González, Miguel A.; Aragones, Juan L.; Abascal, José L. F.; Valeriani, Chantal; Caupin, Frédéric

    2014-01-01

    Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144–6154], or emanate from a critical point terminating a liquid–liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727–737]. At positive pressure, the LMκT has escaped observation because it lies in the “no man’s land” beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man’s land at negative pressure. PMID:24843177

  20. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium tritium implosions on OMEGA

    SciTech Connect

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Yu. Glebov, V.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nora, R.; Radha, P. B.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R.W.; Shvydky, A.; Skupsky, S.; Stoeckl, C.; Yaakobi, B.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Casey, D. T.

    2014-05-01

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≅ 4, an implosion velocity of 3.8 × 10⁷ cm/s, and a laser intensity of ~10¹⁵ W/cm². These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  1. Water and acetaldehyde in HH212: The first hot corino in Orion

    NASA Astrophysics Data System (ADS)

    Codella, C.; Ceccarelli, C.; Cabrit, S.; Gueth, F.; Podio, L.; Bachiller, R.; Fontani, F.; Gusdorf, A.; Lefloch, B.; Leurini, S.; Tafalla, M.

    2016-02-01

    Aims: Using the unprecedented combination of high resolution and sensitivity offered by ALMA, we aim to investigate whether and how hot corinos, circumstellar disks, and ejected gas are related in young solar-mass protostars. Methods: We observed CH3CHO and deuterated water (HDO) high-excitation (Eu up to 335 K) lines towards the Sun-like protostar HH212-MM1. Results: For the first time, we have obtained images of CH3CHO and HDO emission in the inner ≃100 AU of HH212. The multifrequency line analysis allows us to contrain the density (≥107 cm-3), temperature (≃100 K), and CH3CHO abundance (≃0.2-2 × 10-9) of the emitting region. The HDO profile is asymmetric at low velocities (≤2 km s-1 from Vsys). If the HDO line is optically thick, this points to an extremely small (~20-40 AU) and dense (≥109 cm-3) emitting region. Conclusions: We report the first detection of a hot corino in Orion. The HDO asymmetric profile indicates a contribution of outflowing gas from the compact central region, possibly associated with a dense disk wind.

  2. Quantification of Dynamic Water-Rock-Microbe Interactions in a Travertine-Depositing Hot Spring, Mammoth Hot Springs, Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    DeMott, L. M.; Sivaguru, M.; Fried, G.; Sanford, R. A.; Fouke, B. W.

    2014-12-01

    Filamentous microbial mats in a travertine-depositing hot spring at Mammoth Hot Springs in Yellowstone National Park exert primary controls on the growth rate, mineralogy, and crystal fabric of calcium carbonate minerals (travertine) that precipitate in the spring. Filaments directly affect porosity and permeability of travertine by providing a structural framework consisting of "ropes" of microbial cells around which carbonate minerals precipitate, creating a uniquely biogenetic mineral fabric characterized by horizontal layers of large tubular pores. Nanometer scale microscopy reveals that these mineral fabrics may be directly tied to microbial activities, as aragonite crystals precipitating directly on filaments are smaller and more densely packed than crystals precipitating on extra-polymeric substances (EPS) between filaments. In order to more closely examine the processes which control calcium carbonate crystallization dynamics in this system, a high-resolution transect of water and travertine was sampled for geochemistry, microscopy, and microbial biomass along the primary flow path from upstream to downstream of Narrow Gauge spring at Mammoth Hot Springs. Travertine samples were analyzed for petrography using transmitted light, cathodoluminescence, and laser confocal microscopy to examine crystal morphology and associations with microbial filaments and provide insight on pore network distributions. Additionally, travertine and spring water geochemistry was also analyzed for major and trace ions, δ34S, δ13C, and δ18O, to identify any trends that may relate to crystallization rates, microbial biomass, or crystal habit. Total biomass was determined using dried weight. Water-rock-microbe interactions result in upstream-to-downstream variations in travertine crystal morphology and water chemistry that are directly related to systematic changes in microbial biomass and community respiration. Geochemical modeling lends insight into the biogeochemical reactions

  3. Remote Sensing of Atmospheric Water Vapour by Pressure Modulation Radiometry.

    NASA Astrophysics Data System (ADS)

    Davis, G. R.

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. The Stratospheric and Mesospheric Sounder (SAMS) was a limb-sounding satellite experiment which used the technique of pressure modulation radiometry to measure the temperature and constituent distributions in the middle atmosphere. Two channels in the SAMS were devoted to the detection of water vapour, but the analysis of these data have produced unexpectedly high mixing ratios in the region of the stratopause. This thesis describes an attempt to resolve the discrepancy between theory and experiment by a laboratory investigation of the pressure modulation of water vapour. The central role of water vapour in the physics and chemistry of the middle atmosphere and previous attempts to measure its abundance are discussed. It is shown that the intercomparison of humidity sensing instruments has not produced a consensus and that the accuracy of the reported measurements is therefore in question. The SAMS water vapour channels are described and the need is shown for a laboratory transmission experiment. The pressure modulation technique is described in chapter 2 and a mathematical formulation is given. The constraints due to contaminant signals and harmonic contributions are considered and the use of the square wave chopping approximation in the interpretation of the measurements is discussed. In chapter 3, the spectroscopy of the H _2O rotation band is considered and it is shown that there are large uncertainties in most aspects of the problem due to the lack of spectroscopic measurements in this spectral region. In particular, the shapes of the collision broadened line wings under both self and foreign broadened conditions are poorly determined, a situation which is especially problematic for pressure modulation radiometry. The pressure modulation of water vapour is investigated in chapter 4 and it is shown by direct measurement of the pressure cycle that the linear model used by previous

  4. Task 15 -- Remediation of organically contaminated soil using hot/liquid (subcritical) water. Semi-annual report, April 1--September 30, 1997

    SciTech Connect

    Hawthorne, S.B.

    1997-12-31

    This activity involves a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies are being performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal are also being performed. Liquid water is normally considered to be too polar a solvent to be effective for removal of organic contaminants from contaminated soils and sludges. However, the Energy and Environmental Research Center (EERC) has demonstrated that the polarity of liquid water can be changed from that of a very polar solvent at ambient conditions to that of an organic solvent (e.g., ethanol or acetonitrile) by simply raising the temperature. The EERC has exploited this unique property of liquid water to obtain highly selective extractions of polar (at lower temperatures) to nonpolar (at 200 to 250 C) organics from contaminated soils and sludges. Only moderate pressures (a maximum of about 45 atm at 250 C and lower pressures at lower temperatures) are required. With this procedure, all detectable hazardous organics were removed from the sludge, thus making the remaining material (about 99% of the original mass) a nonhazardous material. The present understanding of hot/liquid water extraction for the removal of hazardous organics from contaminated soils and sludges is being used to develop the engineering parameters needed to perform a pilot-scale demonstration of the remediation technology. Progress during the report period is summarized.

  5. Where Did the Water Go? Boyle's Law and Pressurized Diaphragm Water Tanks

    NASA Astrophysics Data System (ADS)

    Brimhall, James; Naga, Sundar

    2007-03-01

    Many homes use pressurized diaphragm tanks for storage of water pumped from an underground well. These tanks are very carefully constructed to have separate internal chambers for the storage of water and for the air that provides the pressure. One might expect that the amount of water available for use from, for example, a 50-gallon tank would be close to 50 gallons. However, only a surprisingly small percentage of the total tank volume is available to provide water that can be drawn from the tank before the pump must cycle back on. Boyle's law ( PV is constant) provides mathematical insight into the workings of this type of tank, including predictions of the quantities of available water resulting from different initial conditions of the water tank system.

  6. PVDF water-shock pressure transducer with 200-ns response

    SciTech Connect

    Johnson, D.E.; Hogeland, S.R.; Nelson, L.S.

    1992-12-01

    The design, calibration, and preliminary test results for an underwater shock gauge are presented. The active element is a 25-{mu}m thick polyvinylidene fluoride shock sensor providing rise times as short as 50 ns. Fast rise time is essential to accurate recording of shock pulses with durations of only a few microseconds. The piezoelectric polymer provides a self-generating pressure sensor requiring neither amplification nor additional active electronic circuitry. The gauge package is designed to minimize electromagnetic interference from the high-voltage fire set used to power the exploding bridge wire pressure source. The gauge package is constructed to withstand the initial water shock as well as subsequent reactions in the water that result in strong water motion and bubble generation. Thin-film diaphragm sensors are not sturdy enough to withstand this environment. Initial tests show that the gauge responds in 200 ns in water and that low-frequency response is sufficient to allow recording for at least 40 {mu}s after the initial shock arrival.

  7. Improvement of tolerance of Saccharomyces cerevisiae to hot-compressed water-treated cellulose by expression of ADH1.

    PubMed

    Jayakody, Lahiru N; Horie, Kenta; Hayashi, Nobuyuki; Kitagaki, Hiroshi

    2012-04-01

    Hot-compressed water treatment of cellulose and hemicellulose for subsequent bioethanol production is a novel, economically feasible, and nonhazardous method for recovering sugars. However, the hot-compressed water-treated cellulose and hemicellulose inhibit subsequent ethanol fermentation by the yeast Saccharomyces cerevisiae. To overcome this problem, we engineered a yeast strain with improved tolerance to hot-compressed water-treated cellulose. We first determined that glycolaldehyde has a greater inhibitory effect than 5-HMF and furfural and a combinational effect with them. On the basis of the hypothesis that the reduction of glycolaldehyde to ethylene glycol should detoxify glycolaldehyde, we developed a strain overexpressing the alcohol dehydrogenase gene ADH1. The ADH1-overexpressing strain exhibits an improved fermentation profile in a glycolaldehyde-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 30 ± 1.9% when the control strain is used; this ratio increases to 77 ± 3.6% in the case of the ADH1-overexpressing strain. A glycolaldehyde treatment and the overexpression of ADH1 cause changes in the fermentation products so as to balance the metabolic carbon flux and the redox status. Finally, the ADH1-overexpressing strain shows a statistically significantly improved fermentation profile in a hot-compressed water-treated cellulose-containing medium. The conversion ratio of glycolaldehyde to ethylene glycol is 33 ± 0.85% when the control strain is used but increases to 72 ± 1.7% in the case of the ADH1-overexpressing strain. These results show that the reduction of glycolaldehyde to ethylene glycol is a promising strategy to decrease the toxicity of hot-compressed water-treated cellulose. This is the first report on the improvement of yeast tolerance to hot-compressed water-treated cellulose and glycolaldehyde. PMID:22311646

  8. Implementation plan for the demonstration of a 50,000 ft/sup 2/ solar hot water system for the textile industry. Final report

    SciTech Connect

    Hester, J.C.; Beasley, D.E.; Rogers, W.A. Jr.

    1980-08-01

    An analysis of textile processes was conducted to determine their applicability to integration into a 50,000 ft/sup 2/ collector field and into a waste heat recovery system. Various processes in a typical carpet finishing plant, a typical cotton/cotton blend finishing plant, and a typical 100% synthetic fabric pressurized beck finishing plant are analyzed. The flat-plate, evacuated tube, and parabolic concentrator are discussed and evaluated. Evaluations of direct heat exchange, closed cycle enhanced recovery, and open cycle enhanced heat recovery techniques as applied to textile processes are presented. Conceptual designs are discussed that use a solar array to produce hot water and use standard boilers to produce process steam and to augment the hot water output when insolation values are insufficient to meet process demands. Conceptual designs and cost estimates are presented for: process water systems with evacuated tube solar collectors; process water system with concentrating-tracking solar collectors; feedwater system with concentrating-tracking solar collectors; templifier and direct exchange waste heat recovery system; direct heat recovery systems; integrated system using enhanced heat recovery and concentrating-tracking solar collectors; integrated system using direct heat recovery and concentrating-tracking solar collectors; integrated system using direct heat recovery, evacuated tube solar collectors and concentrating-tracking solar collectors; and integrated system using enhanced heat recovery, evacuated tube collectors, and concentrating-tracking source collectors. An economic evaluation of the systems is presented using the rate of return method. Results and recommendations are summarized. (MCW)

  9. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 281 Solar Hot Water Application Assessment for U.S. Army IMCOM-Southeast Region

    SciTech Connect

    Russo, Bryan J.; Chvala, William D.

    2010-09-30

    The Energy Independence and Security Act of 2007 requires installations (EISA) to install solar systems of sufficient capacity to provide 30% of service hot water in new construction and renovations where cost-effective. However, installations are struggling with how to implement solar hot water, and while several installations are installing solar hot water on a limited basis, paybacks remain long. Pacific Northwest National Laboratory (PNNL) was tasked to address this issue to help determine how best to implement solar hot water projects. This documents discusses the results of that project.

  10. An investigation of photovoltaic powered pumps in direct solar domestic hot water systems

    SciTech Connect

    Al-Ibrahim, A.M.; Klein, S.A.; Mitchell, J.W.; Beckman, W.A.

    1996-09-01

    The performance of photovoltaic powered pumps in direct solar domestic hot water (PV-SDHW) systems has been studied. The direct PV- SDHW system employs a photovoltaic array, a separately excited DC- motor, a centrifugal pump, a thermal collector, and a storage tank. A search methodology for an optimum PV-SDHW system configuration has been proposed. A comparison is made between the long-term performance of a PV-SDHW system and a conventional SDHW system operating under three control schemes. The three schemes are: an ON-OFF flow controlled SDHW system operating at the manufacturer-recommended constant flow rate, and a linear proportional flow controlled SDHW system with the flow proportional to the solar radiation operating under an optimum proportionality. 13 refs., 6 figs.

  11. Hot water dipping of olives (Olea europaea) for virgin oil debittering.

    PubMed

    García, José M; Yousfi, Khaled; Oliva, Jesús; García-Diaz, M Teresa; Pérez-Camino, M Carmen

    2005-10-19

    Olives (Olea europaea L.) of the Manzanilla, Picual, and Verdial varieties harvested at the green mature stage of ripening were dipped in hot water at a range of temperatures between 60 and 72 degrees C for 3 min. Immediately after treatment, oils were physically extracted from the olives. Olive heating promotes a reduction of oil bitterness in direct relationship to the temperature used. Fruit heating at > or =60 degrees C for 3 min did not cause significant changes in acidity, UV absorption, peroxide index, and panel test score of the oils obtained but decreased its oxidative stability. Oils extracted from heated fruit showed higher concentrations of chlorophylls and carotenes and lower total phenol content. PMID:16218671

  12. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  13. The Role of Water Occlusion for the Definition of a Protein Binding Hot-Spot.

    PubMed

    Moreira, Irina S

    2015-01-01

    Biological systems rely on the establishment of interactions between biomolecules, which take place in the aqueous environment of the cell. It was already demonstrated that a small set of residues at the interface, Hot-Spots(HS), contributes significantly to the binding free energy. However, these energetic determinants of affinity and specificity are still not fully understood. Moreover, the contribution of water to their HS character is also poorly characterized. In this review, we have focused on the structural data available that support the occlusion of HS from solvent, and therefore the "O-ring theory"not only on protein-protein but also on protein-DNA complexes. We also emphasized the use of Solvent Accessible Surface Area (SASA) features in a variety of machine-learning approaches that aim to detect binding HS. PMID:25986686

  14. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts.

    PubMed

    Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke

    2015-04-01

    Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. PMID:25442573

  15. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  16. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot-water heater in a solar simulator. The objective of the test was to determine basic performance characteristics of a traditional type of flat-plate collector, with and without side reflectors (to increase the solar flux). Due to the fact that collector testing in the solar simulator permits control of the variables that affect collector performance, it was possible to obtain information on each of the following: (1) the effect of flow and incidence angle on the efficiency of a flat-plate collector (but only without side reflectors), (2) transient performance under flow and nonflow conditions, (3) the effectiveness of reflectors in increasing collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning, and (4) the limits of applicability of a collector efficiency correlation based on the Hottel-Whillier equation (1958).

  17. An experimental investigation with artificial sunlight of a solar hot-water heater

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.

  18. Application of hot melt extrusion for poorly water-soluble drugs: limitations, advances and future prospects.

    PubMed

    Lu, Ming; Guo, Zhefei; Li, Yongcheng; Pang, Huishi; Lin, Ling; Liu, Xu; Pan, Xin; Wu, Chuanbin

    2014-01-01

    Hot melt extrusion (HME) is a powerful technology to enhance the solubility and bioavailability of poorly water-soluble drugs by producing amorphous solid dispersions. Although the number of articles and patents about HME increased dramatically in the past twenty years, there are very few commercial products by far. The three main obstacles limiting the commercial application of HME are summarized as thermal degradation of heat-sensitive drugs at high process temperature, recrystallization of amorphous drugs during storage and dissolving process, and difficulty to obtain products with reproducible physicochemical properties. Many efforts have been taken in recent years to understand the basic mechanism underlying these obstacles and then to overcome them. This article reviewed and summarized the limitations, recent advances, and future prospects of HME. PMID:23651401

  19. Legionella thermalis sp. nov., isolated from hot spring water in Tokyo, Japan.

    PubMed

    Ishizaki, Naoto; Sogawa, Kazuyuki; Inoue, Hiroaki; Agata, Kunio; Edagawa, Akiko; Miyamoto, Hiroshi; Fukuyama, Masafumi; Furuhata, Katsunori

    2016-03-01

    Strain L-47(T) of a novel bacterial species belonging to the genus Legionella was isolated from a sample of hot spring water from Tokyo, Japan. The 16S rRNA gene sequences (1477 bp) of this strain (accession number AB899895) had less than 95.0% identity with other Legionella species. The dominant fatty acids of strain L-47(T) were a15:0 (29.6%) and the major ubiquinone was Q-12 (71.1%). It had a guanine-plus-cytosine content of 41.5 mol%. The taxonomic description of Legionella thermalis sp. nov. is proposed to be type strain L-47(T) (JCM 30970(T)  = KCTC 42799(T)). PMID:26865126

  20. Spectrum of hot water in the 2000-4750 cm -1 frequency range

    NASA Astrophysics Data System (ADS)

    Zobov, Nikolai F.; Shirin, Sergei V.; Polyansky, Oleg L.; Barber, Robert J.; Tennyson, Jonathan; Coheur, Pierre-François; Bernath, Peter F.; Carleer, Michel; Colin, Reginald

    2006-05-01

    An emission spectrum recorded in an oxyacetylene torch [P.-F. Coheur, P.F. Bernath, M. Carleer, R. Colin, O.L. Polyansky, N.F. Zobov, S.V. Shirin, R.J. Barber, J. Tennyson, J. Chem. Phys. 122 (2005) 074307] is analyzed for the region covering stretching fundamentals and associated hot bands of water. Many lines could be assigned on the basis of previously determined energy levels. New assignments made with a new variational linelist allow a further 800 energy levels covering 15 vibrational states and rotations up to J = 32 to be assigned. A simultaneous re-analysis of previously reported sunspot absorption spectra leads to the assignment of 581 further lines in the L-band spectrum and 67 in the N-band spectrum.