Science.gov

Sample records for prevent liver damage

  1. Hemopexin Prevents Endothelial Damage and Liver Congestion in a Mouse Model of Heme Overload

    PubMed Central

    Vinchi, Francesca; Gastaldi, Stefania; Silengo, Lorenzo; Altruda, Fiorella; Tolosano, Emanuela

    2008-01-01

    Intravascular hemolysis results in the release of massive amounts of hemoglobin and heme into plasma, where they are rapidly bound by haptoglobin and hemopexin, respectively. Data from haptoglobin and hemopexin knockout mice have shown that both proteins protect from renal damage after phenylhydrazine-induced hemolysis, whereas double-mutant mice were especially prone to liver damage. However, the specific role of hemopexin remains elusive because of the difficulty in discriminating between hemoglobin and heme recovery. To study the specific role of hemopexin in intravascular hemolysis, we established a mouse model of heme overload. Under these conditions, both endothelial activation and vascular permeability were significantly higher in hemopexin-null mice compared with wild-type controls. Vascular permeability was particularly altered in the liver, where congestion in the centrolobular area was believed to be associated with oxidative stress and inflammation. Liver damage in hemopexin- null mice may be prevented by induction of heme oxygenase-1 before heme overload. Furthermore, heme-treated hemopexin-null mice exhibited hyperbilirubinemia, prolonged heme oxygenase-1 expression, excessive heme metabolism, and lack of H-ferritin induction in the liver compared with heme-treated wild-type controls. Moreover, these mutant mice metabolize an excess of heme in the kidney. These studies highlight the importance of hemopexin in heme detoxification, thus suggesting that drugs mimicking hemopexin activity might be useful to prevent endothelial damage in patients suffering from hemolytic disorders. PMID:18556779

  2. Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise.

    PubMed

    Radák, Z; Asano, K; Inoue, M; Kizaki, T; Oh-Ishi, S; Suzuki, K; Taniguchi, N; Ohno, H

    1996-01-01

    To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TBARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TBARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney. PMID:8820884

  3. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro.

    PubMed

    Lapshina, Elena A; Zamaraeva, Maria; Cheshchevik, Vitali T; Olchowik-Grabarek, Ewa; Sekowski, Szymon; Zukowska, Izabela; Golovach, Nina G; Burd, Vasili N; Zavodnik, Ilya B

    2015-06-01

    The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50  = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50  = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50  = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events. PMID:25962994

  4. Bioactive 1,4-dihydroisonicotinic acid derivatives prevent oxidative damage of liver cells.

    PubMed

    Borovic, Suzana; Tirzitis, Gunars; Tirzite, Dace; Cipak, Ana; Khoschsorur, Gholam A; Waeg, Georg; Tatzber, Franz; Scukanec-Spoljar, Mira; Zarkovic, Neven

    2006-05-10

    1,4-Dihydroisonicotinic acid derivatives (1,4-DHINA) are compounds closely related to derivatives of 1,4-dihydropyridine, a well-known calcium channel antagonists. 1,4-DHINA we used were derived from a well-known antioxidant Diludin. Although some compounds have neuromodulatory or antimutagenic properties, their activity mechanisms are not well known. This study was performed to obtain data on antioxidant and bioprotective activities of: 2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydroisonicotinic acid (Ia); sodium 2-(2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine-4-carboxamido)glutamate (Ib) and sodium 2-(2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine-4-carboxamido)ethane-sulphate (Ic). 1,4-DHINA's activities were studied in comparison to Trolox by: N,N-Diphenyl-N'-picrylhydrazyl (DPPH*), deoxyribose degradation, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical scavenging and antioxidative capacity assays; copper-induced lipid peroxidation of cultured rat liver cells (malondialdehyde determination by high performance liquid chromatography and 4-hydroxynonenal-protein conjugates by dot-blot); (3)H-thymidine incorporation and trypan blue assay for liver cells growth and viability. In all assays used Ia was the most potent antioxidant. Ia was also a potent antioxidant at non-toxic concentrations for liver cell cultures. It completely abolished, while Ic only slightly decreased copper-induced lipid peroxidation of liver cells. Thus, antioxidant capacities are important activity principle of Ia, which was even superior to Trolox in the cell cultures used, while activity principles of Ic and Ib remain yet to be determined. PMID:16600211

  5. Liver (Hepatocellular) Cancer Prevention

    MedlinePlus

    ... Liver cancer is not common in the United States. Liver cancer is the fourth most common cancer and the third leading cause of cancer death in the world. In the United States, men, especially Chinese American men, have an increased ...

  6. 6-Gingerol-Rich Fraction from Zingiber officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim.

    PubMed

    Salihu, Mariama; Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-07-01

    Ginger (Zingiber officinale) is a globally marketed flavoring agent and cooking spice with a long history of human health benefits. The fungicide carbendazim (CBZ) is often detected in fruits and vegetables for human nutrition and has been reported to elicit toxic effects in different experimental animal models. The present study investigated the protective effects of 6-Gingerol-rich fraction (6-GRF) from ginger on hematotoxicity and hepatorenal damage in rats exposed to CBZ. CBZ was administered at a dose of 50 mg/kg alone or simultaneously administered with 6-GRF at 50, 100, and 200 mg/kg, whereas control rats received corn oil alone at 2 mL/kg for 14 days. Hematological examination showed that CBZ-mediated toxicity to the total white blood cell (WBC), neutrophils, lymphocytes, and platelets counts were normalized to the control values in rats cotreated with 6-GRF. Moreover, administration of CBZ significantly decreased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase as well as glutathione level in the livers and kidneys of rats compared with control. However, the levels of hydrogen peroxide (H2O2) and malondialdehyde were markedly elevated in kidneys and livers of CBZ-treated rats compared with control. The significant elevation in the plasma indices of renal and hepatic dysfunction in CBZ-treated rats was confirmed by light microscopy. Coadministration of 6-GRF exhibited chemoprotection against CBZ-mediated hematotoxicity, augmented antioxidant status, and prevented oxidative damage in the kidney and liver of rats. PMID:26673969

  7. Methamphetamine causes acute hyperthermia-dependent liver damage

    PubMed Central

    Halpin, Laura E; Gunning, William T; Yamamoto, Bryan K

    2013-01-01

    Methamphetamine-induced neurotoxicity has been correlated with damage to the liver but this damage has not been extensively characterized. Moreover, the mechanism by which the drug contributes to liver damage is unknown. This study characterizes the hepatocellular toxicity of methamphetamine and examines if hyperthermia contributes to this liver damage. Livers from methamphetamine-treated rats were examined using electron microscopy and hematoxylin and eosin staining. Methamphetamine increased glycogen stores, mitochondrial aggregation, microvesicular lipid, and hydropic change. These changes were diffuse throughout the hepatic lobule, as evidenced by a lack of hematoxylin and eosin staining. To confirm if these changes were indicative of damage, serum aspartate and alanine aminotransferase were measured. The functional significance of methamphetamine-induced liver damage was also examined by measuring plasma ammonia. To examine the contribution of hyperthermia to this damage, methamphetamine-treated rats were cooled during and after drug treatment by cooling their external environment. Serum aspartate and alanine aminotransferase, as well as plasma ammonia were increased concurrently with these morphologic changes and were prevented when methamphetamine-induced hyperthermia was blocked. These findings support that methamphetamine produces changes in hepatocellular morphology and damage persisting for at least 24 h after drug exposure. At this same time point, methamphetamine treatment significantly increases plasma ammonia concentrations, consistent with impaired ammonia metabolism and functional liver damage. Methamphetamine-induced hyperthermia contributes significantly to the persistent liver damage and increases in peripheral ammonia produced by the drug. PMID:25505562

  8. Methamphetamine causes acute hyperthermia-dependent liver damage.

    PubMed

    Halpin, Laura E; Gunning, William T; Yamamoto, Bryan K

    2013-10-01

    Methamphetamine-induced neurotoxicity has been correlated with damage to the liver but this damage has not been extensively characterized. Moreover, the mechanism by which the drug contributes to liver damage is unknown. This study characterizes the hepatocellular toxicity of methamphetamine and examines if hyperthermia contributes to this liver damage. Livers from methamphetamine-treated rats were examined using electron microscopy and hematoxylin and eosin staining. Methamphetamine increased glycogen stores, mitochondrial aggregation, microvesicular lipid, and hydropic change. These changes were diffuse throughout the hepatic lobule, as evidenced by a lack of hematoxylin and eosin staining. To confirm if these changes were indicative of damage, serum aspartate and alanine aminotransferase were measured. The functional significance of methamphetamine-induced liver damage was also examined by measuring plasma ammonia. To examine the contribution of hyperthermia to this damage, methamphetamine-treated rats were cooled during and after drug treatment by cooling their external environment. Serum aspartate and alanine aminotransferase, as well as plasma ammonia were increased concurrently with these morphologic changes and were prevented when methamphetamine-induced hyperthermia was blocked. These findings support that methamphetamine produces changes in hepatocellular morphology and damage persisting for at least 24 h after drug exposure. At this same time point, methamphetamine treatment significantly increases plasma ammonia concentrations, consistent with impaired ammonia metabolism and functional liver damage. Methamphetamine-induced hyperthermia contributes significantly to the persistent liver damage and increases in peripheral ammonia produced by the drug. PMID:25505562

  9. Mechanisms of Diabetes-Induced Liver Damage

    PubMed Central

    Mohamed, Jamaludin; Nazratun Nafizah, A. H.; Zariyantey, A. H.; Budin, S. B.

    2016-01-01

    Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to non-alcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines—including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α—exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals. PMID:27226903

  10. Moringa oleifera Lam. seed extract prevents fat diet induced oxidative stress in mice and protects liver cell-nuclei from hydroxyl radical mediated damage.

    PubMed

    Das, Nilanjan; Ganguli, Debdutta; Dey, Sanjit

    2015-12-01

    High fat diet (HFD) prompts metabolic pattern inducing reactive oxygen species (ROS) production in mitochondria thereby triggering multitude of chronic disorders in human. Antioxidants from plant sources may be an imperative remedy against this disorder. However, it requires scientific validation. In this study, we explored if (i) Moringa oleifera seed extract (MoSE) can neutralize ROS generated in HFD fed mice; (ii) protect cell-nuclei damage developed by Fenton reaction in vitro. Swiss mice were fed with HFD to develop oxidative stress model (HFD group). Other groups were control, seed extract alone treated, and MoSE simultaneously (HS) treated. Treatment period was of 15 days. Antioxidant enzymes with tissue nitrite content (TNC) and lipid peroxidation (LPO) were estimated from liver homogenate. HS group showed significantly higher (P < 0.05) superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) activity, and ferric reducing antioxidant power (FRAP) compared to only HFD fed group. Further, TNC and LPO decreased significantly (P < 0.05) in HS group compared to HFD fed group. MoSE also protected hepatocytes nuclei from the hydroxyl radicals generated by Fenton reaction. MoSE was found to be polyphenol rich with potent reducing power, free radicals and hydroxyl radicals scavenging activity. Thus, MoSE exhibited robust antioxidant prospective to neutralize ROS developed in HFD fed mice and also protected the nuclei damage from hydroxyl radicals. Hence, it can be used as herbal medication against HFD induced ROS mediated disorders. PMID:26742324

  11. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    MedlinePlus

    ... Careful: Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin it More sharing ... word or may have the abbreviation "APAP." Severe liver damage may occur and may lead to death ...

  12. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  13. Liver Damage Associated with Polygonum multiflorum Thunb.: A Systematic Review of Case Reports and Case Series

    PubMed Central

    Lei, Xiang; Chen, Jing; Ren, Jingtian; Li, Yan; Zhai, Jingbo; Mu, Wei; Zhang, Li; Zheng, Wenke; Tian, Guihua; Shang, Hongcai

    2015-01-01

    Objective. To summarize the characteristics and analysis of relevant factors and to give references for prevention and further study of liver damage associated with Polygonum multiflorum Thunb. (HSW), we provide a systematic review of case reports and case series about liver damage associated with HSW. Methods. An extensive search of 6 medical databases was performed up to June 2014. Case reports and case series involving liver damage associated with HSW were included. Results. This review covers a total of 450 cases in 76 articles. HSW types included raw and processed HSW decoction pieces and many Chinese patent medicines that contain HSW. Symptoms of liver damage occur mostly a month or so after taking the medicine, mainly including jaundice, fatigue, anorexia, and yellow or tawny urine. Of the 450 patients, two cases who received liver transplantation and seven who died, the remaining 441 cases recovered or had liver function improvement after discontinuing HSW products and conservative care. Conclusion. HSW causes liver toxicity and may cause liver damage in different degrees and even lead to death; most of them are much related to long-term and overdose of drugs. Liver damage associated with HSW is reversible, and, after active treatment, the majority can be cured. People should be alert to liver damage when taking HSW preparations. PMID:25648693

  14. Liver Damage Associated with Polygonum multiflorum Thunb.: A Systematic Review of Case Reports and Case Series.

    PubMed

    Lei, Xiang; Chen, Jing; Ren, Jingtian; Li, Yan; Zhai, Jingbo; Mu, Wei; Zhang, Li; Zheng, Wenke; Tian, Guihua; Shang, Hongcai

    2015-01-01

    Objective. To summarize the characteristics and analysis of relevant factors and to give references for prevention and further study of liver damage associated with Polygonum multiflorum Thunb. (HSW), we provide a systematic review of case reports and case series about liver damage associated with HSW. Methods. An extensive search of 6 medical databases was performed up to June 2014. Case reports and case series involving liver damage associated with HSW were included. Results. This review covers a total of 450 cases in 76 articles. HSW types included raw and processed HSW decoction pieces and many Chinese patent medicines that contain HSW. Symptoms of liver damage occur mostly a month or so after taking the medicine, mainly including jaundice, fatigue, anorexia, and yellow or tawny urine. Of the 450 patients, two cases who received liver transplantation and seven who died, the remaining 441 cases recovered or had liver function improvement after discontinuing HSW products and conservative care. Conclusion. HSW causes liver toxicity and may cause liver damage in different degrees and even lead to death; most of them are much related to long-term and overdose of drugs. Liver damage associated with HSW is reversible, and, after active treatment, the majority can be cured. People should be alert to liver damage when taking HSW preparations. PMID:25648693

  15. Prevention of chemotherapy-induced ovarian damage.

    PubMed

    Roness, Hadassa; Kashi, Oren; Meirow, Dror

    2016-01-01

    Recent advances in our understanding of the mechanisms underlying the impact of cytotoxic drugs on the ovary have opened up new directions for the protection of the ovary from chemotherapy-induced damage. These advances have spurred the investigation of pharmacological agents to prevent ovarian damage at the time of treatment. Prevention of ovarian damage and follicle loss would provide significant advantages over existing fertility preservation techniques. This manuscript reviews new methods for the prevention of chemotherapy-induced ovarian damage, including agents that act on the PI3K/PTEN/Akt follicle activation pathway, apoptotic pathways, the vascular system, and other potential methods of reducing chemotherapy-induced ovotoxicity. PMID:26677788

  16. Carbonic Anhydrase Protects Fatty Liver Grafts against Ischemic Reperfusion Damage

    PubMed Central

    Bejaoui, Mohamed; Pantazi, Eirini; De Luca, Viviana; Panisello, Arnau; Folch-Puy, Emma; Hotter, Georgina; Capasso, Clemente; T. Supuran, Claudiu; Rosselló-Catafau, Joan

    2015-01-01

    Carbonic anhydrases (CAs) are ubiquitous metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. CAs are involved in numerous physiological and pathological processes, including acid-base homeostasis, electrolyte balance, oxygen delivery to tissues and nitric oxide generation. Given that these processes are found to be dysregulated during ischemia reperfusion injury (IRI), and taking into account the high vulnerability of steatotic livers to preservation injury, we hypothesized a new role for CA as a pharmacological agent able to protect against ischemic damage. Two different aspects of the role of CA II in fatty liver grafts preservation were evaluated: 1) the effect of its addition to Institut Georges Lopez (IGL-1) storage solution after cold ischemia; 2) and after 24h of cold storage followed by two hours of normothermic ex-vivo perfusion. In all cases, liver injury, CA II protein concentration, CA II mRNA levels and CA II activity were determined. In case of the ex-vivo perfusion, we further assessed liver function (bile production, bromosulfophthalein clearance) and Western blot analysis of phosphorylated adenosine monophosphate activated protein kinase (AMPK), mitogen activated protein kinases family (MAPKs) and endoplasmic reticulum stress (ERS) parameters (GRP78, PERK, IRE, eIF2α and ATF6). We found that CA II was downregulated after cold ischemia. The addition of bovine CA II to IGL-1 preservation solution efficiently protected steatotic liver against cold IRI. In the case of reperfusion, CA II protection was associated with better function, AMPK activation and the prevention of ERS and MAPKs activation. Interestingly, CA II supplementation was not associated with enhanced CO2 hydration. The results suggest that CA II modulation may be a promising target for fatty liver graft preservation. PMID:26225852

  17. 77 FR 31827 - Pipeline Safety: Pipeline Damage Prevention Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Safety: Pipeline Damage Prevention Programs AGENCY: Pipeline and Hazardous Materials Safety... excavation damage prevention law enforcement programs; establish an administrative process for making... excavation damage prevention law enforcement programs; and establish the adjudication process...

  18. The effect of phytosterol protects rats against 4-nitrophenol-induced liver damage.

    PubMed

    Chen, Jiaqin; Song, Meiyan; Li, Yansen; Zhang, Yonghui; Taya, Kazuyoshi; Li, ChunMei

    2016-01-01

    We investigated the effect of phytosterol (PS) in regard to liver damage induced by 4-nitrophenol (PNP). Twenty rats were randomly divided into four groups (Control, PS, PNP, and PNP+PS). The PS and PNP+PS groups were pretreated with PS for one week. The PNP and PNP+PS groups were injected subcutaneously with PNP for 28 days. The control group received a basal diet and was injected with vehicle alone. Treatment with PS prevented the elevation of the total bilirubin levels, as well as an increase in serum alkaline transaminase and aspartate transaminase, which are typically caused by PNP-induced liver damage. Histopathologically showed that liver damage was significantly mitigated by PS treatment. However, there was no significant change in antioxidant enzyme activities, and the Nrf2-antioxidant system was not activated after treatment with PS. These results suggest that PS could mitigate liver damage induced by PNP, but does not enhance antioxidant capacity. PMID:26748050

  19. Human Ex-Vivo Liver Model for Acetaminophen-induced Liver Damage

    PubMed Central

    Schreiter, Thomas; Sowa, Jan-Peter; Schlattjan, Martin; Treckmann, Jürgen; Paul, Andreas; Strucksberg, Karl-Heinz; Baba, Hideo A.; Odenthal, Margarete; Gieseler, Robert K.; Gerken, Guido; Arteel, Gavin E.; Canbay, Ali

    2016-01-01

    Reliable test systems to identify hepatotoxicity are essential to predict unexpected drug-related liver injury. Here we present a human ex-vivo liver model to investigate acetaminophen-induced liver injury. Human liver tissue was perfused over a 30 hour period with hourly sampling from the perfusate for measurement of general metabolism and clinical parameters. Liver function was assessed by clearance of indocyanine green (ICG) at 4, 20 and 28 hours. Six pieces of untreated human liver specimen maintained stable liver function over the entire perfusion period. Three liver sections incubated with low-dose acetaminophen revealed strong damage, with ICG half-lives significantly higher than in non-treated livers. In addition, the release of microRNA-122 was significantly higher in acetaminophen-treated than in non-treated livers. Thus, this model allows for investigation of hepatotoxicity in human liver tissue upon applying drug concentrations relevant in patients. PMID:27550092

  20. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Larchar, Steven W.; Henderson, Gena; Tran, Donald; Barth, Tim

    2012-01-01

    Problem Introduction: 1. Prevent Cold Plate Damage in Space Shuttle. 1a. The number of cold plate problems had increased from an average of 16.5 per/year between 1990 through 2000, to an average of 39.6 per year between 2001through 2005. 1b. Each complete set of 80 cold plates cost approximately $29 million, an average of $362,500 per cold plate. 1c It takes four months to produce a single cold plate. 2. Prevent Cold Plate Damage in Future Space Vehicles.

  1. Metformin Treatment Prevents Sedentariness Related Damages in Mice

    PubMed Central

    Senesi, Pamela; Montesano, Anna; Luzi, Livio; Codella, Roberto; Benedini, Stefano; Terruzzi, Ileana

    2016-01-01

    Metformin (METF), historical antihyperglycemic drug, is a likely candidate for lifespan extension, treatment and prevention of sedentariness damages, insulin resistance, and obesity. Skeletal muscle is a highly adaptable tissue, capable of hypertrophy response to resistance training and of regeneration after damage. Aims of this work were to investigate METF ability to prevent sedentariness damage and to enhance skeletal muscle function. Sedentary 12-week-old C57BL/6 mice were treated with METF (250 mg/kg per day, in drinking water) for 60 days. METF role on skeletal muscle differentiation was studied in vitro using murine C2C12 myoblasts. Muscular performance evaluation revealed that METF enhanced mice physical performance (Estimated VO2max). Biochemical analyses of hepatic and muscular tissues indicated that in liver METF increased AMPK and CAMKII signaling. In contrast, METF inactivated ERKs, the principal kinases involved in hepatic stress. In skeletal muscle, METF activated AKT, key kinase in skeletal muscle mass maintenance. In in vitro studies, METF did not modify the C2C12 proliferation capacity, while it positively influenced the differentiation process and myotube maturation. In conclusion, our novel results suggest that METF has a positive action not only on the promotion of healthy aging but also on the prevention of sedentariness damages. PMID:26697506

  2. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    SciTech Connect

    Reiter, Florian P.; Hohenester, Simon; Nagel, Jutta M.; Wimmer, Ralf; Artmann, Renate; Wottke, Lena; Makeschin, Marie-Christine; Mayr, Doris; Rust, Christian; Trauner, Michael; Denk, Gerald U.

    2015-04-03

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, and zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage but has

  3. Connexins and pannexins in liver damage.

    PubMed

    Crespo Yanguas, Sara; Willebrords, Joost; Maes, Michaël; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Cogliati, Bruno; Zaidan Dagli, Maria Lucia; Vinken, Mathieu

    2016-01-01

    Connexins and pannexins are key players in the control of cellular communication and thus in the maintenance of tissue homeostasis. Inherent to this function these proteins are frequently involved in pathological processes. The present paper reviews the role of connexins and pannexins in liver toxicity and disease. As they act both as sensors and effectors in these deleterious events connexins and pannexins could represent a set of novel clinical diagnostic biomarkers and drug targets. PMID:27065778

  4. Connexins and pannexins in liver damage

    PubMed Central

    Crespo Yanguas, Sara; Willebrords, Joost; Maes, Michaël; da Silva, Tereza Cristina; Veloso Alves Pereira, Isabel; Cogliati, Bruno; Zaidan Dagli, Maria Lucia; Vinken, Mathieu

    2016-01-01

    Connexins and pannexins are key players in the control of cellular communication and thus in the maintenance of tissue homeostasis. Inherent to this function these proteins are frequently involved in pathological processes. The present paper reviews the role of connexins and pannexins in liver toxicity and disease. As they act both as sensors and effectors in these deleterious events connexins and pannexins could represent a set of novel clinical diagnostic biomarkers and drug targets. PMID:27065778

  5. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  6. 49 CFR 192.614 - Damage prevention program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Damage prevention program. 192.614 Section 192.614... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Operations § 192.614 Damage prevention program. (a... section (b)(1) or (b)(2) of this section. (1) The state has adopted a one-call damage prevention...

  7. 49 CFR 195.442 - Damage prevention program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Damage prevention program. 195.442 Section 195.442... PIPELINE Operation and Maintenance § 195.442 Damage prevention program. (a) Except as provided in paragraph... section. (1) The state has adopted a one-call damage prevention program under § 198.37 of this chapter;...

  8. Hepatoprotective Activity of Heptoplus on Isoniazid and Rifampicin Induced Liver Damage in Rats

    PubMed Central

    Sankar, M.; Rajkumar, Johanna; Sridhar, Dorai

    2015-01-01

    The present study is designed to evaluate the efficacy of heptoplus a polyherbal formulation as an oral supplementary agent for isoniazid and rifampicin induced hepatotoxicity in rats. 50 and 100 mg/kg of heptoplus supplement were fed orally to the rats along with isoniazid and rifampicin and compared to rats treated with 100 mg/kg Liv 52 standard drug. Rats treated with isoniazid and rifampicin suffered from severe oxidative stress by the virtue of free radicals induced lipid per oxidation. As a result abnormal index of serum biochemical markers for liver function and increased liver lysosomal enzymes activity was observed. However rats nourished with 100 mg/kg of heptoplus and Liv 52 protected the liver from oxidative damage by maintaining normal antioxidant profile status and restored normal serum liver biochemical markers. Increased liver lysosomal enzymes activity is prevented in the rats supplemented with heptoplus and Liv 52. Histopathological analysis also revealed severe vascular changes and lobular necrosis in the treatment of isoniazid and rifampicin. Heptoplus (100 mg/kg) and Liv 52 supplemented rats liver apparently revealed normal architecture of liver. This study confirms that heptoplus has liver protective activity against Isoniazid and Rifampicin induced liver injury in rats, in par with Liv 52. PMID:26798170

  9. Effects of flavonoids on sphingolipid turnover in the toxin-damaged liver and liver cells

    PubMed Central

    Babenko, Nataliya A; Shakhova, Elena G

    2008-01-01

    Background The ceramide generation is an early event in the apoptotic response to numerous stimuli including the oxidative stress and ceramide analogs mimic the stress effect and induce apoptosis. Flavonoids of German chamomile are reported to exhibit the hepatoprotective effect. Flavonoids affect sphingolipid metabolism and reduce the elevated ceramide level in the aged liver. In the present paper, the ceramide content and production in the CCl4- and ethanol-treated liver and hepatocytes as well as the correction of sphingolipid metabolism in the damaged liver using the mixture of German chamomile flavonoids (chamiloflan) or apigenin-7-glucoside (AP7Glu) have been investigated. Results The experiments were performed in either the rat liver or hepatocytes of normal, CCl4- and ethanol-treated or flavonoid- and toxin plus flavonoid-treated animals. [14C]palmitic acid and [methyl-14C-phosphorylcholine]sphingomyelin were used to investigate the sphingolipid turnover. Addition of the CCl4 or ethanol to isolated hepatocyte suspensions caused loss of cell viability and increased the lactate dehydrogenase release from the cells into supernatant and ceramide level in the cells. CCl4 administration to the rats enlarged ceramide mass as well as neutral sphingomyelinase (SMase) activity and reduced ceramide degradation by the neutral ceramidase. Pretreatment of isolated hepatocytes with flavonoids abrogated the CCl4 effects on the cell membrane integrity and normalized the ceramide content. Flavonoid administration to the rats normalized the elevated ceramide content in the damaged liver via neutral SMase inhibition and ceramidase activation. Conclusion The data obtained have demonstrated that flavonoids affect sphingolipid metabolism in the CCl4- and ethanol-damaged liver and liver cells. Flavonoids normalized activities of key enzymes of sphingolipid turnover (neutral SMase and ceramidase) and ceramide contents in the damaged liver and liver cells, and stabilized the

  10. Experimental Protoporphyria: Effect of Bile Acids on Liver Damage Induced by Griseofulvin

    PubMed Central

    Martinez, María del Carmen; Ruspini, Silvina Fernanda; Afonso, Susana Graciela; Meiss, Roberto; Buzaleh, Ana Maria

    2015-01-01

    The effect of bile acids administration to an experimental mice model of Protoporphyria produced by griseofulvin (Gris) was investigated. The aim was to assess whether porphyrin excretion could be accelerated by bile acids treatment in an attempt to diminish liver damage induced by Gris. Liver damage markers, heme metabolism, and oxidative stress parameters were analyzed in mice treated with Gris and deoxycholic (DXA), dehydrocholic (DHA), chenodeoxycholic, or ursodeoxycholic (URSO). The administration of Gris alone increased the activities of glutathione reductase (GRed), superoxide dismutase (SOD), alkaline phosphatase (AP), gamma glutamyl transpeptidase (GGT), and glutathione-S-transferase (GST), as well as total porphyrins, glutathione (GSH), and cytochrome P450 (CYP) levels in liver. Among the bile acids studied, DXA and DHA increased PROTO IX excretion, DXA also abolished the action of Gris, reducing lipid peroxidation and hepatic GSH and CYP levels, and the activities of GGT, AP, SOD, and GST returned to control values. However, porphyrin accumulation was not prevented by URSO; instead this bile acid reduced ALA-S and the antioxidant defense enzymes system activities. In conclusion, we postulate that DXA acid would be more effective to prevent liver damage induced by Gris. PMID:25945334

  11. TRPM2 channels mediate acetaminophen-induced liver damage.

    PubMed

    Kheradpezhouh, Ehsan; Ma, Linlin; Morphett, Arthur; Barritt, Greg J; Rychkov, Grigori Y

    2014-02-25

    Acetaminophen (paracetamol) is the most frequently used analgesic and antipyretic drug available over the counter. At the same time, acetaminophen overdose is the most common cause of acute liver failure and the leading cause of chronic liver damage requiring liver transplantation in developed countries. Acetaminophen overdose causes a multitude of interrelated biochemical reactions in hepatocytes including the formation of reactive oxygen species, deregulation of Ca(2+) homeostasis, covalent modification and oxidation of proteins, lipid peroxidation, and DNA fragmentation. Although an increase in intracellular Ca(2+) concentration in hepatocytes is a known consequence of acetaminophen overdose, its importance in acetaminophen-induced liver toxicity is not well understood, primarily due to lack of knowledge about the source of the Ca(2+) rise. Here we report that the channel responsible for Ca(2+) entry in hepatocytes in acetaminophen overdose is the Transient Receptor Potential Melanostatine 2 (TRPM2) cation channel. We show by whole-cell patch clamping that treatment of hepatocytes with acetaminophen results in activation of a cation current similar to that activated by H2O2 or the intracellular application of ADP ribose. siRNA-mediated knockdown of TRPM2 in hepatocytes inhibits activation of the current by either acetaminophen or H2O2. In TRPM2 knockout mice, acetaminophen-induced liver damage, assessed by the blood concentration of liver enzymes and liver histology, is significantly diminished compared with wild-type mice. The presented data strongly suggest that TRPM2 channels are essential in the mechanism of acetaminophen-induced hepatocellular death. PMID:24569808

  12. Prevention of hepatitis B recurrence after liver transplantation.

    PubMed

    Polak, Wojciech G; Gładysz, Andrzej; Rotter, Katarzyna

    2005-01-01

    Over the last decade significant improvement in patient and graft survival has been observed after liver transplantation for hepatitis B virus (HBV)-related liver disease, mostly because of efficient prophylaxis against hepatitis B reinfection. This review discusses different approches in prevention of hepatitis B recurrence in liver recipients including new concepts as vaccination against hepatitis B after liver transplantation. Based on available data combined prophylaxis with hepatitis B immunoglobulin (HBIG) and lamivudine is currently recommended prophylaxis for HBV recurrence after liver transplantation. PMID:16617660

  13. New perspectives for preventing hepatitis C virus liver graft infection.

    PubMed

    Felmlee, Daniel J; Coilly, Audrey; Chung, Raymond T; Samuel, Didier; Baumert, Thomas F

    2016-06-01

    Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease that necessitates liver transplantation. The incidence of virus-induced cirrhosis and hepatocellular carcinoma continues to increase, making liver transplantation increasingly common. Infection of the engrafted liver is universal and accelerates progression to advanced liver disease, with 20-30% of patients having cirrhosis within 5 years of transplantation. Treatments of chronic HCV infection have improved dramatically, albeit with remaining challenges of failure and access, and therapeutic options to prevent graft infection during liver transplantation are emerging. Developments in directed use of new direct-acting antiviral agents (DAAs) to eliminate circulating HCV before or after transplantation in the past 5 years provide renewed hope for prevention and treatment of liver graft infection. Identification of the ideal regimen and use of DAAs reveals new ways to treat this specific population of patients. Complementing DAAs, viral entry inhibitors have been shown to prevent liver graft infection in animal models and delay graft infection in clinical trials, which shows their potential for use concomitant to transplantation. We review the challenges and pathology associated with HCV liver graft infection, highlight current and future strategies of DAA treatment timing, and discuss the potential role of entry inhibitors that might be used synergistically with DAAs to prevent or treat graft infection. PMID:27301929

  14. Prevention of oxidative DNA damage in rats by brussels sprouts.

    PubMed

    Deng, X S; Tuo, J; Poulsen, H E; Loft, S

    1998-03-01

    The alleged cancer preventive effects of cruciferous vegetables could be related to protection from mutagenic oxidative DNA damage. We have studied the effects of Brussels sprouts, some non-cruciferous vegetables and isolated glucosinolates on spontaneous and induced oxidative DNA damage in terms of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in groups of 6-8 male Wistar rats. Excess oxidative DNA damage was induced by 2-nitropropane (2-NP 100 mg/kg). Four days oral administration of 3 g of cooked Brussels sprouts homogenate reduced the spontaneous urinary 8-oxodG excretion by 31% (p<0.05) whereas raw sprouts, beans and endive (1:1), isolated indolyl glucosinolates and breakdown products had no significant effect. An aqueous extract of cooked Brussels sprouts (corresponding to 6.7 g vegetable per day for 4 days) decreased the spontaneous 8-oxodG excretion from 92 +/- 12 to 52 +/- 15 pmol/24 h (p<0.05). After 2-NP administration the 8-oxodG excretion was increased to 132 +/- 26 pmol/24 h (p<0.05) whereas pretreatment with the sprouts extract reduced this to 102 +/- 30 pmol/24 h (p<0.05). The spontaneous level of 8-oxodG in nuclear DNA from liver and bone marrow was not significantly affected by the sprouts extract whereas the level decreased by 27% in the kidney (p<0.05). In the liver 2-NP increased the 8-oxodG levels in nuclear DNA 8.7 and 3.8 times (p<0.05) 6 and 24 h after dose, respectively. The sprouts extract reduced this increase by 57% (p<0.05) at 6 h whereas there was no significant effect at 24 h. In the kidneys 2-NP increased the 8-oxodG levels 2.2 and 1.2 times (p<0.05) 6 and 24 h after dose, respectively. Pretreatment with the sprouts extract abolished these increases (p<0.05). Similarly, in the bone marrow the extract protected completely (p<0.05) against a 4.9-fold 2-NP induced increase (p<0.05) in the 8-oxodG level. These findings demonstrate that cooked Brussels sprouts contain bioactive substance(s) with a potential for reducing the physiological

  15. Melatonin role preventing steatohepatitis and improving liver transplantation results.

    PubMed

    Esteban-Zubero, Eduardo; García-Gil, Francisco Agustín; López-Pingarrón, Laura; Alatorre-Jiménez, Moisés Alejandro; Ramírez, José Manuel; Tan, Dun-Xian; García, José Joaquín; Reiter, Russel J

    2016-08-01

    Liver steatosis is a prevalent process that is induced due to alcoholic or non-alcoholic intake. During the course of these diseases, the generation of reactive oxygen species, followed by molecular damage to lipids, protein and DMA occurs generating organ cell death. Transplantation is the last-resort treatment for the end stage of both acute and chronic hepatic diseases, but its success depends on ability to control ischemia-reperfusion injury, preservation fluids used, and graft quality. Melatonin is a powerful endogenous antioxidant produced by the pineal gland and a variety of other because of its efficacy in organs; melatonin has been investigated to improve the outcome of organ transplantation by reducing ischemia-reperfusion injury and due to its synergic effect with organ preservation fluids. Moreover, this indolamine also prevent liver steatosis. That is important because this disease may evolve leading to an organ transplantation. This review summarizes the observations related to melatonin beneficial actions in organ transplantation and ischemic-reperfusion models. PMID:27022943

  16. Impact of Propionic Acid on Liver Damage in Rats

    PubMed Central

    Al- Daihan, Sooad; Shafi Bhat, Ramesa

    2015-01-01

    Propionic acid (PA) is a short chain fatty acid, a common food preservative and metabolic end product of enteric bacteria in the gut. The present study was undertaken to investigate the effect of PA on liver injury in male rats. Male western albino rats were divided into two groups. The first group served as normal control, the second was treated with PA. The activities of serum hepatospecific markers such as aspartate transaminase, alanine transaminase, and alkaline phosphatase were estimated. Antioxidant status in liver tissues was estimated by determining the level of lipid peroxidation and activities of enzymatic and non-enzymatic antioxidants. Sodium and potassium levels were also measured in liver tissue. PA treatment caused significant changes in all hepatospecific markers. Biochemical analysis of liver homogenates from PA-treated rats showed an increase in oxidative stress markers like lipid peroxidation and lactate dehydrogenase, coupled with a decrease in glutathione, vitamin C and glutathione S- transferase. However, PA exposure caused no change in sodium and potassium levels in liver tissue. Our study demonstrated that PA persuade hepatic damage in rats. PMID:26629488

  17. Adverse drug reactions and organ damage: The liver.

    PubMed

    Licata, Anna

    2016-03-01

    Drug-induced liver injury (DILI) is among the most challenging acute or chronic liver conditions to be handled by physicians. Despite its low incidence in the general population, DILI is a frequent cause of acute liver failure. As such, the possibility of DILI should be considered in all patients who present with acute liver damage, independent of any known pre-existing liver disease. DILI can be classified as intrinsic/dose-dependent (e.g., acetaminophen toxicity) or idiosyncratic/dose-independent, with the latter form being relatively uncommon. Amoxicillin-clavulanate is the antimicrobial that is most frequently associated with idiosyncratic DILI. Large, ongoing, prospective studies in western countries have reported other drugs associated with DILI, including nonsteroidal anti-inflammatory drugs, statins, and herbal and dietary supplements. An important safety issue, DILI is one of the most frequently cited reasons for cessation of drug development during or after preclinical studies and for withdrawal of a drug from the market. This review summarizes the epidemiology, risk factors, commonly implicated drugs, clinical features, and diagnosis of DILI, with the aim of aiding physicians in the management of this debated problem. Old and new biomarkers for DILI and pharmacogenetic studies are also described. PMID:26827101

  18. Role of cysteinyl-leukotrienes for portal pressure regulation and liver damage in cholestatic rat livers.

    PubMed

    op den Winkel, Mark; Gmelin, Leonore; Schewe, Julia; Leistner, Natalie; Bilzer, Manfred; Göke, Burkhard; Gerbes, Alexander L; Steib, Christian J

    2013-12-01

    Kupffer cells (KCs) have a major role in liver injury, and cysteinyl-leukotrienes (Cys-LTs) are known to be involved as well. The KC-mediated pathways for the production and secretion of Cys-LT in cholestatic liver injury have not yet been elucidated. Here, we hypothesized that KC activation by Toll-like receptor ligands results in Cys-LT-mediated microcirculatory alterations and liver injury in acute cholestasis. We hypothesized further that this situation is associated with changes in the secretion and production of Cys-LT. One week after bile duct ligation (BDL), livers showed typical histological signs of cholestatic liver injury. Associated microcirculatory disturbances caused increased basal and maximal portal pressure following KC activation. These differences were determined in BDL livers compared with sham-operated livers in vivo (KC activation by LPS 4 mg/kg b.w.) and in isolated perfused organs (KC activation by Zymosan A, 150 μg/ml). Treatment with the 5-lipoxygenase inhibitor MK-886 alone did not alter portal perfusion pressure, lactate dehydrogenase (LDH) efflux, or bile duct proliferation in BDL animals. Following KC activation, portal perfusion pressure increased. The degree of cell injury was attenuated by MK-886 (3 μM) treatment as estimated by LDH efflux. In normal rats, a large amount of Cys-LT efflux was found in the bile. Only a minor amount was found in the effluent perfusate. In BDL livers, the KC-mediated Cys-LT efflux into the sinusoidal system increased, although the absolute Cys-LT level was still grossly lower than the biliary excretion in sham-operated livers. In conclusion, our results indicate that treatment with Cys-LT inhibitors might be a relevant target for attenuating cholestatic liver damage. PMID:24061287

  19. Dietary Natural Products for Prevention and Treatment of Liver Cancer

    PubMed Central

    Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Li, Sha; Li, Hua-Bin

    2016-01-01

    Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action. PMID:26978396

  20. Dietary Natural Products for Prevention and Treatment of Liver Cancer.

    PubMed

    Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Li, Sha; Li, Hua-Bin

    2016-03-01

    Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action. PMID:26978396

  1. Protective Effect of Brazilian Propolis against Liver Damage with Cholestasis in Rats Treated with α-Naphthylisothiocyanate

    PubMed Central

    Nakamura, Tadashi; Ohta, Yoshiji; Ohashi, Koji; Ikeno, Kumiko; Watanabe, Rie; Tokunaga, Kenji; Harada, Nobuhiro

    2013-01-01

    We examined the protective effect of Brazilian propolis against liver damage with cholestasis in rats treated with α-naphthylisothiocyanate (ANIT) in comparison with that of vitamin E (VE). Rats orally received Brazilian propolis ethanol extract (BPEE) (25, 50, or 100 mg/kg), VE (250 mg/kg) or vehicle at 12 h after intraperitoneal injection of ANIT (75 mg/kg) and were killed 24 h after the injection. Vehicle-treated rats showed liver cell damage and cholestasis, judging from the levels of serum marker enzymes and components. The vehicle group had increased serum total cholesterol, triglyceride, phospholipid, and lipid peroxide levels, increased hepatic lipid peroxide, reduced glutathione, and ascorbic acid levels and myeloperoxidase activity, and decreased hepatic superoxide dismutase activity. BPEE (50 mg/kg) administered to ANIT-treated rats prevented liver cell damage and cholestasis and attenuated these serum and hepatic biochemical changes except hepatic ascorbic acid, although administered BPEE (25 or 100 mg/kg) was less effective. VE administered to ANIT-treated rats prevented liver cell damage, but not cholestasis, and attenuated increased serum lipid peroxide level, increased hepatic lipid peroxide level and myeloperoxidase activity, and decreased hepatic superoxide dismutase activity. These results indicate that BPEE protects against ANIT-induced liver damage with cholestasis in rats more effectively than VE. PMID:23710219

  2. Fenofibrate, a peroxisome proliferator-activated receptor α ligand, prevents abnormal liver function induced by a fasting–refeeding process

    SciTech Connect

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi; Lim, Jae-Young; Kim, Se-Jin; Choe, Seong-Kyu; Yoo, Kyeong-Won; Song, Seung Ryel; Park, Do-Sim; So, Hong-Seob; Park, Raekil

    2013-12-06

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determined by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.

  3. Preventing Electrostatic-Discharge Damage to Electronics

    NASA Technical Reports Server (NTRS)

    Read, W. S.; Dozois, P. C.; Lonborg, J. O.

    1986-01-01

    Booklet discusses damage to electronic components caused by electrostatic discharges during assembly. Describes procedure for setting up static-free workplace for handling and assembling electronic components.

  4. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice.

    PubMed

    Mazagova, Magdalena; Wang, Lirui; Anfora, Andrew T; Wissmueller, Max; Lesley, Scott A; Miyamoto, Yukiko; Eckmann, Lars; Dhungana, Suraj; Pathmasiri, Wimal; Sumner, Susan; Westwater, Caroline; Brenner, David A; Schnabl, Bernd

    2015-03-01

    Translocation of bacteria and their products across the intestinal barrier is common in patients with liver disease, and there is evidence that experimental liver fibrosis depends on bacterial translocation. The purpose of our study was to investigate liver fibrosis in conventional and germ-free (GF) C57BL/6 mice. Chronic liver injury was induced by administration of thioacetamide (TAA) in the drinking water for 21 wk or by repeated intraperitoneal injections of carbon tetrachloride (CCl4). Increased liver fibrosis was observed in GF mice compared with conventional mice. Hepatocytes showed more toxin-induced oxidative stress and cell death. This was accompanied by increased activation of hepatic stellate cells, but hepatic mediators of inflammation were not significantly different. Similarly, a genetic model using Myd88/Trif-deficient mice, which lack downstream innate immunity signaling, had more severe fibrosis than wild-type mice. Isolated Myd88/Trif-deficient hepatocytes were more susceptible to toxin-induced cell death in culture. In conclusion, the commensal microbiota prevents fibrosis upon chronic liver injury in mice. This is the first study describing a beneficial role of the commensal microbiota in maintaining liver homeostasis and preventing liver fibrosis. PMID:25466902

  5. Effective protection of Terminalia catappa L. leaves from damage induced by carbon tetrachloride in liver mitochondria.

    PubMed

    Tang, Xinhui; Gao, Jing; Wang, Yanping; Fan, Yi-Mei; Xu, Li-Zhi; Zhao, Xiao-Ning; Xu, Qiang; Qian, Zhong Ming

    2006-03-01

    The protective effects of chloroform extracts of Terminalia catappa L. leaves (TCCE) on carbon tetrachloride (CCl4)-induced liver damage and the possible mechanisms involved in the protection were investigated in mice. We found that increases in the activity of serum aspartate aminotransferase and alanine aminotransferase and the level of liver lipid peroxidation (2.0-fold, 5.7-fold and 2.8-fold) induced by CCl4 were significantly inhibited by oral pretreatment with 20, 50 or 100 mg/kg of TCCE. Morphological observation further confirmed the hepatoprotective effects of TCCE. In addition, the disruption of mitochondrial membrane potential (14.8%), intramitochondrial Ca2+ overload (2.1-fold) and suppression of mitochondrial Ca2+-ATPase activity (42.0%) in the liver of CCl4-insulted mice were effectively prevented by pretreatment with TCCE. It can be concluded that TCCE have protective activities against liver mitochondrial damage induced by CCl4, which suggests a new mechanism of the hepatoprotective effects of TCCE. PMID:16169207

  6. Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage.

    PubMed

    Müller, Liz Girardi; Pase, Camila Simonetti; Reckziegel, Patrícia; Barcelos, Raquel C S; Boufleur, Nardeli; Prado, Ana Cristina P; Fett, Roseane; Block, Jane Mara; Pavanato, Maria Amália; Bauermann, Liliane F; da Rocha, João Batista Teixeira; Burger, Marilise Escobar

    2013-01-01

    The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption. PMID:21924598

  7. Hepatoprotective Effect of Otostegia persica Boiss. Shoot Extract on Carbon Tetrachloride-Induced Acute Liver Damage in Rats

    PubMed Central

    Nasiri Bezenjani, Sedighe; Pouraboli, Iran; Malekpour Afshar, Reza; Mohammadi, Gholamabbas

    2012-01-01

    In this study, the hepatoprotective effect of the methanol extract of aerial parts (shoot) from Otostegia persica Boiss (Golder) was investigated against the carbon tetrachloride (CCl4)-induced acute hepatotoxicity in male rats. Liver damage was induced through the oral administration of 50% CCl4 in liquid paraffin (2.5 mL/Kg bw, per os) 60 min after the administration of the methanol extract of O. persica shoot (in 200, 300, 400 mg/Kg bw doses) and assessed using biochemical parameters (plasma and liver tissue malondialdehyde (MDA), transaminase enzyme levels in plasma [aspartate transaminase (AST), alanine aminotransferase (ALT)] and liver glutathione (GSH) levels). Results show that the methanol extract of O. persica shoot is active at 300 mg/Kg (per os) and it possess remarkable antioxidant and hepatoprotective activities. Additionally, histopathological studies verified the effectiveness of this dose of extract in acute liver damage prevention. PMID:24250558

  8. Dimethylformamide-induced liver damage among synthetic leather workers

    SciTech Connect

    Wang, J.D.; Lai, M.Y.; Chen, J.S.; Lin, J.M.; Chiang, J.R.; Shiau, S.J.; Chang, W.S. )

    1991-05-01

    Prevalence of liver injury associated with dimethylformamide (DMF) exposure was determined. Medical examinations, liver function tests, and creatine phosphokinase (CPK) determinations were performed on 183 of 204 (76%) employees of a synthetic leather factory. Air concentrations of solvents were measured with personal samplers and gas chromatography. The concentration of DMF in air to which each worker was exposed was categorized. High exposure concentrations of DMF (i.e., 25-60 ppm) were significantly associated with elevated alanine aminotransferase (ALT) levels (ALT greater than or equal to 35 IU/l), a result that did not change even after stratification by hepatitis B carrier status. Modeling by logistic regression demonstrated that exposure to high concentrations of DMF was associated with an elevated ALT (p = .01), whereas hepatitis B surface antigen (HBsAg) was slightly but independently associated with an elevated ALT (p = .07). In those workers who had normal ALT values, there occurred still significantly higher mean ALT and aspartate aminotransferase (AST) activities, especially among those who were not HBsAg carriers. A significant association existed between elevated CPK levels and exposure to DMF. However, an analysis of the CPK isoenzyme among 143 workers did not reveal any specific damage to muscles. This outbreak of liver injury among synthetic leather workers is ascribed to DMF. It is recommended that the occupational standard for DMF and its toxicity among HBsAg carriers be evaluated further.

  9. Prevention and Treatment of Recurrent Hepatitis B after Liver Transplantation

    PubMed Central

    Maiwall, Rakhi; Kumar, Manoj

    2016-01-01

    Chronic hepatitis B is a global health problem that leads to development of various complications, such as cirrhosis, liver cancer, and liver failure requiring liver transplantation. The recurrence of hepatitis B virus (HBV) post-liver transplantation is a major cause of allograft dysfunction, cirrhosis of the allograft, and graft failure. Patients with high viral load at the time of transplantation, hepatitis B e antigen (HBeAg) positivity, or those with a history of anti-viral drug resistance are considered as high-risk for recurrent HBV post-liver transplantation, while patients with low viral load, including HBeAg negative status, acute liver failure, and hepatitis D virus (HDV) co-infection are considered to be at low-risk for recurrent HBV post-liver transplantation. Antivirals for patients awaiting liver transplantation(LT) cause suppression of HBV replication and reduce the risk of recurrent HBV infection of the allograft and, therefore, all HBV patients with decompensated cirrhosis should be treated with potent antivirals with high genetic barrier to resistance (entecavir or tenofovir) prior to liver transplantation. Prevention of post-liver transplantation recurrence should be done using a combination of hepatitis B immunoglobulin (HBIG) and antivirals in patients at high risk of recurrence. Low dose HBIG, HBIG-free protocols, and monoprophylaxis with high potency antivirals can still be considered in patients at low risk of recurrence. Even, marginal grafts from anti-HBc positive donors can be safely used in hepatitis B surface antigen (HBsAg) negative, preferably in anti-hepatitis B core (HBc)/anti-hepatitis B surface (HBs) positive recipients. In this article, we aim to review the mechanisms and risk factors of HBV recurrence post-LT in addition to the various treatment strategies proposed for the prevention of recurrent HBV infection PMID:27047773

  10. Impact of fluoxetine on liver damage in rats.

    PubMed

    Inkielewicz-Stępniak, Iwona

    2011-01-01

    Fluoxetine (Flux) is a fluorine-containing drug that selectively inhibits serotonin reuptake. It is widely prescribed as a treatment for depression disorders. Hepatic side effects have been reported during Flux therapy. These reports led us to investigate the involvement of oxidative stress mechanisms in liver injury caused by Flux. It has been shown that exposure to fluoride (F(-)) induces excessive production of free radicals and affects the antioxidant defense system. Based on this knowledge, we examined the F(-) concentration in serum and urine during administration of Flux. In our study, the effects of one month of Flux treatment on lipid and protein peroxidation, the concentration of uric acid in the liver and the activity of transaminases and transferases in the serum were investigated in rats. Eighteen adult male Wistar rats were divided into three equal groups of six animals each: (I) controls who drank tap water and received 1 ml of tap water intragastrically; (II) animals that received 8 mg Flux/kg bw/day intragastrically; and (III) animals that received 24 mg Flux/kg bw/day intragastrically. Flux treatment increased of the levels of carbonyl groups, thiobarbituric acid reactive species (TBARS) and the uric acid content in the liver. The activities of alanine transaminase (ALT), aspartate transaminase (AST) and glutathione-S transferase (GST) increased in the serum of the treated groups. The Flux levels in the plasma of the treated rats increased significantly in a dose-dependent manner. We observed no changes in the concentration of fluoride in either the serum or the urine of treated rats compared to the control group. In conclusion, our study indicates that Flux induces liver damage and mediates free radical reactions. Our data also indicate that Flux does not release F(-) during metabolism and does not affect physiological levels of F(-) in the serum or urine. PMID:21602599

  11. Liver targeting of catalase by cationization for prevention of acute liver failure in mice.

    PubMed

    Ma, Shen-Feng; Nishikawa, Makiya; Katsumi, Hidemasa; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2006-01-10

    To achieve hepatic delivery of CAT for the prevention of CCl4-induced acute liver failure in mice, two types of cationized CAT derivatives, HMD- and ED-conjugated CAT, were developed. Slight structural changes occurred during cationization and the number of increased free amino groups was 3.1 in HMD-CAT and 13.6 in ED-CAT. 111In-cationized CAT derivatives showed an increased binding to HepG2 cells, and were rapidly taken up by the liver. H2O2-induced cytotoxicity in HepG2 cells was significantly prevented by preincubation of the cells with cationized CAT derivatives. A bolus intravenous injection of the cationized CAT derivatives reduced the hepatotoxicity induced by CCl4 in mice. The ED-CAT, which showed more rapid and greater binding to the liver than the HMD-CAT, exhibited more beneficial effects as far as all the parameters examined (serum GOT, GPT, LDH and hepatic GSH) were concerned, suggesting that a high degree of cationization is effective in delivering CAT to the liver to prevent CCl4-induced hepatotoxicity. These results suggest that cationized CAT derivatives are effective in preventing acute liver failure, and ED-based cationization is a suitable method for developing liver-targetable cationized CAT derivatives, because it provides CAT with a high degree of cationization and a high remaining enzymatic activity. PMID:16316705

  12. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation.

    PubMed

    Guha, C; Sharma, A; Gupta, S; Alfieri, A; Gorla, G R; Gagandeep, S; Sokhi, R; Roy-Chowdhury, N; Tanaka, K E; Vikram, B; Roy-Chowdhury, J

    1999-12-01

    Hepatic tumors often recur in the liver after surgical resection. Postoperative radiotherapy (RT) could improve survival, but curative RT may induce delayed life-threatening radiation-induced liver damage. Because RT inhibits liver regeneration, we hypothesized that unirradiated, transplanted hepatocytes would proliferate preferentially in a partially resected and irradiated liver, providing metabolic support. We subjected F344 rats to hepatic RT and partial hepatectomy with/without a single intrasplenic, syngeneic hepatocyte transplantation. Hepatocyte transplantation ameliorated radiation-induced liver damage and improved survival of rats receiving RT after partial hepatectomy. We further demonstrated that transplanted hepatocytes extensively repopulate and function in a heavily irradiated rat liver. PMID:10606225

  13. Preventing Arc Welding From Damaging Electronics

    NASA Technical Reports Server (NTRS)

    Sargent, Noel; Mareen, D.

    1988-01-01

    Shielding technique developed to protect sensitive electronic equipment from damage due to electromagnetic disturbances produced by arc welding. Established acceptable alternative in instances in which electronic equipment cannot be removed prior to arc welding. Guidelines established for open, unshielded welds. Procedure applicable to robotics or computer-aided manufacturing.

  14. Liver-specific microRNAs as biomarkers of nanomaterial-induced liver damage

    NASA Astrophysics Data System (ADS)

    Nagano, Takashi; Higashisaka, Kazuma; Kunieda, Akiyoshi; Iwahara, Yuki; Tanaka, Kota; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2013-10-01

    Although nanomaterials are being used in various fields, their safety is not yet sufficiently understood. We have been attempting to establish a nanomaterials safety-assessment system by using biomarkers to predict nanomaterial-induced adverse biological effects. Here, we focused on microRNAs (miRNAs) because of their tissue-specific expression and high degree of stability in the blood. We previously showed that high intravenous doses of silica nanoparticles of 70 nm diameter (nSP70) induced liver damage in mice. In this study, we compared the effectiveness of serum levels of liver-specific or -enriched miRNAs (miR-122, miR-192, and miR-194) with that of conventional hepatic biomarkers (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) as biomarkers for nSP70. After mice had been treated with nSP70, their serum miRNAs levels were measured by using quantitative RT-PCR. Serum levels of miR-122 in nSP70-treated mice were the highest among the three miRNAs. The sensitivity of miR-122 for liver damage was at least as good as those of ALT and AST. Like ALT and AST, miR-122 may be a useful biomarker of nSP70. We believe that these findings will help in the establishment of a nanomaterials safety-assessment system.

  15. Preventing Ultraviolet Light-Induced Damage: The Benefits of Antioxidants

    ERIC Educational Resources Information Center

    Yip, Cheng-Wai

    2007-01-01

    Extracts of fruit peels contain antioxidants that protect the bacterium "Escherichia coli" against damage induced by ultraviolet light. Antioxidants neutralise free radicals, thus preventing oxidative damage to cells and deoxyribonucleic acid. A high survival rate of UV-exposed cells was observed when grapefruit or grape peel extract was added,…

  16. Bromosulphophthalein clearance rates in sheep with pyrrolizidine liver damage.

    PubMed

    Lanigan, G W; Peterson, J E

    1979-05-01

    Sheep fed a ration containing 50% of dried Heliotropium europaeum showed a marked decline in bromosulphophthalein (BSP) fractional clearance rate during the first 3 months feeding. Thereafter, the response of individual animals varied widely on a time basis, although 3 groups could be identified. In the terminal stages, mean clearance rates were below 20% of initial values, with some sheep showing a decline in excess of 90%. Loss of liver functional capacity was generally much greater than indicated by the degree of damage revealed by histopathology. Thus, a suitably modified test could have considerable prognostic value in the field. In this investigation, all sheep with clearance rates below 0.15 died when exposed to a further period of H. europaeum feeding. PMID:475677

  17. Dual role of chloroquine in liver ischemia reperfusion injury: reduction of liver damage in early phase, but aggravation in late phase.

    PubMed

    Fang, H; Liu, A; Dahmen, U; Dirsch, O

    2013-01-01

    The anti-malaria drug chloroquine is well known as autophagy inhibitor. Chloroquine has also been used as anti-inflammatory drugs to treat inflammatory diseases. We hypothesized that chloroquine could have a dual effect in liver ischemia/reperfusion (I/R) injury: chloroquine on the one hand could protect the liver against I/R injury via inhibition of inflammatory response, but on the other hand could aggravate liver I/R injury through inhibition of autophagy. Rats (n=6 per group) were pre-treated with chloroquine (60 mg/kg, i.p.) 1 h before warm ischemia, and they were continuously subjected to a daily chloroquine injection for up to 2 days. Rats were killed 0.5, 6, 24 and 48 h after reperfusion. At the early phase (i.e., 0-6 h after reperfusion), chloroquine treatment ameliorated liver I/R injury, as indicated by lower serum aminotransferase levels, lower hepatic inflammatory cytokines and fewer histopathologic changes. In contrast, chloroquine worsened liver injury at the late phase of reperfusion (i.e., 24-48 h after reperfusion). The mechanism of protective action of chloroquine appeared to involve its ability to modulate mitogen-activated protein kinase activation, reduce high-mobility group box 1 release and inflammatory cytokines production, whereas chloroquine worsened liver injury via inhibition of autophagy and induction of hepatic apoptosis at the late phase. In conclusion, chloroquine prevents ischemic liver damage at the early phase, but aggravates liver damage at the late phase in liver I/R injury. This dual role of chloroquine should be considered when using chloroquine as an inhibitor of inflammation or autophagy in I/R injury. PMID:23807223

  18. DNA damage response and sphingolipid signaling in liver diseases.

    PubMed

    Nagahashi, Masayuki; Matsuda, Yasunobu; Moro, Kazuki; Tsuchida, Junko; Soma, Daiki; Hirose, Yuki; Kobayashi, Takashi; Kosugi, Shin-Ichi; Takabe, Kazuaki; Komatsu, Masaaki; Wakai, Toshifumi

    2016-09-01

    Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC. PMID:26514817

  19. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    SciTech Connect

    Seidensticker, Max; Burak, Miroslaw; Kalinski, Thomas; Garlipp, Benjamin; Koelble, Konrad; Wust, Peter; Antweiler, Kai; Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Ricke, Jens

    2015-02-15

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluable liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.

  20. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    SciTech Connect

    Cheshchevik, V.T.; Lapshina, E.A.; Dremza, I.K.; Zabrodskaya, S.V.; Reiter, R.J.; Prokopchik, N.I.; Zavodnik, I.B.

    2012-06-15

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, p < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage

  1. Can Skin Exposure to Sunlight Prevent Liver Inflammation?

    PubMed Central

    Gorman, Shelley; Black, Lucinda J.; Feelisch, Martin; Hart, Prue H.; Weller, Richard

    2015-01-01

    Liver inflammation contributes towards the pathology of non-alcoholic fatty liver disease (NAFLD). Here we discuss how skin exposure to sunlight may suppress liver inflammation and the severity of NAFLD. Following exposure to sunlight-derived ultraviolet radiation (UVR), the skin releases anti-inflammatory mediators such as vitamin D and nitric oxide. Animal modeling studies suggest that exposure to UVR can prevent the development of NAFLD. Association studies also support a negative link between circulating 25-hydroxyvitamin D and NAFLD incidence or severity. Clinical trials are in their infancy and are yet to demonstrate a clear beneficial effect of vitamin D supplementation. There are a number of potentially interdependent mechanisms whereby vitamin D could dampen liver inflammation, by inhibiting hepatocyte apoptosis and liver fibrosis, modulating the gut microbiome and through altered production and transport of bile acids. While there has been a focus on vitamin D, other mediators induced by sun exposure, such as nitric oxide may also play important roles in curtailing liver inflammation. PMID:25951129

  2. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of nonalcoholic fatty liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is often associated with a cluster of increased health risks collectively known as "Metabolic Syndrome" (MS). MS is often accompanied by development of fatty liver. Sometimes fatty liver results in damage leading to reduced liver function, and need for a transplant. This condition is known...

  3. Molecular responses of radiation-induced liver damage in rats

    PubMed Central

    CHENG, WEI; XIAO, LEI; AINIWAER, AIMUDULA; WANG, YUNLIAN; WU, GE; MAO, RUI; YANG, YING; BAO, YONGXING

    2015-01-01

    The aim of the present study was to investigate the molecular responses involved in radiation-induced liver damage (RILD). Sprague-Dawley rats (6-weeks-old) were irradiated once at a dose of 20 Gy to the right upper quadrant of the abdomen. The rats were then sacrificed 3 days and 1, 2, 4, 8 and 12 weeks after irradiation and rats, which were not exposed to irradiation were used as controls. Weight measurements and blood was obtained from the rats and liver tissues were collected for histological and apoptotic analysis. Immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to measure the expression levels of mRNAs and proteins, respectively. The serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were increased significantly in the RILD rats. Histological investigation revealed the proliferation of collagen and the formation of fibrotic tissue 12 weeks after irradiation. Apoptotic cells were observed predominantly 2 and 4 weeks after irradiation. The immunohistochemistry, RT-qPCR and western blot analysis all revealed the same pattern of changes in the expression levels of the molecules assessed. The expression levels of transforming growth factor-β1 (TGF-β1), nuclear factor (NF)-κB65, mothers against decapentaplegic homolog 3 (Smad3) and Smad7 and connective tissue growth factor were increased during the recovery period following irradiation up to 12 weeks. The expression levels of tumor necrosis factor-α, Smad7 and Smad4 were only increased during the early phase (first 4 weeks) of recovery following irradiation. In the RILD rat model, the molecular responses indicated that the TGF-β1/Smads and NF-κB65 signaling pathways are involved in the mechanism of RILD recovery. PMID:25483171

  4. Fortilin potentiates the peroxidase activity of Peroxiredoxin-1 and protects against alcohol-induced liver damage in mice

    PubMed Central

    Chattopadhyay, Abhijnan; Pinkaew, Decha; Doan, Hung Q.; Jacob, Reed B.; Verma, Sunil K.; Friedman, Hana; Peterson, Alan C.; Kuyumcu-Martinez, Muge N.; McDougal, Owen M.; Fujise, Ken

    2016-01-01

    Fortilin, a pro-survival molecule, inhibits p53-induced apoptosis by binding to the sequence-specific DNA-binding domain of the tumor suppressor protein and preventing it from transcriptionally activating Bax. Intriguingly, fortilin protects cells against ROS-induced cell death, independent of p53. The signaling pathway through which fortilin protects cells against ROS-induced cell death, however, is unknown. Here we report that fortilin physically interacts with the antioxidant enzyme peroxiredoxin-1 (PRX1), protects it from proteasome-mediated degradation, and keeps it enzymatically active by blocking its deactivating phosphorylation by Mst1, a serine/threonine kinase. At the whole animal level, the liver-specific overexpression of fortilin reduced PRX1 phosphorylation in the liver, enhanced PRX1 activity, and protected the transgenic animals against alcohol-induced, ROS-mediated, liver damage. These data suggest the presence of a novel oxidative-stress-handling pathway where the anti-p53 molecule fortilin augments the peroxidase PRX1 by protecting it against degradation and inactivation of the enzyme. Fortilin-PRX1 interaction in the liver could be clinically exploited further to prevent acute alcohol-induced liver damage in humans. PMID:26726832

  5. Multiple organ damage caused by tumor necrosis factor and prevented by prior neutrophil depletion

    SciTech Connect

    Mallick, A.A.; Ishizaka, A.; Stephens, K.E.; Hatherill, J.R.; Tazelaar, H.D.; Raffin, T.A. )

    1989-05-01

    The effect of TNF on nonpulmonary multiple organ damage (MOD) was studied. Since polymorphonuclear leukocytes (PMN) are thought to play an important role in septic or TNF-induced MOD, we investigated both neutrophil sufficient (PMN+) and neutropenic (PMN-) guinea pigs. Sepsis was induced by Escherichia coli administration (2 x 10(9)/kg) or recombinant human TNF (1.4 x 10(6) U/kg) was infused into PMN+ and PMN- guinea pigs. During necropsy, the PMN+/TNF and PMN+/E coli animals exhibited marked damage in the adrenal glands, kidneys and liver as evidenced by hemorrhage, congestion, and PMN sequestration on histopathologic examination. There was also increased tissue albumin accumulation in the adrenal glands, kidneys, spleen, heart, and liver as demonstrated by {sup 125}I-labeled albumin determinations. In contrast, the PMN-/TNF group did not reveal histopathologic damage in any organ system and there was no abnormal organ accumulation of {sup 125}I-albumin. However, in PMN-/E coli animals, marked histopathologic damage in the adrenal glands and liver was evident. Furthermore, there were marked accumulations of {sup 125}I-albumin in the adrenals, heart, kidneys, liver, and spleen. Moreover, the PMN-/E coli guinea pigs had a much greater accumulation (p less than 0.01) of {sup 125}I-albumin in the kidneys than any other group including the PMN+/E coli group. Thus, nonpulmonary MOD in guinea pigs is caused by TNF administration and can be prevented by PMN depletion. However, while E coli administration also caused marked nonpulmonary MOD in neutrophil sufficient guinea pigs, equivalent or greater damage was produced in neutropenic animals. This suggests that while TNF-induced MOD may be primarily mediated by PMN, E coli-induced MOD seems to be mediated by more than PMN.

  6. Electrostatic risks to reticles and damage prevention methodology

    NASA Astrophysics Data System (ADS)

    Rider, Gavin C.

    2016-03-01

    In recent years a great deal of effort has been expended to try and reduce the reticle ESD damage problem. Methods are almost all based on the standard principles developed for the protection of ESD sensitive electronic devices - but reticles are not the same as electronic devices. Reticles are predominantly damaged by electric field rather than the conductive transfer of static charge, and the physical mechanisms that damage reticles are different from those that damage electronic devices. This paper explains why some of the established methods for ESD prevention are not the best way to protect reticles and in some cases actually increase the risk of reticle damage. Measurements are presented showing that, contrary to the widely held opinion and current practice in semiconductor manufacturing, static dissipative plastic is not the best material to use for the construction of reticle pods. An appropriate combination of insulating material and metallic shielding is shown to provide the best electrostatic protection for reticles.

  7. Mechanisms of Diabetes-Induced Liver Damage: The role of oxidative stress and inflammation.

    PubMed

    Mohamed, Jamaludin; Nazratun Nafizah, A H; Zariyantey, A H; Budin, S B

    2016-05-01

    Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to non-alcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines-including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α-exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals. PMID:27226903

  8. Antioxidant and Hepatoprotective Properties of Tofu (Curdle Soymilk) against Acetaminophen-Induced Liver Damage in Rats

    PubMed Central

    Yakubu, Ndatsu; Oboh, Ganiyu; Olalekan, Amuzat Aliyu

    2013-01-01

    The antioxidant and hepatoprotective properties of tofu using acetaminophen to induce liver damage in albino rats were evaluated. Tofus were prepared using calcium chloride, alum, and steep water as coagulants. The polyphenols of tofu were extracted and their antioxidant properties were determined. The weight gain and feed intake of the rats were measured. The analysis of serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) activities and the concentrations of albumin, total protein, cholesterol, and bilirubin were analyzed. The result reveals that the antioxidant property of both soluble and bound polyphenolic extracts was significantly higher in all tofus, but the steep water coagulated tofu was recorded higher. Rats fed with various tofus and acetaminophen had their serum ALP, ALT, AST, and LDH activities; total cholesterol; and bilirubin levels significantly (P < 0.05) reduced, and total protein and albumin concentrations increased when compared with basal diet and acetaminophen administered group. Therefore, all tofus curdled with various coagulants could be used to prevent liver damage caused by oxidative stress. PMID:23533782

  9. Benzoquinone toxicity is not prevented by sulforaphane in CD-1 mouse fetal liver cells.

    PubMed

    Philbrook, Nicola A; Winn, Louise M

    2016-08-01

    Benzene is an environmental pollutant known to cause leukemia in adults, and may be associated with childhood leukemia. While the mechanisms of benzene-mediated carcinogenicity have not been fully elucidated, increased reactive oxygen species (ROS) and DNA damage are implicated. Sulforaphane (SFN) induces nuclear factor erythroid 2-related factor 2 (Nrf2), which contributes to SFN-mediated protection against carcinogenesis. We exposed cultured CD-1 mouse fetal liver cells to the benzene metabolite, benzoquinone, to determine its potential to cause DNA damage and alter DNA repair. Cells were also exposed to SFN to determine potential protective effects. Initially, cells were exposed to benzoquinone to confirm increased ROS and SFN to confirm Nrf2 induction. Subsequently, cells were treated with benzoquinone (with or without SFN) and levels of ROS, 8-hydroxy-2-deoxyguanosine (8-OHdG; marker of oxidative DNA damage), gamma histone 2A variant X (γH2AX; marker of DNA double-stranded breaks; DSBs) and transcript levels of genes involved in DNA repair were measured. Benzoquinone exposure led to a significant increase in ROS, which was not prevented by pretreatment with SFN or the antioxidative enzyme, catalase. DNA damage was increased after benzoquinone exposure, which was not prevented by SFN. Benzoquinone exposure significantly decreased the transcript levels of the critical base excision repair gene, 8-oxoguanine glycosylase (Ogg1), which was not prevented by SFN. The findings of this study demonstrate for the first time that DNA damage and altered DNA repair are a consequence of benzoquinone exposure in CD-1 mouse fetal liver cells and that SFN conferred little protection in this model. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26456483

  10. Adapter assembly prevents damage to tubing during high pressure tests

    NASA Technical Reports Server (NTRS)

    Stinett, L. L.

    1965-01-01

    Portable adapter assembly prevents damage to tubing and injury to personnel when pressurizing a system or during high pressure tests. The assembly is capable of withstanding high pressure. It is securely attached to the tubing stub end and may be removed without brazing, cutting or cleaning the tube.

  11. Prevention of liver fibrosis by triple helix-forming oligodeoxyribonucleotides targeted to the promoter region of type I collagen gene.

    PubMed

    Koilan, Subramaniyan; Hamilton, David; Baburyan, Narina; Padala, Mythili K; Weber, Karl T; Guntaka, Ramareddy V

    2010-10-01

    Hepatic fibrosis leading to cirrhosis remains a global health problem. The most common etiologies are alcoholism and viral infections. Liver fibrosis is associated with major changes in both quantity and composition of extracellular matix and leads to disorganization of the liver architecture and irreversible damage to the liver function. As of now there is no effective therapy to control fibrosis. The end product of fibrosis is abnormal synthesis and accumulation of type I collagen in the extracellular matrix, which is produced by activated stellate or Ito cells in the damaged liver. Therefore, inhibition of transcription of type I collagen should in principle inhibit its production and accumulation in liver. Normally, DNA exists in a duplex form. However, under some circumstances, DNA can assume triple helical (triplex) structures. Intermolecular triplexes, formed by the addition of a sequence-specific third strand to the major groove of the duplex DNA, have the potential to serve as selective gene regulators. Earlier, we demonstrated efficient triplex formation between the exogenously added triplex-forming oligodeoxyribonucleotides (TFOs) and a specific sequence in the promoter region of the COL1A1 gene. In this study we used a rat model of liver fibrosis, induced by dimethylnitrosamine, to test whether these TFOs prevent liver fibrosis. Our results indicate that both the 25-mer and 18-mer TFOs, specific for the upstream nucleotide sequence from -141 to -165 (relative to the transcription start site) in the 5' end of collagen gene promoter, effectively prevented accumulation of liver collagen and fibrosis. We also observed improvement in liver function tests. However, mutations in the TFO that eliminated formation of triplexes are ineffective in preventing fibrosis. We believe that these TFOs can be used as potential antifibrotic therapeutic molecules. PMID:20818932

  12. Prevention of Liver Fibrosis by Triple Helix-Forming Oligodeoxyribonucleotides Targeted to the Promoter Region of Type I Collagen Gene

    PubMed Central

    Koilan, Subramaniyan; Hamilton, David; Baburyan, Narina; Padala, Mythili K.; Weber, Karl T.

    2010-01-01

    Hepatic fibrosis leading to cirrhosis remains a global health problem. The most common etiologies are alcoholism and viral infections. Liver fibrosis is associated with major changes in both quantity and composition of extracellular matix and leads to disorganization of the liver architecture and irreversible damage to the liver function. As of now there is no effective therapy to control fibrosis. The end product of fibrosis is abnormal synthesis and accumulation of type I collagen in the extracellular matrix, which is produced by activated stellate or Ito cells in the damaged liver. Therefore, inhibition of transcription of type I collagen should in principle inhibit its production and accumulation in liver. Normally, DNA exists in a duplex form. However, under some circumstances, DNA can assume triple helical (triplex) structures. Intermolecular triplexes, formed by the addition of a sequence-specific third strand to the major groove of the duplex DNA, have the potential to serve as selective gene regulators. Earlier, we demonstrated efficient triplex formation between the exogenously added triplex-forming oligodeoxyribonucleotides (TFOs) and a specific sequence in the promoter region of the COL1A1 gene. In this study we used a rat model of liver fibrosis, induced by dimethylnitrosamine, to test whether these TFOs prevent liver fibrosis. Our results indicate that both the 25-mer and 18-mer TFOs, specific for the upstream nucleotide sequence from −141 to −165 (relative to the transcription start site) in the 5′ end of collagen gene promoter, effectively prevented accumulation of liver collagen and fibrosis. We also observed improvement in liver function tests. However, mutations in the TFO that eliminated formation of triplexes are ineffective in preventing fibrosis. We believe that these TFOs can be used as potential antifibrotic therapeutic molecules. PMID:20818932

  13. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia

    PubMed Central

    Cotter, David G.; Ercal, Baris; Huang, Xiaojing; Leid, Jamison M.; d’Avignon, D. André; Graham, Mark J.; Dietzen, Dennis J.; Brunt, Elizabeth M.; Patti, Gary J.; Crawford, Peter A.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) spectrum disorders affect approximately 1 billion individuals worldwide. However, the drivers of progressive steatohepatitis remain incompletely defined. Ketogenesis can dispose of much of the fat that enters the liver, and dysfunction in this pathway could promote the development of NAFLD. Here, we evaluated mice lacking mitochondrial 3-hydroxymethylglutaryl CoA synthase (HMGCS2) to determine the role of ketogenesis in preventing diet-induced steatohepatitis. Antisense oligonucleotide–induced loss of HMGCS2 in chow-fed adult mice caused mild hyperglycemia, increased hepatic gluconeogenesis from pyruvate, and augmented production of hundreds of hepatic metabolites, a suite of which indicated activation of the de novo lipogenesis pathway. High-fat diet feeding of mice with insufficient ketogenesis resulted in extensive hepatocyte injury and inflammation, decreased glycemia, deranged hepatic TCA cycle intermediate concentrations, and impaired hepatic gluconeogenesis due to sequestration of free coenzyme A (CoASH). Supplementation of the CoASH precursors pantothenic acid and cysteine normalized TCA intermediates and gluconeogenesis in the livers of ketogenesis-insufficient animals. Together, these findings indicate that ketogenesis is a critical regulator of hepatic acyl-CoA metabolism, glucose metabolism, and TCA cycle function in the absorptive state and suggest that ketogenesis may modulate fatty liver disease. PMID:25347470

  14. Effects of S-adenosyl-L-methionine and interferon-alpha2b on liver damage induced by bile duct ligation in rats.

    PubMed

    Muriel, P; Castro, V

    1998-01-01

    Interferon-alpha2b (IFN) is known to prevent and to reverse experimental liver fibrosis and damage. S-Adenosyl-L-methionine (SAM) is a well-known hepatoprotective substance. The aim of the present work was to determine the effect of the administration of both drugs simultaneously to bile duct-ligated rats. Administration of IFN (50000 IU s.c.) and/or SAM (10 mg kg[-1] i.m.) began 15 days after biliary obstruction and continued for a further 15 days. The liver was used for glycogen and collagen quantification. Bilirubins and enzyme activities were measured in serum. Either SAM or IFN ameliorated all markers of liver damage studied. However, when administered together their beneficial effects were markedly reduced. It is not possible to explain the antagonistic effect of these compounds on liver damage with the present data. More studies are needed to determine SAM-IFN interactions. PMID:9570697

  15. Curcumin improves liver damage in male mice exposed to nicotine

    PubMed Central

    Salahshoor, Mohammadreza; Mohamadian, Sabah; Kakabaraei, Seyran; Roshankhah, Shiva; Jalili, Cyrus

    2015-01-01

    The color of turmeric (薑黃 jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (normal saline), nicotine (2.5 mg/kg), curcumin (10, 30, and 60 mg/kg) and curcumin plus nicotine-treated groups. Curcumin, nicotine, and curcumin plus nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. The results indicated that nicotine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein, liver enzymes level, and blood serum nitric oxide level compared with the saline group (p < 0.05). However, curcumin and curcumin plus nicotine administration substantially increased liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes, and nitric oxide levels in all groups compared with the nicotine group (p < 0.05). Curcumin demonstrated its protective effect against nicotine-induced liver toxicity. PMID:27114942

  16. Curcumin improves liver damage in male mice exposed to nicotine.

    PubMed

    Salahshoor, Mohammadreza; Mohamadian, Sabah; Kakabaraei, Seyran; Roshankhah, Shiva; Jalili, Cyrus

    2016-04-01

    The color of turmeric ( jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (normal saline), nicotine (2.5 mg/kg), curcumin (10, 30, and 60 mg/kg) and curcumin plus nicotine-treated groups. Curcumin, nicotine, and curcumin plus nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. The results indicated that nicotine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein, liver enzymes level, and blood serum nitric oxide level compared with the saline group (p < 0.05). However, curcumin and curcumin plus nicotine administration substantially increased liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes, and nitric oxide levels in all groups compared with the nicotine group (p < 0.05). Curcumin demonstrated its protective effect against nicotine-induced liver toxicity. PMID:27114942

  17. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  18. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  19. Probiotic use in preventing postoperative infection in liver transplant patients

    PubMed Central

    Chen, Jim; Wu, Jinshan; Chalson, Helen; Merigan, Lynn; Mitchell, Andrew

    2013-01-01

    Background Although liver transplantation has been widely practised, post-operative bacterial infection is still a frequent complication which contributed to an increased risk of fatality. There were studies on preoperative use of probiotics for liver transplant patients and acquired reduction in postoperative sepsis and wound infection, but the relevant clinical experience with pre- and probiotics is still limited. Objectives This study is to assess fibre and probiotic use aimed at preventing bacterial sepsis and wound complications in patients undergoing liver transplantation. Study methods There were a total of sixty-seven adult patients scheduled for liver transplantation were included in a public teaching hospital. From January to December 2011, 34 continuous patients following liver transplantation were put on fibre + probiotics. In retrospectively, from January to December 2010, 33 continuous patients were collected as a control group and they were only received fibre post operation. The incidence of bacterial infections was compared in patients receiving either fibre and lactobacillus or fibre only. Statistical analysis was performed using SPSS 15. The t test, fisher’s and chi- square test was used to compare discrete variables. Results In summary, in the analysis of 67 liver transplant recipients, 8.8% group A patients developed infections compared to 30.3% group B patients. The difference between groups A and B was statistically significant in both cases. In addition, the duration of antibiotic therapy was significantly shorter in the lactobacillus-group. Wound infection was the most frequent infections and enterococci the most frequently isolated bacteria. Fibre and lactobacilli were well tolerated in most cases. The operating time, amount of intra- and post-operatively transfused units of blood, fresh frozen plasma and albumin did not differ significantly between the groups. Conclusions Combined fibre and probiotics could lower the incidence of

  20. 49 CFR 198.37 - State one-call damage prevention program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false State one-call damage prevention program. 198.37... REGULATIONS FOR GRANTS TO AID STATE PIPELINE SAFETY PROGRAMS Adoption of One-Call Damage Prevention Program § 198.37 State one-call damage prevention program. A State must adopt a one-call damage...

  1. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage.

    PubMed

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-03-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (EN(KO)) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in EN(KO) mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  2. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage

    PubMed Central

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-01-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (ENKO) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in ENKO mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  3. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes

    SciTech Connect

    Queisser, Nina; Happ, Kathrin; Link, Samuel; Jahn, Daniel; Zimnol, Anna; Geier, Andreas; Schupp, Nicole

    2014-11-01

    Mineralocorticoid receptor blockers show antifibrotic potential in hepatic fibrosis. The mechanism of this protective effect is not known yet, although reactive oxygen species seem to play an important role. Here, we investigated the effects of elevated levels of aldosterone (Ald), the primary ligand of the mineralocorticoid receptor, on livers of rats in a hyperaldosteronism model: aldosterone-induced hypertension. Male Sprague–Dawley rats were treated for 4 weeks with aldosterone. To distinguish if damage caused in the liver depended on increased blood pressure or on increased Ald levels, the mineralocorticoid receptor antagonist spironolactone was given in a subtherapeutic dose, not normalizing blood pressure. To investigate the impact of oxidative stress, the antioxidant tempol was administered. Aldosterone induced fibrosis, detected histopathologically, and by expression analysis of the fibrosis marker, α-smooth muscle actin. Further, the mRNA amount of the profibrotic cytokine TGF-β was increased significantly. Fibrosis could be reduced by scavenging reactive oxygen species, and also by blocking the mineralocorticoid receptor. Furthermore, aldosterone treatment caused oxidative stress and DNA double strand breaks in livers, as well as the elevation of DNA repair activity. An increase of the transcription factor Nrf2, the main regulator of the antioxidative response could be observed, and of its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. All these effects of aldosterone were prevented by spironolactone and tempol. Already after 4 weeks of treatment, aldosteroneinfusion induced fibrosis in the liver. This effect was independent of elevated blood pressure. DNA damage caused by aldosterone might contribute to fibrosis progression when aldosterone is chronically increased. - Highlights: • Aldosterone has direct profibrotic effects on the liver independent of blood pressure. • Fibrosis is mediated by the mineralocorticoid receptor and

  4. High-density lipoprotein prevents organ damage in endotoxemia.

    PubMed

    Lee, Ru-Ping; Lin, Nien-Tsung; Chao, Yann-Fen Chiou; Lin, Chia-Chin; Harn, Horng-Jyh; Chen, Hsing-I

    2007-06-01

    High-density lipoprotein (HDL) may decrease organ injury in sepsis. This study was designed using an animal model to mimic people who had a high HDL level and to test HDL effects on preventing organ damage in endotoxemia. Endotoxemia was induced by an infusion of lipopolysac-charide (LPS) after HDL or LDL administration. Levels of blood biochemical substances, nitrate/nitrite, and TNF-alpha in sera were measured. Pathological examinations were performed 72 hours after LPS infusion. HDL decreased the endotoxin-induced elevation of AST, ALT, BUN, creatinine, LDH, CPK, nitrate/nitrite, and TNF-alpha. On histological examination, neutrophil infiltration was lower in the HDL group. HDL had a significant effect in preventing endotoxin-induced organ damage. PMID:17514720

  5. Exendin-4 attenuates brain death-induced liver damage in the rat.

    PubMed

    Carlessi, Rodrigo; Lemos, Natalia E; Dias, Ana L; Brondani, Leticia A; Oliveira, Jarbas R; Bauer, Andrea C; Leitão, Cristiane B; Crispim, Daisy

    2015-11-01

    The majority of liver grafts destined for transplantation originate from brain dead donors. However, significantly better posttransplantation outcomes are achieved when organs from living donors are used, suggesting that brain death (BD) causes irreversible damage to the liver tissue. Recently, glucagon-like peptide-1 (GLP1) analogues were shown to possess interesting hepatic protection effects in different liver disease models. We hypothesized that donor treatment with the GLP1 analogue exendin-4 (Ex-4) could alleviate BD-induced liver damage. A rat model of BD was employed in order to estimate BD-induced liver damage and Ex-4's potential protective effects. Liver damage was assessed by biochemical determination of circulating hepatic markers. Apoptosis in the hepatic tissue was assessed by immunoblot and immunohistochemistry using an antibody that only recognizes the active form of caspase-3. Gene expression changes in inflammation and stress response genes were monitored by quantitative real-time polymerase chain reaction. Here, we show that Ex-4 administration to the brain dead liver donors significantly reduces levels of circulating aspartate aminotransferase and lactate dehydrogenase. This was accompanied by a remarkable reduction in hepatocyte apoptosis. In this model, BD caused up-regulation of tumor necrosis factor and stress-related genes, confirming previous findings in clinical and animal studies. In conclusion, treatment of brain dead rats with Ex-4 reduced BD-induced liver damage. Further investigation is needed to determine the molecular basis of the observed liver protection. After testing in a randomized clinical trial, the inclusion of GLP1 analogues in organ donor management might help to improve organ quality, maximize organ donation, and possibly increase liver transplantation success rates. PMID:26334443

  6. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice

    PubMed Central

    Salgueiro, Andréia Caroline Fernandes; da Silva, Marianne Pires; Mendez, Andreas Sebastian Loureiro; Zemolin, Ana Paula Pegoraro; Posser, Thaís; Puntel, Robson Luiz; Puntel, Gustavo Orione

    2016-01-01

    This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF) tea on oxidative stress and liver damage in streptozotocin (STZ)-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1) BF chemical composition; (2) glucose levels; (3) liver/body weight ratio and liver transaminases; (4) reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation in liver; (5) superoxide dismutase (SOD) and catalase (CAT) activities in liver; (6) δ-aminolevulinate dehydratase (δ-ALA-D) and nonprotein thiols (NPSH) in liver; (7) Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential. PMID:26839634

  7. Lipid Peroxidation-Antioxidant Defense System during Toxic Liver Damage and Its Correction with a Nanocomposite [corrected] Substance Containing Selenium and Arabinogalactan.

    PubMed

    Kolesnikova, L I; Karpova, E A; Vlasov, B Ya; Sukhov, B G; Mov, B A Trofi

    2015-06-01

    Experiments on rat model of toxic liver damage (CCl4, subcutaneously) have demonstrated that selenium nanopreparation on arabinogalactan matrix and partially arabinogalactan alone prevented the development of oxidative stress assessed by the balance of LPO and antioxidant defense processes. PMID:26087750

  8. Nrf2 activation prevents cadmium-induced acute liver injury

    SciTech Connect

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  9. Hepatoprotective Activity of Elephantopus scaber on Alcohol-Induced Liver Damage in Mice

    PubMed Central

    Ho, Wan Yong; Yeap, Swee Keong; Ho, Chai Ling; Abdul Rahim, Raha; Alitheen, Noorjahan Banu

    2012-01-01

    Elephantopus scaber has been traditionally used as liver tonic. However, the protective effect of E. scaber on ethanol-induced liver damage is still unclear. In this study, we have compared the in vivo hepatoprotective effect of E. scaber with Phyllanthus niruri on the ethanol-induced liver damage in mice. The total phenolic and total flavanoid content of E. scaber ethanol extract were determined in this study. Accelerating serum biochemical profiles (including AST, ALT, ALP, triglyceride, and total bilirubin) associated with fat drop and necrotic body in the liver section were observed in the mice treated with ethanol. Low concentration of E. scaber was able to reduce serum biochemical profiles and the fat accumulation in the liver. Furthermore, high concentration of E. scaber and positive control P. niruri were able to revert the liver damage, which is comparable to the normal control. Added to this, E. scaber did not possess any oral acute toxicity on mice. These results suggest the potential effect of this extract as a hepatoprotective agent towards-ethanol induced liver damage without any oral acute toxicity effect. These activities might be contributed, or at least in part, by its high total phenolic and flavonoid contents. PMID:22973401

  10. Determination of DNA damage in experimental liver intoxication and role of N-acetyl cysteine.

    PubMed

    Aksit, Hasan; Bildik, Aysegül

    2014-11-01

    The present study aimed at detecting DNA damage and fragmentation as well as histone acetylation depending on oxidative stress caused by CCl4 intoxication. Also, the protective role of N-acetyl cysteine, a precursor for GSH, in DNA damage is investigated. Sixty rats were used in this study. In order to induce liver toxicity, CCl4 in was dissolved in olive oil (1/1) and injected intraperitoneally as a single dose (2 ml/kg). N-acetyl cysteine application (intraperitoneal, 50 mg/kg/day) was started 3 days prior to CCl4 injection and continued during the experimental period. Control groups were given olive oil and N-acetyl cysteine. After 6 and 72 h of CCl4 injection, blood and liver tissue were taken under ether anesthesia. Nuclear extracts were prepared from liver. Changes in serum AST and ALT activities as well as MDA, TAS, and TOS levels showed that CCl4 caused lipid peroxidation and liver damage. However, lipid peroxidation and liver damage were reduced in the N-acetyl cysteine group. Increased levels in 8-hydroxy-2-deoxy guanosine and histone acetyltransferase activities, decreased histone deacetylase activities, and DNA breakage detected in nuclear extracts showed that CCl4 intoxication induces oxidative stress and apoptosis in rat liver. The results of the present study indicate that N-acetyl cysteine has a protective effect on CCl4-induced DNA damage. PMID:24819310

  11. Effect of Azadirachta indica (Neem) leaf aqueous extract on paracetamol-induced liver damage in rats.

    PubMed

    Bhanwra, S; Singh, J; Khosla, P

    2000-01-01

    The effect of aqueous leaf extract of Azadirachta indica (A. indica) was evaluated in paracetamol induced hepatotoxicity in rats. Liver necrosis was produced by administering single dose of paracetamol (2 g/kg, p.o.). The liver damage was evidenced by elevated levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyl transpeptidase (gamma-GT) and by histopathological observations of liver sections. Aqueous A. indica leaf extract (500 mg/kg, p.o.) significantly (P < 0.01) reduced these elevated levels of AST, ALT and gamma-GT. Paracetamol induced liver necrosis was also found to be reduced as observed macroscopically and histologically. PMID:10919097

  12. Primer for Teachers: Quick and Easy Liver Wellness, Hepatitis B and Substance Abuse Prevention Messages.

    ERIC Educational Resources Information Center

    Thiel, Thelma King

    This guide provides information for teachers to use in teaching about liver wellness, hepatitis B, and substance abuse. The guide includes effective motivational techniques to help students understand how valuable their liver is to their health and well being. It also provides basic information to help students avoid liver damaging behaviors, such…

  13. Biological effects of pyrroloquinoline quinone on liver damage in Bmi-1 knockout mice

    PubMed Central

    HUANG, YUANQING; CHEN, NING; MIAO, DENGSHUN

    2015-01-01

    Pyrroloquinoline quinone (PQQ) has been demonstrated to function as an antioxidant by scavenging free radicals and subsequently protecting the mitochondria from oxidative stress-induced damage. The aim of the present study was to investigate whether PQQ is able to rescue premature senescence in the liver, induced by the deletion of B cell-specific Moloney MLV insertion site-1 (Bmi-1), by inhibiting oxidative stress. In vivo, the mice were allocated into three groups that underwent the following treatment protocols. WT mice received a normal diet, while BKO mice also received a normal diet. An additional group of BKO mice were fed a PQQ-supplemented diet (BKO + PQQ; 4 mg PQQ/kg in the normal diet). The results indicated that PQQ partially rescued the liver damage induced by the deletion of Bmi-1. PQQ was demonstrated to exhibit these therapeutic effects on liver damage through multiple aspects, including the promotion of proliferation, antiapoptotic effects, the inhibition of senescence, the upregulation of antioxidant ability, the downregulation of cell cycle protein expression, the scavenging of reactive oxygen species and the reduction of DNA damage. The results of these experiments indicated that treatment of BKO mice with a moderate dose of PQQ significantly protected the liver from deleterious effects by inhibiting oxidative stress and participating in DNA damage repair. Therefore, PQQ has great potential as a therapeutic agent against oxidative stress during liver damage. PMID:26622336

  14. Deletion of Mir155 Prevents Fas-Induced Liver Injury through Up-Regulation of Mcl-1

    PubMed Central

    Chen, Weina; Han, Chang; Zhang, Jinqiang; Song, Kyoungsub; Wang, Ying; Wu, Tong

    2016-01-01

    Fas-induced apoptosis is involved in diverse liver diseases. Herein, we investigated the effect of Mir155 deletion on Fas-induced liver injury. Wild-type (WT) mice and Mir155 knockout (KO) mice were i.p. administered with the anti-Fas antibody (Jo2) to determine animal survival and the extent of liver injury. After Jo2 injection, the Mir155 KO mice exhibited prolonged survival versus the WT mice (P < 0.01). The Mir155 KO mice showed lower alanine aminotransferase and aspartate aminotransferase levels, less liver tissue damage, fewer apoptotic hepatocytes, and lower liver tissue caspase 3/7, 8, and 9 activities compared with the WT mice, indicating that Mir155 deletion prevents Fas-induced hepatocyte apoptosis and liver injury. Hepatocytes isolated from Mir155 KO mice also showed resistance to Fas-induced apoptosis, in vitro. Higher protein level of myeloid cell leukemia-1 (Mcl-1) was also observed in Mir155 KO hepatocytes compared to WT hepatocytes. A miR-155 binding site was identified in the 3′-untranslated region of Mcl-1 mRNA; Mcl1 was identified as a direct target of miR-155 in hepatocytes. Consistently, pretreatment with a siRNA specific for Mcl1 reversed Mir155 deletion–mediated protection against Jo2-induced liver tissue damage. Finally, restoration of Mir155 expression in Mir155 KO mice abolished the protection against Fas-induced hepatocyte apoptosis. Taken together, these findings demonstrate that deletion of Mir155 prevents Fas-induced hepatocyte apoptosis and liver injury through the up-regulation of Mcl1. PMID:25794705

  15. Adverse effects of the antimalaria drug, mefloquine: due to primary liver damage with secondary thyroid involvement?

    PubMed Central

    Croft, Ashley M; Herxheimer, Andrew

    2002-01-01

    Background Mefloquine is a clinically important antimalaria drug, which is often not well tolerated. We critically reviewed 516 published case reports of mefloquine adverse effects, to clarify the phenomenology of the harms associated with mefloquine, and to make recommendations for safer prescribing. Presentation We postulate that many of the adverse effects of mefloquine are a post-hepatic syndrome caused by primary liver damage. In some users we believe that symptomatic thyroid disturbance occurs, either independently or as a secondary consequence of the hepatocellular injury. The mefloquine syndrome presents in a variety of ways including headache, gastrointestinal disturbances, nervousness, fatigue, disorders of sleep, mood, memory and concentration, and occasionally frank psychosis. Previous liver or thyroid disease, and concurrent insults to the liver (such as from alcohol, dehydration, an oral contraceptive pill, recreational drugs, and other liver-damaging drugs) may be related to the development of severe or prolonged adverse reactions to mefloquine. Implications We believe that people with active liver or thyroid disease should not take mefloquine, whereas those with fully resolved neuropsychiatric illness may do so safely. Mefloquine users should avoid alcohol, recreational drugs, hormonal contraception and co-medications known to cause liver damage or thyroid damage. With these caveats, we believe that mefloquine may be safely prescribed in pregnancy, and also to occupational groups who carry out safety-critical tasks. Testing Mefloquine's adverse effects need to be investigated through a multicentre cohort study, with small controlled studies testing specific elements of the hypothesis. PMID:11914150

  16. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue

    PubMed Central

    Klaas, Mariliis; Kangur, Triin; Viil, Janeli; Mäemets-Allas, Kristina; Minajeva, Ave; Vadi, Krista; Antsov, Mikk; Lapidus, Natalia; Järvekülg, Martin; Jaks, Viljar

    2016-01-01

    While the cellular mechanisms of liver regeneration have been thoroughly studied, the role of extracellular matrix (ECM) in liver regeneration is still poorly understood. We utilized a proteomics-based approach to identify the shifts in ECM composition after CCl4 or DDC treatment and studied their effect on the proliferation of liver cells by combining biophysical and cell culture methods. We identified notable alterations in the ECM structural components (eg collagens I, IV, V, fibronectin, elastin) as well as in non-structural proteins (eg olfactomedin-4, thrombospondin-4, armadillo repeat-containing x-linked protein 2 (Armcx2)). Comparable alterations in ECM composition were seen in damaged human livers. The increase in collagen content and decrease in elastic fibers resulted in rearrangement and increased stiffness of damaged liver ECM. Interestingly, the alterations in ECM components were nonhomogenous and differed between periportal and pericentral areas and thus our experiments demonstrated the differential ability of selected ECM components to regulate the proliferation of hepatocytes and biliary cells. We define for the first time the alterations in the ECM composition of livers recovering from damage and present functional evidence for a coordinated ECM remodelling that ensures an efficient restoration of liver tissue. PMID:27264108

  17. Data on expression of lipoxygenases-5 and -12 in the normal and acetaminophen-damaged liver.

    PubMed

    Suciu, Maria; Gruia, Alexandra T; Nica, Dragos V; Azghadi, Seyed M R; Mic, Ani A; Mic, Felix A

    2016-06-01

    Here we present additional data on the expression of lipoxygenases -5 and -12 in the normal and acetaminophen-damaged liver, which are associated with our manuscript recently published in Chemico-Biological Interactions on lipid metabolism and eicosanoid signaling pathways involved in acetaminophen-induced liver damage in a mouse model (http://dx.doi.org/10.1016/j.cbi.2015.10.019 [1]). It has been demonstrated that the expression of lipoxygenase-5 and leukotriene formation are increased in the livers of rats with carbon tetrachloride (CCl4)-induced cirrhosis (http://dx.doi.org/10.1053/gast.2000.17831 [2]). In addition, the lipoxygenase-12 is known to be expressed in the resident macrophage population of the liver (http://dx.doi.org/10.1016/S0014-5793(99)00396-8 [3]). Mice were injected with acetaminophen, and at 48 h their livers were processed for immunohistochemistry with anti-mouse lipoxygenase-5 and -12 antibodies. At the same time point, the RNA was also extracted from the liver to assess the expression of lipoxygenase-5 and -12 genes via qPCR analysis. Our results show that lipoxygenase-5 expression, but not that of lipoxygenase-12, changes significantly in the acetominophen-damaged liver. PMID:27408922

  18. NBQX and TCP prevent soman-induced hippocampal damage

    SciTech Connect

    Lallement, G.; Carpentier, P.; Pernot-Marino, I.; Baubichon, D.; Blanchet, G.

    1993-05-13

    In a previous investigation we demonstrated that the measurement of w3 (peripheral-type benzodiazepine) binding site densities could be of widespread applicability in the localization and quantification of soman-induced damage in the central nervous system. We thus used this marker to assess, in mouse hippocampus, the neuroprotective activity against soman-induced brain damage of NBQX and TCP which are respective antagonists of non-NMDA and NMDA glutamatergic receptors. Injection of NBQX at 20 or 40 mg/kg 5 min prior to soman totally prevented the neuronal damage. Comparatively, TCP had neuroprotective efficacy when administered at l mg/kg 5 min prior to soman followed by a reinjection 1 hour after. These results demonstrate that both NBQX and TCP afford a satisfactory neuroprotection against soman-induced brain damage. Since it is known that the neuropathology due to soman is closely seizure-related, it is likely that the neuroprotective activities of NBQX and TCP are related to the respective roles of non-NMDA and NMDA receptors in the onset and maintenance of soman-induced seizures.

  19. Hepatoprotective effect of the natural fruit juice from Aronia melanocarpa on carbon tetrachloride-induced acute liver damage in rats.

    PubMed

    Valcheva-Kuzmanova, S; Borisova, P; Galunska, B; Krasnaliev, I; Belcheva, A

    2004-12-01

    The fruits of Aronia melanocarpa are rich in anthocyanins--plant pigments with anti-inflammatory and antioxidant activity. We studied the effect of the natural fruit juice from A. melanocarpa (NFJAM) on carbon tetrachloride (CCl4)-induced acute liver damage in rats. Histopathological changes such as necrosis, fatty change, ballooning degeneration and inflammatory infiltration of lymphocytes around the central veins occurred in rats following acute exposure to CCl4 (0.2 ml kg(-1), 2 days). The administration of CCl4 increased plasma aspartate transaminase (AST) and alanine transaminase (ALT) activities, induced lipid peroxidation (as measured by malondialdehyde (MDA) content in rat liver and plasma) and caused a depletion of liver reduced glutathione (GSH). NFJAM (5, 10 and 20 ml kg(-1), 4 days) dose-dependently reduced the necrotic changes in rat liver and inhibited the increase of plasma AST and ALT activities, induced by CCl4 (0.2ml kg(-1), 3rd and 4th days). NFJAM also prevented the CCl4-induced elevation of MDA formation and depletion of GSH content in rat liver. PMID:15625789

  20. [Modeling and characteristics of liver damage in herpes infection].

    PubMed

    Tereshko, A B; Kolomiets, A G; Grits, M A; Duboĭskaia, G P

    1999-01-01

    An experimental model of herpetic hepatitis is developed, levels and time course of changes in transaminases, the main indicators of lipid metabolism, are characterized, and morphologic features of hepatocyte injury by herpes simplex virus are shown. Liver involvement in herpetic infection is described in detail. PMID:10392435

  1. Prevention of hepatocellular carcinoma in nonviral-related liver diseases.

    PubMed

    Fan, Jian-Gao; Farrell, Geoffrey C

    2009-05-01

    Although chronic infection with hepatitis B virus and/or hepatitis C virus are the most important risk factors for hepatocellular carcinoma (HCC) worldwide, other causes of cirrhosis can also lead to HCC. Given the high prevalence of alcoholism and the worldwide obesity epidemic, the relevant importance of nonviral liver disease-related HCC is expected to increase in the future. Some evidence supports mechanistic interactions between host or environmental factors and chronic viral hepatitis in the development of HCC. For example, food- and water-borne carcinogens have contributed to unusually high rates of HCC in parts of China and sub-Saharan Africa. With some of these conditions, appropriate public health measures to reduce the population's exposure to known etiologic agents, or early therapeutic intervention for 'at-risk' individuals before development of cirrhosis (e.g. hereditary hemochromatosis) can prevent HCC. Community-based programs to discourage and deal with excessive alcohol intake, to promote tobacco smoking awareness, to avoid exposure to aflatoxin and other food toxins, and measures to reduce the pandemic of obesity and diabetes are vital for effective interruption of the rising tide of HCC from nonviral liver disease. PMID:19646014

  2. The Correlation Between Serum Adipokines and Liver Cell Damage in Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Jamali, Raika; Hatami, Neda; Kosari, Farid

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic hepatitis, which can lead to cirrhosis and hepatocellular carcinoma. Objectives The aim of the study was to evaluate the correlation between serum adipocytokines and the histologic findings of the liver in patients with non-alcoholic fatty liver disease (NAFLD). Patients and Methods This case-control study was performed on those with persistent elevated liver enzymes and with evidence of fatty liver in ultrasonography. After exclusion of patients with other etiologies causing abnormal liver function tests, the resulting patients underwent liver biopsies. NAFLD was diagnosed based on liver histology according to the Brunt scoring system. Results Waist circumferences and levels of blood glucose (after fasting), insulin, triglycerides, alanine aminotransferases (ALT), and aspartate aminotransferases (AST) were higher in patients with NAFLD than in those in the control group. ALT, AST, and gamma glutamine transferase (GGT) levels were lower in patients with liver steatosis of a grade of less than 33% than those with higher degrees of steatosis. Serum low-density lipoprotein (LDL), cholesterol, and hepcidin levels were significantly higher in those with lobular inflammation of grade 0 - 1 than in those with inflammation of grade 2 - 3 (Brunt score). Meanwhile, AST was significantly lower in those with lobular inflammation of grade 1 than in those with grade 2-3. Hepcidin and resistin levels were significantly higher in patients with moderate to severe fibrosis than in those with mild fibrosis. Conclusions It seems that surrogate liver function tests and adipocytokine levels were correlated with the histologic findings of the liver. PMID:27313636

  3. Devices prevent ice damage to trusses of semi

    SciTech Connect

    Marthinsen, A.

    1985-04-01

    Much exploration drilling is done in subarctic waters around the world, and this will be important in the future. Special demands will be made on the drilling structures to enable them to withstand collisions with drifting ice. A Newfoundland Certificate of Fitness, for example, says a vessel must be able to tolerate collision with the largest iceberg that can be undetectable by radar, with out the danger of platform collapse. The iceberg in this case is defined as having a weight of 5000 tons and a drifting velocity of 2 meters/second. Devices to prevent ice damage to the trusses of semisubmersibles are discussed.

  4. Acute liver damage induced by 2-nitropropane in rats: effect of diphenyl diselenide on antioxidant defenses.

    PubMed

    Borges, Lysandro P; Nogueira, Cristina Wayne; Panatieri, Rodrigo B; Rocha, João Batista Teixeira; Zeni, Gilson

    2006-03-25

    The effect of post-treatment with diphenyl diselenide on liver damage induced by 2-nitropropane (2-NP) was examined in male rats. Rats were pre-treated with a single dose of 2-NP (100 mg/kg body weight dissolved in canola oil). Afterward, the animals were post-treated with a dose of diphenyl diselenide (10, 50 or 100 micromol/kg). The parameters that indicate tissue damage such as liver histopathology, plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), urea and creatinine were determined. Since the liver damage induced by 2-NP is related to oxidative damage, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT) and ascorbic acid level were also evaluated. Diphenyl diselenide (50 and 100 micromol/kg) effectively restored the increase of ALT and AST activities and urea level when compared to the 2-NP group. At the higher dose, diphenyl diselenide decreased GGT activity. Treatment with diphenyl diselenide, at all doses, effectively ameliorated the increase of hepatic and renal lipid peroxidation when compared to 2-NP group. 2-NP reduced CAT activity and neither alter SOD activity nor ascorbic acid level. This study points out the involvement of CAT activity in 2-NP-induced acute liver damage and suggests that the post-treatment with diphenyl diselenide was effective in restoring the hepatic damage induced by 2-NP. PMID:16445897

  5. Prevention of hyperphagia prevents ovariectomy-induced triacylglycerol accumulation in liver, but not plasma.

    PubMed

    Kitson, Alex P; Marks, Kristin A; Aristizabal Henao, Juan J; Tupling, A Russell; Stark, Ken D

    2015-12-01

    Menopause is associated with higher plasma and liver triacylglycerol (TAG) and increased risk for cardiovascular disease. Lowering TAG in menopause may be beneficial; however, the mechanism underlying menopause-induced TAG accumulation is not clear. Ovariectomy is a model for menopause and is associated with metabolic alterations and hyperphagia. This study investigated the role of hyperphagia in ovariectomy-induced increases in blood and tissue TAG, as well as differences in lipid metabolism enzymes and resting metabolic measures. It was hypothesized that prevention of hyperphagia would restore blood and tissue TAG, enzyme expression, and metabolic measures to eugonadal levels. Ovariectomized rats were fed ad libitum (OVX + AL) or pair-fed (OVX + PF) relative to sham-operated rats (SHAM) to prevent hyperphagia. OVX + AL had higher TAG concentrations in liver and plasma than SHAM (60% and 50%, respectively), and prevention of hyperphagia in OVX + PF normalized TAG concentrations to SHAM levels in liver, but not plasma. OVX + AL also had 141% higher hepatic stearoyl-CoA desaturase 1 which was almost completely normalized to SHAM levels by pair-feeding, suggesting normalization of hepatic lipid storage. In contrast, skeletal muscle carnitine palmitoyl transferase 1 was 40% lower in OVX + AL than SHAM and was intermediate in OVX + PF, suggesting lower muscle fatty acid oxidation that may underlie the higher plasma TAG in OVX. No differences were seen in energy expenditure, VO2, or VCO2. Overall, this study indicates that prevention of hyperphagia resulting from ovarian hormone withdrawal normalizes hepatic TAG to eugonadal levels but has no effect on ovariectomy-induced increases in plasma TAG. PMID:26475180

  6. Prevention of Biliary Lesions That May Occur During Radiofrequency Ablation of the Liver

    PubMed Central

    Marchal, Frédéric; Elias, Dominique; Rauch, Philippe; Zarnegar, Rasa; Leroux, Agnès; Stines, Joseph; Verhaeghe, Jean-Luc; Guillemin, François; Carteaux, Jean Pierre; Villemot, Jean Pierre

    2006-01-01

    Objective: To prevent bile duct injury by using a cold 5% glucose isotonic solution cooling in the bile ducts when radiofrequency (RF) is performed in a porcine model. Summary Background Data: Complications that may arise during liver RF ablation include biliary stenosis and abscesses. Methods: The RITA 1500 generator was used for the experiments. Two lesions were performed in the left liver. The pigs were killed 1 or 3 weeks after the procedure. An ex vivo cholangiogram was obtained by direct injection into the main bile duct. Samples of RF lesions, of liver parenchyma near and at a distance from the RF lesions, underwent pathologic studies. Two groups of 20 pigs each were treated: one without perfusion of the bile ducts and the other with perfusion of cold 5% glucose isotonic solution into the bile ducts. The Pringle maneuver was used in 50% of the RF procedures. Radiologic lesions were classified as biliary stenosis, complete interruption of the bile duct, or extravasation of the radiologic contrast liquid. Results: Histologic lesions of the bile ducts were observed near the ablated RF lesion site and at a distance from the RF lesions when a Pringle maneuver was performed. Radiologic and histologic lesions of the bile ducts were significantly reduced (P < 0.0001) when the bile ducts were cooled. Conclusions: Cooling of the bile ducts with a cold 5% glucose isotonic solution significantly protects the intrahepatic bile ducts from damages caused by the heat generated by RF when performed close to the bile ducts. PMID:16371740

  7. Quantitative ultrasound assessment of thermal damage in excised liver

    NASA Astrophysics Data System (ADS)

    Kemmerer, Jeremy P.; Ghoshal, Goutam; Oelze, Michael L.

    2012-10-01

    Quantitative ultrasound (QUS) is a novel approach for characterizing tissue microstructure and changes in tissue microstructure due to therapy. In this report, we discuss changes in QUS parameters in liver tissues after being exposed to thermal insult. Effective scatterer diameter (ESD) and effective acoustic concentration (EAC) from the normalized backscattered power spectrum were examined in rat liver specimens heated in a degassed saline bath. Individual liver samples were bisected, with half of each sample heated to a therapeutic temperature of 60°C for 10 minutes and the other half held at 37°C. The ultrasonic backscatter and attenuation coefficient were then estimated at 37°C from both halves. ESD was observed to decrease by an average of 34% in exposed compared to unexposed sample sections, EAC increased by 18 dB, and the attenuation coefficient increased by 70%. Histological slides from these samples indicate cell size and/or concentration may be affected by heating. This work was supported by NIH R01-EB008992.

  8. Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I

    PubMed Central

    Zhang, Ludi; Shao, Yanjiao; Li, Lu; Tian, Feng; Cen, Jin; Chen, Xiaotao; Hu, Dan; Zhou, Yan; Xie, Weifen; Zheng, Yunwen; Ji, Yuan; Liu, Mingyao; Li, Dali; Hui, Lijian

    2016-01-01

    Hereditary tyrosinemia type I (HT1) is caused by a deficiency in the enzyme fumarylacetoacetate hydrolase (Fah). Fah-deficient mice and pigs are phenotypically analogous to human HT1, but do not recapitulate all the chronic features of the human disorder, especially liver fibrosis and cirrhosis. Rats as an important model organism for biomedical research have many advantages over other animal models. Genome engineering in rats is limited till the availability of new gene editing technologies. Using the recently developed CRISPR/Cas9 technique, we generated Fah−/− rats. The Fah−/− rats faithfully represented major phenotypic and biochemical manifestations of human HT1, including hypertyrosinemia, liver failure, and renal tubular damage. More importantly, the Fah−/− rats developed remarkable liver fibrosis and cirrhosis, which have not been observed in Fah mutant mice or pigs. Transplantation of wild-type hepatocytes rescued the Fah−/− rats from impending death. Moreover, the highly efficient repopulation of hepatocytes in Fah−/− livers prevented the progression of liver fibrosis to cirrhosis and in turn restored liver architecture. These results indicate that Fah−/− rats may be used as an animal model of HT1 with liver cirrhosis. Furthermore, Fah−/− rats may be used as a tool in studying hepatocyte transplantation and a bioreactor for the expansion of hepatocytes. PMID:27510266

  9. Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I.

    PubMed

    Zhang, Ludi; Shao, Yanjiao; Li, Lu; Tian, Feng; Cen, Jin; Chen, Xiaotao; Hu, Dan; Zhou, Yan; Xie, Weifen; Zheng, Yunwen; Ji, Yuan; Liu, Mingyao; Li, Dali; Hui, Lijian

    2016-01-01

    Hereditary tyrosinemia type I (HT1) is caused by a deficiency in the enzyme fumarylacetoacetate hydrolase (Fah). Fah-deficient mice and pigs are phenotypically analogous to human HT1, but do not recapitulate all the chronic features of the human disorder, especially liver fibrosis and cirrhosis. Rats as an important model organism for biomedical research have many advantages over other animal models. Genome engineering in rats is limited till the availability of new gene editing technologies. Using the recently developed CRISPR/Cas9 technique, we generated Fah(-/-) rats. The Fah(-/-) rats faithfully represented major phenotypic and biochemical manifestations of human HT1, including hypertyrosinemia, liver failure, and renal tubular damage. More importantly, the Fah(-/-) rats developed remarkable liver fibrosis and cirrhosis, which have not been observed in Fah mutant mice or pigs. Transplantation of wild-type hepatocytes rescued the Fah(-/-) rats from impending death. Moreover, the highly efficient repopulation of hepatocytes in Fah(-/-) livers prevented the progression of liver fibrosis to cirrhosis and in turn restored liver architecture. These results indicate that Fah(-/-) rats may be used as an animal model of HT1 with liver cirrhosis. Furthermore, Fah(-/-) rats may be used as a tool in studying hepatocyte transplantation and a bioreactor for the expansion of hepatocytes. PMID:27510266

  10. Therapeutic Effects of Melatonin On Liver And Kidney Damages In Intensive Exercise Model of Rats.

    PubMed

    Gedikli, Semin; Gelen, Volkan; Sengul, Emin; Ozkanlar, Seckin; Gur, Cihan; Agırbas, Ozturk; Cakmak, Fatih; Kara, Adem

    2015-01-01

    Extensive exercise induces inflammatory reactions together with high production of free radicals and subsequent liver and kidney tissues damage. This study was designed to investigate for effects of melatonin on liver and kidney tissues in the extensive exercise exposed rats and non-exercised rats. In this research, 24-male Sprague-Dawley rats were divided into four groups. For exercise rat model, the rats were exposed to slow pace running with the velocity of 10 m/min for 5 minutes for five days just before the study. And for last ten days after adaptation period, the exercise was improved as 15 min with the speed of 20 m/min and intra-peritoneal melatonin injection has been performed to the melatonin treated groups with the dose of 10 mg/kg. Biochemical results revealed a decrease in the parameters of kidney and liver enzymes in exercise-group and an increase in the parameters of serum, liver and kidney enzymes in the group that melatonin-exercise-group. As for histological analysis, while it is observed that there are cellular degenerations in the liver and kidney tissues with exercise application, a decrease has been observed in these degenerations in the group that melatonin was applied. At the end of the research, it has been determined that exercise application causes some damages on liver and kidney, and these damages were ameliorated with melatonin treatment. PMID:26310355

  11. [Prediction of histological liver damage in asymptomatic alcoholic patients by means of clinical and laboratory data].

    PubMed

    Iturriaga, H; Hirsch, S; Bunout, D; Díaz, M; Kelly, M; Silva, G; de la Maza, M P; Petermann, M; Ugarte, G

    1993-04-01

    Looking for a noninvasive method to predict liver histologic alterations in alcoholic patients without clinical signs of liver failure, we studied 187 chronic alcoholics recently abstinent, divided in 2 series. In the model series (n = 94) several clinical variables and results of common laboratory tests were confronted to the findings of liver biopsies. These were classified in 3 groups: 1. Normal liver; 2. Moderate alterations; 3. Marked alterations, including alcoholic hepatitis and cirrhosis. Multivariate methods used were logistic regression analysis and a classification and regression tree (CART). Both methods entered gamma-glutamyltransferase (GGT), aspartate-aminotransferase (AST), weight and age as significant and independent variables. Univariate analysis with GGT and AST at different cutoffs were also performed. To predict the presence of any kind of damage (Groups 2 and 3), CART and AST > 30 IU showed the higher sensitivity, specificity and correct prediction, both in the model and validation series. For prediction of marked liver damage, a score based on logistic regression and GGT > 110 IU had the higher efficiencies. It is concluded that GGT and AST are good markers of alcoholic liver damage and that, using sample cutoffs, histologic diagnosis can be correctly predicted in 80% of recently abstinent asymptomatic alcoholics. PMID:7903815

  12. 49 CFR 198.35 - Grants conditioned on adoption of one-call damage prevention program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... prevention program. 198.35 Section 198.35 Transportation Other Regulations Relating to Transportation... Prevention Program § 198.35 Grants conditioned on adoption of one-call damage prevention program. In... considers whether a State has adopted or is seeking to adopt a one-call damage prevention program...

  13. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery.

    PubMed

    Igarashi, Tsutomu; Ohsawa, Ikuroh; Kobayashi, Maika; Igarashi, Toru; Suzuki, Hisaharu; Iketani, Masumi; Takahashi, Hiroshi

    2016-01-01

    In phacoemulsification, ultrasound induces hydroxyl radical (·OH) formation, damaging corneal endothelium. Whether H2 can prevent such oxidative damage in phacoemulsification was examined by in vitro and in vivo studies. H2 was dissolved in a commercial irrigating solution. The effects of H2 against ·OH generation were first confirmed in vitro by electron-spin resonance (ESR) and hydroxyphenyl fluorescein (HPF). ESR showed a significantly decreased signal magnitude, and fluorescence intensity by oxidized HPF was significantly less in the H2-dissolved solution. The effects of H2 in phacoemulsification were evaluated in rabbits, comparing H2-dissolved and control solutions. Five hours after the procedure, the whole cornea was excised and subjected to image analysis for corneal edema, real-time semiquantitative PCR (qPCR) for heme oxygenase (HO)-1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 mRNA, and immunohistochemistry. Corneal edema was significantly less and the increases in anti-oxidative HO-1, CAT and SOD2 mRNA expressions were significantly suppressed in the H2 group. In addition, corneal endothelial cell expressions of two oxidative stress markers, 4-HNE and 8-OHdG, were significantly lower in the H2 group. In conclusion, H2 dissolved in the ocular irrigating solution protected corneal endothelial cells from phacoemulsification-induced oxidative stress and damage. PMID:27498755

  14. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery

    PubMed Central

    Igarashi, Tsutomu; Ohsawa, Ikuroh; Kobayashi, Maika; Igarashi, Toru; Suzuki, Hisaharu; Iketani, Masumi; Takahashi, Hiroshi

    2016-01-01

    In phacoemulsification, ultrasound induces hydroxyl radical (·OH) formation, damaging corneal endothelium. Whether H2 can prevent such oxidative damage in phacoemulsification was examined by in vitro and in vivo studies. H2 was dissolved in a commercial irrigating solution. The effects of H2 against ·OH generation were first confirmed in vitro by electron-spin resonance (ESR) and hydroxyphenyl fluorescein (HPF). ESR showed a significantly decreased signal magnitude, and fluorescence intensity by oxidized HPF was significantly less in the H2-dissolved solution. The effects of H2 in phacoemulsification were evaluated in rabbits, comparing H2-dissolved and control solutions. Five hours after the procedure, the whole cornea was excised and subjected to image analysis for corneal edema, real-time semiquantitative PCR (qPCR) for heme oxygenase (HO)-1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 mRNA, and immunohistochemistry. Corneal edema was significantly less and the increases in anti-oxidative HO-1, CAT and SOD2 mRNA expressions were significantly suppressed in the H2 group. In addition, corneal endothelial cell expressions of two oxidative stress markers, 4-HNE and 8-OHdG, were significantly lower in the H2 group. In conclusion, H2 dissolved in the ocular irrigating solution protected corneal endothelial cells from phacoemulsification-induced oxidative stress and damage. PMID:27498755

  15. Moisture-associated skin damage: aetiology, prevention and treatment.

    PubMed

    Voegeli, David

    The concept of excessive moisture causing damage to the skin is not a new one, and provides a rationale for many fundamental nursing interventions. Although traditionally thought of as a specific problem of continence care, it is a common problem encountered in many different patient groups. As a consequence the umbrella term moisture-associated skin damage (MASD) has been introduced to describe the spectrum of damage that occurs in response to the prolonged exposure of a patient's skin to perspiration, urine, faeces or wound exudate. It is generally accepted that MASD consists of four main separate conditions, each having slightly different aetiologies, all of which will be explored in this paper. Careful assessment can help distinguish between the four and enable appropriate prevention and treatment interventions to be implemented. Whatever causes the excessive moisture, effective interventions should consist of the adoption of a structured skin care regime to cleanse and protect, methods to keep the skin dry, controlling the source of the excessive moisture and treating any secondary infection. PMID:22585263

  16. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    PubMed Central

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  17. Biochemical and Histological Correlations of Regeneration After Experimental Liver Damage: Significance of Cirrhosis

    PubMed Central

    More, I. A. R.

    1973-01-01

    Chromatin was isolated from rat liver after the animal had been subjected to a variety of stimuli calculated to cause liver damage and regeneration. It was found that the regenerating nodule in the cirrhotic rat and the liver regenerating after partial hepatectomy showed similar changes. Both involved an increase in the content of active chromatin, an increased ability to make RNA and the derepression of a relatively small portion of the genome. ImagesFigs. 1-2Figs. 3-4Figs. 5-6 PMID:4726093

  18. Ginger-derived nanoparticles protect against alcohol-induced liver damage.

    PubMed

    Zhuang, Xiaoying; Deng, Zhong-Bin; Mu, Jingyao; Zhang, Lifeng; Yan, Jun; Miller, Donald; Feng, Wenke; McClain, Craig J; Zhang, Huang-Ge

    2015-01-01

    Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)-mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant-derived nanoparticles. PMID:26610593

  19. Ginger-derived nanoparticles protect against alcohol-induced liver damage

    PubMed Central

    Zhuang, Xiaoying; Deng, Zhong-Bin; Mu, Jingyao; Zhang, Lifeng; Yan, Jun; Miller, Donald; Feng, Wenke; McClain, Craig J.; Zhang, Huang-Ge

    2015-01-01

    Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)–mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant–derived nanoparticles. PMID:26610593

  20. Transcriptome Analysis of the Effects of Gomisin A on the Recovery of Carbon Tetrachloride-Induced Damage in Rat Liver

    PubMed Central

    Choi, Young Mi; Choi, In Soo; Lee, Sang Mong; Hwang, Dae Youn; Choi, Young Whan

    2011-01-01

    Gomisin A possesses a hepatic function-facilitating property in liver-injured rats. Its preventive action on carbon tetrachloride-induced cholestasis is due to maintenance of the function of the bile acids-independent fraction. To investigate alterations in gene expression after gomisin A treatment on injured rat liver, DNA microarray analyses were performed on a Rat 44K 4-Plex Gene Expression platform with duplicated reactions after gomisin A treatment. We identified 255 up-regulated and 230 down-regulated genes due to the effects of gomisin A on recovery of carbon tetrachloride-induced rat liver damage. For functional characterization of these genes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes biochemical pathways analyses were performed. Many up-regulated or down-regulated genes were related to cell cycle or focal adhesion and cell death genes, respectively. Our microarray experiment indicated that the liver repair mechanism induced by gomisin A was strongly associated with increased gene expressions related to cell cycle and suppression of the gene expression related in cell death. PMID:21826177

  1. Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression.

    PubMed

    Shen, Zhe; Liu, Yan; Dewidar, Bedair; Hu, Junhao; Park, Ogyi; Feng, Teng; Xu, Chengfu; Yu, Chaohui; Li, Qi; Meyer, Christoph; Ilkavets, Iryna; Müller, Alexandra; Stump-Guthier, Carolin; Munker, Stefan; Liebe, Roman; Zimmer, Vincent; Lammert, Frank; Mertens, Peter R; Li, Hai; Ten Dijke, Peter; Augustin, Hellmut G; Li, Jun; Gao, Bin; Ebert, Matthias P; Dooley, Steven; Li, Youming; Weng, Hong-Lei

    2016-07-01

    Disrupting Notch signaling ameliorates experimental liver fibrosis. However, the role of individual Notch ligands in liver damage is unknown. We investigated the effects of Delta-like ligand 4 (Dll4) in liver disease. DLL4 expression was measured in 31 human liver tissues by immunohistochemistry. Dll4 function was examined in carbon tetrachloride- and bile duct ligation-challenged mouse models in vivo and evaluated in hepatic stellate cells, hepatocytes, and Kupffer cells in vitro. DLL4 was expressed in patients' Kupffer and liver sinusoidal endothelial cells. Recombinant Dll4 protein (rDll4) ameliorated hepatocyte apoptosis, inflammation, and fibrosis in mice after carbon tetrachloride challenge. In vitro, rDll4 significantly decreased lipopolysaccharide-dependent chemokine expression in both Kupffer and hepatic stellate cells. In bile duct ligation mice, rDll4 induced massive hepatic necrosis, resulting in the death of all animals within 1 week. Inflammatory cell infiltration and chemokine ligand 2 (Ccl2) expression were significantly reduced in rDll4-receiving bile duct ligation mice. Recombinant Ccl2 rescued bile duct ligation mice from rDll4-mediated death. In patients with acute-on-chronic liver failure, DLL4 expression was inversely associated with CCL2 abundance. Mechanistically, Dll4 regulated Ccl2 expression via NF-κB. Taken together, Dll4 modulates liver inflammatory response by down-regulating chemokine expression. rDll4 application results in opposing outcomes in two models of liver damage. Loss of DLL4 may be associated with CCL2-mediated cytokine storm in patients with acute-on-chronic liver failure. PMID:27171900

  2. Chronic hepatitis C virus infection: Serum biomarkers in predicting liver damage

    PubMed Central

    Valva, Pamela; Ríos, Daniela A; De Matteo, Elena; Preciado, Maria V

    2016-01-01

    Currently, a major clinical challenge in the management of the increasing number of hepatitis C virus (HCV) infected patients is determining the best means for evaluating liver impairment. Prognosis and treatment of chronic hepatitis C (CHC) are partly dependent on the assessment of histological activity, namely cell necrosis and inflammation, and the degree of liver fibrosis. These parameters can be provided by liver biopsy; however, in addition to the risks related to an invasive procedure, liver biopsy has been associated with sampling error mostly due to suboptimal biopsy size. To avoid these pitfalls, several markers have been proposed as non-invasive alternatives for the diagnosis of liver damage. Distinct approaches among the currently available non-invasive methods are (1) the physical ones based on imaging techniques; and (2) the biological ones based on serum biomarkers. In this review, we discuss these approaches with special focus on currently available non-invasive serum markers. We will discuss: (1) class I serum biomarkers individually and as combined panels, particularly those that mirror the metabolism of liver extracellular matrix turnover and/or fibrogenic cell changes; (2) class II biomarkers that are indirect serum markers and are based on the evaluation of common functional alterations in the liver; and (3) biomarkers of liver cell death, since hepatocyte apoptosis plays a significant role in the pathogenesis of HCV infection. We highlight in this review the evidence behind the use of these markers and assess the diagnostic accuracy as well as advantages, limitations, and application in clinical practice of each test for predicting liver damage in CHC. PMID:26819506

  3. Effective Prevention of Liver Fibrosis by Liver-targeted Hydrodynamic Gene Delivery of Matrix Metalloproteinase-13 in a Rat Liver Fibrosis Model.

    PubMed

    Abe, Hiroyuki; Kamimura, Kenya; Kobayashi, Yuji; Ohtsuka, Masato; Miura, Hiromi; Ohashi, Riuko; Yokoo, Takeshi; Kanefuji, Tsutomu; Suda, Takeshi; Tsuchida, Masanori; Aoyagi, Yutaka; Zhang, Guisheng; Liu, Dexi; Terai, Shuji

    2016-01-01

    Liver fibrosis is the final stage of liver diseases that lead to liver failure and cancer. While various diagnostic methods, including the use of serum marker, have been established, no standard therapy has been developed. The objective of this study was to assess the approach of overexpressing matrix metalloproteinase-13 gene (MMP13) in rat liver to prevent liver fibrosis progression. A rat liver fibrosis model was established by ligating the bile duct, followed by liver-targeted hydrodynamic gene delivery of a MMP13 expression vector, containing a CAG promoter-MMP13-IRES-tdTomato-polyA cassette. After 14 days, the serum level of MMP13 peaked at 71.7 pg/ml in MMP13-treated group, whereas the nontreated group only showed a level of ~5 pg/ml (P < 0.001). These levels were sustained for the next 60 days. The statistically lower level of the hyaluronic acids in treated group versus the nontreated group (P < 0.05) reveals the therapeutic effect of MMP13 overexpression. Quantitative analysis of tissue stained with sirius red showed a statistically larger volume of fibrotic tissue in the nontreated group compared to that of MMP13-treated rats (P < 0.05). These results suggest that the liver-targeted hydrodynamic delivery of MMP13 gene could be effective in the prevention of liver fibrosis. PMID:26730813

  4. Hepatoprotective activity of Moringa oleifera on antitubercular drug-induced liver damage in rats.

    PubMed

    Pari, L; Kumar, N Ashok

    2002-01-01

    Moringa oleifera Lam (Moringaceae), commonly known as "Drumstick," is used in Indian folk medicine for the treatment of various illness. We have evaluated the hepatoprotective effect of an ethanolic extract of M. oleifera leaves on liver damage induced by antitubercular drugs such as isoniazid (INH), rifampicin (RMP), and pyrazinamide (PZA) in rats. Oral administration of the extract showed a significant protective action made evident by its effect on the levels of glutamic oxaloacetic transaminase (aspartate aminotransferase), glutamic pyruvic transaminase (alanine aminotransferase), alkaline phosphatase, and bilirubin in the serum; lipids, and lipid peroxidation levels in liver. This observation was supplemented by histopathological examination of liver sections. The results of this study showed that treatment with M. oleifera extracts or silymarin (as a reference) appears to enhance the recovery from hepatic damage induced by antitubercular drugs. PMID:12495589

  5. 49 CFR 198.35 - Grants conditioned on adoption of one-call damage prevention program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Grants conditioned on adoption of one-call damage...) PIPELINE SAFETY REGULATIONS FOR GRANTS TO AID STATE PIPELINE SAFETY PROGRAMS Adoption of One-Call Damage Prevention Program § 198.35 Grants conditioned on adoption of one-call damage prevention program....

  6. Action of streptokinase on parameters of hemostasis in rabbits with toxic liver damage due to carbon tetrachloride

    SciTech Connect

    Nikandrov, V.N.; Naumovich, S.A.; Votyakov, V.I.

    1987-07-01

    The authors study the specific nature of changes in the parameters of hemostasis in rabbits with experimental toxic liver damage. Streptokinase was injected intravenously. Toxic liver damage was induced by injections of carbon tetrachloride. The parameters studied included acceleration of lysis of the blood clot, increased fibrinolytic activity and thrombin time, lowered level of fibrinogen and antithrombin III.

  7. Garlic supplementation prevents oxidative DNA damage in essential hypertension.

    PubMed

    Dhawan, Veena; Jain, Sanjay

    2005-07-01

    Oxygen-free radicals and other oxygen/nitrogen species are constantly generated in the human body. Most are intercepted by antioxidant defences and perform useful metabolic roles, whereas others escape to damage biomolecules like DNA, lipids and proteins. Garlic has been shown to contain antioxidant phytochemicals that prevent oxidative damage. These include unique water-soluble organosulphur compounds, lipid-soluble organosulphur compounds and flavonoids. Therefore, in the present study, we have tried to explore the antioxidant effect of garlic supplementation on oxidative stress-induced DNA damage, nitric oxide (NO) and superoxide generation and on the total antioxidant status (TAS) in patients of essential hypertension (EH). Twenty patients of EH as diagnosed by JNC VI criteria (Group I) and 20 age and sex-matched normotensive controls (Group II) were enrolled in the study. Both groups were given garlic pearls (GP) in a dose of 250 mg per day for 2 months. Baseline samples were taken at the start of the study, i.e. 0 day, and thereafter 2 months follow-up. 8-Hydroxy-2'-deoxyguanosine (8-OHdG), lipids, lipid peroxidation (MDA), NO and antioxidant vitamins A, E and C were determined. A moderate decline in blood pressure (BP) and a significant reduction in 8-OHdG, NO levels and lipid peroxidation were observed in Group I subjects with GP supplementation. Further, a significant increase in vitamin levels and TAS was also observed in this group as compared to the control subjects. These findings point out the beneficial effects of garlic supplementation in reducing blood pressure and counteracting oxidative stress, and thereby, offering cardioprotection in essential hypertensives. PMID:16335787

  8. Ultrasound Elastography Used for Preventive Non-Invasive Screening in Early Detection of Liver Fibrosis

    PubMed Central

    Bert, Florian; Stahmeyer, Jona T.; Rossol, Siegbert

    2016-01-01

    Background Early discovery of liver fibrosis is becoming more popular because of enhanced incidence of hepatocellular carcinoma. Ultrasound-based liver elastography is a method used to approve suspected liver fibrosis or cirrhosis. We assessed the clinical usefulness of acoustic radiation force impulse shear wave elasticity imaging (ARFI-SWEI) as a preventive screening method to uncover fibrosis. Methods We screened 382 patients by native routine sonography for abnormal liver results and divided them into six groups: group 1: normal liver, groups 2-4: fatty liver grade I-III, group 5: liver cirrhosis, and group 6: inhomogenic liver tissue. Then ARFI-SWEI was performed and the results were compared with published shear wave velocity cut-off values that were predictive of each fibrosis stage (F0-4). A control group consisted of 20 healthy volunteers. Results The part of liver fibrosis ≥ F2 was in groups 1-4: 20-32%, group 5: 100%, and group 6: 91%. Main causes for fibrosis stage ≥ F2 were (non)-alcoholic steatohepatitis, chronic viral or autoimmune hepatitis and chronic heart failure. Conclusions Screening of the liver tissue in b-mode ultrasound can underestimate possible liver fibrosis; by using ARFI-SWEI, liver fibrosis can be uncovered early. It is a suitable preventive method comparable to colonoscopy for colon cancer. PMID:27540438

  9. Liver cancer in Wisconsin: The potential for prevention

    SciTech Connect

    Mirkin, I.R.; Remington, P.L.; Moss, M.; Anderson, H. )

    1990-02-01

    In this study liver cancer deaths that could be attributed to certain risk factors were calculated. Applying population attributable risk methodology, the attributable risk of liver cancer was estimated for alcohol use, hepatitis B viral exposure, and occupational and industrial exposures. We found that these three risk factors accounted for 38% of liver cancer mortality in Wisconsin; 29% was attributable to alcohol consumption, 7% to occupational exposures, and 2% to hepatitis B viral infection. More than half of liver cancer mortality, however, was not accounted for by the three risk factors studied.

  10. Aloe vera gel protects liver from oxidative stress-induced damage in experimental rat model.

    PubMed

    Nahar, Taslima; Uddin, Borhan; Hossain, Shahdat; Sikder, Abdul Mannan; Ahmed, Sohel

    2013-01-01

    Aloe vera is a semi-tropical plant of Liliaceae family which has a wide range of applications in traditional medicine. In the present study, we sought to investigate the heptaoprotective potential of Aloe vera gel as a diet supplement. To achieve this goal, we have designed in vitro and in vivo experimental models of chemical-induced liver damage using male Sprague-Dawley rat. In the in vitro model, its effect was evaluated on Fenton's reaction-induced liver lipid peroxidation. Co-incubation with gel significantly reduced the generation of liver lipid peroxide (LPO). Next, to see the similar effect in vivo, gel was orally administered to rats once daily for 21 successive days. Following 1 hour of the last administration of gel, rats were treated with intra-peritoneal injection of CCl4. Dietary gel showed significant hepatoprotection against CCl4-induced damage as evident by restoration of liver LPO, serum transaminases, alkaline phosphatase, and total bilirubin towards near normal. The beneficial effects were pronounced with the doses used (400 and 800 mg/kg body weight). Besides, we did not observe any significant drop in serum albumin, globulin as well as total protein levels of gel-administered rats. Histopathology of the liver tissue further supported the biochemical findings confirming the hepatoprotective potential of dietary gel. PMID:23652643

  11. Oxidative Stress and DNA Damage Induced by Chromium in Liver and Kidney of Goldfish, Carassius auratus

    PubMed Central

    Velma, Venkatramreddy; Tchounwou, Paul B.

    2013-01-01

    Chromium (Cr) is an abundant element in the Earth’s crust. It exhibits various oxidation states, from divalent to hexavalent forms. Cr has diverse applications in various industrial processes and inadequate treatment of the industrial effluents leads to the contamination of the surrounding water resources. Hexavalent chromium (Cr (VI)) is the most toxic form, and its toxicity has been associated with oxidative stress. The present study was designed to investigate the toxic potential of Cr (VI) in fish. In this research, we investigated the role of oxidative stress in chromium-induced genotoxicity in the liver and kidney cells of goldfish, Carassius auratus. Goldfish were acclimatized to the laboratory conditions and exposed them to 5% and 10% of 96 hr-LC50 (85.7 mg/L) of aqueous Cr (VI) in a continuous flow through system. Fish were sampled every 7 days for a period of 28 days to analyze the lipid hydroperoxides (LHP) levels and genotoxic potentials in the liver and kidney. LHP levels were analyzed by spectrophotometry while genotoxicity was assessed by single cell gel electrophoresis (comet) assay. LHP levels in the liver increased significantly at week 1, followed by a decrease. LHP levels in the kidney increased significantly at weeks 1, 2, and 3, and decreased at week 4 compared to the control. The percentage of DNA damage increased in both liver and kidney at both test concentrations. The results clearly indicate that Cr (VI) induces significant levels of DNA damage in liver and kidney cells of goldfish. The induced LHP levels in both organs were concentration-dependent and were directly correlated with the levels of DNA damage. The two tested Cr (VI) concentrations induced significant levels of oxidative stress in both organs, however the kidney appears to be more vulnerable and sensitive to Cr-induced toxicity than the liver. PMID:23700361

  12. Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats.

    PubMed

    Kamp, Hennicke G; Eisenbrand, Gerhard; Janzowski, Christine; Kiossev, Jetchko; Latendresse, John R; Schlatter, Josef; Turesky, Robert J

    2005-12-01

    The nephrotoxic/carcinogenic mycotoxin ochratoxin A (OTA) occurs as a contaminant in food and feed and may be linked to human endemic Balkan nephropathy. The mechanism of OTA-derived carcinogenicity is still under debate, since reactive metabolites of OTA and DNA adducts have not been unambiguously identified. Oxidative DNA damage, however, has been observed in vitro after incubation of mammalian cells with OTA. In this study, we investigated whether OTA induces oxidative DNA damage in vivo as well. Male F344 rats were dosed with 0, 0.03, 0.1, 0.3 mg/kg bw per day OTA for 4 wk (gavage, 7 days/wk, five animals per dose group). Subsequently, oxidative DNA damage was determined in liver and kidney by the comet assay (single cell gel electrophoresis) with/without use of the repair enzyme formamido-pyrimidine-DNA-glycosylase (FPG). The administration of OTA had no effect on basic DNA damage (determined without FPG); however, OTA-mediated oxidative damage was detected with FPG treatment in kidney and liver DNA of all dose groups. Since the doses were in a range that had caused kidney tumors in a 2-year carcinogenicity study with rats, the oxidative DNA damage induced by OTA may help to explain its mechanism of carcinogenicity. For the selective induction of tumors in the kidney, increased oxidative stress in connection with severe cytotoxicity and increased cell proliferation might represent driving factors. PMID:16302199

  13. Investigation into the role of the cholinergic system in radiation-induced damage in the rat liver and ileum

    PubMed Central

    Özyurt, Hazan; Özden, A. Sevgi; Çevİk, Özge; Özgen, Zerrin; ÇadIrcI, Selin; Elmas, Merve Açıkel; Ercan, Feriha; Şener, Göksel; Gören, M.Z.

    2014-01-01

    It has been previously shown that acetylcholine (ACh) may affect pro-inflammatory and anti-inflammatory cytokines. The role of the cholinergic system in radiation-induced inflammatory responses and tissue damage remains unclear. Therefore, the present study was designed to determine the radio-protective properties of the cholinergic system in the ileum and the liver of rats. Rats were exposed to 8-Gy single-fraction whole-abdominal irradiation and were then decapitated at either 36 h or 10 d post-irradiation. The rats were treated either with intraperitoneal physiological saline (1 ml/kg), physostigmine (80 µg/kg) or atropine (50 μg/kg) twice daily for 36 h or 10 d. Cardiac blood samples and liver and ileal tissues were obtained in which TNF-α, IL-1β and IL-10 levels were assayed using ELISA. In the liver and ileal homogenates, caspase-3 immunoblots were performed and myeloperoxidase (MPO) activity was analyzed. Plasma levels of IL-1β and TNF-α increased significantly following radiation (P < 0.01 and P < 0.001, respectively) as compared with non-irradiated controls, and physostigmine treatment prevented the increase in the pro-inflammatory cytokines (P < 0.01 and P < 0.001, respectively). Plasma IL-10 levels were not found to be significantly changed following radiation, whereas physostigmine augmented IL-10 levels during the late phase (P < 0.01). In the liver and ileum homogenates, IL-1β and TNF-α levels were also elevated following radiation, and this effect was inhibited by physostigmine treatment but not by atropine. Similarly, physostigmine also reversed the changes in MPO activity and in the caspase-3 levels in the liver and ileum. Histological examination revealed related changes. Physostigmine experiments suggested that ACh has a radio-protective effect not involving the muscarinic receptors. PMID:24914105

  14. Evaluation of the Effectiveness of Piper cubeba Extract in the Amelioration of CCl4-Induced Liver Injuries and Oxidative Damage in the Rodent Model

    PubMed Central

    AlSaid, Mansour; Mothana, Ramzi; Raish, Mohammad; Al-Sohaibani, Mohammed; Al-Yahya, Mohammed; Ahmad, Ajaz; Al-Dosari, Mohammed; Rafatullah, Syed

    2015-01-01

    Background. Liver diseases still represent a major health burden worldwide. Moreover, medicinal plants have gained popularity in the treatment of several diseases including liver. Thus, the present study was to evaluate the effectiveness of Piper cubeba fruits in the amelioration of CCl4-induced liver injuries and oxidative damage in the rodent model. Methods. Hepatoprotective activity was assessed using various biochemical parameters like SGOT, SGPT, γ-GGT, ALP, total bilirubin, LDH, and total protein. Meanwhile, in vivo antioxidant activities as LPO, NP-SH, and CAT were measured in rat liver as well as mRNA expression of cytokines such as TNFα, IL-6, and IL-10 and stress related genes iNOS and HO-1 were determined by RT-PCR. The extent of liver damage was also analyzed through histopathological observations. Results. Treatment with PCEE significantly and dose dependently prevented drug induced increase in serum levels of hepatic enzymes. Furthermore, PCEE significantly reduced the lipid peroxidation in the liver tissue and restored activities of defense antioxidant enzymes NP-SH and CAT towards normal levels. The administration of PCEE significantly downregulated the CCl4-induced proinflammatory cytokines TNFα and IL-6 mRNA expression in dose dependent manner, while it upregulated the IL-10 and induced hepatoprotective effect by downregulating mRNA expression of iNOS and HO-1 gene. PMID:25654097

  15. [Interferon-alpha and liver fibrosis in patients with chronic damage due to hepatitis C virus].

    PubMed

    Gonzalez-Huezo, María Sarai; Gallegos-Orozco, Juan Fernando

    2003-01-01

    The present review focuses on the published information published regarding the effects of interferon alpha therapy on liver fibrosis in patients with chronic liver damage secondary to hepatitis C infection. Data reviewed included results of the in vitro effects of interferon on hepatic cell line cultures with regards to indirect markers of fibrosis, activation of hepatic stellate cells and oxidative stress response. In the clinical arena, there is current clear evidence of a favorable histological outcome in patients with sustained viral response to interferon therapy. For this reason, the current review focuses more on the histological outcomes regarding liver fibrosis in patients who have not attained viral response to therapy (non-responders) or who already have biopsy defined cirrhosis. Data in these patients were analyzed according to the results of objective testing of fibrosis through the assessment of liver biopsy and its change during time, specially because the morbidity and mortality of this disease is directly related to the complications of liver cirrhosis and not necessarily to the persistence of the hepatitis C virus. Lastly, it is concluded that the process of liver fibrosis/cirrhosis is a dynamic one and that there is some evidence to support the usefulness of interferon alpha therapy as a means to halt or retard the progression of hepatic fibrosis. The result of current clinical trials in which interferon therapy is being used to modify the progression of fibrosis in non-responders or cirrhotic patients is eagerly awaited. PMID:14702938

  16. Effect of selenium on methimazole-induced liver damage and oxidative stress in adult rats and their offspring.

    PubMed

    Sefi, Mediha; Ben Amara, Ibtissem; Troudi, Afef; Soudani, Nejla; Hakim, Ahmed; Zeghal, Khaled Mounir; Boudawara, Tahia; Zeghal, Najiba

    2014-08-01

    This study aimed to investigate the protective effect of selenium (Se) on methimazole (MMI; an antithyroid drug)-induced hepatotoxicity in adult rats and their progeny. Female Wistar rats were randomly divided into four groups of six rats in each group: group I served as controls that received standard diet; group II received MMI in drinking water as 250 mg L(-1) and standard diet; group III received both MMI (250 mg L(-1), orally) and Se (0.5 mg kg(-1) of diet); group IV received Se (0.5 mg kg(-1) of diet) as sodium selenite. Treatments were started from the 14th day of pregnancy until day 14 after delivery. Exposure of rats to MMI promoted oxidative stress with an increase in liver malondialdehyde levels, advanced oxidation protein products and protein carbonyl contents and a decrease in the levels of glutathione, nonprotein thiols and vitamin C. A decrease in the activities of liver glutathione peroxidase, superoxide dismutase, catalase and lactate dehydrogenase and in the levels of plasma total protein and albumin was also observed. Plasma transaminase activities and total, direct and indirect bilirubin levels increased. Coadministration of Se through diet improved all biochemical parameters. The histopathological changes confirmed the biochemical results. Therefore, our investigation revealed that Se, a trace element with antioxidant properties, was effective in preventing MMI-induced liver damage. PMID:23047615

  17. Enhanced protective activity of nano formulated andrographolide against arsenic induced liver damage.

    PubMed

    Das, Sujata; Pradhan, Goutam Kumar; Das, Subhadip; Nath, Debjani; Das Saha, Krishna

    2015-12-01

    Chronic exposure to arsenic over a period of time induces toxicity, primarily in liver but gradually in all systems of the body. Andrographolide (AG), a major diterpene lactone of Andrographis paniculata, shows a wide array of physiological functions including hepatoprotection. Therapeutic applications of AG are however seriously constrained because of its insolubility, poor bioavailability, and short plasma half-life. Nanoparticulation of AG is a possible solution to these problems. In the present study we investigated the effectiveness of polylactide co-glycolide (PLGA) nanocapsulated andrographolide (NA) against arsenic induced liver damage in mice. NA of average diameter 65.8 nm and encapsulation efficiency of 64% were prepared. Sodium arsenite at a dose of 40 mg/L supplied via drinking water in mice significantly raised the serum level of liver function markers such as AST, ALT, and ALP, and caused arsenic deposition in liver and ROS generation, though it did not show any lethality up to 30 days of exposure. However, even liver toxicity was not observed when mice were given AG and NA orally at doses up to 100 mg/kg bwt and 20 mg/kg bwt respectively on alternate days for one month. Treatment of non-toxic doses of AG or NA on alternate days along with arsenic significantly decreased the arsenic induced elevation of the serum level of ALT, AST and ALP, and arsenic deposition in liver. AG and NA increased the level of hepatic antioxidant enzymes such as superoxide dismutase (SOD), and catalase (CAT), and the level of reduced glutathione (GSH). Also, the ROS level was lowered in mice exposed to arsenic but treated with AG or NA. Protective efficiency of NA is about five times more than that of AG. Administration of NA to arsenic-treated mice caused signs of improvement in liver tissue architecture. In conclusion, the results of this study suggest that NA could be beneficial against arsenic-induced liver toxicity. PMID:26485141

  18. Prevention of liver ischemia reperfusion injury by a combined thyroid hormone and fish oil protocol.

    PubMed

    Mardones, Marcelo; Valenzuela, Rodrigo; Romanque, Pamela; Covarrubias, Natalia; Anghileri, Fiorella; Fernández, Virginia; Videla, Luis A; Tapia, Gladys

    2012-09-01

    Several preconditioning strategies are used to prevent ischemia-reperfusion (IR) liver injury, a deleterious condition associated with tissue resection, transplantation or trauma. Although thyroid hormone (T₃) administration exerts significant protection against liver IR injury in the rat, its clinical application is controversial due to possible adverse effects. Considering that prevention of liver IR injury has also been achieved by n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation to rats, we studied the effect of n-3 PUFA dietary supplementation plus a lower dose of T₃ against IR injury. Male Sprague-Dawley rats receiving fish oil (300 mg/kg) for 3 days followed by a single intraperitoneal dose of 0.05 mg T₃/kg were subjected to 1 h of ischemia followed by 20 h of reperfusion. Parameters of liver injury (serum transaminases, histology) and oxidative stress (liver contents of GSH and oxidized proteins) were correlated with fatty acid composition, NF-κB activity, and tumor necrosis factor-α (TNF-α) and haptoglobin expression. IR significantly modified liver histology; enhanced serum transaminases, TNF-α response or liver oxidative stress; and decreased liver NF-κB activity and haptoglobin expression. Although IR injury was not prevented by either n-3 PUFA supplementation or T₃ administration, substantial decrease in liver injury and oxidative stress was achieved by the combined protocol, which also led to increased liver n-3 PUFA content and decreased n-6/n-3 PUFA ratios, with recovery of NF-κB activity and TNF-α and haptoglobin expression. Prevention of liver IR injury achieved by a combined protocol of T₃ and n-3 PUFA supplementation may represent a novel noninvasive preconditioning strategy with potential clinical application. PMID:22137030

  19. Drinking habits as cofactors of risk for alcohol induced liver damage

    PubMed Central

    Bellentani, S; Saccoccio, G; Costa, G; Tiribelli, C; Manenti, F; Sodde, M; Croce', L; Sasso, F; Pozzato, G; Cristianini, G; a Brandi

    1997-01-01

    Background—The Dionysos Study is a cohort study of the prevalence of chronic liver disease in the general population of two northern Italian communities. It included 6917 subjects, aged 12-65 (69% of the total population). 
Aims—The aim of this part of the study was to examine the relationship of daily alcohol intake, type of alcoholic beverage consumed, and drinking patterns to the presence of alcohol induced liver damage in an open population. 
Patients and methods—6534 subjects, free of virus related chronic liver disease and participating in the first cross-sectional part of the study, were fully examined. Each subject underwent: (a) medical history and physical examination, (b) evaluation of alcohol intake using an illustrated dietary questionnaire, and (c) routine blood tests. More invasive diagnostic procedures were performed when indicated. 
Results—Multivariate analysis showed that the risk threshold for developing either cirrhosis or non-cirrhotic liver damage (NCLD) was ingestion of more than 30 g alcohol per day in both sexes. Using this definition, 1349 individuals (21% of the population studied) were at risk. Of these, only 74 (5.5% of the individuals at risk) showed signs of liver damage. The prevalence of "pure" alcoholic cirrhosis was 0.43% (30 of 6917), representing 2.2% of the individuals at risk, with a ratio of men to women of 9:1, while 44 (3.3% of the individuals at risk) showed persistent signs of NCLD. After 50 years of age, the cumulative risk of developing both NCLD and cirrhosis was significantly higher (p<0.0001) for those individuals who regularly drank alcohol both with and without food than for those who drank only at mealtimes. 
Conclusions—Our data show that in an open population the risk threshold for developing cirrhosis and NCLD is 30 g ethanol/day, and this risk increases with increasing daily intake. Drinking alcohol outside mealtimes and drinking multiple different alcoholic beverages both increase the risk

  20. Antioxidant and hepatoprotective effects of punicalagin and punicalin on acetaminophen-induced liver damage in rats.

    PubMed

    Lin, C C; Hsu, Y F; Lin, T C; Hsu, H Y

    2001-05-01

    Punicalagin and punicalin were isolated from the leaves of Terminalia catappa L., a Combretaceous plant distributed throughout tropical and subtropical beaches, which is used for the treatment of dermatitis and hepatitis. Our previous studies showed that both of these compounds exert antioxidative activity. In this study, the antihepatotoxic activity of punicalagin and punicalin on acetaminophen-induced toxicity in the rat liver was evaluated. After evaluating the changes of several biochemical functions in serum, the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased by acetaminophen administration and reduced by punicalagin and punicalin. Histological changes around the hepatic central vein and oxidative damage induced by acetaminophen were also recovered by both compounds. The data show that both punicalagin and punicalin exert antihepatotoxic activity, but treatment with larger doses enhanced liver damage. These results suggest that even if punicalagin and punicalin have antioxidant activity at small doses, treatment with larger doses will possibly induce some cell toxicities. PMID:11351354

  1. Vascular Damage in Patients with Nonalcoholic Fatty Liver Disease: Possible Role of Iron and Ferritin

    PubMed Central

    Pisano, Giuseppina; Lombardi, Rosa; Fracanzani, Anna Ludovica

    2016-01-01

    Non Alcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease in Western countries. Recent data indicated that NAFLD is a risk factor by itself contributing to the development of cardiovascular disease independently of classical known risk factors. Hyperferritinemia and mild increased iron stores are frequently observed in patients with NAFLD and several mechanisms have been proposed to explain the role of iron, through oxidative stress and interaction with insulin metabolism, in the development of vascular damage. Moreover, iron depletion has been shown to decrease atherogenesis in experimental models and in humans. This review presents the recent evidence on epidemiology, pathogenesis, and the possible explanation of the role of iron and ferritin in the development of cardiovascular damage in patients with NAFLD, and discusses the possible interplay between metabolic disorders associated with NAFLD and iron in the development of cardiovascular disease. PMID:27164079

  2. [Pharmacological correction of toxic liver damage in patients with heavy forms of acute ethanol intoxication].

    PubMed

    Shikalova, I A; Shilov, V V; Vasil'ev, S A; Batotsyrenov, B V; Loladze, A T

    2012-01-01

    The efficiency of using remaxol and ademethionine in the therapy of patients with heavy acute alcohol intoxication on the background of toxic liver damage has been studied. The administration of remaxol led to improvement of the clinical treatment of alcohol intoxication, which is manifested by a decrease in the rate and duration of delirium tremens (from 33.9 to 10.8%), frequency of secondary lung disorders (from 18.5 to 3.1%), duration of stay in hospital (from 7.3 +/- 0.6 to 5.6 +/- 0.3 days), and total therapy duration (from 11.8 +/- 1.05 to 5.6 +/- 0.3 days). The results of biochemical investigations confirmed that remaxol and ademethionine provide effective treatment of the toxic liver damage. Remaxol decreases the degree of metabolic disorders to a greater extent than does ademethionine. PMID:22702109

  3. In vivo formation of unstable heterokaryons after liver damage and hematopoietic stem cell/progenitor transplantation.

    PubMed

    Kashofer, Karl; Siapati, Elena K; Bonnet, Dominique

    2006-04-01

    Following reports of lineage plasticity in human hematopoietic stem cells (HSCs), we investigated the potential of human cord blood HSC-enriched cells to create hepatocytes in hosts after inducing liver damage. Carbon tetrachloride induces severe liver damage and subsequent repair via mitosis of resident hepatocytes. It additionally leads to a threefold increase in homing of human mononuclear cells to bone marrow and liver and subsequently to a substantial enhancement of bone marrow engraftment. Eight weeks after liver damage and infusion of an enhanced green fluorescent protein (eGFP) lentivirus-transduced human HSC-enriched cell population, we observed eGFP-positive cells with clear hepatocyte morphology in the livers of animals. These eGFP-positive cells co-expressed human albumin, and reverse-transcription polymerase chain reaction (PCR) analysis demonstrated the presence of human albumin and alpha-anti-trypsin mRNA. However, two antibodies against human mitochondria and human nuclei failed to mark eGFP-positive hepatocyte-like cells but did give clear staining of donor-derived hematopoietic cells. Subsequent fluorescent in situ hybridization (FISH) analysis revealed the presence of mouse Y chromosome in eGFP-positive hepatocyte-like cells. To resolve this discrepancy, we performed single-cell PCR analysis of microdissected eGFP-positive hepatocyte-like cells and found that they contained mostly mouse and little human genomic material. FISH analysis highlighting the centromeres of all human chromosomes revealed only few human chromosomes in these cells. From these results, we conclude that similar to their murine counterparts, human hematopoietic cells have the potential to fuse with resident host hepatocytes. Because no selective pressure is applied to retain the human genomic material, it is gradually lost over time, leading to a variable phenotype of the chimeric cells and making their detection difficult. PMID:16282440

  4. [The efficacy of the polyphenol plant preparation piflamin in drug damage to the liver].

    PubMed

    Iakovleva, L V; Buniatian, N D; Gerasimova, O A; Chikitkina, V V; Kovaleva, A M

    1998-01-01

    The hepatoprotective properties of the flavonoid preparation piflamine of field-peas grass were studied on a model of experimental paracetamol liver damage. Piflamine was found to normalize the parameters of carbohydrate, protein, and lipid metabolism, increase the activity of the antioxidant system, and restore the processes of bile production and bile secretion. The drug is prospective due to its quite cheap and available source of raw materials. PMID:9929818

  5. Risk factors for damaged liver function after chemotherapy in hepatitis B virus carriers with non-Hodgkin lymphoma.

    PubMed

    Li, X; Fan, X W; Liu, W; Guo, L; Li, Y; Hu, X; Liang, X; Ma, X P; Yang, S E

    2015-01-01

    The goal of this study was to investigate damaged liver function after chemotherapy in hepatitis B virus (HBV) carriers with non-Hodgkin lymphoma (NHL) and to evaluate risk factors associated with a high risk of damaged liver function. Clinical histories of 134 HBV carriers with NHL who were treated with chemotherapy were obtained and analyzed for the occurrence of damaged liver function and other related high-risk factors. Analysis showed that 76 patients (56.7%) had damaged liver function after chemotherapy: 6 patients (7.9%) had I degree, 17 patients (22.4%) had II degree, 20 patients (26.3%) had III degree, and 33 patients (43.4%) had IV degree damage. After treatment, 18 patients (23.7%) continued to receive chemotherapy according to their original schedule, 39 patients (51.3%) delayed chemotherapy, 16 patients (21.1%) stopped chemotherapy, and 3 patients (3.9%) died. Analysis of a binary multivariate logistic regression model showed that administration of steroids was a high-risk factor for damaged liver function after chemotherapy in NHL patients. The incidence of damaged liver function after chemotherapy is high among HBV carriers with NHL; therefore, administration of steroid chemotherapy is a high-risk factor. PMID:25867413

  6. Assessing the Effect of Leptin on Liver Damage in Case of Hepatic Injury Associated with Paracetamol Poisoning

    PubMed Central

    Polat, Murat; Cerrah, Serkan; Albayrak, Bulent; Ipek, Serkan; Yilmaz, Omer

    2015-01-01

    Background Aim. In case of high-dose acetaminophen intake, the active metabolite can not bind to the glutathione, thereby inducing cellular necrosis through binding to the cytosol proteins. This trial was performed to histologically and biochemically investigate whether leptin was protective against liver damage induced by paracetamol at toxic doses. Material and Method. In our trial, 30 female rats, divided into 5 groups, were used. IP leptin administration was performed after an hour in the group of rats, in which paracetamol poisoning was induced. The groups were as follows: Group 1: the control group, Group 2: 20 µg/kg leptin, Group 3: 2 g/kg paracetamol, Group 4: 2 g/kg paracetamol + 10 µg/kg leptin, and Group 5: 2 g/kg paracetamol + 20 µg/kg leptin. Results. The most significant increase was observed in the PARA 2 g/kg group, while the best improvement among the treatment groups occurred in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). While the most significant glutathione (GSH) reduction was observed in the PARA 2 g/kg group, the best improvement was in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). Conclusion. Liver damage occurring upon paracetamol poisoning manifests with hepatocyte breakdown occurring as a result of inflammation and oxidative stress. Leptin can prevent this damage thanks to its antioxidant and anti-inflammatory efficacy. PMID:26697061

  7. Assessing the Effect of Leptin on Liver Damage in Case of Hepatic Injury Associated with Paracetamol Poisoning.

    PubMed

    Polat, Murat; Cerrah, Serkan; Albayrak, Bulent; Ipek, Serkan; Arabul, Mahmut; Aslan, Fatih; Yilmaz, Omer

    2015-01-01

    Background Aim. In case of high-dose acetaminophen intake, the active metabolite can not bind to the glutathione, thereby inducing cellular necrosis through binding to the cytosol proteins. This trial was performed to histologically and biochemically investigate whether leptin was protective against liver damage induced by paracetamol at toxic doses. Material and Method. In our trial, 30 female rats, divided into 5 groups, were used. IP leptin administration was performed after an hour in the group of rats, in which paracetamol poisoning was induced. The groups were as follows: Group 1: the control group, Group 2: 20 µg/kg leptin, Group 3: 2 g/kg paracetamol, Group 4: 2 g/kg paracetamol + 10 µg/kg leptin, and Group 5: 2 g/kg paracetamol + 20 µg/kg leptin. Results. The most significant increase was observed in the PARA 2 g/kg group, while the best improvement among the treatment groups occurred in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). While the most significant glutathione (GSH) reduction was observed in the PARA 2 g/kg group, the best improvement was in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). Conclusion. Liver damage occurring upon paracetamol poisoning manifests with hepatocyte breakdown occurring as a result of inflammation and oxidative stress. Leptin can prevent this damage thanks to its antioxidant and anti-inflammatory efficacy. PMID:26697061

  8. Pediatric parenteral nutrition-associated liver disease and cholestasis: Novel advances in pathomechanisms-based prevention and treatment.

    PubMed

    Orso, Giuseppe; Mandato, Claudia; Veropalumbo, Claudio; Cecchi, Nicola; Garzi, Alfredo; Vajro, Pietro

    2016-03-01

    Parenteral nutrition constitutes a life-saving therapeutic tool in patients unable to ingest/absorb oral or enteral delivered nutrients. Liver function tests abnormalities are a common therapy-related complication, thus configuring the so-called Parenteral Nutrition Associated Liver Disease (PNALD) or cholestasis (PNAC). Although the damage is frequently mild, and resolves after discontinuation of parenteral nutrition, in some cases it progresses into cirrhotic changes, especially in neonates and infants. We present a literature review focusing on the pathogenetic mechanisms-driven prevention and therapies for the cases where parenteral nutrition cannot be discontinued. Ursodeoxycholic acid has been proposed in patients with cholestatic hepatopathy, but its efficacy needs to be better established. Little evidence is available on efficacy of anti-oxidants, antibiotics, probiotics and anti TNFα. Lipid emulsions based on fish oil with a high content of long-chain polyunsaturated fatty acids ω-3 appear effective both in decreasing intrahepatic inflammation and in improving biliary flow. Most recent promising variations such as soybean/MCT/olive/fish oil emulsion [third generation lipid emulsion (SMOFlipid)] are under investigation. In conclusion, we remark the emergence of a number of novel pathomechanisms underlying the severe liver impairment damage (PNALD and PNAC) in patients treated with parenteral nutrition. Only few traditional and innovative therapeutic strategies have hitherto been shown promising. PMID:26698410

  9. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    PubMed Central

    Skipper, Anthony; Sims, Jennifer N.; Yedjou, Clement G.; Tchounwou, Paul B.

    2016-01-01

    Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2) cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet) assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay). The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05) increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05) was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2) cells. PMID:26729151

  10. Usage of adenovirus expressing thymidine kinase mediated hepatocellular damage for enabling mouse liver repopulation with allogenic or xenogenic hepatocytes.

    PubMed

    Moreno, Daniel; Balasiddaiah, Anangi; Lamas, Oscar; Duret, Cedric; Neri, Leire; Guembe, Laura; Galarraga, Miguel; Larrea, Esther; Daujat-Chavanieu, Martine; Muntane, Jordi; Maurel, Patrick; Riezu, Jose Ignacio; Prieto, Jesus; Aldabe, Rafael

    2013-01-01

    It has been shown that the liver of immunodeficient mice can be efficiently repopulated with human hepatocytes when subjected to chronic hepatocellular damage. Mice with such chimeric livers represent useful reagents for medical and clinical studies. However all previously reported models of humanized livers are difficult to implement as they involve cross-breeding of immunodeficient mice with mice exhibiting genetic alterations causing sustained hepatic injury. In this paper we attempted to create chimeric livers by inducing persistent hepatocellular damage in immunodeficient Rag2(-/-) γc(-/-) mice using an adenovirus encoding herpes virus thymidine kinase (AdTk) and two consecutive doses of ganciclovir (GCV). We found that this treatment resulted in hepatocellular damage persisting for at least 10 weeks and enabled efficient engraftment and proliferation within the liver of either human or allogenic hepatocytes. Interestingly, while the nodules generated from the transplanted mouse hepatocytes were well vascularized, the human hepatocytes experienced progressive depolarization and exhibited reduced numbers of murine endothelial cells inside the nodules. In conclusion, AdTk/GCV-induced liver damage licenses the liver of immunodeficient mice for allogenic and xenogenic hepatocyte repopulation. This approach represents a simple alternative strategy for chimeric liver generation using immunodeficient mice without additional genetic manipulation of the germ line. PMID:24086405

  11. Two strategies for prevention of cytomegalovirus infections after liver transplantation

    PubMed Central

    Simon, Philipp; Sasse, Max; Laudi, Sven; Petroff, David; Bartels, Michael; Kaisers, Udo X; Bercker, Sven

    2016-01-01

    AIM: To analyze differences in patients’ clinical course, we compared two regimes of either preemptive therapy or prophylaxis after liver transplantation. METHODS: This retrospective study was reviewed and approved by the institutional review board of the University of Leipzig. Cytomegalovirus (CMV) prophylaxis with valganciclovir hydrochloride for liver transplant recipients was replaced by a preemptive strategy in October 2009. We retrospectively compared liver transplant recipients 2 years before and after October 2009. During the first period, all patients received valganciclovir daily. During the second period all patients included in the analysis were treated following a preemptive strategy. Outcomes included one year survival and therapeutic intervention due to CMV viremia or infection. RESULTS: Between 2007 and 2010 n = 226 patients underwent liver transplantation in our center. n = 55 patients were D+/R- high risk recipients and were excluded from further analysis. A further 43 patients had to be excluded since CMV prophylaxis/preemptive strategy was not followed although there was no clinical reason for the deviation. Of the remaining 128 patients whose data were analyzed, 60 received prophylaxis and 68 were treated following a preemptive strategy. The difference in overall mortality was not significant, nor was it significant for one-year mortality where it was 10% (95%CI: 8%-28%, P = 0.31) higher for the preemptive group. No significant differences in blood count abnormalities or the incidence of sepsis and infections were observed other than CMV. In total, 19 patients (14.7%) received ganciclovir due to CMV viremia and/or infections. Patients who were treated according to the preemptive algorithm had a significantly higher rate risk of therapeutic intervention with ganciclovir [n = 16 (23.5%) vs n = 3 (4.9%), P = 0.003)]. CONCLUSION: These data suggest that CMV prophylaxis is superior to a preemptive strategy in patients undergoing liver

  12. Silymarin in the prevention and treatment of liver diseases and primary liver cancer.

    PubMed

    Féher, János; Lengyel, Gabriella

    2012-01-01

    In chronic liver diseases caused by oxidative stress (alcoholic and non-alcoholic fatty liver diseases, drug- and chemical-induced hepatic toxicity), the antioxidant medicines such as silymarin can have beneficial effect. Liver cirrhosis, non-alcoholic fatty liver and steatohepatitis are risk factors for hepatocellular carcinoma (HCC). Insulin resistance and oxidative stress are the major pathogenetic mechanisms leading the hepatic cell injury in these patients. The silymarin exerts membrane-stabilizing and antioxidant activity, it promotes hepatocyte regeneration; furthermore it reduces the inflammatory reaction, and inhibits the fibrogenesis in the liver. These results have been established by experimental and clinical trials. According to open studies the long-term administration of silymarin significantly increased survival time of patients with alcohol induced liver cirrhosis. Based on the results of studies using methods of molecular biology, silymarin can significantly reduce tumor cell proliferation, angiogenesis as well as insulin resistance. Furthermore, it exerts an anti-atherosclerotic effect, and suppresses tumor necrosis factor-alpha-induced protein production and mRNA expression due to adhesion molecules. The chemopreventive effect of silymarin on HCC has been established in several studies using in vitro and in vivo methods; it can exert a beneficial effect on the balance of cell survival and apoptosis by interfering cytokines. In addition to this, anti-inflammatory activity and inhibitory effect of silymarin on the development of metastases have also been detected. In some neoplastic diseases silymarin can be administered as adjuvant therapy as well. PMID:21466434

  13. Effect of Dietary Vitamin E Supplementation on Liver Oxidative Damage in Rats with Water-Immersion Restraint Stress.

    PubMed

    Ohta, Yoshiji; Yashiro, Koji; Ohashi, Koji; Horikoshi, Yosuke; Kusumoto, Chiaki; Matsura, Tatsuya; Fukuzawa, Kenji

    2015-01-01

    We examined how dietary supplementation of vitamin E protects against liver oxidative damage in rats with water-immersion restraint stress (WIRS). Before WIRS exposure, rats received a normal diet (ND) or vitamin E-supplemented diet (VESD) (500 IU α-tocopherol/kg diet) at a mean dose of 15 g/animal/d for 4 wk. The two diet groups had serum transaminases and lactate dehydrogenase activities and adrenocorticotropic hormone, corticosterone, and glucose levels to a similar extent. VESD-fed rats had higher liver α-tocopherol concentrations and lower liver ascorbic acid, total coenzyme Q9 (CoQ9), reduced CoQ9, reduced CoQ10, and lipid peroxide (LPO) concentrations than ND-fed rats. When the two diet groups were exposed to 6 h of WIRS, the serum liver cell damage index enzyme activities increased more greatly in ND-fed rats than in VESD-fed rats but the serum stress marker levels increased to a similar extent. The WIRS exposure caused no change in liver LPO concentration with the further increase in liver α-tocopherol concentration in VESD-fed rats but increased liver LPO concentration without changing liver α-tocopherol concentration in ND-fed rats. Upon the WIRS exposure, liver reduced glutathione concentration decreased with the further decrease in liver ascorbic acid concentration in VESD-fed rats and those concentrations decreased in ND-fed rats. The WIRS exposure recovered the decreased liver total CoQ9 and reduced CoQ9 concentrations in VESD-fed rats but decreased liver total CoQ9, reduced CoQ9, and reduced CoQ10 concentrations in ND-fed rats. These results indicate that dietary vitamin E supplementation protects against liver oxidative damage without affecting the stress response in rats with WIRS. PMID:26052141

  14. Mechanism of chronic dietary iron overload-induced liver damage in mice.

    PubMed

    Liu, Dan; He, Huan; Yin, Dong; Que, Ailing; Tang, Lei; Liao, Zhangping; Huang, Qiren; He, Ming

    2013-04-01

    Chronic iron overload may result in hepatic fibrosis and even neoplastic transformation due to a burst of reactive oxygen species (ROS). Mitochondria have been proposed to be important in the production of ROS. The purpose of this study was to investigate the role of the mitochondrial permeability transition pore (mPTP) in the burst of ROS, and to clarify the mechanism whereby ROS induced by iron overload results in hepatic damage. It has been demonstrated that when ferrocene-induced iron-overloaded mice were fed the cyclosporin A (CsA), a specific inhibitor of the mPTP, diet (10 mg/kg/day) for 50 days, liver-to-body weight ratio, serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), ROS production, mitochondrial swelling, loss of mitochondrial membrane potential (Δψ) and hepatocyte apoptosis decreased. However, the total antioxidant status, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase activities, increased. The protective effect of CsA on the liver of iron-overloaded mice may be due to inhibition of the ROS burst and a successive antioxidant effect. To the best of our knowledge, these data provide the first support for the theory that ROS-induced ROS release (RIRR) may be involved in the burst of ROS in the liver and greatly contribute to the hepatic damage initiated by iron overload. PMID:23404080

  15. Murine liver damage caused by exposure to nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Zhang, Yu-Qing

    2016-03-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

  16. Murine liver damage caused by exposure to nano-titanium dioxide.

    PubMed

    Hong, Jie; Zhang, Yu-Qing

    2016-03-18

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people's daily lives, bringing it into increasing contact with humans. Thus, this material's security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future. PMID:26871200

  17. Hispolon Protects against Acute Liver Damage in the Rat by Inhibiting Lipid Peroxidation, Proinflammatory Cytokine, and Oxidative Stress and Downregulating the Expressions of iNOS, COX-2, and MMP-9

    PubMed Central

    Huang, Guan-Jhong; Deng, Jeng-Shyan; Chiu, Chuan-Sung; Liao, Jung-Chun; Hsieh, Wen-Tsong; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2012-01-01

    The hepatoprotective potential of hispolon against carbon tetrachloride (CCl4)-induced liver damage was evaluated in preventive models in rats. Male rats were intraperitoneally treated with hispolon or silymarin once daily for 7 consecutive days. One hour after the final hispolon or silymarin treatment, the rats were injected with CCl4. Administration with hispolon or silymarin significantly decreased the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in serum and increased the activities of superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione (GSH) content and decreased the malondialdehyde (MDA) content in liver compared with CCl4-treated group. Liver histopathology also showed that hispolon reduced the incidence of liver lesions induced by CCl4. In addition, hispolon decreased nitric oxide (NO) production and tumor necrosis factor (TNF-α), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) activation in CCl4-treated rats. We also examined the involvement of matrix metalloproteinase (MMP)-9 in the development of CCl4-induced liver damage in rats. Hispolon inhibited the expression of MMP-9 protein, indicating that MMP-9 played an important role in the development of CCl4-induced rat liver damage. Therefore, we speculate that hispolon protects rats from liver damage through their prophylactic redox balancing ability and anti-inflammation capacity. PMID:22013489

  18. Dietary Supplementation of Calendula officinalis Counteracts the Oxidative Stress and Liver Damage Resulted from Aflatoxin

    PubMed Central

    Hamzawy, Mohamed A.; El-Denshary, Ezzeldein S. M.; Hassan, Nabila S.; Mannaa, Fathia A.; Abdel-Wahhab, Mosaad A.

    2013-01-01

    This study was conducted to evaluate the total phenolic compounds, the antioxidant properties, and the hepatorenoprotective potential of Calendula officinalis extract against aflatoxins (AFs-) induced liver damage. Six groups of male Sprague-Dawley rats were treated for 6 weeks included the control; the group fed AFs-contaminated diet (2.5 mg/kg diet); the groups treated orally with Calendula extract at low (CA1) and high (CA2) doses (500 and 1000 mg/kg b.w); the groups treated orally with CA1 and CA2 one week before and during AFs treatment for other five weeks. The results showed that the ethanol extract contained higher phenolic compounds and posses higher 1,1-diphenyl 1-2-picryl hydrazyl (DPPH) radical scavenging activity than the aqueous extract. Animals fed AFs-contaminated diet showed significant disturbances in serum biochemical parameters, inflammatory cytokines, and the histological and histochemical pictures of the liver accompanied by a significant increase in malondialdehyde (MDA) and a significant decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) in liver. Calendula extract succeeded to improve the biochemical parameters, inflammatory cytokines, decreased the oxidative stress, and improved the histological pictures in the liver of rats fed AFs-contaminated diet in a dose-dependent manner. It could be concluded that Calendula extract has potential hepatoprotective effects against AFs due to its antioxidant properties and radical scavenging activity. PMID:24959547

  19. Dietary Supplementation of Calendula officinalis Counteracts the Oxidative Stress and Liver Damage Resulted from Aflatoxin.

    PubMed

    Hamzawy, Mohamed A; El-Denshary, Ezzeldein S M; Hassan, Nabila S; Mannaa, Fathia A; Abdel-Wahhab, Mosaad A

    2013-01-01

    This study was conducted to evaluate the total phenolic compounds, the antioxidant properties, and the hepatorenoprotective potential of Calendula officinalis extract against aflatoxins (AFs-) induced liver damage. Six groups of male Sprague-Dawley rats were treated for 6 weeks included the control; the group fed AFs-contaminated diet (2.5 mg/kg diet); the groups treated orally with Calendula extract at low (CA1) and high (CA2) doses (500 and 1000 mg/kg b.w); the groups treated orally with CA1 and CA2 one week before and during AFs treatment for other five weeks. The results showed that the ethanol extract contained higher phenolic compounds and posses higher 1,1-diphenyl 1-2-picryl hydrazyl (DPPH) radical scavenging activity than the aqueous extract. Animals fed AFs-contaminated diet showed significant disturbances in serum biochemical parameters, inflammatory cytokines, and the histological and histochemical pictures of the liver accompanied by a significant increase in malondialdehyde (MDA) and a significant decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) in liver. Calendula extract succeeded to improve the biochemical parameters, inflammatory cytokines, decreased the oxidative stress, and improved the histological pictures in the liver of rats fed AFs-contaminated diet in a dose-dependent manner. It could be concluded that Calendula extract has potential hepatoprotective effects against AFs due to its antioxidant properties and radical scavenging activity. PMID:24959547

  20. Prevention of Bile Leak after Liver Surgery: A Fool-proof Method

    PubMed Central

    Pujahari, Aswini K.

    2009-01-01

    Background/Aim: Bile leak is not uncommon after liver surgeries. There is no adequate method described to prevent this morbid complication. Materials and Methods: At the end of the liver procedure, transcystic normal saline was injected under pressure with distal clamping. Leaking saline on the cut surface of the liver was sutured. The process was repeated till no leaking was observed. A suction drain was kept for any bile leak. Results: Open liver resection and hydatid cyst surgery cases were included. There were 24 cases, with 13 males and 11 females. The age range was from 4 to 80 years, with a mean of 48 years (SD ± 17.7). The number of leak sites that could be sutured were 0-4 (mean of 2.3 ± 0.5). None had bile leak postoperatively. Conclusion: Transcystic injection under pressure with distal clamping demonstrates the leak sites. Suturing them prevents the postoperative bile leak. PMID:19568579

  1. Prevention of propeller foreign object damage - Theory and practice

    NASA Astrophysics Data System (ADS)

    Payne, C.; Vitale, D. J.

    Foreign object damage hazards to which ACV propellers are exposed, and the phenomena causing the damage, are discussed. Comparison of the effects of energy absorption in systems of hard, soft, smooth and rough particles impacting upon soft and hard propeller materials is made. Molded urethane strips were found to increase the life of the blades from 20 minutes between maintenance actions to nine hours between maintenance actions. Molded urethanes and sprayed or brushed urethanes are compared.

  2. Molecular Mechanisms of Lipoic Acid Protection against Aflatoxin B1-Induced Liver Oxidative Damage and Inflammatory Responses in Broilers

    PubMed Central

    Ma, Qiugang; Li, Yan; Fan, Yu; Zhao, Lihong; Wei, Hua; Ji, Cheng; Zhang, Jianyun

    2015-01-01

    Alpha-lipoic acid (α-LA) was evaluated in this study for its molecular mechanisms against liver oxidative damage and inflammatory responses induced by aflatoxin B1 (AFB1). Birds were randomly allocated into four groups with different diets for three weeks: a basal diet, a 300 mg/kg α-LA supplementation in a basal diet, a diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in a diet containing 74 μg/kg AFB1. In the AFB1 group, the expression of GSH-PX mRNA was down-regulated (p < 0.05), and the levels of lipid peroxide and nitric oxide were increased (p < 0.05) in the chicken livers compared to those of the control group. Additionally, the mRNA level of the pro-inflammatory factor interleukin-6 was up-regulated significantly (p < 0.05), the protein expressions of both the nuclear factor kappa B (NF-κB) p65 and the inducible nitric oxide synthase were enhanced significantly (p < 0.05) in the AFB1 group. All of these negative effects were inhibited by α-LA. These results indicate that α-LA may be effective in preventing hepatic oxidative stress, down-regulating the expression of hepatic pro-inflammatory cytokines, as well as inhibiting NF-κB expression. PMID:26694462

  3. Molecular Mechanisms of Lipoic Acid Protection against Aflatoxin B₁-Induced Liver Oxidative Damage and Inflammatory Responses in Broilers.

    PubMed

    Ma, Qiugang; Li, Yan; Fan, Yu; Zhao, Lihong; Wei, Hua; Ji, Cheng; Zhang, Jianyun

    2015-12-01

    Alpha-lipoic acid (α-LA) was evaluated in this study for its molecular mechanisms against liver oxidative damage and inflammatory responses induced by aflatoxin B₁ (AFB₁). Birds were randomly allocated into four groups with different diets for three weeks: a basal diet, a 300 mg/kg α-LA supplementation in a basal diet, a diet containing 74 μg/kg AFB₁, and 300 mg/kg α-LA supplementation in a diet containing 74 μg/kg AFB₁. In the AFB₁ group, the expression of GSH-PX mRNA was down-regulated (p < 0.05), and the levels of lipid peroxide and nitric oxide were increased (p < 0.05) in the chicken livers compared to those of the control group. Additionally, the mRNA level of the pro-inflammatory factor interleukin-6 was up-regulated significantly (p < 0.05), the protein expressions of both the nuclear factor kappa B (NF-κB) p65 and the inducible nitric oxide synthase were enhanced significantly (p < 0.05) in the AFB₁ group. All of these negative effects were inhibited by α-LA. These results indicate that α-LA may be effective in preventing hepatic oxidative stress, down-regulating the expression of hepatic pro-inflammatory cytokines, as well as inhibiting NF-κB expression. PMID:26694462

  4. Ligularia fischeri extract attenuates liver damage induced by chronic alcohol intake.

    PubMed

    Kim, Dongyeop; Kim, Gyeong-Woo; Lee, Seon-Ho; Han, Gi Dong

    2016-08-01

    Context Ligularia fischeri (Ledebour) Turcz. (Compositae) has been used as a leafy vegetable and in traditional medicine to treat hepatic disorder in East Asia. Objective The present study explores the antioxidant activity of LF aqueous extract on EtOH-induced oxidative stress accompanied by hepatotoxicity both in vitro and in vivo. Materials and methods In vitro study using the mouse liver NCTC-1469 cell line was conducted to estimate the cytotoxicity as well as the inhibitory effect of LF extract against alcohol-treated cell damage. In vivo study used an alcohol-fed Wister rat model orally administered EtOH (3.95 g/kg of body weight/d) with or without LF extract (100 or 200 mg/kg body weight) for 6 weeks. Serum and liver tissue were collected to evaluate hepatic injury and antioxidant-related enzyme activity. Results The EC50 value for the DPPH radical scavenging capacity of LF extract was 451.5 μg/mL, whereas the IC50 value of LF extract in terms of EtOH-induced reactive oxygen species (ROS) generation was 98.3 μg/mL without cell cytotoxicity. LF extract (200 mg/kg body weight) significantly reduced the triglyceride content of serum (33%) as well as hepatic lipid peroxidation (36%), whereas SOD activity was elevated three-fold. LF extract suppressed expression of CYP2E1 and TNF-α, and attenuated alcohol-induced abnormal morphological changes. Discussion and conclusion LF extract attenuated liver damage induced by alcoholic oxidative stress through inhibition of ROS generation, down-regulation of CYP2E1, and activation of hepatic antioxidative enzymes. Homeostasis of the antioxidative defence system in the liver by LF extract mitigated hepatic disorder following chronic alcohol intake. PMID:26799831

  5. Differences in Liver Injury and Trophoblastic Mitochondrial Damage in Different Preeclampsia-like Mouse Models

    PubMed Central

    Han, Yi-Wei; Yang, Zi; Ding, Xiao-Yan; Yu, Huan

    2015-01-01

    Background: Preeclampsia is a multifactorial disease during pregnancy. Dysregulated lipid metabolism may be related to some preeclampsia. We investigated the relationship between triglycerides (TGs) and liver injury in different preeclampsia-like mouse models and their potential common pathways. Methods: Preeclampsia-like models (Nw-nitro-L-arginine-methyl ester [L-NAME], lipopolysaccharide [LPS], apolipoprotein C-III [Apo] transgnic mice + L-NAME, β2 glycoprotein I [βGPI]) were used in four experimental groups: L-NAME (LN), LPS, Apo-LN and βGPI, respectively, and controls received saline (LN-C, LPS-C, Apo-C, βGPI-C). The first three models were established in preimplantation (PI), early-, mid- and late-gestation (EG, MG and LG). βGPI and controls were injected before implantation. Mean arterial pressure (MAP), 24-hour urine protein, placental and fetal weight, serum TGs, total cholesterol (TC) and pathologic liver and trophocyte changes were assessed. Results: MAP and proteinuria were significantly increased in the experimental groups. Placenta and fetal weight in PI, EP and MP subgroups were significantly lower than LP. Serum TGs significantly increased in most groups but controls. TC was not different between experimental and control groups. Spotty hepatic cell necrosis was observed in PI, EG, MG in LN, Apo-LN and βGPI, but no morphologic changes were observed in the LPS group. Similar trophoblastic mitochondrial damage was observed in every experimental group. Conclusions: Earlier preeclampsia onset causes a higher MAP and urine protein level, and more severe placental and fetal damage. Preeclampsia-like models generated by varied means lead to different changes in lipid metabolism and associated with liver injury. Trophoblastic mitochondrial damage may be the common terminal pathway in different preeclampsia-like models. PMID:26063365

  6. Boosting NAD+ for the prevention and treatment of liver cancer

    PubMed Central

    Djouder, Nabil

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide yet has limited therapeutic options. We recently demonstrated that inhibition of de novo nicotinamide adenine dinucleotide (NAD+) synthesis is responsible for DNA damage, thereby initiating hepatocarcinogenesis. We propose that boosting NAD+ levels might be used as a prophylactic or therapeutic approach in HCC. PMID:27308492

  7. Boosting NAD(+) for the prevention and treatment of liver cancer.

    PubMed

    Djouder, Nabil

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide yet has limited therapeutic options. We recently demonstrated that inhibition of de novo nicotinamide adenine dinucleotide (NAD(+)) synthesis is responsible for DNA damage, thereby initiating hepatocarcinogenesis. We propose that boosting NAD(+) levels might be used as a prophylactic or therapeutic approach in HCC. PMID:27308492

  8. Evaluation of liver tissue damage and grasp stability using finite element analysis.

    PubMed

    Cheng, Lei; Hannaford, Blake

    2016-01-01

    Minimizing tissue damage and maintaining grasp stability are essential considerations in surgical grasper design. Most past and current research analyzing graspers used for tissue manipulation in minimally invasive surgery is based on in vitro experiments. Most previous work assessed tissue injury and grasp security by visual inspection; only a few studies have quantified it. The goal of the present work is to develop a methodology with which to compute tissue damage magnitude and grasp quality that is appropriate for a wide range of grasper-tissue interaction. Using finite element analysis (FEA), four graspers with varying radii of curvature and four graspers with different tooth sizes were analyzed while squeezing and pulling liver tissue. All graspers were treated as surgical steel with linear elastic material properties. Nonlinear material properties of tissue used in the FEA as well as damage evaluation were derived from previously reported in vivo experiments. Computed peak stress, integrated stress, and tissue damage were compared. Applied displacement is vertical and then horizontal to the tissue surface to represent grasp and retraction. A close examination of the contact status of each node within the grasper-tissue interaction surface was carried out to investigate grasp stability. The results indicate less tissue damage with increasing radius of curvature. A smooth wave pattern reduced tissue damage at the cost of inducing higher percentage of slipping area. This methodology may be useful for researchers to develop and test various designs of graspers. Also it could improve surgical simulator performance by reflecting more realistic tissue material properties and predicting tissue damage for the student. PMID:25408249

  9. [Hepatoprotective and immunomodulating effect of phylloquinone in toxic damage to the liver].

    PubMed

    Konoplia, E N; Prokopenko, L G; Uteshev, B S

    1997-01-01

    On entering the organism D-galactosamine (DGA) induces the development of biochemical syndromes of hepatocyte affection, increases the intensity of lipid peroxidation, and suppresses the development of the immune response to the T-dependent antigen. Oral administration of phylloquinone lessens the signs of hepatic damage and increases the immune response to the T-dependent antigen in DGA-induced toxic lesion of the liver. The effects of phylloquinone are mediated by erythrocytes and cytokine which are secreted under their influence by the cells of the spleen. PMID:9324408

  10. Effect of betaine on the hepatic damage from orotic acid-induced fatty liver development in rats.

    PubMed

    Cha, Jae-Young; Kim, Hyeong-Soo; Moon, Hyung-In; Cho, Young-Su

    2011-12-13

    Betaine prevents hepatic damage caused by ethanol and carbone tetrachloride (CCl4) in rats. Present study was to investigate the effect of betaine on the hepatic microsomal triglyceride transfer protein (MTP) mRNA expression in orotic acid (OA)-induced fatty liver in rats. OA feeding was attributed to the significant increase in the hepatic levels of triglyceride and the serum levels of ALT and AST and resulted in typical histology of fatty liver contained numerous largely fat droplets. While concomitant supplementation of betaine to OA diet was slightly reduced the hepatic triglyceride concentrations and was significantly decreased ALT activity. Hepatic MTP mRNA expression by OA treatment increased by 14% despite triglyceride accumulation in the liver in OA treatment rats relative to rats fed a normal diet without OA supplemented, but MTP expression by simultaneous supplementation of OA and betaine was slightly decreased by 7.9% as compared to the OA-feeding rats. A significant elevation of TBARS contents in the liver homogenate, microsome, and mitochondrial fractions of the OA-feeding rats compared with the normal rats, however, these increases were significantly or slightly decreased by simultaneous addition of OA and betaine. The increases of hepatic OA and betaine levels in OA feeding rats was also found when compared to the normal rats, but these increases were significantly lowered in the concomitant supplementation OA and betaine. The content of Fe was significantly increased in the OA feeding rats, but this elevation showed significantly recovered as low as the normal level by concomitant with OA and betaine. Zinc content was also significantly decreased in the OA feeding rats compared with the normal rats, but this reduction was more significantly elevated by concomitant with OA and betaine. Hepatic glutathione content in the OA feeding rats was similar to that of the normal rats, but this content was slightly reduced without statistically significant

  11. Caspase-3/7-mediated Cleavage of β2-spectrin is Required for Acetaminophen-induced Liver Damage

    PubMed Central

    Baek, Hye Jung; Lee, Yong Min; Kim, Tae Hyun; Kim, Joo-Young; Park, Eun Jung; Iwabuchi, Kuniyoshi; Mishra, Lopa; Kim, Sang Soo

    2016-01-01

    The ubiquitously expressed β2-spectrin (β2SP, SPTBN1) is the most common non-erythrocytic member of the β-spectrin gene family. Loss of β2-spectrin leads to defects in liver development, and its haploinsufficiency spontaneously leads to chronic liver disease and the eventual development of hepatocellular cancer. However, the specific role of β2-spectrin in liver homeostasis remains to be elucidated. Here, we reported that β2-spectrin was cleaved by caspase-3/7 upon treatment with acetaminophen which is the main cause of acute liver injury. Blockage of β2-spectrin cleavage robustly attenuated β2-spectrin-specific functions, including regulation of the cell cycle, apoptosis, and transcription. Cleaved fragments of β2-spectrin were physiologically active, and the N- and C-terminal fragments retained discrete interaction partners and activity in transcriptional regulation and apoptosis, respectively. Cleavage of β2-spectrin facilitated the redistribution of the resulting fragments under conditions of liver damage induced by acetaminophen. In contrast, downregulation of β2-spectrin led to resistance to acetaminophen-induced cytotoxicity, and its insufficiency in the liver promoted suppression of acetaminophen-induced liver damage and enhancement of liver regeneration. Conclusions: β2-Spectrin, a TGF-β mediator and signaling molecule, is cleaved and activated by caspase-3/7, consequently enhancing apoptosis and transcriptional control to determine cell fate upon liver damage. These findings have extended our knowledge on the spectrum of β2-spectrin functions from a scaffolding protein to a target and transmitter of TGF-β in liver damage. PMID:26884715

  12. SIV-induced Translocation of Bacterial Products in the Liver Mobilizes Myeloid Dendritic and Natural Killer Cells Associated With Liver Damage.

    PubMed

    Evans, Tristan I; Li, Haiying; Schafer, Jamie L; Klatt, Nichole R; Hao, Xing-Pei; Traslavina, Ryan P; Estes, Jacob D; Brenchley, Jason M; Reeves, R Keith

    2016-02-01

    Disruption of the mucosal epithelium during lentivirus infections permits translocation of microbial products into circulation, causing immune activation and driving disease. Although the liver directly filters blood from the intestine and is the first line of defense against gut-derived antigens, the effects of microbial products on the liver are unclear. In livers of normal macaques, minute levels of bacterial products were detectable, but increased 20-fold in simian immunodeficiency virus (SIV)-infected animals. Increased microbial products in the liver induced production of the chemoattractant CXCL16 by myeloid dendritic cells (mDCs), causing subsequent recruitment of hypercytotoxic natural killer (NK) cells expressing the CXCL16 receptor, CXCR6. Microbial accumulation, mDC activation, and cytotoxic NK cell frequencies were significantly correlated with markers of liver damage, and SIV-infected animals consistently had evidence of hepatitis and fibrosis. Collectively, these data indicate that SIV-associated accumulation of microbial products in the liver initiates a cascade of innate immune activation, resulting in liver damage. PMID:26238685

  13. 77 FR 19799 - Pipeline Safety: Pipeline Damage Prevention Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... the ANPRM on this subject that PHMSA published in the Federal Register on October 29, 2009 (74 FR..., Enforcement, and Safety (PIPES) Act of 2006, establishment of review criteria for state excavation damage... 2006 (PIPES Act), PHMSA is proposing criteria and procedures for determining whether a...

  14. Melatonin's role in preventing toxin-related and sepsis-mediated hepatic damage: A review.

    PubMed

    Esteban-Zubero, Eduardo; Alatorre-Jiménez, Moisés Alejandro; López-Pingarrón, Laura; Reyes-Gonzales, Marcos César; Almeida-Souza, Priscilla; Cantín-Golet, Amparo; Ruiz-Ruiz, Francisco José; Tan, Dun-Xian; García, José Joaquín; Reiter, Russel J

    2016-03-01

    The liver is a central organ in detoxifying molecules and would otherwise cause molecular damage throughout the organism. Numerous toxic agents including aflatoxin, heavy metals, nicotine, carbon tetrachloride, thioacetamide, and toxins derived during septic processes, generate reactive oxygen species followed by molecular damage to lipids, proteins and DNA, which culminates in hepatic cell death. As a result, the identification of protective agents capable of ameliorating the damage at the cellular level is an urgent need. Melatonin is a powerful endogenous antioxidant produced by the pineal gland and a variety of other organs and many studies confirm its benefits against oxidative stress including lipid peroxidation, protein mutilation and molecular degeneration in various organs, including the liver. Recent studies confirm the benefits of melatonin in reducing the cellular damage generated as a result of the metabolism of toxic agents. These protective effects are apparent when melatonin is given as a sole therapy or in conjunction with other potentially protective agents. This review summarizes the published reports that document melatonin's ability to protect hepatocytes from molecular damage due to a wide variety of substances (aflatoxin, heavy metals, nicotine, carbon tetrachloride, chemotherapeutics, and endotoxins involved in the septic process), and explains the potential mechanisms by which melatonin provides these benefits. Melatonin is an endogenously-produced molecule which has a very high safety profile that should find utility as a protective molecule against a host of agents that are known to cause molecular mutilation at the level of the liver. PMID:26808084

  15. Antioxidant and hepatoprotective activity of vitex honey against paracetamol induced liver damage in mice.

    PubMed

    Wang, Yuan; Li, Dan; Cheng, Ni; Gao, Hui; Xue, Xiaofeng; Cao, Wei; Sun, Liping

    2015-07-01

    Fourteen vitex honeys from China were investigated to evaluate its antioxidant and hepatoprotective activity against paracetamol-induced liver damage. All honey samples exhibited high total phenolic content (344-520 mg GAE per kg), total flavonoid content (19-31 mg Rutin per kg), and strong antioxidant activity in DPPH radical scavenging, ferric reducing antioxidant power and Ferrous ion-chelating ability. Nine phenolic acids were detected in vitex honey samples, in which caffeic acid was the main compound. Honey from Heibei Zanhuang (S2) ranked the highest antioxidant activity was orally administered to mice (5 g kg(-1), 20 g kg(-1)) for 70 days. In high-dose (20 g kg(-1)), vitex honey pretreatment resulting in significant increase in serum oxygen radical absorbance capacity (15.07%) and decrease in Cu(2+)-mediate lipoprotein oxidation (80.07%), and suppression in alanine aminotransferase (75.79%) and aspartate aminotransferase (74.52%), enhancement in the superoxide dismutase and glutathione peroxidase activities and reduction in malondialdehyde (36.15%) and 8-hydroxy-2'-deoxyguanosine (19.6%) formation compared with paracetamol-intoxicated group. The results demonstrated the hepatoprotection of vitex honey against paracetamol-induced liver damage might attribute to its antioxidant and/or perhaps pro-oxidative property. PMID:26084988

  16. Nrf2 protects against As(III)-induced damage in mouse liver and bladder

    PubMed Central

    Jiang, Tao; Huang, Zheping; Chan, Jefferson Y.; Zhang, Donna D.

    2009-01-01

    Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Arsenic elicits its toxic efforts through many mechanisms, including generation of reactive oxygen species (ROS). Nrf2 is the primary transcription factor that controls expression of a main cellular antioxidant response, which is required for neutralizing ROS and thus defending cells from exogenous insults. Previously, we demonstrated a protective role of Nrf2 against arsenic-induced toxicity using a cell culture model. In this report, we present evidence that Nrf2 protects against liver and bladder injury in response to six-weeks of arsenic exposure in a mouse model. Nrf2−/− mice displayed more severe pathological changes in the liver and bladder, compared to Nrf2+/+ mice. Furthermore, Nrf2−/− mice were more sensitive to arsenic-induced DNA hypomethylation, oxidative DNA damage, and apoptotic cell death. These results indicate a protective role of Nrf2 against arsenic toxicity in vivo. Hence, this work demonstrates the feasibility of using dietary compounds that target activation of the Nrf2 signaling pathway to alleviate arsenic-induced damage. PMID:19538980

  17. Dysregulation of the DNA Damage Response and KMT2A Rearrangement in Fetal Liver Hematopoietic Cells

    PubMed Central

    Nanya, Mai; Sato, Masaki; Tanimoto, Kousuke; Tozuka, Minoru; Mizutani, Shuki; Takagi, Masatoshi

    2015-01-01

    Etoposide, a topoisomerase 2 (TOP2) inhibitor, is associated with the development of KMT2A (MLL)-rearranged infant leukemia. An epidemiological study suggested that in utero exposure to TOP2 inhibitors may be involved in generation of KMT2A (MLL) rearrangement. The present study examined the mechanism underlying the development of KMT2A (MLL)-rearranged infant leukemia in response to in utero exposure to etoposide in a mouse model. Fetal liver hematopoietic stem cells were more susceptible to etoposide than maternal bone marrow mononuclear cells. Etoposide-induced Kmt2a breakage was detected in fetal liver hematopoietic stem cells using a newly developed chromatin immunoprecipitation (ChIP) assay. Assessment of etoposide-induced chromosomal translocation by next-generation RNA sequencing (RNA-seq) identified several chimeric fusion messenger RNAs that were generated by etoposide treatment. However, Kmt2a (Mll)-rearranged fusion mRNA was detected in Atm-knockout mice, which are defective in the DNA damage response, but not in wild-type mice. The present findings suggest that in utero exposure to TOP2 inhibitors induces Kmt2a rearrangement when the DNA damage response is defective. PMID:26657054

  18. Crepidiastrum denticulatum Extract Protects the Liver Against Chronic Alcohol-Induced Damage and Fat Accumulation in Rats

    PubMed Central

    Yoo, Ji-Hye; Kang, Kyungsu; Yun, Ji Ho; Kim, Mi Ae

    2014-01-01

    Abstract Alcohol is a severe hepatotoxicant that causes liver abnormalities such as steatosis, cirrhosis, and hepatocarcinoma. Crepidiastrum denticulatum (CD) is a well-known, traditionally consumed vegetable in Korea, which was recently reported to have bioactive compounds with detoxification and antioxidant properties. In this study, we report the hepatoprotective effect of CD extract against chronic alcohol-induced liver damage in vivo. The rats that were given CD extract exhibited decreased alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase activities, which are liver damage markers that are typically elevated by alcohol consumption. The results were confirmed by histopathology with hematoxylin and eosin staining. Chronic alcohol consumption induced the formation of alcoholic fatty liver. However, treatment with CD extract dramatically decreased the hepatic lipid droplets. Treatment with CD extract also restored the antioxidative capacity and lipid peroxidation of the liver that had been changed by alcohol consumption. Furthermore, treatment with CD extract normalized the activities of the antioxidative enzymes superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase, which had been decreased by alcohol consumption. The results indicate that CD extract has protective effects against chronic alcohol hepatotoxicity in rats by increasing the liver's antioxidant capacity, and has potential as a dietary supplement intervention for patients with alcohol-induced liver damage. PMID:24650230

  19. Selecting brines and clay stabilizers to prevent formation damage

    SciTech Connect

    Evans, B.; Ali, S.

    1997-05-01

    Although many technical reports have been written about formation damage caused by brine/formation interactions, this article discusses the effects brines and chemical clay stabilizers have on pure samples of kaolinite, smectite, illite and chlorite clays. Analytical chemistry and geochemical models were not employed in this study; instead, capillary suction time tests were used to empirically compare clay migration and swelling characteristics when samples were exposed to certain brine/clay stabilizer combinations. Objective of the study was to determine which type of clay was most damaging in reservoir rocks, and whether one brine or chemical stabilizer could meet the needs of stabilizing all clay types. This information is provided with well completion operations in mind, especially when fluid cost/performance is a major concern. This article compares the unique brine/chemical stabilizer reaction characteristics of each clay type common to oil and gas reservoirs.

  20. Bumetanide increases manganese accumulation in the brain of rats with liver damage.

    PubMed

    Montes, Sergio; Castro-Chávez, Armando; Florian-Soto, Circe; Heras-Romero, Yessica; Ríos, Camilo; Rivera-Mancía, Susana

    2016-03-01

    Hepatic encephalopathy is a common complication in cases of liver damage; it results from several factors, including the accumulation of toxic substances in the brain, e.g. manganese, ammonia and glutamine. We have previously reported that manganese favors ammonia and glutamine accumulation in the brain of cirrhotic rats, and we suggested that such effect could be mediated by manganese-elicited activation of the NKCC1 (Na(+)/K(+)/2Cl(-) cotransporter 1). To test this hypothesis, we used bumetanide, an NKCC1 blocker prescribed to treat ascites in cirrhotic patients; we expected that if NKCC1 was responsible for manganese-mediated ammonia buildup and the subsequent glutamine accumulation, bumetanide could counteract such effect and improve motor coordination. In addition, we considered essential to test the effect of bumetanide on manganese brain levels. We used a model of liver damage in rats, consisting in bile-duct ligation. Animals were exposed to manganese in the drinking water (1 mg/ml) for two weeks and ammonia in the food (20% w/w of ammonia acetate) during the second week after surgery. Bumetanide was administered intraperitoneally in the course of the ammonia treatment. We measured glutamine and manganese in three brain regions: frontal cortex, striatum and cerebellum. Bumetanide produced no effect on glutamine accumulation; however, because of bumetanide treatment, manganese was increased in the brain, and also the activity of gamma-glutamyl transferase in plasma; thus, we consider that the influence of bumetanide and similar diuretics on liver function and manganese homeostasis should be further studied. PMID:26851372

  1. Fenugreek (Trigonella foenum graecum) seed extract prevents ethanol-induced toxicity and apoptosis in Chang liver cells.

    PubMed

    Kaviarasan, Subramanian; Ramamurty, Nalini; Gunasekaran, Palani; Varalakshmi, Elango; Anuradha, Carani Venkatraman

    2006-01-01

    The protective effect of a polyphenolic extract of fenugreek seeds (FPEt) against ethanol (EtOH)-induced toxicity was investigated in human Chang liver cells. Cells were incubated with either 30 mM EtOH alone or together in the presence of seed extract for 24 h. Assays were performed in treated cells to evaluate the ability of seeds to prevent the toxic effects of EtOH. EtOH treatment suppressed the growth of Chang liver cells and induced cytotoxicity, oxygen radical formation and mitochondrial dysfunction. Reduced glutathione (GSH) concentration was decreased significantly (P < 0.05) while oxidized glutathione (GSSG) concentration was significantly elevated in EtOH-treated cells as compared with normal cells. Incubation of FPEt along with EtOH significantly increased cell viability in a dose-dependent manner, caused a reduction in lactate dehydrogenase leakage and normalized GSH/GSSG ratio. The extract dose-dependently reduced thiobarbituric acid reactive substances formation. Apoptosis was observed in EtOH-treated cells while FPEt reduced apoptosis by decreasing the accumulation of sub-G1 phase cells. The cytoprotective effects of FPEt were comparable with those of a positive control silymarin, a known hepatoprotective agent. The findings suggest that the polyphenolic compounds of fenugreek seeds can be considered cytoprotective during EtOH-induced liver damage. PMID:16574673

  2. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism

    PubMed Central

    LI, SHUANG; WANG, SU; GUO, ZHI-GANG; HUANG, NING; ZHAO, FAN-RONG; ZHU, MO-LI; MA, LI-JUAN; LIANG, JIN-YING; ZHANG, YU-LIN; HUANG, ZHONG-LIN; WAN, GUANG-RUI

    2015-01-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism. PMID:26640531

  3. Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections.

    PubMed

    Nagaraj, Viswanathan A; Mukhi, Dhanunjay; Sathishkumar, Vinayagam; Subramani, Pradeep A; Ghosh, Susanta K; Pandey, Rajeev R; Shetty, Manjunatha C; Padmanaban, Govindarajan

    2015-01-01

    The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. PMID:26531182

  4. Asparagine requirement in Plasmodium berghei as a target to prevent malaria transmission and liver infections

    PubMed Central

    Nagaraj, Viswanathan A.; Mukhi, Dhanunjay; Sathishkumar, Vinayagam; Subramani, Pradeep A.; Ghosh, Susanta K.; Pandey, Rajeev R.; Shetty, Manjunatha C.; Padmanaban, Govindarajan

    2015-01-01

    The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual- and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections. PMID:26531182

  5. Pharmacologic Strategies to Prevent Blood Loss and Transfusion in Orthotopic Liver Transplantation.

    PubMed

    Tischer, Sarah; Miller, James T

    2016-01-01

    Patients undergoing orthotopic liver transplantation are at risk of both life-threatening blood loss and thrombosis due to preexisting liver dysfunction and major intra- and postoperative coagulopathy. Traditional laboratory markers of hemostasis and coagulopathy are often inadequate to describe the alterations. Whole blood global viscoelastic tests, thromboelastography, and thromboelastometry may provide more complete pictures of the hematologic derangements and allow for more targeted therapy to prevent blood loss and massive transfusion. Antifibrinolytic medications such as aprotinin, tranexamic acid, and [Latin Small Letter Open E]-aminocaproic acid have been used successfully to reduce blood loss and the need for transfusion, although most published data are from small prospective trials or larger retrospective cohorts. Recombinant factor VIIa has not been shown to improve outcomes. Although transfusion needs have been associated with adverse outcomes, no studied medications for prevention of blood loss and transfusion have been associated with improved mortality or graft survival post-liver transplant. PMID:27254642

  6. Protective Effect of SAHA against LPS-induced Liver Damage in Rodents

    PubMed Central

    Zhao, Yili; Zhou, Peter; Liu, Baoling; Bambakidis, Ted; Mazitschek, Ralph; Alam, Hasan B.; Li, Yongqing

    2014-01-01

    BACKGROUND Lipopolysaccharide (LPS) has a deleterious effect on several organs including the liver and eventually leads to endotoxic shock and death. LPS-induced hepatotoxicity is characterized by disturbed intracellular redox balance and excessive reactive oxygen species (ROS) accumulation, leading to liver injury. We have shown that treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACI), improves survival in a murine model of LPS-induced shock, but the protective effect of SAHA against liver damage remains unknown. The goal of this study was to investigate the mechanism underlying SAHA action in murine livers. METHOD Male C57BL/6J mice (6-8 weeks) weighing 20-25 g were randomly divided into three groups: (A) a sham group was given isotonic sodium chloride solution (10 μL/g body weight, intraperitoneal, i.p.) with DMSO (1 μl/g body weight, i.p.); (B) a LPS group was challenged with LPS (20 mg/kg, i.p.) dissolved in isotonic sodium chloride solution with DMSO; (C) a LPS plus SAHA group was treated with SAHA (50 mg/kg, i.p.) dissolved in DMSO immediately after injection of LPS (20 mg/kg, i.p.). Mice were anesthetized, and their livers were harvested 6 or 24 hours after injection to analyze whether SAHA affected production of reactive oxygen species (ROS) and activation of apoptotic proteins in the liver cells of challenged mice. RESULTS SAHA counteracted LPS-induced production of ROS (thiobarbituric acid reactive substances (TBARS) and nitrite) and reversed an LPS-induced decrease in antioxidant enzyme, glutathione (GSH). SAHA also attenuated LPS-induced hepatic apoptosis. Moreover, SAHA inhibited activation of the redox-sensitive kinase, apoptosis signal-regulating kinase-1 (ASK1), and the mitogen-activated protein kinases (MAPKs) p38 and Jun N-terminal kinase (JNK). CONCLUSION Our data indicates, for the first time, that SAHA is capable of alleviating LPS-induced hepatotoxicity and suggests that a blockade of the upstream

  7. Levosimendan: A Cardiovascular Drug to Prevent Liver Ischemia-Reperfusion Injury?

    PubMed Central

    Fulop, Andras; Rosero, Oliver; Garbaisz, David; Turoczi, Zsolt; Lotz, Gabor; Rakonczay, Zoltan; Balla, Zsolt; Hegedus, Viktor; Harsanyi, Laszlo; Szijarto, Attila

    2013-01-01

    Introduction Temporary occlusion of the hepatoduodenal ligament leads to an ischemic-reperfusion (IR) injury in the liver. Levosimendan is a new positive inotropic drug, which induces preconditioning-like adaptive mechanisms due to opening of mitochondrial KATP channels. The aim of this study was to examine possible protective effects of levosimendan in a rat model of hepatic IR injury. Material and Methods Levosimendan was administered to male Wistar rats 1 hour (early pretreatment) or 24 hours (late pretreatment) before induction of 60-minute segmental liver ischemia. Microcirculation of the liver was monitored by laser Doppler flowmeter. After 24 hours of reperfusion, liver and blood samples were taken for histology, immuno- and enzyme-histochemistry (TUNEL; PARP; NADH-TR) as well as for laboratory tests. Furthermore, liver antioxidant status was assessed and HSP72 expression was measured. Results In both groups pretreated with levosimendan, significantly better hepatic microcirculation was observed compared to respective IR control groups. Similarly, histological damage was also reduced after levosimendan administration. This observation was supported by significantly lower activities of serum ALT (pearly = 0.02; plate = 0.005), AST (pearly = 0.02; plate = 0.004) and less DNA damage by TUNEL test (pearly = 0.05; plate = 0.034) and PAR positivity (pearly = 0.02; plate = 0.04). Levosimendan pretreatment resulted in significant improvement of liver redox homeostasis. Further, significantly better mitochondrial function was detected in animals receiving late pretreatment. Finally, HSP72 expression was increased by IR injury, but it was not affected by levosimendan pretreatment. Conclusion Levosimendan pretreatment can be hepatoprotective and it could be useful before extensive liver resection. PMID:24040056

  8. Drug-Induced Liver Toxicity and Prevention by Herbal Antioxidants: An Overview

    PubMed Central

    Singh, Divya; Cho, William C.; Upadhyay, Ghanshyam

    2016-01-01

    The liver is the center for drug and xenobiotic metabolism, which is influenced most with medication/xenobiotic-mediated toxic activity. Drug-induced hepatotoxicity is common and its actual frequency is hard to determine due to underreporting, difficulties in detection or diagnosis, and incomplete observation of exposure. The death rate is high, up to about 10% for drug-induced liver damage. Endorsed medications represented >50% of instances of intense liver failure in a study from the Acute Liver Failure Study Group of the patients admitted in 17 US healing facilities. Albeit different studies are accessible uncovering the mechanistic aspects of medication prompted hepatotoxicity, we are in the dilemma about the virtual story. The expanding prevalence and effectiveness of Ayurveda and natural products in the treatment of various disorders led the investigators to look into their potential in countering drug-induced liver toxicity. Several natural products have been reported to date to mitigate the drug-induced toxicity. The dietary nature and less adverse reactions of the natural products provide them an extra edge over other candidates of supplementary medication. In this paper, we have discussed the mechanism involved in drug-induced liver toxicity and the potential of herbal antioxidants as supplementary medication. PMID:26858648

  9. Antioxidant and hepatoprotective activity of punicalagin and punicalin on carbon tetrachloride-induced liver damage in rats.

    PubMed

    Lin, C C; Hsu, Y F; Lin, T C; Hsu, F L; Hsu, H Y

    1998-07-01

    Punicalagin and punicalin, isolated from the leaves of Terminalia catappa L., are used to treat dermatitis and hepatitis. Both compounds have strong antioxidative activity. The antihepatotoxic activity of punicalagin and punicalin on carbon tetrachloride (CCl4)-induced toxicity in the rat liver was evaluated. Levels of serum glutamate-oxalate-transaminase and glutamate-pyruvate-trans-aminase were increased by administration of CCl4 and reduced by drug treatment. Histological changes around the liver central vein and oxidation damage induced by CCl4 also benefited from drug treatment. The results show that both punicalagin and punicalin have anti-hepatotoxic activity but that the larger dose of punicalin induced liver damage. Thus even if tannins have strong antioxidant activity at very small doses, treatment with a larger dose will induce cell damage. PMID:9720629

  10. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice.

    PubMed

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity. PMID:26508989

  11. Oxidative damage in gills and liver in Nile tilapia (Oreochromis niloticus) exposed to diazinon.

    PubMed

    Toledo-Ibarra, G A; Díaz Resendiz, K J G; Ventura-Ramón, G H; González-Jaime, F; Vega-López, A; Becerril-Villanueva, E; Pavón, L; Girón-Pérez, M I

    2016-10-01

    Agricultural activity demands the use of pesticides for plague control and extermination. In that matter, diazinon is one of the most widely used organophosphorus pesticides (OPs). Despite its benefits, the use of OPs in agricultural activities can also have negative effects since the excessive use of these substances can represent a major contamination problem for water bodies and organisms that inhabit them. The aim of this paper was to evaluate oxidative damage in lipids and proteins of Nile tilapia (Oreochromis niloticus) exposed acutely to diazinon (0.97, 1.95 and 3.95ppm) for 12 or 24h. The evaluation of oxidative damage was determined by quantifying lipid hydroperoxides (Fox method) and oxidized proteins (DNPH method). The data from this study suggest that diazinon induces a concentration-dependent oxidative damage in proteins, but not lipids, of the liver and gills of Nile tilapia. Furthermore, the treatment leads to a decrease in the concentration of total proteins, which can have serious consequences in cell physiology and fish development. PMID:27174646

  12. Buckwheat Honey Attenuates Carbon Tetrachloride-Induced Liver and DNA Damage in Mice

    PubMed Central

    Cheng, Ni; Wu, Liming; Zheng, Jianbin; Cao, Wei

    2015-01-01

    Buckwheat honey, which is widely consumed in China, has a characteristic dark color. The objective of this study was to investigate the protective effects of buckwheat honey on liver and DNA damage induced by carbon tetrachloride in mice. The results revealed that buckwheat honey had high total phenolic content, and rutin, hesperetin, and p-coumaric acid were the main phenolic compounds present. Buckwheat honey possesses super DPPH radical scavenging activity and strong ferric reducing antioxidant power. Administration of buckwheat honey for 10 weeks significantly inhibited serum lipoprotein oxidation and increased serum oxygen radical absorbance capacity. Moreover, buckwheat honey significantly inhibited aspartate aminotransferase and alanine aminotransferase activities, which are enhanced by carbon tetrachloride. Hepatic malondialdehyde decreased and hepatic antioxidant enzymes (superoxide dismutase and glutathione peroxidase) increased in the presence of buckwheat honey. In a comet assay, lymphocyte DNA damage induced by carbon tetrachloride was significantly inhibited by buckwheat honey. Therefore, buckwheat honey has a hepatoprotective effect and inhibits DNA damage, activities that are primarily attributable to its high antioxidant capacity. PMID:26508989

  13. Activation of the Mitochondrial Apoptotic Pathway Produces Reactive Oxygen Species and Oxidative Damage in Hepatocytes That Contribute to Liver Tumorigenesis.

    PubMed

    Hikita, Hayato; Kodama, Takahiro; Tanaka, Satoshi; Saito, Yoshinobu; Nozaki, Yasutoshi; Nakabori, Tasuku; Shimizu, Satoshi; Hayashi, Yoshito; Li, Wei; Shigekawa, Minoru; Sakamori, Ryotaro; Miyagi, Takuya; Hiramatsu, Naoki; Tatsumi, Tomohide; Takehara, Tetsuo

    2015-08-01

    Chronic hepatitis, including viral hepatitis and steatihepatitis, is a well-known high-risk condition for hepatocellular carcinoma. We previously reported that continuous hepatocyte apoptosis drives liver tumors in hepatocyte-specific Bcl-xL or Mcl-1 knockout mice. In this study, we further examine the underlying cellular mechanisms of generating tumors in apoptosis-prone liver. In cultured hepatocytes, the administration of ABT-737, a Bcl-xL/-2/-w inhibitor, led to production of reactive oxygen species (ROS) as well as activation of caspases. Mitochondria isolated from murine liver, upon administration of truncated-Bid, a proapoptotic Bcl-2 family protein, released cytochrome c and produced ROS, which was dependent on mitochondrial respiration. Hepatic apoptosis, regeneration, accumulation of oxidative damages, and tumorigenesis observed in hepatocyte-specific Mcl-1 knockout mice were substantially attenuated by further deficiency of Bax or Bid, suggesting that a balance of mitochondrial Bcl-2 family proteins governs generation of oxidative stress and other pathologies. Whole-exome sequencing clarified that C>A/G>T transversion, which is often caused by oxidative DNA damage in proliferating cells, was a frequently observed mutation pattern in liver tumors of Mcl-1 knockout mice. The administration of antioxidant L-N-acetylcysteine did not affect apoptosis, compensatory regeneration, or fibrotic responses but significantly reduced oxidative DNA damage and incidence and multiplicity of live tumors in Mcl-1 knockout mice. In conclusion, activation of the mitochondrial apoptotic pathway in hepatocytes accumulates intracellular oxidative damages, leading to liver tumorigenesis, independently of liver regeneration or fibrosis. This study supports a concept that antioxidant therapy may be useful for suppressing liver carcinogenesis in patients with chronic liver disease. PMID:26038117

  14. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver.

    PubMed

    Fustinoni-Reis, Adriana M; Arruda, Sandra F; Dourado, Lívia P S; da Cunha, Marcela S B; Siqueira, Egle M A

    2016-02-01

    This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G), Tuc (AIN-93G added of tucum-do-cerrado), Fe (AIN-93G iron-enriched), or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched) diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression. PMID:26901220

  15. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver

    PubMed Central

    Fustinoni-Reis, Adriana M.; Arruda, Sandra F.; Dourado, Lívia P. S.; da Cunha, Marcela S. B.; Siqueira, Egle M. A.

    2016-01-01

    This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G), Tuc (AIN-93G added of tucum-do-cerrado), Fe (AIN-93G iron-enriched), or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched) diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression. PMID:26901220

  16. Resveratrol mitigate structural changes and hepatic stellate cell activation in N'-nitrosodimethylamine-induced liver fibrosis via restraining oxidative damage.

    PubMed

    Ahmad, Areeba; Ahmad, Riaz

    2014-09-25

    Resveratrol, a polyphenol, found in skin of red grapes, peanuts and berries possesses anti-inflammatory, anti-carcinogenic and lipid modulation properties. Here, we demonstrate in vivo antifibrotic activity of resveratrol in a mammalian model, wherein hepatic fibrosis was induced by N'-nitrosodimethylamine (NDMA) administration. Apart from being a potent hepatotoxin, NDMA is a known mutagen and carcinogen, as well. To induce hepatic fibrosis, rats were administered NDMA (i.p.) in 10mg/kgb.wt thrice/week for 21 days. Another group of animals received resveratrol supplement (10mg/kgb.wt) subsequent to NDMA administration and were sacrificed weekly. The changes in selected biomarkers were monitored to compare profibrotic effects of NDMA and antifibrotic activity of resveratrol. The selected biomarkers were: sera transaminases, ALP, bilirubin, liver glycogen, LPO, SOD, protein carbonyl content, ATPases (Ca(2+), Mg(2+), Na(+)/K(+)) and hydroxyproline/collagen content. Alterations in liver architecture were assessed by H&E, Masson's trichrome and reticulin staining of liver biopsies. Immuno-histochemistry and immunoblotting were employed to examine expression of α-SMA. Our results demonstrate that during NDMA-induced liver fibrosis transaminases, ALP, bilirubin, hydroxyproline and liver collagen increases, while liver glycogen is depleted. The decline in SOD (>65%) and ATPases, which were concomitant with the elevation in MDA and protein carbonyls, strongly indicate oxidative damage. Fibrotic transformation of liver in NDMA-treated rats was verified by histopathology, immuno-histochemistry and immunoblotting data, with the higher expressivity of α-SMA-positive HSCs being most established diagnostic immuno-histochemical marker of HSCs. Resveratrol-supplement refurbished liver architecture by significantly restoring levels of biomarkers of oxidative damage (MDA, SOD, protein carbonyls and membrane-bound ATPases). Therefore, we conclude that antifibrotic effect of

  17. Preventive strategies in chronic liver disease: part I. Alcohol, vaccines, toxic medications and supplements, diet and exercise.

    PubMed

    Riley, T R; Bhatti, A M

    2001-11-01

    Chronic liver disease is the 10th leading cause of death in the United States. Hepatitis C virus infection is the most frequent cause of chronic liver disease and the most common indication for liver transplantation. Preventive care can significantly reduce the progression of liver disease. Alcohol and hepatitis C virus are synergistic in hastening the development of cirrhosis; therefore, patients with hepatitis C infection should abstain from alcohol use. Because superinfection with hepatitis A or B virus can lead to liver failure, vaccination is recommended. Potentially hepatotoxic medications should be used with caution in patients with chronic liver disease. In general, nonsteroidal anti-inflammatory drugs should be avoided; acetaminophen in a dosage below 2 g per day is the safest choice. Many herbal remedies are potentially hepatotoxic, and only milk thistle can be used safely in patients who have chronic liver disease. Weight reduction and exercise can improve liver function in patients with fatty liver. PMID:11730310

  18. Protective role of thymoquinone against liver damage induced by tamoxifen in female rats.

    PubMed

    Suddek, Ghada M

    2014-08-01

    One of the major reasons for terminating a clinical trial is the liver toxicity induced by chemotherapy. Tamoxifen (TAM) is an anti-estrogen used in the treatment and prevention of hormone-dependent breast cancer. Tamoxifen therapy may cause hepatic injury. The seeds of Nigella sativa, which contain the active ingredient thymoquinone (TQ), have been used in folk medicine for diverse ailments. TQ is reported to possess anticancer and hepatoprotective effects. In this study, the protective effects of TQ against TAM-induced hepatotoxicity in female rats were evaluated. Four groups of rats were used: control; TAM; TQ; TAM+TQ. TAM (45 mg·(kg body mass)(-1)·day(-1), by intraperitoneal injection (i.p.), for 10 consecutive days) resulted in elevated serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, total bilirubin, and gamma glutamyl transferase, as well as depletion of reduced glutathione in the liver and accumulation of lipid peroxides. Also, TAM treatment inhibited the hepatic activity of superoxide dismutase. Further, it raised the levels of tumor necrosis factor alpha in the liver and induced histopathological changes. Pretreatment with TQ (50 mg·(kg body mass)(-1)·day(-1); orally, for 20 consecutive days, starting 10 days before TAM injection) significantly prevented the elevation in serum activity of the assessed enzymes. TQ significantly inhibited TAM-induced hepatic GSH depletion and LPO accumulation. Consistently, TQ normalized the activity of SOD, inhibited the rise in TNF-α and ameliorated the histopathological changes. In conclusion, TQ protects against TAM-induced hepatotoxicity. PMID:24941454

  19. Clean Assembly Practices to Prevent Contamination and Damage to Optics

    SciTech Connect

    Pryatel, J; Gourdin, W H

    2005-12-19

    A key lesson learned from the earliest optics installed in the National Ignition Facility (NIF) was that the traditional approach for maintaining cleanliness, such as the use of cleanrooms and associated garments and protocols, is inadequate. Assembly activities often negate the benefits provided by cleanrooms, and in fact generate contamination with high damage potential. As a result, NIF introduced ''clean assembly protocols'' and related practices to supplement the traditional clean room protocols. These new protocols included ''clean-as-you-go'' activities and regular bright light inspections. Introduction of these new protocols has greatly reduced the particle contamination found on more recently installed optics. In this paper we will describe the contamination mechanisms we have observed and the details of the clean assembly protocols we have successfully introduced to mitigate them.

  20. Vinpocetine prevent ischemic cell damage in rat hippocampus

    SciTech Connect

    Sauer, D.; Rischke, R.; Beck, T.; Roeberg, C.; Mennel, H.D.; Bielenberg, G.W.; Krieglstein, J.

    1988-01-01

    The effects of vinpocetine on hippocampal cell damage and local cerebral blood flow (LCBF) were measured in a rat model of forebrain ischemia. Duration of ischemia was 10 min. LCBF was determined after 2 min of recirculation using the /sup 14/C-iodoantipyrine technique. Hippocampal cell loss was quantified histologically 7 days post-ischemia. Intraperitoneal application of vinpocetine 15 min prior to ischemia significantly reduced neuronal cell loss in hippocampal CA 1 sector from 60% to 28%. The drug led to a marked increase in blood flow in cortical areas, whereas LCBF remained unchanged in hippocampus and all other structures measured. It is suggested that the protective effect of vinpocetine does not depend on increased postischemic blood flow.

  1. Suppression of intralysosomal proteolysis aggravates structural damage and functional impairment of liver lysosomes in rats with toxic hepatitis

    SciTech Connect

    Korolenko, T.A.; Gavrilova, N.I.; Kurysheva, N.G.; Malygin, A.E.; Pupyshev, A.B.

    1986-01-01

    This paper estimates the effect of lowering protein catabolism in the lysosomes on structural and functional properties of the latter during liver damage. For comparison, polyvinylpyrrolidone (PVP), which is inert relative to intralysosomal proteolysis, and which also accumulates largely in lysosomes of the kupffer cells of the liver, was used. The uptake of labeled bovine serum albuman (C 14-BSA) by the liver is shown and the rate of intralysosomal proteolysis is given 24 hours after administration of suramin an CCl/sub 4/ to rats. It is suggested that it is risky to use drugs which inhibit intralysosomal proteolysis in the treatment of patients with acute hepatitis.

  2. [Liver damage in a patient treated with a vitamin K antagonist, a statin and an ACE inhibitor].

    PubMed

    Bruggisser, M; Terraciano, L; Rätz Bravo, A; Haschke, M

    2010-10-20

    We report the case of a 71-year-old male patient who presented at the emergency room with episodes of epistaxis and jaundice. The patient was on therapy with phenprocoumon, atorvastatin and perindopril. Findings on admission included prominent elevation of transaminases and bilirubin and a high INR due to impaired liver function and oral anticoagulation. After exclusion of other causes like viral or autoimmune hepatitis and after having obtained a liver biopsy, a diagnosis of drug induced liver damage (DILI) was made. Epidemiology, pathophysiology and clinical signs of DILI are discussed with a special focus on coumarines, statins and ACE-inhibitors. PMID:20960395

  3. Sorafenib prevents liver fibrosis in a non-alcoholic steatohepatitis (NASH) rodent model.

    PubMed

    Stefano, J T; Pereira, I V A; Torres, M M; Bida, P M; Coelho, A M M; Xerfan, M P; Cogliati, B; Barbeiro, D F; Mazo, D F C; Kubrusly, M S; D'Albuquerque, L A C; Souza, H P; Carrilho, F J; Oliveira, C P

    2015-05-01

    Liver fibrosis occurring as an outcome of non-alcoholic steatohepatitis (NASH) can precede the development of cirrhosis. We investigated the effects of sorafenib in preventing liver fibrosis in a rodent model of NASH. Adult Sprague-Dawley rats were fed a choline-deficient high-fat diet and exposed to diethylnitrosamine for 6 weeks. The NASH group (n=10) received vehicle and the sorafenib group (n=10) received 2.5 mg·kg(-1)·day(-1) by gavage. A control group (n=4) received only standard diet and vehicle. Following treatment, animals were sacrificed and liver tissue was collected for histologic examination, mRNA isolation, and analysis of mitochondrial function. Genes related to fibrosis (MMP9, TIMP1, TIMP2), oxidative stress (HSP60, HSP90, GST), and mitochondrial biogenesis (PGC1α) were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Liver mitochondrial oxidation activity was measured by a polarographic method, and cytokines by enzyme-linked immunosorbent assay (ELISA). Sorafenib treatment restored mitochondrial function and reduced collagen deposition by nearly 63% compared to the NASH group. Sorafenib upregulated PGC1α and MMP9 and reduced TIMP1 and TIMP2 mRNA and IL-6 and IL-10 protein expression. There were no differences in HSP60, HSP90 and GST expression. Sorafenib modulated PGC1α expression, improved mitochondrial respiration and prevented collagen deposition. It may, therefore, be useful in the treatment of liver fibrosis in NASH. PMID:25714891

  4. Sorafenib prevents liver fibrosis in a non-alcoholic steatohepatitis (NASH) rodent model

    PubMed Central

    Stefano, J.T.; Pereira, I.V.A.; Torres, M.M.; Bida, P.M.; Coelho, A.M.M.; Xerfan, M.P.; Cogliati, B.; Barbeiro, D.F.; Mazo, D.F.C.; Kubrusly, M.S.; D'Albuquerque, L.A.C.; Souza, H.P.; Carrilho, F.J.; Oliveira, C.P.

    2015-01-01

    Liver fibrosis occurring as an outcome of non-alcoholic steatohepatitis (NASH) can precede the development of cirrhosis. We investigated the effects of sorafenib in preventing liver fibrosis in a rodent model of NASH. Adult Sprague-Dawley rats were fed a choline-deficient high-fat diet and exposed to diethylnitrosamine for 6 weeks. The NASH group (n=10) received vehicle and the sorafenib group (n=10) received 2.5 mg·kg-1·day-1 by gavage. A control group (n=4) received only standard diet and vehicle. Following treatment, animals were sacrificed and liver tissue was collected for histologic examination, mRNA isolation, and analysis of mitochondrial function. Genes related to fibrosis (MMP9, TIMP1, TIMP2), oxidative stress (HSP60, HSP90, GST), and mitochondrial biogenesis (PGC1α) were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Liver mitochondrial oxidation activity was measured by a polarographic method, and cytokines by enzyme-linked immunosorbent assay (ELISA). Sorafenib treatment restored mitochondrial function and reduced collagen deposition by nearly 63% compared to the NASH group. Sorafenib upregulated PGC1α and MMP9 and reduced TIMP1 and TIMP2 mRNA and IL-6 and IL-10 protein expression. There were no differences in HSP60, HSP90 and GST expression. Sorafenib modulated PGC1α expression, improved mitochondrial respiration and prevented collagen deposition. It may, therefore, be useful in the treatment of liver fibrosis in NASH. PMID:25714891

  5. [SUSTENTOCYTE NUMBERS IN THE NEONATAL PERIOD IN THE OFFSPRING OF FEMALE RATS WITH EXPERIMENTAL LIVER DAMAGE].

    PubMed

    Briukhin, G V; Sizonenko, M L

    2016-01-01

    On serial histological sections of the testes, stained with hematoxylin-eosin, using a morphometric device, the total numbers of spermatogenic cells and sustentocytes (Sertoli cells) were measured in the convoluted seminiferous tubules of neonatal rat pups. Experimental groups consisted of rats born from females with experimental liver damage of various origins--autoimmune (n = 33), toxic (n = 32), alcoholic (n = 12), and medicinal (n = 27). The control group included pups born from normal female rats (n = 14). In experimental rats both increase and decrease of the total number of sustentocytes was detected. In the animals of most of the experimental groups, sustentocyte cell index reflecting the ratio of the number of spermatogenic cells and sustentocytes, was decreased. PMID:27487667

  6. Protective effect of stress-induced liver damage by saponin fraction from Codonopsis lanceolata.

    PubMed

    Kim, Min Ho; Lee, Jaehwi; Yoo, Dae Sung; Lee, Yong Gyu; Byeon, Se Eun; Hong, Eock Kee; Cho, Jae Youl

    2009-10-01

    Saponins are valuable principles found in various herbal medicine with pharmaceutical, cosmetical and nutraceutical merits. In this study, we evaluated the protective role of saponin fraction (Cl-SF), prepared from Codonopsis lanceolata, an ethnopharmacologically famous plant in Korea, China and Japan, on water immersion stress-induced liver damage and radical generation. Cl-SF clearly decreased the up-regulated levels of serum glutamate-oxalacetate transaminase and glutamate-pyruvate-transaminase induced by water-immersed stress conditions. Furthermore, Cl-SF seemed to block the stress-induced radicals. Thus, Griess and DPPH assays revealed that Cl-SF significantly suppressed both radical generation in sodium nitroprusside-treated RAW264.7 cells and nitric oxide production in LPS-treated RAW264.7 cells. Therefore, these results suggest that Cl-SF may be considered as a promising stress-regulatory principle with radical scavenging actions. PMID:19898808

  7. Leaky lysosomes in lung transplant macrophages: azithromycin prevents oxidative damage

    PubMed Central

    2012-01-01

    Background Lung allografts contain large amounts of iron (Fe), which inside lung macrophages may promote oxidative lysosomal membrane permeabilization (LMP), cell death and inflammation. The macrolide antibiotic azithromycin (AZM) accumulates 1000-fold inside the acidic lysosomes and may interfere with the lysosomal pool of Fe. Objective Oxidative lysosomal leakage was assessed in lung macrophages from lung transplant recipients without or with AZM treatment and from healthy subjects. The efficiency of AZM to protect lysosomes and cells against oxidants was further assessed employing murine J774 macrophages. Methods Macrophages harvested from 8 transplant recipients (5 without and 3 with ongoing AZM treatment) and 7 healthy subjects, and J774 cells pre-treated with AZM, a high-molecular-weight derivative of the Fe chelator desferrioxamine or ammonium chloride were oxidatively stressed. LMP, cell death, Fe, reduced glutathione (GSH) and H-ferritin were assessed. Results Oxidant challenged macrophages from transplants recipients without AZM exhibited significantly more LMP and cell death than macrophages from healthy subjects. Those macrophages contained significantly more Fe, while GSH and H-ferritin did not differ significantly. Although macrophages from transplant recipients treated with AZM contained both significantly more Fe and less GSH, which would sensitize cells to oxidants, these macrophages resisted oxidant challenge well. The preventive effect of AZM on oxidative LMP and J774 cell death was 60 to 300 times greater than the other drugs tested. Conclusions AZM makes lung transplant macrophages and their lysososomes more resistant to oxidant challenge. Possibly, prevention of obliterative bronchiolitis in lung transplants by AZM is partly due to this action. PMID:23006592

  8. Persistent and heritable structural damage induced in heterochromatic DNA from rat liver by N-nitrosodimethylamine

    SciTech Connect

    Ward, E.J.; Stewart, B.W.

    1987-03-24

    Analysis, by benzoylated DEAE-cellulose chromatography, has been made of structural change in eu- and heterochromatic DNA from rat liver following administration of the carcinogen N-nitrosodimethylamine. Either hepatic DNA was prelabeled with (/sup 3/H)thymidine administered 2-3 weeks before injection of the carcinogen or the labeled precursor was given during regenerative hyperplasia in rats treated earlier with N-nitrosodimethylamine. Following phenol extraction of either whole liver homogenate or nuclease-fractionated eu- and heterochromatin, carcinogen-modified DNA was examined by stepwise or caffeine gradient elution from benzoylated DEAE-cellulose. In whole DNA, nitrosamine-induced single-stranded character was maximal 4-24 h after treatment, declining rapidly thereafter; gradient elution of these DNA preparations also provided short-term evidence of structural change. Caffeine gradient chromatography suggested short-term nitrosamine-induced structural change in euchromatic DNA, while increased binding of heterochromatic DNA was evident for up to 3 months after carcinogen treatment. Preparations of newly synthesized heterochromatic DNA from animals subjected to hepatectomy up to 2 months after carcinogen treatment provided evidence of heritable structural damage. Carcinogen-induced binding of heterochromatic DNA to benzoylated DEAE-cellulose was indicative of specific structural lesions whose affinity equalled that of single-stranded DNA up to 1.0 kilobase in length. The data suggest that structural lesions in heterochromatin, which may be a consequence of incomplete repair, are preferentially degraded by endogenous nuclease(s).

  9. Oxidative damage in the progression of chronic liver disease to hepatocellular carcinoma: an intricate pathway.

    PubMed

    Cardin, Romilda; Piciocchi, Marika; Bortolami, Marina; Kotsafti, Andromachi; Barzon, Luisa; Lavezzo, Enrico; Sinigaglia, Alessandro; Rodriguez-Castro, Kryssia Isabel; Rugge, Massimo; Farinati, Fabio

    2014-03-28

    The histo-pathologic and molecular mechanisms leading to initiation and progression of hepatocellular carcinoma (HCC) are still ill-defined; however, there is increasing evidence that the gradual accumulation of mutations, genetic and epigenetic changes which occur in preneoplastic hepatocytes results in the development of dysplastic foci, nodules, and finally, overt HCC. As well as many other neoplasias, liver cancer is considered an "inflammatory cancer", arising from a context of inflammation, and characterized by inflammation-related mechanisms that favor tumor cell survival, proliferation, and invasion. Molecular mechanisms that link inflammation and neoplasia have been widely investigated, and it has been well established that inflammatory cells recruited at these sites with ongoing inflammatory activity release chemokines that enhance the production of reactive oxygen species. The latter, in turn, probably have a major pathogenic role in the continuum starting from hepatitis followed by chronic inflammation, and ultimately leading to cancer. The relationship amongst chronic liver injury, free radical production, and development of HCC is explored in the present review, particularly in the light of the complex network that involves oxidative DNA damage, cytokine synthesis, telomere dysfunction, and microRNA regulation. PMID:24696595

  10. Bioaccumulation of butyltins and liver damage in the demersal fish Cathorops spixii (Siluriformes, Ariidae).

    PubMed

    Dos Santos, Dayana Moscardi; Santos, Gustavo Souza; Cestari, Marta Margarete; de Oliveira Ribeiro, Ciro Alberto; de Assis, Helena Cristina Silva; Yamamoto, Flavia; Guiloski, Izonete Cristina; de Marchi, Mary Rosa Rodrigues; Montone, Rosalinda Carmela

    2014-02-01

    The toxicity of butyltin compounds (BTs), mainly tributyltin (TBT), has been reported in different organisms. However, such an analysis in fish after field exposure with reference to the related biomarkers has not been commonly observed in the literature. This study presents the uptake of BTs in the liver of a neotropical marine catfish Cathorops spixii in Paranagua Bay, an important estuarine system located in southern Brazil. Two different areas, close to and distant from the harbor, were used for chemical analysis evaluation of hepatotoxicity through genetic, enzymatic, and histopathological biomarkers. The presence of polycyclic aromatic hydrocarbons in bile was also considered as a biomarker. The results showed a significant relationship between TBT levels and the inhibition of biotransformation enzymes and high occurrence of melanomacrophages in fish collected close to the harbor site. These effects were linked to the absence of TBT metabolites in the liver. In the second site, the presence of DBT was associated with an increase in EROD and GST activity. The larger amount of DNA damage as well as the highest oxidative stress was noted in fish from the less TBT-polluted area, where DBT and bile PAHs occurred. These findings showed different impact levels due to or increased by the chronic exposure of biota to BTs. PMID:24217970

  11. 20-Hydroxyecdysone prevents oxidative stress damage in adult Pyrrhocoris apterus.

    PubMed

    Krishnan, Natraj; Vecera, Josef; Kodrík, Dalibor; Sehnal, Frantisek

    2007-07-01

    Injections of 38 pmol paraquat (1,1'-dimethyl-4,4'-bypyridilium) into adult Pyrrhocoris apterus (average body weight 29.6 mg in males and 36.9 mg in females) caused a significant elevation of lipid peroxidation and protein carbonylation and a decline of membrane fluidity in the microsomal brain fraction. Another manifestation of oxidative stress was a depletion of the reduced glutathione pool and reduction of the gamma-glutamyl transpeptidase activity in the brain extracts. The damaging action of paraquat on the brain was counteracted by simultaneous injection of 1 pmol 20-hydroxyecdysone (20E). 20E restrained lipid peroxidation and the formation of protein carbonyls, ameliorated changes in microsomal membrane fluidity, enhanced the level of reduced glutathione, and upregulated the activity of gamma-glutamyl transpeptidase. At the organismic level, 20E curtailed three detrimental effects caused by paraquat injection: the disappearance of a blood protein, the suppression of fecundity and egg hatchability, and the shortening of adult life span. The data showed that 20E provided a systemic antioxidant protection but the significance of endogenous ecdysteroids in the management of oxidative stress remains to be shown. PMID:17570141

  12. Schisandra chinensis Prevents Alcohol-Induced Fatty Liver Disease in Rats

    PubMed Central

    Park, Hyoung Joon; Lee, Soo-Jung; Song, Yuno; Jang, Sun-Hee; Ko, Yeoung-Gyu; Kang, Suk Nam; Chung, Byung Yeoup; Kim, Hong-Duck; Kim, Gon-Sup

    2014-01-01

    Abstract Schisandra chinensis (SC), a traditional herbal medicine, has been prescribed for patients suffering from various liver diseases, including hepatic cancer, hypercholesterolemia, and CCl4-induced liver injury. We investigated whether SC extract has a protective effect on alcohol-induced fatty liver and studied its underlying mechanisms. Rats were fed with ethanol by intragastric administration every day for 5 weeks to induce alcoholic fatty liver. Ethanol treatment resulted in a significant increase in alanine aminotransferase, aspartate aminotransferase, and hepatic triglyceride (TG) levels and caused fatty degeneration of liver. Ethanol administration also elevated serum TG and total cholesterol (TC) and decreased high-density lipoprotein (HDL) cholesterol levels. However, after administration of ethanol plus SC extracts, the ethanol-induced elevation in liver TC and TG levels was reversed. Elevation in serum TG was not observed after treatment with SC. Moreover, compared with the ethanol-fed group, the rats administered ethanol along with SC extracts for 5 weeks showed attenuated fatty degeneration and an altered lipid profile with decreased serum TC and TG, and increased HDL cholesterol levels. Chronic ethanol consumption did not affect peroxisome proliferator-activated receptor γ (PPARγ) levels, but it decreased PPARα and phospho-AMP-activated protein kinase (AMPK) levels in the liver. However, SC prevented the ethanol-induced decrease in PPARα expression and induced a significant decrease in sterol regulatory element-binding protein-1 expression and increase in phospho-AMPK expression in rats with alcoholic fatty liver. SC administration resulted in a significant decrease in intracellular lipid accumulation in hepatocytes along with a decrease in serum TG levels, and it reversed fatty liver to normal conditions, as measured by biochemical and histological analyses. Our results indicate that the protective effect of SC is accompanied by a

  13. Systematic review: Preventive and therapeutic applications of metformin in liver disease

    PubMed Central

    Bhat, Aparna; Sebastiani, Giada; Bhat, Mamatha

    2015-01-01

    Metformin, a biguanide derivative, is the most commonly prescribed medication in the treatment of type 2 diabetes mellitus. More recently, the use of metformin has shown potential as a preventive and therapeutic agent for a broad spectrum of conditions, including liver disease and hepatic malignancies. In this systematic review, we critically analyze the literature behind the potential use of metformin across the spectrum of liver disease and malignancies. The PubMed and Ovid MEDLINE databases were searched from 2000 to March 2015, using a combination of relevant text words and MeSH terms: metformin and mammalian target of rapamycin, hepatitis B virus (HBV), hepatitis B virus (HCV), non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC) or cholangiocarcinoma. The search results were evaluated for pertinence to the issue of metformin in liver disease as well as for quality of study design. Metformin has a number of biochemical effects that would suggest a benefit in treating chronic liver diseases, particularly in the context of insulin resistance and inflammation. However, the literature thus far does not support any independent therapeutic role in NAFLD or HCV. Nonetheless, there is Level III evidence for a chemopreventive role in patients with diabetes and chronic liver disease, with decreased incidence of HCC and cholangiocarcinoma. The use of metformin seems to be safe in patients with cirrhosis, and provides a survival benefit. Once hepatic malignancies are already established, metformin does not offer any therapeutic potential. In conclusion, there is insufficient evidence to recommend use of metformin in the adjunctive treatment of chronic liver diseases, including NAFLD and HCV. However, there is good evidence for a chemopreventive role against HCC among patients with diabetes and chronic liver disease, and metformin should be continued in patients even with cirrhosis to provide this benefit. PMID:26140084

  14. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage.

    PubMed

    Tummala, Krishna S; Gomes, Ana L; Yilmaz, Mahmut; Graña, Osvaldo; Bakiri, Latifa; Ruppen, Isabel; Ximénez-Embún, Pilar; Sheshappanavar, Vinayata; Rodriguez-Justo, Manuel; Pisano, David G; Wagner, Erwin F; Djouder, Nabil

    2014-12-01

    Molecular mechanisms responsible for hepatocellular carcinoma (HCC) remain largely unknown. Using genetically engineered mouse models, we show that hepatocyte-specific expression of unconventional prefoldin RPB5 interactor (URI) leads to a multistep process of HCC development, whereas its genetic reduction in hepatocytes protects against diethylnitrosamine (DEN)-induced HCC. URI inhibits aryl hydrocarbon (AhR)- and estrogen receptor (ER)-mediated transcription of enzymes implicated in L-tryptophan/kynurenine/nicotinamide adenine dinucleotide (NAD(+)) metabolism, thereby causing DNA damage at early stages of tumorigenesis. Restoring NAD(+) pools with nicotinamide riboside (NR) prevents DNA damage and tumor formation. Consistently, URI expression in human HCC is associated with poor survival and correlates negatively with L-tryptophan catabolism pathway. Our results suggest that boosting NAD(+) can be prophylactic or therapeutic in HCC. PMID:25453901

  15. Preventing Collateral Damage in Crohn's Disease: The Lémann Index.

    PubMed

    Fiorino, Gionata; Bonifacio, Cristiana; Peyrin-Biroulet, Laurent; Danese, Silvio

    2016-04-01

    Crohn's disease [CD] is a chronic progressive and destructive condition. Half of all CD patients will develop bowel damage at 10 years. As in rheumatic diseases, preventing the organ damage consequent to CD complications [fistula, abscess, and/or stricture] is emerging as a new therapeutic goal for these patients in clinical practice. This might be the only way to alter disease course, as surgery is often required for disease complications. Similar to the joint damage in rheumatoid arthritis, bowel damage has also emerged as a new endpoint in disease-modification trials such as the REACT trial. Recently, the Lemann Index [LI] has been developed to measure CD-related bowel damage, and to assess damage progression over time, in order to evaluate the impact of therapeutic strategies in terms of preventing bowel damage. While validation is pending, recent reports suggested that bowel damage is reversible by anti-tumour necrosis factor [TNF] therapy. The Lémann index may play a key role in CD management, and should be implemented in all upcoming disease-modification trials in CD. PMID:26744441

  16. Protective effect of hesperidin on oxidative and histological liver damage following carbon tetrachloride administration in Wistar rats

    PubMed Central

    Çiftçi, Osman; Otlu, Ali

    2016-01-01

    Introduction In the current study, the protective effect of hesperidin (HP) on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats was investigated. Material and methods Twenty-eight rats were divided equally into four groups. The first group was kept as a control and given only vehicle. In the second, rats were orally administered 50 mg/kg/day HP for 10 days. Carbon tetrachloride was given in a single intraperitoneal injection at the dose of 2 ml/kg in the third group. In the fourth group, the rats were treated with equal doses of CCl4 and HP. Results It was found that CCl4 induced oxidative stress via a significant increase in the formation of thiobarbituric acid-reactive substances (TBARS) and caused a significant decline in the levels of glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) in rats. In contrast, HP blocked these toxic effects induced by CCl4, causing an increase in GSH, CAT and SOD levels and decreased formation of TBARS (p < 0.01). In addition, histopathological damage increased with CCl4 treatment. In contrast, HP treatment eliminated the effects of CCl4 and stimulated anti-apoptotic events, as characterized by reduced caspase-3 activation. Conclusions The current study demonstrated that CCl4-induced hepatotoxicity can be prevented with HP treatment. Thus, co-administration of HP with CCl4 may be useful for attenuating the negative effects of CCl4 on the liver. PMID:27279838

  17. Pyrazole prevention of CC14-induced ultrastructural changes in rat liver.

    PubMed Central

    Bernacchi, A. S.; de Castro, C. R.; de Toranzo, E. G.; Marzi, A.; de Ferreyra, E. C.; de Fenos, O. M.; Castro, J. A.

    1980-01-01

    Carbon tetrachloride (CC14) administration to rats leads to an early dilatation, vesiculation and disorganization of the liver endoplasmic reticulum (ER). This hepatotoxin also causes detachment of ribosomes from ER membranes, dilatation of the Golgi cisternae and occasionally dilatation of the perinuclear membrane. Prior treatment of the rats with pyrazole completely prevents CC14- induced ultrastructural alterations observed in liver at 3 h. This drug is known to decrease the intensity of the irreversible binding of CC14 reactive metabolites to cellular constituents without modifying the intensity of the CC14- induced lipid peroxidation, either in vitro or in vivo, as measured by the diene conjugation procedure or by decreases inthe arachidonic acid content of microsomal phospholipids. Results suggest that interaction of reactive metabolites rather than lipid peroxidation mediates deleterious effects of CCl4 on the liver ER. Images Fig. 1 Fig. 2 Fig. 3 PMID:7448119

  18. Differential expression and glycative damage affect specific mitochondrial proteins with aging in rat liver.

    PubMed

    Bakala, Hilaire; Ladouce, Romain; Baraibar, Martin A; Friguet, Bertrand

    2013-12-01

    Aging is accompanied by the gradual deterioration of cell functions. Particularly, mitochondrial dysfunction, associated with an accumulation of damaged proteins, is of key importance due to the central role of these organelles in cellular metabolism. However, the detailed molecular mechanisms involved in such impairment have not been completely elucidated. In the present study, proteomic analyses looking at both changes at the expression level as well as to glycative modifications of the mitochondrial proteome were performed. Two-dimensional difference gel electrophoresis analysis revealed 16 differentially expressed proteins with aging. Thirteen exhibited a decreased expression and are crucial enzymes related to OXPHOS chain complex I/V components, TCA cycle or fatty acid β-oxidation reaction. On the other hand, 2 enzymes involved in fatty acid β-oxidation cycle were increased in aged mitochondria. Immunodetection and further identification of glycated proteins disclosed a set of advanced glycation end product-modified proteins, including 6 enzymes involved in the fatty acid β-oxidation process, and 2 enzymes of the TCA/urea cycles. A crucial antioxidant enzyme, catalase, was among the most strongly glycated proteins. In addition, several AGE-damaged enzymes (aldehyde dehydrogenase 2, medium chain acyl-CoA dehydrogenase and 3-ketoacyl-CoA dehydrogenase) exhibited a decreased activity with age. Taken together, these data suggest that liver mitochondria in old rats suffer from a decline in their capacity for energy production, due to (i) decreased expression of OXPHOS complex I/V components and (ii) glycative damage to key fatty acid β-oxidation and TCA/urea cycle enzymes. PMID:23906978

  19. Melatonin Has An Ergogenic Effect But Does Not Prevent Inflammation and Damage In Exhaustive Exercise

    PubMed Central

    Beck, Wladimir Rafael; Botezelli, José Diego; Pauli, José Rodrigo; Ropelle, Eduardo Rochete; Gobatto, Claudio Alexandre

    2015-01-01

    It is well documented that exhaustive physical exercise leads to inflammation and skeletal muscle tissue damage. With this in mind, melatonin has been acutely administered before physical exercise; nevertheless, the use of melatonin as an ergogenic agent to prevent tissue inflammation and damage remains uncertain. We evaluated the effects of melatonin on swimming performance, muscle inflammation and damage and several physiological parameters after exhaustive exercise at anaerobic threshold intensity (iLAn) performed during light or dark circadian periods. The iLAn was individually determined and two days later, the animals performed an exhaustive exercise bout at iLAn 30 minutes after melatonin administration. The exercise promoted muscle inflammation and damage, mainly during the dark period, and the exogenous melatonin promoted a high ergogenic effect. The expressive ergogenic effect of melatonin leads to longer periods of muscle contraction, which superimposes a possible melatonin protective effect on the tissue damage and inflammation. PMID:26669455

  20. Non-alcohol fatty liver disease in Asia: Prevention and planning

    PubMed Central

    Ashtari, Sara; Pourhoseingholi, Mohamad Amin; Zali, Mohamad Reza

    2015-01-01

    AIM: To review all of epidemiological aspects of non-alcoholic fatty liver disease (NAFLD) and also prevent this disease is examined. METHODS: We conducted a systematic review according to the PRISMA guidelines. All searches for writing this review is based on the papers was found in PubMed (MEDLINE), Cochrane database and Scopus in August and September 2014 for topic of NAFLD in Asia and the way of prevention of this disease, with no language limitations. All relevant articles were accessed in full text and all relevant materials was evaluated and reviewed. RESULTS: NAFLD is the most common liver disorder in worldwide, with an estimated with 20%-30% prevalence in Western countries and 2%-4% worldwide. The prevalence of NAFLD in Asia, depending on location (urban vs rural), gender, ethnicity, and age is variable between 15%-20%. According to the many studies in the world, the relationship between NAFLD, obesity, diabetes mellitus, and metabolic syndrome (MS) is quiet obvious. Prevalence of NAFLD in Asian countries seems to be lower than the Western countries but, it has increased recently due to the rise of obesity, type 2 diabetes and MS in this region. One of the main reasons for the increase in obesity, diabetes and MS in Asia is a lifestyle change and industrialization. Today, NAFLD is recognized as a major chronic liver disease in Asia. Therefore, prevention of this disease in Asian countries is very important and the best strategy for prevention and control of NAFLD is lifestyle modifications. Lifestyle modification programs are typically designed to change bad eating habits and increase physical activity that is associated with clinically significant improvements in obesity, type 2 diabetes and MS. CONCLUSION: Prevention of NAFLD is very important in Asian countries particularly in Arab countries because of high prevalence of obesity, diabetes and MS. PMID:26167252

  1. Protective Effects of Crocus Sativus L. Extract and Crocin against Chronic-Stress Induced Oxidative Damage of Brain, Liver and Kidneys in Rats

    PubMed Central

    Bandegi, Ahmad Reza; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Ghadrdoost, Behshid

    2014-01-01

    Purpose: Chronic stress has been reported to induce oxidative damage of the brain. A few studies have shown that Crocus Sativus L., commonly known as saffron and its active constituent crocin may have a protective effect against oxidative stress. The present work was designed to study the protective effects of saffron extract and crocin on chronic – stress induced oxidative stress damage of the brain, liver and kidneys. Methods: Rats were injected with a daily dose of saffron extract (30 mg/kg, IP) or crocin (30 mg/kg, IP) during a period of 21 days following chronic restraint stress (6 h/day). In order to determine the changes of the oxidative stress parameters following chronic stress, the levels of the lipid peroxidation product, malondialdehyde (MDA), the total antioxidant reactivity (TAR), as well as antioxidant enzyme activities glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) were measured in the brain, liver and kidneys tissues after the end of chronic stress. Results: In the stressed animals that receiving of saline, levels of MDA, and the activities of GPx, GR, and SOD were significantly higher (P<0.0001) and the TAR capacity were significantly lower than those of the non-stressed animals (P<0.0001). Both saffron extract and crocin were able to reverse these changes in the stressed animals as compared with the control groups (P<0.05). Conclusion: These observations indicate that saffron and its active constituent crocin can prevent chronic stress–induced oxidative stress damage of the brain, liver and kidneys and suggest that these substances may be useful against oxidative stress. PMID:25671180

  2. Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation.

    PubMed

    Cahova, Monika; Palenickova, Eliska; Dankova, Helena; Sticova, Eva; Burian, Martin; Drahota, Zdenek; Cervinkova, Zuzana; Kucera, Otto; Gladkova, Christina; Stopka, Pavel; Krizova, Jana; Papackova, Zuzana; Oliyarnyk, Olena; Kazdova, Ludmila

    2015-07-15

    Nonalcoholic fatty liver disease is associated with chronic oxidative stress. In our study, we explored the antioxidant effect of antidiabetic metformin on chronic [high-fat diet (HFD)-induced] and acute oxidative stress induced by short-term warm partial ischemia-reperfusion (I/R) or on a combination of both in the liver. Wistar rats were fed a standard diet (SD) or HFD for 10 wk, half of them being administered metformin (150 mg·kg body wt(-1)·day(-1)). Metformin treatment prevented acute stress-induced necroinflammatory reaction, reduced alanine aminotransferase and aspartate aminotransferase serum activity, and diminished lipoperoxidation. The effect was more pronounced in the HFD than in the SD group. The metformin-treated groups exhibited less severe mitochondrial damage (markers: cytochrome c release, citrate synthase activity, mtDNA copy number, mitochondrial respiration) and apoptosis (caspase 9 and caspase 3 activation). Metformin-treated HFD-fed rats subjected to I/R exhibited increased antioxidant enzyme activity as well as attenuated mitochondrial respiratory capacity and ATP resynthesis. The exposure to I/R significantly increased NADH- and succinate-related reactive oxygen species (ROS) mitochondrial production in vitro. The effect of I/R was significantly alleviated by previous metformin treatment. Metformin downregulated the I/R-induced expression of proinflammatory (TNF-α, TLR4, IL-1β, Ccr2) and infiltrating monocyte (Ly6c) and macrophage (CD11b) markers. Our data indicate that metformin reduces mitochondrial performance but concomitantly protects the liver from I/R-induced injury. We propose that the beneficial effect of metformin action is based on a combination of three contributory mechanisms: increased antioxidant enzyme activity, lower mitochondrial ROS production, and reduction of postischemic inflammation. PMID:26045616

  3. Hyaluronic acid prevents immunosuppressive drug-induced ovarian damage via up-regulating PGRMC1 expression

    PubMed Central

    Zhao, Guangfeng; Yan, Guijun; Cheng, Jie; Zhou, Xue; Fang, Ting; Sun, Haixiang; Hou, Yayi; Hu, Yali

    2015-01-01

    Chemotherapy treatment in women can frequently cause damage to the ovaries, which may lead to primary ovarian insufficiency (POI). In this study, we assessed the preventative effects of hyaluronic acid (HA) in immunosuppressive drug-induced POI-like rat models and investigated the possible mechanisms. We found that HA, which was reduced in primary and immunosuppressant-induced POI patients, could protect the immunosuppressant-induced damage to granulosa cells (GCs) in vitro. Then we found that HA blocked the tripterygium glycosides (TG) induced POI-like presentations in rats, including delayed or irregular estrous cycles, reduced 17 beta-estradiol(E2) concentration, decreased number of follicles, destruction of follicle structure, and damage of reproductive ability. Furthermore, we investigated the mechanisms of HA prevention effects on POI, which was associated with promotion of GC proliferation and PGRMC1 expression. In conclusion, HA prevents chemotherapy-induced ovarian damage by promoting PGRMC1 in GCs. This study may provide a new strategy for prevention and treatment of POI. PMID:25558795

  4. Preventing Eye Damage from the Sun's Ultraviolet Light: What Health Educators Should Teach.

    ERIC Educational Resources Information Center

    Memmer, Mary Kelly

    1989-01-01

    Health educators are in an ideal position to teach individuals about dangers from the sun's ultraviolet light and how to prevent damage to eyes. Ultraviolet light is described, eye pathology which can be caused by it is outlined, and protective eyewear is discussed. (IAH)

  5. Astaxanthin as a Potential Protector of Liver Function: A Review

    PubMed Central

    Chen, Jui-Tung; Kotani, Kazuhiko

    2016-01-01

    Protecting against liver damage, such as non-alcoholic fatty liver disease, is currently considered to be important for the prevention of adverse conditions, such as cardiovascular and cancerous diseases. Liver damage often occurs in relation to oxidative stress with metabolic disorders, including cellular lipid accumulation. Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′dione), a xanthophyll carotenoid, is a candidate for liver protection. Here, we briefly review astaxanthin as a potential protector against liver damage. In particular, studies have reported antioxidative effects of astaxanthin in liver tissues. Astaxanthin treatment is also reported to improve hyperlipidemia, which indirectly induces the antioxidative effects of astaxanthin on liver pathologies. Furthermore, astaxanthin may alleviate liver damage independent of its antioxidative effects. Of note, there are still insufficient human data to observe the effect of astaxanthin treatment on liver function in clinical conditions. More studies investigating the relevance of astaxanthin on liver protection are necessary.

  6. Liver biopsy

    MedlinePlus

    Biopsy - liver; Percutaneous biopsy ... the biopsy needle to be inserted into the liver. This is often done by using ultrasound. The ... the chance of damage to the lung or liver. The needle is removed quickly. Pressure will be ...

  7. Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage.

    PubMed

    Alzoubi, Karem H; Khabour, Omar F; Jaber, Aya G; Al-Azzam, Sayer I; Mhaidat, Nizar M; Masadeh, Majed M

    2014-05-01

    Vorinostat is a member of histone deacetylase inhibitors, which represents a new class of anticancer agents for the treatment of solid and hematological malignancies. Studies have shown that these drugs induce DNA damage in blood lymphocytes, which is proposed to be due to the generation of oxidative lesions. The increase in DNA damage is sometimes associated with risk of developing secondary cancer. Thus, finding a treatment that limits DNA damage caused by anticancer drugs would be beneficial. Tempol is a potent antioxidant that was shown to prevent DNA damage induced by radiation. In this study, we aimed to investigate the harmful effects of vorinostat on DNA damage, and the possible protective effects of tempol against this damage. For that, the spontaneous frequency of sister chromatid exchanges (SCEs), chromosomal aberrations (CAs), and 8-hydroxy-2-deoxy guanosine (8-OHdG) levels were measured in cultured human lymphocytes treated with vorinostat and/or tempol. The results showed that vorinostat significantly increases the frequency of SCEs, CAs and 8-OHdG levels in human lymphocytes as compared to control. These increases were normalized by the treatment of cells with tempol. In conclusion, vorinostat is genotoxic to lymphocytes, and this toxicity is reduced by tempol. Such results could set the stage for future studies investigating the possible usefulness of antioxidants co-treatment in preventing the genotoxicity of vorinostat when used as anticancer in human. PMID:23761013

  8. Effects of seaweed-restructured pork diets enriched or not with cholesterol on rat cholesterolaemia and liver damage.

    PubMed

    Schultz Moreira, Adriana R; García-Fernández, Rosa A; Bocanegra, Aranzazu; Méndez, M Teresa; Bastida, Sara; Benedí, Juana; Sánchez-Reus, M Isabel; Sánchez-Muniz, Francisco J

    2013-06-01

    Seaweed enriched-restructured pork (RP) is a potential functional food. However, indications of adverse effects associated with herbal medications, which include among others liver failure, toxic hepatitis, and death have been reported. Cholesterol feeding produces hepatomegalia and fat liver infiltration. The effect of seaweed-RP diet, cholesterol-enriched or not, on plasma cholesterol, liver damage markers, structure, and cytochrome CYP4A-1 were evaluated after 5 wk. Eight rat groups were fed a mix of 85% AIN-93M rodent-diet plus 15% RP. The Cholesterol-control (CC), Cholesterol-Wakame (CW), Cholesterol-Nori (CN) and Cholesterol-Sea Spaghetti (CS) groups respectively consumed similar diets to control (C), Wakame (W), Nori (N), and Sea Spaghetti (S) but as part of hypercholesterolaemic diets. CN and CS significantly blocked the hypercholesterolaemic effect observed in CC group. After 5-wk, N and S diets increased the CYP4A-1 expression. However, seaweed-RPs were unable to reduce the histological liver alterations observed in CC group. Larger and more abundant hepatocellular alterations were found in CS and CN rats suggesting that the hypocholesterolaemic effects of these seaweed-RPs seem to be a two-edged sword as they increased liver damage. Future studies are needed to understand the involved mechanisms. PMID:23462104

  9. Protective Efficacy of Alpha-lipoic Acid against AflatoxinB1-induced Oxidative Damage in the Liver

    PubMed Central

    Li, Y.; Ma, Q. G.; Zhao, L. H.; Guo, Y. Q.; Duan, G. X.; Zhang, J. Y.; Ji, C.

    2014-01-01

    Alpha-lipoic acid (α-LA) is not only involved in energy metabolism, but is also a powerful antioxidant that can protect against hepatic oxidative stress induced by some drugs, toxins, or under various physiological and pathophysiological conditions. Here, we investigated the effect of α-LA against liver oxidative damage in broilers exposed to aflatoxin B1 (AFB1). Birds were randomly divided into four groups and assigned different diets: basal diet, 300 mg/kg α-LA supplementation in basal diet, diet containing 74 μg/kg AFB1, and 300 mg/kg α-LA supplementation in diet containing 74 μg/kg AFB1, for 3 weeks. The results revealed that the addition of 300 mg/kg α-LA protected against the liver function damage of broilers induced by chronic low dose of AFB1 as estimated by a significant (p<0.05) change in levels of plasma total protein, albumin, alkaline phosphatase and the activities of liver glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase. The histopathological analysis also showed that liver tissues were injured in the AFB1 diet, but this effect was alleviated by the addition of 300 mg/kg α-LA. Additionally, AFB1 induced a profound elevation of oxidative stress in birds, as indicated by an increase in malondialdehyde level, a decrease in glutathione peroxidase activity and a depletion of the glutathione content in the liver. All of these negative effects were inhibited by treatment with α-LA. Our results suggest that the inhibition of AFB1-induced excess production of lipid peroxides and the maintenance of intracellular antioxidant status may play important roles in the protective effects of α-LA against AFB1-induced oxidative damage in the liver. PMID:25050030

  10. Role of chemokines and their receptors in viral persistence and liver damage during chronic hepatitis C virus infection.

    PubMed

    Larrubia, Juan R; Benito-Martínez, Selma; Calvino, Miryam; Sanz-de-Villalobos, Eduardo; Parra-Cid, Trinidad

    2008-12-21

    Chemokines produced in the liver during hepatitis C virus (HCV) infection induce migration of activated T cells from the periphery to infected parenchyma. The milieu of chemokines secreted by infected hepatocytes is predominantly associated with the T-helper cell/Tc1 T cell (Th1/Tc1) response. These chemokines consist of CCL3 (macrophage inflammatory protein-1 alpha; MIP-1 alpha), CCL4 (MIP-1 beta), CCL5 (regulated on activation normal T cell expressed and secreted; RANTES), CXCL10 (interferon-gamma-inducible protein-10; IP-10), CXCL11 (interferon-inducible T-cell alpha chemoattractant; I-TAC), and CXCL9 (monokine induced by interferon gamma; Mig) and they recruit T cells expressing either CCR5 or CXCR3 chemokine receptors. Intrahepatic and peripheral blood levels of these chemokines are increased during chronic hepatitis C. The interaction between chemokines and their receptors is essential in recruiting HCV-specific T cells to control the infection. When the adaptive immune response fails in this task, non-specific T cells without the capacity to control the infection are also recruited to the liver, and these are ultimately responsible for the persistent hepatic damage. The modulation of chemokine receptor expression and chemokine secretion could be a viral escape mechanism to avoid specific T cell migration to the liver during the early phase of infection, and to maintain liver viability during the chronic phase, by impairing non-specific T cell migration. Some chemokines and their receptors correlate with liver damage, and CXCL10 (IP-10) and CXCR3 levels have shown a clinical utility as predictors of treatment response outcome. The regulation of chemokines and their receptors could be a future potential therapeutic target to decrease liver inflammation and to increase specific T cell migration to the infected liver. PMID:19084927

  11. Damage to the protein synthesizing apparatus in mouse liver in vivo by magnetocytolysis in the presence of hepatospecific magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Halbreich, Avraham; Groman, Ernest V.; Raison, Danielle; Bouchaud, Claude; Paturance, Sébastien

    2002-07-01

    In the previous work, we incubated THP1 cells and macrophages in vitro with unsubstituted ferrofluid (FF) and placed them in an alternating magnetic field. This resulted in the destruction of the cells (magnetocytolysis). Cell-specific magnetocytolysis in vitro was achieved in MCF7 human breast cancer cells incubated with tamoxifen-bound FF and treated in an alternating magnetic field. In this work, in a search of a model for magnetocytolysis in vivo, we injected mice intravenously with hepatospecific magnetic nanoparticles (HS-USPIO) and subjected the mice to magnetocytolysis in an alternating magnetic field (1 h at 200 A/m). This treatment resulted in a prolongation of blood coagulation time due to depletion of protein coagulation factors that are synthesized exclusively in the liver. The attendant derangement of liver protein synthesis was characterized in cell-free preparations by an inhibition of the endogenously coded protein synthesis coupled with an enhancement of phenylalanine polymerization directed by polyuridylic acid (Poly U). This indication of polyribosome dispersion was confirmed by electron microscopy. Magnetocytolysis did not cause liver necrosis and was neither accompanied by any increase in body or liver temperature, nor damage to any other tissue. The effects of magnetocytolysis were proportional to the amount of injected HS-USPIO, field strength and its application time. Magnetocytolysis did not occur when non-magnetic PolyGalactoseGold particles were substituted for HS-USPIO. PolyGalactoseGold particles were employed to measure asialoglycoprotein receptor (ASGP-R) activity in liver using neutron activation analysis. Injection of PolyGalactoseGold particles to mice, pre-treated by HS-USPIO driven magnetocytolysis, revealed a transient diminution of hepatic ASGP-R. Liver damage from magnetocytolysis was followed by liver regeneration, manifested by the appearance of thymidylate kinase activity, diminution of ASGP-R and return to normal blood

  12. Protective effect of Cichorium glandulosum seeds from ultraviolet B-induced damage in rat liver mitochondria.

    PubMed

    Huang, Bo; Chen, Yuxin; Ma, Bingxin; Zhou, Gao; Tong, Jing; He, Jingsheng; Wang, Youwei

    2014-05-01

    Cichorium glandulosum Boiss. et Huet, a common herb for treating hepatitis, is indigenous to Europe, Western Asia, and the Xinjiang Uygur Autonomous Region of China. This study aims at evaluating the protective activity of different extracts from C. glandulosum seeds against experimental oxidation- and ultraviolet B (UVB)-induced damage in rat liver mitochondria. The antioxidant property of different extracts from C. glandulosum seeds was investigated by employing various established in vitro systems, such as α,α-diphenyl-β-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonic acid), and reducing power assay. The protective effects of different C. glandulosum seed extracts against UVB-induced phototoxicity in a mitochondria model were also evaluated by measuring thiobarbituric acid reactive substances, glutathione, lipid hydroperoxide, conjugated diene, and 4-hydroxynonenal. The main compounds in C. glandulosum seeds were identified by HPLC-PDA-ESI-MS/MS. The results showed that C. glandulosum seed extracts have strong antioxidant activity, in which the ethyl acetate extract (EE) and n-butanol extract (BE) showed better activity than other extracts. In a UVB-induced mitochondria model, both EE and BE have better antioxidant activity and protective effects against phototoxicity than the petroleum ether extract, chloroform extract, and water extract. The differences in antioxidant activity and photoprotective capacity among these five extracts are associated with their phenolic compound content. Therefore, research on this function of C. glandulosum seeds may broaden their applications in the food and medical industry. PMID:24595542

  13. Role of berberine against arsenic induced oxidative damage in isolated rat liver mitochondria.

    PubMed

    Khodayar, Mohammad Javad; Javadipour, Mansoureh; Keshtzar, Elham; Rezaei, Mohsen

    2016-03-01

    The aim of the present study was to assess the protective role of berberine against toxicity induced by arsenic in mitochondria from liver of rat. The level of reactive oxygen species and mitochondrial membrane potential changes were evaluated spectrofluorometrically. 20, 40 and 100 μM arsenic concentration increased ROS level approximately by 13.5, 21.3 and 29 %. However, when pretreated mitochondria with berberine (10, 25, 50 μM) were exposed to arsenic (20, 40 and 100 μM), ROS production diminished. Also, for all arsenic concentration mitochondrial membrane damage was detected to be 2.5, 4.8 and 7.26 % respectively. Pretreatment with berberine even at highest concentration (50μM) was not able to retain membrane potential as compared to control. These results showed that mitochondria were significantly affected when exposed to arsenic, forcedly directed toward excess ROS production and mitochondrial membrane disruption. Pretreatment with berberine, reduced ROS generation but did not restore mitochondrial membrane integrity. PMID:27097449

  14. Pomegranate peel extract prevents liver fibrosis in biliary-obstructed rats.

    PubMed

    Toklu, Hale Z; Dumlu, Melek U; Sehirli, Ozer; Ercan, Feriha; Gedik, Nursal; Gökmen, Vural; Sener, Goksel

    2007-09-01

    Punica granatum L. (pomegranate) is a widely used plant that has high nutritional value. The aim of this study was to assess the effect of chronic administration of pomegranate peel extract (PPE) on liver fibrosis induced by bile duct ligation (BDL) in rats. PPE (50 mg kg(-1)) or saline was administered orally for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver function and tissue damage. Proinflammatory cytokines (tumor necrosis factor-alpha and interleukin 1 beta) in the serum and antioxidant capacity (AOC) were measured in plasma samples. Samples of liver tissue were taken for measurement of hepatic malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content. Production of reactive oxidants was monitored by chemiluminescence assay. Serum AST, ALT, LDH and cytokines were elevated in the BDL group compared with the control group; this increase was significantly decreased by PPE treatment. Plasma AOC and hepatic GSH levels were significantly depressed by BDL but were increased back to control levels in the PPE-treated BDL group. Increases in tissue MDA levels and MPO activity due to BDL were reduced back to control levels by PPE treatment. Similarly, increased hepatic collagen content in the BDL rats was reduced to the level of the control group with PPE treatment. Thus, chronic PPE administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic structure and function. It therefore seems likely that PPE, with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver from fibrosis and oxidative injury due to biliary obstruction. PMID:17939210

  15. Nonalcoholic Fatty Liver: A Possible New Target for Type 2 Diabetes Prevention and Treatment

    PubMed Central

    Fruci, Barbara; Giuliano, Stefania; Mazza, Angela; Malaguarnera, Roberta; Belfiore, Antonino

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. Several lines of evidence have indicated a pathogenic role of insulin resistance, and a strong association with type 2 diabetes (T2MD) and metabolic syndrome. Importantly, NAFLD appears to enhance the risk for T2MD, as well as worsen glycemic control and cardiovascular disease in diabetic patients. In turn, T2MD may promote NAFLD progression. The opportunity to take into account NAFLD in T2MD prevention and care has stimulated several clinical studies in which antidiabetic drugs, such as metformin, thiazolidinediones, GLP-1 analogues and DPP-4 inhibitors have been evaluated in NAFLD patients. In this review, we provide an overview of preclinical and clinical evidences on the possible efficacy of antidiabetic drugs in NAFLD treatment. Overall, available data suggest that metformin has beneficial effects on body weight reduction and metabolic parameters, with uncertain effects on liver histology, while pioglitazone may improve liver histology. Few data, mostly preclinical, are available on DPP4 inhibitors and GLP-1 analogues. The heterogeneity of these studies and the small number of patients do not allow for firm conclusions about treatment guidelines, and further randomized, controlled studies are needed. PMID:24264040

  16. Selective intestinal decontamination for the prevention of early bacterial infections after liver transplantation.

    PubMed

    Resino, Elena; San-Juan, Rafael; Aguado, Jose Maria

    2016-07-14

    Bacterial infection in the first month after liver transplantation is a frequent complication that poses a serious risk for liver transplant recipients as contributes substantially to increased length of hospitalization and hospital costs being a leading cause of death in this period. Most of these infections are caused by gram-negative bacilli, although gram-positive infections, especially Enterococcus sp. constitute an emerging infectious problem. This high rate of early postoperative infections after liver transplant has generated interest in exploring various prophylactic approaches to surmount this problem. One of these approaches is selective intestinal decontamination (SID). SID is a prophylactic strategy that consists of the administration of antimicrobials with limited anaerobicidal activity in order to reduce the burden of aerobic gram-negative bacteria and/or yeast in the intestinal tract and so prevent infections caused by these organisms. The majority of studies carried out to date have found SID to be effective in the reduction of gram-negative infection, but the effect on overall infection is limited due to a higher number of infection episodes by pathogenic enterococci and coagulase-negative staphylococci. However, difficulties in general extrapolation of the favorable results obtained in specific studies together with the potential risk of selection of multirresistant microorganisms has conditioned controversy about the routinely application of these strategies in liver transplant recipients. PMID:27468189

  17. Selective intestinal decontamination for the prevention of early bacterial infections after liver transplantation

    PubMed Central

    Resino, Elena; San-Juan, Rafael; Aguado, Jose Maria

    2016-01-01

    Bacterial infection in the first month after liver transplantation is a frequent complication that poses a serious risk for liver transplant recipients as contributes substantially to increased length of hospitalization and hospital costs being a leading cause of death in this period. Most of these infections are caused by gram-negative bacilli, although gram-positive infections, especially Enterococcus sp. constitute an emerging infectious problem. This high rate of early postoperative infections after liver transplant has generated interest in exploring various prophylactic approaches to surmount this problem. One of these approaches is selective intestinal decontamination (SID). SID is a prophylactic strategy that consists of the administration of antimicrobials with limited anaerobicidal activity in order to reduce the burden of aerobic gram-negative bacteria and/or yeast in the intestinal tract and so prevent infections caused by these organisms. The majority of studies carried out to date have found SID to be effective in the reduction of gram-negative infection, but the effect on overall infection is limited due to a higher number of infection episodes by pathogenic enterococci and coagulase-negative staphylococci. However, difficulties in general extrapolation of the favorable results obtained in specific studies together with the potential risk of selection of multirresistant microorganisms has conditioned controversy about the routinely application of these strategies in liver transplant recipients. PMID:27468189

  18. Spirulina maxima prevents fatty liver formation in CD-1 male and female mice with experimental diabetes.

    PubMed

    Rodríguez-Hernández, A; Blé-Castillo, J L; Juárez-Oropeza, M A; Díaz-Zagoya, J C

    2001-07-20

    The dietary administration of 5% Spirulina maxima (SM) during four weeks to diabetic mice, starting one week after a single dose of alloxan, 250 mg/Kg body weight, prevented fatty liver production in male and female animals. The main action of SM was on triacylglycerol levels in serum and liver. There was also a moderate hypoglycemia in male mice. The thiobarbituric acid reactive substances also decreased in serum and liver after SM administration. There was also a decrease in the percentage of HDL in diabetic mice that was reverted by the SM administration. The sum of LDL + VLDL percentages was also partially normalized in diabetic animals by the SM administration. An additional observation was the lower incidence of adherences between the liver and the intestine loops in the diabetic mice treated with SM compared with diabetic mice without SM. Male and female mice showed differences to diabetes susceptibility and response to SM, the female being more resistant to diabetes induction by alloxan and more responsive to the beneficial effects of SM. It is worth future work of SM on humans looking for better quality of life and longer survival of diabetic patients. PMID:11508645

  19. Preventing cerebral oedema in acute liver failure: the case for quadruple-H therapy.

    PubMed

    Warrillow, S J; Bellomo, R

    2014-01-01

    Severe cerebral oedema is a life-threatening complication of acute liver failure. Hyperammonaemia and cerebral hyperaemia are major contributing factors. A multimodal approach, which incorporates hyperventilation, haemodiafiltration, hypernatraemia and hypothermia (quadruple-H therapy), may prevent or attenuate severe cerebral oedema. This approach is readily administered by critical care clinicians and is likely to be more effective than the use of single therapies. Targeting of PaCO2 in the mild hyperventilation range, as seen in acute liver failure patients before intubation, aims to minimise hyperaemic cerebral oedema. Haemodiafiltration aims to achieve the rapid control of elevated blood ammonia concentrations by its removal and to reduce production via the lowering of core temperature. The administration of concentrated saline increases serum tonicity and further reduces cerebral swelling. In addition, the pathologically increased cerebral blood-flow is further attenuated by therapeutic hypothermia. The combination of all four treatments in a multimodal approach may be a safe and effective means of attenuating or treating the cerebral oedema of acute liver failure and preventing death from neurological complications. PMID:24471667

  20. AAV-mediated Liver-specific MPV17 Expression Restores mtDNA Levels and Prevents Diet-induced Liver Failure

    PubMed Central

    Bottani, Emanuela; Giordano, Carla; Civiletto, Gabriele; Di Meo, Ivano; Auricchio, Alberto; Ciusani, Emilio; Marchet, Silvia; Lamperti, Costanza; d'Amati, Giulia; Viscomi, Carlo; Zeviani, Massimo

    2014-01-01

    Mutations in human MPV17 cause a hepatocerebral form of mitochondrial DNA depletion syndrome (MDS) hallmarked by early-onset liver failure, leading to premature death. Liver transplantation and frequent feeding using slow-release carbohydrates are the only available therapies, although surviving patients eventually develop slowly progressive peripheral and central neuropathy. The physiological role of Mpv17, including its functional link to mitochondrial DNA (mtDNA) maintenance, is still unclear. We show here that Mpv17 is part of a high molecular weight complex of unknown composition, which is essential for mtDNA maintenance in critical tissues, i.e. liver, of a Mpv17 knockout mouse model. On a standard diet, Mpv17−/− mouse shows hardly any symptom of liver dysfunction, but a ketogenic diet (KD) leads these animals to liver cirrhosis and failure. However, when expression of human MPV17 is carried out by adeno-associated virus (AAV)-mediated gene replacement, the Mpv17 knockout mice are able to reconstitute the Mpv17-containing supramolecular complex, restore liver mtDNA copy number and oxidative phosphorylation (OXPHOS) proficiency, and prevent liver failure induced by the KD. These results open new therapeutic perspectives for the treatment of MPV17-related liver-specific MDS. PMID:24247928

  1. FXR and liver carcinogenesis

    PubMed Central

    Huang, Xiong-fei; Zhao, Wei-yu; Huang, Wen-dong

    2015-01-01

    Farnesoid X receptor (FXR) is a member of the nuclear receptor family and a ligand-modulated transcription factor. In the liver, FXR has been considered a multi-functional cell protector and a tumor suppressor. FXR can suppress liver carcinogenesis via different mechanisms: 1) FXR maintains the normal liver metabolism of bile acids, glucose and lipids; 2) FXR promotes liver regeneration and repair after injury; 3) FXR protects liver cells from death and enhances cell survival; 4) FXR suppresses hepatic inflammation, thereby preventing inflammatory damage; and 5) FXR can directly increase the expression of some tumor-suppressor genes and repress the transcription of several oncogenes. However, inflammation and epigenetic silencing are known to decrease FXR expression during tumorigenesis. The reactivation of FXR function in the liver may be a potential therapeutic approach for patients with liver cancer. PMID:25500874

  2. AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins.

    PubMed

    de la Asunción, J G; del Olmo, M L; Sastre, J; Millán, A; Pellín, A; Pallardó, F V; Viña, J

    1998-07-01

    AIDS patients who receive zidovudine (AZT) frequently suffer from myopathy. This has been attributed to mitochondrial (mt) damage, and specifically to the loss of mtDNA. This study examines whether AZT causes oxidative damage to DNA in patients and to skeletal muscle mitochondria in mice, and whether this damage may be prevented by supranutritional doses of antioxidant vitamins. Asymptomatic HIV-infected patients treated with AZT have a higher urinary excretion (355+/-100 pmol/kg/d) of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxo-dG) (a marker of oxidative damage to DNA) than untreated controls (asymptomatic HIV-infected patients) (182+/-29 pmol/kg/d). This was prevented (110+/-79 pmol/kg/d) by simultaneous oral treatment with AZT plus antioxidant vitamins (C and E). Mice treated with AZT also had a significantly higher urinary excretion of 8-oxo-dG than controls. Skeletal muscle mtDNA of mice treated with AZT had more 8-oxo-dG than controls. mt lipoperoxidation was also increased and skeletal muscle glutathione was oxidized. These effects may be due to an increased peroxide production by muscle mitochondria of AZT-treated animals. Dietary supplements with vitamins C and E at supranutritional doses protect against oxidative damage to skeletal muscle mitochondria caused by AZT. PMID:9649550

  3. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control.

    PubMed

    Fenech, Michael F

    2014-01-01

    DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer. PMID:24114494

  4. Comparative Effects of Phosphoenolpyruvate, a Glycolytic Intermediate, as an Organ Preservation Agent with Glucose and N-Acetylcysteine against Organ Damage during Cold Storage of Mouse Liver and Kidney

    PubMed Central

    Ishitsuka, Yoichi; Fukumoto, Yusuke; Kondo, Yuki; Irikura, Mitsuru; Kadowaki, Daisuke; Narita, Yuki; Hirata, Sumio; Moriuchi, Hiroshi; Maruyama, Toru; Hamasaki, Naotaka; Irie, Tetsumi

    2013-01-01

    We evaluated the usefulness of phosphoenolpyruvate (PEP), a glycolytic intermediate with antioxidative and energy supplementation potentials, as an organ preservation agent. Using ex vivo mouse liver and kidney of a static cold storage model, we compared the effects of PEP against organ damage and oxidative stress during cold preservation with those of glucose or N-acetylcysteine (NAC). Lactate dehydrogenase (LDH) leakage, histological changes, and oxidative stress parameters (measured as thiobarbituric acid reactive substance and glutathione content) were determined. PEP (100 mM) significantly prevented an increase in LDH leakage, histological changes, such as tubulonecrosis and vacuolization, and changes in oxidative stress parameters during 72 h of cold preservation in mouse liver. Although glucose (100 mM) partly prevented LDH leakage and histological changes, no effects against oxidative stress were observed. By contrast, NAC inhibited oxidative stress in the liver and did not prevent LDH leakage or histological changes. PEP also significantly prevented kidney damage during cold preservation in a dose-dependent manner, and the protective effects were superior to those of glucose and NAC. We suggest that PEP, a functional carbohydrate with organ protective and antioxidative activities, may be useful as an organ preservation agent in clinical transplantation. PMID:24490082

  5. Loss of c-Met signaling sensitizes hepatocytes to lipotoxicity and induces cholestatic liver damage by aggravating oxidative stress.

    PubMed

    Gomez-Quiroz, Luis E; Seo, Daekwan; Lee, Yun-Han; Kitade, Mitsuteru; Gaiser, Timo; Gillen, Matthew; Lee, Seung-Bum; Gutierrez-Ruiz, Ma Concepcion; Conner, Elizabeth A; Factor, Valentina M; Thorgeirsson, Snorri S; Marquardt, Jens U

    2016-06-15

    Recent studies confirmed a critical importance of c-Met signaling for liver regeneration by modulating redox balance. Here we used liver-specific conditional knockout mice (MetKO) and a nutritional model of hepatic steatosis to address the role of c-Met in cholesterol-mediated liver toxicity. Liver injury was assessed by histopathology and plasma enzymes levels. Global transcriptomic changes were examined by gene expression microarray, and key molecules involved in liver damage and lipid homeostasis were evaluated by Western blotting. Loss of c-Met signaling amplified the extent of liver injury in MetKO mice fed with high-cholesterol diet for 30days as evidenced by upregulation of liver enzymes and increased synthesis of total bile acids, aggravated inflammatory response and enhanced intrahepatic lipid deposition. Global transcriptomic changes confirmed the enrichment of networks involved in steatosis and cholestasis. In addition, signaling pathways related to glutathione and lipid metabolism, oxidative stress and mitochondria dysfunction were significantly affected by the loss of c-Met function. Mechanistically, exacerbation of oxidative stress in MetKO livers was corroborated by increased lipid and protein oxidation. Western blot analysis further revealed suppression of Erk, NF-kB and Nrf2 survival pathways and downstream target genes (e.g. cyclin D1, SOD1, gamma-GCS), as well as up-regulation of proapoptotic signaling (e.g. p53, caspase 3). Consistent with the observed steatotic and cholestatic phenotype, nuclear receptors RAR, RXR showed increased activation while expression levels of CAR, FXR and PPAR-alpha were decreased in MetKO. Collectively, our data provide evidence for the critical involvement of c-Met signaling in cholesterol and bile acids toxicity. PMID:27394961

  6. The role of reactive oxygen species in the herbicide acetochlor-induced DNA damage on Bufo raddei tadpole liver.

    PubMed

    Liu, Yang; Zhang, Yingmei; Liu, Jianghai; Huang, Dejun

    2006-06-10

    After exposure of Bufo raddei tadpoles to acetochlor (ACETO) for 14 days, malondialdehyde (MDA) and DNA-single strand break (DNA-SSB) in livers were analyzed. An enhanced accumulation of MDA suggests that ACETO causes oxidative stress, and the significant increase in the level of DNA-SSB indicates that ACETO induces DNA damage in a dose-dependent manner as well. On the basis of the fact that oxidative stress is caused by excessive production of reactive oxygen species (ROS), and the present results, we speculate that ACETO-induced DNA damage may be a consequence of the generation of ROS. To evaluate this hypothesis, tadpoles were treated with ROS scavenger, N-acetyl-L-cysteine (NAC) or melatonin (MEL), prior to ACETO exposure. The decrease of DNA-SSB level and the increase of total antioxidant capability (TAC) show that ACETO-caused DNA damage can be attenuated by NAC and MEL. In addition, a negative correlation was observed between the extent of DNA damage and the level of TAC in tadpole liver. In conclusion, the results suggest that ACETO-induced DNA damage is mediated by ROS. PMID:16513190

  7. l-Theanine prevents alcoholic liver injury through enhancing the antioxidant capability of hepatocytes.

    PubMed

    Li, Guilan; Ye, Yin; Kang, Jingjing; Yao, Xiangyang; Zhang, Yizhou; Jiang, Wei; Gao, Min; Dai, Yudong; Xin, Yinqiang; Wang, Qi; Yin, Zhimin; Luo, Lan

    2012-02-01

    l-Theanine is a unique amino acid in green tea. We here evaluated the protective effects of l-theanine on ethanol-induced liver injury in vitro and in vivo. Our results revealed that l-theanine significantly protected hepatocytes against ethanol-induced cell cytotoxicity which displayed by decrease of viability and increase of LDH and AST. Furthermore, the experiments of DAPI staining, pro-caspase3 level and PARP cleavage determination indicated that l-theanine inhibited ethanol-induced L02 cell apoptosis. Mechanically, l-theanine inhibited loss of mitochondrial membrane potential and prevented cytochrome c release from mitochondria in ethanol-treated L02 cells. l-Theanine also prevented ethanol-triggered ROS and MDA generation in L02 cells. l-Theanine restored the antioxidant capability of hepatocytes including GSH content and SOD activity which were reduced by ethanol. In vivo experiments showed that l-theanine significantly inhibited ethanol-stimulated the increase of ALT, AST, TG and MDA in mice. Histopathological examination demonstrated that l-theanine pretreated to mice apparently diminished ethanol-induced fat droplets. In accordance with the in vitro study, l-theanine significantly inhibited ethanol-induced reduction of mouse antioxidant capability which included the activities of SOD, CAT and GR, and level of GSH. These results indicated that l-theanine prevented ethanol-induced liver injury through enhancing hepatocyte antioxidant abilities. PMID:22019691

  8. Hyaluronic acid uptake in the assessment of sinusoidal endothelial cell damage after cold storage and normothermic reperfusion of rat livers.

    PubMed

    Reinders, M E; van Wagensveld, B A; van Gulik, T M; Frederiks, W M; Chamuleau, R A; Endert, E; Klopper, P J

    1996-01-01

    The uptake of hyaluronic acid (HA) was used to assess preservation damage to sinusoidal endothelial cells (SEC) during cold storage and subsequent normothermic reperfusion of rat livers. After 8, 16, 24, and 48 h storage in University of Wisconsin (UW) solution, livers were gravity-flushed via the portal vein with a standard volume of cold UW solution containing 50 micrograms/l HA. The effluent was collected for analysis of HA, aspartate aminotransferase (AST), and lactate dehydrogenase (LDH). The mean uptake of HA at 0 h was 59.1% +/- 4.6% (mean +/- SEM). After 8 h of storage, HA uptake was similar (55.5% +/- 7.3%), whereas after 16 h of storage it was reduced to 34.7% +/- 5.8%. At 24 and 48 h of storage, no uptake of HA was found. In a second series of experiments, livers were stored in UW solution and subsequently reperfused for 90 min with a Krebs-Henseleit solution (37 degrees C) in a recirculating system containing 150 micrograms/l HA. Following 8 h of storage, 34.6% +/- 8.0% of the initial HA concentration was taken up from the perfusate. After 16 and 24 h of storage, no uptake of HA was found. The results of this study indicate that damage to SEC occurs progressively during storage, leading to zero uptake of HA by the rat livers at 24 h of cold ischemia time. Additional reperfusion injury to the SEC was demonstrated by the reduced ability of the SEC to take up HA following normothermic reperfusion. The uptake of exogenous HA in preserved livers, used as a tool to assess SEC injury, enables the detection of early preservation damage. PMID:8875786

  9. Evaluation of the Protective Effect of Silibinin Against Diazinon Induced Hepatotoxicity and Free-Radical Damage in Rat Liver

    PubMed Central

    Beydilli, Halil; Yilmaz, Nigar; Cetin, Esin Sakalli; Topal, Yasar; Celik, Ozgur Ilhan; Sahin, Cem; Topal, Hatice; Cigerci, Ibrahim Hakki; Sozen, Hamdi

    2015-01-01

    Background: Diazinon (0,0-Diethyl 0-(1-6-methyl-2-isoprophyl 4 pyrimidinyl) phosphorothioate) (DI) is a very effective organophosphate pesticide, used widely in agriculture. Consequently, data on poisoning cases secondary to DI exposure are important. The DI may affect a variety of tissues, including liver. Silibinin is a pharmacologically active constitute of Silybum marianum, with documented antioxidant activity. Objectives: The aim of our study was to evaluate both histopathologically and biochemically whether silibinin is protective in DI induced liver damage. Materials and Methods: Thirty two Wistar albino rats were divided into four groups, as follows: 1) control group - oral corn oil was given; 2) DI group - rats were administered orally 335 mg/kg in the corn oil solution; 3) Silibinin group - 100 mg/kg/day silibinin was given alone orally, every 24 hours for 7 days; 4) Silibinin + DI group - DI plus silibinin was given. All rats were sacrificed at the end of experiment. Superoxide dismutases (SOD), glutathione peroxidase (GPX), nitric oxide (NO) and myeloperoxidase (MPO) were investigated in serum and liver tissue. In addition, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzyme activities were evaluated. The liver tissue was evaluated histopathologically with Hematoxilin & Eosin dye. Results: Biochemically, ALT, AST, NO, MPO in serum and NO, MPO in liver tissue were found to be significantly higher in DI group, compared to control group (P < 0.001). In Group Silibinin + DI, serum AST, ALT, NO, MPO levels were significantly lower (P < 0.01), and both serum and tissue SOD activities were significantly higher, compared to DI group (P < 0.001). Diazinon induced histopathological changes in liver tissue were: severe sinusoidal dilatation, moderate disruption of the radial alignment of hepatocytes around the central vein, severe vacuolization in the hepatocyte cytoplasm, inflammation around central vein and portal region. In rats

  10. Effect of Hibiscus sabdariffa extract on high fat diet–induced obesity and liver damage in hamsters

    PubMed Central

    Huang, To-Wei; Chang, Chia-Ling; Kao, Erl-Shyh; Lin, Jenq-Horng

    2015-01-01

    Background Obesity is a chronic metabolic disorder associated with an increase in adipogenesis and often accompanied with fatty liver disease. Objective In this study, we investigated the anti-obesity effects of Hibiscus sabdariffa water extract (HSE) in vivo. Method Eight-weeks-old male mice were divided into six groups (n=8 per group) and were fed either normal feed, a high fat diet (HFD), HFD supplemented with different concentrations of HSE, or HFD supplemented with anthocyanin. After 10 weeks of feeding, all the blood and livers were collected for further analysis. Results Mesocricetus auratus hamster fed with a high-fat diet developed symptoms of obesity, as determined from their body weight change and from their plasma lipid levels. Meanwhile, HSE treatment reduced fat accumulation in the livers of hamsters fed with HFD in a concentration-dependent manner. Administration of HSE reduced the levels of liver cholesterol and triglycerides, which were elevated by HFD. Analysis of the effect of HSE on paraoxonase 1, an antioxidant liver enzyme, revealed that HSE potentially regulates lipid peroxides and protects organs from oxidation-associated damage. The markers of liver damage such as serum alanine aminotransferase and aspartate aminotransferase levels that were elevated by HFD were also reduced on HSE treatment. The effects of HSE were as effective as treatment with anthocyanin; therefore the anthocyanins present in the HSE may play a crucial role in the protection established against HFD-induced obesity. Conclusions In conclusion HSE administration constitutes an effective and viable treatment strategy against the development and consequences of obesity. PMID:26475512