Science.gov

Sample records for primary blast type

  1. Management of primary blast injury.

    PubMed

    Argyros, G J

    1997-07-25

    Blast waves are produced following the detonation of munitions, the firing of large caliber guns, or from any type of explosion. These blast waves can be powerful enough to injure the individuals exposed to them. This type of injury is called primary blast injury (PBI) and the organs most vulnerable to PBI are the gas-filled organs, namely the ear, the lungs and the gastrointestinal tract. The approach to the casualty with PBI is the same as it would be for any trauma victim, i.e. the initiation of life support measures. Attention should be directed to the common life-threatening manifestation of thoracic and abdominal PBI. Pulmonary manifestations would include hemorrhage, barotrauma and arterial air embolism, while abdominal manifestations would include hemorrhage and hollow organ rupture. Therapy is directed at the specific manifestations as well as avoiding additional iatrogenic injury. PMID:9217319

  2. Primary and secondary skeletal blast trauma.

    PubMed

    Christensen, Angi M; Smith, Victoria A; Ramos, Vanessa; Shegogue, Candie; Whitworth, Mark

    2012-01-01

    This study examines primary (resulting from blast wave) and secondary (resulting from disintegrated, penetrating fragments) blast trauma to the skeleton. Eleven pigs were exposed to semi-controlled blast events of varying explosive type, charge size, and distance, including some cases with shrapnel. Skeletal trauma was found to be extensive, presenting as complex, comminuted fractures with numerous small, displaced bone splinters and fragments. Traumatic amputation of the limbs and cranium was also observed. Fractures were concentrated in areas nearer the blast, but there was generally no identifiable point of impact. Fractures were more random in appearance and widespread than those typically associated with gunshot or blunt force injury events. These patterns appear to be uniquely associated with blast trauma and may therefore assist forensic anthropologists and other forensic examiners in the interpretation of skeletal trauma by enabling them to differentiate between blast trauma and trauma resulting from some other cause. PMID:21981586

  3. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to "composite" blast.

    PubMed

    Svetlov, Stanislav I; Prima, Victor; Glushakova, Olena; Svetlov, Artem; Kirk, Daniel R; Gutierrez, Hector; Serebruany, Victor L; Curley, Kenneth C; Wang, Kevin K W; Hayes, Ronald L

    2012-01-01

    A number of experimental models of blast brain injury have been implemented in rodents and larger animals. However, the variety of blast sources and the complexity of blast wave biophysics have made data on injury mechanisms and biomarkers difficult to analyze and compare. Recently, we showed the importance of rat position toward blast generated by an external shock tube. In this study, we further characterized blast producing moderate traumatic brain injury and defined "composite" blast and primary blast exposure set-ups. Schlieren optics visualized interaction between the head and a shock wave generated by external shock tube, revealing strong head acceleration upon positioning the rat on-axis with the shock tube (composite blast), but negligible skull movement upon peak overpressure exposure off-axis (primary blast). Brain injury signatures of a primary blast hitting the frontal head were assessed and compared to damage produced by composite blast. Low to negligible levels of neurodegeneration were found following primary blast compared to composite blast by silver staining. However, persistent gliosis in hippocampus and accumulation of GFAP/CNPase in circulation was detected after both primary and composite blast. Also, markers of vascular/endothelial inflammation integrin alpha/beta, soluble intercellular adhesion molecule-1, and L-selectin along with neurotrophic factor nerve growth factor-beta were increased in serum within 6 h post-blasts and persisted for 7 days thereafter. In contrast, systemic IL-1, IL-10, fractalkine, neuroendocrine peptide Orexin A, and VEGF receptor Neuropilin-2 (NRP-2) were raised predominantly after primary blast exposure. In conclusion, biomarkers of major pathological pathways were elevated at all blast set-ups. The most significant and persistent changes in neuro-glial markers were found after composite blast, while primary blast instigated prominent systemic cytokine/chemokine, Orexin A, and Neuropilin-2 release

  4. White Matter Compromise in Veterans Exposed to Primary Blast Forces

    PubMed Central

    Taber, Katherine H.; Hurley, Robin A.; Haswell, Courtney C.; Rowland, Jared A.; Hurt, Susan D.; Lamar, Cory D.; Morey, Rajendra A.

    2015-01-01

    Objective Use Diffusion Tensor Imaging (DTI) to investigate white matter alterations associated with blast exposure with or without acute symptoms of traumatic brain injury (TBI). Participants Forty-five veterans of the recent military conflicts included twenty-three exposed to primary blast without TBI symptoms, six having primary blast mild TBI, and sixteen unexposed to blast. Design Cross-sectional case control study. Main Measures Neuropsychological testing and DTI metrics that quantified the number of voxel clusters with altered fractional anisotropy (FA) radial diffusivity (RD), and axial diffusivity (AD), regardless of their spatial location. Results Significantly lower FA and higher RD was observed in veterans exposed to primary blast with and without mild TBI relative to blast unexposed veterans. Voxel clusters of lower FA were spatially dispersed and heterogeneous across affected individuals. Conclusion These results suggest that lack of clear TBI symptoms following primary blast exposure may not accurately reflect the extent of brain injury. If confirmed, our findings would argue for supplementing the established approach of making diagnoses based purely on clinical history and observable acute symptoms with novel neuroimaging-based diagnostic criteria that “look below the surface” for pathology. PMID:24590156

  5. Simulations of Porcine Eye Exposure to Primary Blast Insult

    PubMed Central

    Watson, Richard; Gray, Walt; Sponsel, William E.; Lund, Brian J.; Glickman, Randolph D.; Groth, Sylvia L.; Reilly, Matthew A.

    2015-01-01

    Purpose A computational model of the porcine eye was developed to simulate primary blast exposure. This model facilitates understanding of blast-induced injury mechanisms. Methods A computational model of the porcine eye was used to simulate the effects of primary blast loading for comparison with experimental findings from shock tube experiments. The eye model was exposed to overpressure-time histories measured during physical experiments. Deformations and mechanical stresses within various ocular tissues were then examined for correlation with pathological findings in the experiments. Results Stresses and strains experienced in the eye during a primary blast event increase as the severity of the blast exposure increases. Peak stresses in the model occurred in locations in which damage was most often observed in the physical experiments. Conclusions Blast injuries to the anterior chamber may be due to inertial displacement of the lens and ciliary body while posterior damage may arise due to contrecoup interactions of the vitreous and retina. Correlation of modeling predictions with physical experiments lends confidence that the model accurately represents the conditions found in the physical experiments. Translational Relevance This computational model offers insights into the mechanisms of ocular injuries arising due to primary blast and may be used to simulate the effects of new protective eyewear designs. PMID:26336633

  6. Computational modeling of human head under blast in confined and open spaces: primary blast injury.

    PubMed

    Rezaei, A; Salimi Jazi, M; Karami, G

    2014-01-01

    In this paper, a computational modeling for biomechanical analysis of primary blast injuries is presented. The responses of the brain in terms of mechanical parameters under different blast spaces including open, semi-confined, and confined environments are studied. In the study, the effect of direct and indirect blast waves from the neighboring walls in the confined environments will be taken into consideration. A 50th percentile finite element head model is exposed to blast waves of different intensities. In the open space, the head experiences a sudden intracranial pressure (ICP) change, which vanishes in a matter of a few milliseconds. The situation is similar in semi-confined space, but in the confined space, the reflections from the walls will create a number of subsequent peaks in ICP with a longer duration. The analysis procedure is based on a simultaneous interaction simulation of the deformable head and its components with the blast wave propagations. It is concluded that compared with the open and semi-confined space settings, the walls in the confined space scenario enhance the risk of primary blast injuries considerably because of indirect blast waves transferring a larger amount of damaging energy to the head. PMID:23996897

  7. Effects of Primary Blast Overpressure on Retina and Optic Tract in Rats

    PubMed Central

    DeMar, James; Sharrow, Keith; Hill, Miya; Berman, Jonathan; Oliver, Thomas; Long, Joseph

    2016-01-01

    Blast has been the leading cause of injury, particularly traumatic brain injury and visual system injury, in combat operations in Iraq and Afghanistan. We determined the effect of shock tube-generated primary blast on retinal electrophysiology and on retinal and brain optic tract histopathology in a rat model. The amplitude of a- and b-waves on the electroretinogram (ERG) for both right and left eyes were measured prior to a battlefield simulation Friedlander-type blast wave and on 1, 7, and 14 days thereafter. Histopathologic findings of the right and left retina and the right and left optic tracts (2.8 mm postoptic chiasm) were evaluated 14 days after the blast. For two experiments in which the right eye was oriented to the blast, the amplitude of ERG a- and b-waves at 7 days post blast on the right side but not on the left side was diminished compared to that of sham animals (P = 0.005–0.01) Histopathologic injury scores at 14 days post blast for the right retina but not the left retina were higher than for sham animals (P = 0.01), and histopathologic injury scores at 14 days for both optic tracts were markedly higher than for shams (P < 0.0001). Exposure of one eye to a blast wave, comparable to that causing human injury, produced injury to the retina as determined by ERG and histopathology, and to both postchiasmatic optic tracts as determined by histopathology. This model may be useful for analyzing the effect of therapeutic interventions on retinal damage due to primary blast waves. PMID:27199884

  8. Effects of Primary Blast Overpressure on Retina and Optic Tract in Rats.

    PubMed

    DeMar, James; Sharrow, Keith; Hill, Miya; Berman, Jonathan; Oliver, Thomas; Long, Joseph

    2016-01-01

    Blast has been the leading cause of injury, particularly traumatic brain injury and visual system injury, in combat operations in Iraq and Afghanistan. We determined the effect of shock tube-generated primary blast on retinal electrophysiology and on retinal and brain optic tract histopathology in a rat model. The amplitude of a- and b-waves on the electroretinogram (ERG) for both right and left eyes were measured prior to a battlefield simulation Friedlander-type blast wave and on 1, 7, and 14 days thereafter. Histopathologic findings of the right and left retina and the right and left optic tracts (2.8 mm postoptic chiasm) were evaluated 14 days after the blast. For two experiments in which the right eye was oriented to the blast, the amplitude of ERG a- and b-waves at 7 days post blast on the right side but not on the left side was diminished compared to that of sham animals (P = 0.005-0.01) Histopathologic injury scores at 14 days post blast for the right retina but not the left retina were higher than for sham animals (P = 0.01), and histopathologic injury scores at 14 days for both optic tracts were markedly higher than for shams (P < 0.0001). Exposure of one eye to a blast wave, comparable to that causing human injury, produced injury to the retina as determined by ERG and histopathology, and to both postchiasmatic optic tracts as determined by histopathology. This model may be useful for analyzing the effect of therapeutic interventions on retinal damage due to primary blast waves. PMID:27199884

  9. In vitro studies of primary explosive blast loading on neurons.

    PubMed

    Zander, Nicole E; Piehler, Thuvan; Boggs, Mary E; Banton, Rohan; Benjamin, Richard

    2015-09-01

    In a military setting, traumatic brain injury (TBI) is frequently caused by blast waves that can trigger a series of neuronal biochemical changes. Although many animal models have been used to study the effects of primary blast waves, elucidating the mechanisms of damage in a whole-animal model is extremely complex. In vitro models of primary blast, which allow for the deconvolution of mechanisms, are relatively scarce. It is largely unknown how structural damage at the cellular level impacts the functional activity at variable time scales after the TBI event. A novel in vitro system was developed to probe the effects of explosive blast (ranging from ∼25 to 40 psi) on dissociated neurons. PC12 neurons were cultured on laminin-coated substrates, submerged underwater, and subjected to single and multiple blasts in a controlled environment. Changes in cell membrane permeability, viability, and cell morphology were evaluated. Significant increases in axonal beading were observed in the injured cells. In addition, although cell death was minimal after a single insult, cell viability decreased significantly following repeated blast exposure. PMID:25914380

  10. Low Level Primary Blast Injury in Rodent Brain

    PubMed Central

    Pun, Pamela B. L.; Kan, Enci Mary; Salim, Agus; Li, Zhaohui; Ng, Kian Chye; Moochhala, Shabbir M.; Ling, Eng-Ang; Tan, Mui Hong; Lu, Jia

    2011-01-01

    The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histopathology of the brains showed that cortical neurons were “darkened” and shrunken with narrowed vasculature in the cerebral cortex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive cells were predominant in the white matter of the brain at day 1 after blast and double-labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity. There was also an increase in amyloid precursor protein immunoreactive cells in the white matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages or microglia was not different from control post-blast. Blast exposure altered the expression of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast. These genes were narrowed down to 10 overlapping genes after time-course evaluation and functional analyses. These genes pointed toward signs of repair at day 4 and day 7 post-blast. Our findings suggest that the BOP levels in the study resulted in mild cellular injury to the brain as evidenced by acute neuronal, cerebrovascular, and white matter perturbations that showed signs of resolution. It is unclear whether these perturbations exist at a milder level or normalize completely and will need more investigation. Specific changes in gene expression may be further evaluated to understand the mechanism of blast-induced neurotrauma. PMID

  11. Characterization of the response to primary blast injury

    PubMed Central

    Kirkman, E.; Watts, S.

    2011-01-01

    Lung injuries, predominantly arising from blast exposure, are a clinical problem in a significant minority of current military casualties. This special feature consists of a series of articles on lung injury. This first article examines the mechanism of the response to blast lung (primary blast injury to the lung). Subsequent articles examine the incidence of blast lung, clinical consequences and current concepts of treatment, computer (in silico) modelling of lung injury and finally chemical injuries to the lungs. Blast lung is caused by a shock wave generated by an explosion causing widespread damage in the lungs, leading to intrapulmonary haemorrhage. This, and the ensuing inflammatory response in the lung, leads to a compromise in pulmonary gas exchange and hypoxia that can worsen over several hours. There is also a characteristic cardio-respiratory effect mediated via an autonomic reflex causing apnoea (or rapid shallow breathing), bradycardia and hypotension (the latter possibly also due to the release of nitric oxide). An understanding of this response, and the way it modifies other reflexes, can help the development of new treatment strategies for this condition and for the way it influences the patient's response to concomitant injuries. PMID:21149364

  12. A computational study on brain tissue under blast: primary and tertiary blast injuries.

    PubMed

    Rezaei, A; Salimi Jazi, M; Karami, G; Ziejewski, M

    2014-08-01

    In this paper, a biomechanical study of a human head model exposed to blast shock waves followed by a blunt impact with the surface of the enclosing walls of a confined space is carried out. Under blast, the head may experience primary blast injury (PBI) due to exposure to the shockwaves and tertiary blast injury (TeBI) due to a possible blunt impact. We examine the brain response data in a deformable finite element head model in terms of the inflicted stress/pressure, velocity, and acceleration on the brain for several blast scenarios with different intensities. The data will be compared for open space and confined spaces. Following the initial impact of the shock front in the confined space, one can see the fluctuations in biomechanical data due to wave reflections. Although the severity of the PBI and TeBI is dependent on the situation, for the cases studied here, PBI is considerably more pronounced than TeBI in confined spaces. PMID:24515869

  13. Low-Level Primary Blast Causes Acute Ocular Trauma in Rabbits.

    PubMed

    Jones, Kirstin; Choi, Jae-Hyek; Sponsel, William E; Gray, Walt; Groth, Sylvia L; Glickman, Randolph D; Lund, Brian J; Reilly, Matthew A

    2016-07-01

    The objective of this study was to determine whether clinically significant ocular trauma can be induced by a survivable isolated primary blast using a live animal model. Both eyes of 18 Dutch Belted rabbits were exposed to various survivable low-level blast overpressures in a large-scale shock tube simulating a primary blast similar to an improvised explosive device. Eyes of the blast-exposed rabbits (as well as five control rabbits) were thoroughly examined before and after blast to detect changes. Clinically significant changes in corneal thickness arose immediately after blast and were sustained through 48 h, suggesting possible disruption of endothelial function. Retinal thickness (RT) increased with increasing specific impulse immediately after exposure. Intraocular pressure (IOP) was inversely correlated with the specific impulse of the blast wave. These findings clearly indicate that survivable primary blast causes ocular injuries with likely visual functional sequelae of clinical and military relevance. PMID:26393900

  14. Isolated Primary Blast Inhibits Long-Term Potentiation in Organotypic Hippocampal Slice Cultures.

    PubMed

    Vogel, Edward W; Effgen, Gwen B; Patel, Tapan P; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay

    2016-04-01

    Over the last 13 years, traumatic brain injury (TBI) has affected over 230,000 U.S. service members through the conflicts in Iraq and Afghanistan, mostly as a result of exposure to blast events. Blast-induced TBI (bTBI) is multi-phasic, with the penetrating and inertia-driven phases having been extensively studied. The effects of primary blast injury, caused by the shockwave interacting with the brain, remain unclear. Earlier in vivo studies in mice and rats have reported mixed results for primary blast effects on behavior and memory. Using a previously developed shock tube and in vitro sample receiver, we investigated the effect of isolated primary blast on the electrophysiological function of rat organotypic hippocampal slice cultures (OHSC). We found that pure primary blast exposure inhibited long-term potentiation (LTP), the electrophysiological correlate of memory, with a threshold between 9 and 39 kPa·ms impulse. This deficit occurred well below a previously identified threshold for cell death (184 kPa·ms), supporting our previously published finding that primary blast can cause changes in brain function in the absence of cell death. Other functional measures such as spontaneous activity, network synchronization, stimulus-response curves, and paired-pulse ratios (PPRs) were less affected by primary blast exposure, as compared with LTP. This is the first study to identify a tissue-level tolerance threshold for electrophysiological changes in neuronal function to isolated primary blast. PMID:26414012

  15. A case of frontal neuropsychological and neuroimaging signs following multiple primary-blast exposure

    PubMed Central

    Hayes, Jasmeet Pannu; Morey, Rajendra A.; Tupler, Larry A.

    2013-01-01

    Blast-related traumatic brain injury (TBI) from the Afghanistan and Iraq wars represents a significant medical concern for troops and veterans. To better understand the consequences of primary-blast injury in humans, we present a case of a Marine exposed to multiple primary blasts during his 14-year military career. The neuropsychological profile of this formerly high-functioning veteran suggested primarily executive dysfunction. Diffusion-tensor imaging revealed white-matter pathology in long fiber tracks compared with a composite fractional-anisotropy template derived from a veteran reference control group without TBI. This study supports the existence of primary blast-induced neurotrauma in humans and introduces a neuroimaging technique with potential to discriminate multiple-blast TBI. PMID:21879996

  16. A case of frontal neuropsychological and neuroimaging signs following multiple primary-blast exposure.

    PubMed

    Hayes, Jasmeet Pannu; Morey, Rajendra A; Tupler, Larry A

    2012-06-01

    Blast-related traumatic brain injury (TBI) from the Afghanistan and Iraq wars represents a significant medical concern for troops and veterans. To better understand the consequences of primary-blast injury in humans, we present a case of a Marine exposed to multiple primary blasts during his 14-year military career. The neuropsychological profile of this formerly high-functioning veteran suggested primarily executive dysfunction. Diffusion-tensor imaging revealed white-matter pathology in long fiber tracks compared with a composite fractional-anisotropy template derived from a veteran reference control group without TBI. This study supports the existence of primary blast-induced neurotrauma in humans and introduces a neuroimaging technique with potential to discriminate multiple-blast TBI. PMID:21879996

  17. Computational Study of Human Head Response to Primary Blast Waves of Five Levels from Three Directions

    PubMed Central

    Wang, Chenzhi; Pahk, Jae Bum; Balaban, Carey D.; Miller, Mark C.; Wood, Adam R.; Vipperman, Jeffrey S.

    2014-01-01

    Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts. PMID:25409326

  18. Computational study of human head response to primary blast waves of five levels from three directions.

    PubMed

    Wang, Chenzhi; Pahk, Jae Bum; Balaban, Carey D; Miller, Mark C; Wood, Adam R; Vipperman, Jeffrey S

    2014-01-01

    Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts. PMID:25409326

  19. Survival risk assessment for primary blast exposures to the head.

    PubMed

    Rafaels, Karin; Bass, Cameron R Dale; Salzar, Robert S; Panzer, Matthew B; Woods, William; Feldman, Sanford; Cummings, Thomas; Capehart, Bruce

    2011-11-01

    Many soldiers returning from the current conflicts in Iraq and Afghanistan have had at least one exposure to an explosive event and a significant number have symptoms consistent with traumatic brain injury. Although blast injury risk functions have been determined and validated for pulmonary injury, there is little information on the blast levels necessary to cause blast brain injury. Anesthetized male New Zealand White rabbits were exposed to varying levels of shock tube blast exposure focused on the head, while their thoraces were protected. The specimens were euthanized and evaluated when the blast resulted in respiratory arrest that was non-responsive to resuscitation or at 4?h post-exposure. Injury was evaluated by gross examination and histological evaluation. The fatality data from brain injury were then analyzed using Fisher's exact test to determine a brain fatality risk function. Greater blast intensity was associated with post-blast apnea and the need for mechanical ventilation. Gross examination revealed multifocal subdural hemorrhages, most often near the brainstem, at more intense levels of exposure. Histological evaluation revealed subdural and subarachnoid hemorrhages in the non-responsive respiratory-arrested specimens. A fatality risk function from blast exposure to the head was determined for the rabbit specimens with an LD(50) at a peak overpressure of 750?kPa. Scaling techniques were used to predict injury risk at other blast overpressure/duration combinations. The fatality risk function showed that the blast level needed to cause fatality from an overpressure wave exposure to the head was greater than the peak overpressure needed to cause fatality from pulmonary injury. This risk function can be used to guide future research for blast brain injury by providing a realistic fatality risk to guide the design of protection or to evaluate injury. PMID:21463161

  20. Effects of repetitive low-pressure explosive blast on primary neurons and mixed cultures.

    PubMed

    Zander, Nicole E; Piehler, Thuvan; Banton, Rohan; Benjamin, Richard

    2016-09-01

    Repetitive mild traumatic brain injury represents a considerable health concern, particularly for athletes and military personnel. For blast-induced brain injury, threshold shock-impulse levels required to induce such injuries and cumulative effects with single and/or multiple exposures are not well characterized. Currently, there is no established in vitro experimental model with blast pressure waves generated by live explosives. This study presents results of primary neurons and mixed cultures subjected to our unique in vitro indoor experimental platform that uses real military explosive charges to probe the effects of primary explosive blast at the cellular level. The effects of the blast on membrane permeability, generation of reactive oxygen species (ROS), uptake of sodium ions, intracellular calcium, and release of glutamate were probed 2 and 24 hr postblast. Significant changes in membrane permeability and sodium uptake among the sham, single-blast-injured, and triple-blast-injured samples were observed. A significant increase in ROS and glutamate release was observed for the triple-blast-injured samples compared with the sham. Changes in intracellular calcium were not significant. These results suggest that blast exposure disrupts the integrity of the plasma membrane, leading to the upset of ion homeostasis, formation of ROS, and glutamate release. Published 2016. †This article is a U.S. Government work and is in the public domain in the USA. PMID:27317559

  1. Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures.

    PubMed

    Effgen, Gwen B; Vogel, Edward W; Lynch, Kimberly A; Lobel, Ayelet; Hue, Christopher D; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay

    2014-07-01

    An increasing number of U.S. soldiers are diagnosed with traumatic brain injury (TBI) subsequent to exposure to blast. In the field, blast injury biomechanics are highly complex and multi-phasic. The pathobiology caused by exposure to some of these phases in isolation, such as penetrating or inertially driven injuries, has been investigated extensively. However, it is unclear whether the primary component of blast, a shock wave, is capable of causing pathology on its own. Previous in vivo studies in the rodent and pig have demonstrated that it is difficult to deliver a primary blast (i.e., shock wave only) without rapid head accelerations and potentially confounding effects of inertially driven TBI. We have previously developed a well-characterized shock tube and custom in vitro receiver for exposing organotypic hippocampal slice cultures to pure primary blast. In this study, isolated primary blast induced minimal hippocampal cell death (on average, below 14% in any region of interest), even for the most severe blasts tested (424 kPa peak pressure, 2.3 ms overpressure duration, and 248 kPa*ms impulse). In contrast, measures of neuronal function were significantly altered at much lower exposures (336 kPa, 0.84 ms, and 86.5 kPa*ms), indicating that functional changes occur at exposures below the threshold for cell death. This is the first study to investigate a tolerance for primary blast-induced brain cell death in response to a range of blast parameters and demonstrate functional deficits at subthreshold exposures for cell death. PMID:24558968

  2. Examining lethality risk for rodent studies of primary blast lung injury.

    PubMed

    Hubbard, William Brad; Hall, Christina; Siva Sai Suijith Sajja, Venkata; Lavik, Erink; VandeVord, Pamela

    2014-01-01

    While protective measures have been taken to mitigate injury to the thorax during a blast exposure, primary blast lung injury (PBLI) is still evident in mounted/in vehicle cases during military conflicts. Moreover, civilians, who are unprotected from blast exposure, can be severely harmed by terrorist attacks that use improvised explosive devices (IEDs). Since the lungs are the most susceptible organ due to their air-filled nature, PBLI is one of the most serious injuries seen in civilian blast cases. Determining lethality threshold for rodent studies is crucial to guide experimental designs centered on therapies for survival after PBLI or mechanistic understanding of the injury itself. Using an Advanced Blast Simulator, unprotected rats were exposed to a whole body blast to induce PBLI. The one-hour survival rate was assessed to determine operating conditions for a 50% lethality rate. Macroscopic and histological analysis of lung was conducted using hematoxylin and eosin staining. Results demonstrated lethality risk trends based on static blast overpressure (BOP) for rodent models, which may help standardized animal studies and contribute to scaling to the human level. The need for a standardized method of producing PBLI is pressing and establishing standard curves, such as a lethality risk curve for lung blasts, is crucial for this condensing of BOP methods. PMID:25405409

  3. Primary blast injury-induced lesions in the retina of adult rats

    PubMed Central

    2013-01-01

    Background The effect of primary blast exposure on the brain is widely reported but its effects on the eye remains unclear. Here, we aim to examine the effects of primary blast exposure on the retina. Methods Adult male Sprague–Dawley rats were exposed to primary blast high and low injury and sacrificed at 24 h, 72 h, and 2 weeks post injury. The retina was subjected to western analysis for vascular endothelial growth factor (VEGF), aquaporin-4 (AQP4), glutamine synthethase (GS), inducible nitric oxide synthase (NOS), endothelial NOS, neuronal NOS and nestin expression; ELISA analysis for cytokines and chemokines; and immunofluorescence for glial fibrillary acidic protein (GFAP)/VEGF, GFAP/AQP4, GFAP/nestin, GS/AQP4, lectin/iNOS, and TUNEL. Results The retina showed a blast severity-dependent increase in VEGF, iNOS, eNOS, nNOS, and nestin expression with corresponding increases in inflammatory cytokines and chemokines. There was also increased AQP4 expression and retinal thickness after primary blast exposure that was severity-dependent. Finally, a significant increase in TUNEL+ and Caspase-3+ cells was observed. These changes were observed at 24 h post-injury and sustained up to 2 weeks post injury. Conclusions Primary blast resulted in severity-dependent pathological changes in the retina, manifested by the increased expression of a variety of proteins involved in inflammation, edema, and apoptosis. These changes were observed immediately after blast exposure and sustained up to 2 weeks suggesting acute and chronic injury mechanisms. These changes were most obvious in the astrocytes and Müller cells and suggest important roles for these cells in retina pathophysiology after blast. PMID:23819902

  4. Electrophysiological white matter dysfunction and association with neurobehavioral deficits following low-level primary blast trauma.

    PubMed

    Park, Eugene; Eisen, Rebecca; Kinio, Anna; Baker, Andrew J

    2013-04-01

    There is strong evidence that primary blast injuries can cause neuropathological alterations in the brain. Clinical findings from war veterans indicating evidence of diffuse axonal injury have been corroborated by numerous primary blast models in animals. However, the effect of a subclinical blast (blast with no obvious sign of external trauma or lung injury) as a contributing factor to the neurological symptoms and neuropathology is less clear. Our group recently developed a model of low-level primary blast and characterized aberrant expression of white matter cytoskeletal proteins in the cortex and hippocampus following a subclinical wave shock exposure. Here we examined the susceptibility of the corpus callosum following subclinical blast. We also demonstrate that white matter dysfunction is associated with neurobehavioral deficits associated with anxiety and stress in rats. Anesthetized male Sprague-Dawley rats (~300 g) were exposed to a primary blast (approx. 28 kPa), below the threshold required to induce pulmonary trauma. Rats were evaluated on three behavioral outcome measures; the rotarod, the light/dark box and open field anxiety test. We used Western blotting to examine expression and degradation of axonally expressed αII-spectrin, NF200 and voltage-gated sodium channels (VGSC) in the corpus callosum. Acute slice preparations were used for electrophysiological analysis of evoked compound action potentials (CAPs) in the corpus callosum. There was evidence of αII-spectrin degradation in the corpus callosum at 48 h post-injury detectable up to 14 days post-injury, as well as increased heavy neurofilament expression. A reduction in VGSC expression was observed at 48 h post-blast as well as a reduction in the interaction between ankyrin G and intact αII-spectrin. Blast exposed rats had significantly lower rotarod latency times relative to sham rats (p=0.002). Increased anxiety-related and stress-related behavior were observed in blast rats relative to sham

  5. Neuroinflammation in primary blast neurotrauma: Time course and prevention by torso shielding.

    PubMed

    Xu, Leyan; Schaefer, Michele L; Linville, Raleigh M; Aggarwal, Ayushi; Mbuguiro, Wangui; Wester, Brock A; Koliatsos, Vassilis E

    2016-03-01

    Mechanisms of primary blast injury caused by overpressure are not fully understood. In particular, the presence and time course of neuroinflammation are unknown and so are the signatures of reactive inflammatory cells, especially the neuroprotective versus injurious roles of microglia. In general, chronic microglial activation in the injured brain suggests a pro-degenerative role for these reactive cells. In this study, we investigated the temporal dynamics of microglial activation in the brain of mice exposed to mild-moderate blast in a shock tube. Because, in our previous work, we had found that torso shielding with rigid Plexiglas attenuates traumatic axonal injury in the brain, we also evaluated neuroinflammatory microglial responses in animals with torso protection at 7 days post blast injury. Because of the prominent involvement of the visual system in blast TBI in rodents, activated microglial cells were counted in the optic tract at various time points post-injury with stereological methods. Cell counts (activated microglial cell densities) from subjects exposed to blast TBI were compared with counts from corresponding sham animals. We found that mild-moderate blast injury causes focal activation of microglia in certain white matter tracts, including the visual pathway. In the optic tract, the density of activated microglial profiles gradually intensified from 3 to 15 days post-injury and then became attenuated at 30 days. Torso protection significantly reduced microglial activation at 7 days. These findings shed light into mechanisms of primary blast neurotrauma and may suggest novel diagnostic and monitoring methods for patients. They leave open the question of whether microglial activation post blast is protective or detrimental, although response is time limited. Finally, our findings confirm the protective role of torso shielding and stress the importance of improved or optimized body gear for warfighters or other individuals at risk for blast exposure

  6. Cerebellar White Matter Abnormalities following Primary Blast Injury in US Military Personnel

    PubMed Central

    Mac Donald, Christine; Johnson, Ann; Cooper, Dana; Malone, Thomas; Sorrell, James; Shimony, Joshua; Parsons, Matthew; Snyder, Abraham; Raichle, Marcus; Fang, Raymond; Flaherty, Stephen; Russell, Michael; Brody, David L.

    2013-01-01

    Little is known about the effects of blast exposure on the human brain in the absence of head impact. Clinical reports, experimental animal studies, and computational modeling of blast exposure have suggested effects on the cerebellum and brainstem. In US military personnel with isolated, primary blast-related ‘mild’ traumatic brain injury and no other known insult, we found diffusion tensor MRI abnormalities consistent with cerebellar white matter injury in 3 of 4 subjects. No abnormalities in other brain regions were detected. These findings add to the evidence supporting the hypothesis that primary blast exposure contributes to brain injury in the absence of head impact and that the cerebellum may be particularly vulnerable. However, the clinical effects of these abnormalities cannot be determined with certainty; none of the subjects had ataxia or other detected evidence of cerebellar dysfunction. The details of the blast events themselves cannot be disclosed at this time, thus additional animal and computational modeling will be required to dissect the mechanisms underlying primary blast-related traumatic brain injury. Furthermore, the effects of possible subconcussive impacts and other military-related exposures cannot be determined from the data presented. Thus many aspects of topic will require further investigation. PMID:23409052

  7. Comprehensive evaluation of coagulation in swine subjected to isolated primary blast injury.

    PubMed

    Prat, Nicolas J; Montgomery, Robbie; Cap, Andrew P; Dubick, Michael A; Sarron, Jean-Claude; Destombe, Casimir; May, Philippe; Magnan, Pascal

    2015-06-01

    Blast is one of the major causes of injury and death in recent armed conflicts. With increased use of improvised explosive devices in Iraq and Afghanistan, more than 71% of combat casualties are caused by explosions. Blast injuries can range from primary (caused by shock wave) to quaternary injuries (e.g., burns), and such injuries can result in an acute coagulopathy denoted by a hypocoagulable state. It is not clear if this coagulopathy observed in victims of explosion is caused by local or general effect of the primary blast injury itself. In this study, 13 pigs were subjected to severe isolated open-field blast injury and we measured indices of coagulation impairment during the first hour after injury: ROTEM, prothrombin time, activated partial thromboplastin time, coagulation factors, thrombin generation potential, platelet count, platelet activation, platelet function, and procoagulant microparticle formation. After 1 h, the mortality was 33%. No coagulation dysfunction was observed in the survivors in this period. This study presented a highly reproducible and consistent isolated blast injury in large mammals with comprehensive coagulation testing. The data suggest that isolated primary blast injury is not responsible for acute coagulopathy of trauma in victims of explosion but seems to lead to an early hypercoagulable state. PMID:25643012

  8. [Primary treatment of penetrating injuries. Part 1: blast trauma].

    PubMed

    Hossfeld, B; Holsträter, T; Holsträter, S; Rein, D; Josse, F; Lampl, L; Helm, M

    2014-05-01

    Blast injuries may result from a variety of causes but the biomechanical impact and pathophysiological consequences do not differ between domestic or industrial accidents or even terrorist attacks. However, this differentiation relevantly affects the tactical procedures of the rescue teams. Focusing on further detonations, top priority is given to the personal safety of all rescue workers. The rareness of blast injuries in a civilian setting results in a lack of experience on the one hand but on the other hand the complexity of blast injuries to the human body places high demands on the knowledge and skills of the entire rescue team for competent treatment. The purpose of this article is to explain the physicochemical principles of explosions and to convey tactical and medical knowledge to emergency medical services. PMID:24805284

  9. Navier-Stokes analysis of muzzle-blast-type waves

    NASA Astrophysics Data System (ADS)

    Baysal, O.

    1986-05-01

    A Navier-Stokes solution is presented as a mathematical model to muzzle-blast-type waves. The study has two novel features. First, it is a combined internal/external analysis relating barrel flow parameters to muzzle environment parameters. Second, the dissipative and dispersive effects of viscosity on the propagation phenomenon are captured. The investigation also serves as a numerical analysis of axisymmetric, high-pressure waves in an unsteady, viscous flow. Conservation-form Navier-Stokes equations are integrated by a two-step, explicit finite-difference scheme. The shocks are captured and treated by the inclusion of artificial dissipative terms. Turbulence is accounted for by an algebraic eddy-viscosity model. The internal flow is solved by a predictor-corrector method of characteristics with the shock fitted in; its results compare very well with the experimental data available. The numerical results obtained simulate the muzzle blast waves and show the effects of viscosity. Comparison with the classical spherical blast wave theory shows the deviation in propagation patterns of the axisymmetric and spherical waves.

  10. Disaster preparedness, pediatric considerations in primary blast injury, chemical, and biological terrorism.

    PubMed

    Hamele, Mitchell; Poss, William Bradley; Sweney, Jill

    2014-02-01

    Both domestic and foreign terror incidents are an unfortunate outgrowth of our modern times from the Oklahoma City bombings, Sarin gas attacks in Japan, the Madrid train bombing, anthrax spores in the mail, to the World Trade Center on September 11(th), 2001. The modalities used to perpetrate these terrorist acts range from conventional weapons to high explosives, chemical weapons, and biological weapons all of which have been used in the recent past. While these weapons platforms can cause significant injury requiring critical care the mechanism of injury, pathophysiology and treatment of these injuries are unfamiliar to many critical care providers. Additionally the pediatric population is particularly vulnerable to these types of attacks. In the event of a mass casualty incident both adult and pediatric critical care practitioners will likely be called upon to care for children and adults alike. We will review the presentation, pathophysiology, and treatment of victims of blast injury, chemical weapons, and biological weapons. The focus will be on those injuries not commonly encountered in critical care practice, primary blast injuries, category A pathogens likely to be used in terrorist incidents, and chemical weapons including nerve agents, vesicants, pulmonary agents, cyanide, and riot control agents with special attention paid to pediatric specific considerations. PMID:24834398

  11. Disaster preparedness, pediatric considerations in primary blast injury, chemical, and biological terrorism

    PubMed Central

    Hamele, Mitchell; Poss, William Bradley; Sweney, Jill

    2014-01-01

    Both domestic and foreign terror incidents are an unfortunate outgrowth of our modern times from the Oklahoma City bombings, Sarin gas attacks in Japan, the Madrid train bombing, anthrax spores in the mail, to the World Trade Center on September 11th, 2001. The modalities used to perpetrate these terrorist acts range from conventional weapons to high explosives, chemical weapons, and biological weapons all of which have been used in the recent past. While these weapons platforms can cause significant injury requiring critical care the mechanism of injury, pathophysiology and treatment of these injuries are unfamiliar to many critical care providers. Additionally the pediatric population is particularly vulnerable to these types of attacks. In the event of a mass casualty incident both adult and pediatric critical care practitioners will likely be called upon to care for children and adults alike. We will review the presentation, pathophysiology, and treatment of victims of blast injury, chemical weapons, and biological weapons. The focus will be on those injuries not commonly encountered in critical care practice, primary blast injuries, category A pathogens likely to be used in terrorist incidents, and chemical weapons including nerve agents, vesicants, pulmonary agents, cyanide, and riot control agents with special attention paid to pediatric specific considerations. PMID:24834398

  12. Catastrophic eruptions of the directed-blast type at Mount St. Helens, bezymianny and Shiveluch volcanoes

    USGS Publications Warehouse

    Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.

    1985-01-01

    This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for

  13. Helmet liner evaluation to mitigate head response from primary blast exposure.

    PubMed

    Lockhart, Philip A; Cronin, Duane S

    2015-01-01

    Head injury resulting from blast loading, including mild traumatic brain injury, has been identified as an important blast-related injury in modern conflict zones. A study was undertaken to investigate potential protective ballistic helmet liner materials to mitigate primary blast injury using a detailed sagittal plane head finite element model, developed and validated against previous studies of head kinematics resulting from blast exposure. Five measures reflecting the potential for brain injury that were investigated included intracranial pressure, brain tissue strain, head acceleration (linear and rotational) and the head injury criterion. In simulations, these measures provided consistent predictions for typical blast loading scenarios. Considering mitigation, various characteristics of foam material response were investigated and a factor analysis was performed which showed that the four most significant were the interaction effects between modulus and hysteretic response, stress-strain response, damping factor and density. Candidate materials were then identified using the predicted optimal material values. Polymeric foam was found to meet the density and modulus requirements; however, for all significant parameters, higher strength foams, such as aluminum foam, were found to provide the highest reduction in the potential for injury when compared against the unprotected head. PMID:24559088

  14. Blood-brain barrier dysfunction after primary blast injury in vitro.

    PubMed

    Hue, Christopher D; Cao, Siqi; Haider, Syed F; Vo, Kiet V; Effgen, Gwen B; Vogel, Edward; Panzer, Matthew B; Bass, Cameron R Dale; Meaney, David F; Morrison, Barclay

    2013-10-01

    The incidence of blast-induced traumatic brain injury (bTBI) has increased substantially in recent military conflicts. However, the consequences of bTBI on the blood-brain barrier (BBB), a specialized cerebrovascular structure essential for brain homeostasis, remain unknown. In this study, we utilized a shock tube driven by compressed gas to generate operationally relevant, ideal pressure profiles consistent with improvised explosive devices (IEDs). By multiple measures, the barrier function of an in vitro BBB model was disrupted following exposure to a range of controlled blast loading conditions. Trans-endothelial electrical resistance (TEER) decreased acutely in a dose-dependent manner that was most strongly correlated with impulse, as opposed to peak overpressure or duration. Significantly increased hydraulic conductivity and solute permeability post-injury further confirmed acute alterations in barrier function. Compromised ZO-1 immunostaining identified a structural basis for BBB breakdown. After blast exposure, TEER remained significantly depressed 2 days post-injury, followed by spontaneous recovery to pre-injury control levels at day 3. This study is the first to report immediate disruption of an in vitro BBB model following primary blast exposure, which may be important for the development of novel helmet designs to help mitigate the effects of blast on the BBB. PMID:23581482

  15. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model

    NASA Astrophysics Data System (ADS)

    Mishra, Vikas; Skotak, Maciej; Schuetz, Heather; Heller, Abi; Haorah, James; Chandra, Namas

    2016-06-01

    Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa•s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa.

  16. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model.

    PubMed

    Mishra, Vikas; Skotak, Maciej; Schuetz, Heather; Heller, Abi; Haorah, James; Chandra, Namas

    2016-01-01

    Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0-450 kPa (0-800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146-220 kPa and 221-290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0-145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85-145 kPa. PMID:27270403

  17. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model

    PubMed Central

    Mishra, Vikas; Skotak, Maciej; Schuetz, Heather; Heller, Abi; Haorah, James; Chandra, Namas

    2016-01-01

    Injury severity in blast induced Traumatic Brain Injury (bTBI) increases with blast overpressure (BOP) and impulse in dose-dependent manner. Pure primary blast waves were simulated in compressed gas shock-tubes in discrete increments. Present work demonstrates 24 hour survival of rats in 0–450 kPa (0–800 Pa∙s impulse) range at 10 discrete levels (60, 100, 130, 160, 190, 230, 250, 290, 350 and 420 kPa) and determines the mortality rate as a non-linear function of BOP. Using logistic regression model, predicted mortality rate (PMR) function was calculated, and used to establish TBI severities. We determined a BOP of 145 kPa as upper mild TBI threshold (5% PMR). Also we determined 146–220 kPa and 221–290 kPa levels as moderate and severe TBI based on 35%, and 70% PMR, respectively, while BOP above 290 kPa is lethal. Since there are no standards for animal bTBI injury severity, these thresholds need further refinements using histopathology, immunohistochemistry and behavior. Further, we specifically investigated mild TBI range (0–145 kPa) using physiological (heart rate), pathological (lung injury), immuno-histochemical (oxidative/nitrosative and blood-brain barrier markers) as well as blood borne biomarkers. With these additional data, we conclude that mild bTBI occurs in rats when the BOP is in the range of 85–145 kPa. PMID:27270403

  18. Prediction of globe rupture caused by primary blast: a finite element analysis.

    PubMed

    Liu, Xiaoyu; Wang, Lizhen; Wang, Chao; Fan, Jie; Liu, Songyang; Fan, Yubo

    2015-07-01

    Although a human eye comprises less than 0.1% of the frontal body surface area, injuries to the eye are found to be disproportionally common in survivors of explosions. This study aimed to introduce a Lagrangian-Eulerian coupling model to predict globe rupture resulting from primary blast effect. A finite element model of a human eye was created using Lagrangian mesh. An explosive and its surrounding air domain were modelled using Eulerian mesh. Coupling the two models allowed simulating the blast wave generation, propagation and interaction with the eye. The results showed that the peak overpressures caused by blast wave on the corneal apex are 2080, 932.1 and 487.3 kPa for the victim distances of 0.75, 1.0 and 1.25 m, respectively. Higher stress occurred at the limbus, where the peaks for the three victim distances are 25.5, 14.1 and 6.4 MPa. The overpressure threshold of globe rupture was determined as 2000 kPa in a small-scale explosion. The findings would provide insights into the mechanism of primary blast-induced ocular injuries. PMID:24661047

  19. Radiation resistance of primary clonogenic blasts from children with acute lymphoblastic leukemia

    SciTech Connect

    Uckun, F.M. Childrens Cancer Group, Arcadia, CA ); Aeppli, D.; Song, C.W. )

    1993-11-15

    Detailed comparative analyses of the radiation sensitivity of primary clonogenic blasts from children with acute lymphoblastic leukemia (ALL) were performed to achieve a better understanding of clinical radiation resistance in ALL. The radiation sensitivity of primary clonogenic blasts from 74 children with newly diagnosed ALL was analyzed using leukemic progenitor cell (LPC) assays. Primary bone marrow blasts from all 74 patients were exposed to ionizing radiation and subsequently assayed for LPC-derived blast colony formation. Radiation survival curves of LPC were constructed for each of the newly diagnosed patients using computer programs for the single-hit multitarget as well as the linear quadratic models of cell survival. A marked interpatient variation in intrinsic radiation sensitivity was observed between LPC populations. The SF[sub 2] values ranged from 0.01 to 1.00. Patients were divided into groups according to their sex, age, WBC at diagnosis, cell cycle distribution of leukemic blasts, and immunophenotype. Only immunophenotype provided a significant correlation with the intrinsic radiation sensitivity of LPC. Patients with B-lineage ALL had higher SF[sub 2] and smaller [alpha] values than T-lineage ALL patients, consistent with greater intrinsic radiation resistance at the level of LPC. Notably, 43% of B-lineage ALL cases, but only 27% of T-lineage ALL cases had LPC with SF[sub 2] [ge] 0.5. Similarly, 66% of B-lineage ALL cases, but only 37% of T-lineage ALL cases had LPC with [alpha] values [le] 0.4 Gy[sup [minus]1]. Combining the two indicators of radiation resistance, they found that only 34% of the B-lineage ALL patients had none of the two parameters in the respective critical regions, while 63% of the T-lineage patients had none. In multivariate analyses, the immunophenotypic B-lineage affiliation was the only significant predictor of radiation resistance at the level of LPC. 42 refs., 1 fig., 2 tabs.

  20. Primary Blast-Induced Traumatic Brain Injury in Rats Leads to Increased Prion Protein in Plasma: A Potential Biomarker for Blast-Induced Traumatic Brain Injury

    PubMed Central

    Pham, Nam; Sawyer, Thomas W.; Wang, Yushan; Jazii, Ferdous Rastgar; Vair, Cory

    2015-01-01

    Abstract Traumatic brain injury (TBI) is deemed the “signature injury” of recent military conflicts in Afghanistan and Iraq, largely because of increased blast exposure. Injuries to the brain can often be misdiagnosed, leading to further complications in the future. Therefore, the use of protein biomarkers for the screening and diagnosis of TBI is urgently needed. In the present study, we have investigated the plasma levels of soluble cellular prion protein (PrPC) as a novel biomarker for the diagnosis of primary blast-induced TBI (bTBI). We hypothesize that the primary blast wave can disrupt the brain and dislodge extracellular localized PrPC, leading to a rise in concentration within the systemic circulation. Adult male Sprague–Dawley rats were exposed to single pulse shockwave overpressures of varying intensities (15-30 psi or 103.4–206.8 kPa] using an advanced blast simulator. Blood plasma was collected 24 h after insult, and PrPC concentration was determined with a modified commercial enzyme-linked immunosorbent assay (ELISA) specific for PrPC. We provide the first report that mean PrPC concentration in primary blast exposed rats (3.97 ng/mL±0.13 SE) is significantly increased compared with controls (2.46 ng/mL±0.14 SE; two tailed test p<0.0001). Furthermore, we report a mild positive rank correlation between PrPC concentration and increasing blast intensity (psi) reflecting a plateaued response at higher pressure magnitudes, which may have implications for all military service members exposed to blast events. In conclusion, it appears that plasma levels of PrPC may be a novel biomarker for the detection of primary bTBI. PMID:25058115

  1. Primary blast-induced traumatic brain injury in rats leads to increased prion protein in plasma: a potential biomarker for blast-induced traumatic brain injury.

    PubMed

    Pham, Nam; Sawyer, Thomas W; Wang, Yushan; Jazii, Ferdous Rastgar; Vair, Cory; Taghibiglou, Changiz

    2015-01-01

    Traumatic brain injury (TBI) is deemed the "signature injury" of recent military conflicts in Afghanistan and Iraq, largely because of increased blast exposure. Injuries to the brain can often be misdiagnosed, leading to further complications in the future. Therefore, the use of protein biomarkers for the screening and diagnosis of TBI is urgently needed. In the present study, we have investigated the plasma levels of soluble cellular prion protein (PrPC) as a novel biomarker for the diagnosis of primary blast-induced TBI (bTBI). We hypothesize that the primary blast wave can disrupt the brain and dislodge extracellular localized PrPC, leading to a rise in concentration within the systemic circulation. Adult male Sprague-Dawley rats were exposed to single pulse shockwave overpressures of varying intensities (15-30 psi or 103.4-206.8 kPa] using an advanced blast simulator. Blood plasma was collected 24 h after insult, and PrPC concentration was determined with a modified commercial enzyme-linked immunosorbent assay (ELISA) specific for PrPC. We provide the first report that mean PrPC concentration in primary blast exposed rats (3.97 ng/mL ± 0.13 SE) is significantly increased compared with controls (2.46 ng/mL ± 0.14 SE; two tailed test p < 0.0001). Furthermore, we report a mild positive rank correlation between PrPC concentration and increasing blast intensity (psi) reflecting a plateaued response at higher pressure magnitudes, which may have implications for all military service members exposed to blast events. In conclusion, it appears that plasma levels of PrPC may be a novel biomarker for the detection of primary bTBI. PMID:25058115

  2. The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms.

    PubMed

    Courtney, Amy; Courtney, Michael

    2015-01-01

    Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration) is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs, which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs, which isolate a single injury mechanism. PMID:26539158

  3. The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms

    PubMed Central

    Courtney, Amy; Courtney, Michael

    2015-01-01

    Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration) is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs, which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs, which isolate a single injury mechanism. PMID:26539158

  4. Suppression of blast pressure and noise from implosive-type connectors

    SciTech Connect

    Contestabile, E.; Thomas, C.

    1995-12-31

    Implosive-type electrical/mechanical connectors such as XECONEX have been used extensively for joining electrical transmission lines. This implosive action of explosives has also been applied to other forms of high energy metal working with excellent results. However, as with many other products, the inherent blast energy of these units has caused some environmental concerns especially when used in proximity to inhabited areas. This paper identifies the problem associated with the use of this type of connector in inhabited areas and details the efforts directed toward its solution. A test program was designed in which various materials and configurations were evaluated as potential candidates for reducing the blast pressure. The explosive charges were in two configurations; linear charges assembled with detonating cord and steel pipes wrapped with detonating cord. Various materials of varying densities and sizes were then used as a wrap around the explosive charge. The effectiveness of these wraps as blast suppressing mediums was established by monitoring the blast pressure and sound levels. Although, a complete solution was not found within the performance requirements, materials such as vermiculite and cardboard were found to be particularly useful in suppressing blast overpressures. Plotted against scaled distance on a TNT output curve, the data indicates the effectiveness of these materials. Also practical are the plots showing the mitigation of blast pressure as the suppressant material thickness is varied.

  5. 49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Type A) D Appendix D to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Pt. 173, App. D Appendix D to Part 173—Test Methods for Dynamite (Explosive, Blasting, Type A) 1. Test method D-1—Leakage Test A wooden...

  6. 49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Type A) D Appendix D to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Pt. 173, App. D Appendix D to Part 173—Test Methods for Dynamite (Explosive, Blasting, Type A) 1. Test method D-1—Leakage Test A wooden...

  7. 49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., Type A) D Appendix D to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Pt. 173, App. D Appendix D to Part 173—Test Methods for Dynamite (Explosive, Blasting, Type A) 1. Test method D-1—Leakage Test A wooden...

  8. 49 CFR Appendix D to Part 173 - Test Methods for Dynamite (Explosive, Blasting, Type A)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., Type A) D Appendix D to Part 173 Transportation Other Regulations Relating to Transportation PIPELINE... REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Pt. 173, App. D Appendix D to Part 173—Test Methods for Dynamite (Explosive, Blasting, Type A) 1. Test method D-1—Leakage Test A wooden...

  9. Marble-type glass based on blast furnace slag

    SciTech Connect

    Sarkisov, P.D.; Smirnov, V.G.; Trifonova, T.E.; Sergeev, Yu.N.

    1987-01-01

    This paper discusses the recovery and use of blast furnace wastes as coloring agents in the manufacture of imitation marble glass. The slags consist of a series of metal oxides each of which is tested for the color it generates when reacted and annealed with the molten glass. Comparative tests were also run against non-waste coloring agents and it was found that the waste-derived colorants were equal or superior both in process behavior and in generating the appropriate optical properties in the finished glass.

  10. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    PubMed Central

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen

  11. Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet.

    PubMed

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a "signature injury" in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27-0.66 MPa) from the Bowen's lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen's cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10-35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence "iso-damage" curves for brain injury are likely different than the Bowen curves for lung

  12. Olefin unit primary fractionator on-line Petro-Blast Lancing

    SciTech Connect

    Adams, W.D.; Rutan, C.R.

    1994-12-31

    Today`s commodity chemicals market forces companies to find innovative ways to extend unit on line operation between turnarounds such that they will remain economically competitive. At the OxyChem Chocolate Bayou facility the Primary Fractionator, quench oil column, fouling defined the length of the run between Olefin Unit turnarounds. Polymer growth on the valve trays restricted vapor flow through the column. This increased the column pressure drop which resulted in severe flooding. The inability to cool the furnace effluent while separating the fuel oil and gasoline components would cause premature shutdowns. Fouling locations were defined using gamma scan techniques and pressure surveys. Nozzles were welded and hot tapped at strategic locations around the column. A high pressure Petro-Blast Lancing technique, inserted through the nozzles, was then used to clean the trays. The operation has extended the unit run length although the column may require additional Petro-Blast Lancing before the next scheduled plant turnaround. If this schedule holds, a two year extension in the unit run length will be realized.

  13. Kinematics of ICMEs/Shocks: Blast Wave Reconstruction Using Type-II Emissions

    NASA Astrophysics Data System (ADS)

    Corona-Romero, P.; Gonzalez-Esparza, J. A.; Aguilar-Rodriguez, E.; De-la-Luz, V.; Mejia-Ambriz, J. C.

    2015-09-01

    We present a physical methodology for reconstructing the trajectory of interplanetary shocks using Type-II radio emission data. This technique calculates the shock trajectory assuming that the disturbance propagates as a blast wave in the interplanetary medium. We applied this blast-wave reconstruction (BWR) technique to analyze eight fast Earth-directed ICMEs/shocks associated with Type-II emissions. The technique deduces a shock trajectory that reproduces the Type-II frequency drifts and calculates shock onset speed, shock travel time, and shock speed at 1 AU. The BWR results agreed well with the Type-II spectra, with data from coronagraph images, in-situ measurements, and interplanetary scintillation observations. Perturbations in the Type-II data affect the accuracy of the BWR technique. This methodology could be applied to track interplanetary shocks causing Type-II emissions in real-time and to predict the shock arrival time and shock speed at 1 AU.

  14. Novel method to dynamically load cells in 3D-gel culture for primary blast injury studies

    NASA Astrophysics Data System (ADS)

    Sory, David; Cepa-Areias, Anabela; Overby, Darryl; Proud, William; Institute of Shock Physics, Department of Bioengineering; Royal British Legion CentreBlast I Collaboration

    2015-06-01

    For at least a century explosive devices have been reported as one of the most important causes of injuries on battlefield in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injury at the organ or tissue level, few studies have investigated the mechanism of blast injury at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses similar to those observed in blast waves. The experimental phase involved high strain rate axial compression of biological cylindrical specimens within a hermetically sealed sample holder made of a biocompatible polymer. Numerical simulations were performed in order to characterize the loading path within the sample and assess the loading conditions. A proof of concept is presented so as to establish a new window to address fundamental questions regarding primary blast injury at the cellular level. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  15. Development of a new biomechanical indicator for primary blast-induced brain injury.

    PubMed

    Zhu, Feng; Chou, Cliff-C; Yang, King-H; King, Albert-I

    2015-01-01

    Primary blast-induced traumatic brain injury (bTBI) has been observed at the boundary of brain tissue and cerebrospinal fluid (CSF). Such injury can hardly be explained by using the theory of compressive wave propagation, since both the solid and fuid materials have similar compressibility and thus the intracranial pressure (ICP) has a continuous distribution across the boundary. Since they have completely different shear properties, it is hypothesized the injury at the interface is caused by shear wave. In the present study, a preliminary combined numerical and theoretical analysis was conducted based on the theory of shear wave propagation/reflection. Simulation results show that higher lateral acceleration of brain tissue particles is concentrated in the boundary region. Based on this fnding, a new biomechanical vector, termed as strain gradient, was suggested for primary bTBI. The subsequent simple theoretical analysis reveals that this parameter is proportional to the value of lateral acceleration. At the boundary of lateral ventricles, high spatial strain gradient implies that the brain tissue in this area (where neuron cells may be contained) undergo significantly different strains and large velocity discontinuity, which may result in mechanical damage of the neuron cells. PMID:26169087

  16. A theoretical analysis of stress wave propagation in the head under primary blast loading.

    PubMed

    Zhu, Feng; Chou, Clifford C; Yang, King H; King, Albert I

    2014-04-01

    Traumatic brain injury due to primary blast loading has become a signature injury in recent military conflicts. Efforts have been made to study the stress wave propagation in the head. However, the relationship of incident pressure, reflected pressure and intracranial pressure is still not clear, and the experimental findings reported in the literature are contradictory. In this article, an analytical model is developed to calculate the stress wave transfer through a multiple-layered structure which is used to mimic the head. The model predicts stress at the scalp-skull and skull-brain interfaces as the functions of reflected pressure, which is further dependent on incident pressure. A numerical model is used to corroborate the theoretical predictions. It is concluded that scalp has an amplification effect on intracranial pressure. If scalp is absent, there exists a critical incident pressure, defined as P cr at approximately 16 kPa. When peak incident pressure σ in is higher than 16 kPa, the pressure at the skull-brain interface is greater than σ in; otherwise, it is lower than σ in. PMID:24718865

  17. Development and analysis of a leak-based blast attenuator and scaling laws for primary blast peak overpressure for a large caliber muzzleloaded cannon

    NASA Astrophysics Data System (ADS)

    Carson, Robert Andrew

    One of the primary aspects of the research and development work carried out at Benet Laboratories is the Soldier. Maintenance of their health in the field is the first priority while the second priority is the enhancement of their performance. Therefore, a new concept for a weapon system that targets these two priorities is highly desirable. This is the case with a new concept that can reduce the peak overpressure without the use of a muzzle device for a muzzle loaded cannon system. Such a novel concept was developed in this thesis through the application of propellant leak into the precursor region, i.e., when the projectile is still in the bore. A 3D hydrocode (ALE3D) was employed to predict the blast overpressure for the baseline and propellant leak configurations. However, a 3D hydrocode is computationally very expensive to predict peak overpressure in the far-field and an efficient method to predict peak overpressure in the far-field is of significance. Therefore, scaling laws for primary blast peak overpressure were also developed in this thesis. Initially, two propellant leak concepts were examined. A bulge leak method and a channel leak method, which were compared to the baseline configuration. The initial channel leak configuration (referred to as CLM-1) significantly reduced the exit pressure ratio during projectile ejection, and thereby, resulted in a weaker blast. This in-turn substantially attenuated the peak overpressure to the rear of the muzzle without the aid of a muzzle device while having a marginal loss in the projectile exit velocity. For CLM-1, at one monitored location with the largest peak overpressure, a reduction of about 38% in peak overpressure was observed as compared to the baseline case. In order to compare different leak configurations, a performance metric was defined by comparing the ratio of peak overpressure and projectile exit velocity for a leak configuration to that for the baseline configuration. This metric was referred to

  18. Rat Injury Model under Controlled Field-Relevant Primary Blast Conditions: Acute Response to a Wide Range of Peak Overpressures

    PubMed Central

    Skotak, Maciej; Wang, Fang; Alai, Aaron; Holmberg, Aaron; Harris, Seth; Switzer, Robert C.

    2013-01-01

    Abstract We evaluated the acute (up to 24 h) pathophysiological response to primary blast using a rat model and helium driven shock tube. The shock tube generates animal loadings with controlled pure primary blast parameters over a wide range and field-relevant conditions. We studied the biomechanical loading with a set of pressure gauges mounted on the surface of the nose, in the cranial space, and in the thoracic cavity of cadaver rats. Anesthetized rats were exposed to a single blast at precisely controlled five peak overpressures over a wide range (130, 190, 230, 250, and 290 kPa). We observed 0% mortality rates in 130 and 230 kPa groups, and 30%, 24%, and 100% mortality rates in 190, 250, and 290 kPa groups, respectively. The body weight loss was statistically significant in 190 and 250 kPa groups 24 h after exposure. The data analysis showed the magnitude of peak-to-peak amplitude of intracranial pressure (ICP) fluctuations correlates well with mortality rates. The ICP oscillations recorded for 190, 250, and 290 kPa are characterized by higher frequency (10–20 kHz) than in other two groups (7–8 kHz). We noted acute bradycardia and lung hemorrhage in all groups of rats subjected to the blast. We established the onset of both corresponds to 110 kPa peak overpressure. The immunostaining against immunoglobulin G (IgG) of brain sections of rats sacrificed 24-h post-exposure indicated the diffuse blood-brain barrier breakdown in the brain parenchyma. At high blast intensities (peak overpressure of 190 kPa or more), the IgG uptake by neurons was evident, but there was no evidence of neurodegeneration after 24 h post-exposure, as indicated by cupric silver staining. We observed that the acute response as well as mortality is a non-linear function over the peak overpressure and impulse ranges explored in this work. PMID:23362798

  19. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model.

    PubMed

    Goldstein, Lee E; Fisher, Andrew M; Tagge, Chad A; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A; Upreti, Chirag; Kracht, Jonathan M; Ericsson, Maria; Wojnarowicz, Mark W; Goletiani, Cezar J; Maglakelidze, Giorgi M; Casey, Noel; Moncaster, Juliet A; Minaeva, Olga; Moir, Robert D; Nowinski, Christopher J; Stern, Robert A; Cantu, Robert C; Geiling, James; Blusztajn, Jan K; Wolozin, Benjamin L; Ikezu, Tsuneya; Stein, Thor D; Budson, Andrew E; Kowall, Neil W; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F; Moss, William C; Cleveland, Robin O; Tanzi, Rudolph E; Stanton, Patric K; McKee, Ann C

    2012-05-16

    Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein-linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory. PMID:22593173

  20. Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model

    PubMed Central

    Goldstein, Lee E.; Fisher, Andrew M.; Tagge, Chad A.; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A.; Upreti, Chirag; Kracht, Jonathan M.; Ericsson, Maria; Wojnarowicz, Mark W.; Goletiani, Cezar J.; Maglakelidze, Giorgi M.; Casey, Noel; Moncaster, Juliet A.; Minaeva, Olga; Moir, Robert D.; Nowinski, Christopher J.; Stern, Robert A.; Cantu, Robert C.; Geiling, James; Blusztajn, Jan K.; Wolozin, Benjamin L.; Ikezu, Tsuneya; Stein, Thor D.; Budson, Andrew E.; Kowall, Neil W.; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F.; Moss, William C.; Cleveland, Robin O.; Tanzi, Rudolph E.; Stanton, Patric K.; McKee, Ann C.

    2013-01-01

    Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory. PMID:22593173

  1. Analysis of In-Flight Collision Process During V-Type Firing Pattern in Surface Blasting Using Simple Physics

    NASA Astrophysics Data System (ADS)

    Chouhan, Lalit Singh; Raina, Avtar K.

    2015-10-01

    Blasting is a unit operation in Mine-Mill Fragmentation System (MMFS) and plays a vital role in mining cost. One of the goals of MMFS is to achieve optimum fragment size at minimal cost. Blast fragmentation optimization is known to result in better explosive energy utilization. Fragmentation depends on the rock, explosive and blast design variables. If burden, spacing and type of explosive used in a mine are kept constant, the firing sequence of blast-holes plays a vital role in rock fragmentation. To obtain smaller fragmentation size, mining professionals and relevant publications recommend V- or extended V-pattern of firing sequence. In doing so, it is assumed that the in-flight air collision breaks larger rock fragments into smaller ones, thus aiding further fragmentation. There is very little support to the phenomenon of breakage during in-flight collision of fragments during blasting in published literature. In order to assess the breakage of in-flight fragments due to collision, a mathematical simulation was carried over using basic principles of physics. The calculations revealed that the collision breakage is dependent on velocity of fragments, mass of fragments, the strength of the rock and the area of fragments over which collision takes place. For higher strength rocks, the in-flight collision breakage is very difficult to achieve. This leads to the conclusion that the concept demands an in-depth investigation and validation.

  2. Performance Optimization of Cold Rolled Type 316L Stainless Steel by Sand Blasting and Surface Linishing Treatment

    NASA Astrophysics Data System (ADS)

    Krawczyk, B.; Heine, B.; Engelberg, D. L.

    2016-03-01

    Sand blasting followed by a surface linishing treatment was applied to optimize the near-surface microstructure of cold rolled type 316L stainless steel. The introduction of cold rolling led to the formation of α-martensite. Specimens with large thickness reductions (40, 53%) were more susceptible to localized corrosion. The application of sand blasting produced a near-surface deformation layer containing compressive residual stresses with significantly increased surface roughness, resulting in reduced corrosion resistance. The most resistant microstructure was obtained with the application of a final linishing treatment after sand blasting. This treatment produced microstructures with compressive near-surface residual stresses, reduced surface roughness, and increased resistance to localized corrosion.

  3. Mechanical and histological characterization of trachea tissue subjected to blast-type pressures

    NASA Astrophysics Data System (ADS)

    Butler, B. J.; Bo, C.; Tucker, A. W.; Jardine, A. P.; Proud, W. G.; Williams, A.; Brown, K. A.

    2014-05-01

    Injuries to the respiratory system can be a component of polytrauma in blast-loading injuries. Tissues located at air-liquid interfaces, including such tissues in the respiratory system, are particularly vulnerable to damage by blast overpressures. There is a lack of information about the mechanical and cellular responses that contribute to the damage of this class of tissues subjected to the high strain rates associated with blast loading. Here, we describe the results of dynamic blast-like pressure loading tests at high strain rates on freshly harvested ex vivo trachea tissue specimens.

  4. Hemoglobin levels and circulating blasts are two easily evaluable diagnostic parameters highly predictive of leukemic transformation in primary myelofibrosis.

    PubMed

    Rago, Angela; Latagliata, Roberto; Montanaro, Marco; Montefusco, Enrico; Andriani, Alessandro; Crescenzi, Sabrina Leonetti; Mecarocci, Sergio; Spirito, Francesca; Spadea, Antonio; Recine, Umberto; Cicconi, Laura; Avvisati, Giuseppe; Cedrone, Michele; Breccia, Massimo; Porrini, Raffaele; Villivà, Nicoletta; De Gregoris, Cinzia; Alimena, Giuliana; D'Arcangelo, Enzo; Guglielmelli, Paola; Lo-Coco, Francesco; Vannucchi, Alessandro; Cimino, Giuseppe

    2015-03-01

    To predict leukemic transformation (LT), we evaluated easily detectable diagnostic parameters in 338 patients with primary myelofibrosis (PMF) followed in the Latium region (Italy) between 1981 and 2010. Forty patients (11.8%) progressed to leukemia, with a resulting 10-year leukemia-free survival (LFS) rates of 72%. Hb (<10g/dL), and circulating blasts (≥1%) were the only two independent prognostic for LT at the multivariate analysis. Two hundred-fifty patients with both the two parameters available were grouped as follows: low risk (none or one factor)=216 patients; high risk (both factors)=31 patients. The median LFS times were 269 and 45 months for the low and high-risk groups, respectively (P<.0001). The LT predictive power of these two parameters was confirmed in an external series of 270 PMF patients from Tuscany, in whom the median LFS was not reached and 61 months for the low and high risk groups, respectively (P<.0001). These results establish anemia and circulating blasts, two easily and universally available parameters, as strong predictors of LT in PMF and may help to improve prognostic stratification of these patients particularly in countries with low resources where more sophisticated molecular testing is unavailable. PMID:25636356

  5. Parametric analysis of the biomechanical response of head subjected to the primary blast loading - a data mining approach.

    PubMed

    Zhu, Feng; Kalra, Anil; Saif, Tal; Yang, Zaihan; Yang, King H; King, Albert I

    2016-08-01

    Traumatic brain injury due to primary blast loading has become a signature injury in recent military conflicts and terrorist activities. Extensive experimental and computational investigations have been conducted to study the interrelationships between intracranial pressure response and intrinsic or 'input' parameters such as the head geometry and loading conditions. However, these relationships are very complicated and are usually implicit and 'hidden' in a large amount of simulation/test data. In this study, a data mining method is proposed to explore such underlying information from the numerical simulation results. The heads of different species are described as a highly simplified two-part (skull and brain) finite element model with varying geometric parameters. The parameters considered include peak incident pressure, skull thickness, brain radius and snout length. Their interrelationship and coupling effect are discovered by developing a decision tree based on the large simulation data-set. The results show that the proposed data-driven method is superior to the conventional linear regression method and is comparable to the nonlinear regression method. Considering its capability of exploring implicit information and the relatively simple relationships between response and input variables, the data mining method is considered to be a good tool for an in-depth understanding of the mechanisms of blast-induced brain injury. As a general method, this approach can also be applied to other nonlinear complex biomechanical systems. PMID:26442779

  6. Structural and biochemical abnormalities in the absence of acute deficits in mild primary blast-induced head trauma.

    PubMed

    Walls, Michael K; Race, Nicholas; Zheng, Lingxing; Vega-Alvarez, Sasha M; Acosta, Glen; Park, Jonghyuck; Shi, Riyi

    2016-03-01

    OBJECT Blast-induced neurotrauma (BINT), if not fatal, is nonetheless potentially crippling. It can produce a wide array of acute symptoms in moderate-to-severe exposures, but mild BINT (mBINT) is characterized by the distinct absence of acute clinical abnormalities. The lack of observable indications for mBINT is particularly alarming, as these injuries have been linked to severe long-term psychiatric and degenerative neurological dysfunction. Although the long-term sequelae of BINT are extensively documented, the underlying mechanisms of injury remain poorly understood, impeding the development of diagnostic and treatment strategies. The primary goal of this research was to recapitulate primary mBINT in rodents in order to facilitate well-controlled, long-term investigations of blast-induced pathological neurological sequelae and identify potential mechanisms by which ongoing damage may occur postinjury. METHODS A validated, open-ended shock tube model was used to deliver blast overpressure (150 kPa) to anesthetized rats with body shielding and head fixation, simulating the protective effects of military-grade body armor and isolating a shock wave injury from confounding systemic injury responses, head acceleration, and other elements of explosive events. Evans Blue-labeled albumin was used to visualize blood-brain barrier (BBB) compromise at 4 hours postinjury. Iba1 staining was used to visualize activated microglia and infiltrating macrophages in areas of peak BBB compromise. Acrolein, a potent posttraumatic neurotoxin, was quantified in brain tissue by immunoblotting and in urine through liquid chromatography with tandem mass spectrometry at 1, 2, 3, and 5 days postinjury. Locomotor behavior, motor performance, and short-term memory were assessed with open field, rotarod, and novel object recognition (NOR) paradigms at 24 and 48 hours after the blast. RESULTS Average speed, maximum speed, and distance traveled in an open-field exploration paradigm did not show

  7. Model primary content type for multipurpose internet mail extensions

    SciTech Connect

    Nelson, S.; Parks, C.

    1997-01-01

    The purpose of this memo is to propose an update to Internet RFC 2045 to include a new primary content-type to be known as `model`. RFC 2045 [1] describes mechanisms for specifying and describing the format of Internet Message Bodies via content-type/subtype pairs. We believe that `model` defines a fundamental type of content with unique presentational, hardware, and processing aspects. Various subtypes of this primary type are immediately anticipated but will be covered under separate documents.

  8. Intrinsic radiation resistance of primary clonogenic blasts from children with newly diagnosed B-cell precursor acute lymphoblastic leukemia.

    PubMed Central

    Uckun, F M; Jaszcz, W; Chandan-Langlie, M; Waddick, K G; Gajl-Peczalska, K; Song, C W

    1993-01-01

    The radiation sensitivity of primary clonogenic blasts from 44 children with newly diagnosed B-cell precursor acute lymphoblastic leukemia (ALL) was analyzed using leukemic progenitor cell (LPC) colony assays. The derived values for SF2 (surviving fraction at 200 cGy) and alpha (initial slope of radiation survival curves constructed according to the linear quadratic model) indicated a marked interpatient heterogeneity in intrinsic radiation sensitivity of LPC populations. The SF2 values ranged from 0.01 to 1.00 (median = 0.430; mean +/- SE = 0.47 +/- 0.04), and the alpha values ranged from 0.000 to 3.272 Gy-1 (median = 0.280 Gy-1; mean +/- SE = 0.430 +/- 0.093 Gy-1). When CD19+ CD34+ versus CD19+ CD34- immunophenotypes were compared, a trend toward higher SF2 and lower alpha values were observed in LPC from CD34+ patients, consistent with greater radiation resistance. When patients were divided into three approximately equal groups based on increasing levels of CD34 expression, a clear ordering effect was observed indicating that increased CD34 expression levels are associated with significantly higher radiation resistance at the level of B-lineage LPC. The highest CD34 expression group (> or = 75% positivity) had 1.4-fold higher SF2 (P = 0.05) and twofold lower alpha values (P = 0.06) than the lowest group (< 30% positivity). Furthermore, the CD34 positivity of radiation resistant (alpha < or = 0.2 and SF2 > or = 0.5) B-cell precursor ALL cases was greater than the CD34 positivity of radiation sensitive (alpha > 0.2 and/or SF2 < 0.5) cases (56 +/- 9% versus 34 +/- 9%, P = 0.09). Whereas only 6 of 16 (38%) of radiation sensitive cases were CD34+, 11 of 15 (73%) of radiation resistant cases expressed CD34 (P = 0.04). Our results offer new insights into the inherent and/or acquired radiation resistance of primary clonogenic blasts from B-cell precursor ALL patients. Images PMID:8450034

  9. A Novel Preclinical Model of Moderate Primary Blast-Induced Traumatic Brain Injury.

    PubMed

    Divani, Afshin A; Murphy, Amanda J; Meints, Joyce; Sadeghi-Bazargani, Homayoun; Nordberg, Jessica; Monga, Manoj; Low, Walter C; Bhatia, Prerana M; Beilman, Greg J; SantaCruz, Karen S

    2015-07-15

    Blast-induced traumatic brain injury (bTBI) is the "signature" injury of the recent Iraq and Afghanistan wars. Here, we present a novel method to induce bTBI using shock wave (SW) lithotripsy. Using a lithotripsy machine, Wistar rats (N = 70; 408.3 ± 93 g) received five SW pulses to the right side of the frontal cortex at 24 kV and a frequency of 60 Hz. Animals were then randomly divided into three study endpoints: 24 h (n = 25), 72 h (n = 19) and 168 h (n = 26). Neurological and behavioral assessments (Garcia's test, beam walking, Rotarod, and elevated plus maze) were performed at the baseline, and further assessments followed at 3, 6, 24, 72, and 168 h post-injury, if applicable. We performed digital subtraction angiography (DSA) to assess presence of cerebral vasospasm due to induced bTBI. Damage to brain tissue was assessed by an overall histological severity (OHS) score based on depth of injury, area of hemorrhage, and extent of axonal injury. Except for beam walking, OHS was significantly correlated with the other three outcome measures with at least one of their assessments during the first 6 h after the experiment. OHS manifested the highest absolute correlation coefficients with anxiety at the baseline and 6 h post-injury (r(baseline) = -0.75, r(6hrs) = 0.85; p<0.05). Median hemispheric differences for contrast peak values (obtained from DSA studies) for 24, 72, and 168 h endpoints were 3.45%, 3.05% and 0.2%, respectively, with statistically significant differences at 1 versus 7 d (p<0.05) and 3 versus 7 d (p<0.01). In this study, we successfully established a preclinical rat model of bTBI with characteristics similar to those observed in clinical cases. This new method may be useful for future investigations aimed at understanding bTBI pathophysiology. PMID:25585201

  10. Adaptive reconfigurable V-BLAST type equalizer for cognitive MIMO-OFDM radios

    NASA Astrophysics Data System (ADS)

    Ozden, Mehmet Tahir

    2015-12-01

    An adaptive channel shortening equalizer design for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) radio receivers is considered in this presentation. The proposed receiver has desirable features for cognitive and software defined radio implementations. It consists of two sections: MIMO decision feedback equalizer (MIMO-DFE) and adaptive multiple Viterbi detection. In MIMO-DFE section, a complete modified Gram-Schmidt orthogonalization of multichannel input data is accomplished using sequential processing multichannel Givens lattice stages, so that a Vertical Bell Laboratories Layered Space Time (V-BLAST) type MIMO-DFE is realized at the front-end section of the channel shortening equalizer. Matrix operations, a major bottleneck for receiver operations, are accordingly avoided, and only scalar operations are used. A highly modular and regular radio receiver architecture that has a suitable structure for digital signal processing (DSP) chip and field programable gate array (FPGA) implementations, which are important for software defined radio realizations, is achieved. The MIMO-DFE section of the proposed receiver can also be reconfigured for spectrum sensing and positioning functions, which are important tasks for cognitive radio applications. In connection with adaptive multiple Viterbi detection section, a systolic array implementation for each channel is performed so that a receiver architecture with high computational concurrency is attained. The total computational complexity is given in terms of equalizer and desired response filter lengths, alphabet size, and number of antennas. The performance of the proposed receiver is presented for two-channel case by means of mean squared error (MSE) and probability of error evaluations, which are conducted for time-invariant and time-variant channel conditions, orthogonal and nonorthogonal transmissions, and two different modulation schemes.

  11. Blast injury with particular reference to recent terrorist bombing incidents.

    PubMed Central

    Hill, J. F.

    1979-01-01

    The aetiology of primary blast lung is discussed with reference to the biodynamics of blast injury, and the clinical and pathological features of the condition are described. An analysis of casualties from bomb blast incidents occurring in Northern Ireland leads to the following conclusions concerning the injuries found in persons exposed to explosions: (1) there is a predominance of head and neck trauma, including fractures, lacerations, burns, and eye and ear injuries; (2) fractures and traumatic amputations are common and often multiple; (3) penetrating trunk wounds carry a grave prognosis; and (4) primary blast lung is rare. A comparison of four bombing incidents in England in 1973 and 1974 shows how the type and severity of injury are related to the place in which the explosion occurs. The administrative and clinical aspects of the management of casualties resulting from terrorist bombing activities are discussed. PMID:369445

  12. Blast injury research models

    PubMed Central

    Kirkman, E.; Watts, S.; Cooper, G.

    2011-01-01

    Blast injuries are an increasing problem in both military and civilian practice. Primary blast injury to the lungs (blast lung) is found in a clinically significant proportion of casualties from explosions even in an open environment, and in a high proportion of severely injured casualties following explosions in confined spaces. Blast casualties also commonly suffer secondary and tertiary blast injuries resulting in significant blood loss. The presence of hypoxaemia owing to blast lung complicates the process of fluid resuscitation. Consequently, prolonged hypotensive resuscitation was found to be incompatible with survival after combined blast lung and haemorrhage. This article describes studies addressing new forward resuscitation strategies involving a hybrid blood pressure profile (initially hypotensive followed later by normotensive resuscitation) and the use of supplemental oxygen to increase survival and reduce physiological deterioration during prolonged resuscitation. Surprisingly, hypertonic saline dextran was found to be inferior to normal saline after combined blast injury and haemorrhage. New strategies have therefore been developed to address the needs of blast-injured casualties and are likely to be particularly useful under circumstances of enforced delayed evacuation to surgical care. PMID:21149352

  13. Operational results of shaft repair by installing stave type cooler at Kimitsu Nos. 3 and 4 blast furnaces

    SciTech Connect

    Oda, Hiroshi; Amano, Shigeru; Sakamoto, Aiichiro; Anzai, Osamu; Nakagome, Michiru; Kuze, Toshisuke; Imuta, Akira

    1997-12-31

    Nos. 3 and 4 blast furnaces in Nippon Steel Corporation Kimitsu Works were both initially fitted with cooling plate systems. With the aging of each furnace, the damage to their respective inner-shaft profiles had become serious. Thus, in order to prevent operational change and prolong the furnace life, the inner-shaft profile of each furnace was repaired by replacing the former cooling plate system with the stave type cooler during the two-week-shutdowns. With this repair, stability of burden descent and gas flow near the wall part of the furnace have been achieved. Thus the prolongation of the furnace life is naturally expected.

  14. [Type IIb primary hyperlipoproteinemia. An homogenous series of 412 cases].

    PubMed

    Rouffy, J; Loeper, J; Dreux, C; Lemogne, M; Loeper, J; Pestel, M; Dakkak, R

    1976-03-20

    On the basis of a homogeneous series of 412 cases of type IIb primary hyperlipoproteinaemia, the authors compare their experience with findings in the literature. The prevalence of this type of hyperlipoproteinaemia in the general population has been underestimated at 3%. Biological diagnosis remains simple (identification of a double and distinct excess in beta and pre beta lipoproteins). Extravascular lipid deposits (gerontoxon, xanthelasma, tendon xanthomata) are not type specific. Hyperlipidaemic syndrome is rare. Above all, the importance of type IIb in atheromatous disease in the young subject now seems obvious. The mode of hereditary transmission of the familial anomaly is not certain but would appear to be often associated with a double heterozygote condition. PMID:1264609

  15. Primary prevention of type 2 diabetes: integrative public health and primary care opportunities, challenges and strategies

    PubMed Central

    Green, Lawrence W; Brancati, Frederick L; Albright, Ann

    2012-01-01

    Type 2 diabetes imposes a large and growing burden on the public’s health. This burden, combined with the growing evidence for primary prevention from randomized controlled trials of structured lifestyle programs leads to recommendations to include caloric reduction, increased physical activity and specific assistance to patients in problem solving to achieve modest weight loss as well as pharmacotherapy. These recommendations demand exploration of new ways to implement such primary prevention strategies through more integrated community organization, medical practice and policy. The US experience with control of tobacco use and high blood pressure offers valuable lessons for policy, such as taxation on products, and for practice in a variety of settings, such as coordination of referrals for lifestyle supports. We acknowledge also some notable exceptions to their generalizability. This paper presents possible actions proposed by an expert panel, summarized in Table 1 as recommendations for immediate action, strategic action and research. The collaboration of primary care and public health systems will be required to make many of these recommendations a reality. This paper also provides information on the progress made in recent years by the Division of Diabetes Translation at the US Centers for Disease Control and Prevention (CDC) to implement or facilitate such integration of primary care and public health for primary prevention. PMID:22399542

  16. Heart failure therapeutics on the basis of a biased ligand of the angiotensin-2 type 1 receptor. Rationale and design of the BLAST-AHF study (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure).

    PubMed

    Felker, G Michael; Butler, Javed; Collins, Sean P; Cotter, Gad; Davison, Beth A; Ezekowitz, Justin A; Filippatos, Gerasimos; Levy, Phillip D; Metra, Marco; Ponikowski, Piotr; Soergel, David G; Teerlink, John R; Violin, Jonathan D; Voors, Adriaan A; Pang, Peter S

    2015-03-01

    The BLAST-AHF (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure) study is designed to test the efficacy and safety of TRV027, a novel biased ligand of the angiotensin-2 type 1 receptor, in patients with acute heart failure (AHF). AHF remains a major public health problem, and no currently-available therapies have been shown to favorably affect outcomes. TRV027 is a novel biased ligand of the angiotensin-2 type 1 receptor that antagonizes angiotensin-stimulated G-protein activation while stimulating β-arrestin. In animal models, these effects reduce afterload while increasing cardiac performance and maintaining stroke volume. In initial human studies, TRV027 appears to be hemodynamically active primarily in patients with activation of the renin-angiotensin-aldosterone system, a potentially attractive profile for an AHF therapeutic. BLAST-AHF is an international prospective, randomized, phase IIb, dose-ranging study that will randomize up to 500 AHF patients with systolic blood pressure ≥120 mm Hg and ≤200 mm Hg within 24 h of initial presentation to 1 of 3 doses of intravenous TRV027 (1, 5, or 25 mg/h) or matching placebo (1:1:1:1) for at least 48 h and up to 96 h. The primary endpoint is a composite of 5 clinical endpoints (dyspnea, worsening heart failure, length of hospital stay, 30-day rehospitalization, and 30-day mortality) combined using an average z-score. Secondary endpoints will include the assessment of dyspnea and change in amino-terminal pro-B-type natriuretic peptide. The BLAST-AHF study will assess the efficacy and safety of a novel biased ligand of the angiotensin-2 type 1 receptor in AHF. PMID:25650371

  17. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.

    PubMed

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED. PMID:21034127

  18. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps

    NASA Astrophysics Data System (ADS)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  19. Human alveolar epithelial type II cells in primary culture.

    PubMed

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-02-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  20. Human alveolar epithelial type II cells in primary culture

    PubMed Central

    Mao, Pu; Wu, Songling; Li, Jianchun; Fu, Wei; He, Weiqun; Liu, Xiaoqing; Slutsky, Arthur S; Zhang, Haibo; Li, Yimin

    2015-01-01

    Alveolar epithelial type II (AEII) cells are a key structure and defender in the lung but also are the targets in many lung diseases, including acute respiratory distress syndrome, ventilator-induced lung injury, and pulmonary fibrosis. We sought to establish an optimized method for high yielding and long maintenance of characteristics of primary human AEII cells to facilitate the investigation of the mechanisms of lung diseases at the cellular and molecular levels. Adult human peripheral normal lung tissues of oncologic patients undergoing lung resection were collected. The AEII cells were isolated and identified by the expression of pro-surfactant protein (SP)C, epithelial sodium channel (αENaC) and cytokeratin (CK)-8, the lamellar bodies specific for AEII cells, and confirmed by the histology using electron microscopy. The phenotype of AEII cells was characterized by the expression of surfactant proteins (SP-A, SP-B, SP-C, SP-D), CK-8, KL-6, αENaC, and aquaporin (AQP)-3, which was maintained over 20 days. The biological activity of the primary human AEII cells producing SP-C, cytokines, and intercellular adhesion molecule-1 was vigorous in response to stimulation with tumor necrosis factor-α. We have modified previous methods and optimized a method for isolation of high purity and long maintenance of the human AEII cell phenotype in primary culture. This method provides an important tool for studies aiming at elucidating the molecular mechanisms of lung diseases exclusively in AEII cells. PMID:25677546

  1. Blast Injuries

    MedlinePlus

    ... Service Members & Veterans Family & Caregivers Medical Providers Blast Injuries U.S. Army photo by Sgt. Gustavo Olgiati How ... tertiary injury Does a blast cause different brain injuries than blunt trauma? There currently is no evidence ...

  2. Cell culture models using rat primary alveolar type I cells.

    PubMed

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-10-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  3. Cell culture models using rat primary alveolar type I cells

    PubMed Central

    Downs, Charles A.; Montgomery, David W.; Merkle, Carrie J.

    2011-01-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ±2.7%) and MVECL (97.9 ±1.1 %) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin coated 24 well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 micron pores. Additionally AT I cells were grown in a thick layer of Matrigel® to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cell cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  4. Passive blast pressure sensor

    DOEpatents

    King, Michael J.; Sanchez, Roberto J.; Moss, William C.

    2013-03-19

    A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

  5. Effectiveness of eye armor during blast loading.

    PubMed

    Bailoor, Shantanu; Bhardwaj, Rajneesh; Nguyen, Thao D

    2015-11-01

    Ocular trauma is one of the most common types of combat injuries resulting from the interaction of military personnel with improvised explosive devices. Ocular blast injury mechanisms are complex, and trauma may occur through various injury mechanisms. However, primary blast injuries (PBI) are an important cause of ocular trauma that may go unnoticed and result in significant damage to internal ocular tissues and visual impairment. Further, the effectiveness of commonly employed eye armor, designed for ballistic and laser protection, in lessening the severity of adverse blast overpressures (BOP) is unknown. In this paper, we employed a three-dimensional (3D) fluid-structure interaction computational model for assessing effectiveness of the eye armor during blast loading on human eyes and validated results against free field blast measurements by Bentz and Grimm (2013). Numerical simulations show that the blast waves focused on the ocular region because of reflections from surrounding facial features and resulted in considerable increase in BOP. We evaluated the effectiveness of spectacles and goggles in mitigating the pressure loading using the computational model. Our results corroborate experimental measurements showing that the goggles were more effective than spectacles in mitigating BOP loading on the eye. Numerical results confirmed that the goggles significantly reduced blast wave penetration in the space between the armor and the eyes and provided larger clearance space for blast wave expansion after penetration than the spectacles. The spectacles as well as the goggles were more effective in reducing reflected BOP at higher charge mass because of the larger decrease in dynamic pressures after the impact. The goggles provided greater benefit of reducing the peak pressure than the spectacles for lower charge mass. However, the goggles resulted in moderate, sustained elevated pressure loading on the eye, that became 50-100% larger than the pressure loading

  6. 14 CFR 21.24 - Issuance of type certificate: primary category aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Issuance of type certificate: primary... type certificate: primary category aircraft. (a) The applicant is entitled to a type certificate for an aircraft in the primary category if— (1) The aircraft— (i) Is unpowered; is an airplane powered by a...

  7. Environmental factors and primary prevention in type 1 diabetes

    PubMed Central

    Ilonen, Jorma; Vaarala, Outi; Åkerblom, Hans K.; Knip, Mikael

    2014-01-01

    The incidence of type 1 diabetes has been increasing rapidly among children in most European countries over the last decades. Despite of the known strong genetic component in the disease only environmental factors can explain such a rapid change. The increase in incidence has been most conspicuous in the youngest age group, which emphasizes the importance of infancy and early environmental exposures. Nutritional and infectious factors affecting the young child or even the mother during pregnancy have been implicated to be important in the pathogenesis. The identification of single factors has been extremely difficult as reflected by many controversial reports on their importance. This difficulty may also be due to the heterogeneity of the disease mechanisms. Multiple mechanisms in different pathways may ultimately be responsible for beta-cell destruction. In most cases the disease is probably caused by a complex interplay between multiple factors including distinct genetic polymorphisms and environmental effects. Exploration of these pathways is needed for the development of effective preventive measures. The implementation of primary prevention trials will ultimately prove the value of various concepts generated for the disease pathogenesis. PMID:20455416

  8. Optimized Battery-Type Reactor Primary System Design Utilizing Lead

    SciTech Connect

    Yu, Yong H.; Son, Hyoung M.; Lee, Il S.; Suh, Kune Y.

    2006-07-01

    A number of small and medium size reactors are being developed worldwide as well as large electricity generation reactors for co-generation, district heating or desalination. The Seoul National University has started to develop 23 MWth BORIS (Battery Optimized Reactor Integral System) as a multi-purpose reactor. BORIS is an integral-type optimized fast reactor with an ultra long life core. BORIS is being designed to meet the Generation IV nuclear energy system goals of sustainability, safety, reliability and economics. Major features of BORIS include 20 consecutive years of operation without refueling; elimination of an intermediate heat transport loop and main coolant pump; open core without individual subassemblies; inherent negative reactivity feedback; and inherent load following capability. Its one mission is to provide incremental electricity generation to match the needs of developing nations and especially remote communities without major electrical grid connections. BORIS consists of a reactor module, heat exchanger, coolant module, guard vessel, reactor vessel auxiliary cooling system (RVACS), secondary system, containment and the seismic isolation. BORIS is designed to generate 10 MWe with the resulting thermal efficiency of 45 %. BORIS uses lead as the primary system coolant because of the inherent safety of the material. BORIS is coupled with a supercritical carbon dioxide Brayton cycle as the secondary system to gain a high cycle efficiency in the range of 45 %. The reference core consists of 757 fuel rods without assembly with an active core height of 0.8 m. The BORIS core consists of single enrichment zone composed of a Pu-MA (minor actinides)-U-N fuel and a ferritic-martensitic stainless steel clad. This study is intended to set up appropriate reactor vessel geometry by performing thermal hydraulic analysis on RVACS using computational fluid dynamics codes; to examine the liquid metal coolant behavior along the subchannels; to find out whether the

  9. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  10. Expanding the Range of Text Types Used in the Primary Grades

    ERIC Educational Resources Information Center

    Strachan, Stephanie L.

    2015-01-01

    Primary-grade students' experiences with text should prepare them to critically read an extensive range of text types throughout their schooling and career, a primary goal of the Common Core State Standards (CCSS). However, research demonstrates that narrative text overshadows other text types in the primary grades. The purpose of this…

  11. A Gram-Negative Bacterial Secreted Protein Types Prediction Method Based on PSI-BLAST Profile

    PubMed Central

    2016-01-01

    Prediction of secreted protein types based solely on sequence data remains to be a challenging problem. In this study, we extract the long-range correlation information and linear correlation information from position-specific score matrix (PSSM). A total of 6800 features are extracted at 17 different gaps; then, 309 features are selected by a filter feature selection method based on the training set. To verify the performance of our method, jackknife and independent dataset tests are performed on the test set and the reported overall accuracies are 93.60% and 100%, respectively. Comparison of our results with the existing method shows that our method provides the favorable performance for secreted protein type prediction. PMID:27563663

  12. Types of Primary Insomnia: Is Hyperarousal Also Present during Napping?

    PubMed Central

    Pérusse, Alexandra D.; Turcotte, Isabelle; St-Jean, Geneviève; Ellis, Jason; Hudon, Carol; Bastien, Célyne H.

    2013-01-01

    Study Objectives: The objective of this study was to identify if hyperarousal is a 24-hour phenomenon in insomnia by comparing sleep during napping between good sleepers (GS) and Insomnia sufferers (INS) (subdivided into paradoxical “PARA-I” and psychophysiological “PSY-I”) following a mentally challenging battery of cognitive tests. Design: Cross-sectional comparisons of GS, PSY-I, and PARA-I. Setting: Participants slept for 4 consecutive nights in the laboratory where PSG was recorded. Upon awakening on mornings 2 and 3, cognitive testing (lasting 90-120 min) was administered, followed by a 20-minute nap. Participants: Fourteen PSY-I, 12 PARA-I, and 23 GS completed the study, comprising home questionnaires, clinical interviews, night PSG recordings, cognitive testing, and nap PSG recordings. All participants were between 25 and 50 years of age and met inclusion criteria for PSY-I, PARA-I, or GS. Interventions: N/A. Measurements and Results: On objective nap parameters, GS had a longer total sleep time (TST; p = 0.008) and better sleep efficiency (SE; p = 0.009), than PSY-I and PARA-I, and both groups of INS were awake significantly longer than GS (p = 0.003). Also, PARA-I took significantly more time than GS to fall asleep (p = 0.014). Subjectively reported sleepiness was comparable across the three groups. Positive relationships were observed between SE over the night and SE over the nap the following day. Conclusions: Results show that GS sleep better than INS during naps following prolonged cognitive testing, suggesting that, in INS, hyperarousal predominates over mental fatigue resulting from these tests. These results may parallel what is observed at night when INS experience increased cognitive load but are unable to fall asleep. Citation: Pérusse AD; Turcotte I; St-Jean G; Ellis J; Hudon C; Bastien CH. Types of primary insomnia: is hyperarousal also present during napping? J Clin Sleep Med 2013;9(12):1273-1280. PMID:24340289

  13. Protrusions Beyond the Blast Waves of Young Type Ia Supernova Remnants: Hydrodynamic Instabilities or Ejecta Bullets?

    NASA Astrophysics Data System (ADS)

    Dyer, Ashton; Blondin, J. M.; Reynolds, S. P.

    2014-01-01

    High resolution imaging of two young Type Ia supernova remnants (SNRs), Tycho and SN 1006, has revealed several morphological features which have resisted explanation with numerical simulations. One such feature is the presence of shocked ejecta blobs protruding beyond the mean forward shock radius. Two current theories explain the presence of such ejecta: highly dense ejecta shrapnel produced in the explosion penetrating the forward shock, or plumes generated by hydrodynamic instabilities long after the initial explosion. We investigate the shrapnel theory through hydrodynamic simulations in 2D and 3D of the evolution of dense ejecta clumps embedded in an exponential density profile, appropriate for Type Ia supernovae. We use high-resolution 2D simulations to identify relevant clump parameters which we investigate further in 3D. In contradiction to some former work, we find that sufficiently resolved clumps in 2D models shatter upon collision with the forward shock, yielding new protrusion features. In both 2D and 3D, shrapnel is capable of penetrating the forward shock, but the resultant protrusions in 3D simulations vary significantly from those in similar 2D runs, implying 2D simulations may not be an accurate method of investigating the shrapnel theory. We compare the our simulations with Chandra observations of projections seen in Tycho and SN 1006. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  14. A novel closed-head model of mild traumatic brain injury caused by primary overpressure blast to the cranium produces sustained emotional deficits in mice.

    PubMed

    Heldt, Scott A; Elberger, Andrea J; Deng, Yunping; Guley, Natalie H; Del Mar, Nobel; Rogers, Joshua; Choi, Gy Won; Ferrell, Jessica; Rex, Tonia S; Honig, Marcia G; Reiner, Anton

    2014-01-01

    Emotional disorders are a common outcome from mild traumatic brain injury (TBI) in humans, but their pathophysiological basis is poorly understood. We have developed a mouse model of closed-head blast injury using an air pressure wave delivered to a small area on one side of the cranium, to create mild TBI. We found that 20-psi blasts in 3-month-old C57BL/6 male mice yielded no obvious behavioral or histological evidence of brain injury, while 25-40 psi blasts produced transient anxiety in an open field arena but little histological evidence of brain damage. By contrast, 50-60 psi blasts resulted in anxiety-like behavior in an open field arena that became more evident with time after blast. In additional behavioral tests conducted 2-8 weeks after blast, 50-60 psi mice also demonstrated increased acoustic startle, perseverance of learned fear, and enhanced contextual fear, as well as depression-like behavior and diminished prepulse inhibition. We found no evident cerebral pathology, but did observe scattered axonal degeneration in brain sections from 50 to 60 psi mice 3-8 weeks after blast. Thus, the TBI caused by single 50-60 psi blasts in mice exhibits the minimal neuronal loss coupled to "diffuse" axonal injury characteristic of human mild TBI. A reduction in the abundance of a subpopulation of excitatory projection neurons in basolateral amygdala enriched in Thy1 was, however, observed. The reported link of this neuronal population to fear suppression suggests their damage by mild TBI may contribute to the heightened anxiety and fearfulness observed after blast in our mice. Our overpressure air blast model of concussion in mice will enable further studies of the mechanisms underlying the diverse emotional deficits seen after mild TBI. PMID:24478749

  15. Behavioral Outcomes Differ between Rotational Acceleration and Blast Mechanisms of Mild Traumatic Brain Injury

    PubMed Central

    Stemper, Brian D.; Shah, Alok S.; Budde, Matthew D.; Olsen, Christopher M.; Glavaski-Joksimovic, Aleksandra; Kurpad, Shekar N.; McCrea, Michael; Pintar, Frank A.

    2016-01-01

    Mild traumatic brain injury (mTBI) can result from a number of mechanisms, including blunt impact, head rotational acceleration, exposure to blast, and penetration of projectiles. Mechanism is likely to influence the type, severity, and chronicity of outcomes. The objective of this study was to determine differences in the severity and time course of behavioral outcomes following blast and rotational mTBI. The Medical College of Wisconsin (MCW) Rotational Injury model and a shock tube model of primary blast injury were used to induce mTBI in rats and behavioral assessments were conducted within the first week, as well as 30 and 60 days following injury. Acute recovery time demonstrated similar increases over protocol-matched shams, indicating acute injury severity equivalence between the two mechanisms. Post-injury behavior in the elevated plus maze demonstrated differing trends, with rotationally injured rats acutely demonstrating greater activity, whereas blast-injured rats had decreased activity that developed at chronic time points. Similarly, blast-injured rats demonstrated trends associated with cognitive deficits that were not apparent following rotational injuries. These findings demonstrate that rotational and blast injury result in behavioral changes with different qualitative and temporal manifestations. Whereas rotational injury was characterized by a rapidly emerging phenotype consistent with behavioral disinhibition, blast injury was associated with emotional and cognitive differences that were not evident acutely, but developed later, with an anxiety-like phenotype still present in injured animals at our most chronic measurements. PMID:27014184

  16. Combined liver-kidney transplantation in primary hyperoxaluria type 1.

    PubMed

    Cochat, P; Gaulier, J M; Koch Nogueira, P C; Feber, J; Jamieson, N V; Rolland, M O; Divry, P; Bozon, D; Dubourg, L

    1999-12-01

    Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder characterised by an increased urinary excretion of calcium oxalate, leading to recurrent urolithiasis, nephrocalcinosis and accumulation of insoluble oxalate throughout the body (oxalosis) when the glomerular filtration rate falls to below 40-20 mL/min per 1.73 m(2). The disease is due to a functional defect of the liver-specific peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), the gene of which is located on chromosome 2q37.3. The diagnosis is based on increased urinary oxalate and glycollate, increased plasma oxalate and AGT measurement in a liver biopsy. AGT mistargeting may be investigated by immuno-electron microscopy and DNA analysis. End-stage renal failure is reached by the age of 15 years in 50% of PH1 patients and the overall death rate approximates 30%. The conservative treatment includes high fluid intake, pyridoxine and crystallisation inhibitors. Since the kidney is the main target of the disease, isolated kidney transplantation (Tx) has been proposed in association with vigorous peri-operative haemodialysis in an attempt to clear plasma oxalate at the time of Tx. However, because of a 100% recurrence rate, the average 3-year graft survival is 15%-25% in Europe, with a 5-10-year patient survival rate ranging from 10% to 50%. Since the liver is the only organ responsible for the detoxification of glyoxylate by AGT, deficient host liver removal is the first rationale for enzyme replacement therapy. Subsequent orthotopic liver Tx aims to supply the missing enzyme in its normal cellular and subcellular location and thus can be regarded as a form of gene therapy. Because of the usual spectrum of the disease, isolated liver Tx is limited to selected patients prior to having reached an advanced stage of chronic renal failure. Combined liver-kidney Tx has therefore become a conventional treatment for most PH1 patients: according to the European experience, patient survival

  17. Primary perforating granulomatous folliculitis--scarring deep type.

    PubMed

    Arin, Meral J; Kurschat, Peter; Mahrle, Gustav

    2010-01-01

    Perforating folliculitis is characterized by asymptomatic skin-coloured or erythematous scattered and aggregated follicular papules with a central keratotic plug. Histologically, a superficial type can be distinguished from the profound type where perforations and rupture of the follicular wall take place at different levels of the hair follicle. This goes along with a granulomatous reaction of the entire pilary complex with destruction of the follicle epithelium and sebaceous gland. Often cases are associated with systemic disorders such as renal diseases or diabetes mellitus. We describe two patients with the profunda type of perforating folliculitis with scarring that manifested in early adulthood without any underlying disorders. PMID:20176545

  18. [Typing of infiltration cells in primary, localized, nodular, cutaneous amyloidosis].

    PubMed

    Sepp, N; Grünewald, K; Soyer, H P; Kerl, H; Breathnach, S M; Fritsch, P; Hintner, H

    1992-04-01

    Amyloid tumours in two patients with primary localized nodular cutaneous amyloidosis contained very dense infiltrates consisting mainly of plasma cells and lymphocytes. In one case IgM was detected on many cells of the infiltrate, while in the other IgA was found in morphologically apparently normal plasma cells. Immunohistochemical investigations did not reveal any immunoglobulin light chain restriction in either of the tumours. Numerous cells expressed B cell markers, such as CD20 or CD38. Rearrangement studies on material from the amyloid tumour of one of the patients confirmed the monoclonality of plasma cells. This observation indicates that the nodules of primary localized nodular cutaneous amyloidosis indeed represent an extramedullary plasmocytoma, which consists of amyloid-producing plasma cells. Of special interest was the unexpectedly high proportion of cells expressing T cell markers (CD3, CD5, CD4 greater than CD8) in the amyloid nodules of both patients. After excluding co-expression of B and T cell markers on identical cells by immunohistochemical studies on serial sections and also after molecular biological studies, we assume that this is a separate T cell population that may have a regulatory effect on the production of amyloid. PMID:1597370

  19. Multifocal primary cutaneous extranodal NK/T lymphoma nasal type*

    PubMed Central

    de Vasconcelos, Pedro; Ferreira, Cristina; Soares-Almeida, Luís; Filipe, Paulo

    2016-01-01

    Nasal type extranodal NK/T-cell lymphoma is a distinct entity according to the World Health Organization classification. Although 60% to 90% of patients with this disease present with a destructive mass in the midline facial tissues, it may also primarily or secondarily involve extranasal sites, like the skin. We report the case of a 77-year-old patient that came to our department with erythematous plaques of the right leg and eczematous lesions of the trunk. These lesions were biopsied and the patient was diagnosed with extranodal NK/T-cell lymphoma, nasal type. He was treated with multi-agent systemic chemotherapy but died 5 months after diagnosis. This case highlights the rarity and variability of cutaneous features of this disease and its aggressive course and poor prognosis. PMID:27192524

  20. Primary Intestinal-type Adenocarcinoma of the Nasal Cavity

    PubMed Central

    Belli, S; Taskin, U; Caglar, A; Tetikkurt, US

    2014-01-01

    ABSTRACT We report a rare case of sinonasal intestinal-type adenocarcinoma in the nasal cavity. A 31-year old man presented with headache and epistaxis. We identified a malignant tumour, which is a rare pathology, with detailed physical examination, anterior rhinoscopy, computed tomography scan, magnetic resonance imaging and histopathologic examination. Endoscopic excision of the tumour was performed. After three years of follow-up of the patient in our clinic, there was no sign of any recurrence. PMID:25803391

  1. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  2. A Novel Closed-Head Model of Mild Traumatic Brain Injury Using Focal Primary Overpressure Blast to the Cranium in Mice.

    PubMed

    Guley, Natalie H; Rogers, Joshua T; Del Mar, Nobel A; Deng, Yunping; Islam, Rafiqul M; D'Surney, Lauren; Ferrell, Jessica; Deng, Bowei; Hines-Beard, Jessica; Bu, Wei; Ren, Huiling; Elberger, Andrea J; Marchetta, Jeffrey G; Rex, Tonia S; Honig, Marcia G; Reiner, Anton

    2016-02-15

    Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25-40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50-60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits. PMID:26414413

  3. Primary types of longhorned woodboring beetles (Coleoptera: Cerambycidae and Disteniidae) of the Smithsonian Institution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary types of longhorned woodboring beetles (Coleoptera: Cerambycidae, Disteniidae) of the National Museum of Natural History (Smithsonian Institution) are catalogued and figured, current through 2012 (but also including some 2013 holotypes). Data on the original combination, current combina...

  4. Primary types of Chinese longhorned woodboring beetles (Coleoptera: Cerambycidae: and Disteniidae) of the Smithsonian Institution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary types of Chinese (mainland China, Taiwan, and Tibet) longhorned woodboring beetles (Coleoptera: Cerambycidae, Disteniidae) of the Smithsonian Institution are catalogued and figured, current through 2012. Data on the original combination, current name, current tribal classification, and ...

  5. Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    SciTech Connect

    Taylor, Paul Allen; Ford, Corey C.

    2008-04-01

    U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.

  6. Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast.

    PubMed

    Abdul-Muneer, P M; Schuetz, Heather; Wang, Fang; Skotak, Maciej; Jones, Joselyn; Gorantla, Santhi; Zimmerman, Matthew C; Chandra, Namas; Haorah, James

    2013-07-01

    We investigate the hypothesis that oxidative damage of the cerebral vascular barrier interface (the blood-brain barrier, BBB) causes the development of mild traumatic brain injury (TBI) during a primary blast-wave spectrum. The underlying biochemical and cellular mechanisms of this vascular layer-structure injury are examined in a novel animal model of shock tube. We first established that low-frequency (123kPa) single or repeated shock wave causes BBB/brain injury through biochemical activation by an acute mechanical force that occurs 6-24h after the exposure. This biochemical damage of the cerebral vasculature is initiated by the induction of the free radical-generating enzymes NADPH oxidase 1 and inducible nitric oxide synthase. Induction of these enzymes by shock-wave exposure paralleled the signatures of oxidative and nitrosative damage (4-HNE/3-NT) and reduction of the BBB tight-junction (TJ) proteins occludin, claudin-5, and zonula occluden 1 in the brain microvessels. In parallel with TJ protein disruption, the perivascular unit was significantly diminished by single or repeated shock-wave exposure coinciding with the kinetic profile. Loosening of the vasculature and perivascular unit was mediated by oxidative stress-induced activation of matrix metalloproteinases and fluid channel aquaporin-4, promoting vascular fluid cavitation/edema, enhanced leakiness of the BBB, and progression of neuroinflammation. The BBB leakiness and neuroinflammation were functionally demonstrated in an in vivo model by enhanced permeativity of Evans blue and sodium fluorescein low-molecular-weight tracers and the infiltration of immune cells across the BBB. The detection of brain cell proteins neuron-specific enolase and S100β in the blood samples validated the neuroastroglial injury in shock-wave TBI. Our hypothesis that cerebral vascular injury occurs before the development of neurological disorders in mild TBI was further confirmed by the activation of caspase-3 and cell

  7. Induction of Oxidative and Nitrosative damage leads to Cerebrovascular Inflammation in Animal Model of Mild Traumatic Brain Injury Induced by Primary Blast

    PubMed Central

    Abdul-Muneer, P. M.; Schuetz, Heather; Wang, Fang; Skotak, Maciej; Jones, Joselyn; Gorantla, Santhi; Zimmerman, Matthew C.; Chandra, Namas; Haorah, James

    2014-01-01

    We investigate the hypothesis that oxidative damage of the cerebral vascular barrier interface (the blood brain barrier, BBB) causes the development of mild traumatic brain injury (mTBI) during primary blast wave spectrum. The underlying biochemical and cellular mechanisms of this vascular layer-structure injury are examined in a novel animal model of shock tube. We first established that low frequency (123 kPa) single or repeated shock wave causes BBB/brain injury through biochemical activation by acute mechanical force that occurs at 6–24 hrs after the exposure. This biochemical damage of the cerebral vasculature is initiated by the induction of free radical generating enzymes NADPH oxidase (NOX1) and inducible nitric oxide synthase (iNOS). Induction of these enzymes by shock wave exposure correlated well with the signatures of oxidative and nitrosative damage (4HNE/3NT) and reduction of the BBB tight junction (TJ) proteins occludin, claudin-5 and zonula occluden 1 (ZO-1) in the brain microvessel. In parallel with TJ protein disruption, the perivascular unit was significantly diminished by single or repeated shock wave exposure coinciding with the kinetic profile. Loosening of the vasculature and perivascular unit was mediated by oxidative stress-induced activation of matrix metalloproteinases and fluid channel aquaporin-4, promoting vascular fluid cavitation/edema, enhanced leakiness of the BBB and progression of neuroinflammation. The BBB leakiness and neuroinflammation were functionally demonstrated in an in vivo model by enhanced permeability of Na-Fl/EB low molecular weight tracers and the infiltration of immune cells across the BBB. The detection of brain cell matters NSE/S100β in the blood samples validated the neuro-astroglial injury in shock wave TBI. Our hypothesis that cerebral vascular injury occurring prior to the development of neurological disorders in mild TBI was further confirmed by the activation of caspase-3 and cell apoptosis mostly around

  8. The effect of explosive blast loading on human neuroblastoma cells.

    PubMed

    Zander, Nicole E; Piehler, Thuvan; Banton, Rohan; Boggs, Mary

    2016-07-01

    Diagnosis of mild to moderate traumatic brain injury is challenging because brain tissue damage progresses slowly and is not readily detectable by conventional imaging techniques. We have developed a novel in vitro model to study primary blast loading on dissociated neurons using nitroamine explosives such as those used on the battlefield. Human neuroblastoma cells were exposed to single and triple 50-psi explosive blasts and single 100-psi blasts. Changes in membrane permeability and oxidative stress showed a significant increase for the single and triple 100-psi blast conditions compared with single 50-psi blast and controls. PMID:27033003

  9. Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing.

    PubMed

    Singh, Ajay K; Ditkofsky, Noah G; York, John D; Abujudeh, Hani H; Avery, Laura A; Brunner, John F; Sodickson, Aaron D; Lev, Michael H

    2016-01-01

    Although most trauma centers have experience with the imaging and management of gunshot wounds, in most regions blast wounds such as the ones encountered in terrorist attacks with the use of improvised explosive devices (IEDs) are infrequently encountered outside the battlefield. As global terrorism becomes a greater concern, it is important that radiologists, particularly those working in urban trauma centers, be aware of the mechanisms of injury and the spectrum of primary, secondary, tertiary, and quaternary blast injury patterns. Primary blast injuries are caused by barotrauma from the initial increased pressure of the explosive detonation and the rarefaction of the atmosphere immediately afterward. Secondary blast injuries are caused by debris carried by the blast wind and most often result in penetrating trauma from small shrapnel. Tertiary blast injuries are caused by the physical displacement of the victim and the wide variety of blunt or penetrating trauma sustained as a result of the patient impacting immovable objects such as surrounding cars, walls, or fences. Quaternary blast injuries include all other injuries, such as burns, crush injuries, and inhalational injuries. Radiography is considered the initial imaging modality for assessment of shrapnel and fractures. Computed tomography is the optimal test to assess penetrating chest, abdominal, and head trauma. The mechanism of blast injuries and the imaging experience of the victims of the Boston Marathon bombing are detailed, as well as musculoskeletal, neurologic, gastrointestinal, and pulmonary injury patterns from blast injuries. PMID:26761543

  10. The Relationship Between True Colors Temperament Types of Primary Caregivers and Literacy Development: An Exploratory Analysis.

    ERIC Educational Resources Information Center

    Calahan, Charles A.

    1996-01-01

    Examines the relationship between the "True Colors" temperament type of the primary caregiver and the readiness to involve her child in the social context of extracurricular reading activities (a summer reading program) intended to promote literacy development. Finds that the "Gold" and "Blue" types involved their children in organized, structured…

  11. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.

    PubMed

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1-3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68-1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared

  12. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is

  13. A novel bridge wire model of blast traumatic brain injury - biomed 2013.

    PubMed

    Hampton, Carolyn E; Thorpe, Chevon N; Sholar, Christopher A; Rzigalinski, Beverly A; VandeVord, Pamela J

    2013-01-01

    Research into the mechanics of blast-induced traumatic brain injury requires a device capable of reproducing pressures of the same magnitude and time scale as a blast wave. A blast simulator based on the exploding bridge wire mechanism was created with these capabilities. Peak blast pressures in the range of 5 – 29 psi were generated with a positive phase duration less than 20 µs. A series of experiments using 0.008 inch diameter wires (10-20 psi) were used to demonstrate the ability of the blast simulator to injure in vitro primary brain cell cultures at 1, 24, and 48 hours following blast. Blast exposure caused a rapid loss of cells which was significant over controls. Propidium iodide uptake indicated limited injury to cellular membranes but the cytoskeletal structure showed signs of degeneration 1 hour following blast. These results indicate that the bridge wire blast simulator can serve as a suitable in vitro model of blast injury. PMID:23686215

  14. Blast Injury

    PubMed Central

    de Candole, C. A.

    1967-01-01

    The shock wave generated by an explosion (“blast wave”) may cause injury in any or all of the following: (1) direct impact on the tissues of variations in environmental pressure; (2) flying glass and other debris set in motion by it; (3) propulsion of the body. Injuries in the first category affect gas-containing organs (ears, lungs and intestines), and acute death is attributed to air forced into the coronary vessels via damaged pulmonary alveoli. It is estimated that overpressure sufficient to cause lung injury may occur up to five miles from a 20-megaton nuclear explosion. The greatest single hazard from blast is, however, flying glass, and serious wounding from this cause is possible up to 12 miles from an explosion of this magnitude. PMID:6015742

  15. Blast injury.

    PubMed

    de Candole, C A

    1967-01-28

    The shock wave generated by an explosion ("blast wave") may cause injury in any or all of the following: (1) direct impact on the tissues of variations in environmental pressure; (2) flying glass and other debris set in motion by it; (3) propulsion of the body. Injuries in the first category affect gas-containing organs (ears, lungs and intestines), and acute death is attributed to air forced into the coronary vessels via damaged pulmonary alveoli. It is estimated that overpressure sufficient to cause lung injury may occur up to five miles from a 20-megaton nuclear explosion. The greatest single hazard from blast is, however, flying glass, and serious wounding from this cause is possible up to 12 miles from an explosion of this magnitude. PMID:6015742

  16. System seismic analysis of an innovative primary system for a large pool type LMFBR plant

    SciTech Connect

    Pan, Y.C.; Wu, T.S.; Cha, B.K.; Burelbach, J.; Seidensticker, R.

    1984-01-01

    The system seismic analysis of an innovative primary system for a large pool type liquid metal fast breeder reactor (LMFBR) plant is presented. In this primary system, the reactor core is supported in a way which differs significantly from that used in previous designs. The analytical model developed for this study is a three-dimensional finite element model including one-half of the primary system cut along the plane of symmetry. The model includes the deck and deck mounted components,the reactor vessel, the core support structure, the core barrel, the radial neutron shield, the redan, and the conical support skirt. The sodium contained in the primary system is treated as a lumped mass appropriately distributed among various components. The significant seismic behavior as well as the advantages of this primary system design are discussed in detail.

  17. A computational model of blast loading on the human eye.

    PubMed

    Bhardwaj, Rajneesh; Ziegler, Kimberly; Seo, Jung Hee; Ramesh, K T; Nguyen, Thao D

    2014-01-01

    Ocular injuries from blast have increased in recent wars, but the injury mechanism associated with the primary blast wave is unknown. We employ a three-dimensional fluid-structure interaction computational model to understand the stresses and deformations incurred by the globe due to blast overpressure. Our numerical results demonstrate that the blast wave reflections off the facial features around the eye increase the pressure loading on and around the eye. The blast wave produces asymmetric loading on the eye, which causes globe distortion. The deformation response of the globe under blast loading was evaluated, and regions of high stresses and strains inside the globe were identified. Our numerical results show that the blast loading results in globe distortion and large deviatoric stresses in the sclera. These large deviatoric stresses may be indicator for the risk of interfacial failure between the tissues of the sclera and the orbit. PMID:23591604

  18. In-Vitro Approaches for Studying Blast-Induced Traumatic Brain Injury

    PubMed Central

    Chen, Yung Chia; Smith, Douglas H.

    2009-01-01

    Abstract Traumatic brain injury caused by explosive or blast events is currently divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct, and can be modeled in both in-vivo and in-vitro systems. The purpose of this review is to consider the mechanical phases of bTBI, how these phases are reproduced with in-vitro models, and to review findings from these models to assess how each phase of bTBI can be examined in more detail. Highlighted are some important gaps in the literature that may be addressed in the future to better identify the exact contributing mechanisms for bTBI. These in-vitro models, viewed in combination with in-vivo models and clinical studies, can be used to assess both the mechanisms and possible treatments for this type of trauma. PMID:19397424

  19. The Computer-Aided Diagnosis of Different Histological Types of Primary Bronchogenic Carcinoma from Radiologic Signs

    PubMed Central

    Qin, Dulie; Lie, Tieyi; Fan, Lianchun; Ji, Jingling; Chen, Jingcheng; Chen, Binlan; Huang, Shoufang; Bai, Yiqiu; Liu, Keqin; Lu, Daolie; Zhang, Gui; Li, Junheng; Ma, Jie; Wang, Yaowen; Zhao, Lijuan

    1982-01-01

    On the basis of examining a number of resected specimens the gross types of the primary lung cancer were stated and the relationship between histologic types and gross types was studied. Futhermore the comparative study among X-ray films, resected specimens of tumor and pathologic examinations upon cases was made and some radiographic signs were extracted. After determining the gross types by radiologists using the sequential Bayes' model the computer-aided diagnosis was made. The accuracy of the computer diagnosis was significantly higher than that of film-reading by radiologistsb.

  20. Automated Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Pickett, Isaiah R.; Yulfo, Alyce R.

    1992-01-01

    Automatic grit-blasting machine removes melted-layer residue from electrical-discharge-machined surfaces of turbine blades. Automatic control system of machine provides steady flow of grit and maintains blast nozzles at proper distance and in correct orientation perpendicular to surface being blasted, regardless of contour. Eliminates localized excessive blasting and consequent excessive removal of underlying material, blasting of adjacent surfaces, and missed areas.

  1. Primary Pulmonary Salivary Gland-type Tumors: A Review and Update.

    PubMed

    Falk, Nadja; Weissferdt, Annikka; Kalhor, Neda; Moran, Cesar A

    2016-01-01

    Pulmonary salivary gland-type tumors (SGT) comprise a very small proportion of primary lung neoplasms. The most common tumors among this group are mucoepidermoid carcinoma and adenoid cystic carcinoma. Contrary to the head and neck region, benign SGT such as pleomorphic adenomas are exceedingly rare in the pulmonary system. More recently, 2 additional SGT, namely hyalinizing clear cell carcinoma and salivary duct-like carcinoma were recognized as primary lung tumors expanding the spectrum of SGT that have been described to originate in the tracheobronchial system. Primary pulmonary SGT must be clinically excluded from metastatic salivary gland neoplasms as their morphology is indistinguishable from that of their salivary gland counterparts. Little is known about the clinical behavior and best treatment approach for these unusual tumors. In this review, we provide a comprehensive summary of primary pulmonary SGT with particular emphasis on morphologic characteristics and latest developments in terms of immunohistochemical and molecular techniques. PMID:26645458

  2. Type of health insurance and the quality of primary care experience.

    PubMed Central

    Shi, L

    2000-01-01

    OBJECTIVES: This study examined the association between type of health insurance coverage and quality of primary care as measured by its distinguishing attributes--first contact, longitudinality, comprehensiveness, and coordination. METHODS: The household component of the 1996 Medical Expenditure Panel Survey was used for this study. The analysis primarily focused on subjects aged younger than 65 years who identified a usual source of care. Logistic regressions were used to examine the independent effects of insurance status on primary care attributes while individual sociodemographic characteristics were controlled for. RESULTS: The experience of primary care varies according to insurance status. The insured are able to obtain better primary care than the uninsured, and the privately insured are able to obtain better primary care than the publicly insured. Those insured through fee-for-service coverage experience better longitudinal care and less of a barrier to access than those insured through health maintenance organizations (HMOs). CONCLUSIONS: While expanding insurance coverage is important for establishing access to care, efforts are needed to enhance the quality of primary health care, particularly for the publicly insured. Policymakers should closely monitor the quality of primary care provided by HMOs. PMID:11111255

  3. Class Size Effects on the Number and Types of Student-Teacher Interactions in Primary Classrooms

    ERIC Educational Resources Information Center

    Folmer-Annevelink, Elvira; Doolaard, Simone; Mascareno, Mayra; Bosker, Roel J.

    2010-01-01

    This paper addresses the relationship between class size and student-teacher interactions as an explanation for effects of class size on achievement. Observations were conducted in kindergarten and Grade 1 classes from 46 Dutch primary schools in order to address the effect of class size on the amount and type of student-teacher interactions. The…

  4. Membrane characteristics for biological blast overpressure testing using blast simulators.

    PubMed

    Alphonse, Vanessa D; Siva Sai Sujith Sajja, Venkata; Kemper, Andrew R; Rizel, Dave V; Duma, Stefan M; VandeVord, Pamela J

    2014-01-01

    Blast simulators often use passive-rupture membranes to generate shock waves similar to free-field blasts. The purpose of this study was to compare rupture patterns and pressure traces of three distinct membrane materials for biological and biomechanical blast studies. An Advanced Blast Simulator (ABS) located at the Center for Injury Biomechanics at Virginia Tech was used to test membrane characteristics. Acetate, Mylar, and aluminum sheets with different thicknesses were used to obtain pressures between 70–210 kPa. Static pressure was measured inside the tube at the test section using piezoelectric pressure sensors. Peak overpressure, positive duration, and positive impulse were calculated for each test. Rupture patterns and characteristic pressure traces were unique to each membrane type and thickness. Shock wave speed ranged between 1.2-1.8 Mach for static overpressures of 70–210 kPa. Acetate membranes fragmented sending pieces down the tube, but produced ideal (Friedlander) pressure traces. Mylar membranes bulged without fragmenting, but produced less-than-ideal pressure traces. Aluminum membranes did not fragment and produced ideal pressure traces. However, the cost of manufacturing and characterizing aluminum membranes should be considered during membrane selection. This study illustrates the advantages and disadvantages of using Mylar, acetate, and aluminum for passive rupture membranes for blast simulators. PMID:25405432

  5. Expression of surface-associated 82kDa-proMMP-9 in primary acute leukemia blast cells inversely correlates with patients' risk.

    PubMed

    Schmohl, Joerg; Santovito, Donato; Guenther, Thomas; Sutanto, Wishnu; Kroell, Tanja; Salih, Helmut; Pitsch, Thomas; Egea, Virginia; Weber, Christian; Schmetzer, Helga; Ries, Christian

    2016-05-01

    With its ability to degrade extracellular matrix proteins and activate growth factors and cytokines, matrix metalloproteinase (MMP)-9 is an important regulator of cell function. Previously, we reported that myeloid leukemic cells express a unique 82kDa-proMMP-9 variant on their cell surface that is not affected by its natural inhibitor. In this study, we generated monoclonal antibodies that specifically recognize 82kDa-proMMP-9. Flow cytometry analysis using these antibodies revealed significant surface expression of 82kDa-proMMP-9 in monocytes, but minimal amounts in T and B cells isolated from peripheral blood of nine healthy donors and 22 patients with acute myeloid leukemia (AML). In all AML patients, blasts expressed 82kDa-proMMP-9 at levels of 4%-46%, with significantly higher levels in patients with a better risk defined according to National Comprehensive Cancer Network (NCCN) guidelines (ρ = -0.748, p < 0.001) and favorable phenotype according to the French-American-British classification (p = 0.02) compared with patients with adverse prognoses. Receiver operating characteristic curve analysis confirmed the diagnostic accuracy of 82kDa-proMMP-9 measurement in AML blasts (area under the curve: 0.893 [0.739-1.000], p = 0.019). It led us to define a cutoff value of 11.5% for identifying patients with lower NCCN risk (p = 0.005) and with a tendency toward a higher probability of response to anthracycline-based therapy (p = 0.109) and increased event-free survival (p = 0.24). Thus, 82kDa-proMMP-9 expression on blasts may represent a novel independent marker of prognosis in patients with AML. PMID:26845021

  6. Mask materials for powder blasting

    NASA Astrophysics Data System (ADS)

    Wensink, Henk; Jansen, Henri V.; Berenschot, J. W.; Elwenspoek, Miko C.

    2000-06-01

    Powder blasting, or abrasive jet machining (AJM), is a technique in which a particle jet is directed towards a target for mechanical material removal. It is a fast, cheap and accurate directional etch technique for brittle materials such as glass, silicon and ceramics. The particle jet (which expands to about 1 cm in diameter) can be optimized for etching, while the mask defines the small and complex structures. The quality of the mask influences the performance of powder blasting. In this study we tested and compared several mask types and added a new one: electroplated copper. The latter combines a highly resistant mask material for powder blasting with the high-resolution capabilities of lithography, which makes it possible to obtain an accurate pattern transfer and small feature sizes (<50 µm).

  7. Porcine Head Response to Blast

    PubMed Central

    Shridharani, Jay K.; Wood, Garrett W.; Panzer, Matthew B.; Capehart, Bruce P.; Nyein, Michelle K.; Radovitzky, Raul A.; Bass, Cameron R. ‘Dale’

    2012-01-01

    Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300–2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G’s and were well correlated with peak incident overpressure (R2 = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are

  8. Investigation of atmospheric blasts by fast radiometry

    NASA Astrophysics Data System (ADS)

    Ben-Dov, R.; Bushlin, Y.; Devir, A. D.; Lessin, A. B.; Mendelewicz, I.; Shvebelman, M.

    2014-06-01

    Blasts and detonations release large amount of energy in short time duration. Some of this energy is released through radiation in the whole optical spectrum. Measurement of this radiation may serve as a base for investigation of the blast phenomena. A fast multispectral radiometer that operates in proper chosen spectral bands provides extensive information on the physical processes that govern the blast. This information includes the time dependence of the temperature, area of the blast as-well-as of the aerosols and gases that are generated. Analysis of this data indicates the order of the detonation and provides good estimation on the masses and types of the high-explosives (HE) materials and their casing. This paper presents the methodology and instrumentation of fast multispectral radiometry in application to the blast measurement and analysis in a Near-ground Explosion Test (NET). In NET, the flash radiation of the blast was measured for two HE materials: TNT and composition B (CB). The investigation includes charges of different masses (0.25 - 20.0 kg) and of various casing materials (steel, Al, PVC), thickness (2 - 6 mm) and various casing type (open on both face ends and hermetically closed). Analysis of the data demonstrates the power of fast radiometry methodology and reveals the governing characteristics of atmospheric blasts.

  9. Human Immunodeficiency Virus Type 1 Coat Protein Neurotoxicity Mediated by Nitric Oxide in Primary Cortical Cultures

    NASA Astrophysics Data System (ADS)

    Dawson, Valina L.; Dawson, Ted M.; Uhl, George R.; Snyder, Solomon H.

    1993-04-01

    The human immunodeficiency virus type 1 coat protein, gp120, kills neurons in primary cortical cultures at low picomolar concentrations. The toxicity requires external glutamate and calcium and is blocked by glutamate receptor antagonists. Nitric oxide (NO) contributes to gp120 toxicity, since nitroarginine, an inhibitor of NO synthase, prevents toxicity as does deletion of arginine from the incubation medium and hemoglobin, which binds NO. Superoxide dismutase also attenuates toxicity, implying a role for superoxide anions.

  10. Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel

    PubMed Central

    Mac Donald, Christine L.; Johnson, Ann M.; Cooper, Dana; Nelson, Elliot C.; Werner, Nicole J.; Shimony, Joshua S.; Snyder, Abraham Z.; Raichle, Marcus E.; Witherow, John R.; Fang, Raymond; Flaherty, Stephen F.; Brody, David L.

    2011-01-01

    exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.) PMID:21631321

  11. Primary care physician beliefs about insulin initiation in patients with type 2 diabetes

    PubMed Central

    Hayes, R P; Fitzgerald, J T; Jacober, S J

    2008-01-01

    Background Insulin is the most effective drug available to achieve glycaemic goals in patients with type 2 diabetes. Yet, there is reluctance among physicians, specifically primary care physicians (PCPs) in the USA, to initiate insulin therapy in these patients. Aims To describe PCPs’ attitudes about the initiation of insulin in patients with type 2 diabetes and identify areas in which there is a clear lack of consensus. Methods Primary care physicians practicing in the USA, seeing 10 or more patients with type 2 diabetes per week, and having > 3 years of clinical practice were surveyed via an internet site. The survey was developed through literature review, qualitative study and expert panel. Results Primary care physicians (n = 505, mean age = 46 years, 81% male, 62% with > 10 years practice; 52% internal medicine) showed greatest consensus on attitudes regarding risk/benefits of insulin therapy, positive experiences of patients on insulin and patient fears or concerns about initiating insulin. Clear lack of consensus was seen in attitudes about the metabolic effects of insulin, need for insulin therapy, adequacy of self-monitoring blood glucose, time needed for training and potential for hypoglycaemia in elderly patients. Conclusions The beliefs of some PCPs are inconsistent with their diabetes treatment goals (HbA1c ≤ 7%). Continuing medical education programmes that focus on increasing primary care physician knowledge about the progression of diabetes, the physiological effects of insulin, and tools for successfully initiating insulin in patients with type 2 diabetes are needed. Disclosures Drs Hayes and Jacober are employees and stockholders of Eli Lilly and Company. Dr Fitzgerald is a consultant to Eli Lilly and Company. What's known Insulin is the most effective drug available to achieve glycaemic goals in patients with type 2 diabetes, yet there is reluctance among many physicians to initiate insulin therapy in these patients. Diabetes specialists

  12. Enhanced proliferation of primary rat type II pneumocytes by Jaagsiekte sheep retrovirus envelope protein

    SciTech Connect

    Johnson, Chassidy; Jahid, Sohail; Voelker, Dennis R.; Fan Hung

    2011-04-10

    Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a contagious lung cancer in sheep. The envelope protein (Env) is the oncogene, as it can transform cell lines in culture and induce tumors in animals, although the mechanisms for transformation are not yet clear because a system to perform transformation assays in differentiated type II pneumocytes does not exist. In this study we report culture of primary rat type II pneumocytes in conditions that favor prolonged expression of markers for type II pneumocytes. Env-expressing cultures formed more colonies that were larger in size and were viable for longer periods of time compared to vector control samples. The cells that remained in culture longer were confirmed to be derived from type II pneumocytes because they expressed surfactant protein C, cytokeratin, displayed alkaline phosphatase activity and were positive for Nile red. This system will be useful to study JSRV Env in the targets of transformation.

  13. Nodular amyloidosis derived from keratinocytes: an unusual type of primary localized cutaneous nodular amyloidosis.

    PubMed

    Cornejo, Kristine M; Lagana, Frances J; Deng, April

    2015-11-01

    Primary, localized cutaneous amyloidosis includes macular, lichen, and nodular (tumefactive) types in which the amyloid deposits are limited to the dermis without systemic involvement. The material in lichen and macular amyloidosis is derived from epidermal keratinocytes [keratinocyte-derived amyloid (AK)], whereas that in nodular amyloidosis is derived from immunoglobulin light-chains amyloid (AL). Primary, localized cutaneous nodular amyloidosis (PLCNA) is a form of primary, localized cutaneous amyloidosis that has been associated with a risk of progression to systemic amyloidosis. We report an unusual case of nodular AK-type amyloid deposited in the dermis of the feet. The patient is a 60-year-old woman with asymptomatic verrucoid-like lesions present around the medial and lateral aspects of the bilateral heels for 1-2 years. A biopsy showed massive deposition of eosinophilic amorphous material in the papillary and reticular dermis. The material stained positive for Congo red with apple-green birefringence on polarized light. It was also positive for pan-cytokeratin and negative for kappa and lambda light-chain immunostains. An extensive workup was negative for systemic involvement. Lipid chromatography tandem mass spectrometry confirmed that the deposition was AK-type amyloid. We believe that this is the first case of PLCNA with AK deposition. This entity should be included in the differential diagnosis of PLCNA so that an extensive systemic workup may be avoided. PMID:26485243

  14. Acute blast injury reduces brain abeta in two rodent species.

    PubMed

    De Gasperi, Rita; Gama Sosa, Miguel A; Kim, Soong Ho; Steele, John W; Shaughness, Michael C; Maudlin-Jeronimo, Eric; Hall, Aaron A; Dekosky, Steven T; McCarron, Richard M; Nambiar, Madhusoodana P; Gandy, Sam; Ahlers, Stephen T; Elder, Gregory A

    2012-01-01

    Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The β-amyloid (Aβ) peptide associated with the development of Alzheimer's disease is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain Aβ following experimental blast injury using enzyme-linked immunosorbent assays for Aβ 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain Aβ levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP) were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the β-secretase, β-site APP cleaving enzyme 1, and the γ-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering Aβ production may not be effective for treating acute blast injury to the brain. PMID:23267342

  15. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite

    USGS Publications Warehouse

    Behar, F.; Lorant, F.; Lewan, M.

    2008-01-01

    The aim of this work is to follow the generation of NSO compounds during the artificial maturation of an immature Type II kerogen and a Type III lignite in order to determine the different sources of the petroleum potential during primary cracking. Experiments were carried out in closed system pyrolysis in the temperature range from 225 to 350 ??C. Two types of NSOs were recovered: one is soluble in n-pentane and the second in dichloromethane. A kinetic scheme was optimised including both kerogen and NSO cracking. It was validated by complementary experiments carried out on isolated asphaltenes generated from the Type II kerogen and on the total n-pentane and DCM extracts generated from the Type III lignite. Results show that kerogen and lignite first decompose into DCM NSOs with minor generation of hydrocarbons. Then, the main source of petroleum potential originates from secondary cracking of both DCM and n-pentane NSOs through successive decomposition reactions. These results confirm the model proposed by Tissot [Tissot, B., 1969. Premie??res donne??es sur les me??canismes et la cine??tique de la formation du pe??trole dans les bassins se??dimentaires. Simulation d'un sche??ma re??actionnel sur ordinateur. Oil and Gas Science and Technology 24, 470-501] in which the main source of hydrocarbons is not the insoluble organic matter, but the NSO fraction. As secondary cracking of the NSOs largely overlaps that of the kerogen, it was demonstrated that bulk kinetics in open system is a result of both kerogen and NSO cracking. Thus, another kinetic scheme for primary cracking in open system was built as a combination of kerogen and NSO cracking. This new kinetic scheme accounts for both the rate and amounts of hydrocarbons generated in a closed pyrolysis system. Thus, the concept of successive steps for hydrocarbon generation is valid for the two types of pyrolysis system and, for the first time, a common kinetic scheme is available for extrapolating results to natural

  16. Modelling of blast loading on aboveground structures - II. Internal blast and ground shock

    NASA Astrophysics Data System (ADS)

    Beshara, F. B. A.

    1994-06-01

    Recent studies of the nature and structural effects of confined explosions, contact blast and explosion-induced ground shock are presented. High explosive blast is distinguished from that due to a gaseous deflagration. The effects of confinement and venting are considered in the evaluation of dynamic loads. Maxima for the initial internal blast pressure can be estimated from the scaled blast data or theoretical analyses of normal blast wave reflection from a rigid wall. Semi-empirical relations and prediction methods for gas pressures for many types of internal explosions including high explosives, gas mixtures and dust suspensions are given on the basis of pseudo-static character. The loading of a contact explosion and the associated effects on a concrete target are determined as functions of charge weight, concrete strength and member thickness. In the final part, the evaluation of both airblast-induced ground shock and directly transmitted motion are included in simple form without considering the soil-structure interaction.

  17. Blast Resistance and Damage Modelling of Fibre Metal Laminates to Blast Loads

    NASA Astrophysics Data System (ADS)

    Mohamed, Galal F. A.; Soutis, Costas; Hodzic, Alma

    2012-06-01

    A robust and efficient computational model has been developed which is capable of modelling the dynamic non-linear behaviour of GLARE panels subjected to blast loadings. Numerical model validation have been performed considering case studies of GLARE panels subjected to a blast-type pressure pulse for which experimental data on the back-face deflection and post-damage observations were available. Excellent agreement of mid-point deflections and evidence of severe yield line deformation were shown and discussed against the performed blast tests. A further parametric study identified GLARE as a potential blast attenuating structure, exhibiting superior blast potential against monolithic aluminium plates. It was concluded that further work needed to be carried out to take into account the influence of geometry (cylindrical structures), pre-pressurisation effects and boundary conditions

  18. Automatic laboratory-based strategy to improve the diagnosis of type 2 diabetes in primary care

    PubMed Central

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Leiva-Salinas, Maria; Lugo, Javier; Pomares, Francisco J; Asencio, Alberto; Ahumada, Miguel; Leiva-Salinas, Carlos

    2016-01-01

    Introduction To study the pre-design and success of a strategy based on the addition of hemoglobin A1c (HbA1c) in the blood samples of certain primary care patients to detect new cases of type 2 diabetes. Materials and methods In a first step, we retrospectively calculated the number of HbA1c that would have been measured in one year if HbA1c would have been processed, according to the guidelines of the American Diabetes Association (ADA). Based on those results we decided to prospectively measure HbA1c in every primary care patient above 45 years, with no HbA1c in the previous 3 years, and glucose concentration between 5.6-6.9 mmol/L, during an 18 months period. We calculated the number of HbA1c that were automatically added by the LIS based on our strategy, we evaluated the medical record of such subjects to confirm whether type 2 diabetes was finally confirmed, and we calculated the cost of our intervention. Results In a first stage, according to the guidelines, Hb1Ac should have been added to the blood samples of 13,085 patients, resulting in a cost of 14,973€. In the prospective study, the laboratory added Hb1Ac to 2092 patients, leading to an expense of 2393€. 314 patients had an HbA1c value ≥ 6.5% (48 mmol/mol). 82 were finally diagnosed as type 2 diabetes; 28 thanks to our strategy, with an individual cost of 85.4€; and 54 due to the request of HbA1c by the general practitioners (GPs), with a cost of 47.5€. Conclusion The automatic laboratory-based strategy detected patients with type 2 diabetes in primary care, at a cost of 85.4€ per new case. PMID:26981026

  19. Blast injuries: mechanics and wounding patterns.

    PubMed

    Covey, Dana C; Born, Christopher T

    2010-01-01

    Blast and fragment injuries are the most frequently encountered wounds in modern warfare. Explosive devices have become the preferred weapon of domestic and foreign terrorists because they are relatively inexpensive to manufacture and can cause substantial casualties. Although blast injuries have traditionally been associated with the battlefield, this type of trauma is being seen more commonly today among noncombatants due to increasing worldwide terrorism. PMID:20371000

  20. [Linitis plastica type of primary signet cell adenocarcinoma of the bladder].

    PubMed

    el Sandid, Marwan; Peraldi, Renaud; Pernin, François

    2002-04-01

    Primary adenocarcinoma represent 0.5 to 2% of all bladder tumours and are classified according to whether or not they are derived from the urachus, although, histologically, this classification now appears to be obsolete. The authors report a very rare case of linitis plastica type of primary signet cell adenocarcinoma of the bladder in a 53-year-old patient. This carcinoma, with very unusual histological features, needs to be distinguished. Due to the delayed diagnosis, it has a poor prognosis despite the most aggressive treatment modalities, as reported in the literature. The elevated CA 19-9 observed in the present case may be a useful marker for follow-up. PMID:12108351

  1. Comparison of Some Blast Vibration Predictors for Blasting in Underground Drifts and Some Observations

    NASA Astrophysics Data System (ADS)

    Bhagwat, Vaibhab Pramod; Dey, Kaushik

    2016-04-01

    Drilling and blasting are the most economical excavation techniques in underground drifts driven through hard rock formation. Burn cut is the most popular drill pattern, used in this case, to achieve longer advance per blast round. The ground vibration generated due to the propagation of blast waves on the detonation of explosive during blasting is the principal cause for structural and rock damage. Thus, ground vibration is a point of concern for the blasting engineers. The ground vibration from a blast is measured using a seismograph placed at the blast monitoring station. The measured vibrations, in terms of peak particle velocity, are related to the maximum charge detonated at one instant and the distance of seismograph from the blast point. The ground vibrations from a number of blast rounds of varying charge/delay and distances are monitored. A number of scaling factors of these dependencies (viz. Distance and maximum charge/delay) have been proposed by different researchers, namely, square root, cube root, CMRI, Langefors and Kihlstrom, Ghosh-Daemon, Indian standard etc. Scaling factors of desired type are computed for all the measured blast rounds. Regression analysis is carried out between the scaling factors and peak particle velocities to establish the coefficients of the vibration predictor equation. Then, the developed predictor equation is used for designing the blast henceforth. Director General of Mine Safety, India, specified that ground vibrations from eight to ten blast rounds of varying charge/delay and distances should be monitored to develop a predictor equation; however, there is no guideline about the type of scaling factor to be used. Further to this, from the statistical point of view, a regression analysis on a small sample population cannot be accepted without the testing of hypothesis. To show the importance of the above, in this paper, seven scaling factors are considered for blast data set of a hard-rock underground drift using burn

  2. [Primary hepatic lymphoma of MALT-type: a tumor that can simulate a liver metastasis].

    PubMed

    Chatelain, D; Maes, C; Yzet, T; Brevet, M; Bounicaud, D; Plachot, J-P; Verhaeghe, P

    2006-02-01

    Primary hepatic lymphomas are rare tumors. We report a case of a 72 year-old woman with a past history of colonic adenocarcinoma who presented primary hepatic lymphoma of MALT-type. The patient had been operated on 3 years before for colonic adenocarcinoma, pT3N0, revealed by a bowel obstructive syndrome. She had been treated by chemotherapy for 6 months. During the follow-up, the computed tomography-scan (CT-scan) revealed the presence of a not well-demarcated mass in segment III of the liver, measuring 4 cm in diameter. The tumor was hypodense and was not enhanced on dynamic study. The mass was already present on the initial CT-scan. Left lobectomy was performed with the diagnosis of liver metastasis of the colonic adenocarcinoma. Surgical specimen showed a tumor composed of a dense infiltrate of small lymphocytes positive for B-cell markers on immunohistochemistry. The tumor contained reactive lymphoid follicles and there were numerous lympho-epithelial biliary lesions. The patient is alive and free of disease 2 years after the diagnosis. Primary hepatic lymphoma of MALT-type is a low-grade B cell lymphoma. Twenty-five cases had been reported in the literature so far. The patients were 16 females and 9 males, mean age 63.5 years. The pathogenesis is still unclear but half of the patients had a past history of chronic inflammatory liver disease (hepatitis B or C virus infection, ascaris infection, primary biliary cirrhosis) or malignant neoplasm. This tumor has a good prognosis; it is usually limited to the liver and surgical resection cures the patient in most cases. PMID:16246295

  3. Retinoic acid promotes primary fetal alveolar epithelial type II cell proliferation and differentiation to alveolar epithelial type I cells.

    PubMed

    Gao, Rui-wei; Kong, Xiang-yong; Zhu, Xiao-xi; Zhu, Guo-qing; Ma, Jin-shuai; Liu, Xiu-xiang

    2015-05-01

    Retinoic acid (RA) plays an important role in lung development and maturation. Many stimuli can induce alveolar epithelial cell damage which will result in the injury of lung parenchyma. The aim of this study was to observe the effect of RA on the proliferation and differentiation of primary fetal alveolar epithelial type II cells (fAECIIs). Primary fAECIIs were isolated from fetal rats at 19 d of gestation and purified by a differential centrifugation and adhesion method. The cells were randomly divided into control (dimethyl sulfoxide, DMSO) and RA groups. Cell proliferation, viability, apoptosis, cycle, and expression of target protein were examined at 24, 48, and 72 h. We found that the proliferation and viability of cells in the RA-exposed group significantly increased compared with the DMSO control group. The proportion (%) of cells in the G2 and S phases in the RA group was significantly higher than that in control group cells. The proportion (%) of both early apoptotic cells and late apoptotic cells decreased significantly in cells exposed to RA compared with cells exposed to DMSO. RA significantly enhanced the expression of aquaporin 5 (AQP5). The expression level of pulmonary surfactant C (SPC) was elevated after cells were exposed to RA for 24 and 72 h but was inhibited when cells were exposed to RA for 48 h. These results suggest that RA promotes fAECII proliferation by improving cell viability, promoting S phase entry and inhibiting apoptosis and RA promotes fAECIIs differentiation to alveolar epithelial type I cells (AECIs). PMID:25515249

  4. Primary Hyperoxaluria Type 1: A Cause for Infantile Renal Failure and Massive Nephrocalcinosis.

    PubMed

    Kurt-Sukur, E D; Özçakar, Z B; Fitöz, S; Yilmaz, S; Hoppe, B; Yalçinkaya, F

    2015-09-01

    Primary hyperoxaluria type 1 is a rare autosomal-recessive disease caused by the deficient activity of the liver specific enzyme alanine-glyoxylate aminotransferase. Increased endogenous oxalate production induces severe hyperoxaluria, recurrent urolithiasis, progressive nephrocalcinosis and renal failure. Here we report a 6 month old boy who presented with vomiting and decreased urine volume. He was diagnosed with chronic kidney failure at 4 months of age and peritoneal dialysis was introduced at a local hospital. His parents were third degree cousins and family history revealed 2 maternal cousins who developed end stage renal disease during childhood. When he was admitted to our hospital, laboratory studies were consistent with end stage renal disease, ultrasound showed bilateral massive nephrocalcinosis. As clinical presentation was suggestive for primary hyperoxaluria type 1, plasma oxalate was determined and found extremely elevated. Genetic testing proved diagnosis by showing a disease causing homozygous mutation (AGXT-gene: c.971_972delT). The patient was put on pyridoxine treatment and aggressive dialysis programme. In conclusion; progressive renal failure in infancy with massive nephrocalcinosis, especially if accompanied by consanguinity and family history, should always raise the suspicion of PH type 1. Increased awareness of the disease would help physicians in both treating the patients and guiding the families who have diseased children and plan to have further pregnancies. PMID:26090995

  5. Experimental animal models for studies on the mechanisms of blast-induced neurotrauma.

    PubMed

    Risling, Mårten; Davidsson, Johan

    2012-01-01

    A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments

  6. Experimental Animal Models for Studies on the Mechanisms of Blast-Induced Neurotrauma

    PubMed Central

    Risling, Mårten; Davidsson, Johan

    2012-01-01

    A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments

  7. Mutations at the Smo Genetic Locus Affect the Shape of Diverse Cell Types in the Rice Blast Fungus

    PubMed Central

    Hamer, J. E.; Valent, B.; Chumley, F. G.

    1989-01-01

    Teflon film surfaces are highly conducive to the formation of infection structures (appressoria) in the plant pathogenic fungus, Magnaporthe grisea. We have utilized Teflon films to screen and select for mutants of M. grisea that are defective in appressorium formation. This approach and several others yielded a group of 14 mutants with a similar phenotype. All the mutant strains make abnormally shaped conidia and appressoria. When two mutant strains are crossed, abnormally shaped asci are formed. Ascus shape is normal when a mutant strain is crossed with a wild-type strain. Despite dramatic alterations in cell shape these strains otherwise grow, form conidia, undergo meiosis, and infect plants normally. This mutant phenotype, which we have termed Smo(-), for abnormal spore morphology, segregates in simple Mendelian fashion in crosses with wild-type strains. Some ascospore lethality is associated with smo mutations. In genetic crosses between mutants, smo mutations fail to recombine and do not demonstrate complementation of the abnormal ascus shape phenotype. We conclude that the smo mutations are alleles of a single genetic locus and are recessive with regard to the the ascus shape defect. Mutations at the SMO locus also permit germinating M. grisea conidia to differentiate appressoria on surfaces that are not normally conducive to infection structure formation. A number of spontaneous smo mutations have been recovered. The frequent occurrence of this mutation suggests that the SMO locus may be highly mutable. PMID:17246498

  8. Methylation of alpha-type embryonic globin gene alpha pi represses transcription in primary erythroid cells.

    PubMed

    Singal, Rakesh; vanWert, Jane M; Ferdinand, Larry

    2002-12-01

    The inverse relationship between expression and methylation of beta-type globin genes is well established. However, little is known about the relationship between expression and methylation of avian alpha-type globin genes. The embryonic alpha(pi)-globin promoter was unmethylated, and alpha(pi)-globin RNA was easily detected in 5-day chicken erythroid cells. A progressive methylation of the CpG dinucleotides in the alpha(pi) promoter associated with loss of expression of alpha(pi)-globin gene was seen during development in primary erythroid cells. A 315-bp alpha(pi)-globin promoter region was cloned in an expression construct (alpha(pi)pGL3E) containing a luciferase reporter gene and SV40 enhancer. The alpha(pi)pGL3E construct was transfected into primary erythroid cells derived from 5-day-old chicken embryos. Methylation of alpha(pi)pGL3E plasmid and alpha(pi)-globin promoter alone resulted in a 20-fold and 7-fold inhibition of expression, respectively. The fully methylated but not the unmethylated 315-bp alpha(pi)-globin gene promoter fragment formed a methyl cytosine-binding protein complex (MeCPC). Chromatin immunoprecipitation assays were combined with quantitative real-time polymerase chain reaction to assess histone acetylation associated with the alpha(pi)-globin gene promoter. Slight hyperacetylation of histone H3 but a marked hyperacetylation of histone H4 was seen in 5-day when compared with 14-day erythroid cells. These results demonstrate that methylation can silence transcription of an avian alpha-type embryonic globin gene in homologous primary erythroid cells, possibly by interacting with an MeCPC and histone deacetylase complex. PMID:12393573

  9. Development and characterization of an open-ended shock tube for the study of blast mtbi.

    PubMed

    Shah Ms, Alok S; Stemper Phd, Brian D; Pintar Phd, Frank A

    2012-01-01

    Shock tubes can be used to study traumatic brain injuries due to blast waves in a laboratory setting without the use of explosives. A literature review shows that several shock tubes used in these type of studies are large in size and have a high cost of conducting tests and maintaining the device. The purpose of this study was to design and characterize small shock tubes to simulate open field blast waves, which can be used in a laboratory with limited space and has low cost of operation. In addition, the shock tube can be used to induce localized blast in a small region to study the injury mechanisms in the desired region. Furthermore, the animal is placed outside of the shock tube, which provides the ability to expose the animal to a pure primary blast wave. A helium-driven shock tube with driven length of 3.04 m and driver length of 0.30 m was used in the present study. Transducers were placed at multiple locations and distances to characterize the blast wave outside the shock tube. The versatile design of the shock tube can generate a wide range of peak overpressure, rise times and durations. The shock tube was able to generate peak overpressure ranging from 25 kPa to 508 kPa and positive durations ranging from 97 µs to 797 µs. The literature review also showed several studies where the data were collected and analyzed improperly. The under-sampling or improper filtering can significantly affect the data. Additionally, the orientation of the transducer with respect to the shock wave can also affect the recorded peak overpressure. This paper reports various peak overpressures, durations and rise-times that can be developed with a small open-ended shock tube and the methodology to properly collect and analyze blast wave data generated by the shock tube. PMID:22846311

  10. Relationship between orientation to a blast and pressure wave propagation inside the rat brain.

    PubMed

    Chavko, Mikulas; Watanabe, Tomas; Adeeb, Saleena; Lankasky, Jason; Ahlers, Stephen T; McCarron, Richard M

    2011-01-30

    Exposure to a blast wave generated during an explosion may result in brain damage and related neurological impairments. Several mechanisms by which the primary blast wave can damage the brain have been proposed, including: (1) a direct effect of the shock wave on the brain causing tissue damage by skull flexure and propagation of stress and shear forces; and (2) an indirect transfer of kinetic energy from the blast, through large blood vessels and cerebrospinal fluid (CSF), to the central nervous system. To address a basic question related to the mechanisms of blast brain injury, pressure was measured inside the brains of rats exposed to a low level of blast (~35kPa), while positioned in three different orientations with respect to the primary blast wave; head facing blast, right side exposed to blast and head facing away from blast. Data show different patterns and durations of the pressure traces inside the brain, depending on the rat orientation to blast. Frontal exposures (head facing blast) resulted in pressure traces of higher amplitude and longer duration, suggesting direct transmission and reflection of the pressure inside the brain (dynamic pressure transfer). The pattern of the pressure wave inside the brain in the head facing away from blast exposures assumes contribution of the static pressure, similar to hydrodynamic pressure to the pressure wave inside the brain. PMID:21129403

  11. Blasting and blast effects in cold regions. Part 1. Air blast. Special report

    SciTech Connect

    Not Available

    1985-12-01

    Contents include: ideal blast waves in free air; the shock equations for air blast; scaling procedures for comparison of explosions; reflection and refraction of airblast; effect of charge height, or height of burst; attenuation of air blast and variation of shock-front properties; air blast from nuclear explosions; air blast from underground explosions; air blast from underwater explosions; air blast damage criteria; effects of ambient pressure and temperature; explosions in vacuum or in space; air blast attenuation over snow surfaces; shock reflection from snow surfaces; shock velocity over snow; variation of shock pressure with charge height over snow; release of avalanches by air blast.

  12. Primary NK/T cell lymphoma nasal type of the colon

    PubMed Central

    Mahuad, Carolina Valeria; Bilbao, Érica Rojas; Garate, Gonzalo Martín; de los Ángeles Vicente Repáraz, María; del Olmo, Mercedes; Casali, Claudia Érica; Zerga, Marta Elisa; Chirife, Ana María; Cicco, Juan Alberto

    2013-01-01

    Since nasal NK/T-cell lymphoma and NK/T-cell lymphoma nasal type are rare diseases, colonic involvement has seldom been seen. We report a case of a patient with a primary NK/T-cell lymphoma nasal type of the colon. The patient had no history of malignant diseases and was diagnosed after exhaustive study in the context of fever of unknown origin. The first therapeutic approach followed the DA-EPOCH-protocol: etoposide, prednisone, doxor-rubicin, vincristine and cyclophosphamide. The persistence of constitutional symptoms after the first treatment course motivated the switch to a second line following the SMILE-protocol: dexamethasone, metotrexate, ifosfamide, E.coli L-asparaginase, and etoposide. Despite intensive chemotherapy, the patient died 2 months after the diagnose of an extranodal NK/T-cell lymphoma of the colon and 4 months after the first symptomatic appearance of disease. PMID:23772308

  13. Characteristics of poorly controlled Type 2 diabetes patients in Swiss primary care

    PubMed Central

    2012-01-01

    Background Although a variety of treatment guidelines for Type 2 diabetes patients are available, a majority of patients does not achieve recommended targets. We aimed to characterise Type 2 diabetes patients from Swiss primary care who miss HbA1c treatment goals and to reveal factors associated with the poorly controlled HbA1c level. Methods Cross-sectional study nested within the cluster randomised controlled Chronic Care for Diabetes study. Type 2 diabetes patients with at least one HbA1c measurement ≥7.0 % during the last year were recruited from Swiss primary care. Data assessment included diabetes specific and general clinical measures, treatment factors and patient reported outcomes. Results 326 Type 2 diabetes patients from 30 primary care practices with a mean age 67.1 ± 10.6 years participated in the study. The patients’ findings for HbA1c were 7.7 ± 1.3 %, for systolic blood pressure 139.1 ± 17.6 mmHg, for diastolic blood pressure 80.9 ± 10.5 mmHg and for low density lipoprotein 2.7 ± 1.1. 93.3 % of the patients suffered from at least one comorbidity and were treated with 4.8 ± 2.1 different drugs. No determining factor was significantly related to HbA1c in the multiple analysis, but a significant clustering effect of GPs on HbA1c could be found. Conclusions Within our sample of patients with poorly controlled Type 2 diabetes, no “bullet points” could be pointed out which can be addressed easily by some kind of intervention. Especially within this subgroup of diabetes patients who would benefit the most from appropriate interventions to improve diabetes control, a complex interaction between diabetes control, comorbidities, GPs’ treatment and patients’ health behaviour seems to exist. So far this interaction is only poorly described and understood. Trial registration Current Controlled Trials ISRCTN05947538. PMID:22704274

  14. Novel findings in patients with primary hyperoxaluria type III and implications for advanced molecular testing strategies.

    PubMed

    Beck, Bodo B; Baasner, Anne; Buescher, Anja; Habbig, Sandra; Reintjes, Nadine; Kemper, Markus J; Sikora, Przemyslaw; Mache, Christoph; Pohl, Martin; Stahl, Mirjam; Toenshoff, Burkhard; Pape, Lars; Fehrenbach, Henry; Jacob, Dorrit E; Grohe, Bernd; Wolf, Matthias T; Nürnberg, Gudrun; Yigit, Gökhan; Salido, Eduardo C; Hoppe, Bernd

    2013-02-01

    Identification of mutations in the HOGA1 gene as the cause of autosomal recessive primary hyperoxaluria (PH) type III has revitalized research in the field of PH and related stone disease. In contrast to the well-characterized entities of PH type I and type II, the pathophysiology and prevalence of type III is largely unknown. In this study, we analyzed a large cohort of subjects previously tested negative for type I/II by complete HOGA1 sequencing. Seven distinct mutations, among them four novel, were found in 15 patients. In patients of non-consanguineous European descent the previously reported c.700+5G>T splice-site mutation was predominant and represents a potential founder mutation, while in consanguineous families private homozygous mutations were identified throughout the gene. Furthermore, we identified a family where a homozygous mutation in HOGA1 (p.P190L) segregated in two siblings with an additional AGXT mutation (p.D201E). The two girls exhibiting triallelic inheritance presented a more severe phenotype than their only mildly affected p.P190L homozygous father. In silico analysis of five mutations reveals that HOGA1 deficiency is causing type III, yet reduced HOGA1 expression or aberrant subcellular protein targeting is unlikely to be the responsible pathomechanism. Our results strongly suggest HOGA1 as a major cause of PH, indicate a greater genetic heterogeneity of hyperoxaluria, and point to a favorable outcome of type III in the context of PH despite incomplete or absent biochemical remission. Multiallelic inheritance could have implications for genetic testing strategies and might represent an unrecognized mechanism for phenotype variability in PH. PMID:22781098

  15. Clonal Evolution and Blast Crisis Correlate with Enhanced Proteolytic Activity of Separase in BCR-ABL b3a2 Fusion Type CML under Imatinib Therapy

    PubMed Central

    Haaß, Wiltrud; Kleiner, Helga; Weiß, Christel; Haferlach, Claudia; Schlegelberger, Brigitte; Müller, Martin C.; Hehlmann, Rüdiger; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors

  16. Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I

    PubMed Central

    Pey, Angel L.; Albert, Armando; Salido, Eduardo

    2013-01-01

    Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missense mutations. In this review, we summarize the role of protein homeostasis in the basic mechanisms of primary hyperoxaluria. Intrinsic physicochemical properties of polypeptide chains such as thermodynamic stability, folding, unfolding, and misfolding rates as well as the interaction of different folding states with protein homeostasis networks are essential to understand this disease. The view presented has important implications for the development of new therapeutic strategies based on targeting specific elements of alanine-glyoxylate aminotransferase homeostasis. PMID:23956997

  17. Blast assessment and optimization for high quarry face-blasting

    SciTech Connect

    Sames, F.; O`Meara, R.

    1996-12-01

    Where applicable, high production benches can improve efficiency in quarrying. Quality control, geological, cost or other considerations might result in the development of quarry benches higher than 30 m and sometimes up to 60 m. Production blasts on high quarry faces require a confident blast design with respect to safety, cost efficiency and minimized environmental effects. Careful pre-blast assessment of the design parameters, blast monitoring of the product performance and the environmental effects and post-blast assessment of the overall blast performance are essential for the successful implementation of the blast design. The blast geometry for high quarry faces and a blast design that often includes multiple explosive charges in a blasthole, make a reliable assessment of the blast parameters difficult. Assessment techniques, their applications and limitations are described and discussed. This will include such methods as blast surveying using laser profiling and borehole deviation measurements, blast monitoring using continuous velocity of detonation measurement systems, high speed photography and seismographs for blast performance and environmental effects. Observations of low frequency airblast and high standard deviations in ground vibration measurements are described and discussed against a background of timing assessment and frequency spectra analysis. Approaches where an optimized design was implemented based on the blast parameter assessment and modeling are presented. An improvement in blast efficiency lies in the combination of blast assessment and blast modeling, whilst adequate documentation supports the process of designing and implementing successful blasts.

  18. A search for the primary abnormality in adult-onset type II citrullinemia

    SciTech Connect

    Kobayashi, Keiko; Shaheen, Nazma; Saheki, Takeyori ); Kumashiro, Ryukichi; Tanikawa, Kyuichi ); O'Brien, W.E.; Beaudet, A.L. )

    1993-11-01

    Deficiency of argininosuccinate synthetase (ASS) causes citrullinemia in human beings. Type II citrullinemia is found in most patients with adult-onset citrullinemia in Japan, and ASS deficiency is found specifically in the liver. Previous studies have shown that the decrease of hepatic ASS activity is caused by a decrease in enzyme protein with normal kinetic properties and that there were no apparent abnormalities in the amount, translational activity, and gross structure of hepatic ASS mRNA. In the present work, the authors show by sequencing analysis that there was no mutation in the ASS mRNA from two patients with type II citrullinemia. The authors also report RFLP analysis of a consanguineous family with type II citrullinemia, by using three DNA polymorphisms located within the ASS gene locus. In spite of having consanguineous parents, the patient was not a homozygous haplotype for the ASS gene. The RFLP analysis of 16 affected patients from consanguineous parents showed that 5 of 16 patients had the heterozygous pattern for one of the three DNA probes and that the frequency of the heterozygous haplotype was not different from the control frequency. These results suggest that the primary defect of type II citrullinemia is not within the ASS gene locus. 29 refs., 1 fig., 3 tabs.

  19. A search for the primary abnormality in adult-onset type II citrullinemia.

    PubMed

    Kobayashi, K; Shaheen, N; Kumashiro, R; Tanikawa, K; O'Brien, W E; Beaudet, A L; Saheki, T

    1993-11-01

    Deficiency of argininosuccinate synthetase (ASS) causes citrullinemia in human beings. Type II citrullinemia is found in most patients with adult-onset citrullinemia in Japan, and ASS deficiency is found specifically in the liver. Previous studies have shown that the decrease of hepatic ASS activity is caused by a decrease in enzyme protein with normal kinetic properties and that there were no apparent abnormalities in the amount, translational activity, and gross structure of hepatic ASS mRNA. In the present work, we show by sequencing analysis that there was no mutation in the ASS mRNA from two patients with type II citrullinemia. We also report RFLP analysis of a consanguineous family with type II citrullinemia, by using three DNA polymorphisms located within the ASS gene locus. In spite of having consanguineous parents, the patient was not a homozygous haplotype for the ASS gene. The RFLP analysis of 16 affected patients from consanguineous parents showed that 5 of 16 patients had the heterozygous pattern for one of the three DNA probes and that the frequency of the heterozygous haplotype was not different from the control frequency. These results suggest that the primary defect of type II citrullinemia is not within the ASS gene locus. PMID:8105687

  20. Modelling human eye under blast loading.

    PubMed

    Esposito, L; Clemente, C; Bonora, N; Rossi, T

    2015-01-01

    Primary blast injury (PBI) is the general term that refers to injuries resulting from the mere interaction of a blast wave with the body. Although few instances of primary ocular blast injury, without a concomitant secondary blast injury from debris, are documented, some experimental studies demonstrate its occurrence. In order to investigate PBI to the eye, a finite element model of the human eye using simple constitutive models was developed. The material parameters were calibrated by a multi-objective optimisation performed on available eye impact test data. The behaviour of the human eye and the dynamics of mechanisms occurring under PBI loading conditions were modelled. For the generation of the blast waves, different combinations of explosive (trinitrotoluene) mass charge and distance from the eye were analysed. An interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed. The peculiar geometry of the bony orbit (similar to a frustum cone) can induce a resonance cavity effect and generate a pressure standing wave potentially hurtful for eye tissues. PMID:23521031

  1. Blast furnace stove control

    SciTech Connect

    Muske, K.R.; Hansen, G.A.; Howse, J.W.; Cagliostro, D.J.; Chaubal, P.C.

    1998-12-31

    This paper outlines the process model and model-based control techniques implemented on the hot blast stoves for the No. 7 Blast Furnace at the Inland Steel facility in East Chicago, Indiana. A detailed heat transfer model of the stoves is developed. It is then used as part of a predictive control scheme to determine the minimum amount of fuel necessary to achieve the blast air requirements. The controller also considers maximum and minimum temperature constraints within the stove.

  2. Laboratory Blast Testing Methodologies

    NASA Astrophysics Data System (ADS)

    Needham, C.; Rule, G.

    Blast-induced injuries remain a critical problem facing US Forces during combat operations. As the nature of modern warfare has evolved, it is likely that the Improvised Explosive Device (IED) will remain a common battlefield threat for the foreseeable future. Thus, research devoted to improving protection, and characterizing the physiological response of people and equipment to blast exposure is and will remain a major thrust area for the DOD. Unfortunately, exact reproduction or simulation of the blast environment is technically challenging, while measuring and characterizing blast exposures is even more complex.

  3. Increased 17ß-hydroxysteroid dehydrogenase type 1 levels in primary cervical cancer.

    PubMed

    Tomaszewska, Agata; Roszak, Andrzej; Pawlik, Piotr; Sajdak, Stefan; Jagodziński, Paweł Piotr

    2015-05-01

    Infections with oncogenic human papillomavirus (HPV) strains are recognized as the major risk factor for developing malignant lesions in the uterine cervix. However, several findings have demonstrated cooperation between HPV infection and 17β-estradiol (E2) in cervical carcinogenesis. The 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1) is the enzyme involved in the transformation of estrone (E1) into E2. In this study, we identified the HSD17B1 transcript and protein in HeLa, SiHa, Ca Ski and C-33A cervical cancer cells. These cells were able to convert E1 to E2 in a time-dependent manner. Moreover, we identified the HSD17B1 transcript and protein in primary cancerous tissues (n=28) and in histologically unchanged tissues (n=25). We did not observe significant differences (P=0.33) between the HSD17B1 transcript levels in cancerous tissues and histologically unchanged tissues. However, we found an overrepresentation of the HSD17B1 protein in cancerous tissues compared with histologically unchanged tissues (P<0.001). This overrepresentation of the HSD17B1 protein in primary cervical cancerous tissues may be responsible for the local conversion of E1 to E2. PMID:26054693

  4. Primary headache in children and adolescents: update on pharmacotherapy of migraine and tension-type headache.

    PubMed

    Bonfert, Michaela; Straube, Andreas; Schroeder, Andreas Sebastian; Reilich, Peter; Ebinger, Friedrich; Heinen, Florian

    2013-02-01

    Primary headache disorders are frequently encountered in the pediatric population. The therapeutic approach consists of a multimodal program, including lifestyle modification, psychotherapeutic intervention, pharmacotherapy, and complementary measures. This systematic review focuses on the pharmacotherapy of pediatric migraine and tension-type headache (TTH). In addition to the general treatment principles, the results of 33 clinical reports published on the topic since 2008 are outlined in detail. Furthermore, a tabular summary of previously investigated agents not studied since 2008 is given, as is an overview of promising pharmacologic approaches so far only evaluated in adults. A variety of pharmacologic options is available, but high-quality evidence is limited to single agents. At this time, approval is restricted to four triptans and flupirtine for the symptomatic treatment of pediatric acute migraine and TTH, respectively. No agent has been approved for the prevention of pediatric primary headaches. This review does not grade the drugs hierarchically because the complex profiles of many agents differ only slightly or even overlap. However, a detailed expert opinion is provided. On the basis of the outlined facts, the team of physician, patient, and parents has to decide on the most appropriate regimen for the individual situation in the sense of personalized medicine. PMID:23303551

  5. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures.

    PubMed Central

    Langhoff, E; Terwilliger, E F; Bos, H J; Kalland, K H; Poznansky, M C; Bacon, O M; Haseltine, W A

    1991-01-01

    The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection. Images PMID:1910172

  6. Incidence and types of complications after ablative oral cancer surgery with primary microvascular free flap reconstruction

    PubMed Central

    Lodders, Johannes N.; Parmar, Satyesh; Stienen, Niki LM.; Martin, Timothy J.; Karagozoglu, K. Hakki; Heymans, Martijn W.; Nandra, Baljeet

    2015-01-01

    Background The aims of the study were 1) to evaluate the incidence and types of postoperative complications after ablative oral cancer surgery with primary free flap reconstruction and 2) identify prognostic variables for postoperative complications. Material and Methods Desired data was retrieved from a computer database at the department of Oral and Maxillofacial Department, Queen Elisabeth hospital Birmingham, United Kingdom, between June 2007 and October 2012. Logistic regression was used to study relationships between preoperative variables and postoperative outcomes. Results The study population consisted 184 patients, comprising 189 composite resections with reconstruction. Complications developed in 40.2% of the patients. Three patients (1.6%) died, 11.1% returned to the operating room, 5.3% developed donor site complications and 6.9% flap complications of which 3.2% total flap failure. In the multivariable analysis systemic complications were associated with anaesthesia time and hospital stay with red cell transfusion. Conclusions A significant proportion of the patients with primary free flap reconstructions after oral cancer surgery develops postoperative complications. Prolonged anaesthesia time and red cell transfusion are possible predictors for systemic complications and hospital stay respectively. Preoperative screening for risk factors is advocated for patient selection and to have realistic information and expectations. Key words:Free flap, complications, oral cancer, risk factors, reconstruction. PMID:26116846

  7. SURFACE PREPARATION OF STEEL SUBSTRATES USING GRIT-BLASTING

    SciTech Connect

    Donna Post Guillen; D. J. Varacalle, Jr.; D. Deason; W. Rhodaberger; E. Sampson

    2005-05-01

    The primary purpose of grit blasting for thermal spray applications is to ensure a strong mechanical bond between the substrate and the coating by the enhanced roughening of the substrate material. This study presents statistically designed experiments that were accomplished to investigate the effect of abrasives on roughness for A36/1020 steel. The experiments were conducted using a Box statistical design of experiment (SDE) approach. Three grit blasting parameters and their effect on the resultant substrate roughness were investigated. These include blast media, blast pressure, and working distance. The substrates were characterized for roughness using surface profilometry. These attributes were correlated with the changes in operating parameters. Twin-Wire Electric Arc (TWEA) coatings of aluminum and zinc/aluminum were deposited on the grit-blasted substrates. These coatings were then tested for bond strength. Bond strength studies were conducted utilizing a portable adhesion tester following ASTM standard D4541.

  8. Dynamic Modelling of Fault Slip Induced by Stress Waves due to Stope Production Blasts

    NASA Astrophysics Data System (ADS)

    Sainoki, Atsushi; Mitri, Hani S.

    2016-01-01

    Seismic events can take place due to the interaction of stress waves induced by stope production blasts with faults located in close proximity to stopes. The occurrence of such seismic events needs to be controlled to ensure the safety of the mine operators and the underground mine workings. This paper presents the results of a dynamic numerical modelling study of fault slip induced by stress waves resulting from stope production blasts. First, the calibration of a numerical model having a single blast hole is performed using a charge weight scaling law to determine blast pressure and damping coefficient of the rockmass. Subsequently, a numerical model of a typical Canadian metal mine encompassing a fault parallel to a tabular ore deposit is constructed, and the simulation of stope extraction sequence is carried out with static analyses until the fault exhibits slip burst conditions. At that point, the dynamic analysis begins by applying the calibrated blast pressure to the stope wall in the form of velocities generated by the blast holes. It is shown from the results obtained from the dynamic analysis that the stress waves reflected on the fault create a drop of normal stresses acting on the fault, which produces a reduction in shear stresses while resulting in fault slip. The influence of blast sequences on the behaviour of the fault is also examined assuming several types of blast sequences. Comparison of the blast sequence simulation results indicates that performing simultaneous blasts symmetrically induces the same level of seismic events as separate blasts, although seismic energy is more rapidly released when blasts are performed symmetrically. On the other hand when nine blast holes are blasted simultaneously, a large seismic event is induced, compared to the other two blasts. It is concluded that the separate blasts might be employed under the adopted geological conditions. The developed methodology and procedure to arrive at an ideal blast sequence can

  9. General view of blast furnace plant, with blast furnace "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of blast furnace plant, with blast furnace "A" (built in 1907) to the left; in the foreground is the turbo-blower and blast furnace gas-powered electric generating station (built in 1919), looking northwest - Bethlehem Steel Corporation, South Bethlehem Works, Blast Furnace "A", Along Lehigh River, North of Fourth Street, West of Minsi Trail Bridge, Bethlehem, Northampton County, PA

  10. Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex[OPEN

    PubMed Central

    Antoniadi, Ioanna; Plačková, Lenka; Simonovik, Biljana; Doležal, Karel; Turnbull, Colin; Ljung, Karin; Novák, Ondřej

    2015-01-01

    Cytokinins (CKs) play a crucial role in many physiological and developmental processes at the levels of individual plant components (cells, tissues, and organs) and by coordinating activities across these parts. High-resolution measurements of intracellular CKs in different plant tissues can therefore provide insights into their metabolism and mode of action. Here, we applied fluorescence-activated cell sorting of green fluorescent protein (GFP)-marked cell types, combined with solid-phase microextraction and an ultra-high-sensitivity mass spectrometry (MS) method for analysis of CK biosynthesis and homeostasis at cellular resolution. This method was validated by series of control experiments, establishing that protoplast isolation and cell sorting procedures did not greatly alter endogenous CK levels. The MS-based method facilitated the quantification of all the well known CK isoprenoid metabolites in four different transgenic Arabidopsis thaliana lines expressing GFP in specific cell populations within the primary root apex. Our results revealed the presence of a CK gradient within the Arabidopsis root tip, with a concentration maximum in the lateral root cap, columella, columella initials, and quiescent center cells. This distribution, when compared with previously published auxin gradients, implies that the well known antagonistic interactions between the two hormone groups are cell type specific. PMID:26152699

  11. Cell-Type-Specific Cytokinin Distribution within the Arabidopsis Primary Root Apex.

    PubMed

    Antoniadi, Ioanna; Plačková, Lenka; Simonovik, Biljana; Doležal, Karel; Turnbull, Colin; Ljung, Karin; Novák, Ondřej

    2015-07-01

    Cytokinins (CKs) play a crucial role in many physiological and developmental processes at the levels of individual plant components (cells, tissues, and organs) and by coordinating activities across these parts. High-resolution measurements of intracellular CKs in different plant tissues can therefore provide insights into their metabolism and mode of action. Here, we applied fluorescence-activated cell sorting of green fluorescent protein (GFP)-marked cell types, combined with solid-phase microextraction and an ultra-high-sensitivity mass spectrometry (MS) method for analysis of CK biosynthesis and homeostasis at cellular resolution. This method was validated by series of control experiments, establishing that protoplast isolation and cell sorting procedures did not greatly alter endogenous CK levels. The MS-based method facilitated the quantification of all the well known CK isoprenoid metabolites in four different transgenic Arabidopsis thaliana lines expressing GFP in specific cell populations within the primary root apex. Our results revealed the presence of a CK gradient within the Arabidopsis root tip, with a concentration maximum in the lateral root cap, columella, columella initials, and quiescent center cells. This distribution, when compared with previously published auxin gradients, implies that the well known antagonistic interactions between the two hormone groups are cell type specific. PMID:26152699

  12. The management of type 1 diabetes in primary school: review of the literature.

    PubMed

    Marks, Anne; Wilson, Valerie; Crisp, Jackie

    2013-01-01

    Type 1 diabetes is one of the most common chronic health conditions in childhood. The introduction of intensive insulin therapy and the rising prevalence of diabetes in younger children has increased the need for involvement of diabetes educators and school personnel in school diabetes care. School encompasses a significant proportion of a child's day, therefore diabetes treatment at school needs to be optimal or the child will have poor metabolic control. The aim of this literature review is to examine diabetes management in the early primary school setting. The main areas of diabetes management explored are: type, provision, and location of treatment, the impact on the child, and the role of the credentialed diabetes educator. The review identifies that the majority of children are not receiving intensive diabetes treatment at school. Younger children require more assistance with care and may be disadvantaged due to lack of appropriate school staff support. Most schools do not have nurses to assist with diabetes care, therefore teaching and administration staff are utilized. The use of insulin pump therapy may increase access to insulin at school, as children and teaching staff appear more confident with this method of delivery than injections. Treatment is frequently performed away from the classroom and can impact on class attendance, metabolic control, and emergencies. Diabetes educators need to work in collaboration with children, parents, and school personnel to ensure diabetes care is fully integrated into the school day. PMID:23597278

  13. Study of blasting vibrations in sarcheshmeh copper mine

    NASA Astrophysics Data System (ADS)

    Najm, K.; Javaherian, A.; Amnieh, H. B.

    2002-11-01

    Ground vibration is one of the side effects of blasting, in which way considerable amount of explosive energy is exhausted, and causes decrease in production and even decline in mine development workings. In this study, 57 recorded 3-C seismograms from 11 blasts in Sarcheshmeh copper mine, Kerman, Iran, are processed and analyzed. These data were recorded by digital seismograph PDAS-100 and analyzed by DADISP software. Finally, blasting parameters, such as explosive weight and type, distance between the structures and blasting site, blasting delays, affecting ground vibration are reviewed and their influence on peak particle velocity (PPV) are studied. Based on this study, suitable detonation delays and explosive type is determined. Considering these data, a graph of PPV versus scaled distance for Sarcheshmeh copper mine is prepared, by the help of which, safe distance for structures and accordingly explosive quantity could be determined.

  14. Blast Loading Experiments of Surrogate Models for Tbi Scenarios

    NASA Astrophysics Data System (ADS)

    Alley, M. D.; Son, S. F.

    2009-12-01

    This study aims to characterize the interaction of explosive blast waves through simulated anatomical models. We have developed physical models and a systematic approach for testing traumatic brain injury (TBI) mechanisms and occurrences. A simplified series of models consisting of spherical PMMA shells housing synthetic gelatins as brain simulants have been utilized. A series of experiments was conducted to compare the sensitivity of the system response to mechanical properties of the simulants under high strain-rate explosive blasts. Small explosive charges were directed at the models to produce a realistic blast wave in a scaled laboratory test cell setting. Blast profiles were measured and analyzed to compare system response severity. High-speed shadowgraph imaging captured blast wave interaction with the head model while particle tracking captured internal response for displacement and strain correlation. The results suggest amplification of shock waves inside the head near material interfaces due to impedance mismatches. In addition, significant relative displacement was observed between the interacting materials suggesting large strain values of nearly 5%. Further quantitative results were obtained through shadowgraph imaging of the blasts confirming a separation of time scales between blast interaction and bulk movement. These results lead to the conclusion that primary blast effects could cause TBI occurrences.

  15. Blasting response of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Horlyck, Lachlan; Hayes, Kieran; Caetano, Ryan; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando

    2016-08-01

    A finite element model of the Eiffel Tower was constructed using Strand7 software. The model replicates the existing tower, with dimensions justified through the use of original design drawings. A static and dynamic analysis was conducted to determine the actions of the tower under permanent, imposed and wind loadings, as well as under blast pressure loads and earthquake loads due to an explosion. It was observed that the tower utilises the full axial capacity of individual members by acting as a `truss of trusses'. As such, permanent and imposed loads are efficiently transferred to the primary columns through compression, while wind loads induce tensile forces in the windward legs and compressive forces in the leeward. Under blast loading, the tower experienced both ground vibrations and blast pressures. Ground vibrations induced a negligibly small earthquake loading into the structure which was ignored in subsequent analyses. The blast pressure was significant, and a dynamic analysis of this revealed that further research is required into the damping qualities of the structure due to soil and mechanical properties. In the worst case scenario, the blast was assumed to completely destroy several members in the adjacent leg. Despite this weakened condition, it was observed that the tower would still be able to sustain static loads, at least for enough time for occupant evacuation. Further, an optimised design revealed the structure was structurally sound under a 46% reduction of the metal tower's mass.

  16. Racial/Ethnic Disparities in Primary Care Quality Among Type 2 Diabetes Patients, Medical Expenditure Panel Survey, 2012

    PubMed Central

    Hu, Ruwei; Shi, Leiyu; Liang, Hailun; Haile, Geraldine Pierre

    2016-01-01

    Introduction Racial and ethnic disparities exist in diabetes prevalence, access to diabetes care, diabetes-related complications and mortality rates, and the quality of diabetes care among Americans. We explored racial and ethnic disparities in primary care quality among Americans with type 2 diabetes. Methods We analyzed data on adults with type 2 diabetes derived from the household component of the 2012 Medical Expenditure Panel Survey. Multiple regression and multivariate logistic regressions were used to examine the association between race/ethnicity and primary care attributes related to first contact, longitudinality, comprehensiveness, and coordination, and clusters of confounding factors were added sequentially. Results Preliminary findings indicated differences in primary care quality between racial/ethnic minorities and whites across measures of first contact, longitudinality, comprehensiveness, and coordination. After controlling for confounding factors, these differences were no longer apparent; all racial/ethnic categories showed similar rates of primary care quality according to the 4 primary care domains of interest in the study. Conclusion Results indicate equitable primary care quality for type 2 diabetes patients across 4 key domains of primary care after controlling for socioeconomic characteristics. Additional research is necessary to support these findings, particularly when considering smaller racial/ethnic groups and investigating outcomes related to diabetes. PMID:27490365

  17. Robotic Water Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  18. Lightweight blast shield

    DOEpatents

    Mixon, Larry C.; Snyder, George W.; Hill, Scott D.; Johnson, Gregory L.; Wlodarski, J. Frank; von Spakovsky, Alexis P.; Emerson, John D.; Cole, James M.; Tipton, John P.

    1991-01-01

    A tandem warhead missile arrangement that has a composite material housing structure with a first warhead mounted at one end and a second warhead mounted near another end of the composite structure with a dome shaped composite material blast shield mounted between the warheads to protect the second warhead from the blast of the first warhead.

  19. Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain.

    PubMed

    Khatypov, R A; Khmelnitskiy, A Yu; Khristin, A M; Fufina, T Yu; Vasilieva, L G; Shuvalov, V A

    2012-08-01

    Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. PMID:22209778

  20. Blast related neurotrauma: a review of cellular injury.

    PubMed

    Leung, Lai Yee; VandeVord, Pamela J; Dal Cengio, Alessandra Leonardi; Bir, Cynthia; Yang, King H; King, Albert I

    2008-09-01

    Historically, blast overpressure is known to affect primarily gas-containing organs such as the lung and ear. More recent interests focus on its ability to cause damage to solid organs such as the brain, resulting in neurological disorders. Returning veterans exposed to blast but without external injuries are being diagnosed with mild traumatic brain injury (Warden 2006) and with cortical dysfunction (Cernak et al 1999). Decades of studies have been conducted to elucidate the effects of primary blast wave on the central nervous system. These studies were mostly concerned with systemic effects (Saljo et al 2000-2003; Kaur et al 1995-1997, 1999; Cernak et al 1996, 2001). The molecular mechanism of blast-induced neurotrauma is still poorly understood. This paper reviews studies related to primary blast injury to the nervous system, particularly at the cellular level. It starts with a general discussion of primary blast injury and blast wave physics, followed by a review of the literature related to 1) the blast wave/body interaction, 2) injuries to the peripheral nervous system, 3) injuries to the central nervous system, and 4) injury criteria. Finally, some of our preliminary data on cellular injury from in vitro and in vivo studies are presented. Specifically, we report on the effects of overpressure on astrocytes. In the discussion, possible mechanisms of blast-related brain injury are discussed, as well as the concerns and limitations of the published studies. A clearer understanding of the injury mechanisms at both the molecular and macroscopic (organ) level will lead to the development of new treatment, diagnosis and preventive measures. PMID:18751525

  1. Open pit blasting in India

    SciTech Connect

    Wasson, D.A.; Garg, D.D.

    1995-12-31

    Open pit blasting in India uses two types of explosives. First there are bulk explosives for wet and dry holes, and there are packaged explosives. The Indian open pit coal mining is projected to use 190 thousand metric tons of explosives in 1995. This volume is projected to grow for the next ten years, whereas the underground coal mining will hold fairly constant. Bulk explosives started in about 1977 with watergels. In the late 1980s, bulk emulsions and heavy ANFOs were introduced. This system is still being expanded and is replacing packaged products in the larger mines. Packaged products are still popular where the annual consumption is less than 2,000 metric tons per year. Also, packaged products are used in small wet shots. Porous ammonium nitrate prill have recently become available but ANFO is not very common because of the high cost of the prill and the wet blasting conditions. As the market expands there will be a continuing demand for packaged products but an increasing demand for bulk waterproof products, particularly in the larger operations. Dynamites are produced at four plants in India. The annual production of about 45,000 metric tons per year is holding fairly constant, but is likely to decrease in the future. The future blasting in India will primarily use pumped emulsions and heavy ANFO on an increasing basis, but the packaged products will maintain their position.

  2. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components

  3. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave

  4. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1.

    PubMed

    Castello, R; Borzone, R; D'Aria, S; Annunziata, P; Piccolo, P; Brunetti-Pierri, N

    2016-02-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT), which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate that ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Toward this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared with saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with ethylene glycol, a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  5. Combined diphtheria, tetanus, pertussis, and Haemophilus influenzae type b vaccines for primary immunisation.

    PubMed Central

    Bell, F; Martin, A; Blondeau, C; Thornton, C; Chaplais, J; Finn, A

    1996-01-01

    A total of 146 infants were immunised at ages 2, 3, and 4 months with a combined diphtheria, tetanus, pertussis (DTP)--Haemophilus influenzae type b (Hib) tetanus toxoid conjugate (PRP-T) vaccine (Pasteur Merieux) to assess the antibody response and adverse events associated with immunisation. Adverse events, including fever, were recorded by parents in a diary for three days following each injection. Blood was taken before the first immunisation and four weeks after the third immunisation to assess antibody response. Data were compared with those from historical controls who had received DTP and PRP-T vaccines by separate injection. The combined vaccine was well tolerated. Rates of local and general reactions were similar to those reported for infants immunised by separate injection. All infants achieved protective antibody titres (> 0.01 IU/ml) for diphtheria and tetanus; 98% acquired Hib (PRP) antibody > 0.15 microgram/ml and 82.5% > 1.0 microgram/ml. Pertussis antibody titres (pertussis toxin, filamentous haemagglutinin, total agglutinins, and agglutinins 2 and 3) showed appreciable rise following immunisation. DTP and PRP-T vaccines provide similar antibody responses and adverse effects whether mixed in the same syringe or administered by separate injection. The vaccines could be combined for use in the United Kingdom primary immunisation schedule. PMID:8984914

  6. Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1

    PubMed Central

    Castello, Raffaele; Borzone, Roberta; D’Aria, Stefania; Annunziata, Patrizia; Piccolo, Pasquale; Brunetti-Pierri, Nicola

    2015-01-01

    Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy. PMID:26609667

  7. The Effect of Sleep Quality on the Development of Type 2 Diabetes in Primary Care Patients

    PubMed Central

    2016-01-01

    Sleep has important effects on physical and mental health, and sleep disorders are associated with increased mortality and morbidity. This study was conducted to evaluate the relationship between sleep duration or sleep quality and the risk of type 2 diabetes. The FACTS (FAmily CohorT Study in primary care) was established to investigate the relations between familial environment and health which was conducted at 22 family medicine outpatient clinics in general hospitals. Total 563 patients without diabetes who received ≥1 year follow-up examination were included in the analysis. We used the Pittsburgh Sleep Quality Index to determine sleep quality, and a score of ≥5 was considered to define poor sleep quality. Patients taking oral hypoglycemic agents, having a fasting glucose level of >126 mg/dL, or diagnosed with diabetes by physicians were classified as having diabetes. The median follow-up period was 2.5 years. Poor sleep quality was associated with a higher risk of diabetes after adjusting for age, sex, body mass index, income, physical activity, and family history of diabetes (relative risk=2.64; 95% confidence interval, 1.03-6.78). As a risk factor for the development of diabetes, poor sleep quality may independently increase the incidence of diabetes. PMID:26839478

  8. Sustained pyridoxine response in primary hyperoxaluria type 1 recipients of kidney alone transplant.

    PubMed

    Lorenz, E C; Lieske, J C; Seide, B M; Meek, A M; Olson, J B; Bergstralh, E J; Milliner, D S

    2014-06-01

    Combined liver kidney transplant is the preferred transplant option for most patients with primary hyperoxaluria type 1 (PH1) given that it removes the hepatic source of oxalate production and improves renal allograft survival. However, PH1 patients homozygous for the G170R mutation can develop normal urine oxalate levels with pyridoxine therapy and may be candidates for kidney alone transplant (KTx). We examined the efficacy of pyridoxine therapy following KTx in five patients homozygous for G170R transplanted between September 1999 and July 2013. All patients were maintained on pyridoxine posttransplant. Median age at transplant was 39 years (range 33-67 years). Median follow-up posttransplant was 8.5 years (range 0.2-13.9 years). At the end of follow-up, four grafts were functioning. One graft failed 13.9 years posttransplant due to recurrent oxalate nephropathy following an acute medical illness. After tissue oxalate stores had cleared, posttransplant urine oxalate levels were <0.5 mmol/24 h the majority of times checked. Calcium oxalate crystals were noted in only 3/13 allograft biopsies. This series suggests that a subgroup of PH1 patients demonstrate sustained response to pyridoxine therapy following KTx. Therefore, pyridoxine combined with KTx should be considered for PH1 patients with a homozygous G170R mutation. PMID:24797341

  9. Use of oral combination therapy for type 2 diabetes in primary care: Meeting individualized patient goals.

    PubMed

    Lavernia, Frank; Adkins, Sarah E; Shubrook, Jay H

    2015-01-01

    The management of type 2 diabetes mellitus (T2DM) by primary care physicians (PCPs) has become increasingly complex due to limitations on consultation time, an increasing array of drug treatment options, and issues of comorbidities and polypharmacy. Diabetes is a progressive condition and treatment with a single glucose-lowering agent can only address limited pathophysiologic targets and does not provide adequate glycemic control in many cases. Consequently, most patients with T2DM will eventually require treatment with multiple glucose-lowering medications. Oral combination therapy in T2DM may be given as multiple-pills, or as single-pill, fixed-dose combinations (FDCs), the latter of which offer convenience, ease of administration, and a reduction in the medication burden. Therefore, FDCs can potentially improve patients' treatment adherence and optimize achievement and maintenance of glycemic targets. However, cost factors also need to be considered. An understanding of the issues associated with the use of combination therapy in T2DM will help PCPs to guide patient-centered decision making and promote the effective management of T2DM. PMID:26439384

  10. Neuron Types in the Presumptive Primary Somatosensory Cortex of the Florida Manatee (Trichechus manatus latirostris).

    PubMed

    Reyes, Laura D; Stimpson, Cheryl D; Gupta, Kanika; Raghanti, Mary Ann; Hof, Patrick R; Reep, Roger L; Sherwood, Chet C

    2015-01-01

    Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm(3) and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved

  11. Blast-induced neurotrauma in whales.

    PubMed

    Knudsen, Siri K; Øen, Egil O

    2003-07-01

    A majority of investigations on primary blast injuries have focused on gas-containing organs, while the likelihood of blast-induced neurotrauma remains underrated. In Norway minke whales (Balaenoptera acutorostrata) are hunted using small fishing boats rigged with harpoon guns, which fire harpoons tipped with a grenade containing a charge of 30-g penthrite. The grenade detonates 60-70 cm inside the animal. The present study was undertaken to characterize the neuropathological changes caused by the penthrite blast and evaluate its role in the loss of consciousness and death in hunted whales. The study included 37 minke whales that were examined shipboard. The brains were later subjected to gross and light microscopy examination. The results showed that intra-body detonation of the grenade in near vicinity of the brain resulted in trauma similar to severe traumatic brain injury associated with a direct blow to the head. Detonation in more distant areas of the body resulted in injuries resembling acceleration-induced diffuse traumatic brain injury. The authors conclude that even if several vital organs were fatally injured in most whales, the neurotrauma induced by the blast-generated pressure waves were the primary cause for the immediate or very rapid loss of consciousness and death. PMID:12804799

  12. Prognostic relevance of HER2/neu in acute lymphoblastic leukemia and induction of NK cell reactivity against primary ALL blasts by trastuzumab.

    PubMed

    Haen, Sebastian P; Schmiedel, Benjamin J; Rothfelder, Kathrin; Schmied, Bastian J; Dang, Truong-Minh; Mirza, Nora; Möhle, Robert; Kanz, Lothar; Vogel, Wichard; Salih, Helmut R

    2016-03-15

    The epidermal growth factor receptor HER2/neu is expressed on various cancers and represents a negative prognostic marker, but is also a target for the therapeutic monoclonal antibody Trastuzumab. In about 30% of cases, HER2/neu is expressed on acute lymphoblastic leukemia (ALL) cells and was proposed to be associated with a deleterious prognosis. Here we evaluated clinical data from 65 ALL patients (HER2/neu+, n = 17; HER2/neu-, n = 48) with a median follow-up of 19.4 months (range 0.6-176.5 months) and observed no association of HER2/neu expression with response to chemotherapy, disease free or overall survival. In vitro, treatment of primary ALL cells (CD20+HER2/neu+, CD20+HER2/neu- and CD20-HER2/neu-) with Rituximab and Trastuzumab led to activation of NK cells in strict dependence of the expression of the respective antigen. NK reactivity was more pronounced with Rituximab as compared to Trastuzumab, and combined application could lead to additive effects in cases where both antigens were expressed. Besides providing evidence that HER2/neu expression is no risk factor in ALL patients, our data demonstrates that HER2/neu can be a promising target for Trastuzumab therapy in the subset of ALL patients with the potential to improve disease outcome. PMID:26887048

  13. Prognostic relevance of HER2/neu in acute lymphoblastic leukemia and induction of NK cell reactivity against primary ALL blasts by trastuzumab

    PubMed Central

    Schmied, Bastian J.; Dang, Truong-Minh; Mirza, Nora; Möhle, Robert; Kanz, Lothar; Vogel, Wichard; Salih, Helmut R.

    2016-01-01

    The epidermal growth factor receptor HER2/neu is expressed on various cancers and represents a negative prognostic marker, but is also a target for the therapeutic monoclonal antibody Trastuzumab. In about 30% of cases, HER2/neu is expressed on acute lymphoblastic leukemia (ALL) cells and was proposed to be associated with a deleterious prognosis. Here we evaluated clinical data from 65 ALL patients (HER2/neu+, n = 17; HER2/neu−, n = 48) with a median follow-up of 19.4 months (range 0.6-176.5 months) and observed no association of HER2/neu expression with response to chemotherapy, disease free or overall survival. In vitro, treatment of primary ALL cells (CD20+HER2/neu+, CD20+HER2/neu− and CD20−HER2/neu−) with Rituximab and Trastuzumab led to activation of NK cells in strict dependence of the expression of the respective antigen. NK reactivity was more pronounced with Rituximab as compared to Trastuzumab, and combined application could lead to additive effects in cases where both antigens were expressed. Besides providing evidence that HER2/neu expression is no risk factor in ALL patients, our data demonstrates that HER2/neu can be a promising target for Trastuzumab therapy in the subset of ALL patients with the potential to improve disease outcome. PMID:26887048

  14. Determining optimal surface roughness of TiO(2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone.

    PubMed

    Mustafa, K; Wennerberg, A; Wroblewski, J; Hultenby, K; Lopez, B S; Arvidson, K

    2001-10-01

    In the complex process of bone formation at the implant-tissue interface, implant surface roughness is an important factor modulating osteoblastic function. In this study, primary cultures of osteoblast-like cells, derived from human mandibular bone, were used. The aim was to examine the effect of varying surface roughness of titanium implant material on cellular attachment, proliferation and differentiation. A recognized method of increasing surface roughness and enlarging the surface area of titanium implants is by blasting with titanium dioxide particles: the four specimen types in the study comprised surfaces which were machine-turned only, or blasted after turning, with 63-90 microm, 106-180 microm, or 180-300 microm TiO(2) particles, respectively. The specimens were analyzed by scanning electron microscopy and confocal laser scanning. The turned samples had the smoothest surfaces: average height deviation (S(a)) of 0.20 microm. The roughest were those blasted with 180-300 microm particles, S(a) value 1.38 microm. Blasting with intermediate particle sizes yielded S(a) values of 0.72 microm and 1.30 microm, respectively. Cell profile areas were measured using a semiautomatic interactive image analyzer. Figures were expressed as percentage of attachment. DNA synthesis was estimated by measuring the amount of [(3)H]-thymidine incorporation into trichloroacetic acid (TCA) insoluble cell precipitates. The specific activity of alkaline phosphatase was assayed using p-nitrophenylphosphate as a substrate. The ability of the cells to synthesize osteocalcin was investigated in serum-free culture medium using the ELSA-OST-NAT immunoradiometric kit. After 3 h of culture, the percentage of cellular attachment did not differ significantly between specimens blasted with 180-300 micromparticles and the turned specimens. All blasted surfaces showed significantly higher [(3)H]-thymidine incorporation than the turned surfaces (P<0.05), with the highest on the surfaces blasted

  15. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

    USGS Publications Warehouse

    Bradford, J.B.

    2011-01-01

    Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  16. Ethnic differences in GRHPR mutations in patients with primary hyperoxaluria type 2.

    PubMed

    Takayama, T; Takaoka, N; Nagata, M; Johnin, K; Okada, Y; Tanaka, S; Kawamura, M; Inokuchi, T; Ohse, M; Kuhara, T; Tanioka, F; Yamada, H; Sugimura, H; Ozono, S

    2014-10-01

    The objective of this study was to investigate ethnic differences in the glyoxylate reductase/hydroxypyruvate reductase (GRHPR) gene in patients with primary hyperoxaluria type 2 (PH2). GRHPR was genotyped in Japanese patients with PH2 and all GRHPR mutations described to date were reviewed in terms of geographic and ethnic association. We identified a novel mutation, a two-nucleotide deletion (c.248_249delTG) in exon 3 creating a premature 'stop' at codon 91. Also, we found that the c.864_865delTG mutation was associated with the rs35891798 single-nucleotide polymorphism. The allelic frequencies of the c.103delG, c.494G>A, c.403_404+2 delAAGT, and c.864_865delTG mutations in PH2 patients were 37.8%, 15.6%, 10.0%, and 10.0%, respectively. All patients with the c.103delG mutation were Caucasian. Patients with the c.494G>A mutation and 78% (7/9) of those with the c.403_404+2 delAAGT mutation were from the Indian subcontinent, whereas those with the c.864_865delTG mutation were Chinese or Japanese. Molecular analysis of GRHPR of four Japanese PH2 patients identified a novel mutation (c.248_249delTG in exon 3). Caucasians with PH2 should be screened for the c.103delG mutation; patients from the Indian subcontinent for c.494G>A; and patients of East Asian origin (particularly) for c.864_865delTG. The prevalence of the latter mutation in PH2 patients from East Asia was 75.0%. PMID:24116921

  17. Novel multiple endocrine neoplasia type 1 variations in patients with sporadic primary hyperparathyroidism

    PubMed Central

    Birla, S; Malik, E; Jyotsna, VP; Sharma, A

    2016-01-01

    Background and Objectives: Primary hyperparathyroidism (PHPT) can occur either as a sporadic case or in association with syndromes such as multiple endocrine neoplasia. Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal-dominant disease resulting from mutations in MEN1 gene encoding a 621 amino acid long tumor suppressor protein “menin.” We report here the results of MEN1 screening in 31 patients diagnosed with sporadic PHPT. Materials and Methods: Diagnosis of sporadic PHPT was made when blood urea and serum creatinine were normal, serum parathyroid hormone was high, and parathyroid enlargement could be localized on ultrasound and/or parathyroid scan. A total of 31 patients and 50 healthy volunteers were recruited for molecular analysis after taking informed consent. Results: Major symptoms at presentation were bone pain, fatigue, muscle weakness, and renal stones. Molecular genetic analysis revealed the presence of two novel intronic variations, c. 913-79T>A and c. 784-129T>A which by human splicing finder are predicted to cause potential alteration of splicing by either activating an intronic cryptic acceptor site or converting a conserved exonic splicing silencer sequence to an exonic splicing enhancer site. Apart from these, two reported polymorphisms rs144677807 and rs669976 were seen only in patients and none of the controls. Other reported polymorphisms rs2071313 and rs654440 were identified both in controls and patients. Conclusions: This is the first study of MEN1 gene screening in sporadic PHPT in India reporting on the clinical and genetic findings, wherein two novel intronic variations c. 913-79T>A and c. 784-129T>A were identified showing their possible role in disease causation. PMID:27366707

  18. Primary cilium - antenna-like structure on the surface of most mammalian cell types

    NASA Astrophysics Data System (ADS)

    Dvorak, J.; Sitorova, V.; Hadzi Nikolov, D.; Mokry, J.; Richter, I.; Kasaova, L.; Filip, S.; Ryska, A.; Petera, J.

    2011-12-01

    The primary cilium is a sensory solitary non-motile microtubule-based organelle protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including embryonic cells, stem cells and stromal cells of malignant tumors. The presence of a primary cilium on the surface of a cell is transient, limited to the quiescent G1(G0) phase and the beginning of the S phase of the cell cycle. The primary cilium is formed from the mother centriole. Primary cilia are key coordinators of signaling pathways during development and tissue homeostasis and, when deffective, they are a major cause of human diseases and developmental disorders, now commonly referred to as ciliopathies. Most cancer cells do not possess a primary cilium. The loss of the primary cilium is a regular feature of neoplastic transformation in the majority of solid tumors. The primary cilium could serve as a tumor suppressor organelle. The aim of this paper was to provide a review of the current knowledge of the primary cilium.

  19. Differential expression of collagen types I and III in consequential and primary fibrosis in irradiated mouse colon

    SciTech Connect

    Followill, D.S.; Travis, E.L.

    1995-12-01

    These studies were undertaken to understand further the pathogenesis of consequential and primary fibrosis in mouse colon after irradiation. The distal 2.5 cm of colon of C3Hf/Kam mice was irradiated with either a single dose of 27 Gy or a split dose of 2 x 14.75 Gy separated by 10 days to induce a consequential or primary fibrotic lesion, respectively. The amount of total collagen in the two lesions was quantified by hydroxyproline, and tensile strength, an assay of tissue rigidity, was measured as a function of dose and time after irradiation. The relative distribution of collagen types I, III and IV in the colon was visualized by immunohistochemistry. Collagen types I, III and IV were quantified by immunoblot techniques, and in situ hybridization was used to identify and score the cells producing procollagen mRNA types I and III as a function of time after irradiation. The hydroxyproline and tensile strength measurements demonstrated that both lesions contained significantly increased amounts of collagen compared to controls. However, the ulcerated lesion of consequential fibrosis contained three times as much collagen and required a three- to fourfold increase in the peak force to rupture the colon as did the non-ulcerative lesion of primary fibrosis. The fibrosis accompanying the consequential lesion contained elevated levels of both collagen types I and III, but primary fibrosis contained only elevated levels of type I collagen compared to controls. The in situ hybridization studies showed cells producing increased amounts of procollagen mRNA 8 and 25 weeks before the elevated levels of collagen were detected for consequential and primary fibrosis, respectively. The cells producing the excess collagen mRNA were identified as fibroblasts. No distinction between the two lesions could be made based on the cell types producing the collagen. 48 refs., 7 figs.

  20. Blast trauma: the fourth weapon of mass destruction.

    PubMed

    Born, C T

    2005-01-01

    Injury from blast is becoming more common in the non-military population. This is primarily a result of an increase in politically motivated bombings within the civilian sector. Explosions unrelated to terrorism may also occur in the industrial setting. Civilian physicians and surgeons need to have an understanding of the pathomechanics and physiology of blast injury and to recognize the hallmarks of severity in order to increase survivorship. Because victims may be transported rapidly to the hospital, occult injury to gas and fluid containing organs (particularly the ears, bowel and lungs) may go unrecognized. Information surrounding the physical environment of the explosion (whether inside or outside, underwater, associated building collapse, etc) will prove useful. Most of the immediate deaths are caused by primary blast injury from the primary blast wave, but secondary blast injury from flying debris can also be lethal and involve a much wider radius. Liberal use of X-ray examination in areas of skin punctures will help to identify a need for exploration and/or foreign body removal. Biologic serum markers may have a role in identifying victims of primary blast injury and assist in monitoring their clinical progress. Tertiary blast injury results from the airborne propulsion of the victim by the shockwave and is a source of additional blunt head and torso trauma as well as fractures. Miscellaneous (quaternary) blast injury include thermal or dust inhalation exposure as well as crush and compartment syndromes from building collapse. Any explosion has the potential to be associated with nuclear, biologic or chemical contaminants, and this should remain a consideration for healthcare givers until proven otherwise. PMID:16425623

  1. Feasibility and effectiveness of the implementation of a primary prevention programme for type 2 diabetes in routine primary care practice: a phase IV cluster randomised clinical trial

    PubMed Central

    2012-01-01

    Background The objective of this study is to perform an independent evaluation of the feasibility and effectiveness of an educational programme for the primary prevention of type 2 diabetes (DM2) in high risk populations in primary care settings, implanted within the Basque Health Service - Osakidetza. Methods/design This is a prospective phase IV cluster clinical trial conducted under routine conditions in 14 primary health care centres of Osakidetza, randomly assigned to an intervention or control group. We will recruit a total sample of 1089 individuals, aged between 45 and 70 years old, without diabetes but at high risk of developing the condition (Finnish Diabetes Risk Score, FINDRISC ≥ 14) and follow them up for 2 years. Primary health care nursing teams of the intervention centres will implement DE-PLAN, a structured educational intervention program focused on changing healthy lifestyles (diet and physical activity); while the patients in the control centres will receive the usual care for the prevention and treatment of DM2 currently provided in Osakidetza. The effectiveness attributable to the programme will be assessed by comparing the changes observed in patients exposed to the intervention and those in the control group, with respect to the risk of developing DM2 and lifestyle habits. In terms of feasibility, we will assess indicators of population coverage and programme implementation. Discussion The aim of this study is to provide the scientific basis for disseminate the programme to the remaining primary health centres in Osakidetza, as a novel way of addressing prevention of DM2. The study design will enable us to gather information on the effectiveness of the intervention as well as the feasibility of implementing it in routine practice. Trial registration ClinicalTrials.gov NCT01365013 PMID:23158830

  2. Lessons learned from the HEALTHY primary prevention trial of risk factors for type 2 diabetes in middle school youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The HEALTHY trial was designed to take a primary prevention approach to risk factors for type 2 diabetes in youth, primarily obesity. The study involved over 6,000 students at 42 middle schools across the U.S. Half received an integrated intervention program of components addressing the school food ...

  3. Hypokalemic periodic paralysis in primary hyperaldosteronism. Subclinical myopathy with atrophy of the type 2A muscle fibers.

    PubMed

    Bautista, J; Gil-Neciga, E; Gil-Peralta, A

    1979-01-01

    A case of a patient suffering from primary hyperaldosteronism is reported. In this case the disease is manifested clinically by periodic paralysis and hypopotasemia without permanent myopathy. The morphological study of the muscle demonstrates selective atrophy of the type 2A fibers as the most pronounced alteration. These findings suggest a chronic myopathic process. PMID:546663

  4. [Blast lung injuries].

    PubMed

    Clapson, P; Pasquier, P; Perez, J-P; Debien, B

    2010-09-01

    In armed conflicts and during terrorist attacks, explosive devices are a major cause of mortality. The lung is one of the organs most sensitive to blasts. Thus, today it is important that every GP at least knows the basics and practices regarding treatment of blast victims. We suggest, following a review of the explosions and an assessment of the current threats, detailing the lung injuries brought about by the explosions and the main treatments currently recommended. PMID:20933166

  5. Computer cast blast modelling

    SciTech Connect

    Chung, S.; McGill, M.; Preece, D.S.

    1994-07-01

    Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. The more overburden removed by explosives, the less blasted material there is left to be transported with mechanical equipment, such as draglines and trucks. In order to optimize the percentage of rock that is cast, a higher powder factor than normal is required plus an initiation technique designed to produce a much greater degree of horizontal muck movement. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC, applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the DMC can perform a blast simulation in 0.5 hours on the SUN SPARCstation 10--41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC computer. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

  6. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells.

    PubMed

    Sweeney, Sinbad; Theodorou, Ioannis G; Zambianchi, Marta; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng Jim; Chung, Kian Fan; Shaffer, Milo S P; Ryan, Mary P; Porter, Alexandra E; Tetley, Teresa D

    2015-06-21

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit. PMID:25996248

  7. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    PubMed Central

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Martina; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-01-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit. PMID:25996248

  8. Parameters controlling the sand blasting of substrates for plasma spraying

    SciTech Connect

    Mellali, M.; Grimaud, A.; Fauchais, P.

    1994-12-31

    The purpose of this paper was to examine how the grit blasting process influences the surface roughness of different substrates: aluminum alloy, cast iron and hard steel 100C6. Alumina grits of different mean diameters (2, 1.48, 1. 0.5 mm) were chosen. Grit blasting was performed using either a suction type machine or a pressure type machine which were equipped with straight nozzles made of B{sub 4}C (internal diameters of 8 mm) and the influence of the following parameters was studied: sand blasting distance (50 to 200 mm), blasting time (3 to 30 s), angle between nozzle and blasted surface (30, 60, 90{degree}), blasting pressure (from 0.2 to 0.6 MPa). The roughness of the substrates was characterized by using either a perthometer or image analysis. The influence of the grit erosion was studied. The results show that the most influential parameter for the roughness is the grit size. An increase of the pressure increased slightly the Ra but increased drastically the burst of the grit. A blasting time comprised between 3 and 6 s was quite sufficient to obtain the highest roughness and limit the grit burst.

  9. Study on the early warning mechanism for the security of blast furnace hearths

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-bo; Huo, Shou-feng; Cheng, Shu-sen

    2013-04-01

    The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In this article, based on heat transfer calculations, heat flux and erosion monitoring, the features of heat flux and erosion were analyzed and compared among different types of hearths. The primary detecting elements, mathematical models, evaluating standards, and warning methods were discussed. A novel early warning mechanism with the three-level quantificational standards was proposed for BF hearth security.

  10. Silver nanowire interactions with primary human alveolar type-II epithelial cell secretions: contrasting bioreactivity with human alveolar type-I and type-II epithelial cells

    NASA Astrophysics Data System (ADS)

    Sweeney, Sinbad; Theodorou, Ioannis G.; Zambianchi, Marta; Chen, Shu; Gow, Andrew; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Shaffer, Milo S. P.; Ryan, Mary P.; Porter, Alexandra E.; Tetley, Teresa D.

    2015-06-01

    Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 μm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.Inhaled nanoparticles have a high deposition rate in

  11. Blast overpressure after tire explosion: a fatal case.

    PubMed

    Pomara, Cristoforo; D'Errico, Stefano; Riezzo, Irene; Perilli, Gabriela; Volpe, Umberto; Fineschi, Vittorio

    2013-12-01

    Fatal blast injuries are generally reported in literature as a consequence of the detonation of explosives in war settings. The pattern of lesion depends on the position of the victim in relation to the explosion, on whether the blast tracks through air or water, and whether it happens in the open air or within an enclosed space and the distance from the explosion. Tire explosion-related injuries are rarely reported in literature. This study presents a fatal case of blast overpressure due to the accidental explosion of a truck tire occurring in a tire repair shop. A multidisciplinary approach to the fatality involving forensic pathologists and engineers revealed that the accidental explosion, which caused a series of primary and tertiary blast wave injuries, was due to tire deterioration. PMID:24247639

  12. Curved characteristics behind blast waves.

    NASA Technical Reports Server (NTRS)

    Laporte, O.; Chang, T. S.

    1972-01-01

    The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.

  13. Compressive strength after blast of sandwich composite materials.

    PubMed

    Arora, H; Kelly, M; Worley, A; Del Linz, P; Fergusson, A; Hooper, P A; Dear, J P

    2014-05-13

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene-acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson-Cranz scaled distance of 3.02 m kg(-1/3), 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411-413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  14. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  15. Rural-to-Urban Migrants' Experiences with Primary Care under Different Types of Medical Institutions in Guangzhou, China

    PubMed Central

    Zeng, Jiazhi; Shi, Leiyu; Zou, Xia; Chen, Wen; Ling, Li

    2015-01-01

    Objectives China is facing the unprecedented challenge of rapidly increasing rural-to-urban migration. Migrants are in a vulnerable state when they attempt to access to primary care services. This study was designed to explore rural-to-urban migrants’ experiences in primary care, comparing their quality of primary care experiences under different types of medical institutions in Guangzhou, China. Methods The study employed a cross-sectional survey of 736 rural-to-urban migrants in Guangzhou, China in 2014. A validated Chinese version of Primary Care Assessment Tool—Adult Short Version (PCAT-AS), representing 10 primary care domains was used to collect information on migrants’ quality of primary care experiences. These domains include first contact (utilization), first contact (accessibility), ongoing care, coordination (referrals), coordination (information systems), comprehensiveness (services available), comprehensiveness (services provided), family-centeredness, community orientation and culturally competent. These measures were used to assess the quality of primary care performance as reported from patients’ perspective. Analysis of covariance was conducted for comparison on PCAT scores among migrants accessing primary care in tertiary hospitals, municipal hospitals, community health centers/community health stations, and township health centers/rural health stations. Multiple linear regression models were used to explore factors associated with PCAT total scores. Results After adjustments were made, migrants accessing primary care in tertiary hospitals (25.49) reported the highest PCAT total scores, followed by municipal hospitals (25.02), community health centers/community health stations (24.24), and township health centers/rural health stations (24.18). Tertiary hospital users reported significantly better performance in first contact (utilization), first contact (accessibility), coordination (information system), comprehensiveness (service

  16. Computer cast blast modelling

    SciTech Connect

    Chung, S.; McGill, M.; Preece, D.S.

    1994-12-31

    Cast blasting can be designed to utilize explosive energy effectively and economically for coal mining operations to remove overburden material. This paper compares two blast models known as DMC (Distinct Motion Code) and SABREX (Scientific Approach to Breaking Rock with Explosives). DMC applies discrete spherical elements interacted with the flow of explosive gases and the explicit time integration to track particle motion resulting from a blast. The input to this model includes multi-layer rock properties, and both loading geometry and explosives equation-of-state parameters. It enables the user to have a wide range of control over drill pattern and explosive loading design parameters. SABREX assumes that heave process is controlled by the explosive gases which determines the velocity and time of initial movement of blocks within the burden, and then tracks the motion of the blocks until they come to a rest. In order to reduce computing time, the in-flight collisions of blocks are not considered and the motion of the first row is made to limit the motion of subsequent rows. Although modelling a blast is a complex task, the advance in computer technology has increased the computing power of small work stations as well as PC (personal computers) to permit a much shorter turn-around time for complex computations. The DMC can perform a blast simulation in 0.5 hours on the SUN SPARC station 10-41 while the new SABREX 3.5 produces results of a cast blast in ten seconds on a 486-PC. Predicted percentage of cast and face velocities from both computer codes compare well with the measured results from a full scale cast blast.

  17. Interfaces Between Coke, Slag, and Metal in the Tuyere Level of a Blast Furnace

    NASA Astrophysics Data System (ADS)

    Li, Kejiang; Zhang, Jianliang; Liu, Zhengjian; Barati, Mansoor; Zhong, Jianbo; Wei, Mengfang; Wang, Guangwei; Jiao, Kexin; Yang, Tianjun

    2015-04-01

    An in-depth understanding about the reactions in the high-temperature zone of a blast furnace is significant to optimize both the current and future blast furnace process. The interfaces between coke, slag, and metal were observed using scanning electronic microscope with samples obtained from the tuyere level of a blast furnace. Two types of slag phases were identified, one originating from coke ash and the other from the bosh slag. Slag formed by coke ash was seen to cover the coke surface, which may hinder the reaction of coke with both gas and liquid iron. The reduction of FeO from the bosh slag (originated from the primary slag) occurs in the coke/slag interface with the reduced iron forming a metal layer surrounding the coke surface. The reduction of SiO2 occurs both in and outside the coke, and the reduced silicon reacts with iron to form iron silicide if the two species come into contact. Further study is proposed based on the results of this study.

  18. Foundational dendritic processing that is independent of the cell type-specific structure in model primary neurons.

    PubMed

    Kim, Hojeong; Heckman, C J

    2015-11-16

    It has long been known that primary neurons in the brain and spinal cord exhibit very distinctive dendritic structures. However, it remains unclear whether dendritic processing for signal propagation and channel activation over dendrites is a function of the cell type-specific dendritic structure. By applying an extended analysis of signal attenuation for the physiological distributions of synaptic inputs and active channels on dendritic branches, we first demonstrate that regardless of their specific structure, all anatomically reconstructed models of primary neurons display a similar pattern of directional signal attenuation and locational channel activation over their dendrites. Then, using a novel modeling approach that allows direct comparison of the anatomically reconstructed primary neurons with their reduced models that exclusively retain anatomical dendritic signaling without being associated with structural specificity, we show that the reduced model can accurately predict dendritic excitability of the anatomical model in both passive and active mode. These results indicate that the directional signaling, locational excitability and their relationship are foundational features of dendritic processing that are independent of the cell type-specific structure across primary neurons. PMID:26463670

  19. Cryopreservation and in vitro culture of primary cell types from lung tissue of a stranded pygmy sperm whale (Kogia breviceps).

    PubMed

    Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E

    2012-01-01

    Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. PMID:21501697

  20. Comparison of the microhardness of primary and permanent teeth after immersion in two types of carbonated beverages

    PubMed Central

    Haghgou, Hamid R.; Haghgoo, Roza; Asdollah, Fatemah Molla

    2016-01-01

    Objectives: The consumption of carbonated beverages is one of the etiological factors that cause dental erosion. The purpose of this research was to compare changes in the microhardness of permanent and primary teeth after immersion in two types of carbonated beverages. Materials and Methods: This investigation was done on 30 healthy permanent molars and 30 healthy primary canines. Each group of primary and permanent teeth was subdivided into three groups of 10 teeth. The teeth was immersed in 40 ml of each of the three beverages for 5 min. One subgroup was immersed in water (as a control). The next was immersed in Lemon Delster and the last subgroup was immersed in Coca-Cola. The microhardness of enamel was measured using the Vickers method before and after immersion. Finally, the data was analyzed by paired t-test, one-way analysis of variance, and t-test. Results: Microhardness reduction in the primary teeth was significant in both the Lemon Delster and Coca-Cola groups (P < 0.05). This reduction was also statistically significant in the permanent teeth (P < 0.05). A comparison of the enamel changes in the primary teeth with permanent teeth after immersion in both beverages showed a greater microhardness reduction in the primary teeth in both the experimental groups. Conclusions: Coca-Cola and Lemon Delster caused a significant reduction of microhardness in tooth enamel. This reduction was greater in primary teeth than in permanent teeth, and was also greater after immersion in Coca-Cola than after immersion in Lemon Delster. PMID:27583223

  1. Management of Type 2 Diabetes in the Primary Care Setting: A Practice-Based Research Network Study

    PubMed Central

    Spann, Stephen J.; Nutting, Paul A.; Galliher, James M.; Peterson, Kevin A.; Pavlik, Valory N.; Dickinson, L. Miriam; Volk, Robert J.

    2006-01-01

    PURPOSE We wanted to describe how primary care clinicians care for patients with type 2 diabetes. METHODS We undertook a cross-sectional study of 95 primary care clinicians and 822 of their established patients with type 2 diabetes from 4 practice-based, primary care research networks in the United States. Clinicians were surveyed about their training and practice. Patients completed a self-administered questionnaire about their care, and medical records were reviewed for complications, treatment, and diabetes-control indicators. RESULTS Participating clinicians (average age, 45.7 years) saw an average of 32.6 adult patients with diabetes per month. Patients (average age, 59.7 years) reported a mean duration of diabetes of 9.1 years, with 34.3% having had the disease more than 10 years. Nearly one half (47.5%) of the patients had at least 1 diabetes-related complication, and 60.8% reported a body mass index greater than 30. Mean glycosylated hemoglobin (HbA1c) level was 7.6% (SD 1.73), and 40.5% of patients had values <7%. Only 35.3% of patients had adequate blood pressure control (<130/85 mm Hg), and only 43.7% had low-density lipoprotein cholesterol (LDL-C) levels <100 mg/dL. Only 7.0% of patients met all 3 control targets. Multilevel models showed that patient ethnicity, practice type, involvement of midlevel clinicians, and treatment were associated with HbA1c level; patient age, education level, and practice type were associated with blood pressure control; and patient ethnicity was associated with LDL-C control. CONCLUSIONS Only modest numbers of patients achieve established targets of diabetes control. Reengineering primary care practice may be necessary to substantially improve care. PMID:16449393

  2. Layer-Specific Input to Distinct Cell Types in Layer 6 of Monkey Primary Visual Cortex

    PubMed Central

    Briggs, Farran; Callaway, Edward M.

    2007-01-01

    Layer 6 of monkey V1 contains a physiologically and anatomically diverse population of excitatory pyramidal neurons. Distinctive arborization patterns of axons and dendrites within the functionally specialized cortical layers define eight types of layer 6 pyramidal neurons and suggest unique information processing roles for each cell type. To address how input sources contribute to cellular function, we examined the laminar sources of functional excitatory input onto individual layer 6 pyramidal neurons using scanning laser photostimulation. We find that excitatory input sources correlate with cell type. Class I neurons with axonal arbors selectively targeting magnocellular (M) recipient layer 4Cα receive input from M-dominated layer 4B, whereas class I neurons whose axonal arbors target parvocellular (P) recipient layer 4Cβ receive input from P-dominated layer 2/3. Surprisingly, these neuronal types do not differ significantly in the inputs they receive directly from layers 4Cα or 4Cβ. Class II cells, which lack dense axonal arbors within layer 4C, receive excitatory input from layers targeted by their local axons. Specifically, type IIA cells project axons to and receive input from the deep but not superficial layers. Type IIB neurons project to and receive input from the deepest and most superficial, but not middle layers. Type IIC neurons arborize throughout the cortical layers and tend to receive inputs from all cortical layers. These observations have implications for the functional roles of different layer 6 cell types in visual information processing. PMID:11331389

  3. Radiation-induced Sarcomas Occurring in Desmoid-type Fibromatosis Are Not Always Derived From the Primary Tumor.

    PubMed

    Verschoor, Arie J; Cleton-Jansen, Anne-Marie; Wijers-Koster, Pauline; Coffin, Cheryl M; Lazar, Alexander J; Nout, Remi A; Rubin, Brian P; Gelderblom, Hans; Bovée, Judith V M G

    2015-12-01

    Desmoid-type fibromatosis is a rare, highly infiltrative, locally destructive neoplasm that does not metastasize, but recurs often after primary surgery. Activation of the Wnt/β-catenin pathway is the pathogenic mechanism, caused by an activating mutation in exon 3 of CTNNB1 (85% of the sporadic patients). Radiotherapy is a frequent treatment modality with a local control rate of approximately 80%. In very rare cases, this may result in the development of radiation-induced sarcoma. It is unclear whether these sarcomas develop from the primary tumor or arise de novo in normal tissue. In 4 tertiary referral centers for sarcoma, 6 cases of desmoid-type fibromatosis that subsequently developed sarcoma after radiotherapy were collected. The DNA sequence of CTNNB1 exon 3 in the desmoid-type fibromatosis and the subsequent postradiation sarcoma was determined. Sarcomas developed 5 to 21 years after the diagnosis of desmoid-type fibromatosis and included 2 osteosarcomas, 2 high-grade undifferentiated pleomorphic sarcomas, 1 fibrosarcoma, and 1 undifferentiated spindle cell sarcoma. Three patients showed a CTNNB1 hotspot mutation (T41A, S45F, or S45N) in both the desmoid-type fibromatosis and the radiation-induced sarcoma. The other 3 patients showed a CTNNB1 mutation in the original desmoid-type fibromatosis (2 with a T41A and 1 with an S45F mutation), which was absent in the sarcoma. In conclusion, postradiation sarcomas that occur in the treatment area of desmoid-type fibromatosis are extremely rare and can arise through malignant transformation of CTNNB1-mutated desmoid fibromatosis cells, but may also originate from CTNNB1 wild-type normal cells lying in the radiation field. PMID:26414222

  4. Blasting: Another environmental woe

    NASA Astrophysics Data System (ADS)

    Simpson, Thomas A.

    1989-03-01

    The much increased use of explosives to move and extract rock masses in construction and mining over the past two decades has resulted in a plethora of complaints from the general public in areas of close proximity to public facilities, communication, and transportation systems. Air blasts and ground vibrations caused by explosive detonation can have desultory and damaging effects to public and private property, impose adverse effects on underground mining operations, and change the course of flow or effect the availability of surface and groundwater. Attempts to prevent damage and alleviate problems from blasting have been initiated by the federal and state governments by the promulgation of rules and regulations to prevent against vagrant and negligent blasting procedures. The Office of Surface Mining, Reclamation and Enforcement (OSMRE) provided regulations in the Federal Register on March 8, 1983, with particular reference to surface mining practices. Most of the states have adopted the OSMRE guidelines to enforce these rules and regulations.

  5. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats

    PubMed Central

    Awwad, Hibah O.; Gonzalez, Larry P.; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J.; Awasthi, Vibhudutta; Standifer, Kelly M.

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8–11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using 18F-fluorodeoxyglucose (18F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4–6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5–6). PMID:26136722

  6. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats.

    PubMed

    Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8-11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4-6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6). PMID:26136722

  7. A "bicycle-handlebar" type of incision for primary and secondary abdominoplasty.

    PubMed

    Baroudi, R; Moraes, M

    1995-01-01

    The authors register a revision of the literature regarding the types of low transversal pubic incisions used in abdominoplasty. Since 1987, the traditional open W-type incision changed to a new type called the bicycle handlebar. In this procedure, the pubic segment remains in a lower line at the level of the pubic hair, while the lateral limbs are in a high position. The anterior superior iliac spine is used as reference. Different types of procedures where the umbilical skin hole reaches the pubic incision are described and illustrated. This procedure is also used in secondary abdominoplasty. In all cases, the incision's new position should remain hidden under a bathing suit. PMID:7484469

  8. 14 CFR 21.24 - Issuance of type certificate: primary category aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engineering analysis necessary to demonstrate compliance with the applicable airworthiness requirements; the applicant has conducted appropriate flight, structural, propulsion, and systems tests necessary to show that the aircraft, its components, and its equipment are reliable and function properly; the type...

  9. 14 CFR 21.24 - Issuance of type certificate: primary category aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engineering analysis necessary to demonstrate compliance with the applicable airworthiness requirements; the applicant has conducted appropriate flight, structural, propulsion, and systems tests necessary to show that the aircraft, its components, and its equipment are reliable and function properly; the type...

  10. 14 CFR 21.24 - Issuance of type certificate: primary category aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... completed the engineering analysis necessary to demonstrate compliance with the applicable airworthiness requirements; the applicant has conducted appropriate flight, structural, propulsion, and systems tests...; the type design complies with the airworthiness standards and noise requirements established for...

  11. Reconstruction of improvised explosive device blast loading to personnel in the open

    NASA Astrophysics Data System (ADS)

    Wiri, Suthee; Needham, Charles

    2016-05-01

    Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (>100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.

  12. Reconstruction of improvised explosive device blast loading to personnel in the open

    NASA Astrophysics Data System (ADS)

    Wiri, Suthee; Needham, Charles

    2016-03-01

    Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (> 100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.

  13. BOND STRENGTH OF RESIN MODIFIED GLASS IONOMER CEMENT TO PRIMARY DENTIN AFTER CUTTING WITH DIFFERENT BUR TYPES AND DENTIN CONDITIONING

    PubMed Central

    Nicoló, Rebeca Di; Shintome, Luciana Keiko; Myaki, Silvio Issáo; Nagayassu, Marcos Paulo

    2007-01-01

    The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer – 3M/ESPE) prepared according to the manufacturer’s instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37°C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence. PMID:19089179

  14. Checklist of Cerambycidae (Coleoptera) primary types of the Museu Nacional, Rio de Janeiro, Brazil, with a brief history of the collection.

    PubMed

    Monné, Miguel A; Monné, Marcela L

    2016-01-01

    A checklist of the Cerambycidae (Coleoptera) primary types deposited in the Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil is given. There are 1,044 primary types. Lectotype designation for Megacyllene castroi (Prosen, 1947) is proposed. A brief history of the collection of Cerambycidae of the Museu Nacional is presented. PMID:27394892

  15. Blocking type immunoglobulins in patients with nongoitrous primary hypothyroidism in area of iodine deficiency.

    PubMed

    Tang, T; Wang, Y G; Tsuboi, K; Irie, M; Ma, T; Ingbar, S H

    1991-12-01

    We have evaluated the role of circulating serum immunoglobulins (IgG) which inhibit the growth of thyroid in the etiology of thyroid atrophy in endemic cretinism. Twenty nongoitrous cretins (13 women and 7 men, age range: 9-33) were classified on the basis of clinical criteria for cretinism in China. They were born and living in an iodine deficient area, Xinjiang, northwest China. Antimicrosomal antibody titers were negative in all serum. Nine patients (seven women and two men; age range: 11-23) were biologically primary hypothyroid. Seven subjects were of a myxedematous form and two subjects were of a mixed form. We have studied thyroid-growth inhibiting immunoglobulin (TGII) activity that was measured as an inhibitory effect of 4 mg/ml IgG on TSH-induced [3H]-thymidine incorporation into the DNA of a rat thyroid follicular cell line, FRTL5 cells. Six (five women and one man) out of the nine patients with primary hypothyroidism (66.7 percent) had TGII. We also measured other growth-blocking IgG that inhibited [3H]-thymidine incorporation into DNA stimulated by insulin-like growth factor-I (IGF-I), a growth factor working through a cAMP-independent pathway. Five (three women and two men) out of nine patients (55.6 percent) with nongoitrous primary hypothyroidism had IGF-I-blocking IgG. These results indicate that TGII plays an important role in atrophy of the thyroid in spite of increased serum TSH concentrations, and IgG which inhibits thyroid growth stimulated by IGF-I also might play a role in thyroid atrophy in some endemic cretins.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1823034

  16. Kinetics of cytokine expression during primary human immunodeficiency virus type 1 infection.

    PubMed Central

    Graziosi, C; Gantt, K R; Vaccarezza, M; Demarest, J F; Daucher, M; Saag, M S; Shaw, G M; Quinn, T C; Cohen, O J; Welbon, C C; Pantaleo, G; Fauci, A S

    1996-01-01

    In the present study, we have determined the kinetics of constitutive expression of a panel of cytokines [interleukin (IL) 2, IL-4, IL-6, IL-10, interferon gamma (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha)] in sequential peripheral blood mononuclear cell samples from nine individuals with primary human immunodeficiency virus infection. Expression of IL-2 and IL-4 was barely detected in peripheral blood mononuclear cells. However, substantial levels of IL-2 expression were found in mononuclear cells isolated from lymph node. Expression of IL-6 was detected in only three of nine patients, and IL-6 expression was observed when transition from the acute to the chronic phase had already occurred. Expression of IL-10 and TNF-alpha was consistently observed in all patients tested, and levels of both cytokines were either stable or progressively increased over time. Similar to IL-10 and TNF-alpha, IFN-gamma expression was detected in all patients; however, in five of nine patients, IFN-gamma expression peaked very early during primary infection. The early peak in IFN-gamma expression coincided with oligoclonal expansions of CD8+ T cells in five of six patients, and CD8+ T cells mostly accounted for the expression of this cytokine. These results indicate that high levels of expression of proinflammatory cytokines are associated with primary infection and that the cytokine response during this phase of infection is strongly influenced by oligoclonal expansions of CD8+ T cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8633076

  17. Blasting-induced damage in coal

    SciTech Connect

    Kabongo, K.K.

    1995-12-31

    The paper is drawn from a project intended to explore a technique of prediction, control and optimization of fracture in coal induced by blasting. It evaluates the fines generated in coal submitted to dynamic loading stresses in an impact stamp mortar. The aim is to analyze a complex phenomenon of coal response to blast-generated stresses from a series of discrete simulations of shock and gas actions in controllable processes. It is learned that despite the nucleation of primary crushing and fractures to originate from the point of impact energy in coal, a secondary crushing appears to depart from within the burden progressing towards the free boundaries. The extension of the secondary crushing zone appears to be influenced by the magnitude of the breaking stresses generated and the coal burden distance. A strong dependence of fines on the coal`s innate discontinuities (strength) and the energy input is highlighted.

  18. Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting

    SciTech Connect

    Preece, D.S.; Tidman, J.P.; Chung, S.H.

    1996-12-31

    A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.

  19. Blast TBI Models, Neuropathology, and Implications for Seizure Risk

    PubMed Central

    Kovacs, S. Krisztian; Leonessa, Fabio; Ling, Geoffrey S. F.

    2014-01-01

    Traumatic brain injury (TBI) due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies. PMID:24782820

  20. Rib butterfly fractures as a possible indicator of blast trauma.

    PubMed

    Christensen, Angi M; Smith, Victoria A

    2013-01-01

    Forensic anthropologists have become increasingly involved in the interpretation of skeletal trauma caused by exploding ordnance. This study examines the cause and significance of butterfly fractures observed in a recent study investigating skeletal blast trauma by Christensen et al. Fractured ribs resulting from blast events carried out in the original study were re-examined revealing that rib butterfly fractures with the tensile indicator on the visceral surface were present in 100% of viable pig specimens. Additionally, manual fracture testing was performed on 46 pig ribs to simulate the bending force believed to have been sustained in the original blast events. Fracture testing resulted in 93% of specimens presenting butterfly fractures with the tensile indicator on the visceral surface. This fracture pattern differs significantly from that normally observed in association with other types of trauma events and may aid forensic anthropologists and other investigators in the identification and interpretation of blast events. PMID:23126284

  1. Blast TBI Models, Neuropathology, and Implications for Seizure Risk.

    PubMed

    Kovacs, S Krisztian; Leonessa, Fabio; Ling, Geoffrey S F

    2014-01-01

    Traumatic brain injury (TBI) due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies. PMID:24782820

  2. Effect of primary culture medium type for culture of canine fibroblasts on production of cloned dogs.

    PubMed

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Kim, Jin Wook; Lee, Tae Hee; Lee, Byeong Chun

    2015-09-01

    Fibroblasts are common source of donor cells for SCNT. It is suggested that donor cells' microenvironment, including the primary culture, affects development of reconstructed embryos. To prove this, canine embryos were cloned with fibroblasts that were cultured in two different primary media (RCMEp vs. Dulbecco's modified Eagle's medium [DMEM]) and in vivo developments were compared with relative amount of stemness, reprogramming, apoptosis gene transcripts, and telomerase activity. Donor cells cultured in RCMEp contained a significantly higher amount of SOX2, NANOG, DPPA2, REXO1, HDAC, DNMT1, MECP2 and telomerase activity than those cultured in DMEM (P < 0.05). In vivo developmental potential of cloned embryos with donor cells cultured in RCMEp had a higher birth rate than that of embryos derived from DMEM (P < 0.05). The culture medium can induce changes in gene expression of donor cells and telomerase activity, and these alterations can also affect in vivo developmental competence of the cloned embryos. PMID:26001598

  3. Interactions between Blast Waves and V-Shaped and Cone-Shaped Structures

    NASA Astrophysics Data System (ADS)

    Peng, W.; Zhang, Z. Y.; Gogos, G.; Gazonas, G.

    2011-09-01

    A 2-D numerical model of interactions between a blast wave and a V-shaped or a cone-shaped structure is developed. The model simulates the blast wave reflection from a V-shaped or a cone-shaped structure, the movement of the structure due to the blast impact and the induced shock wave behind the structure. Elliptic grid generation and coordinate transformation are utilized to solve the flow fields in the irregular physical domain. Different types of blast wave reflections, such as normal reflection, oblique reflection and Mach stem reflection, are captured by the numerical model. It is found that the reflected pressure and impulse transmitted to the structure decrease with the increase of incident angle. On the other hand, with the increase of incident angle, the effects of fluid structure interactions (FSI) in reducing the blast loads decreases. The FSI coupled with oblique or Mach stem reflection improves the blast wave mitigation.

  4. 14 CFR 21.24 - Issuance of type certificate: primary category aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... engineering analysis necessary to demonstrate compliance with the applicable airworthiness requirements; the... necessary drawings and documents used to define the type design; and lists all the engineering reports on... paragraph (a)(2)(i) of this section must be made by the civil airworthiness authority of the...

  5. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome.

    PubMed Central

    Koup, R A; Safrit, J T; Cao, Y; Andrews, C A; McLeod, G; Borkowsky, W; Farthing, C; Ho, D D

    1994-01-01

    Virologic and immunologic studies were performed on five patients presenting with primary human immunodeficiency virus type 1 (HIV-1) infection. CD8+ cytotoxic T lymphocyte (CTL) precursors specific for cells expressing antigens of HIV-1 Gag, Pol, and Env were detected at or within 3 weeks of presentation in four of the five patients and were detected in all five patients by 3 to 6 months after presentation. The one patient with an absent initial CTL response had prolonged symptoms, persistent viremia, and low CD4+ T-cell count. Neutralizing antibody activity was absent at the time of presentation in all five patients. These findings suggest that cellular immunity is involved in the initial control of virus replication in primary HIV-1 infection and indicate a role for CTL in protective immunity to HIV-1 in vivo. PMID:8207839

  6. [A case of primary orthostatic hypotension of the Bradbury-Eggleston type].

    PubMed

    Bartoli, V; Morandini, G

    1981-04-01

    A patient with idiopathic orthostatic hypotension not accompanied by other neurologic disorders was examined. Pulmonary function tests demonstrated the failure of the autonomic innervation of airways. A syndrome of chronic primary alveolar hypoventilation was present, with the vocal cord paralysis. The symptoms of neurogenic bladder were also present. While recumbent, the patient had low levels of plasma norepinephrine, that failed to increase after standing and exercising. During Kaplan-Silah test the patient was proved to be supersensitive to intravenously administered norepinephrine and angiotensin. The finding was consistent with the view of peripheral denervation. The syndrome of orthostatic hypotension and other symptoms referable to peripheral autonomic dysfunction, without evidence of central nervous system involvement appears to represent a clinical entity distinct from the Shy-Drager syndrome. It can be defined Bradbury-Eggleston syndrome. PMID:7219793

  7. Targeting A-type K(+) channels in primary sensory neurons for bone cancer pain in a rat model.

    PubMed

    Duan, Kai-Zheng; Xu, Qian; Zhang, Xiao-Meng; Zhao, Zhi-Qi; Mei, Yan-Ai; Zhang, Yu-Qiu

    2012-03-01

    Cancer pain is one of the most severe types of chronic pain, and the most common cancer pain is bone cancer pain. The treatment of bone cancer pain remains a clinical challenge. Here, we report firstly that A-type K(+) channels in dorsal root ganglion (DRG) are involved in the neuropathy of rat bone cancer pain and are a new target for diclofenac, a nonsteroidal anti-inflammatory drug that can be used for therapy for this distinct pain. There are dynamically functional changes of the A-type K(+) channels in DRG neurons during bone cancer pain. The A-type K(+) currents that mainly express in isolectin B4-positive small DRG neurons are increased on post-tumor day 14 (PTD 14), then faded but still remained at a higher level on PTD 21. Correspondingly, the expression levels of A-type K(+) channel Kv1.4, Kv3.4, and Kv4.3 showed time-dependent changes during bone cancer pain. Diclofenac enhances A-type K(+) currents in the DRG neurons and attenuates bone cancer pain in a dose-dependent manner. The analgesic effect of diclofenac can be reversed or prevented by A-type K(+) channel blocker 4-AP or pandinotoxin-Kα, also by siRNA targeted against rat Kv1.4 or Kv4.3. Repeated diclofenac administration decreased soft tissue swelling adjacent to the tumor and attenuated bone destruction. These results indicate that peripheral A-type K(+) channels were involved in the neuropathy of rat bone cancer pain. Targeting A-type K(+) channels in primary sensory neurons may provide a novel mechanism-based therapeutic strategy for bone cancer pain. PMID:22188869

  8. Seasonal Shifts in Primary Water Source Type: A Comparison of Largely Pastoral Communities in Uganda and Tanzania.

    PubMed

    Pearson, Amber L; Zwickle, Adam; Namanya, Judith; Rzotkiewicz, Amanda; Mwita, Emiliana

    2016-02-01

    Many water-related illnesses show an increase during the wet season. This is often due to fecal contamination from runoff, yet, it is unknown whether seasonal changes in water availability may also play a role in increased illness via changes in the type of primary water source used by households. Very little is known about the dynamic aspects of access to water and changes in source type across seasons, particularly in semi-arid regions with annual water scarcity. The research questions in this study were: (1) To what degree do households in Uganda (UG) and Tanzania (TZ) change primary water source type between wet and dry seasons?; and (2) How might seasonal changes relate to water quality and health? Using spatial survey data from 92 households each in UG and TZ this study found that, from wet to dry season, 26% (UG) and 9% (TZ) of households switched from a source with higher risk of contamination to a source with lower risk. By comparison, only 20% (UG) and 0% (TZ) of households switched from a source with lower risk of contamination to a source with higher risk of contamination. This research suggests that one pathway through which water-related disease prevalence may differ across seasons is the use of water sources with higher risk contamination, and that households with access to sources with lower risks of contamination sometimes choose to use more contaminated sources. PMID:26828507

  9. Primary and secondary battery consumption trends in Sweden 1996-2013: method development and detailed accounting by battery type.

    PubMed

    Patrício, João; Kalmykova, Yuliya; Berg, Per E O; Rosado, Leonardo; Åberg, Helena

    2015-05-01

    In this article, a new method based on Material Flow Accounting is proposed to study detailed material flows in battery consumption that can be replicated for other countries. The method uses regularly available statistics on import, industrial production and export of batteries and battery-containing electric and electronic equipment (EEE). To promote method use by other scholars with no access to such data, several empirically results and their trends over time, for different types of batteries occurrence among the EEE types are provided. The information provided by the method can be used to: identify drivers of battery consumption; study the dynamic behavior of battery flows - due to technology development, policies, consumers behavior and infrastructures. The method is exemplified by the study of battery flows in Sweden for years 1996-2013. The batteries were accounted, both in units and weight, as primary and secondary batteries; loose and integrated; by electrochemical composition and share of battery use between different types of EEE. Results show that, despite a fivefold increase in the consumption of rechargeable batteries, they account for only about 14% of total use of portable batteries. Recent increase in digital convergence has resulted in a sharp decline in the consumption of primary batteries, which has now stabilized at a fairly low level. Conversely, the consumption of integrated batteries has increased sharply. In 2013, 61% of the total weight of batteries sold in Sweden was collected, and for the particular case of alkaline manganese dioxide batteries, the value achieved 74%. PMID:25782361

  10. Seasonal Shifts in Primary Water Source Type: A Comparison of Largely Pastoral Communities in Uganda and Tanzania

    PubMed Central

    Pearson, Amber L.; Zwickle, Adam; Namanya, Judith; Rzotkiewicz, Amanda; Mwita, Emiliana

    2016-01-01

    Many water-related illnesses show an increase during the wet season. This is often due to fecal contamination from runoff, yet, it is unknown whether seasonal changes in water availability may also play a role in increased illness via changes in the type of primary water source used by households. Very little is known about the dynamic aspects of access to water and changes in source type across seasons, particularly in semi-arid regions with annual water scarcity. The research questions in this study were: (1) To what degree do households in Uganda (UG) and Tanzania (TZ) change primary water source type between wet and dry seasons?; and (2) How might seasonal changes relate to water quality and health? Using spatial survey data from 92 households each in UG and TZ this study found that, from wet to dry season, 26% (UG) and 9% (TZ) of households switched from a source with higher risk of contamination to a source with lower risk. By comparison, only 20% (UG) and 0% (TZ) of households switched from a source with lower risk of contamination to a source with higher risk of contamination. This research suggests that one pathway through which water-related disease prevalence may differ across seasons is the use of water sources with higher risk contamination, and that households with access to sources with lower risks of contamination sometimes choose to use more contaminated sources. PMID:26828507