Science.gov

Sample records for primary mouse bone

  1. Comparisons of Mouse Mesenchymal Stem Cells in Primary Adherent Culture of Compact Bone Fragments and Whole Bone Marrow

    PubMed Central

    Cai, Yiting; Liu, Tianshu; Fang, Fang; Xiong, Chengliang; Shen, Shiliang

    2015-01-01

    The purification of mouse bone marrow mesenchymal stem cells (BMSCs) by using the standard method of whole bone marrow adherence to plastic still remains ineffective. An increasing number of studies have indicated compact bone as an alternative source of BMSCs. We isolated BMSCs from cultured compact bone fragments and investigated the proliferative capacity, surface immunophenotypes, and osteogenic and adipogenic differentiations of the cells after the first trypsinization. The fragment culture was based on the fact that BMSCs were assembled in compact bones. Thus, the procedure included flushing bone marrow out of bone cavity and culturing the fragments without any collagenase digestion. The cell yield from cultured fragments was slightly less than that from cultured bone marrow using the same bone quantity. However, the trypsinized cells from cultured fragments exhibited significantly higher proliferation and were accompanied with more CD90 and CD44 expressions and less CD45 expression. The osteogenic and adipogenic differentiation capacity of cells from cultured fragments were better than those of cells from bone marrow. The directly adherent culture of compact bone is suitable for mouse BMSC isolation, and more BMSCs with potentially improved proliferation capacity can be obtained in the primary culture. PMID:25821472

  2. Cysteine Dioxygenase Type 1 Inhibits Osteogenesis by Regulating Wnt Signaling in Primary Mouse Bone Marrow Stromal Cells

    PubMed Central

    Zhao, Xuefeng; Deng, Peng; Feng, Jie; Wang, Zheng; Xiang, Zichao; Han, Xianglong; Bai, Ding; Pae, Eung-Kwon

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells, which can give rise to variety of cell types, including adipocytes and osteoblasts. Previously, we have shown that cysteine dioxygenase type 1 (Cdo1) promoted adipogenesis of primary mouse bone marrow stromal cells (BMSCs) and 3T3-L1 pre-adipocytes via interaction with Pparγ. However, the role of Cdo1 in osteogenesis remains unclear. Here, we demonstrated that expression of Cdo1 was elevated during osteoblastic differentiation of BMSCs in vitro. Interestingly, knockdown of Cdo1 by siRNA led to an increased expression of osteogenic related genes, elevated alkaline phosphatase (ALP) activity, and enhanced mineralization. Overexpression of Cdo1 in BMSCs inversely suppressed the osteogenesis. Furthermore, we found that overexpression of Cdo1 impaired Wnt signaling and restricted the Wnt3a induced expression of osteogenic transcriptional factors, such as Runx2 and Dlx5. Collectively, our findings indicate Cdo1 suppresses osteogenic differentiation of BMSCs, through a potential mechanism which involves in Wnt signaling reduction concomitantly. PMID:26763277

  3. Cysteine Dioxygenase Type 1 Inhibits Osteogenesis by Regulating Wnt Signaling in Primary Mouse Bone Marrow Stromal Cells.

    PubMed

    Zhao, Xuefeng; Deng, Peng; Feng, Jie; Wang, Zheng; Xiang, Zichao; Han, Xianglong; Bai, Ding; Pae, Eung-Kwon

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells, which can give rise to variety of cell types, including adipocytes and osteoblasts. Previously, we have shown that cysteine dioxygenase type 1 (Cdo1) promoted adipogenesis of primary mouse bone marrow stromal cells (BMSCs) and 3T3-L1 pre-adipocytes via interaction with Ppar?. However, the role of Cdo1 in osteogenesis remains unclear. Here, we demonstrated that expression of Cdo1 was elevated during osteoblastic differentiation of BMSCs in vitro. Interestingly, knockdown of Cdo1 by siRNA led to an increased expression of osteogenic related genes, elevated alkaline phosphatase (ALP) activity, and enhanced mineralization. Overexpression of Cdo1 in BMSCs inversely suppressed the osteogenesis. Furthermore, we found that overexpression of Cdo1 impaired Wnt signaling and restricted the Wnt3a induced expression of osteogenic transcriptional factors, such as Runx2 and Dlx5. Collectively, our findings indicate Cdo1 suppresses osteogenic differentiation of BMSCs, through a potential mechanism which involves in Wnt signaling reduction concomitantly. PMID:26763277

  4. Primary Lymphoma of Bone

    PubMed Central

    Choi, Jun Yong; Hahn, Jee Sook; Suh, Chang Ok; Yang, Woo Ick

    2002-01-01

    Background: Primary lymphoma of bone is a rare disease. There is yet no systematical evaluation of primary lymphoma of bone in Korea. Here we report our experience of sixteen cases with primary lymphoma of bone focusing on the survival. Methods: Sixteen cases, collected for 13 years, were evaluated on the clinical presentation, histologic subtype, stage and treatment outcomes of the primary bone lymphoma. Results: The most common presenting complaint was bone pain. Malignant lymphoma of bone involved a wide variety of sites, the most prevalent site of which in this study was the spine. Most of the cases were in the diffuse large B-cell category. The clinical stage of lymphoma was IEA in two cases, IIEA in three cases, IVEA in five cases and IVEB in three cases. All treated cases received systemic chemotherapy and ten cases among them were treated with combined modality therapy. Median overall survival was not reached after median follow-up period of 28 months and five-year overall survival rate was 54%. Conclusion: More promising therapeutic strategies are needed for survival improvement on more accumulated cases. PMID:12298430

  5. Bone disease in primary hyperparathyrodism

    PubMed Central

    Cianferotti, Luisella; Cetani, Filomena

    2012-01-01

    Nowadays, primary hyperparathyroidism (PHPT) is mostly a mild disease. Overt skeletal manifestations are rare but decreased bone mineral density (BMD) can still be demonstrated. Even in mild cases, excess parathyroid hormone (PTH) increases bone turnover leading to bone loss particularly at cortical sites. Conversely, a relative preservation of cancellous bone has been shown by histomorphometric analyses and advanced imaging techniques. An increased fracture rate has been demonstrated in untreated patients with PHPT at peripheral sites and in the spine. Parathyroidectomy (PTx) is the definitive cure for PHPT. With the restoration of normal PTH, bone resorption is quickly tapered down, while bone formation proceeds at the level of bone multicellular units, which were activated prior to PTx. The rapid refilling of the enlarged remodeling space and the subsequent matrix mineralization will result in an increase in BMD at sites rich in trabecular bone, such as lumbar spine and hip, which mainly occurs during the first 612 months after PTx. Cortical bone is less responsive to PTX because of the low rate of bone turnover, but sensible increases in BMD at the distal third of the radius can be observed in the long term. PTx seems to decrease the risk of fractures but more data are needed before a definitive conclusion on this important matter can be reached. Treatment with bisphosphonates can be considered for patients with low BMD who do not undergo PTx. Two-year treatment with alendronate has been shown to decrease bone turnover markers and increase BMD at the lumbar spine and hip, but not at the distal radius. Cinacalcet stably decreased serum calcium levels across a broad range of PHPT severity, but no change in BMD occurred in patients treated for up to 5.5 years. PMID:23024712

  6. Bone impairment in primary hyperoxaluria: a review.

    PubMed

    Bacchetta, Justine; Boivin, Georges; Cochat, Pierre

    2016-01-01

    Deposition of calcium oxalate crystals in the kidney and bone is a hallmark of primary hyperoxaluria (PH). Since the bone compartment can store massive amounts of oxalate, patients present with recurrent low-trauma fractures, bone deformations, severe bone pains, and specific oxalate osteopathy on X-ray. Bone biopsy from the iliac crest displays specific features such as oxalate crystals surrounded by a granulomatous reaction corresponding to an invasion of bone surface by macrophages. The objective of this manuscript is therefore to provide an overview of bone impairment in PH, by reviewing the current literature on bone and dental symptoms as well as imaging techniques used for assessing bone disease. PMID:25631241

  7. Mouse Models of Bone Marrow Transplantation

    PubMed Central

    Reddy, Pavan; Negrin, Robert; Hill, Geoffrey R.

    2010-01-01

    Over the last 50 years, mouse models of bone marrow transplantation have provided the critical links between graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) pathophysiology and clinical practice. The initial insight from mouse models that GVHD and GVL were T cell dependent has long been confirmed clinically. More recent translations from mouse models have included the important role of inflammatory cytokines in GVHD. Newly developed concepts relating to the ability of antigen presenting cell (APC) and T cell subsets to mediate GVHD now promise significant clinical advances. The ability to use knockout and transgenic approaches to dissect mechanisms of GVHD and GVL mean that mouse systems will continue as the predominant preclinical platform. The basic transplant approach in these models, coupled with modern real-time immunologic imaging of GVHD and GVL is discussed. PMID:18162233

  8. Osteoclast derivation from mouse bone marrow.

    PubMed

    Tevlin, Ruth; McArdle, Adrian; Chan, Charles K F; Pluvinage, John; Walmsley, Graham G; Wearda, Taylor; Marecic, Owen; Hu, Michael S; Paik, Kevin J; Senarath-Yapa, Kshemendra; Atashroo, David A; Zielins, Elizabeth R; Wan, Derrick C; Weissman, Irving L; Longaker, Michael T

    2014-01-01

    Osteoclasts are highly specialized cells that are derived from the monocyte/macrophage lineage of the bone marrow. Their unique ability to resorb both the organic and inorganic matrices of bone means that they play a key role in regulating skeletal remodeling. Together, osteoblasts and osteoclasts are responsible for the dynamic coupling process that involves both bone resorption and bone formation acting together to maintain the normal skeleton during health and disease. As the principal bone-resorbing cell in the body, changes in osteoclast differentiation or function can result in profound effects in the body. Diseases associated with altered osteoclast function can range in severity from lethal neonatal disease due to failure to form a marrow space for hematopoiesis, to more commonly observed pathologies such as osteoporosis, in which excessive osteoclastic bone resorption predisposes to fracture formation. An ability to isolate osteoclasts in high numbers in vitro has allowed for significant advances in the understanding of the bone remodeling cycle and has paved the way for the discovery of novel therapeutic strategies that combat these diseases. Here, we describe a protocol to isolate and cultivate osteoclasts from mouse bone marrow that will yield large numbers of osteoclasts. PMID:25407120

  9. Tracking mouse bone marrow monocytes in vivo.

    PubMed

    Hamon, Pauline; Rodero, Mathieu Paul; Combadire, Christophe; Boissonnas, Alexandre

    2015-01-01

    Real time multiphoton imaging provides a great opportunity to study cell trafficking and cell-to-cell interactions in their physiological 3-dimensionnal environment. Biological activities of immune cells mainly rely on their motility capacities. Blood monocytes have short half-life in the bloodstream; they originate in the bone marrow and are constitutively released from it. In inflammatory condition, this process is enhanced, leading to blood monocytosis and subsequent infiltration of the peripheral inflammatory tissues. Identifying the biomechanical events controlling monocyte trafficking from the bone marrow towards the vascular network is an important step to understand monocyte physiopathological relevance. We performed in vivo time-lapse imaging by two-photon microscopy of the skull bone marrow of the Csf1r-Gal4VP16/UAS-ECFP (MacBlue) mouse. The MacBlue mouse expresses the fluorescent reporters enhanced cyan fluorescent protein (ECFP) under the control of a myeloid specific promoter, in combination with vascular network labelling. We describe how this approach enables the tracking of individual medullar monocytes in real time to further quantify the migratory behaviour within the bone marrow parenchyma and the vasculature, as well as cell-to-cell interactions. This approach provides novel insights into the biology of the bone marrow monocyte subsets and allows to further address how these cells can be influenced in specific pathological conditions. PMID:25867540

  10. Bone metastasis in a novel breast cancer mouse model containing human breast and human bone.

    PubMed

    Xia, Tian-Song; Wang, Guo-Zhu; Ding, Qiang; Liu, Xiao-An; Zhou, Wen-Bin; Zhang, Yi-Fen; Zha, Xiao-Ming; Du, Qing; Ni, Xiao-Jian; Wang, Jue; Miao, Su-Yu; Wang, Shui

    2012-04-01

    In practice, investigations for bone metastasis of breast cancer rely heavily on models in vivo. Lacking of such ideal model makes it difficult to study the whole process or accurate mechanism of each step of this metastatic disease. Development of xenograft mouse models has made great contributions in this area. Currently, the best animal model of breast cancer metastasizing to bone is NOD/SCID-hu models containing human bone, which makes it possible to let the breast cancer cells and the bone target of osteotropic metastasis be both of human origin. We have developed a novel mouse model containing both human bone and breast, and proved it functional and reliable. In this study, a set of human breast cancer cell line including MDA-MB-231, MDA-MB-231BO, MCF-7, ZR-75-1 and SUM1315 were characterized their osteotropism in this model. A specific cell line SUM1315 made species-specific bone metastasis, certifying the osteotropism-identification utility of the novel mouse model. Furthermore, gene expression and microRNA expression profiling analysis were done to the two SUM1315 derived sub lines isolated and purified from the orthotopic and metastatic xenograft. In addition, to demonstrate the disparity between the "spontaneous" and "forced" bone metastasis in mouse model, MDA-MB-231 cells were inoculated into both the human implants in this model simultaneously, and then primary cultured and profiling analyzed. Supported by overall results of profiling analyses, this study suggested the novel model was a useful tool for understanding, preventing and treating bone metastasis of breast cancer, meanwhile it had provided significant information for further investigations. PMID:21638054

  11. Bone disease of primary hyperoxaluria in infancy.

    PubMed

    Ring, E; Wendler, H; Ratschek, M; Zobel, G

    1989-01-01

    A patient with primary hyperoxaluria type I in infancy is reported. He had renal insufficiency, but urolithiasis was absent. Demonstration of diffuse nephrocalcinosis by renal ultrasound contributed to early diagnosis. Prolonged survival leads to extensive extrarenal oxalate deposition. Repeated skeletal surveys showed the development and the progression of severe hyperoxaluria-related bone disease. Translucent metaphyseal bands with sclerotic margins, wide areas of rarefaction at the ends of the long bones, and translucent rims around the epiphyses and the tarsal bones were signs of disordered bone growth. Bone density generally increased with time indicating progressive sclerosis due to oxalate deposition in the previously normal bone structure. PMID:2689979

  12. [Bone disease in primary biliary cirrhosis].

    PubMed

    Shibata, Hidetaka; Nakao, Kazuhiko

    2015-11-01

    Primary biliary cirrhosis(PBC)is a chronic autoimmune cholestatic liver disease. Metabolic bone disease is recognized in a complication of chronic liver disease, particularly in PBC. Bone disease in PBC includes osteoporosis and, osteomalacia which is more frequent in advanced liver disease. It is important that PBC occurs mainly in middle-aged women who are highest risk group in primary osteoporosis. In patients with PBC, the dysfunction in enterohepatic circulation of bile acids is associated with the impaired absorption of fats and fat soluble vitamins. Vitamin D and K deficiency leads to osteoporosis resulting in increased risk of bone fracture. This article describes the characteristic and molecular mechanism in bone disease of PBC. PMID:26503867

  13. Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage.

    PubMed

    Jin, Yi; Chen, Shizhu; Duan, Jianlei; Jia, Guang; Zhang, Jinchao

    2015-05-01

    With the wide applications of europium-doped Gd2O3 nanoparticles (Gd2O3:Eu(3+) NPs) in biomedical fields, it will inevitably increase the chance of human exposure. It was reported that Gd2O3:Eu(3+) NPs could accumulate in bone. However, there have been few reports about the potential effect of Gd2O3:Eu(3+) NPs on bone marrow stromal cells (BMSCs). In this study, the Gd2O3:Eu(3+) nanotubes were prepared and characterized by powder X-ray diffraction (XRD), photoluminescence (PL) excitation and emission spectra, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The cytotoxicity of Gd2O3:Eu(3+) nanotubes on BMSCs and the associated mechanisms were further studied. The results indicated that they could be uptaken into BMSCs by an energy-dependent and macropinocytosis-mediated endocytosis process, and primarily localized in lysosome. Gd2O3:Eu(3+) nanotubes effectively inhibited the viability of BMSCs in concentration and time-dependent manners. A significant increase in the percentage of late apoptotic/necrotic cells, lactate dehydrogenase (LDH) leakage and the number of PI-stained cells was found after BMSCs were treated by 10, 20, and 40?g/mL of Gd2O3:Eu(3+) nanotubes for 12h. No obvious DNA ladders were detected, but a dispersed band was observed. The above results revealed that Gd2O3:Eu(3+) nanotubes could trigger cell death by necrosis instead of apoptosis. Two mechanisms were involved in Gd2O3:Eu(3+) nanotube-induced BMSCs necrosis: lysosomal rupture and release of cathepsins B; and the overproduction of reactive oxygen species (ROS) injury to the mitochondria and DNA. The study provides novel evidence to elucidate the toxicity mechanisms and may be beneficial to more rational applications of these nanomaterials in the future. PMID:25725393

  14. Evaluation of Toxicity in Mouse Bone Marrow Progenitor Cells.

    PubMed

    Ezeh, Peace C; Xu, Huan; Wang, Shu Chun; Medina, Sebastian; Burchiel, Scott W

    2016-01-01

    Development of blood cells through hematopoiesis occurs in the bone marrow (BM), and can be adversely impacted by various substances and/or conditions ranging from known therapeutic, intentionally administered xenobiotics to unintentional food additives and exposure to environmental chemicals. The principles underlying the techniques for evaluating toxicity to BM progenitors (erythroid, myeloid, and lymphoid) exploit changes in the normal hematopoietic process, biochemical cell surface and intracellular markers, as well as components of the BM microenvironment. Toxicological investigations following in vivo exposures of mice or in vitro exposures of mouse primary BM cell cultures allow the assessment of the developmental and functional integrity of BM cells, cell population shifts, and adverse biochemical effects due to toxicity. Colony forming unit (CFU) assays and flow cytometry are indispensable techniques in these toxicity studies. 2016 by John Wiley & Sons, Inc. PMID:26828331

  15. Mouse models in bone marrow transplantation and adoptive cellular therapy.

    PubMed

    Arber, Caroline; Brenner, Malcolm K; Reddy, Pavan

    2013-04-01

    Mouse models of transplantation have been indispensable to the development of bone marrow transplantation (BMT). Their role in the generation of basic science knowledge is invaluable and is subject to discussion below. However, this article focuses on the direct role and relevance of mouse models towards the clinical development and advances in BMT and adoptive T-cell therapy for human diseases. The authors aim to present a thoughtful perspective on the pros and cons of mouse models while noting that despite imperfections these models are obligatory for the development of science-based medicine. PMID:24216170

  16. Mouse Models in Bone Marrow Transplantation and Adoptive Cellular Therapy

    PubMed Central

    Arber, Caroline; Brenner, Malcolm K.; Reddy, Pavan

    2014-01-01

    Mouse models of transplantation have been indispensable to the development of bone marrow transplantation (BMT). Their role in the generation of basic science knowledge is invaluable and is subject to discussion below. However, this article focuses on the direct role and relevance of mouse models towards the clinical development and advances in BMT and adoptive T-cell therapy for human diseases. The authors aim to present a thoughtful perspective on the pros and cons of mouse models while noting that despite imperfections these models are obligatory for the development of science-based medicine. PMID:24216170

  17. Cilia/Ift protein and motor-related bone diseases and mouse models

    PubMed Central

    Yuan, Xue; Yang, Shuying

    2015-01-01

    Primary cilia are essential cellular organelles projecting from the cell surface to sense and transduce developmental signaling. They are tiny but have complicated structures containing microtubule (MT)-based internal structures (the axoneme) and mother centriole formed basal body. Intraflagellar transport (Ift) operated by Ift proteins and motors are indispensable for cilia formation and function. Mutations in Ift proteins or Ift motors cause various human diseases, some of which have severe bone defects. Over the last few decades, major advances have occurred in understanding the roles of these proteins and cilia in bone development and remodeling by examining cilia/Ift protein-related human diseases and establishing mouse transgenic models. In this review, we describe current advances in the understanding of the cilia/Ift structure and function. We further summarize cilia/Ift-related human diseases and current mouse models with an emphasis on bone-related phenotypes, cilia morphology, and signaling pathways. PMID:25553465

  18. [Surgery of primary malignant bone tumors].

    PubMed

    Flege, S; Kuhlen, M; Paulussen, M; Bielack, S; Jrgens, H

    2003-11-01

    The term primary malignant bone tumors covers a diversity of entities. Tumor resection is preferable in most. In some, surgery alone is sufficient, in others therapy will be based on a combined modality concept. Resection plays the essential role in those tumors treated by surgery alone, e.g., primary osseous fibrosarcoma. The combined modality approach in osteosarcomas or Ewing's tumors provides for additional elements of local therapy (radiotherapy) or systemic treatment (chemotherapy). The relevance of surgery for local control varies in these latter diagnoses. In highly malignant osteosarcoma, where wide margin surgery is of utmost importance, only 10-20% of patients will survive longer than 5 years without aggressive systemic chemotherapy. Radiotherapy in these patients is only indicated when "marginal" or "less than marginal" surgery is expected. In terms of efficacy, radiotherapy is inferior to surgery. In disseminated osteosarcoma, a curative treatment approach will also provide for surgical removal of all metastases. Treatment of primary malignant fibrous histiocytoma (MFH) of bone is identical to osteosarcoma therapy. Since radiotherapy appears to be marginally more effective than in osteosarcoma, both modalities of local therapy are used. Systemic chemotherapy adds an additional benefit for improved survival. Therapy for Ewing's tumor also follows a combined modality approach. The introduction of systemic chemotherapy has raised 5-year survival rates from less than 10% to above 60%. The role of surgery is currently subject to debate. At present, the use of surgery or irradiation for local control is tailored to the individual patient's needs. PMID:14615843

  19. Genetic mouse models for bone studies—Strengths and limitations

    PubMed Central

    Elefteriou, Florent; Yang, Xiangli

    2012-01-01

    Mice have become a preferred model system for bone research because of their genetic and pathophysiological similarities to humans: a relatively short reproductive period, leading to relatively low cost of maintenance and the availability of the entire mouse genome sequence information. The success in producing the first transgenic mouse line that expressed rabbit β-globin protein in mouse erythrocytes three decades ago marked the beginning of the use of genetically engineered mice as model system to study human diseases. Soon afterward the development of cultured pluripotent embryonic stem cells provided the possibility of gene replacement or gene deletion in mice. These technologies have been critical to identify new genes involved in bone development, growth, remodeling, repair, and diseases, but like many other approaches, they have limitations. This review will introduce the approaches that allow the generation of transgenic mice and global or conditional (tissue-specific and inducible) mutant mice. A list of the various promoters used to achieve bone-specific gene deletion or overexpression is included. The limitations of these approaches are discussed, and general guidelines related to the analysis of genetic mouse models are provided. PMID:21907838

  20. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    SciTech Connect

    Long, G.J.; Rosen, J.F.; Pounds, J.G. )

    1990-02-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state {sup 210}Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with {sup 210}Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of {sup 210}Pb from the cells over a {sup 210}-min period. The intracellular metabolism of {sup 210}Pb was characterized by three kinetic pools of {sup 210}Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of {sup 210}Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone.

  1. The terminator mouse: salvation for primary cell culture.

    PubMed

    Kabgani, Nazanin; Moeller, Marcus J

    2013-11-01

    The Terminator had to come back from the future already several times in an effort to bring salvation to mankind. In the present issue of Kidney International, Guo et al. brought us a novel transgenic mouse model: the terminator mouse. This highly elegant mouse may facilitate significantly the derivation of primary cultures of a specific cell type from a tissue containing multiple cell populations. PMID:24172731

  2. Primary melanoma of the petrous temporal bone.

    PubMed

    McJunkin, Jonathan L; Wiet, Richard J

    2015-07-01

    Melanoma is a malignant tumor of melanocytes that is predominantly found in the skin. In rare cases, it arises from mucosal melanocytes. We describe a case of a solitary melanoma of the petrous apex of the temporal bone in a 67-year-old woman who presented with sudden hearing loss, aural fullness, and headaches, all on the right side. Magnetic resonance imaging identified a mass located at the right petrous apex; the lesion was hyperintense on T1-weighted imaging and isointense on T2 weighting, and it enhanced brightly with gadolinium contrast. The patient underwent removal of the lesion via a transcochlear approach with facial nerve translocation. Intra- and postoperative pathology identified a poorly differentiated malignancy consistent with a melanoma. Further investigations found no evidence of metastasis. Given a concern for residual disease, the patient was treated with radiation to the primary site. To the best of our knowledge, only 1 other case of primary melanoma of the petrous apex has been described in the literature. PMID:26214673

  3. New mouse primary retinal degeneration (rd-3)

    SciTech Connect

    Chang, B.; Hawes, N.L.; Roderick, T.H. ); Heckenlively, J.R. )

    1993-04-01

    A new mouse retinal degeneration that appears to be an excellent candidate for modeling human retinitis pigmentosa is reported. In this degeneration, called rd-3, differentiation proceeds postnatally through 2 weeks, and photoreceptor degeneration starts by 3 weeks. The rod photoreceptor loss is essentially complete by 5 weeks, whereas remnant cone cells are seen through 7 weeks. This is the only mouse homozygous retinal degeneration reported to date in which photoreceptors are initially normal. Crosses with known mouse retinal degenerations rd, Rds, nr, and pcd are negative for retinal degeneration in offspring, and linkage analysis places rd-3 on mouse chromosome 1 at 10 [+-]2.5 cM distal to Akp-1. Homology mapping suggests that the homologous human locus should be on chromosome 1q. 32 refs., 3 figs., 3 tabs.

  4. Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.

  5. A Computational Analysis of Bone Formation in the Cranial Vault in the Mouse

    PubMed Central

    Lee, Chanyoung; Richtsmeier, Joan T.; Kraft, Reuben H.

    2015-01-01

    Bones of the cranial vault are formed by the differentiation of mesenchymal cells into osteoblasts on a surface that surrounds the brain, eventually forming mineralized bone. Signaling pathways causative for cell differentiation include the actions of extracellular proteins driven by information from genes. We assume that the interaction of cells and extracellular molecules, which are associated with cell differentiation, can be modeled using Turings reactiondiffusion model, a mathematical model for pattern formation controlled by two interacting molecules (activator and inhibitor). In this study, we hypothesize that regions of high concentration of an activator develop into primary centers of ossification, the earliest sites of cranial vault bone. In addition to the Turing model, we use another diffusion equation to model a morphogen (potentially the same as the morphogen associated with formation of ossification centers) associated with bone growth. These mathematical models were solved using the finite volume method. The computational domain and model parameters are determined using a large collection of experimental data showing skull bone formation in mouse at different embryonic days in mice carrying disease causing mutations and their unaffected littermates. The results show that the relative locations of the five ossification centers that form in our model occur at the same position as those identified in experimental data. As bone grows from these ossification centers, sutures form between the bones. PMID:25853124

  6. Suramin inhibits bone resorption and reduces osteoblast number in a neonatal mouse calvarial bone resorption assay.

    PubMed

    Walther, M M; Kragel, P J; Trahan, E; Venzon, D; Blair, H C; Schlesinger, P H; Jamai-Dow, C; Ewing, M W; Myers, C E; Linehan, W M

    1992-11-01

    The antineoplastic properties of suramin, a polyanionic agent with demonstrated antigrowth factor activity, are under evaluation in vitro, in vivo, and in clinical trials. Suramin has been shown to have antitumor activity in patients with advanced, hormone refractory prostate cancer. During these trials, significant resolution of osseous pain was observed in nearly three quarters of the patients treated with suramin. To evaluate the effect of suramin on bone cells, we studied the effect of suramin on bone resorption in a neonatal mouse calvarial assay. Suramin inhibited bone-resorbing activity in a dose-related fashion and had an additive effect with calcitonin. Calvaria pretreated with suramin had less bone-resorbing activity, fewer attached osteoblasts, and less medium alkaline phosphatase activity than control calvaria. Suramin also inhibited osteoclastic release of tritiated proline from labeled bone in a dose-dependent fashion. The effect of metastatic prostate carcinoma on bone is incompletely understood, but may be moderated by tumor-produced factors and/or cytokines. The effects of several such agents, therefore, were examined in combination with suramin. Bone resorption induced by PTH, epidermal growth factor, tumor necrosis factor, and a tumor-produced factor, PTH related-protein, was blocked by suramin. The ability of suramin to inhibit the bone-resorbing effects of several cytokines suggests that its mechanism may involve direct action on bone metabolism. Autoradiography performed on calvaria treated with labeled suramin demonstrated heavy deposition of suramin on the outer surface of the matrix, adjacent to osteoblasts and osteoclasts lining the outer table, suggesting that bone cells may be subject to high local concentrations of the drug, in keeping with this hypothesis. PMID:1425426

  7. Bone and bone-marrow blood flow in chronic granulocytic leukemia and primary myelofibrosis

    SciTech Connect

    Lahtinen, R.; Lahtinen, T.; Romppanen, T.

    1982-03-01

    Blood flow in hematopoietic bone marrow and in nonhematopoietic bone has been measured with a Xe-133 washout method in 20 patients with chronic granulocytic leukemia (CGL) and in seven with primary myelofibrosis. Age-matched healthy persons served as controls. Bone-marrow blood flow in CGL was dependent upon the phase of the disease. In the metamorphosis phase, bone-marrow blood flow was high compared with that in the well-controlled phase. Apart from the initial phase, the mean values for bone blood flow in CGL were increased compared with the values of the healthy controls. In myelofibrosis the bone blood flow was also increased. Bone-marrow blood flow in these diseases was dependent upon the cellularity of bone marrow as measured morphometrically.

  8. Parallel input channels to mouse primary visual cortex

    PubMed Central

    Gao, Enquan; DeAngelis, Gregory C.; Burkhalter, Andreas

    2011-01-01

    It is generally accepted that in mammals visual information is sent to the brain along functionally specialized parallel pathways, but whether the mouse visual system uses similar processing strategies is not known. It is important to resolve this issue because the mouse brain provides a tractable system for developing a cellular and molecular understanding of disorders affecting spatiotemporal visual processing. We have used single unit recordings in mouse primary visual cortex to study whether individual neurons are more sensitive to one set of sensory cues than another. Our quantitative analyses show that neurons with short response latencies have low spatial acuity and high sensitivity to contrast, temporal frequency and speed, whereas neurons with long latencies have high spatial acuity, low sensitivities to contrast, temporal frequency and speed. These correlations suggest that neurons in mouse V1 receive inputs from a weighted combination of parallel afferent pathways with distinct spatiotemporal sensitivities. PMID:20427651

  9. Primary bone lymphomasClinical cases and review of literature

    PubMed Central

    Jain, Anshu; Alam, Kiran; Maheshwari, Veena; Khan, Roobina; Nobin, Hage; Narula, Varsha

    2013-01-01

    Primary bone lymphoma (PBL) is an uncommon clinical entity and a rare presentation of non-Hodgkin's lymphoma. PBL accounts for less than 5% of malignant bone tumors, 45% of extra nodal lymphoma and less than 1% of all non-Hodgkin's lymphoma. Diffuse large-B-cell lymphoma (DLBCL) accounts for the majority of cases of PBL. The incidence of PBL is so rare that many of its aspects remain unknown. A number of studies have been reported from western countries but only a few reports are available from Asia. Out of 20,000 bone lesions received in our department over 5 years, only 5 cases were primary bone lymphoma; all of which were DLBCL. We report our experience on PBLs with main emphasis on two unusual presentations of this rare tumor.

  10. Cytogenetic risk assessment of etoposide from mouse bone marrow.

    PubMed

    Choudhury, Ramesh C; Palo, Anil K; Sahu, Prajyoti

    2004-01-01

    Increased clinical applications of the anticancer drug etoposide (a non-intercalative epipodophyllotoxin derivative) and the frequent induction of a second malignancy, particularly leukaemia, in post-etoposide-treated cancer survivors warrant detailed genotoxicity testing of etoposide. The genotoxicity test results available on etoposide are either primarily in in vitro test systems or in lower organisms after treatment with unusually high doses, or after chronic exposures, having little extrapolative value to humans. Therefore, a cytogenetic risk assessment study on etoposide in mouse in vivo was undertaken after a low dose (in accordance with the human therapeutic dose) single exposure. The cytogenetic toxicity of etoposide was assessed from bone marrow of mouse at three separate endpoints: chromosomal aberration and mitotic index studies at 24 h post-treatment and the micronucleus test (MNT) at 30 h post-treatment. The flame drying technique using colchicine, hypotonic sodium citrate, methanol-glacial acetic acid and Giemsa was followed for the preparation of slides for the metaphase chromosomal aberration and mitotic index studies and a simple technique was followed for the MNT. Although induction of chromosomal aberrations, excluding gaps, per 100 metaphases by 10 and 15 mg kg(-1) etoposide was not significant statistically, 20 mg kg(-1) of etoposide induced a significantly higher number of chromosomal aberrations in female (P < or = 0.01) and male (P < or = 0.05) mice. There was no significant change in the induced percentages of dividing cells by any of the doses of etoposide tested. The micronucleus induction also was not significant statistically with the lowest dose but it was significant in female (P mouse bone marrow after a single treatment with such low doses. However, the drug did not interfere with cell cycle progression. Although it is a DNA-non-intercalating agent, etoposide is known for its interference in the activity of DNA topoisomerase IIalpha enzyme, particularly in the proliferative cells where the concentration and activity of the enzyme are greater. This might be the reason for the induction of leukaemia in post-etoposide-treated cancer survivors. Therefore, it has become absolutely necessary to make etoposide target-specific, i.e. specific to the topoisomerase II enzymes of cancerous cells. PMID:15052606

  11. Primary pseudomyogenic haemangioendothelioma of bone: report of two cases.

    PubMed

    Righi, Alberto; Gambarotti, Marco; Picci, Piero; Dei Tos, Angelo Paolo; Vanel, Daniel

    2015-05-01

    Pseudomyogenic haemangioendothelioma (epithelioid sarcoma-like haemangioendothelioma) is a recently described, rarely metastasising neoplasm of the soft tissues that often presents as multiple discontinuous nodules in different tissue planes of a limb. This tumour type is extremely difficult to diagnose because no morphological evidence suggestive of endothelial differentiation is present to confirm a radiological suspicion of vascular neoplasm. All but one case published in the literature underline that bone involvement is secondary to deep and superficial soft tissue nodules. Here, we report two cases of primary bone pseudomyogenic haemangioendothelioma occurring in the radius and cuboid bone with a multifocal presentation. PMID:25300339

  12. Analysis of primary cilia in the developing mouse brain.

    PubMed

    Paridaen, Judith T M L; Huttner, Wieland B; Wilsch-Bruninger, Michaela

    2015-01-01

    Stem and progenitor cells in the developing mammalian brain are highly polarized cells that carry a primary cilium protruding into the brain ventricles. Here, cilia detect signals present in the cerebrospinal fluid that fills the ventricles. Recently, striking observations have been made regarding the dynamics of primary cilia in mitosis and cilium reformation after cell division. In neural progenitors, primary cilia are not completely disassembled during cell division, and some ciliary membrane remnant can be inherited by one daughter cell that tends to maintain a progenitor fate. Furthermore, newborn differentiating cells grow a primary cilium on their basolateral plasma membrane, in spite of them possessing apical membrane and adherens junctions, and thus change the environment to which the primary cilium is exposed. These phenomena are proposed to be involved in cell fate determination and delamination of daughter cells in conjunction with the production of neurons. Here, we describe several methods that can be used to study the structure, localization, and dynamics of primary cilia in the developing mouse brain; these include time-lapse imaging of live mouse embryonic brain tissues, and analysis of primary cilia structure and localization using correlative light- and electron- and serial-block-face scanning electron microscopy. PMID:25837388

  13. Biomechanical properties of bone in a mouse model of Rett syndrome

    PubMed Central

    Kamal, Bushra; Russell, David; Payne, Anthony; Constante, Diogo; Tanner, K. Elizabeth; Isaksson, Hanna; Mathavan, Neashan; Cobb, Stuart R.

    2015-01-01

    Rett syndrome (RTT) is an X-linked genetic disorder and a major cause of intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant neurological phenotypes, MECP2 is expressed ubiquitously throughout the body and a number of peripheral phenotypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important clinical features of the disorder. In order to explore whether MeCP2 protein deficiency results in altered structural and functional properties of bone and to test the potential reversibility of any defects, we have conducted a series of histological, imaging and biomechanical tests of bone in a functional knockout mouse model of RTT. Both hemizygous Mecp2stop/y male mice in which Mecp2 is silenced in all cells and female Mecp2stop/+ mice in which Mecp2 is silenced in ~50% of cells as a consequence of random X-chromosome inactivation, revealed significant reductions in cortical bone stiffness, microhardness and tensile modulus. Microstructural analysis also revealed alterations in both cortical and cancellous femoral bone between wild-type and MeCP2-deficient mice. Furthermore, unsilencing of Mecp2 in adult mice cre-mediated stop cassette deletion resulted in a restoration of biomechanical properties (stiffness, microhardness) towards wild-type levels. These results show that MeCP2-deficiency results in overt, but potentially reversible, alterations in the biomechanical integrity of bone and highlights the importance of targeting skeletal phenotypes in considering the development of pharmacological and gene-based therapies. PMID:25445449

  14. The protective effects of ?-cryptoxanthin on inflammatory bone resorption in a mouse experimental model of periodontitis.

    PubMed

    Matsumoto, Chiho; Ashida, Noriyuki; Yokoyama, Satoshi; Tominari, Tsukasa; Hirata, Michiko; Ogawa, Kazunori; Sugiura, Minoru; Yano, Masamichi; Inada, Masaki; Miyaura, Chisato

    2013-01-01

    We examined the effects of ?-cryptoxanthin, a typical carotenoid, on inflammatory periodontitis. ?-Cryptoxanthin suppressed lipopolysaccharide (LPS)-induced osteoclast formation in co-cultures of bone marrow cells and osteoblasts. In a mouse model of periodontitis, it suppressed bone resorption in the mandibular alveolar bone in vitro and restored alveolar bone loss induced by LPS in vivo. ?-Cryptoxanthin might protect against periodontal disease. PMID:23615426

  15. Mouse models of primary Sjögren’s syndrome

    PubMed Central

    Park, Young-Seok; Gauna, Adrienne E.; Cha, Seunghee

    2015-01-01

    Sjögren’s syndrome (SjS) is a chronic autoimmune disorder characterized by immune cell infiltration and progressive injury to the salivary and lacrimal glands. As a consequence, patients with SjS develop xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). SjS is the third most common rheumatic autoimmune disorder, affecting 4 million Americans with over 90% of patients being female. Current diagnostic criteria for SjS frequently utilize histological examinations of minor salivary glands for immune cell foci, serology for autoantibodies, and dry eye evaluation by corneal or conjunctival staining. SjS can be classified as primary or secondary SjS, depending on whether it occurs alone or in association with other systemic rheumatic conditions, respectively. Clinical manifestations typically become apparent when the disease is relatively advanced in SjS patients, which poses a challenge for early diagnosis and treatment of SjS. Therefore, SjS mouse models, because of their close resemblance to the human SjS, have been extremely valuable to identify early disease markers and to investigate underlying biological and immunological dysregulations. However, it is important to bear in mind that no single mouse model has duplicated all aspects of SjS pathogenesis and clinical features, mainly due to the multifactorial etiology of SjS that includes numerous susceptibility genes and environmental factors. As such, various mouse models have been developed in the field to try to recapitulate SjS. In this review, we focus on recent mouse models of primary SjS and describe them under three categories of spontaneous, genetically engineered, and experimentally induced development of SjS-like disease. In addition, we discuss future perspectives of SjS mouse models highlighting pros and cons of utilizing mouse models and demands for improved models. PMID:25777752

  16. Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness

    PubMed Central

    Carriero, Alessandra; Bruse, Jan L.; Oldknow, Karla J.; Milln, Jos Luis; Farquharson, Colin; Shefelbine, Sandra J.

    2014-01-01

    Bone fragility is a concern for aged and diseased bone. Measuring bone toughness and understanding fracture properties of the bone are critical for predicting fracture risk associated with age and disease and for preclinical testing of therapies. A reference point indentation technique (BioDent) has recently been developed to determine bone's resistance to fracture in a minimally invasive way by measuring the indentation distance increase (IDI) between the first and last indentations over cyclic indentations in the same position. In this study, we investigate the relationship between fracture toughness KC and reference point indentation parameters (i.e. IDI, total indentation distance (TID) and creep indentation distance (CID)) in bones from 38 mice from six types (C57Bl/6, Balb, oim/oim, oim/+, Phospho1?/? and Phospho1 wild type counterpart). These mice bone are models of healthy and diseased bone spanning a range of fracture toughness from very brittle (oim/oim) to ductile (Phospho1?/?). Left femora were dissected, notched and tested in 3-point bending until complete failure. Contralateral femora were dissected and indented in 10 sites of their anterior and posterior shaft surface over 10 indentation cycles. IDI, TID and CID were measured. Results from this study suggest that reference point indentation parameters are not indicative of stress intensity fracture toughness in mouse bone. In particular, the IDI values at the anterior mid-diaphysis across mouse types overlapped, making it difficult to discern differences between mouse types, despite having extreme differences in stress intensity based toughness measures. When more locations of indentation were considered, the normalised IDIs could distinguish between mouse types. Future studies should investigate the relationship of the reference point indentation parameters for mouse bone in other material properties of the bone tissue in order to determine their use for measuring bone quality. PMID:25280470

  17. Resection arthrodesis for primary bone tumour about the knee.

    PubMed

    Kwan, M K; Ng, E S; Penafort, R; Saw, A; Sengupta, S

    2005-07-01

    Bone defect following en bloc resection of primary bone tumor around the knee can be reconstructed by allograft or prothesis or combination of both. Resection-arthrodesis is an alternative option for young vigorous patients facing circumstances of financial constrain or limited supply of allograft. This study was undertaken to determine the outcome and complications associated with resection-arthrodesis of 22 primary bone tumors (13 giant cell tumors and 9 osteosarcomas) around the knee treated between 1990 and 2003 at the University Malaya Medical Center. The mean follow-up was 6 years (range 1-13 years). hree patients with osteosarcoma died of lung metastasis, 3 required above knee amputation and 2 defaulted follow-up. Local complications of the procedure include infection in 8 cases (36.4%), non-union 7 (31.8%) and mal-union. Of 14 patients who returned for final evaluation, 79.8% had satisfactory outcomes according to the Musculoskeletal Tumor Society grading system. In conclusion, resection-arthrodesis of the knee is a viable treatment option for selected patients with primary bone tumor around the knee, and good functional outcome can be expected in the presence of short-term local complications. PMID:16381287

  18. Cross-talk between the mitogen activated protein kinase and bone morphogenetic protein/hemojuvelin pathways is required for the induction of hepcidin by holotransferrin in primary mouse hepatocytes

    PubMed Central

    Ramey, Guillemette; Deschemin, Jean-Christophe; Vaulont, Sophie

    2009-01-01

    Background The circulating hormone hepcidin plays a central role in iron homeostasis. Our goal was to establish an ex vivo iron-sensing model and to characterize the molecular mechanisms linking iron to hepcidin. Design and Methods Murine hepatocytes were isolated by the collagenase method, either from wild type or HFE knockout mice, and cultured 42 h without serum before treatments. Results After 42 h of serum-free culture, hepcidin gene expression was undetectable in the hepatocytes. Hepcidin gene expression could, however, be re-activated by an additional 24 h of incubation with 10% serum. Interestingly, addition of 30 ?M holotransferrin consistently increased serum-dependent hepcidin levels 3- to 5-fold. The effects of serum and serum+holotransferrin were direct, transcriptional, independent of de novo protein synthesis and required the presence of bone morphogenetic protein. Transferrin receptor-2 activation by its ligand holotransferrin led to extracellular signal regulated kinase (ERK)/mitogen activated protein kinase pathway stimulation and the ERK specific inhibitor U0-126 blunted holotransferrin-mediated induction of hepcidin. ERK activation by holotransferrin provoked increased levels of phospho-Smad1/5/8 highlighting cross-talk between the bone morphogenetic protein/hemojuvelin and ERK1/2 pathways. Finally, we demonstrated, using hepatocytes isolated from Hfe?/? mice, that HFE was not critical for the hepcidin response to holotransferrin but important for basal hepcidin expression. Conclusions We demonstrate that hepatocytes are liver iron-sensor cells and that transferrin receptor-2, by signaling through the ERK1/2 pathway, and bone morphogenetic protein/hemojuvelin, by signaling through the Smad pathways, coordinately regulate the iron-sensing machinery linking holotransferrin to hepcidin. PMID:19454495

  19. Lack of centrioles and primary cilia in STIL?/? mouse embryos

    PubMed Central

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Grne, Hermann-Josef; Izraeli, Shai; Krmer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL?/? mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL?/? cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL?/? cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474

  20. MRI detection of early bone metastases in B16 mouse melanoma models

    PubMed Central

    Gauvain, Karen M.; Garbow, Joel R.; Song, Sheng-Kwei; Hirbe, Angela C.; Weilbaecher, Katherine

    2009-01-01

    Bone metastasis causes significant morbidity in cancer patients, including bone pain, pathologic fractures, nerve compression syndrome, and hypercalcemia. Animal models are utilized to study the pathogenesis of skeletal metastases and to evaluate potential therapeutic agents. Previously published methods for imaging bone metastasis in rodent models have focused on identifying advanced stage metastasis using simple X-rays. Here we report MRI as a method for detecting early bone metastases in mouse models in vivo. B16 mouse melanoma cells were injected into the left cardiac ventricle of C57BL/6 mice and magnetic resonance (MR) images were obtained of the left leg following the development of metastatic disease, when tumor associated bone destruction was histologically present but not visible by X-ray. T1 and T2 relaxation times of bone marrow were measured in healthy control mice and B16 melanoma tumor-bearing mice. Mean T2 values for normal marrow were 28 ms (SD 5) and for diseased bone marrow were 41 ms (SD 3). T2 relaxation time of diseased bone marrow is significantly longer than that of normal bone marrow (P < 0.0001) and can be used as a marker of early bone metastases. These studies demonstrate that MR imaging can detect bone marrow metastases in small animals prior to development of cortical bone loss identified by X-ray. PMID:16283483

  1. Targeting a novel bone degradation pathway in primary bone cancer by inactivation of the collagen receptor uPARAP/Endo180.

    PubMed

    Engelholm, Lars H; Melander, Maria C; Hald, Andreas; Persson, Morten; Madsen, Daniel H; Jrgensen, Henrik J; Johansson, Kristina; Nielsen, Christoffer; Nrregaard, Kirstine S; Ingvarsen, Signe Z; Kjaer, Andreas; Trovik, Clement S; Laerum, Ole D; Bugge, Thomas H; Eide, Johan; Behrendt, Niels

    2016-01-01

    In osteosarcoma, a primary mesenchymal bone cancer occurring predominantly in younger patients, invasive tumour growth leads to extensive bone destruction. This process is insufficiently understood, cannot be efficiently counteracted and calls for novel means of treatment. The endocytic collagen receptor, uPARAP/Endo180, is expressed on various mesenchymal cell types and is involved in bone matrix turnover during normal bone growth. Human osteosarcoma specimens showed strong expression of this receptor on tumour cells, along with the collagenolytic metalloprotease, MT1-MMP. In advanced tumours with ongoing bone degeneration, sarcoma cells positive for these proteins formed a contiguous layer aligned with the degradation zones. Remarkably, osteoclasts were scarce or absent from these regions and quantitative analysis revealed that this scarcity marked a strong contrast between osteosarcoma and bone metastases of carcinoma origin. This opened the possibility that sarcoma cells might directly mediate bone degeneration. To examine this question, we utilized a syngeneic, osteolytic bone tumour model with transplanted NCTC-2472 sarcoma cells in mice. When analysed in vitro, these cells were capable of degrading the protein component of surface-labelled bone slices in a process dependent on MMP activity and uPARAP/Endo180. Systemic treatment of the sarcoma-inoculated mice with a mouse monoclonal antibody that blocks murine uPARAP/Endo180 led to a strong reduction of bone destruction. Our findings identify sarcoma cell-resident uPARAP/Endo180 as a central player in the bone degeneration of advanced tumours, possibly following an osteoclast-mediated attack on bone in the early tumour stage. This points to uPARAP/Endo180 as a promising therapeutic target in osteosarcoma, with particular prospects for improved neoadjuvant therapy. Copyright 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:26466547

  2. Resveratrol Inhibited Hydroquinone-Induced Cytotoxicity in Mouse Primary Hepatocytes

    PubMed Central

    Wang, Da-Hong; Ootsuki, Yoshie; Fujita, Hirofumi; Miyazaki, Masahiro; Yie, Qinxia; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Ogino, Keiki

    2012-01-01

    Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and the cosmetic industry because of its depigmenting effects. Most skin-lightening hydroquinone creams contain 4%5% hydroquinone. We have investigated the role of resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary hepatocytes. We found that 400 M hydroquinone exposure alone induced apoptosis of the cells and also resulted in a significant drop of cell viability compared with the control, and pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone exposure did not show a significant improvement in the survival rate of the hepatocytes, however, relatively higher concentrations of resveratrol (?1 mM) inhibited apoptosis of the mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in particular the survival rate of the hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even in very low concentrations (50 M, 100 M), blocked the damage of hydroquinone to the cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests that resveratrol protected the cells against hydroquinone-induced toxicity through its antioxidant function and possibly suppressive effect on the expression of cytochrome P450 2E1. PMID:23202692

  3. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model

    PubMed Central

    Britton, Robert A.; Irwin, Regina; Quach, Darin; Schaefer, Laura; Zhang, Jing; Lee, Taehyung; Parameswaran, Narayanan; McCabe, Laura R.

    2014-01-01

    Estrogen deficiency is a major risk factor for osteoporosis that is associated with bone inflammation and resorption. Half of women over the age of 50 will experience an osteoporosis related fracture in their lifetime, thus novel therapies are needed to combat post-menopausal bone loss. Recent studies suggest an important role for gut-bone signaling pathways and the microbiota in regulating bone health. Given that the bacterium Lactobacillus reuteri ATCC PTA 6475 (L. reuteri) secretes beneficial immunomodulatory factors, we examined if this candidate probiotic could reduce bone loss associated with estrogen deficiency in an ovariectomized (Ovx) mouse menopausal model. Strikingly, L. reuteri treatment significantly protected Ovx mice from bone loss. Osteoclast bone resorption markers and activators (Trap5 and RANKL) as well as osteoclastogenesis are significantly decreased in L. reuteri treated mice. Consistent with this, L. reuteri suppressed Ovx-induced increases in bone marrow CD4+ T-lymphocytes (which promote osteoclastogenesis) and directly suppressed osteoclastogenesis in vitro. We also identif ied that L. reuteri treatment modifies microbial communities in the Ovx mouse gut. Together, our studies demonstrate that L. reuteri treatment suppresses bone resorption and loss associated with estrogen deficiency. Thus, L. reuteri treatment may be a straightforward and cost-effective approach to reduce post-menopausal bone loss. PMID:24677054

  4. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Yoon, Sung-Hee; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane

    2016-01-01

    Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength. PMID:26494410

  5. Endochondral bone formation in embryonic mouse pre-metatarsals

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1992-01-01

    Long term exposure to a reduced gravitational environment has a deleterious effect on bone. The developmental events which occur prior to initial bone deposition will provide insight into the regulation of mature bone physiology. We have characterized a system in which the events preceding bone formation take place in an isolated in vitro organ culture environment. We show that cultured pre-metatarsal tissue parallels development of pre-metatarsal tissue in the embryo. Both undergo mesenchyme differentiation and morphogenesis to form a cartilage rod, which resembles the future bone, followed by terminal chondrocyte differentiation in a definite morphogenetic pattern. These sequential steps occur prior to osteoblast maturation and bone matrix deposition in the developing organism. Alkaline phosphatase (ALP) activity is a distinctive enzymatic marker for mineralizing tissues. We have measured this activity throughout pre-metatarsal development and show (a) where in the tissue it is predominantly found, and (b) that this is indeed the mineralizing isoform of the enzyme.

  6. Application of retinoic acid to obtain osteocytes cultures from primary mouse osteoblasts.

    PubMed

    Mattinzoli, Deborah; Messa, Piergiorgio; Corbelli, Alessandro; Ikehata, Masami; Mondini, Anna; Zennaro, Cristina; Armelloni, Silvia; Li, Min; Giardino, Laura; Rastaldi, Maria Pia

    2014-01-01

    The need for osteocyte cultures is well known to the community of bone researchers; isolation of primary osteocytes is difficult and produces low cell numbers. Therefore, the most widely used cellular system is the osteocyte-like MLO-Y4 cell line. The method here described refers to the use of retinoic acid to generate a homogeneous population of ramified cells with morphological and molecular osteocyte features. After isolation of osteoblasts from mouse calvaria, all-trans retinoic acid (ATRA) is added to cell medium, and cell monitoring is conducted daily under an inverted microscope. First morphological changes are detectable after 2 days of treatment and differentiation is generally complete in 5 days, with progressive development of dendrites, loss of the ability to produce extracellular matrix, down-regulation of osteoblast markers and up-regulation of osteocyte-specific molecules. Daily cell monitoring is needed because of the inherent variability of primary cells, and the protocol can be adapted with minimal variation to cells obtained from different mouse strains and applied to transgenic models. The method is easy to perform and does not require special instrumentation, it is highly reproducible, and rapidly generates a mature osteocyte population in complete absence of extracellular matrix, allowing the use of these cells for unlimited biological applications. PMID:24894124

  7. Immortalized Mouse Floxed Fam20c Dental Papillar Mesenchymal and Osteoblast Cell Lines Retain Their Primary Characteristics.

    PubMed

    Liu, Chao; Wang, Xiaofang; Zhang, Hua; Xie, Xiaohua; Liu, Peihong; Liu, Ying; Jani, Priyam H; Lu, Yongbo; Chen, Shuo; Qin, Chunlin

    2015-11-01

    Fam20c is essential for the normal mineralization of dentin and bone. The generation of odontoblast and osteoblast cell lines carrying floxed Fam20c allele can offer valuable tools for the study of the roles of Fam20c in the mineralization of dentin and bone. The limited capability of the primary odontoblasts and osteoblasts to proliferate necessitates the development of odontoblast and osteoblast cell lines serving as substitutes for the study of differentiation and mineralization of the odontoblasts and osteoblasts. In this study, we established and characterized immortalized mouse floxed Fam20c dental papilla mesenchymal and osteoblast cell lines. The isolated primary mouse floxed Fam20c dental papilla mesenchymal cells and osteoblasts were immortalized by the infection of lentivirus containing Simian Virus 40 T-antigen (SV40 T-Ag). The immortalization of floxed Fam20c dental papilla mesenchymal cells and osteoblasts was verified by the long-term passages and genomic integration of SV40 T-Ag. The immortalized floxed Fam20c dental papilla mesenchymal and osteoblast cell lines not only proliferated at a high rate and retained the morphology of their primary counterparts, but also preserved the dentin and bone specific gene expression as the primary dental papilla mesenchymal cells and osteoblasts did. Consistently, the capability of the primary floxed Fam20c dental papilla mesenchymal cells and osteoblasts to mineralize was also inherited by the immortalized dental papilla mesenchymal and osteoblast cell lines. Thus, we have successfully generated the immortalized mouse floxed Fam20c dental papilla mesenchymal and osteoblast cell lines. PMID:25833681

  8. Lineage specificity of primary cilia in the mouse embryo

    PubMed Central

    Bangs, Fiona K.; Schrode, Nadine; Hadjantonakis, Anna-Katerina; Anderson, Kathryn V.

    2015-01-01

    Primary cilia are required for vertebrate cells to respond to specific intercellular signals. Here we define when and where primary cilia appear in the mouse embryo using a transgenic line that expresses ARL13B-mCherry in cilia and Centrin2-GFP in centrosomes. Primary cilia first appear on cells of the epiblast at e6.0 and are subsequently present on all derivatives of the epiblast. In contrast, extraembryonic cells of the visceral endoderm and trophectoderm lineages have centrosomes but no cilia. Stem cell lines derived from embryonic lineages recapitulate the in vivo pattern: epiblast stem cells are ciliated, whereas trophoblast stem cells and extraembryonic endoderm stem (XEN) cells lack cilia. Basal bodies in XEN cells are mature and can form cilia when the AURKA/HDAC6 cilia disassembly pathway is inhibited. The lineage-dependent distribution of cilia is stable throughout much of gestation, defining which cells in the placenta and yolk sac are able respond to Hedgehog ligands. PMID:25599390

  9. Genetics of primary and timing effects in the mnd mouse

    SciTech Connect

    Messer, A.; Plummer, J.; MacMillen, M.C.

    1995-06-05

    The mnd mouse shows a spontaneous adult-onset hereditary neurological disease, with motor abnormality by 6 months of age, progressing to severe spastic paralysis and premature death. The disease is autosomal recessive, with heterozygote effects seen under stress. It maps to mouse chromosome (chr) 8. Histopathology with Nissl stains documents substantial abnormalities of upper and lower motor neurons, and there is retinal degeneration beginning in the first month, even without light exposure. Increasing levels of autofluorescent lipopigment are found in both neuronal and non-neuronal tissues as the mnd mice age. Recently, NCL-like inclusions and accumulating subunit c have also been described. When mnd is outcrossed to the AKR/J genetic background, ca. 40% of the mnd/mnd F2 progeny show early onset (onset by 4.5-5 months and death by 7 months). This accelerated timing effect seems to be strain-specific, and unlinked to the mnd gene itself. Our current working hypothesis is that the timing effect is due to 2 or 3 unlinked dominant genes with incomplete penetrance at any single locus. In a combined RFLP/PCR fragment genetic analysis, the strongest deviation from the expected ratio of AKR vs B6 alleles occurs with markers on proximal half of chr 1. Additional loci on chrs 5 and 10 may also be involved. The mechanism of interaction of these modifying genes with the primary mnd gene may offer new therapeutic avenues. 22 refs., 2 tabs.

  10. Primary homologies of the circumorbital bones of snakes.

    PubMed

    Palci, Alessandro; Caldwell, Michael W

    2013-09-01

    Some snakes have two circumorbital ossifications that in the current literature are usually referred to as the postorbital and supraorbital. We review the arguments that have been proposed to justify this interpretation and provide counter-arguments that reject those conjectures of primary homology based on the observation of 32 species of lizards and 81 species of snakes (both extant and fossil). We present similarity arguments, both topological and structural, for reinterpretation of the primary homologies of the dorsal and posterior orbital ossifications of snakes. Applying the test of similarity, we conclude that the posterior orbital ossification of snakes is topologically consistent as the homolog of the lacertilian jugal, and that the dorsal orbital ossification present in some snakes (e.g., pythons, Loxocemus, and Calabaria) is the homolog of the lacertilian postfrontal. We therefore propose that the terms postorbital and supraorbital should be abandoned as reference language for the circumorbital bones of snakes, and be replaced with the terms jugal and postfrontal, respectively. The primary homology claim for the snake "postorbital" fails the test of similarity, while the term "supraorbital" is an unnecessary and inaccurate application of the concept of a neomorphic ossification, for an element that passes the test of similarity as a postfrontal. This reinterpretation of the circumorbital bones of snakes is bound to have important repercussions for future phylogenetic analyses and consequently for our understanding of the origin and evolution of snakes. PMID:23630161

  11. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  12. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  13. Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models

    NASA Astrophysics Data System (ADS)

    Makowski, Alexander J.; Pence, Isaac J.; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Huszagh, Meredith C.; Mahadevan-Jansen, Anita; Nyman, Jeffry S.

    2014-11-01

    Raman spectroscopy (RS) has been extensively used to characterize bone composition. However, the link between bone biomechanics and RS measures is not well established. Here, we leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can explain differences in bone toughness in genetic mouse models for which traditional RS peak ratios are not informative. In the selected mutant mice-activating transcription factor 4 (ATF4) or matrix metalloproteinase 9 (MMP9) knock-outs-toughness is reduced but differences in bone strength do not exist between knock-out and corresponding wild-type controls. To incorporate differences in the RS of bone occurring at peak shoulders, a multivariate approach was used. Full spectrum principal components analysis of two paired, orthogonal bone orientations (relative to laser polarization) improved genotype classification and correlation to bone toughness when compared to traditional peak ratios. When applied to femurs from wild-type mice at 8 and 20 weeks of age, the principal components of orthogonal bone orientations improved age classification but not the explanation of the maturation-related increase in strength. Overall, increasing polarization information by collecting spectra from two bone orientations improves the ability of multivariate RS to explain variance in bone toughness, likely due to polarization sensitivity to organizational changes in both mineral and collagen.

  14. How tough is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone††

    PubMed Central

    Carriero, A.; Zimmermann, E. A.; Paluszny, A.; Tang, S. Y.; Bale, H.; Busse, B.; Alliston, T.; Kazakia, G.

    2015-01-01

    The multiscale hierarchical structure of bone is naturally optimized to resist fractures. In osteogenesis imperfecta, or brittle bone disease, genetic mutations affect the quality and/or quantity of collagen, dramatically increasing bone fracture risk. Here we reveal how the collagen defect results in bone fragility in a mouse model of osteogenesis imperfecta (oim), which has homotrimeric α1(I) collagen. At the molecular level we attribute the loss in toughness to a decrease in the stabilizing enzymatic crosslinks and an increase in non-enzymatic crosslinks, which may break prematurely inhibiting plasticity. At the tissue level, high vascular canal density reduces the stable crack growth, and extensive woven bone limits the crack-deflection toughening during crack growth. This demonstrates how modifications at the bone molecular level have ramifications at larger length scales affecting the overall mechanical integrity of the bone; thus, treatment strategies have to address multiscale properties in order to regain bone toughness. In this regard, findings from the heterozygous oim bone, where defective as well as normal collagen are present, suggest that increasing the quantity of healthy collagen in these bones helps to recover toughness at the multiple length scales. PMID:24420672

  15. Hormone Treatment Restores Bone Density for Young Women with Menopause-Like Condition (Primary Ovarian Insufficiency)

    MedlinePLUS

    ... in young women with primary ovarian insufficiency (POI) led to increases in their bone mineral density, restoring ... with normal ovarian function. Both hormone treatment regimens led to significant increases in the bone mineral density ...

  16. Hydroxyproline metabolism in mouse models of primary hyperoxaluria

    PubMed Central

    Holmes, Ross P.; Cramer, Scott D.; Takayama, Tatsuya; Salido, Eduardo

    2012-01-01

    Primary hyperoxaluria type 1 (PH1) and type 2 (PH2) are rare genetic diseases that result from deficiencies in glyoxylate metabolism. The increased oxalate synthesis that occurs can lead to kidney stone formation, deposition of calcium oxalate in the kidney and other tissues, and renal failure. Hydroxyproline (Hyp) catabolism, which occurs mainly in the liver and kidney, is a prominent source of glyoxylate and could account for a significant portion of the oxalate produced in PH. To determine the sensitivity of mouse models of PH1 and PH2 to Hyp-derived oxalate, animals were fed diets containing 1% Hyp. Urinary excretions of glycolate and oxalate were used to monitor Hyp catabolism and the kidneys were examined to assess pathological changes. Both strains of knockout (KO) mice excreted more oxalate than wild-type (WT) animals with Hyp feeding. After 4 wk of Hyp feeding, all mice deficient in glyoxylate reductase/hydroxypyruvate reductase (GRHPR KO) developed severe nephrocalcinosis in contrast to animals deficient in alanine-glyoxylate aminotransferase (AGXT KO) where nephrocalcinosis was milder and with a lower frequency. Plasma cystatin C measurements over 4-wk Hyp feeding indicated no significant loss of renal function in WT and AGXT KO animals, and significant and severe loss of renal function in GRHPR KO animals after 2 and 4 wk, respectively. These data suggest that GRHPR activity may be vital in the kidney for limiting the conversion of Hyp-derived glyoxylate to oxalate. As Hyp catabolism may make a major contribution to the oxalate produced in PH patients, Hyp feeding in these mouse models should be useful in understanding the mechanisms associated with calcium oxalate deposition in the kidney. PMID:22189945

  17. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss.

    PubMed

    Doyard, Mathilde; Chappard, Daniel; Leroyer, Patricia; Roth, Marie-Paule; Loral, Olivier; Guggenbuhl, Pascal

    2016-01-01

    Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe-/- male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe-/- animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe-/- mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski's fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis. PMID:26829642

  18. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss

    PubMed Central

    Doyard, Mathilde; Chappard, Daniel; Leroyer, Patricia; Roth, Marie-Paule; Loréal, Olivier; Guggenbuhl, Pascal

    2016-01-01

    Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe−/− male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe−/− animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe−/− mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski’s fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis. PMID:26829642

  19. Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption.

    PubMed

    Canalis, Ernesto; Schilling, Lauren; Yee, Siu-Pok; Lee, Sun-Kyeong; Zanotti, Stefano

    2016-01-22

    Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C?T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor ?B ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the ?-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption. PMID:26627824

  20. A mouse model of craniofacial bone lesion of tuberous sclerosis complex

    PubMed Central

    Fang, Fang; Wei, Xiaoxi; Hu, Min; Liu, Fei

    2015-01-01

    The mammalian/mechanistic target of rapamycin (mTOR) signaling pathway plays critical roles in skeletal development. The impact and underlying mechanisms of its dysregulation in bone homeostasis is poorly defined. The best known and characterized mTOR signaling dysregulation in human disease is called Tuberous Sclerosis Complex (TSC). TSC is an autosomal dominant neurocutaneous syndrome with a high frequency (>66%) of osseous manifestations such as sclerotic lesions in the craniofacial region. TSC is caused by mutations of TSC1 or TSC2, the heterodimer protein inhibitor of mTORC1 signaling. The underlying mechanism of bone lesions in TSC is unclear. We generated a TSC mouse model with TSC1 deletion in neural crest derived (NCD) cells, which recapitulated the sclerotic craniofacial bone lesion in TSC patients. We demonstrated that TSC1 null NCD osteoblasts overpopulated the NCD bones and the resultant increased bone formation is responsible for the sclerotic bone phenotype. Mechanistically, osteoblast number increase is due to the hyperproliferation of osteoprogenitor cells at an early postnatal stage. Noteworthy, administration of rapamycin, an mTORC1 inhibitor at early postnatal stage can completely rescue the excess bone acquisition, but late treatment cannot. Altogether, our data suggested that enhanced mTORC1 signaling in NCD cells can enlarge the osteoprogenitor pool and lead to the excess bone acquisition, which is likely the underlying mechanism of sclerotic bone lesion observed in TSC patients. PMID:26052552

  1. Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation

    PubMed Central

    Pathak, Siddhartha; Swadener, J. Gregory; Kalidindi, Surya R.; Courtland, Hayden-William; Jepsen, Karl J.; Goldman, Haviva M.

    2011-01-01

    This study demonstrates a novel approach to characterizing hydrated bones viscoelastic behavior at the lamellar length scales using dynamic indentation techniques. We studied the submicron-level viscoelastic response of bone tissue from two different inbred mouse strains, A/J and B6, with known differences in whole bone and tissue-level mechanical properties. Our results show that bone having a higher collagen content or a lower mineral-to-matrix ratio demonstrates a trend towards a larger viscoelastic response. When normalized for anatomical location relative to biological growth patterns in the antero-medial (AM) cortex, bone tissue from B6 femora, known to have a lower mineral-to-matrix ratio, is shown to exhibit a significantly higher viscoelastic response compared to A/J tissue. Newer bone regions with a higher collagen content (closer to the endosteal edge of the AM cortex) showed a trend towards a larger viscoelastic response. Our study demonstrates the feasibility of this technique to be used to study local composition-property relationships in bone. Further, this technique of viscoelastic nanoindentation mapping of the bone surface at these submicron length scales is shown to be highly advantageous in studying sub-surface features, such as porosity, of wet hydrated biological specimens, which are difficult to identify using other methods. PMID:21094478

  2. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

    PubMed Central

    Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I

    2005-01-01

    As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue mouse, and the lacZ model; commercially available as the MutaMouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069

  3. Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test.

    PubMed

    Wahnschaffe, U; Bitsch, A; Kielhorn, J; Mangelsdorf, I

    2005-01-17

    As part of a larger literature study on transgenic animals in mutagenicity testing, test results from the transgenic mutagenicity assays (lacI model; commercially available as the Big Blue(R) mouse, and the lacZ model; commercially available as the Mutatrade markMouse), were compared with the results on the same substances in the more traditional mouse bone marrow micronucleus test. 39 substances were found which had been tested in the micronucleus assay and in the above transgenic mouse systems. Although, the transgenic animal mutation assay is not directly comparable with the micronucleus test, because different genetic endpoints are examined: chromosome aberration versus gene mutation, the results for the majority of substances were in agreement. Both test systems, the transgenic mouse assay and the mouse bone marrow micronucleus test, have advantages and they complement each other. However, the transgenic animal assay has some distinct advantages over the micronucleus test: it is not restricted to one target organ and detects systemic as well as local mutagenic effects. PMID:15655069

  4. Effects of 810 nm laser on mouse primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Kharkwal, Gitika B.; Sharma, Sulbha K.; Huang, Ying-Ying; De Taboada, Luis; McCarthy, Thomas; Hamblin, Michael R.

    2011-03-01

    In the past four decades numerous studies have reported the efficacy of low level light (laser) therapy (LLLT) as a treatment for diverse diseases and injuries. Recent studies have shown that LLLT can biomodulate processes in the central nervous system and has been extensively studied as a stroke treatment. However there is still a lack of knowledge on the effects of LLLT at the cellular level in neurons. The present study aimed to study the effect of 810 nm laser on several cellular processes in primary cortical neurons cultured from mouse embryonic brains. Neurons were irradiated with light dose of 0.03, 0.3, 3, 10 and 30 J/cm2 and intracellular levels of reactive oxygen species, nitric oxide and calcium were measured. The changes in mitochondrial function in response to light were studied in terms of adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP). Light induced a significant increase in calcium, ATP and MMP at lower fluences and a decrease at higher fluence. ROS was induced significantly by light at all light doses. Nitric oxide levels also showed an increase on treatment with light. The results of the present study suggest that LLLT at lower fluences is capable of inducing mediators of cell signaling process which in turn may be responsible for the biomodulatory effects of the low level laser. At higher fluences beneficial mediators are reduced but potentially harmful mediators are increased thus offering an explanation for the biphasic dose response.

  5. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    PubMed Central

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Milln, Jos Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bones mechanical integrity. Skeletal disorders often affect bones mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (m) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim?/?) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1?/?) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and ?-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim?/? and ductile Phospho1?/? bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to ?-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim?/? were hypermineralized, while Phospho1?/? were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim?/? and Phospho1?/? has several similar trends at smaller length scales. This indicates that alterations from normal crystal size, composition, and structure will reduce the mechanical integrity of bone. PMID:25418329

  6. Bone resorption increases tumour growth in a mouse model of osteosclerotic breast cancer metastasis.

    PubMed

    Zheng, Yu; Zhou, Hong; Fong-Yee, Colette; Modzelewski, James R K; Seibel, Markus J; Dunstan, Colin R

    2008-01-01

    Osteosclerotic metastases account for 20% of breast cancer metastases with the remainder osteolytic or mixed. In mouse models, osteolytic metastases are dependent on bone resorption for their growth. However, whether the growth of osteosclerotic bone metastases depends on osteoclast or osteoblast actions is uncertain. In this study, we investigate the effects of high and low bone resorption on tumour growth in a mouse model of osteosclerotic metastasis. We implanted human breast cancer, MCF-7, cells into the tibiae of mice. Low and high levels of bone resorption were induced by osteoprotegerin (OPG) treatment or calcium deficient diet respectively. We demonstrate that OPG treatment significantly reduces tumour area compared to vehicle (0.42 +/- 0.06 vs. 1.27 +/- 0.16 mm2, P < 0.01) in association with complete inhibition of osteoclast differentiation. In contrast, low calcium diet increases tumour area compared to normal diet (0.90 +/- 0.30 vs. 0.58 +/- 0.20 mm2, P < 0.05) in association with increased osteoclast numbers (84.44 +/- 5.18 vs. 71.11 +/- 3.56 per mm2 bone lesion area, P < 0.05). Osteoblast surfaces and new woven bone formation were similarly increased within the tumour boundaries in all treatment groups. Tumour growth in this model of osteosclerotic metastasis is dependent on ongoing bone resorption, as has been observed in osteolytic models. Bone resorption, rather than bone formation, apparently mediates this effect as osteoblast surfaces in the tumour mass were unchanged by treatments. Treatment of breast cancer patients through correction of calcium deficiency and/or with anti-resorptive agents such as OPG, may improve patient outcomes in the adjuvant as well as palliative settings. PMID:18421566

  7. Myricetin Prevents Alveolar Bone Loss in an Experimental Ovariectomized Mouse Model of Periodontitis.

    PubMed

    Huang, Jialiang; Wu, Chuanlong; Tian, Bo; Zhou, Xiao; Ma, Nian; Qian, Yufen

    2016-01-01

    Periodontitis is a common chronic inflammatory disease, which leads to alveolar bone resorption. Healthy and functional alveolar bone, which can support the teeth and enable their movement, is very important for orthodontic treatment. Myricetin inhibited osteoclastogenesis by suppressing the expression of some genes, signaling pathways, and cytokines. This study aimed to investigate the effects of myricetin on alveolar bone loss in an ovariectomized (OVX) mouse model of periodontitis as well as in vitro osteoclast formation and bone resorption. Twenty-four healthy eight-week-old C57BL/J6 female mice were assigned randomly to four groups: phosphate-buffered saline (PBS) control (sham) OVX + ligature + PBS (vehicle), and OVX + ligature + low or high (2 or 5 mg∙kg(-1)∙day(-1), respectively) doses of myricetin. Myricetin or PBS was injected intraperitoneally (i.p.) every other day for 30 days. The maxillae were collected and subjected to further examination, including micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining; a resorption pit assay was also performed in vitro to evaluate the effects of myricetin on receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclastogenesis. Myricetin, at both high and low doses, prevented alveolar bone resorption and increased alveolar crest height in the mouse model and inhibited osteoclast formation and bone resorption in vitro. However, myricetin was more effective at high dose than at low dose. Our study demonstrated that myricetin had a positive effect on alveolar bone resorption in an OVX mouse model of periodontitis and, therefore, may be a potential agent for the treatment of periodontitis and osteoporosis. PMID:27011174

  8. Soy protein diet and exercise training increase relative bone volume and enhance bone microarchitecture in a mouse model of uremia.

    PubMed

    Tomayko, Emily J; Chung, Hae R; Wilund, Kenneth R

    2011-11-01

    Soy protein consumption and exercise training have been widely studied for their effects on the vasculature and bone in healthy populations, but little is known about the effectiveness of these interventions in chronic kidney disease (CKD). Cardiovascular disease and bone fracture risk are significantly elevated in CKD, and current pharmacological interventions have been unsuccessful in treating these conditions simultaneously. The purpose of this study was to compare the effects of a soy protein diet and endurance exercise training, alone or in combination, on cardiovascular and bone health in a mouse model of renal insufficiency. At 8 weeks of age, 60 female apolipoprotein E(-/-) mice underwent a two-step surgical procedure to induce uremia. These mice were then randomized at 12 weeks of age to one of four treatment groups for the 16-week intervention period: sedentary, control diet (n = 16); sedentary, soy protein diet (n = 18); exercise, control diet (n = 14); and exercise, soy protein diet (n = 12). There were no significant treatment effects on atherosclerotic lesion areas or aortic calcium deposits. We demonstrated a significant main effect of both diet and exercise on relative bone volume, trabecular number, trabecular separation, and trabecular connective density in the proximal femur as measured by microcomputed tomography. There were no treatment effects on trabecular thickness. We also showed a main effect of diet on plasma urea levels. These data suggest that soy protein intake and exercise training exert beneficial effects on properties of bone and plasma urea levels in mice with surgically induced renal impairment. PMID:21638017

  9. Inhibiting and stimulating effects of TGF-. beta. 1 on osteoclastic bone resorption in fetal mouse bone organ cultures

    SciTech Connect

    Dieudonne, S.C.; Foo, P.; van Zoelen, E.J.; Burger, E.H. )

    1991-05-01

    The effects of TGF-{beta} 1 on osteoclastic resorption of fetal mouse calvaria and long bones at various stages of development was studied in organ culture. In resorbing calvariae and long bones with an established marrow cavity TGF-beta 1 (4-10 ng/ml) had a stimulating effect on 45Ca release that was partially inhibited by indomethacin. In primitive long bones, however, which were explanted before osteoclast invasion and excavation of a marrow cavity had started, TGF-beta 1 (1-4 ng/ml) inhibited 45Ca release by an indomethacin-insensitive mechanism. Histomorphometry of long bones after staining for tartrate-resistant acid phosphatase (TRAP) revealed that TGF-beta 1 treatment inhibited the migration of TRAP-positive cells from periosteum to developing marrow cavity and inhibited cell fusion. However, the formation of (mononuclear) TRAP-positive cells in the periosteum-perichondrium was strongly enhanced. These data suggest that TGF-beta 1 modulates various steps in the cascade of osteoclast development, recruitment, and activation in different ways, involving both prostaglandin-mediated and prostaglandin-independent pathways. Therefore the net effect of exogenous TGF-beta 1 on osteoclastic resorption in bone organ cultures depends on the relative prevalence of osteoclast progenitors, precursors, and mature osteoclasts in the tissue under study.

  10. Comparative analyses of B cell populations in trout kidney and mouse bone marrow; establishing B cell signatures

    PubMed Central

    Zwollo, Patty; Mott, Katrina; Barr, Maggie

    2010-01-01

    This study aimed to identify the frequency and distribution of developing B cell populations in the kidney of the rainbow trout, using four molecular B cell markers that are highly conserved between species, including two transcription factors, Pax5 and EBF1, recombination activating gene RAG1, and the immunoglobulin heavy chain mu. Three distinct B cell stages were defined: early developing B cells (CLP, pro-B, and early pre-B cells), late developing B cell (late pre-B, immature B, and mature B cells), and IgM-secreting cells. Developmental stage-specific, combinatorial expression of Pax5, EBF1, RAG1 and immunoglobulin mu was determined in trout anterior kidney cells by flow cytometry. Trout staining patterns were compared to a well-defined primary immune tissue, mouse bone marrow, and using mouse surface markers B220 and CD43. A remarkable level of similarity was uncovered between the primary immune tissues of both species. Subsequent analysis of the entire trout kidney, divided into five contiguous segments K1-K5, revealed a complex pattern of early developing, late developing, and IgM-secreting B cells. Patterns in anterior kidney segment K1 were most similar to those of mouse bone marrow, while the most posterior part of the kidney, K5, had many IgM-secreting cells, but lacked early developing B cells. A potential second B lymphopoiesis site was uncovered in segment K4 of the kidney. The B cell patterns, or B cell signatures described here provide information on the relative abundance of distinct developing B cell populations in the trout kidney, and can be used in future studies on B cell development in other vertebrate species. PMID:20705088

  11. Osteoblast isolation from murine calvaria and long bones.

    PubMed

    Bakker, Astrid D; Klein-Nulend, Jenneke

    2012-01-01

    This chapter describes the isolation of primary mouse osteoblasts from adult mouse calvaria and long bones, as well as the process of isolation of bone cells from neonatal mouse calvaria. Osteoblasts from adult mouse bone are obtained as outgrowth from collagenase-treated bone pieces. Isolation of osteoblasts from neonatal calvaria is achieved by sequential enzymatic digestion of the bone matrix. Because of differences in origin and isolation method, each of the primary bone cell cultures described will have their own characteristics. PMID:22130919

  12. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  13. Bisphosphonate treatment in the oim mouse model alters bone modeling during growth

    PubMed Central

    Rao, S.H.; Evans, K.D.; Oberbauer, A.M.; Martin, R.B.

    2009-01-01

    Osetogenesis Imperfecta (OI) is a heritable disease, which results from an abnormal amount or structure of Type I collagen. Bisphosphonates, a class of synthetic antiresorptive drugs used in osteoporosis management, are also used to decrease fracture incidence and improve quality of life in children with OI. In this study we used the oim mouse to test the hypotheses that pamidronate treatment during active growth 1. produces larger, stronger, stiffer long bone diaphyses without altering bone material properties, and 2. negatively impacts longitudinal bone growth. Our results indicate that femoral cross-sectional moment of inertia in the distal metaphysis tended to increase with pamidronate treatment and that the treated bones are thicker and structurally stiffer, but shorter than their control-dose counterpar PMID:19022450

  14. Primary cilia act as mechanosensors during bone healing around an implant

    PubMed Central

    Leucht, P.; Monica, S.D.; Temiyasathit, S.; Lenton, K.; Manu, A.; Longaker, M.T.; Jacobs, C.R.; Spilker, R.L.; Guo, H.; Brunski, J.B.; Helms, J.A.

    2012-01-01

    The primary cilium is an organelle that senses cues in a cells local environment. Some of these cues constitute molecular signals; here, we investigate the extent to which primary cilia can also sense mechanical stimuli. We used a conditional approach to delete Kif3a in pre-osteoblasts and then employed a motion device that generated a spatial distribution of strain around an intra-osseous implant positioned in the mouse tibia. We correlated interfacial strain fields with cell behaviors ranging from proliferation through all stages of osteogenic differentiation. We found that peri-implant cells in the Col1Cre;Kif3afl/fl mice were unable to proliferate in response to a mechanical stimulus, failed to deposit and then orient collagen fibers to the strain fields caused by implant displacement, and failed to differentiate into bone-forming osteoblasts. Collectively, these data demonstrate that the lack of a functioning primary cilium blunts the normal response of a cell to a defined mechanical stimulus. The ability to manipulate the genetic background of peri-implant cells within the context of a whole, living tissue provides a rare opportunity to explore mechanotransduction from a multi-scale perspective. PMID:22784673

  15. Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex

    PubMed Central

    Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na

    2015-01-01

    The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604

  16. Predicting cortical bone adaptation to axial loading in the mouse tibia

    PubMed Central

    Pereira, A. F.; Javaheri, B.; Pitsillides, A. A.; Shefelbine, S. J.

    2015-01-01

    The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an onoff manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's ? rank coefficient ? = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms. PMID:26311315

  17. Transgenic mouse model for neurocristopathy: Schwannomas and facial bone tumors.

    PubMed

    Jensen, N A; Rodriguez, M L; Garvey, J S; Miller, C A; Hood, L

    1993-04-15

    We have characterized a strain of double transgenic mice with simian virus 40 large tumor antigen and prokaryotic lacZ under the control of the myelin basic protein promoter that develops spindle-cell sarcomas and osteogenic sarcomas at 5-7 months of age. Although poorly differentiated, the spindle-cell sarcomas were characterized as malignant Schwannomas based on their neural association, the presence of basal lamina, and expression of Schwann cell-specific genes. The osteogenic sarcomas were often multiple and appeared predominantly in the facial bones, less frequently in the ribs and vertebral column, and only rarely in the appendicular skeleton. Benign osteoblastic lesions were often observed adjacent to these sarcomas. Both the osteoblastic cells in the facial skeleton and Schwann cells are regarded as neural crest derivatives. The biological properties and anatomical location of these tumors suggest that they may share a common origin from the neural crest or its derivatives. R.P. Bolande [Hum. Pathol. (1974) 5, 409-429] introduced the term neurocristopathy as a unifying concept to describe such lesions arising from the neural crest or its derivatives. Cell lines established from both bone and Schwann cell tumors arising in these transgenic mice express simian virus 40 large tumor antigen mRNA as well as functional large tumor antigen. Such cell lines are potentially valuable in the search for markers that identify mammalian neural crest derivatives. PMID:8386366

  18. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    SciTech Connect

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.; Ono, K.; Tanaka, H.; Seino, Y.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hyp mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.

  19. Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone

    PubMed Central

    Ascenzi, Maria-Grazia; Du, Xia; Harding, James I; Beylerian, Emily N; de Silva, Brian M; Gross, Ben J; Kastein, Hannah K; Wang, Weiguang; Lyons, Karen M; Schaeffer, Hayden

    2014-01-01

    Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cell. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth. PMID:25525552

  20. Proinflammatory cytokine response and viral replication in mouse bone marrow derived macrophages infected with influenza H1N1 and H5N1 viruses.

    PubMed

    Chan, Renee W Y; Leung, Connie Y H; Nicholls, John M; Peiris, J S Malik; Chan, Michael C W

    2012-01-01

    The pathogenesis of human influenza H5N1 virus infection remains poorly understood and controversial. Cytokine dysregulation in human infection has been hypothesized to contribute to disease severity. We developed in vitro cultures of mouse bone marrow derived macrophages (BMDMΦ) from C57BL/6N mouse to compare influenza A (H5N1 and H1N1) virus replication and pro-inflammatory cytokine and chemokine responses. While both H1N1 and H5N1 viruses infected the mouse bone marrow derived macrophages, only the H1N1 virus had showed evidence of productive viral replication from the infected cells. In comparison with human seasonal influenza H1N1 (A/HK/54/98) and mouse adapted influenza H1N1 (A/WSN/33) viruses, the highly pathogenic influenza H5N1 virus (A/HK/483/97) was a more potent inducer of the chemokine, CXCL 10 (IP-10), while there was not a clear differential TNF-α protein expression pattern. Although human influenza viruses rarely cause infection in mice without prior adaption, the use of in vitro cell cultures of primary mouse cells is of interest, especially given the availability of gene-defective (knock-out) mice for specific genes. PMID:23226456

  1. An investigation of the mineral in ductile and brittle cortical mouse bone.

    PubMed

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J; Farquharson, Colin; Milln, Jos Luis; Boyde, Alan; Shefelbine, Sandra J

    2015-05-01

    Bone is a strong and tough material composed of apatite mineral, organic matter, and water. Changes in composition and organization of these building blocks affect bone's mechanical integrity. Skeletal disorders often affect bone's mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (m) levels using two mouse phenotypes. Osteogenesis imperfecta model, oim(-/-) , mice have a defect in the collagen, which leads to brittle bone; PHOSPHO1 mutants, Phospho1(-/-) , have ductile bone resulting from altered mineralization. Oim(-/-) and Phospho1(-/-) were compared with their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD) and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification to assess the fractions of hydroxyapatite and ?-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (BSE SEM). Results revealed that although both pathology models had extremely different whole-bone mechanics, they both had smaller apatite crystals, lower bulk mineral to matrix ratio, and showed more thermal conversion to ?-tricalcium phosphate than their wild types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. In contrast, the degree of mineralization of bone matrix was different for each strain: brittle oim(-/-) were hypermineralized, whereas ductile Phospho1(-/-) were hypomineralized. Despite differences in the mineralization, nanoscale alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results indicated that alterations from normal crystal size, composition, and structure are correlated with reduced mechanical integrity of bone. PMID:25418329

  2. Primary bone tumors. MR morphologic appearance correlated with pathologic examinations.

    PubMed

    Golfieri, R; Baddeley, H; Pringle, J S; Leung, A W; Greco, A; Souhami, R; Kemp, H

    1991-07-01

    Eighty-three MR studies for primary bone tumors, performed with both spin echo and short time inversion recovery (STIR) sequences, were reviewed. Twenty-six patients underwent surgery within 10 days after MR imaging. Specimens were cut and directly compared with MR images. In the remainder, pathologic slides were compared in order to obtain a better understanding of MR pattern. All MR images were examined with a traditional morphologic approach and, upon comparison with surgical macroslides and with pathology samples, some MR distinctive patterns were identified: the bulky appearance of osteosarcoma surrounded by muscle edema, the multilobular high signal intensity (SI) chondroid lesions, the subtle infiltration of Ewing's sarcoma, rarely accompanied by muscle edema and prone to MR underestimation, the well defined "multiple shells" pattern of giant cell tumor, and the ill defined "storiform" appearance of malignant fibrous histocytoma are all typical MR features strictly corresponding to pathologic findings. The chondroid origin tumors may be identified based on the lobular high SI pattern whereas a benign fibrous lesion was the only one in this series to be distinguished relying on the SI. Peritumoral soft tissue edema was found by the STIR sequence only in malignant tumors (69%) of this series, and particularly in osteosarcoma (96%), chondrosarcoma (83%), and giant cell tumor (100%): this associate finding may further contribute to the diagnosis. PMID:1650569

  3. The Effect of Implant Length and Diameter on the Primary Stability in Different Bone Types

    PubMed Central

    Barikani, Hamidreza; Rashtak, Shadab; Akbari, Soolmaz; Badri, Samareh; Daneshparvar, Niloufar; Rokn, Amirreza

    2013-01-01

    Objective: The focus of this paper is to evaluate the influence of mechanical characteristics of the implant on primary stability in different bone types, based on resonance frequency analysis (RFA). Materials and Methods: A number of 60 Nobel Biocare Replace Select TiUnit Tapered implants of two different lengths (10 mm and 13 mm) and three different widths as 3.4 mm (narrow platform (NP)), 4.3 mm (regular platform (RP)) and 5 mm (wide platform (WP)) were placed into two different groups of bone blocks. Bone blocks were different in bone quality, but similar to bone types D1 and D3. Immediately, after implant placement, implant stability quotient (ISQ) was measured using the Osstell mentor device. Results: ISQ values for implant placements in D1 bone were significantly higher than those for implants placed in D3 bone. In D1 bone, the implant length did not make any significant difference in primary stability; however, in D3 bone, the primary stability of the implant increased when longer implants were utilized. NP implants presented significantly lower ISQ values compared to the two wider implants. Conclusion: In cases of low bone quality, the optimum increase in the implant length and diameter should be taken into account to achieve higher primary stability. PMID:24910653

  4. Primary bone natural killer/T cell lymphoma, nasal type without EBV infection: a case report

    PubMed Central

    Tian, Chen; Wang, Yafei; Zhu, Lei; Yu, Yong; Zhang, Yizhuo

    2015-01-01

    Primary bone NK/T cell lymphoma is very rare. We report a case of 52-year-old man of primary bone NK/T cell lymphoma and then progressed to NK leukemia. The patient had low-grade fever for 4-month, and Ultrasonic B revealed a diffuse hepatosplenomegaly without lymphadenopathy. PET scanning showed increased FDG uptake in many bones of the whole body. The diagnosis was established by bone specimen. These neoplastic cells demonstrated a typical immunophenotype of CD56, CD3, CD2 and MPO positive, and CD5, CD20, CD30, PAX-5, CD4 and CD8 negative. Primary bone ENKTL is very rare; it should be made with the combination of clinical feature, PET-CT image, and pathological characteristics, and should be distinguished from other lymphomas or leukemia involved in bone. PMID:26823813

  5. Adipocytes regulate the bone marrow microenvironment in a mouse model of obesity.

    PubMed

    Xu, Fei; Du, Yu; Hang, Shilong; Chen, Anmin; Guo, Fengjin; Xu, Tao

    2013-09-01

    Obesity is markedly associated with abnormal bone density indicating the importance of adipocytes in bone metabolism. However, the specific function of adipocytes remains unclear, with marked discrepancies in observations of previous studies. In the present study, the effect of adipocytes on osteoblasts/osteoclasts was analyzed. A mouse model of obesity was established and an in vitro co-culture system was utilized containing adipocyte and MC3T3/RAW 264.7 cells in a Transwell plate. Compared with control mice, obese mice exhibited low body weight and bone mineral density of the tibia and fat cells were observed to accumulate in bone marrow. MC3T3/RAW 264.7 cells were co-cultured with adipocytes and the mRNA and protein expression of alkaline phosphatase and osteocalcin was found to be decreased in MC3T3-E1 cells and mRNA and protein expression of tartrate-resistant acid phosphatase and cathepsin K was significantly increased in RAW 264.7 cells. In addition, the effect of adipocytes on the osteoprotegerin (OPG)/receptor activator of nuclear factor ?B ligand (RANKL)/RANK system indicated that the RANKL/OPG ratio secreted by osteoblasts increased and RANK expression by osteoclasts increased, leading to increased osteoclastogenesis. These results indicate that bone metabolism is impaired in obese mice leading to decreased osteoblastogenesis and marked increases in osteoclastogenesis and low bone mass. PMID:23835909

  6. Dendritic Cells Cause Bone Lesions in a New Mouse Model of Histiocytosis

    PubMed Central

    Grosjean, Frdric; Nasi, Sonia; Schneider, Pascal; Chobaz, Vronique; Liu, Alexandra; Mordasini, Vanessa; Moullec, Kristell; Vezzoni, Paolo; Lavanchy, Christine; Busso, Nathalie; Acha-Orbea, Hans; Ehirchiou, Driss

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare disease caused by the clonal accumulation of dendritic Langerhans cells, which is often accompanied by osteolytic lesions. It has been reported that osteoclast-like cells play a major role in the pathogenic bone destruction seen in patients with LCH and these cells are postulated to originate from the fusion of DCs. However, due to the lack of reliable animal models the pathogenesis of LCH is still poorly understood. In this study, we have established a mouse model of histiocytosis- recapitulating human disease for osteolytic lesions seen in LCH patients. At 12 weeks after birth, severe bone lesions were observed in our multisystem histiocytosis (Mushi) model, when CD8? conventional dendritic cells (DCs) are transformed (MuTuDC) and accumulate. Most importantly, our study demonstrates that bone loss in LCH can be accounted for the transdifferentiation of MuTuDCs into functional osteoclasts both in vivo and in vitro. Moreover, we have shown that injected MuTuDCs reverse the osteopetrotic phenotype of oc/oc mice in vivo. In conclusion, our results support a crucial role of DCs in bone lesions in histiocytosis patients. Furthermore, our new model of LCH based on adoptive transfer of MuTuDC lines, leading to bone lesions within 12 weeks, will be an important tool for investigating the pathophysiology of this disease and ultimately for evaluating the potential of anti-resorptive drugs for the treatment of bone lesions. PMID:26247358

  7. Accretion of Bone Quantity and Quality in the Developing Mouse Skeleton

    SciTech Connect

    Miller,L.; Little, W.; Schirmer, A.; Sheik, F.; Busa, B.; Judex, S.

    2007-01-01

    To meet the mechanical challenges during early development, the skeleton requires the rapid accretion of bone quality and bone quantity. Here, we describe early bone development in the mouse skeleton and test the hypothesis that specific compositional properties determine the stiffness of the tissue. Tibias of female BALB mice were harvested at eight time-points (n = 4 each) distributed between 1 and 40 days of age and subjected to morphometric ({mu}CT), chemical (Fourier transform infrared microscpectroscopy), and mechanical (nanoindentation) analyses. Tibias of 450-day-old mice served as fully mineralized control specimens. In this work, we found that bone mineral formation proceeded very rapidly in mice by 1 day of age, where the degree of mineralization, the tissue mineral density, and the mineral crystallinity reached 36%, 51%, and 87% of the adult values, respectively. However, even though significant mineralization had occurred, the elastic modulus of 1-day-old bone was only 14% of its adult value, indicating that the intrinsic stiffening of the bone lags considerably behind the initial mineral formation.

  8. COLLAGEN MUTATION CAUSES CHANGES OF THE MICRODAMAGE MORPHOLOGY IN BONE OF AN OI MOUSE MODEL

    PubMed Central

    Dong, X. Neil; Zoghi, Mahyar; Ran, Qitao; Wang, Xiaodu

    2010-01-01

    Previous studies have postulated that ultrastructural changes may alter the pattern and capacity of microdamage accumulation in bone. Using an osteogenesis imperfecta (OI) mouse model, this study was performed to investigate the correlation of collagen mutation with the microdamage morphology and the associated brittleness of bone. In this study, femurs from mild OI and wild type mice were fatigued under four-point bending to create microdamage in the specimens. Then, the microdamage morphology of these specimens was examined using the bulk-staining technique with basic fuchsin. Similar with the results of previous studies, it was observed that linear microcracks were formed more easily in compression, whereas diffuse damage was induced more readily in tension for both wild-type and mild-type mice. However, less diffuse damage was found in the tensile side of mild OI mouse femurs (collagen mutation) compared with those of wild type mice, showing that the microdamage morphology is correlated to the brittleness of bone. The results of this study provide direct evidence that supports the prediction made by the previous numerical simulation studies, suggesting that microdamage morphology in bone is significantly correlated with the integrity of the collagen phase. PMID:20736092

  9. Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies

    NASA Astrophysics Data System (ADS)

    Sun, Jianfei; Liu, Xuan; Huang, Jiqing; Song, Lina; Chen, Zihao; Liu, Haoyu; Li, Yan; Zhang, Yu; Gu, Ning

    2014-05-01

    Here we reported an interesting phenomenon that the field-induced assemblies of magnetic nanoparticles can promote the differentiation of primary mouse bone marrow cells into osteoblasts. The reason was thought to lie in the remnant magnetic interaction inside the assemblies which resulted from the magnetic field-directed assembly. Influence of the assemblies on the cells was realized by means of interface effect rather than the internalization effect. We fabricated a stripe-like assemblies array on the glass plate and cultured cells on this surface. We characterized the morphology of assemblies and measured the mechanic property as well as the magnetic property. The cellular differentiation was measured by staining and quantitative PCR. Finally, Fe uptake was excluded as the reason to cause the phenomenon.

  10. Genotoxic evaluation of a methanolic extract of Verbascum thapsus using micronucleus test in mouse bone marrow.

    PubMed

    Escobar, Franco Matas; Sabini, Mara Carola; Zanon, Silvia Matilde; Cariddi, Laura Noelia; Tonn, Carlos Eugenio; Sabini, Liliana Ins

    2011-07-01

    Verbascum thapsus L. is a medicinal plant and has been used to treat numerous pulmonary diseases, asthma, inflammatory disease, spasmodic coughs and migraine headaches. Several studies have demonstrated that different extracts of V. thapsus present antimicrobial activity. Thus, the goal of this study was to evaluate the genotoxic and cytotoxic activities of a methanolic extract of Verbascum thapsus, using micronucleus test in mouse bone marrow. No toxicity in bone marrow was detected in the extract-treated groups. The methanolic extract of V. thapsus at doses of 100, 300 and 500 mg/kg, did not produce a significant increase in the frequency of MNPCE in bone marrow and neither altered the relationship PCE/NCE respect to negative control. These cytogenotoxic findings contribute the preclinical knowledge of methanolic extract of V. thapsus and provide security in its use as herbal medicine. PMID:21834240

  11. Dysregulated TGF-? signaling alters bone microstructure in a mouse model of Loeys-Dietz syndrome.

    PubMed

    Dewan, Ashvin K; Tomlinson, Ryan E; Mitchell, Stuart; Goh, Brian C; Yung, Rachel M; Kumar, Sarvesh; Tan, Eric W; Faugere, Marie-Claude; Dietz, Harry C; Clemens, Thomas L; Sponseller, Paul D

    2015-10-01

    Loeys-Dietz syndrome (LDS) is a connective tissue disorder characterized by vascular and skeletal abnormalities resembling Marfan syndrome, including a predisposition for pathologic fracture. LDS is caused by heterozygous mutations in the genes encoding transforming growth factor-? (TGF-?) type 1 and type 2 receptors. In this study, we characterized the skeletal phenotype of mice carrying a mutation in the TGF-? type 2 receptor associated with severe LDS in humans. Cortical bone in LDS mice showed significantly reduced tissue area, bone area, and cortical thickness with increased eccentricity. However, no significant differences in trabecular bone volume were observed. Dynamic histomorphometry performed in calcein-labeled mice showed decreased mineral apposition rates in cortical and trabecular bone with normal numbers of osteoblasts and osteoclasts. Mechanical testing of femurs by three-point bending revealed reduced femoral strength and fracture resistance. In vitro, osteoblasts from LDS mice demonstrated increased mineralization with enhanced expression of osteoblast differentiation markers compared with control cells. These changes were associated with impaired TGF-?1-induced Smad2 and Erk1/2 phosphorylation and upregulated TGF-?1 ligand mRNA expression, compatible with G357W as a loss-of-function mutation in the TGF-? type 2 receptor. Paradoxically, phosphorylated Smad2/3 in cortical osteocytes measured by immunohistochemistry was increased relative to controls, possibly suggesting the cross-activation of TGF-?-related receptors. The skeletal phenotype observed in the LDS mouse closely resembles the principal structural features of bone in humans with LDS and establishes this mouse as a valid in vivo model for further investigation of TGF-? receptor signaling in bone. PMID:26173585

  12. Methods and theory in bone modeling drift: comparing spatial analyses of primary bone distributions in the human humerus.

    PubMed

    Maggiano, Corey M; Maggiano, Isabel S; Tiesler, Vera G; Chi-Keb, Julio R; Stout, Sam D

    2016-01-01

    This study compares two novel methods quantifying bone shaft tissue distributions, and relates observations on human humeral growth patterns for applications in anthropological and anatomical research. Microstructural variation in compact bone occurs due to developmental and mechanically adaptive circumstances that are 'recorded' by forming bone and are important for interpretations of growth, health, physical activity, adaptation, and identity in the past and present. Those interpretations hinge on a detailed understanding of the modeling process by which bones achieve their diametric shape, diaphyseal curvature, and general position relative to other elements. Bone modeling is a complex aspect of growth, potentially causing the shaft to drift transversely through formation and resorption on opposing cortices. Unfortunately, the specifics of modeling drift are largely unknown for most skeletal elements. Moreover, bone modeling has seen little quantitative methodological development compared with secondary bone processes, such as intracortical remodeling. The techniques proposed here, starburst point-count and 45 cross-polarization hand-drawn histomorphometry, permit the statistical and populational analysis of human primary tissue distributions and provide similar results despite being suitable for different applications. This analysis of a pooled archaeological and modern skeletal sample confirms the importance of extreme asymmetry in bone modeling as a major determinant of microstructural variation in diaphyses. Specifically, humeral drift is posteromedial in the human humerus, accompanied by a significant rotational trend. In general, results encourage the usage of endocortical primary bone distributions as an indicator and summary of bone modeling drift, enabling quantitative analysis by direction and proportion in other elements and populations. PMID:26471797

  13. A temporary decrease in mineral density in perinatal mouse long bones.

    PubMed

    Sharir, A; Milgram, J; Dubnov-Raz, G; Zelzer, E; Shahar, R

    2013-01-01

    Fetal and postnatal bone development in humans is traditionally viewed as a process characterized by progressively increasing mineral density. Yet, a temporary decrease in mineral density has been described in the long bones of infants in the immediate postnatal period. The mechanism that underlies this phenomenon, as well as its causes and consequences, remain unclear. Using daily ?CT scans of murine femora and tibiae during perinatal development, we show that a temporary decrease in tissue mineral density (TMD) is evident in mice. By monitoring spatial and temporal structural changes during normal growth and in a mouse strain in which osteoclasts are non-functional (Src-null), we show that endosteal bone resorption is the main cause for the perinatal decrease in TMD. Mechanical testing revealed that this temporary decrease is correlated with reduced stiffness of the bones. We also show, by administration of a progestational agent to pregnant mice, that the decrease in TMD is not the result of parturition itself. This study provides a comprehensive view of perinatal long bone development in mice, and describes the process as well as the consequences of density fluctuation during this period. PMID:23044045

  14. Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages.

    PubMed

    Zamboni, Dario S; Rabinovitch, Michel

    2003-03-01

    In most primary or continuous cell cultures infected with the Q-fever agent Coxiella burnetii, bacteria are typically sheltered in phagolysosome-like, large replicative vacuoles (LRVs). We recently reported that only a small proportion of mouse peritoneal macrophages (PMPhi) infected with a nonvirulent, phase II strain of C. burnetii developed LRVs and that their relative bacterial load increased only slowly. In the majority of infected PMPhi, the bacteria were confined to the small vesicles. We show here that nitric oxide (NO) induced by the bacteria partially accounts for the restricted development of LRVs in primary macrophages. Thus, (i) PMPhi and bone marrow-derived macrophages (BMMPhi) challenged with phase II C. burnetii produced significant amounts of NO; (ii) the NO synthase inhibitors aminoguanidine and N-methyl-L-arginine reduced the production of NO and increased the frequency of LRVs (although the relative bacterial loads of individual LRVs did not change, the estimated loads per well increased appreciably); (iii) gamma interferon (IFN-gamma) or the NO donor sodium nitroprusside, added to BMMPhi prior to or after infection, reduced the development and the relative bacterial loads of LRVs and lowered the yield of viable bacteria recovered from the cultures; and (iv) these effects of IFN-gamma may not be entirely dependent on the production of NO since IFN-gamma also controlled the infection in macrophages from inducible NO synthase knockout mice. It remains to be determined whether NO reduced the development of LRVs by acting directly on the bacteria; by acting on the traffic, fusion, or fission of cell vesicles; or by a combination of these mechanisms. PMID:12595436

  15. Evaluation of an in vitro muscle contraction model in mouse primary cultured myotubes.

    PubMed

    Manabe, Yasuko; Ogino, Shinya; Ito, Miyuki; Furuichi, Yasuro; Takagi, Mayumi; Yamada, Mio; Goto-Inoue, Naoko; Ono, Yusuke; Fujii, Nobuharu L

    2016-03-15

    To construct an in vitro contraction model with the primary cultured myotubes, we isolated satellite cells from the mouse extensor digitorum longus. Differentiated myotubes possessed a greater number of sarcomere assemblies and higher expression levels of myosin heavy chain, cytochrome c oxidase IV, and myoglobin than in C2C12 myotubes. In agreement with these results regarding the sarcomere assemblies and protein expressions, the primary myotubes showed higher contractile activity stimulated by the electric pulses than that in the C2C12 myotubes. These data suggest that mouse primary myotubes will be a valuable research tool as an in vitro muscle contraction model. PMID:26548957

  16. Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I

    PubMed Central

    Pievani, Alice; Azario, Isabella; Antolini, Laura; Shimada, Tsutomu; Patel, Pravin; Remoli, Cristina; Rambaldi, Benedetta; Valsecchi, Maria Grazia; Riminucci, Mara; Biondi, Andrea; Tomatsu, Shunji

    2015-01-01

    Neonatal bone marrow transplantation (BMT) could offer a novel therapeutic opportunity for genetic disorders by providing sustainable levels of the missing protein at birth, thus preventing tissue damage. We tested this concept in mucopolysaccharidosis type I (MPS IH; Hurler syndrome), a lysosomal storage disorder caused by deficiency of ?-l-iduronidase. MPS IH is characterized by a broad spectrum of clinical manifestations, including severe progressive skeletal abnormalities. Although BMT increases the life span of patients with MPS IH, musculoskeletal manifestations are only minimally responsive if the timing of BMT delays, suggesting already irreversible bone damage. In this study, we tested the hypothesis that transplanting normal BM into newborn MPS I mice soon after birth can prevent skeletal dysplasia. We observed that neonatal BMT was effective at restoring ?-l-iduronidase activity and clearing elevated glycosaminoglycans in blood and multiple organs. At 37 weeks of age, we observed an almost complete normalization of all bone tissue parameters, using radiographic, microcomputed tomography, biochemical, and histological analyses. Overall, the magnitude of improvements correlated with the extent of hematopoietic engraftment. We conclude that BMT at a very early stage in life markedly reduces signs and symptoms of MPS I before they appear. PMID:25298037

  17. A Method for Generation of Bone Marrow-Derived Macrophages from Cryopreserved Mouse Bone Marrow Cells

    PubMed Central

    Lima, Djalma S.; Zamboni, Dario S.

    2010-01-01

    The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells. PMID:21179419

  18. Preoperative Computed Tomography-Derived Bone Densities in Hounsfield Units at Implant Sites Acquired Primary Stability

    PubMed Central

    Hiasa, Kyou; Abe, Yasuhiko; Okazaki, Yohei; Nogami, Keisuke; Mizumachi, Wataru; Akagawa, Yasumasa

    2011-01-01

    The purpose of this study was to evaluate preoperative CT-derived bone densities in Hounsfield units (HU) at implant sites that acquired primary stability, and to compare these values to the optimal bone densities proposed in the literature. Fifty-one patients, 18 males (37 implant sites) and 33 females (67 implant sites) between 2003 and 2010 were assessed. CT data for different jaw sections, regions, and operating procedures were compared using the Kruskal-Wallis test and Scheffe's test for multiple comparisons (P < 0.05). The mean bone density in the maxilla was significantly lower than that in the mandible (P < 0.05); the mean bone densities in the 4 jaw regions decreased in the following order: anterior mandible > anterior maxilla > posterior mandible > posterior maxilla. The bone densities assessed by HU fell into the range of optimal bone densities associated with acquired primary implant stability proposed in the literature. PMID:22203910

  19. Assessment of lamellar level properties in mouse bone utilizing a novel spherical nanoindentation data analysis method

    PubMed Central

    Pathak, Siddhartha; Vachhani, Shraddha J.; Jepsen, Karl J.; Goldman, Haviva M.; Kalidindi, Surya R.

    2016-01-01

    In this work, we demonstrate the viability of using our recently developed data analysis procedures for spherical nanoindentation in conjunction with Raman spectroscopy for studying lamellar-level correlations between the local composition and local mechanical properties in mouse bone. Our methodologies allow us to convert the raw load-displacement datasets to much more meaningful indentation stress–strain curves that accurately capture the loading and unloading elastic moduli, the indentation yield points, as well as the post-yield characteristics in the tested samples. Using samples of two different inbred mouse strains, A/J and C57BL/6J (B6), we successfully demonstrate the correlations between the mechanical information obtained from spherical nanoindentation measurements to the local composition measured using Raman spectroscopy. In particular, we observe that a higher mineral-to-matrix ratio correlated well with a higher local modulus and yield strength in all samples. Thus, new bone regions exhibited lower moduli and yield strengths compared to more mature bone. The B6 mice were also found to exhibit lower modulus and yield strength values compared to the more mineralized A/J strain. PMID:22842281

  20. Primary tumor dependent inhibition of tumor growth, angiogenesis, and perfusion of secondary breast cancer in bone.

    PubMed

    Schaefer, Christian; Schroeder, Malte; Fuhrhop, Ina; Viezens, Lennart; Otten, Jasmin; Fiedler, Walter; Rther, Wolfgang; Hansen-Algenstaedt, Nils

    2011-08-01

    The systemic balance of angiogenic and anti-angiogenic factors has been proposed to play a key-role in primary tumor growth dependent growth suppression of secondary tumors. Despite the importance of the organ microenvironment to angiogenesis and microcirculation, the influence of a primary tumor on secondary bone tumors has not been investigated so far. Since breast cancer has a high propensity to spread to bone, we used an in vivo xenograft model to determine the impact of growing breast cancer cells (MCF-7) in the mammary fat pad on the microvascular properties of subsequently inoculated secondary breast cancer tumors in bone. Mice were either treated with a resection of the primary tumor (n?=?10) or no surgery (n?=?9) and intravital microscopy was performed over 25 days in bone tumors. Tumor growth in bone was temporarily suppressed by the primary tumor on days 10 and 14. While microvascular permeability and vascular diameter decreased in both groups over time, the presence of the primary tumor was accompanied by a decreased tumor perfusion on days 8 and 10 through a reduction in vessels with diameters between 5 and 20?m. The results imply a potential benefit of a therapeutic regime in which the resection of the primary tumor is combined with an anti-angiogenic therapy in the perioperative or direct postoperative period. This might result in reduced progression of bone metastasis subsequent to excision of the primary tumor. PMID:21381098

  1. Primary Hemangiopericytoma of the Parietal Bone: A Case Report

    PubMed Central

    Sipal, Sare; Demirci, Elif; Calık, Muhammet; Gundogdu, Betul; Sengul, Goksin; Gundogdu, Cemal

    2009-01-01

    Summary Hemangiopericytomas are rare hypervascular tumors arising from Zimmerman’s pericytes. They usually occur in the soft tissue, and intraosseous lesions are very rare. Surgical excision is the first choice for treatment. Many studies show that patients should be monitored for some time following treatment because of a high rate of recurrence and metastasis after radical resection. This report introduces a 56-year-old patient with a hemangiopericytoma in his parietal bone. Keywords: Parietal bone, Hemangiopericytoma PMID:25610105

  2. Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells.

    PubMed

    Su, Shu-Hui; Shyu, Huey-Wen; Yeh, Yao-Tsung; Chen, Kuan-Ming; Yeh, Hua; Su, Shu-Jem

    2013-09-01

    Caffeine consumption has been related to loss of body weight and modulates lipid metabolism. However, impacts of caffeine on adipogenic differentiation have not been well determined yet. The present study evaluated the effects of caffeine on adipogenesis using primary rat adipose-derived stem cells (ADSCs) and a mouse bone marrow stromal cell line (M2-10B4) in vitro. ADSCs and M2-10B4 were continuously exposed to caffeine (0.1-1mM) during adipogenic differentiation for 7 and 12 days, respectively. Oil red O and Nile red staining showed that caffeine reduced lipid droplet and adipocyte levels in both cell types. In addition, Nile red staining and FACScan flow cytometry showed that caffeine dose-dependently decreased adipocyte differentiation from 20% to 50% of the control ADSCs and M2-10B4 cells. Caffeine decreased the expression of adipogenesis-related genes including peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α, adipocyte lipid binding protein, lipoprotein lipase, leptin, and TNFα in a dose-dependent manner. Rather, low concentration of caffeine (0.1mM) significantly increased IL-6 expression, but unexpectedly inhibited that at a concentration more than 0.3mM. Taken together, caffeine was able to effectively inhibit adipogenic differentiation of ADSCs and M2-10B4 cells partly through its inhibition of adipogenesis-related factors. PMID:23727198

  3. The effect of primary stability on load transfer and bone remodelling within the uncemented resurfaced femur.

    PubMed

    Pal, Bidyut; Gupta, Sanjay

    2011-06-01

    One of the major causes of aseptic loosening in an uncemented implant is the lack of any attachment between the implant and the bone. The implant's stability depends on a combination of primary stability (mechanical stability) and secondary stability (biological stability). The primary stability may affect the implant-bone interface condition and thus influence the load transfer and mechanical stimuli for bone remodelling in the resurfaced femur. This paper reports the results of a study into the affect of primary stability on load transfer and bone adaptation for an uncemented resurfaced femur. Three-dimensional finite element models were used to simulate the intact and resurfaced femurs and the bone remodelling. As a first step towards assessing the immediate post-operative condition, a debonded interfacial contact condition with varying levels of the friction coefficient (0.4, 0.5, and 0.6) was simulated at the implant-bone interface. Then, using a threshold value of micromotion of 50 microm, the implant-bone interfacial condition was varied along the implant-bone boundary to mechanically represent non-osseointegrated or osseointegrated regions of the interface. The considered applied loading conditions included normal walking and stair climbing. Resurfacing leads to strain shielding in the femoral head (20-75 per cent strain reductions). In immediate post-operative conditions, there was no occurrence of elevated strains in the cancellous bone around the proximal femoral neck-component junction resulting in a lower risk of neck fracture. Predominantly, the micromotions were observed to remain below 50 microm at the implant-bone interface, which represents 97-99 per cent of the interfacial surface area. The predicted micromotions at the implant-bone interface strongly suggest the likelihood of bone ingrowth onto the coated surface of the implant, thereby enhancing implant fixation. For the osseointegrated implant-bone interface, the effect of strain shielding was observed in a considerably greater bone volume in the femoral head as compared to the initial debonded interfacial condition. A 50-80 per cent peri-prosthetic bone density reduction was predicted as compared to the value of the intact femur, indicating bone resorption within the superior resurfaced head. Although primary fixation of the resurfacing component may be achieved, the presence of high strain shielding and peri-prosthetic bone resorption are a major concern. PMID:22034739

  4. Primary tumour growth in an orthotopic osteosarcoma mouse model is not influenced by analgesic treatment with buprenorphine and meloxicam.

    PubMed

    Husmann, K; Arlt, M J E; Jirkof, P; Arras, M; Born, W; Fuchs, B

    2015-10-01

    Little is known about the treatment of bone pain in animal models of bone cancer. In the present study, the orthotopic 143-B human osteosarcoma xenotransplantation model was used to address the following questions: (1) Can repetitive analgesic treatment extend the experimental period by prolonging the time to reach humane endpoints and (2) Does repetitive analgesic treatment affect bone tumour development and metastasis? The analgesics, buprenorphine and meloxicam, were either applied individually or in combination at 12?h intervals as soon as the animals began to avoid using the tumour cell injected leg. While control mice treated with NaCl showed continuous body weight loss, the major criterion previously for terminating the experiments, animals treated with analgesic substances did not. The control mice had to be sacrificed 26 days after tumour cell injection, whereas the groups of animals with the different pain treatments were euthanized after an additional eight days. Importantly, primary intratibial tumour growth was not affected in any of the experimental groups by any of the pain treatment procedures. Between days 26 and 34 after tumour cell injection an increase of about 100% of the number of lung metastases was found for the groups treated with buprenorphine alone or together with meloxicam, but not for the group treated with meloxicam alone. In summary, the results indicated that both buprenorphine and meloxicam are suitable analgesics for prolonging the experimental periods in an experimental intratibial osteosarcoma mouse model. PMID:25650386

  5. Genetically engineered mouse models to evaluate the role of Wnt secretion in bone development and homeostasis.

    PubMed

    Williams, Bart O

    2016-03-01

    Alterations in components of the Wnt signaling pathway are associated with altered bone development and homeostasis in several human diseases. We created genetically engineered mouse models (GEMMs) that mimic the cellular defect associated with the Porcupine mutations in patients with Goltz Syndrome/Focal Dermal Hypoplasia. These GEMMs were established by utilizing mice containing a conditionally inactivatable allele of Wntless/GPR177 (a gene encoding a protein required for the transport of Porcupine-modified ligand to the plasma membrane for secretion). We crossed this strain to another which drives cre-mediated gene deletion in mature osteoblasts (Osteocalcin-cre) resulted in mice lacking the ability to secrete Wnt ligands in this cell type. These mice displayed severely reduced bone mass and provide a model to understand the effects of disrupting the ability to secrete Wnt ligands on the skeletal system. © 2016 Wiley Periodicals, Inc. PMID:26818176

  6. Mouse basophils reside in extracellular matrix-enriched bone marrow niches which control their motility.

    PubMed

    Smaniotto, Salete; Schneider, Elke; Goudin, Nicolas; Bricard-Rignault, Rachel; Machavoine, François; Dardenne, Mireille; Dy, Michel; Savino, Wilson

    2013-01-01

    Basophils co-express FcεRIα and CD49b, the α-2 chain of integrin-type receptor VLA-2 (α2β1), which recognizes type-1 collagen as a major natural ligand. The physiological relevance of this integrin for interactions with extracellular bone marrow matrix remains unknown. Herein, we examined the expression of several receptors of this family by bone marrow-derived basophils sorted either ex-vivo or after culture with IL-3. Having established that both populations display CD49d, CD49e and CD49f (α-4, α-5 and α-6 integrins subunits, respectively), we addressed receptor functions by measuring migration, adhesion, proliferation and survival after interacting with matched natural ligands. Type I collagen, laminin and fibronectin promoted basophil migration/adhesion, the former being the most effective. None of these ligands affected basophil viability and expansion. Interactions between basophils and extracellular matrix are likely to play a role in situ, as supported by confocal 3D cell imaging of femoral bone marrow sections, which revealed basophils exclusively in type-1 collagen-enriched niches that contained likewise laminin and fibronectin. This is the first evidence for a structure/function relationship between basophils and extracellular matrix proteins inside the mouse bone marrow. PMID:24086246

  7. Effect of oral calcium and calcium + fluoride treatments on mouse bone properties during suspension

    NASA Technical Reports Server (NTRS)

    Simske, S. J.; Luttges, M. W.; Allen, K. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    The bone effects of oral dosages of calcium chloride with or without supplementary sodium fluoride were assessed in antiorthostatically suspended mice. Two calcium dosages were used to replace half (3.1 mM) or all(6.3 mM) of the dietary calcium lost due to reduced food intake by the suspended mice. Two groups of 6.3 mM CaCl2-treated mice were additionally treated with 0.25 or 2.5 mM NaF. The results indicate that supplementation of the mouse drinking water with calcium salts prevents bone changes induced by short-term suspension, while calcium salts in combination with fluoride are less effective as fluoride dosage increases. However, the calcium supplements change the relationship between the femur mechanical properties and the mineral composition of the bone. Because of this, it appears that oral calcium supplements are effective through a mechanism other than simple dietary supplementation and may indicate a dependence of bone consistency on systemic and local fluid conditions.

  8. Geniposide, from Gardenia jasminoides Ellis, inhibits the inflammatory response in the primary mouse macrophages and mouse models.

    PubMed

    Fu, Yunhe; Liu, Bo; Liu, Jinhua; Liu, Zhicheng; Liang, Dejie; Li, Fengyang; Li, Depeng; Cao, Yongguo; Zhang, Xichen; Zhang, Naisheng; Yang, Zhengtao

    2012-12-01

    Geniposide, a main iridoid glucoside component of gardenia fruit, has been known to exhibit antibacterial, anti-inflammatory and other important therapeutic activities. The objective of this study was to investigate the protective effects of geniposide on inflammation in lipopolysaccharide (LPS) stimulated primary mouse macrophages in vitro and LPS induced lung injury model in vivo. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-?B), inhibitory kappa B (I?B?) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and Toll-like receptor 4 (TLR4) were determined by Western blot. Further analysis was carried out in mTLR4 and mMD-2 co-transfected HEK293 cells. The results showed that geniposide markedly inhibited the LPS-induced TNF-?, IL-6 and IL-1? production both in vitro and in vivo. Geniposide blocked the phosphorylation of I?B?, p65, p38, ERK and JNK in LPS stimulated primary mouse macrophages. Furthermore, geniposide inhibited the expression of TLR4 in LPS stimulated primary mouse macrophages and inhibited the LPS-induced IL-8 production in HEK293-mTLR4/MD-2 cells. In vivo study, it was also observed that geniposide attenuated lung histopathologic changes in the mouse models. These results suggest that geniposide exerts an anti-inflammatory property by down-regulating the expression of TLR4 up-regulated by LPS. Geniposide is highly effective in inhibiting acute lung injury and may be a promising potential therapeutic reagent for acute lung injury treatment. PMID:22878137

  9. The cellular and molecular toxicity of lead in primary and clonal osteoblastic bone cells

    SciTech Connect

    Long, G.J.

    1989-01-01

    First, steady state kinetic models of lead metabolism and calcium homeostasis were developed in both primary and clonal osteoblastic bone cells. Secondly, the effect of lead on cellular calcium homeostasis was determined. Finally, the effect of lead on 1,25 (OH){sub 2}D{sub 3} induced production of osteocalcin, a protein synthesized and secreted by osteoblasts, was investigated. Lead metabolism in osteoblastic bone cells was characterized by three intracellular pools. The largest of these, S{sub 3}, included mitochondrial lead and accounted for 70 percent of total cell lead in primary osteoblastic bone cells and 85 percent of total lead in clonal osteoblastic bone cells. None of the kinetic pools were saturated at lead concentrations up to 100 {mu}M lead. Calcium homeostasis in osteoblastic bone cells was also described by a three compartment, intracellular kinetic model.

  10. A NEW APPROACH TO PARTIALKNEE ENDOPROSTHESIS IN PRIMARY BONE SARCOMAS

    PubMed Central

    Penna, Valter; Toller, Eduardo Areas; Pinheiro, Carla; Becker, Ricardo Gehrke

    2015-01-01

    Partial knee endoprosthesis to bone sarcomas resections seems to be a good solution to treat this immature skeletal patients. The purpose of this study is to evaluate the functional score in fourteen patients, advantages and the technique indications. Methods: Retrospective analysis was done to assess in this group of patients the functional evolution and the possible complications of the procedure. 14 patients between 10 and 22 years functionally evaluated in Ennekin/ISOLS (International Society of Limb Salvage) criteria, being all of them operated in the same institution by the same surgeon. Were used distal femur and proximal tibia partial endoprosthesis. Results: General analysis demonstrated that the functional results were over than 67 percent (ISOLS criteria) in 78,6 percent of the patients, being considered excellent. 21,4 percent were considered good results, being between 50 and 66 percent. Bone storage was preserved when avoiding the adjacent segment resection. Surgery time was not prolonged in ligament reconstruction. Conclusion: Knee partial endoprosthesis are less damage to bone storage in young patients. The critics about the bad functional results are being supplied by new surgical techniques, excellent rehabilitation protocols, implants technology and the consequent learning curve. This option of treatment permits the preservation of healthy bone and provides the possibility of a revision replacement less aggressive.

  11. Bone tumor

    MedlinePLUS

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  12. Visual impairment in an optineurin mouse model of primary open-angle glaucoma.

    PubMed

    Tseng, Henry C; Riday, Thorfinn T; McKee, Celia; Braine, Catherine E; Bomze, Howard; Barak, Ian; Marean-Reardon, Carrie; John, Simon W M; Philpot, Benjamin D; Ehlers, Michael D

    2015-06-01

    Primary open-angle glaucoma (POAG) is characterized by progressive neurodegeneration of retinal ganglion cells (RGCs). Why RGCs degenerate in low-pressure POAG remains poorly understood. To gain mechanistic insights, we developed a novel mouse model based on a mutation in human optineurin associated with hereditary, low-pressure POAG. This mouse improves the design and phenotype of currently available optineurin mice, which showed high global overexpression. Although both 18-month-old optineurin and nontransgenic control mice showed an age-related decrease in healthy axons and RGCs, the expression of mutant optineurin enhanced axonal degeneration and decreased RGC survival. Mouse visual function was determined using visual evoked potentials, which revealed specific visual impairment in contrast sensitivity. The E50K optineurin transgenic mouse described here exhibited clinical features of POAG and may be useful for mechanistic dissection of POAG and therapeutic development. PMID:25818176

  13. Primary culture of adult mouse olfactory receptor neurons.

    PubMed

    Liu, N; Shields, C B; Roisen, F J

    1998-06-01

    Olfactory receptor neurons (ORNs) are unique because they can be replaced by stem cells throughout life. Previous studies have demonstrated that adult mouse olfactory epithelium (OE) injured by exposure to ZnSO4 through nasal irrigation can stimulate stem cell mitotic activity in situ, which continues when placed in culture. We report on an improved ZnSO4 delivery method, mist inhalation, which produces more consistent and greater yields of OE cells. Cultures established following this method contained bipolar, nest, fusiform, and giant cells. The bipolar cells usually underwent asymmetric process development. Some bipolar cells reacted positively to neuron-specific antibodies and were immunonegative for keratin and glia-specific proteins, suggesting that they were ORNs. Those that were negative for the neuron-specific proteins may represent either neuron progenitors or olfactory ensheathing cells. The fusiform cells were relatively small and undifferentiated, exposure to brain-derived neurotrophic factor resulted in their decrease and an increase in bipolar cells. Therefore, they might be the stem cells. The nest cells had morphological characteristics of epithelia and bound keratin antibodies. The giant cells had the morphology of epithelial cells but were negative for keratin; they may represent a unique cell population induced by the ZnSO4. These results indicate that the major cell types of intact OE are present in our cultures, and each retains characteristics found in situ. The mist inhalation method provides an in vitro population of adult mitotically active neurons for study. PMID:9628752

  14. Cell wounding activates phospholipase D in primary mouse keratinocytes

    PubMed Central

    Arun, Senthil N.; Xie, Ding; Howard, Amber C.; Zhong, Quincy; Zhong, Xiaofeng; McNeil, Paul L.; Bollag, Wendy B.

    2013-01-01

    Plasma membrane disruptions occur in mechanically active tissues such as the epidermis and can lead to cell death if the damage remains unrepaired. Repair occurs through fusion of vesicle patches to the damaged membrane region. The enzyme phospholipase D (PLD) is involved in membrane traffickiing; therefore, the role of PLD in membrane repair was investigated. Generation of membrane disruptions by lifting epidermal keratinocytes from the substratum induced PLD activation, whereas removal of cells from the substratum via trypsinization had no effect. Pretreatment with 1,25-dihydroxyvitamin D3, previously shown to increase PLD1 expression and activity, had no effect on, and a PLD2-selective (but not a PLD1-selective) inhibitor decreased, cell lifting-induced PLD activation, suggesting PLD2 as the isoform activated. PLD2 interacts functionally with the glycerol channel aquaporin-3 (AQP3) to produce phosphatidylglycerol (PG); however, wounding resulted in decreased PG production, suggesting a potential PG deficiency in wounded cells. Cell lifting-induced PLD activation was transient, consistent with a possible role in membrane repair, and PLD inhibitors inhibited membrane resealing upon laser injury. In an in vivo full-thickness mouse skin wound model, PG accelerated wound healing. These results suggest that PLD and the PLD2/AQP3 signaling module may be involved in membrane repair and wound healing. PMID:23288946

  15. Autograft reconstructions for bone defects in primary total knee replacement in severe varus knees

    PubMed Central

    Kharbanda, Yatinder; Sharma, Mrinal

    2014-01-01

    Background: Large posteromedial defects encountered in severe varus knees during primary total knee arthroplasty can be treated by cementoplasty, structural bone grafts or metallic wedges. The option is selected depending upon the size of the defect. We studied the outcome of autograft (structural and impaction bone grafting) reconstruction of medial tibial bone defects encountered during primary total knee replacement in severe varus knees. Materials and Methods: Out of 675 primary varus knees operated, bone defects in proximal tibia were encountered in 54 knees. Posteromedial defects involving 25-40% of the tibial condyle cut surface and measuring more than 5 mm in depth were grafted using a structural graft obtained from cut distal femur or proximal tibia in 48 knees. For larger, peripheral uncontained vertical defects in six cases, measuring >25 mm in depth and involving >40% cut surface of proximal tibial condyle, impaction bone grafting with a mesh support was used. Results: Bone grafts incorporated in 54 knees in 6 months. There was no graft collapse or stress fractures, loosening or nonunion. The average followup period was 7.8 years (range 5-10 years). We observed an average postoperative increase in the Knee Society Score from 40 to 90 points. There was improvement in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores in terms of pain, stiffness and physical function during activities of daily living. Conclusion: Bone grafting for defects in primary total knee is justified as it is biological, available then and is cost effective besides preserving bone stock for future revisions. Structural grafts should be used in defects >5 mm deep and involving 25-40% of the cut proximal tibial condyle surface. For larger peripheral vertical defects, impaction bone grafting contained in a mesh should be done. PMID:24932040

  16. Comparison of bone tissue properties in mouse models with collagenous and non-collagenous genetic mutations using FTIRI

    PubMed Central

    Coleman, Rhima M.; Aguilera, Laura; Quinones, Layla; Lukashova, Lyudamila; Poirier, Christophe; Boskey, Adele

    2012-01-01

    Understanding how the material properties of bone tissue from the various forms of osteogenesis imperfecta (OI) differ will allow us to tailor treatment regimens for affected patients. To this end, we characterized the bone structure and material properties of two mouse models of OI, the osteogenesis imperfecta mouse (oim/oim) and fragilitas ossium (fro/fro), in which bone fragility is due to a genetic defect in collagen type I and a defect in osteoblast matrix mineralization, respectively. Bones from 3 to 6 month old animals were examined using Fourier transform infrared spectroscopic imaging (FTIRI), microcomputed tomography (micro-CT), histology, and biochemical analysis. The attributes of oim/oim bone tissue were relatively constant over time when compared to wild type animals. The mineral density in oim/oim cortices and trabecular bone was higher than wild type while the bones had thinner cortices and fewer trabeculae that were thinner and more widely spaced. The fro/fro animals exhibited osteopenic attributes at 3 months. However, by 6 months, their spectroscopic and geometric properties were similar to wild type animals. Despite the lack of a specific collagen defect in fro/fro mice, both fro/fro and oim/oim genotypes exhibited abnormal collagen crosslinking as determined by FTIRI at both time points. These results demonstrate that abnormal extracellular matrix assembly plays a role in the bone fragility in both of these models. PMID:22910579

  17. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease.

    PubMed

    Park, Jin Seok; Yi, Tac-Ghee; Park, Jong-Min; Han, Young Min; Kim, Jun-Hyung; Shin, Dong-Hee; Tak, Seon Ji; Lee, Kyuheon; Lee, Youn Sook; Jeon, Myung-Shin; Hahm, Ki-Baik; Song, Sun U; Park, Seok Hee

    2015-11-01

    Mouse bone marrow-derived clonal mesenchymal stem cells (mcMSCs), which were originated from a single cell by a subfractionation culturing method, are recognized as new paradigm for stem cell therapy featured with its homogenous cell population. Next to proven therapeutic effects against pancreatitis, in the current study we demonstrated that mcMSCs showed significant therapeutic effects in dextran sulfate sodium (DSS)-induced experimental colitis model supported with anti-inflammatory and restorative activities. mcMSCs significantly reduced the disease activity index (DAI) score, including weight loss, stool consistency, and intestinal bleeding and significantly increased survival rates. The pathological scores were also significantly improved with mcMSC. We have demonstrated that especial mucosal regeneration activity accompanied with significantly lowered level of apoptosis as beneficiary actions of mcMSCs in UC models. The levels of inflammatory cytokines including TNF-α, IFN-γ, IL-1β, IL-6, and IL-17 were all significantly concurrent with significantly repressed NF-κB activation compared to the control group and significantly decreased infiltrations of responsible macrophage and neutrophil. Conclusively, our findings provide the rationale that mcMSCs are applicable as a potential source of cell-based therapy in inflammatory bowel diseases, especially contributing either to prevent relapse or to accelerate healing as solution to unmet medical needs in IBD therapy. PMID:26566304

  18. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease

    PubMed Central

    Park, Jin Seok; Yi, Tac-Ghee; Park, Jong-Min; Han, Young Min; Kim, Jun-Hyung; Shin, Dong-Hee; Tak, Seon Ji; Lee, Kyuheon; Lee, Youn Sook; Jeon, Myung-Shin; Hahm, Ki-Baik; Song, Sun U; Park, Seok Hee

    2015-01-01

    Mouse bone marrow-derived clonal mesenchymal stem cells (mcMSCs), which were originated from a single cell by a subfractionation culturing method, are recognized as new paradigm for stem cell therapy featured with its homogenous cell population. Next to proven therapeutic effects against pancreatitis, in the current study we demonstrated that mcMSCs showed significant therapeutic effects in dextran sulfate sodium (DSS)-induced experimental colitis model supported with anti-inflammatory and restorative activities. mcMSCs significantly reduced the disease activity index (DAI) score, including weight loss, stool consistency, and intestinal bleeding and significantly increased survival rates. The pathological scores were also significantly improved with mcMSC. We have demonstrated that especial mucosal regeneration activity accompanied with significantly lowered level of apoptosis as beneficiary actions of mcMSCs in UC models. The levels of inflammatory cytokines including TNF-?, IFN-?, IL-1?, IL-6, and IL-17 were all significantly concurrent with significantly repressed NF-?B activation compared to the control group and significantly decreased infiltrations of responsible macrophage and neutrophil. Conclusively, our findings provide the rationale that mcMSCs are applicable as a potential source of cell-based therapy in inflammatory bowel diseases, especially contributing either to prevent relapse or to accelerate healing as solution to unmet medical needs in IBD therapy. PMID:26566304

  19. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models

    PubMed Central

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M.; Zhao, Ming

    2015-01-01

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting. PMID:26431498

  20. Tumor-targeting Salmonella typhimurium A1-R inhibits human prostate cancer experimental bone metastasis in mouse models.

    PubMed

    Toneri, Makoto; Miwa, Shinji; Zhang, Yong; Hu, Cameron; Yano, Shuya; Matsumoto, Yasunori; Bouvet, Michael; Nakanishi, Hayao; Hoffman, Robert M; Zhao, Ming

    2015-10-13

    Bone metastasis is a frequent occurrence in prostate cancer patients and often is lethal. Zoledronic acid (ZOL) is often used for bone metastasis with limited efficacy. More effective models and treatment methods are required to improve the outcome of prostate cancer patients. In the present study, the effects of tumor-targeting Salmonella typhimurium A1-R were analyzed in vitro and in vivo on prostate cancer cells and experimental bone metastasis. Both ZOL and S. typhimurium A1-R inhibited the growth of PC-3 cells expressing red fluorescent protien in vitro. To investigate the efficacy of S. typhimurium A1-R on prostate cancer experimental bone metastasis, we established models of both early and advanced stage bone metastasis. The mice were treated with ZOL, S. typhimurium A1-R, and combination therapy of both ZOL and S. typhimurium A1-R. ZOL and S. typhimurium A1-R inhibited the growth of solitary bone metastases. S. typhimurium A1-R treatment significantly decreased bone metastasis and delayed the appearance of PC-3 bone metastases of multiple mouse models. Additionally, S. typhimurium A1-R treatment significantly improved the overall survival of the mice with multiple bone metastases. The results of the present study indicate that S. typhimurium A1-R is useful to prevent and inhibit prostate cancer bone metastasis and has potential for future clinical use in the adjuvant setting. PMID:26431498

  1. Guidelines for histopathological specimen examination and diagnostic reporting of primary bone tumours

    PubMed Central

    2011-01-01

    This review is intended to provide histopathologists with guidelines for clinical assessment, specimen handling and diagnostic reporting of benign and malignant primary bone tumours. Information from radiology, surgical, oncology and other clinical colleagues involved in the diagnosis and treatment of primary bone tumours should be properly assessed before undertaking a structured approach to specimen handling and histological reporting. This ensures that the information needed for planning appropriate treatment of these complex tumours is provided. Consistency in diagnostic evaluation with respect to both terminology and report content facilitates liaison at multidisciplinary bone tumour meetings and collaboration between cancer units and networks, as well as providing a common database for audit of the clinical, radiological and pathological aspects of bone tumours. PMID:22613930

  2. ALDH Activity Correlates with Metastatic Potential in Primary Sarcomas of Bone

    PubMed Central

    Greco, Nicholas; Schott, Trevor; Mu, Xiaodong; Rothenberg, Adam; Voigt, Clifford; McGough, Richard L.; Goodman, Mark; Huard, Johnny; Weiss, Kurt R.

    2014-01-01

    Osteosarcoma (OS), chondrosarcoma (CSA), and Ewings sarcoma (ES) are the most common primary malignancies of bone, and are rare diseases. As with all sarcomas, the prognosis of these diseases ultimately depends on the presence of metastatic disease. Survival is therefore closely linked with the biology and metastatic potential of a particular bone tumors cells. Here we describe a significant correlation of aldehyde dehydrogenase (ALDH) activity and the presence/absence of distant metastases in ten consecutive cases of human bone sarcomas. Additionally, cultured human CSA cells, which are historically chemo- and radio-resistant, may be sensitive to the ALDH inhibitor, disulfiram. While it is premature to draw broad conclusions from such a small series, the importance of ALDH activity and inhibition in the metastatic potential of primary bone sarcomas should be investigated further. PMID:25328803

  3. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis.

    PubMed

    Canon, Jude R; Roudier, Martine; Bryant, Rebecca; Morony, Sean; Stolina, Marina; Kostenuik, Paul J; Dougall, William C

    2008-01-01

    Bone metastases cause severe skeletal morbidity including fractures and hypercalcemia. Tumor cells in bone induce activation of osteoclasts, which mediate bone resorption and release of growth factors from bone matrix, resulting in a "vicious cycle" of bone breakdown and tumor proliferation. Receptor activator of NF-kappaB ligand (RANKL) is an essential mediator of osteoclast formation, function, and survival, and is blocked by a soluble decoy receptor, osteoprotegerin (OPG). In human malignancies that metastasize to bone, dysregulation of the RANK/RANKL/OPG pathway can increase the RANKL:OPG ratio, a condition which favors excessive osteolysis. In a mouse model of bone metastasis, RANKL protein levels in MDA-MB-231 (MDA-231) tumor-bearing bones were significantly higher than tumor-free bones. The resulting tumor-induced osteoclastogenesis and osteolysis was dose-dependently inhibited by recombinant OPG-Fc treatment, supporting the essential role for RANKL in this process. Using bioluminescence imaging in a mouse model of metastasis, we monitored the anti-tumor efficacy of RANKL inhibition on MDA-231 human breast cancer cells in a temporal manner. Treatment with OPG-Fc in vivo inhibited growth of MDA-231 tumor cells in bony sites when given both as a preventative (dosed day 0) and as a therapeutic agent for established bone metastases (dosed day 7). One mechanism by which RANKL inhibition reduced tumor burden appears to be indirect through inhibition of the "vicious cycle" and involved an increase in tumor cell apoptosis, as measured by active caspase-3. Here, we demonstrate for the first time that OPG-Fc treatment of mice with established bone metastases resulted in an overall improvement in survival. PMID:18064531

  4. Cortical and Trabecular Bone Adaptation to Incremental Load Magnitudes Using the Mouse Tibial Axial Compression Loading Model

    PubMed Central

    Weatherholt, Alyssa M.; Fuchs, Robyn K.; Warden, Stuart J.

    2012-01-01

    The mouse tibial axial compression loading model has recently been described to allow simultaneous exploration of cortical and trabecular bone adaptation within the same loaded element. However, the model frequently induces cortical woven bone formation and has produced inconsistent results with regards to trabecular bone adaptation. The aim of this study was to investigate bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model, with the ultimate goal of revealing a load that simultaneously induced lamellar cortical and trabecular bone adaptation. Adult (16 week old) female C57BL/6 mice were randomly divided into three load magnitude groups (5, 7 and 9 N), and had their right tibia axially loaded using a continuous 2-Hz haversine waveform for 360 cycles/d, 3 d/wk for 4 consecutive weeks. In vivo peripheral quantitative computed tomography was used to longitudinally assess midshaft tibia cortical bone adaptation, while ex vivo micro-computed tomography and histomorphometry were used to assess both midshaft tibia cortical and proximal tibia trabecular bone adaptation. A dose response to loading magnitude was observed within cortical bone, with increasing load magnitude inducing increasing levels of lamellar cortical bone adaptation within the upper two thirds of the tibial diaphysis. Greatest cortical bone adaptation was observed at the midshaft where there was a 42% increase in estimated mechanical properties (polar moment of inertia) in the highest (9 N) load group. A dose response to load magnitude was not clearly evident within trabecular bone, with only the highest load (9 N) being able to induce measureable adaptation (31% increase in trabecular bone volume fraction at the proximal tibia). The ultimate finding was that a load of 9 N (engendering a tensile strain of 1,833 ?? on medial surface of the midshaft tibia) was able to simultaneously induce measurable lamellar cortical and trabecular bone adaptation when using the mouse tibial axial compression loading model in 16 week old female C57BL/6 mice. This finding will help plan future studies aimed at exploring simultaneous lamellar cortical and trabecular bone adaptation within the same loaded element. PMID:23111313

  5. Lack of prolidase causes a bone phenotype both in human and in mouse.

    PubMed

    Besio, Roberta; Maruelli, Silvia; Gioia, Roberta; Villa, Isabella; Grabowski, Peter; Gallagher, Orla; Bishop, Nicholas J; Foster, Sarah; De Lorenzi, Ersilia; Colombo, Raffaella; Diaz, Jos Luis Dapena; Moore-Barton, Haether; Deshpande, Charu; Aydin, Halil Ibrahim; Tokatli, Aysegul; Kwiek, Bartlomiej; Kasapkara, Cigdem Seher; Adisen, Esra Ozsoy; Gurer, Mehmet Ali; Di Rocco, Maja; Phang, James M; Gunn, Teresa M; Tenni, Ruggero; Rossi, Antonio; Forlino, Antonella

    2015-03-01

    The degradation of the main fibrillar collagens, collagens I and II, is a crucial process for skeletal development. The most abundant dipeptides generated from the catabolism of collagens contain proline and hydroxyproline. In humans, prolidase is the only enzyme able to hydrolyze dipeptides containing these amino acids at their C-terminal end, thus being a key player in collagen synthesis and turnover. Mutations in the prolidase gene cause prolidase deficiency (PD), a rare recessive disorder. Here we describe 12 PD patients, 9 of whom were molecularly characterized in this study. Following a retrospective analysis of all of them a skeletal phenotype associated with short stature, hypertelorism, nose abnormalities, microcephaly, osteopenia and genu valgum, independent of both the type of mutation and the presence of the mutant protein was identified. In order to understand the molecular basis of the bone phenotype associated with PD, we analyzed a recently identified mouse model for the disease, the dark-like (dal) mutant. The dal/dal mice showed a short snout, they were smaller than controls, their femurs were significantly shorter and pQCT and ?CT analyses of long bones revealed compromised bone properties at the cortical and at the trabecular level in both male and female animals. The differences were more pronounce at 1 month being the most parameters normalized by 2 months of age. A delay in the formation of the second ossification center was evident at postnatal day 10. Our work reveals that reduced bone growth was due to impaired chondrocyte proliferation and increased apoptosis rate in the proliferative zone associated with reduced hyperthrophic zone height. These data suggest that lack of prolidase, a cytosolic enzyme involved in the final stage of protein catabolism, is required for normal skeletogenesis especially at early age when the requirement for collagen synthesis and degradation is the highest. PMID:25460580

  6. Radiation sensitivity and cycling status of mouse bone marrow prothymocytes and day 8 colony forming units spleen (CFUs)

    SciTech Connect

    Boersma, W.J.

    1983-11-01

    Mouse bone marrow prothymocytes as determined in an in vivo thymus regeneration assay have an in vitro gamma radiation sensitivity which is different from that of spleen colony forming cells (CFUs). Determination of Do according to in vivo irradiation revealed similar but insignificant differences. Prothymocytes in normal bone marrow maintain a low but slightly different proliferative state as compared to CFUs, according to determinations using the /sup 3/H-TdR suicide technique. In regenerating bone marrow prothymocytes were found to be sensitive to an inhibitory effect of in vitro incubation with cold thymidine. CFUs and normal bone marrow prothymocytes were not affected by cold thymidine. Taking into account the cold thymidine effect it can be concluded that prothymocytes and CFUs in regenerating bone marrow are fully in cycle. These results are best explained when prothymocytes and CFUs are considered to be different cells.

  7. [Effect of osteogenically and adipogenically differentiated bone mesenchymal stem cells from mouse on osteoclast formation].

    PubMed

    Zhu, Heng; Liu, Yuan-Lin; Chen, Ji-De; Li, Hong; Liu, Yu-Xiao; Xu, Fen-Fen; Jiang, Xiao-Xia; Zhang, Yi; Mao, Ning

    2012-10-01

    This study was purposed to investigate the regulatory effects of differentiating mesenchymal stem cells (MSC) on osteoclast formation. The MSC from mouse compact bones were cultured and induced into osteoblasts and adipocytes for one week. To test their regulatory effect on osteoclastogenesis, osteogenically differentiated and adipogenically differentiated MSC were co-cultured with CD11b(+) monocytes and osteoclasts were identified with in situ tartrate-resistant acid phosphatase (TRAP) staining. The results showed that differentiated MSC supported osteoclastogenesis but the osteoclast supporting capacity of osteogenically differentiated MSC decreased as compared with undifferentiated MSC. More interestingly, the adipogenically differentiated MSC significantly promoted osteoclasts formation when co-cultured with monocytes. It is concluded that the regulatory effect of MSC on osteoclast formation has changed while they have differentiated into different types of cells. The findings indicate that MSC may exert alternative effect on osteoclastogenesis by differentiation to descendant cells. PMID:23114145

  8. Primary hyperparathyroidism presenting with acute pancreatitis and asymptomatic bone involvement.

    PubMed

    Saif, Aasem

    2015-01-01

    A 15-year-old female patient presented to the emergency room with vomiting and abdominal pain. She had two similar attacks in the previous three months both of them were diagnosed as pancreatitis in two different hospitals. On admission, her serum calcium and parathyroid hormone levels were very high. CT scan revealed left inferior parathyroid adenoma. Investigations to rule out possible multiple endocrine neoplasia were all negative. The patient was managed by intravenous fluids and furosemide to lower her serum calcium level. Then, left inferior parathyroidectomy was done. Postoperatively, the patient had hungry bone syndrome with severe hypocalcaemia and was managed by intravenous calcium infusion for five days in the intensive care unit. Later, she was kept on oral calcium and vitamin D supplementation. She became symptom-free and her serum calcium improved gradually. PMID:26604950

  9. Primary hyperparathyroidism presenting with acute pancreatitis and asymptomatic bone involvement

    PubMed Central

    Saif, Aasem

    2015-01-01

    Summary A 15-year-old female patient presented to the emergency room with vomiting and abdominal pain. She had two similar attacks in the previous three months both of them were diagnosed as pancreatitis in two different hospitals. On admission, her serum calcium and parathyroid hormone levels were very high. CT scan revealed left inferior parathyroid adenoma. Investigations to rule out possible multiple endocrine neoplasia were all negative. The patient was managed by intravenous fluids and furosemide to lower her serum calcium level. Then, left inferior parathyroidectomy was done. Postoperatively, the patient had hungry bone syndrome with severe hypocalcaemia and was managed by intravenous calcium infusion for five days in the intensive care unit. Later, she was kept on oral calcium and vitamin D supplementation. She became symptom-free and her serum calcium improved gradually. PMID:26604950

  10. An in vivo mouse model of primary dysmenorrhea

    PubMed Central

    YANG, Lu; CAO, Zhengyu; YU, Boyang; CHAI, Chengzhi

    2015-01-01

    Primary dysmenorrhea (PD) is a common gynecological disorder. Hitherto, animal models which recapitulate clinical features of PD have not been fully established. We aimed to examine whether a pain model in mice could mimic the clinic features of PD. After pretreated with estradiol benzoate (1 mg/kg/day) intraperitoneally (i.p.) for 3 consecutive days, non-pregnant female Imprinting Control Region mice (68 weeks old) was injected with 0.4 U of oxytocin to induce the stretching or writhing response which was recorded for a time period of 30 min. During the writhing period, the uterine artery blood flow alterations were examined by Doppler ultrasound detection. After writhing test, the uterine morphological changes were observed by hematoxylin and eosin (H&E) staining histopathology. In addition, enzyme-linked immunosorbent assay kit was used to measure the levels of prostaglandins F2?/prostaglandins E2 (PGF2?/PGE2) and TXB2 (a metabolite of TXA2)/6-keto-PGF1? (a metabolite of PGI2) in the uterine tissue homogenates and plasma, respectively. Western blot analyses were performed to determine the expressions of oxytocin receptor (OTR), beta2-adrenergic receptor (beta2-AR), and cyclooxygenase-2 (COX-2) in uterine, which are responsible for the uterine contraction. The writhing response only occurred in the estrogen pretreated female mice. The area of uterine myometrium significantly decreased along with the increased thickness in the oxytocin-induced estrogen pretreated mice model. The uterine artery blood flow velocity dropped, while the pulsatility index and resistance index slightly increased after the injection of oxytocin. The PGF2?/PGE2 level significantly increased and the plasma TXB2/6-keto-PGF1? level significantly enhanced. Compared with the control group, the uterine histopathology demonstrated moderate to severe edema of endometrium lamina propria. In consistent with the uterine morphological changes, a significant reduction of beta2-AR and a significant increase of OTR and COX-2 in the uterine tissue were observed. The writhing response was caused by the abnormal contraction of uterus. The uterine spasm and ischemia changes of oxytocin-induced estrogen pretreated female mice model were similar to the pathology of human PD. We reported an in vivo mice model, which can be used to study PD and for clinical therapeutic evaluations. PMID:25912320

  11. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These alterations indicate significant impairment of normal cellular function in the mechanically unloaded environment of space and could provide important genetic insight into the observed uncoupling of bone formation and resorption in space.

  12. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts.

    PubMed

    Strobel, L A; Rath, S N; Maier, A K; Beier, J P; Arkudas, A; Greil, P; Horch, R E; Kneser, U

    2014-03-01

    Bone tissue engineering strategies mainly depend on porous scaffold materials. In this study, novel biphasic calcium phosphate (BCP) matrices were generated by 3D-printing. High porosity was achieved by starch consolidation. This study aimed to characterise the porous BCP-scaffold properties and interactions of osteogenic cells and growth factors under in vivo conditions. Five differently treated constructs were implanted subcutaneously in syngeneic rats: plain BCP constructs (group A), constructs pre-treated with BMP-2 (group B; 1.6?g BMP-2 per scaffold), seeded with primary osteoblasts (OB) (group C), seeded with OB and BMP-2 (group D) and constructs seeded with OB and pre-cultivated in a flow bioreactor for 6?weeks (group E). After 2, 4 and 6?weeks, specimens were explanted and subjected to histological and molecular biological analyses. Explanted scaffolds were invaded by fibrovascular tissue without significant foreign body reactions. Morphometric analysis demonstrated significantly increased bone formation in samples from group D (OB?+?BMP-2) compared to all other groups. Samples from groups B-E displayed significant mRNA expression of bone-specific genes after 6?weeks. Pre-cultivation in the flow bioreactor (group E) induced bone formation comparable with group B. In this study, differences in bone distribution between samples with BMP-2 or osteoblasts could be observed. In conclusion, combination of osteoblasts and BMP-2 synergistically enhanced bone formation in novel ceramic scaffolds. These results provide the basis for further experiments in orthotopic defect models with a focus on future applications in orthopaedic and reconstructive surgery. PMID:22740314

  13. Laminar differences in the orientation selectivity of geniculate afferents in mouse primary visual cortex.

    PubMed

    Kondo, Satoru; Ohki, Kenichi

    2016-02-01

    It has been debated whether orientation selectivity in mouse primary visual cortex (V1) is derived from tuned lateral geniculate nucleus (LGN) inputs or computed from untuned LGN inputs. However, few studies have measured orientation tuning of LGN axons projecting to V1. We measured the response properties of mouse LGN axons terminating in V1 and found that LGN axons projecting to layer 4 were generally less tuned for orientation than axons projecting to more superficial layers of V1. We also found several differences in response properties between LGN axons and V1 neurons in layer 4. These results suggest that orientation selectivity of mouse V1 may not simply be inherited from LGN inputs, but could also depend on thalamocortical or V1 circuits. PMID:26691830

  14. Differential sensitivity of a mouse myeloid leukemia cell line and normal mouse bone marrow cells to X-ray-induced chromosome aberrations

    SciTech Connect

    Aardema, M.J.; Au, W.W.; Hand, R.E. Jr.; Preston, R.J.

    1985-11-01

    Cell line ML-1 was established from a myelogenous leukemia of an RFM mouse. The ML-1 cells and in vitro normal mouse bone marrow cells were analyzed to determine if there was a differential sensitivity to X-ray-induced chromosome aberrations in G1 cells and/or differences in postirradiation cell cycle progression. Cells identified as being in G1 at the time of irradiation by their staining pattern after replication in 5-bromodeoxyuridine were analyzed for all types of chromosomal aberrations following X-ray doses of 0.5, 1.0, 1.5, and 2.0 Gy. ML-1 cells showed a greater sensitivity to the induction of both chromosome-type aberrations and chromatid-type aberrations compared to normal mouse bone marrow cells, which only contained chromosome-type aberrations. The presence of chromatid-type aberrations in the ML-1 cells and not normal bone marrow cells suggested a differential progression through the cell cycle for the two cell types after irradiation. Mitotic index and flow cytometric analyses were performed and showed that both cell types have a delay in progression from G2 into mitosis, but only the normal mouse bone marrow cells have a delay in progression from G1 into S, as well as delayed progression through the S phase following X-irradiation. These results indicate that the ML-1 leukemia cells have an increased radiosensitivity. These same characteristics have been observed in ataxia telangiectasia cells and may well represent a general feature of cells with increased radiosensitivity.

  15. PULSED FOCUSED ULTRASOUND TREATMENT OF MUSCLE MITIGATES PARALYSIS-INDUCED BONE LOSS IN THE ADJACENT BONE: A STUDY IN A MOUSE MODEL

    PubMed Central

    Poliachik, Sandra L.; Khokhlova, Tatiana D.; Wang, Yak-Nam; Simon, Julianna C.; Bailey, Michael R.

    2015-01-01

    Bone loss can result from bed rest, space flight, spinal cord injury or age-related hormonal changes. Current bone loss mitigation techniques include pharmaceutical interventions, exercise, pulsed ultrasound targeted to bone and whole body vibration. In this study, we attempted to mitigate paralysis-induced bone loss by applying focused ultrasound to the midbelly of a paralyzed muscle. We employed a mouse model of disuse that uses onabotulinumtoxinA-induced paralysis, which causes rapid bone loss in 5 d. A focused 2 MHz transducer applied pulsed exposures with pulse repetition frequency mimicking that of motor neuron firing during walking (80 Hz), standing (20 Hz), or the standard pulsed ultrasound frequency used in fracture healing (1 kHz). Exposures were applied daily to calf muscle for 4 consecutive d. Trabecular bone changes were characterized using micro-computed tomography. Our results indicated that application of certain focused pulsed ultrasound parameters was able to mitigate some of the paralysis-induced bone loss. PMID:24857416

  16. Primary bone microanatomy records developmental aspects of life history in catarrhine primates.

    PubMed

    McFarlin, Shannon C; Terranova, Carl J; Zihlman, Adrienne L; Bromage, Timothy G

    2016-03-01

    A central challenge in human origins research is to understand how evolution has shaped modern human life history. As fossilized remains of our ancestors provide the only direct evidence for life history evolution, efforts to reconstruct life history in paleontological contexts have focused on hard tissues, particularly on dental development. However, among investigators of other vertebrate groups, there is a long tradition of examining primary bone microstructure to decipher growth rates and maturational timing, based on an empirical relationship between the microanatomy of primary bone and the rate at which it is deposited. We examined ontogenetic variation in primary bone microstructure at the midshaft femur of Chlorocebus aethiops, Hylobates lar, and Pan troglodytes to test whether tissue type proportions vary in accordance with predictions based on body mass growth patterns described previously. In all taxa, younger age classes were characterized by significantly higher percent areas of fibro-lamellar and/or parallel-fibered tissues, while older age classes showed significantly higher proportions of lamellar bone. In prior experimental studies, fibro-lamellar and parallel-fibered tissue types have been associated with faster depositional rates than lamellar bone. Principal components analysis revealed differences among taxa in the timing of this transition, and in the particular tissue types observed among individuals of similar dental emergence status. Among M1 and M2 age classes, higher proportions of parallel-fibered and fibro-lamellar tissues were observed in those taxa characterized by reportedly faster body mass growth rates. Further, persistence of fibro-lamellar tissue throughout DECID, M1 and M2 age classes in chimpanzees contrasts with the pattern reported previously for modern humans. Despite the necessary limitations of our cross-sectional study design and the secondary remodeling of bone in primates, large areas of primary bone remain intact and represent a valuable and independent source of information about the evolution of growth and development in the fossil record. PMID:26989017

  17. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

    PubMed Central

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca2+, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca2+ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca2+ uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  18. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan.

    PubMed

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-03-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca(2+), which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca(2+) uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca(2+) uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  19. Ewing's sarcoma of bone tumor cells produces MCSF that stimulates monocyte proliferation in a novel mouse model of Ewing's sarcoma of bone.

    PubMed

    Margulies, B S; DeBoyace, S D; Damron, T A; Allen, M J

    2015-10-01

    Ewing's sarcoma of bone is a primary childhood malignancy of bone that is treated with X-radiation therapy in combination with surgical excision and chemotherapy. To better study Ewing's sarcoma of bone we developed a novel model of primary Ewing's sarcoma of bone and then treated animals with X-radiation therapy. We identified that uncontrolled tumor resulted in lytic bone destruction while X-radiation therapy decreased lytic bone destruction and increased limb-length asymmetry, a common, crippling complication of X-radiation therapy. Osteoclasts were indentified adjacent to the tumor, however, we were unable to detect RANK-ligand in the Ewing's tumor cells in vitro, which lead us to investigate alternate mechanisms for osteoclast formation. Ewing's sarcoma tumor cells and archival Ewing's sarcoma of bone tumor biopsy samples were shown to express MCSF, which could promote osteoclast formation. Increased monocyte numbers were detected in peripheral blood and spleen in animals with untreated Ewing's sarcoma tumor while monocyte number in animals treated with x-radiation had normal numbers of monocytes. Our data suggest that our Ewing's sarcoma of bone model will be useful in the study Ewing's sarcoma tumor progression in parallel with the effects of chemotherapy and X-radiation therapy. PMID:26051470

  20. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    SciTech Connect

    Kawahara, Takeshi

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.

  1. Modulation of doxorubicin-induced genotoxicity by Aegle marmelos in mouse bone marrow: a micronucleus study.

    PubMed

    Venkatesh, Ponemone; Shantala, Bellary; Jagetia, Ganesh Chandra; Rao, K Koteshwer; Baliga, Manjeshwar Shrinath

    2007-03-01

    The effect of various concentrations of Aegle marmelos (AME) on the doxorubicin (DOX)-induced genotoxic effects in mice bone marrow was studied. Treatment of mice with different concentrations of DOX resulted in a dose-dependent elevation in the frequency of micronucleated polychromatic (MPCE) as well as normochromatic (MNCE) erythrocytes in mouse bone marrow. The frequencies of MPCE and MNCE increased with scoring time, and the greatest elevation for MPCE was observed at 48 hours post-DOX treatment, whereas a maximum increase in MNCE was observed at 72 hours post-DOX treatment. This increase in MPCE and MNCE was accompanied by a decline in the polychromatic erythrocytes-normochromatic erythrocytes (PCE/NCE) ratio, which showed a DOX-dose-dependent decline. Treatment of mice with 200, 250, 300, 350, and 400 mg/kg body weight of AME, orally once daily for 5 consecutive days before DOX treatment, significantly reduced the frequency of DOX-induced micronuclei accompanied by a significant elevation in the PCE/NCE ratio at all scoring times. The greatest protection against DOX-induced genotoxicity was observed at 350 mg/kg AME. The protection against DOX-induced genotoxicity by AME may be due to inhibition of free radicals and increased antioxidant status. PMID:17351026

  2. Hypomorphic mutation in mouse Nppc gene causes retarded bone growth due to impaired endochondral ossification

    SciTech Connect

    Tsuji, Takehito Kondo, Eri; Yasoda, Akihiro; Inamoto, Masataka; Kiyosu, Chiyo; Nakao, Kazuwa; Kunieda, Tetsuo

    2008-11-07

    Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to induce cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification.

  3. Resveratrol Reduces Radiation-Induced Chromosome Aberration Frequencies in Mouse Bone Marrow Cells

    PubMed Central

    Carsten, Ronald E.; Bachand, Annette M.; Bailey, Susan M.; Ullrich, Robert L.

    2009-01-01

    Resveratrol, a polyphenol compound with reported antioxidant and anti-carcinogenic effects, a wide range of molecular targets, and toxicity only at extreme doses, has received considerable attention. We evaluated the radioprotective effect of orally administered resveratrol on the frequencies of chromosome aberrations in irradiated mouse bone marrow cells. CBA/CaJ mice were divided into four groups: (1) no treatment, (2) resveratrol only, (3) radiation only, and (4) resveratrol and radiation. Resveratrol treatment (100 mg/kg daily) was initiated 2 days prior to irradiation. Bone marrow was then harvested at 1 and 30 days after a single dose of 3 Gy whole-body ? radiation. A statistically significant (P < 0.05) reduction in the mean total chromosome aberration frequency per metaphase at both times postirradiation in the resveratrol and radiation group compared to the radiation-only group was observed. This study is the first to demonstrate that resveratrol has radioprotective effects in vivo. These results support the use of resveratrol as a radioprotector with the potential for widespread application. PMID:18494544

  4. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells.

    PubMed

    Carsten, Ronald E; Bachand, Annette M; Bailey, Susan M; Ullrich, Robert L

    2008-06-01

    Resveratrol, a polyphenol compound with reported antioxidant and anticarcinogenic effects, a wide range of molecular targets, and toxicity only at extreme doses, has received considerable attention. We evaluated the radioprotective effect of orally administered resveratrol on the frequencies of chromosome aberrations in irradiated mouse bone marrow cells. CBA/CaJ mice were divided into four groups: (1) no treatment, (2) resveratrol only, (3) radiation only, and (4) resveratrol and radiation. Resveratrol treatment (100 mg/kg daily) was initiated 2 days prior to irradiation. Bone marrow was then harvested at 1 and 30 days after a single dose of 3 Gy whole-body gamma radiation. A statistically significant (P < 0.05) reduction in the mean total chromosome aberration frequency per metaphase at both times postirradiation in the resveratrol and radiation group compared to the radiation-only group was observed. This study is the first to demonstrate that resveratrol has radioprotective effects in vivo. These results support the use of resveratrol as a radioprotector with the potential for widespread application. PMID:18494544

  5. Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse.

    PubMed

    Wang, Yingli; Xiao, Ran; Yang, Fan; Karim, Baktiar O; Iacovelli, Anthony J; Cai, Juanliang; Lerner, Charles P; Richtsmeier, Joan T; Leszl, Jen M; Hill, Cheryl A; Yu, Kai; Ornitz, David M; Elisseeff, Jennifer; Huso, David L; Jabs, Ethylin Wang

    2005-08-01

    Apert syndrome is an autosomal dominant disorder characterized by malformations of the skull, limbs and viscera. Two-thirds of affected individuals have a S252W mutation in fibroblast growth factor receptor 2 (FGFR2). To study the pathogenesis of this condition, we generated a knock-in mouse model with this mutation. The Fgfr2(+/S252W) mutant mice have abnormalities of the skeleton, as well as of other organs including the brain, thymus, lungs, heart and intestines. In the mutant neurocranium, we found a midline sutural defect and craniosynostosis with abnormal osteoblastic proliferation and differentiation. We noted ectopic cartilage at the midline sagittal suture, and cartilage abnormalities in the basicranium, nasal turbinates and trachea. In addition, from the mutant long bones, in vitro cell cultures grown in osteogenic medium revealed chondrocytes, which were absent in the controls. Our results suggest that altered cartilage and bone development play a significant role in the pathogenesis of the Apert syndrome phenotype. PMID:15975938

  6. [Clinical guidelines for bone disease in primary biliary cirrhosis].

    PubMed

    Ishibashi, Hiromi; Komori, Atsumasa

    2015-11-01

    Primary biliary cirrhosis(PBC)is a chronic cholestatic liver disease and the association of osteoporosis is high. In this paper, the practical guidelines for PBC of Japan as well as those of America(AASLD)and Europe(EASL)are mentioned. Description of each guideline is essentially the same;taking sufficient calcium(1,000~1,200 mg/day)with vitamin D and weight-bearing exercise, and thereafter medication such as alendronate is recommended. PMID:26503873

  7. Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.

    2011-08-01

    Although glucocorticoids are frequently prescribed for the symptomatic management of inflammatory disorders such as rheumatoid arthritis, extended glucocorticoid exposure is the leading cause of physician-induced osteoporosis and leaves patients at a high risk of fracture. To study the biochemical effects of glucocorticoid exposure and how they might affect biomechanical properties of the bone, Raman spectra were acquired from ex vivo tibiae of glucocorticoid- and placebo-treated wild-type mice and a transgenic mouse model of rheumatoid arthritis. Statistically significant spectral differences were observed due to both treatment regimen and mouse genotype. These differences are attributed to changes in the overall bone mineral composition, as well as the degree of phosphate mineralization in tibial cortical bone. In addition, partial least squares regression was used to generate a Raman-based prediction of each tibia's biomechanical strength as quantified by a torsion test. The Raman-based predictions were as accurate as those produced by microcomputed tomography derived parameters, and more accurate than the clinically-used parameter of bone mineral density. These results suggest that Raman spectroscopy could be a valuable tool for monitoring bone biochemistry in studies of bone diseases such as osteoporosis, including tests of drugs being developed to combat these diseases.

  8. The effect of implant shape and bone preparation on primary stability

    PubMed Central

    Moon, Sang-Hyun; Lee, Jae-Kwan; Chang, Beom-Seok; Lee, Min-Ku

    2010-01-01

    Purpose The purpose of this study was to evaluate the effects of implant shape and bone preparation on the primary stability of the implants using resonance frequency analysis. Methods Sixty bovine rib blocks were used for soft and hard bone models. Each rib block received two types of dental implant fixtures; a straight-screw type and tapered-screw type. Final drilling was done at three different depths for each implant type; 1 mm under-preparation, standard preparation, and 1 mm over-preparation. Immediately after fixture insertion, the implant stability quotient (ISQ) was measured for each implant. Results Regardless of the bone type, the ISQ values of the straight-screw type and tapered-screw type implants were not significantly different (P > 0.05). Depth of bone preparation had no significant effect on the ISQ value of straight-screw type implants (P > 0.05). For the tapered-screw type implants, under-preparation significantly increased the ISQ value (P < 0.05), whereas overpreparation significantly decreased the ISQ value (P < 0.05). Conclusions Within the limitations of this study, it is concluded that bone density seemed to have a prevailing effect over implant shape on primary stability. The primary stability of the tapered-screw type implants might be enhanced by delicate surgical techniques. PMID:21072221

  9. Primary Ewings Sarcoma of the temporal bone in an infant

    PubMed Central

    Goudarzipour, Kourosh; Shamsian, Shahin; Alavi, Samin; Nourbakhsh, Kazem; Aghakhani, Roxana; Eydian, Zahra; Arzanian, Mohammad Taghi

    2015-01-01

    Introduction : Ewings sarcoma is the second most common primary malignant tumor of bone found in children after Osteosarcoma. It accounts for 49% of primary malignant bone tumors and it affects bones of the skull or face in only 14% of cases. Hence it rarely affects the head and neck. Subject and Method : In this case report, we describe a case of primary Ewing's sarcoma occurring in the temporal bone. The tumor was surgically excised, and the patient underwent chemotherapy for ten months. Results : Neither recurrence nor distant metastasis was noted in these 10 months after surgery but about 18 months after surgery our patient was expired. Conclusion : Although the prognosis of Ewing's sarcoma is generally poor because of early metastasis to the lungs and to other bones, a review of the article suggested that Ewings sarcoma occurring in the skull can often be successfully managed by intensive therapy with radical excision and chemotherapy. This result was supported by the case reported here. PMID:25922651

  10. Improved Quantitative Analysis of Primary Bone Marrow Megakaryocytes Utilizing Imaging Flow Cytometry

    PubMed Central

    Niswander, Lisa M.; McGrath, Kathleen E.; Kennedy, John C.; Palis, James

    2014-01-01

    Life-threatening thrombocytopenia can develop following bone marrow injury due to decreased platelet production from megakaryocytes (MKs). However, the study of primary MKs has been complicated by their low frequency in the bone marrow and by technical challenges presented by their unique maturation properties. More accurate and efficient methods for the analysis of in vivo MKs are needed to enhance our understanding of megakaryopoiesis and ultimately develop new therapeutic strategies for thrombocytopenia. Imaging flow cytometry (IFC) combines the morphometric capabilities of microscopy with the high-throughput analyses of flow cytometry (FC). Here, we investigate the application of IFC on the ImageStreamX platform to the analysis of primary MKs isolated from murine bone marrow. Our data highlight and address technical challenges for conventional FC posed by the wide range of cellular size within the MK lineage as well as the shared surface phenotype with abundant platelet progeny. We further demonstrate that IFC can be used to reproducibly and efficiently quantify the frequency of primary murine MKs in the marrow, both at steady-state and in the setting of radiation-induced bone marrow injury, as well as assess their ploidy distribution. The ability to accurately analyze the full spectrum of maturing MKs in the bone marrow now allows for many possible applications of IFC to enhance our understanding of megakaryopoiesis and platelet production. PMID:24616422

  11. Role of aquaporin 9 in cellular accumulation of arsenic and its cytotoxicity in primary mouse hepatocytes

    SciTech Connect

    Shinkai, Yasuhiro; Sumi, Daigo; Toyama, Takashi; Kaji, Toshiyuki; Kumagai, Yoshito

    2009-06-01

    Aquaporin (AQP) 9 is a member of the aquaglyceroporin subfamily of AQPs in the transfer of water and small solutes such as glycerol and arsenite. It is well recognized that arsenic toxicity is associated with intracellular accumulation of this metalloid. In the present study, we examined the contribution of AQP9 to the uptake of inorganic arsenite, thereby increasing arsenic-induced cytotoxicity in primary mouse hepatocytes. Pretreatment with sorbitol as a competitive inhibitor of AQP9 and siRNA-mediated knockdown of AQP9 resulted in a significant decrease of arsenite uptake in the cell and its cytotoxicity. Furthermore, overexpression of AQP9 in HEK293 cells led to the enhancement of intracellular arsenic concentration, resulting in enhanced cytotoxicity after arsenite exposure. These results suggest that AQP9 is a channel to define arsenite sensitivity in primary mouse hepatocytes.

  12. Targeted Mutation of Nuclear Bone Morphogenetic Protein 2 Impairs Secondary Immune Response in a Mouse Model

    PubMed Central

    Olsen, Daniel S.; Goar, Wesley A.; Nichols, Brandt A.; Bailey, K. Tyson; Christensen, S. Loyd; Merriam, Kayla R.; Reynolds, Paul R.; Wilson, Eric; Weber, K. Scott; Bridgewater, Laura C.

    2015-01-01

    We recently identified a nuclear variant of the BMP2 growth factor, called nBMP2. In an effort to understand the function of this variant protein, we generated a mouse line in which BMP2 is expressed and functions normally, but nBMP2 is excluded from the nucleus. This novel mutation allows the study of nBMP2 without compromising BMP2 function. To determine whether nBMP2 plays a role in immune function, we performed a series of experiments in which we compared mouse survival, organ weights, immune cells numbers, and bacterial load in wild type and nBmp2NLStm mice following primary and secondary challenges with Staphylococcus aureus. Following primary challenge with S. aureus, wild type and nBmp2NLStm mice showed no differences in survival or bacterial load and generated similar numbers and types of leukocytes, although mutant spleens were smaller than wild type. Secondary bacterial challenge with S. aureus, however, produced differences in survival, with increased mortality seen in nBmp2NLStm mice. This increased mortality corresponded to higher levels of bacteremia in nBmp2NLStm mice and to a reduced enlargement of mutant spleens in response to the secondary infection. Together, these results suggest that the recently described nuclear variant of BMP2 is necessary for efficient secondary immune responses. PMID:26491697

  13. Defective Endochondral Ossification-Derived Matrix and Bone Cells Alter the Lymphopoietic Niche in Collagen X Mouse Models

    PubMed Central

    Sweeney, Elizabeth; Roberts, Douglas; Lin, Angela; Guldberg, Robert

    2013-01-01

    Despite the appreciated interdependence of skeletal and hematopoietic development, the cell and matrix components of the hematopoietic niche remain to be fully defined. Utilizing mice with disrupted function of collagen X (ColX), a major hypertrophic cartilage matrix protein associated with endochondral ossification, our data identified a cytokine defect in trabecular bone cells at the chondro-osseous hematopoietic niche as a cause for aberrant B lymphopoiesis in these mice. Specifically, analysis of ColX transgenic and null mouse chondro-osseous regions via micro-computed tomography revealed an altered trabecular bone environment. Additionally, cocultures with hematopoietic and chondro-osseous cell types highlighted impaired hematopoietic support by ColX transgenic and null mouse derived trabecular bone cells. Further, cytokine arrays with conditioned media from the trabecular osteoblast cocultures suggested an aberrant hematopoietic cytokine milieu within the chondro-osseous niche of the ColX deficient mice. Accordingly, B lymphopoiesis was rescued in the ColX mouse derived trabecular osteoblast cocultures with interlukin-7, stem cell factor, and stromal derived factor-1 supplementation. Moreover, B cell development was restored in vivo after injections of interlukin-7. These data support our hypothesis that endrochondrally-derived trabecular bone cells and matrix constituents provide cytokine-rich niches for hematopoiesis. Furthermore, this study contributes to the emerging concept that niche defects may underlie certain immuno-osseous and hematopoietic disorders. PMID:23656481

  14. Lithium treatment elongates primary cilia in the mouse brain and in cultured cells

    SciTech Connect

    Miyoshi, Ko; Kasahara, Kyosuke; Miyazaki, Ikuko; Asanuma, Masato

    2009-10-30

    The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed with Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.

  15. Effect of prostaglandins E1, E2, and F2 alpha on osteoclast formation in mouse bone marrow cultures

    SciTech Connect

    Collins, D.A.; Chambers, T.J. )

    1991-02-01

    Prostaglandins (PG) act as direct inhibitors of mature osteoclasts, but although resorption-inhibition is also observed initially PG increase bone resorption in organ culture. This suggests that PG influence bone resorption in organ culture through actions on cell types other than mature osteoclasts. We have therefore tested the effects of PG E1, E2, and F2 alpha on the differentiation of osteoclastic phenotype in mouse bone marrow cultures using bone resorption and calcitonin receptors (CTR) as markers of osteoclastic differentiation. We found that PGE2 (10{sup {minus} 6}-10{sup {minus} 9} M) and PGE1 (10{sup {minus} 6} - 10{sup {minus} 7} M) induced a significant increase in CTR-positive cell numbers, to levels five to eight times those seen in controls and similar to the number induced by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Bone resorption was increased (10{sup {minus} 7} M PGE2 and 10{sup {minus} 6} M PGE1) in association with the increased CTR-positive cell numbers, suggesting that the PG also induced resorptive function. 1,25-(OH)2D3 increased both the number of CTR-positive cells and the extent of resorption per cell; the additional presence of PG did not affect the number of CTR-positive cells but did reduce bone resorption compared with 1,25-(OH)2D3 alone. PGF2 alpha had no significant effect on CTR-positive cell induction or bone resorption. The results suggest that PGE1 and E2 induce osteoclastic differentiation in mouse bone marrow cultures and inhibit the function of the osteoclasts thus formed.

  16. The impact of pathological fractures on therapy outcome in patients with primary malignant bone tumours

    PubMed Central

    Moradi, Babak; Zahlten-Hinguranage, Anita; Lehner, Burkhard

    2009-01-01

    The primary objective of this study was to investigate the implications of pathological fractures on therapy outcome in patients with primary malignant bone tumours and to determine whether limb salvage can be safely performed. A retrospective analysis of 447 patients with primary malignant bone tumours, treated between 1985 and 2005, was performed. Multivariate Cox regression analysis was used to investigate the influence of pathological fractures and further independent variables on survival rate. In 52 of the 447 patients, the primary malignant bone tumour was complicated by a pathological fracture. These fractures were more common in malignant fibrous histiocytoma (MFH) of the bone and in the tumour stages IIa/b and III. Ablative surgery was performed in ten patients and limb salvage surgery in 42 patients. The mortality risk for patients with pathological fractures was significantly increased by a factor of 1.82 (p?=?0.015), and overall duration of survival was significantly lower in the fracture group, with a median of 6.2years (p?primary malignant bone tumours is a predictor of worse survival and significantly increases mortality risk. Reconstructive surgery did not influence the survival rate, showing that limb salvage therapy is safe when adequate resection margins are achieved. PMID:20012861

  17. Lamin B1 protein is required for dendrite development in primary mouse cortical neurons.

    PubMed

    Giacomini, Caterina; Mahajani, Sameehan; Ruffilli, Roberta; Marotta, Roberto; Gasparini, Laura

    2016-01-01

    Lamin B1, a key component of the nuclear lamina, plays an important role in brain development and function. A duplication of the human lamin B1 (LMNB1) gene has been linked to adult-onset autosomal dominant leukodystrophy, and mouse and human loss-of-function mutations in lamin B1 are susceptibility factors for neural tube defects. In the mouse, experimental ablation of endogenous lamin B1 (Lmnb1) severely impairs embryonic corticogenesis. Here we report that in primary mouse cortical neurons, LMNB1 overexpression reduces axonal outgrowth, whereas deficiency of endogenous Lmnb1 results in aberrant dendritic development. In the absence of Lmnb1, both the length and complexity of dendrites are reduced, and their growth is unresponsive to KCl stimulation. This defective dendritic outgrowth stems from impaired ERK signaling. In Lmnb1-null neurons, ERK is correctly phosphorylated, but phospho-ERK fails to translocate to the nucleus, possibly due to delocalization of nuclear pore complexes (NPCs) at the nuclear envelope. Taken together, these data highlight a previously unrecognized role of lamin B1 in dendrite development of mouse cortical neurons through regulation of nuclear shuttling of specific signaling molecules and NPC distribution. PMID:26510501

  18. Isolation and characterization of mouse bone marrow-derived Lin?/VEGF-R2? progenitor cells.

    PubMed

    Barthelmes, Daniel; Irhimeh, Mohammad R; Gillies, Mark C; Zhu, Ling; Shen, Weiyong

    2013-11-01

    Circulating endothelial progenitor cells (EPCs) in the peripheral blood (PB) have physiological roles in the maintenance of the existing vascular beds and rescue of vascular injury. In this study, we have evaluated the properties of Lin?/VEGF-R2? progenitor cells isolated from the mouse bone marrow (BM) and further studied their distribution and integration in an animal model of laser-induced retinal vascular injury. Lin?/VEGF-R2? cells were enriched from C57BL/6 mice BM using magnetic cell sorting with hematopoietic lineage (Lin) depletion followed by VEGF-R2 positive selection. Lin?/VEGF-R2? BM cells were characterized using flow cytometry and immunocytochemistry and further tested for colony formation during culture and tube formation on Matrigel. Lin?/VEGF-R2? BM cells possessed typical EPC properties such as forming cobble-stone shaped colonies after 3 to 4 weeks of culture, CD34? expression, take up of Dil-acLDL and binding to Ulex europaeus agglutinin. However, they did not form tube-like structures on Matrigel. The progenitor cells retained their phenotype over extended period of culture. After intravitreal transplantation in eyes subjected to the laser-induced retinal vascular injury, some Lin?/VEGF-R2? cells were able to integrate into the damaged retinal vasculature but the level of cell integration seemed less efficient when compared with previous reports in which EPCs from the human PB were employed. Our results indicate that Lin?/VEGF-R2? cells isolated from the mouse BM share some similarities to EPCs from the human PB but most of them are at a very early stage of maturation and remain quiescent during culture and after intravitreal transplantation. PMID:23771478

  19. Automatic detection and quantitative analysis of cells in the mouse primary motor cortex

    NASA Astrophysics Data System (ADS)

    Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui

    2014-09-01

    Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-?m voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.

  20. Variable Bone Fragility Associated With an Amish COL1A2 Variant and a Knock-in Mouse Model

    PubMed Central

    Daley, Ethan; Streeten, Elizabeth A; Sorkin, John D; Kuznetsova, Natalia; Shapses, Sue A; Carleton, Stephanie M; Shuldiner, Alan R; Marini, Joan C; Phillips, Charlotte L; Goldstein, Steven A; Leikin, Sergey; McBride, Daniel J

    2010-01-01

    Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z-scores demonstrated that 73% had moderate to severe disease (less than −2), 23% had mild disease (−1 to −2), and 4% were in the unaffected range (greater than −1). A line of knock-in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F1 lines of knock-in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole-bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock-in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. © 2010 American Society for Bone and Mineral Research PMID:19594296

  1. Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development.

    PubMed

    Geng, Xin; Cha, Boksik; Mahamud, Md Riaj; Lim, Kim-Chew; Silasi-Mansat, Robert; Uddin, Mohammad K M; Miura, Naoyuki; Xia, Lijun; Simon, Alexander M; Engel, James Douglas; Chen, Hong; Lupu, Florea; Srinivasan, R Sathish

    2016-01-01

    Lymph is returned to the blood circulation exclusively via four lymphovenous valves (LVVs). Despite their vital importance, the architecture and development of LVVs is poorly understood. We analyzed the formation of LVVs at the molecular and ultrastructural levels during mouse embryogenesis and identified three critical steps. First, LVV-forming endothelial cells (LVV-ECs) differentiate from PROX1(+) progenitors and delaminate from the luminal side of the veins. Second, LVV-ECs aggregate, align perpendicular to the direction of lymph flow and establish lympho-venous connections. Finally, LVVs mature with the recruitment of mural cells. LVV morphogenesis is disrupted in four different mouse models of primary lymphedema and the severity of LVV defects correlate with that of lymphedema. In summary, we have provided the first and the most comprehensive analysis of LVV development. Furthermore, our work suggests that aberrant LVVs contribute to lymphedema. PMID:26542011

  2. Adenoviral transduction of FRET-based biosensors for cAMP in primary adult mouse cardiomyocytes.

    PubMed

    Lomas, Oliver; Brescia, Marcella; Carnicer, Ricardo; Monterisi, Stefania; Surdo, Nicoletta C; Zaccolo, Manuela

    2015-01-01

    Genetically encoded biosensors that make use of fluorescence resonance energy transfer (FRET) are important tools for the study of compartmentalized cyclic nucleotide signaling in living cells. With the advent of germ line and tissue-specific transgenic technologies, the adult mouse represents a useful tool for the study of cardiovascular pathophysiology. The use of FRET-based genetically encoded biosensors coupled with this animal model represents a powerful combination for the study of cAMP signaling in live primary cardiomyocytes. In this chapter, we describe the steps required during the isolation, viral transduction, and culture of cardiomyocytes from an adult mouse to obtain reliable expression of genetically encoded FRET biosensors for the study of cAMP signaling in living cells. PMID:25783880

  3. Primary Diffuse Large B-Cell Dural Lymphoma With Bone and Subcutaneous Tissue Involvement Mimicking Meningioma.

    PubMed

    Wang, Long; Ouayang, Taohui; Zhang, Na; Song, Zhibin; Gao, Jianwei; Li, Xuguang; Wang, Fang

    2015-09-01

    Primary dural lymphoma (PDL), a rare subtype of primary central nervous system lymphoma (PCNSL), is usually a marginal zone B-cell lymphoma or low-grade B-cell lymphoma of mucosa-associated lymphoid tissue type. Primary dural invasion by diffuse large B-cell lymphoma is extremely rare, with only a few cases reported in the literature. The authors presented an unusual case of primary dural involvement by a high-grade diffuse large B-cell lymphoma that invaded parietal bone and subcutaneous tissue. The patient received tumor complete resection and cranioplasty as well as radiotherapy and chemotherapy as adjuvant treatment after surgery. During 12 months follow-up, no tumor recurrence was found. Primary dural lymphoma should be differentially diagnosed with meningioma. Once the diagnosis of PDL is established, tumor resection and adjuvant radiation and chemotherapy may obtain relatively good prognosis. PMID:26221858

  4. A Three-dimensional Tissue Culture Model to Study Primary Human Bone Marrow and its Malignancies

    PubMed Central

    Parikh, Mukti R.; Belch, Andrew R.; Pilarski, Linda M; Kirshner, Julia

    2014-01-01

    Tissue culture has been an invaluable tool to study many aspects of cell function, from normal development to disease. Conventional cell culture methods rely on the ability of cells either to attach to a solid substratum of a tissue culture dish or to grow in suspension in liquid medium. Multiple immortal cell lines have been created and grown using such approaches, however, these methods frequently fail when primary cells need to be grown ex vivo. Such failure has been attributed to the absence of the appropriate extracellular matrix components of the tissue microenvironment from the standard systems where tissue culture plastic is used as a surface for cell growth. Extracellular matrix is an integral component of the tissue microenvironment and its presence is crucial for the maintenance of physiological functions such as cell polarization, survival, and proliferation. Here we present a 3-dimensional tissue culture method where primary bone marrow cells are grown in extracellular matrix formulated to recapitulate the microenvironment of the human bone (rBM system). Embedded in the extracellular matrix, cells are supplied with nutrients through the medium supplemented with human plasma, thus providing a comprehensive system where cell survival and proliferation can be sustained for up to 30 days while maintaining the cellular composition of the primary tissue. Using the rBM system we have successfully grown primary bone marrow cells from normal donors and patients with amyloidosis, and various hematological malignancies. The rBM system allows for direct, in-matrix real time visualization of the cell behavior and evaluation of preclinical efficacy of novel therapeutics. Moreover, cells can be isolated from the rBM and subsequently used for in vivo transplantation, cell sorting, flow cytometry, and nucleic acid and protein analysis. Taken together, the rBM method provides a reliable system for the growth of primary bone marrow cells under physiological conditions. PMID:24637629

  5. Transplantation of bone marrow-derived mesenchymal stem cells into the developing mouse eye.

    PubMed

    Lee, Eun-Shil; Yu, Song-Hee; Jang, Yu-Jin; Hwang, Dong-Youn; Jeon, Chang-Jin

    2011-10-26

    Mesenchymal stem cells (MSCs) have been studied widely for their potential to differentiate into various lineage cells including neural cells in vitro and in vivo. To investigate the influence of the developing host environment on the integration and morphological and molecular differentiation of MSCs, human bone marrow-derived mesenchymal stem cells (BM-MSCs) were transplanted into the developing mouse retina. Enhanced green fluorescent protein (GFP)-expressing BM-MSCs were transplanted by intraocular injections into mice, ranging in ages from 1 day postnatal (PN) to 10 days PN. The survival dates ranged from 7 days post-transplantation (DPT) to 28DPT, at which time an immunohistochemical analysis was performed on the eyes. The transplanted BM-MSCs survived and showed morphological differentiation into neural cells and some processes within the host retina. Some transplanted cells expressed microtubule associated protein 2 (MAP2ab, marker for mature neural cells) or glial fibrillary acid protein (GFAP, marker for glial cells) at 5PN 7DPT. In addition, some transplanted cells integrated into the developing retina. The morphological and molecular differentiation and integration within the 5PN 7DPT eye was greater than those of other-aged host eye. The present findings suggest that the age of the host environment can strongly influence the differentiation and integration of BM-MSCs. PMID:22096261

  6. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    NASA Technical Reports Server (NTRS)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  7. Genetic modification of mouse bone marrow by lentiviral vector-mediated delivery of HPRT shRNA confers chemoprotection against 6-thioguanine cytotoxicity

    PubMed Central

    Hacke, Katrin; Treger, Janet A.; Bogan, Brooke T.; Schiestl, Robert H.; Kasahara, Noriyuki

    2014-01-01

    We have recently developed a novel and highly efficient strategy that exclusively employs the purine analog 6-thioguanine (6TG) for both pre-transplant conditioning and post-transplant chemoselection of hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient bone marrow (BM). In a mouse BM transplant model, combined 6TG preconditioning and in vivo chemoselection consistently achieved >95% engraftment of HPRT-deficient donor BM and long-term reconstitution of histologically and immunophenotypically normal hematopoiesis in both primary and secondary recipients, without significant toxicity and in the absence of any other cytotoxic conditioning regimen. In order to translate this strategy for combined 6TG conditioning and chemoselection into a clinically feasible approach, it is necessary to develop methods for genetic modification of normal HSC to render them HPRT-deficient and thus 6TG-resistant. Here we investigated a strategy to reduce HPRT expression and thereby confer protection against 6TG myelotoxicity to primary murine bone marrow cells by RNA interference (RNAi). Accordingly, we constructed and validated a lentiviral gene transfer vector expressing short-hairpin RNA (shRNA) that targets the murine HPRT gene. Our results showed that lentiviral vector-mediated delivery of HPRT-targeted shRNA could achieve effective and long-term reduction of HPRT expression. Furthermore, in both an established murine cell line as well as in primary murine bone marrow cells, lentiviral transduction with HPRT-targeted shRNA was associated with enhanced resistance to 6TG cytotoxicity in vitro. Hence this represents a translationally feasible method to genetically engineer HSC for implementation of 6TG-mediated preconditioning and in vivo chemoselection. PMID:23769104

  8. High MN1 expression increases the in vitro clonogenic activity of primary mouse B-cells.

    PubMed

    Numata, Masashi; Yener, Mehmet Deniz; Ekmeki, Sema S?rma; Ayd?n, Mge; Grosveld, Gerard; Cardone, Monica; Terranova, Sabrina; Geltink, Ramon Klein; zbek, U?ur; zelik, Emrah; Gle, a?r?; Anak, Sema; Karaman, Serap; ztrk, Glyz; Akb?y?k, Meral; Kandilci, Ayten

    2015-08-01

    The MN1 (Meningioma 1) gene is overexpressed in certain subtypes of acute myeloid leukemia (AML) and high levels of MN1 expression in mouse bone marrow cells results in myeloid leukemia. We showed that compared with control bone marrow (BM) MN1 expression was increased (2-fold or more) in 29 out of 73 (40%) pediatric B-cell acute lymphoblastic leukemia (B-ALL) patient BM. Additional analysis of MN1 expression in sub-groups within our cohort carrying different chromosome translocations showed that carriers of the good prognostic marker t(12;21)(TEL-AML1) (n=27) expressed significantly more MN1 than both healthy controls (n=9) (P=0.02) and the group carrying the t(9;22)(BCR-ABL) (n=9) (P=0.001). In addition, AML1 expression was also upregulated in 31 out of 45 (68%) B-ALL patient BM compared with control and there was a significant correlation between MN1 and AML1 expression (r=0.3552, P=0.0167). Retroviral MN1 overexpression increased the colony forming activity of mouse Pro-B/Pre-B cells in vitro. Our results suggest that deregulated MN1 expression contributes to the pathogenesis of pediatric B-ALL. Further investigation into the clinical and biological significance of elevated MN1 expression in TEL-AML1(positive) leukemia might provide insight into additional molecular mechanisms contributing to B-ALL and may lead to improved treatment options for patients. PMID:26111797

  9. Retroviral-mediated gene transfer and expression of human phenylalanine hydroxylase in primary mouse hepatocytes

    SciTech Connect

    Peng, H.; Armentano, D.; Mackenzie-Graham, L.; Shen, R.F.; Darlington, G.; Ledley, F.D.; Woo, S.L.C. )

    1988-11-01

    Genetic therapy for phenylketonuria (severe phenylalanine hydroxylase deficiency) may require introduction of a normal phenylalanine hydroxylase gene into hepatic cells of patients. The authors report development of a recombinant retrovirus based on the N2 vector for gene transfer and expression of human phenylalanine hydroxylase cDNA in primary mouse hepatocytes. This construct contains an internal promoter of the human {alpha}{sub 1}-antitrypsin gene driving transcription of the phenylalanine hydroxylase cDNA. Primary mouse hepatocytes were isolated from newborn mice, infected with the recombinant virus, and selected for expression of the neomycin-resistance gene. Hepatocytes transformed with the recombinant virus contained high levels of human phenylalanine hydroxylase mRNA transcripts originating from the retroviral and internal promoters. These results demonstrate that the transcriptional regulatory elements of the {alpha}{sub 1} antitrypsin gene retain their tissue-specific function in the recombinant provirus and establish a method for efficient transfer and high-level expression of human phenylalanine hydroxylase in primary hepatocytes.

  10. Long-term primary culture of mouse mammary tumor cells: production of virus.

    PubMed

    Young, L J; Cardiff, R D; Ashley, R L

    1975-05-01

    Long-term primary cultures of mouse mammary tumor cells proved an excellent source of mouse mammary tumor virus (MMTV). Virus purified from these primary cultures had the same morphologic biochemical, immunologic, and biologic characteristics as MMTV. Quantitation of MMTV-protein equivalents released into the medium was measured by the radioimmunoassay for MMTV. Peak production levels were 20-40 mug MMTV protien equivalents/75-cm-2 flask/24 hours. These cultures produced MMTV for as long as 90 days. MMTV cultivation depended on the initial cell-plating density and hormones. Maximal MMTV release was obtained at a plating density of 1 times 10-6 cells/cm-2 in the presence of insulin and hydrocortisone. Insulin alone gave basal levels of MMTV, and hydrocortisone alone increased MMTV release only three-fold, but insulin and hydrocortisone together effected an eightfold increase in MMTV release. This suggested that hydrocortisone had a primary effect on MMTV release and insulin acted synergistically with hydrocortisone to maximize MMTV release. PMID:165313

  11. Primary Hyperoxaluria Diagnosed Based on Bone Marrow Biopsy in Pancytopenic Adult with End Stage Renal Disease

    PubMed Central

    Nematollahi, Pardis; Mohammadizadeh, Fereshteh

    2015-01-01

    Inborn errors of metabolism cause increase of metabolites in serum and their deposition in various organs including bone marrow. Primary hyperoxaluria (PH) is a rare inborn error in the pathway of glyoxylate metabolism which causes excessive oxalate production. The disease is characterized by widespread deposition of calcium oxalate (oxalosis) in multiple organs. Urinary tract including renal parenchyma is the initial site of deposition followed by extrarenal organs such as bone marrow. This case report introduces a 54-year-old woman with end stage renal disease presenting with debilitating fatigue and pancytopenia. The remarkable point in her past medical history was recurrent episodes of nephrolithiasis, urolithiasis, and urinary tract infection since the age of 5 years and resultant end stage renal disease in adulthood in the absence of appropriate medical evaluation and treatment. She had an unsuccessful renal transplantation with transplant failure. The patient underwent bone marrow biopsy for evaluation of pancytopenia. Microscopic study of bone marrow biopsy led to the diagnosis of primary hyperoxaluria. PMID:26634160

  12. An absolute vascular milieu for primary bone graft in aesthetic nasal reconstruction.

    PubMed

    Gupta, Ashok K; Jacob, Vinay

    2004-01-01

    Restoration of a composite nasal defect with an aesthetically acceptable vascularized full-thickness soft tissue cover and a primary bone graft in a surgically unscarred area at the same stage requires that the flap have a complete formal inset from all the sides, for enhancement of the milieu interior. This article addresses such a situation, which required the use of a cantilever bone graft simultaneously with an interpolated midline forehead flap based on the supratrochlear vessel and transferred on a deepithelialized bridge segment, which allowed an absolute inset from all the sides. The eventual aesthetic outcome was satisfactory after a secondary surgery for nasal tip correction using conchal cartilage graft for tip framework. The procedure has allowed placement of the bone graft in an unscarred bed, with a complete inset of the vascularized full-thickness soft tissue cover. This provided the graft with the ideal vascular milieu for survival and consolidation and achieved an aesthetically acceptable soft tissue reconstruction of the nose with minimal donor-site morbidity. It obviated the need for the staged procedures and provided a secure vascular milieu for the primary bone graft. PMID:15383888

  13. Adenosine A2A receptors play an active role in mouse bone marrow-derived mesenchymal stem cell development

    PubMed Central

    Katebi, Majid; Soleimani, Mansooreh; Cronstein, Bruce N.

    2009-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) play a role in wound healing and tissue repair and may also be useful for organ regeneration. As we have demonstrated previously that A2A adenosine receptors (A2AR) promote tissue repair and wound healing by stimulating local repair mechanisms and enhancing accumulation of endothelial progenitor cells, we investigated whether A2AR activation modulates BM-MSC proliferation and differentiation. BM-MSCs were isolated and cultured from A2A-deficient and ecto-5?nucleotidase (CD73)-deficient female mice; the MSCs were identified and quantified by a CFU-fibroblast (CFU-F) assay. Procollagen ?2 type I expression was determined by Western blotting and immunocytochemistry. MSC-specific markers were examined in primary cells and third-passage cells by cytofluorography. PCR and real time-PCR were used to quantitate adenosine receptor and CD73 expression. There were significantly fewer CFU-Fs in cultures of BM-MSCs from A2AR knockout (KO) mice or BM-MSCs treated with the A2AR antagonist ZM241385, 1 ?M. Similarly, there were significantly fewer procollagen ?2 type I-positive MSCs in cultures from A2AR KO and antagonist-treated cultures as well. In late passage cells, there were significantly fewer MSCs from A2A KO mice expressing CD90, CD105, and procollagen type I (P<0.05 for all; n=3). These findings indicate that adenosine and adenosine A2AR play a critical role in promoting the proliferation and differentiation of mouse BM-MSCs. PMID:19056861

  14. Cytokine response in mouse bone marrow derived macrophages after infection with pathogenic and non-pathogenic Rift Valley fever virus.

    PubMed

    Roberts, Kimberly K; Hill, Terence E; Davis, Melissa N; Holbrook, Michael R; Freiberg, Alexander N

    2015-07-01

    Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection. PMID:25759029

  15. Imaging Primary Mouse Sarcomas After Radiation Therapy Using Cathepsin-Activatable Fluorescent Imaging Agents

    SciTech Connect

    Cuneo, Kyle C.; Mito, Jeffrey K.; Javid, Melodi P.; Ferrer, Jorge M.; Kim, Yongbaek; Lee, W. David; Bawendi, Moungi G.; Brigman, Brian E.; Kirsch, David G.

    2013-05-01

    Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.

  16. Primary Neoplasms of Bones in Mice: Retrospective Study and Review of Literature

    PubMed Central

    Kavirayani, A. M.; Sundberg, J. P.; Foreman, O.

    2011-01-01

    To compare and summarize the mechanisms, frequencies of occurrence, and classification schemes of spontaneous, experimental, and genetically engineered, mouse skeletal neoplasms, the literature was reviewed and archived case material at The Jackson Laboratory examined. The frequency of occurrence of spontaneous bone neoplasms was less than 1% for most strains, with the exceptions of osteomas in CF-1 (5.5% and 10% in two studies) and OF-1 outbred strains (35%), and osteosarcomas in NOD/ShiLtJ (11.5%) and NOD derived (7.1%) mice. The frequency was 100% for osteochondromas induced by conditional inactivation of exostoses (multiple) 1 (Ext1) in chondrocytes, osteosarcomas induced by tibial intramedullary inoculation of Moloneys murine sarcoma virus, and osteosarcomas induced by conditional inactivation of Trp53-with or without inactivation of Rb1-in osteoblast precursors. Spontaneous osteogenic neoplasms were more frequent than spontaneous cartilaginous and vascular types. Malignant neoplasms were more frequent than benign ones. The age of occurrence for spontaneous neoplasms ranged from 37 to 720 (Mean 316.35) days for benign, and 35 to 990 (Mean 299.28) days for malignant neoplasms. In genetically engineered mice, the average age of occurrence ranged from 28 to 70 days for benign, and from 35 to 690 days for malignant neoplasms. Histologically, non-osteogenic neoplasms were similar across strains and mutant stocks; osteogenic neoplasms exhibited greater diversity. This comparison and summarization of mouse bone neoplasms provides valuable information for the selection of strains to create, compare, and validate models of bone neoplasms. PMID:21343597

  17. Ex vivo 3D osteocyte network construction with primary murine bone cells

    PubMed Central

    Sun, Qiaoling; Gu, Yexin; Zhang, Wenting; Dziopa, Leah; Zilberberg, Jenny; Lee, Woo

    2015-01-01

    Osteocytes reside as three-dimensionally (3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because: (1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and (2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to: (1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and (2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to: (1) distribute and entrap cells within the interstitial spaces between the microbeads and (2) maintain average cell-to-cell distance to be about 19 m. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions (SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of: (1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes, (2) studying physiological functions of 3D-networked osteocytes with in vitro convenience, and (3) developing clinically relevant human bone disease models. PMID:26421212

  18. Primary leiomyosarcoma of extragnathic bones. Case report and review of literature.

    PubMed

    von Hochstetter, A R; Eberle, H; Rttner, J R

    1984-05-15

    In a 60-year-old man, a swelling anteromedially just below the knee led to the discovery of an intraosseous leiomyosarcoma. It is the 13th documented case of primary leiomyosarcoma of bone outside the facial skeleton. Clinical and pathologic findings, modes of treatment and therapeutic results are reviewed, and theories of histogenesis discussed. As to the latter, ultrastructural features in our case support the pleuripotent mesenchymal rather than the vascular smooth muscle origin. PMID:6584196

  19. Extensive primary Ewings' sarcoma in the greater wing of the sphenoid bone.

    PubMed

    Apostolopoulos, Kostas; Ferekidis, Eleftherios

    2003-01-01

    We describe a rare case of an extensive primary cranial Ewing's sarcoma located in the greater wing of the sphenoid bone with extension to the orbit, the endocranium, the parapharyngeal and infratemporal space. The patient presented with diplopia, anosmia and prolapse of the left eye. He was given chemo- and radiotherapy and was free of symptoms on re-examination 1.5 years later. The prognosis of Ewing's sarcoma in the absence of surgery is uncertain, but prompt treatment appears to have a satisfactory therapeutic outcome. In the future, more cases should be studied in order to investigate the biological behaviour of a primary cranial Ewing's sarcoma. PMID:14564101

  20. Primary amines protect against retinal degeneration in mouse models of retinopathies

    PubMed Central

    Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof

    2011-01-01

    Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardts and age-related retinal degeneration. PMID:22198730

  1. Hydrophobically Modified siRNAs Silence Huntingtin mRNA in Primary Neurons and Mouse Brain.

    PubMed

    Alterman, Julia F; Hall, Lauren M; Coles, Andrew H; Hassler, Matthew R; Didiot, Marie-Cecile; Chase, Kathryn; Abraham, Jasmin; Sottosanti, Emily; Johnson, Emily; Sapp, Ellen; Osborn, Maire F; Difiglia, Marian; Aronin, Neil; Khvorova, Anastasia

    2015-01-01

    Applications of RNA interference for neuroscience research have been limited by a lack of simple and efficient methods to deliver oligonucleotides to primary neurons in culture and to the brain. Here, we show that primary neurons rapidly internalize hydrophobically modified siRNAs (hsiRNAs) added directly to the culture medium without lipid formulation. We identify functional hsiRNAs targeting the mRNA of huntingtin, the mutation of which is responsible for Huntington's disease, and show that direct uptake in neurons induces potent and specific silencing in vitro. Moreover, a single injection of unformulated hsiRNA into mouse brain silences Htt mRNA with minimal neuronal toxicity. Thus, hsiRNAs embody a class of therapeutic oligonucleotides that enable simple and straightforward functional studies of genes involved in neuronal biology and neurodegenerative disorders in a native biological context. PMID:26623938

  2. Live-Cell Imaging of Phagosome Motility in Primary Mouse RPE Cells.

    PubMed

    Hazim, Roni; Jiang, Mei; Esteve-Rudd, Julian; Diemer, Tanja; Lopes, Vanda S; Williams, David S

    2016-01-01

    The retinal pigment epithelium (RPE) is a post-mitotic epithelial monolayer situated between the light-sensitive photoreceptors and the choriocapillaris. Given its vital functions for healthy vision, the RPE is a primary target for insults that result in blinding diseases, including age-related macular degeneration (AMD). One such function is the phagocytosis and digestion of shed photoreceptor outer segments. In the present study, we examined the process of trafficking of outer segment disk membranes in live cultures of primary mouse RPE, using high speed spinning disk confocal microscopy. This approach has enabled us to track phagosomes, and determine parameters of their motility, which are important for their efficient degradation. PMID:26427485

  3. Adherent primary cultures of mouse intercostal muscle fibers for isolated fiber studies.

    PubMed

    Robison, Patrick; Hernndez-Ochoa, Erick O; Schneider, Martin F

    2011-01-01

    Primary culture models of single adult skeletal muscle fibers dissociated from locomotor muscles adhered to glass coverslips are routine and allow monitoring of functional processes in living cultured fibers. To date, such isolated fiber cultures have not been established for respiratory muscles, despite the fact that dysfunction of core respiratory muscles leading to respiratory arrest is the most common cause of death in many muscular diseases. Here we present the first description of an adherent culture system for single adult intercostal muscle fibers from the adult mouse. This system allows for monitoring functional properties of these living muscle fibers in culture with or without electrical field stimulation to drive muscle fiber contraction at physiological or pathological respiratory firing patterns. We also provide initial characterization of these fibers, demonstrating several common techniques in this new model system in the context of the established Flexor Digitorum Brevis muscle primary culture model. PMID:21869860

  4. RhoA/ROCK downregulates FPR2-mediated NADPH oxidase activation in mouse bone marrow granulocytes.

    PubMed

    Filina, Julia V; Gabdoulkhakova, Aida G; Safronova, Valentina G

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) express the high and low affinity receptors to formylated peptides (mFPR1 and mFPR2 in mice, accordingly). RhoA/ROCK (Rho activated kinase) pathway is crucial for cell motility and oxidase activity regulated via FPRs. There are contradictory data on RhoA-mediated regulation of NADPH oxidase activity in phagocytes. We have shown divergent Rho GTPases signaling via mFPR1 and mFPR2 to NADPH oxidase in PMNs from inflammatory site. The present study was aimed to find out the role of RhoA/ROCK in the respiratory burst activated via mFPR1 and mFPR2 in the bone marrow PMNs. Different kinetics of RhoA activation were detected with 0.1?M fMLF and 1?M WKYMVM operating via mFPR1 and mFPR2, accordingly. RhoA was translocated in fMLF-activated cells towards the cell center and juxtamembrane space versus uniform allocation in the resting cells. Specific inhibition of RhoA by CT04, Rho inhibitor I, weakly depressed the respiratory burst induced via mFPR1, but significantly increased the one induced via mFPR2. Inhibition of ROCK, the main effector of RhoA, by Y27632 led to the same effect on the respiratory burst. Regulation of mFPR2-induced respiratory response by ROCK was impossible under the cytoskeleton disruption by cytochalasin D, whereas it persisted in the case of mFPR1 activation. Thus we suggest RhoA to be one of the regulatory and signal transduction components in the respiratory burst through FPRs in the mouse bone marrow PMNs. Both mFPR1 and mFPR2 binding with a ligand trigger the activation of RhoA. FPR1 signaling through RhoA/ROCK increases NADPH-oxidase activity. But in FPR2 action RhoA/ROCK together with cytoskeleton-linked systems down-regulates NADPH-oxidase. This mechanism could restrain the reactive oxygen species dependent damage of own tissues during the chemotaxis of PMNs and in the resting cells. PMID:24880063

  5. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    SciTech Connect

    Taguchi, Kazuhiro . E-mail: s3061@nms.ac.jp; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-05-27

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses.

  6. Primary nonunion of intertrochanteric fractures of femur: An analysis of results of valgization and bone grafting

    PubMed Central

    Dhammi, IK; Jain, AK; Singh, AP; Rehan-Ul-Haq; Mishra, P; Jain, S

    2011-01-01

    Background: Nonunion of intertrochanteric fractures is uncommon because there is excellent blood supply and good cancellous bone in the intertrochanteric region of the femur. A diagnosis of primary intertrochanteric nonunion is made when at least 15 weeks after the fracture there is radiological evidence of a fracture line, with either no callus (atrophic) or with callus that does not bridge the fracture site (hypertrophic). There is only one published series that exclusively describes seven primary nonunions of intertrochanteric fractures. The aim of the present study was to analyze the results of internal fixation, valgization with 135 dynamic hip screw (DHS), and bone grafting in patients with primary nonunion of intertrochanteric fractures. Materials and Methods: Eighteen patients with primary intertrochanteric nonunion were included in the study; 16 were male and 2 were female. The age range was 3070 years (mean: 46.9 years). The mean duration since index injury was 8.5 months (range: 418 months). As per the AO classification, the fractures were 31A 1.1 (n=1), 1.2 (n=1), 2.2 (n=3), 2.3 (n=9), and 3.3 (n=4). Three patients had hypermobile nonunion and 15 had stiff nonunion. The surgical principle was excision of pseudarthrosis, if present (n=3); freshening of the bone ends; stable fixation with 135 DHS, with good proximal purchase; bone grafting; and valgization. Results: Union was achieved in all patients at an average of 5.62 months (range: 47 months). The Harris hip score improved from 38 points preoperatively to 86 postoperatively at healing. The average limb shortening improved by 2 cm (range: 1.5 cm3 cm). There was no infection and pain at the hip at final follow-up in any of the cases. All patients were subjectively satisfied with the outcome. All were capable of full weight bearing on their affected limb. Conclusion: Union in primary nonunion of intertrochanteric fractures in physiologically young patients with a well-preserved femoral head and good bone stock can be achieved with internal fixation, valgization, and grafting procedures. PMID:22144744

  7. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis

    PubMed Central

    Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla; Oler, Andrew J.; Stübig, Thomas; Prassolov, Vladimir; Fehse, Boris; Kozak, Christine A.; Kröger, Nicolaus; Stocking, Carol

    2014-01-01

    The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdcscid and Il2rgnull alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation. PMID:24912157

  8. Establishment of primary cultures for mouse ameloblasts as a model of their lifetime

    SciTech Connect

    Suzawa, Tetsuo . E-mail: suzawa@dent.showa-u.ac.jp; Itoh, Nao; Takahashi, Naoyuki; Katagiri, Takenobu; Morimura, Naoko; Kobayashi, Yasuna; Yamamoto, Toshinori; Kamijo, Ryutaro

    2006-07-07

    To understand how the properties of ameloblasts are spatiotemporally regulated during amelogenesis, two primary cultures of ameloblasts in different stages of differentiation were established from mouse enamel epithelium. Mouse primary ameloblasts (MPAs) prepared from immature enamel epithelium (MPA-I) could proliferate, whereas those from mature enamel epithelium (MPA-M) could not. MPA-M but not MPA-I caused apoptosis during culture. The mRNA expression of amelogenin, a marker of immature ameloblasts, was down-regulated, and that of enamel matrix serine proteiase-1, a marker of mature ameloblasts, was induced in MPA-I during culture. Using green fluorescence protein as a reporter, a visualized reporter system was established to analyze the promoter activity of the amelogenin gene. The region between -1102 bp and -261 bp was required for the reporter expression in MPA-I. These results suggest that MPAs are valuable in vitro models for investigation of ameloblast biology, and that the visualized system is useful for promoter analysis in MPAs.

  9. Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes

    PubMed Central

    Hwang, Geun Hye; Jeon, Yu Jin; Han, Ho Jae; Park, Soo Hyun; Baek, Kyoung Min; Chang, Woochul; Kim, Joong Sun; Kim, Lark Kyun; Lee, You-Mie; Lee, Sangkyu; Bae, Jong-Sup; Jee, Jun-Goo

    2015-01-01

    Butylated hydroxyanisole (BHA) is a synthetic phenolic compound consisting of a mixture of two isomeric organic compounds: 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. We examined the effect of BHA against hydrogen peroxide (H2O2)-induced apoptosis in primary cultured mouse hepatocytes. Cell viability was significantly decreased by H2O2 in a dose-dependent manner. Additionally, H2O2 treatment increased Bax, decreased Bcl-2, and promoted PARP-1 cleavage in a dose-dependent manner. Pretreatment with BHA before exposure to H2O2 significantly attenuated the H2O2-induced decrease of cell viability. H2O2 exposure resulted in an increase of intracellular reactive oxygen species (ROS) generation that was significantly inhibited by pretreatment with BHA or N-acetyl-cysteine (NAC, an ROS scavenger). H2O2-induced decrease of cell viability was also attenuated by pretreatment with BHA and NAC. Furthermore, H2O2-induced increase of Bax, decrease of Bcl-2, and PARP-1 cleavage was also inhibited by BHA. Taken together, results of this investigation demonstrated that BHA protects primary cultured mouse hepatocytes against H2O2-induced apoptosis by inhibiting ROS generation. PMID:25798044

  10. Chemokine-Targeted Mouse Models of Human Primary and Metastatic Colorectal Cancer

    PubMed Central

    Chen, Huanhuan Joyce; Sun, Jian; Huang, Zhiliang; Hou, Harry; Arcilla, Myra; Rakhilin, Nikolai; Joe, Daniel J.; Choi, Jiahn; Gadamsetty, Poornima; Milsom, Jeff; Nandakumar, Govind; Longman, Randy; Zhou, Xi Kathy; Edwards, Robert; Chen, Jonlin; Chen, Kai Yuan; Bu, Pengcheng; Wang, Lihua; Xu, Yitian; Munroe, Robert; Abratte, Christian; Miller, Andrew D.; Gm?, Zeynep H.; Shuler, Michael; Nishimura, Nozomi; Edelmann, Winfried; Shen, Xiling; Lipkin, Steven M.

    2015-01-01

    Current orthotopic xenograft models of human colorectal cancer (CRC) require surgery and do not robustly form metastases in the liver, the most common site clinically. CCR9 traffics lymphocytes to intestine and colorectum. We engineered use of the chemokine receptor CCR9 in CRC cell lines and patient-derived cells to create primary gastrointestinal (GI) tumors in immunodeficient mice by tail-vein injection rather than surgery. The tumors metastasize inducibly and robustly to the liver. Metastases have higher DKK4 and NOTCH signaling levels and are more chemoresistant than paired sub-cutaneous xenografts. Using this approach, we generated 17 chemokine-targeted mouse models (CTMMs) that recapitulate the majority of common human somatic CRC mutations. We also show that primary tumors can be modeled in immunocompetent mice by microinjecting CCR9-expressing cancer cell lines into early-stage mouse blastocysts, which induces central immune tolerance. We expect that CTMMs will facilitate investigation of the biology of CRC metastasis and drug screening. PMID:26006007

  11. Determination of Fatty Acid Oxidation and Lipogenesis in Mouse Primary Hepatocytes.

    PubMed

    Akie, Thomas E; Cooper, Marcus P

    2015-01-01

    Lipid metabolism in liver is complex. In addition to importing and exporting lipid via lipoproteins, hepatocytes can oxidize lipid via fatty acid oxidation, or alternatively, synthesize new lipid via de novo lipogenesis. The net sum of these pathways is dictated by a number of factors, which in certain disease states leads to fatty liver disease. Excess hepatic lipid accumulation is associated with whole body insulin resistance and coronary heart disease. Tools to study lipid metabolism in hepatocytes are useful to understand the role of hepatic lipid metabolism in certain metabolic disorders. In the liver, hepatocytes regulate the breakdown and synthesis of fatty acids via ?-fatty oxidation and de novo lipogenesis, respectively. Quantifying metabolism in these pathways provides insight into hepatic lipid handling. Unlike in vitro quantification, using primary hepatocytes, making measurements in vivo is technically challenging and resource intensive. Hence, quantifying ?-fatty acid oxidation and de novo lipogenesis in cultured mouse hepatocytes provides a straight forward method to assess hepatocyte lipid handling. Here we describe a method for the isolation of primary mouse hepatocytes, and we demonstrate quantification of ?-fatty acid oxidation and de novo lipogenesis, using radiolabeled substrates. PMID:26382148

  12. Analysis of differences in bone removal during femoral box osteotomy for primary total knee arthroplasty

    PubMed Central

    GRACEFFA, ANGELO; INDELLI, PIER FRANCESCO; BASNETT, KAITLYN; MARCUCCI, MASSIMILIANO

    2014-01-01

    Purpose this study was conducted to compare the quantity of intercondylar bone removed during femoral box osteotomy for implantation of three contemporary posterior stabilized (PS) total knee arthroplasty designs: Sigma PS (DePuy), Vanguard (Biomet) and Persona (Zimmer). Methods we compared the maximum volumetric bone resection required for the housing of the PS mechanism of these three designs. Bone removal by each PS box cutting jig was three-dimensionally measured. The differences between the three designs were analyzed by the Kruskal-Wallis test. The Mann-Whitney U-test was used for pairwise comparisons. The level of significance was set at p<0.05. Results for small-size implants, the average box osteotomy volume of Persona was significantly smaller than the Vanguard and Sigma PS volumes (p=0.003). The mean difference between Vanguard and Sigma PS (p=0.01) was also significant. For medium size implants, the mean difference between Persona and Sigma PS (p=0.008) and the mean difference between Vanguard and Sigma PS (p=0.01) were statistically significant. For large size implants, the mean difference between Vanguard and Sigma PS (p=0.01) and the mean difference between Sigma PS and Persona (p=0.008) were statistically significant. Conclusions irrespective of implant size, the Persona cutting jig always resected significantly less bone than did Vanguard and Sigma PS. Clinical Relevance although this study does not establish any clinical relevance of removing more or less bone at primary TKA, its results suggest that if a PS design is indicated, it is preferable to select a model which resects less distal femoral bone. PMID:25606547

  13. Oxidative stress and antioxidant status in primary bone and soft tissue sarcoma

    PubMed Central

    2011-01-01

    Background Oxidative stress is characterised by an increased level of reactive oxygen species (ROS) that disrupts the intracellular reduction-oxidation (redox) balance and has been implicated in various diseases including cancer. Malignant tumors of connective tissue or sarcomas account for approximately 1% of all cancer diagnoses in adults and around 15% of paediatric malignancies per annum. There exists no information on the alterations of oxidant/antioxidant status of sarcoma patients in literature. This study was aimed to determine the levels of oxidative stress and antioxidant defence in patients with primary bone and soft tissue sarcoma and to investigate if there exists any significant differences in these levels between both the sarcomas. Methods The study cohort consisted of 94 subjects; 20 soft tissue sarcoma, 27 primary bone sarcoma and 47 healthy controls. Malondialdehyde (MDA) and protein carbonyls were determined to assess their oxidative stress levels while antioxidant status was evaluated using catalase (CAT), superoxide dismutase (SOD), thiols and trolox equivalent antioxidant capacity (TEAC). Results Sarcoma patients showed significant increase in plasma and urinary MDA and serum protein carbonyl levels (p < 0.05) while significant decreases were noted in TEAC, thiols, CAT and SOD levels (p < 0.05). No significant difference in oxidative damage was noted between both the sarcomas (p > 0.05). Conclusions In conclusion, an increase in oxidative stress and decrease in antioxidant status is observed in both primary bone and soft tissue sarcomas with a similar extent of damage. This study offers the basis for further work on whether the manipulation of redox balance in patients with sarcoma represents a useful approach in the design of future therapies for bone disease. PMID:21871117

  14. Isolation, purification and labeling of mouse bone marrow neutrophils for functional studies and adoptive transfer experiments.

    PubMed

    Swamydas, Muthulekha; Lionakis, Michail S

    2013-01-01

    Neutrophils are critical effector cells of the innate immune system. They are rapidly recruited at sites of acute inflammation and exert protective or pathogenic effects depending on the inflammatory milieu. Nonetheless, despite the indispensable role of neutrophils in immunity, detailed understanding of the molecular factors that mediate neutrophils' effector and immunopathogenic effects in different infectious diseases and inflammatory conditions is still lacking, partly because of their short half life, the difficulties with handling of these cells and the lack of reliable experimental protocols for obtaining sufficient numbers of neutrophils for downstream functional studies and adoptive transfer experiments. Therefore, simple, fast, economical and reliable methods are highly desirable for harvesting sufficient numbers of mouse neutrophils for assessing functions such as phagocytosis, killing, cytokine production, degranulation and trafficking. To that end, we present a reproducible density gradient centrifugation-based protocol, which can be adapted in any laboratory to isolate large numbers of neutrophils from the bone marrow of mice with high purity and viability. Moreover, we present a simple protocol that uses CellTracker dyes to label the isolated neutrophils, which can then be adoptively transferred into recipient mice and tracked in several tissues for at least 4 hr post-transfer using flow cytometry. Using this approach, differential labeling of neutrophils from wild-type and gene-deficient mice with different CellTracker dyes can be successfully employed to perform competitive repopulation studies for evaluating the direct role of specific genes in trafficking of neutrophils from the blood into target tissues in vivo. PMID:23892876

  15. Euphorbia supina inhibits inflammatory mediators in mouse bone marrow-derived mast cells and macrophages.

    PubMed

    Chae, Hee-Sung; Song, Hyuk-Hwan; Kim, Young-Mi; Lee, Hyeong-Kyu; Oh, Sei-Ryang; Chin, Young-Won

    2015-12-01

    Euphorbia supina has been traditionally used for the treatment of furuncle and bloody diarrhea relevant to the inflammatory process. It has been proven to have a variety of pharmacological efficacies including antiarthritic, detoxification, hemostatic, and diuretic activities. RAW 264.7 macrophages and bone marrow-derived mast cells (BMMCs) were used to determine the anti-inflammatory and anti-allergic effects of E. supina (ES). NO production was assayed by measuring the nitrite content of the supernatants of cultured RAW 264.7 cells. ?-hexosaminidase, a marker of mast cell degranulation, was quantitated by spectrophotometric analysis. ELISA was used for the analysis of interleukin-6 expression, and Western blotting was used to analyze 5-LOX, iNOS, and MAPK activation. The relevant gene expression upon ES treatment was measured by RT-PCR. ES inhibited inducible nitric oxide synthase (iNOS) in RAW 264.7 cells, and IL-6 and LTC4 production in PMA- and A23187-induced BMMCs along with the downregulation of 5-LOX gene expression. Furthermore, in the present study, a decrease in p-ERK, p-JNK, and p-P38 expression, as well as the suppression of degranulation, were observed by treatment with ES. Further in vivo study revealed that ES treatment also remarkably inhibited xylene-induced mouse ear edema and MPO levels in mice ears. This study demonstrates that ES has a potential regulatory effect on the expression of inflammatory mediators through the inhibition of both the phosphorylation of MAPK signaling and the activation of degranulation. PMID:26386544

  16. Bone Marrow-Derived Nonreactive Astrocytes in the Mouse Brain After Permanent Middle Cerebral Artery Occlusion

    PubMed Central

    Tth, Zsuzsanna E.; Leker, Ronen R.; Shahar, Tal; Bratincsak, Andras; Szalayova, Ildiko; Key, Sharon; Palkovits, Mikls; Cassiani-Ingoni, Riccardo

    2011-01-01

    We studied the effect of permanent unilateral middle cerebral artery occlusion (PMCAO) on the generation of bone marrow (BM)-derived astrocytes in female mice previously transplanted with enchanced green fluorescent protein-expressing BM from male donors. In addition to an untreated PMCAO group, one group of mice also received intracerebral infusion of transforming growth factor-alpha, resulting in a decrease in the size of the infarct. Two months after PMCAO, we found a specific type of astrocyte of BM origin in the side of the injury, near the lesion. These astrocytes did not express glial fibrillary acidic protein (GFAP) by conventional fluorescence immunostaining; however, GFAP was easily detectable by tyramide signal amplification. These cells also expressed S100?, confirming their astrocytic character. Unlike the endogenous reactive astrocytes, these BM-derived astrocytes did not proliferate during the first week of ischemia and did not contribute to the glial scar formation. Transforming growth factor-alpha infusion increased the number of BM-derived astrocytes, without affecting their distribution. Interestingly, exclusively by tyramide signal amplification staining, we found that endogenous astrocytes displaying an identical morphology were also present in control mouse and human brains. Our data demonstrate that a subpopulation of nonreactive astrocytes expressing low levels of GFAP can originate from transplanted BM in the ischemic brain. We believe that these cells represent a subpopulation of astrocytes earlier considered to be GFAP negative. The high number of astrocytes with identical morphology and chemical character in control brains suggest that these type of astrocytes may have important functional role in the central nervous system that calls for further studies. PMID:20604679

  17. Constructing a multi-scan synchrotron X-ray microscope to study the function of osteocyte canaliculi in mouse bone

    NASA Astrophysics Data System (ADS)

    Nango, Nobuhito; Kubota, Shogo; Yashiro, Wataru; Momose, Atsushi; Takada, Yasunari; Matsuo, Koichi

    2012-07-01

    Formulating a multi-scan method applied to an X-ray microscope CT with synchrotron radiation, we attempted to analyze the 3D functional structure of osteocyte canaliculi inside the cortical bone of a mouse tibia. We employed a two-method combination to scan the same position of the specimen. To extract the internal bone canalicular structure, we first combined a Talbot interferometer with an X-ray microscope, and applied a differential phase imaging method to measure the absolute value of bone mineral around the canaliculi. Next, we used the X-ray microscope without the Talbot interferometer under a defocus condition, moving the specimen toward the zone plate by 6 mm. This defocus contrast method visualizes the canaliculi by emphasizing the edges of the bone. We performed CT scans by the two configurations and precisely aligned resultant 3D images so that the same position in the specimen is compared. We could extract the osteocyte canaliculi and evaluate the mineral density of their surroundings. The degree of mineralization varied for each osteocyte lacuna and canaliculus. The multi-scan microscopic X-ray CT is a powerful tool for analyzing bone mineralization.

  18. In vivo visualizing the dynamics of bone marrow stem cells in mouse retina and choroidal-retinal circulation

    NASA Astrophysics Data System (ADS)

    Wang, Heuy-Ching H.; Zwick, Harry; Edsall, Peter R.; Cheramie, Rachel D.; Lund, David J.; Stuck, Bruce

    2007-02-01

    It has recently been shown that bone marrow cells can differentiate into various lineage cells including neural cells in vitro and in vivo. Therefore it is an attractive therapeutic intervention to apply autologous bone marrow-derived stem cells that may offer neuroprotection to laser-induced retinal injuries. The purpose of this study is to develop a method with which to visualize bone marrow stem cells dynamics in mouse retinal circulation. We have used a physiological method, confocal scanning laser ophthalmoscope (SLO), to track the highly enriched stem/progenitor cells circulating in the retina. Stem cells were enriched by immunomagnetic depletion of cells committed to the T- and B lymphocytic, myeloid and erythorid lineages. CellTracker TM Green-labeled stem cells were injected into the tail veins of mice with laser-induced focal retinal injuries. Bone marrow stem cells labeled with CellTracker TM Green were visible in the retinal circulation for as long as 1 hour and 30 minutes. These studies suggest that stem cell-enriched bone marrow cells may have the ability to mobilize into laser-induced retinal injuries and possibly further proliferate, differentiate and functionally integrate into the retina.

  19. Self-deploying shape memory polymer scaffolds for grafting and stabilizing complex bone defects: A mouse femoral segmental defect study.

    PubMed

    Baker, Richard M; Tseng, Ling-Fang; Iannolo, Maria T; Oest, Megan E; Henderson, James H

    2016-01-01

    Treatment of complex bone defects places a significant burden on the US health care system. Current strategies for treatment include grafting and stabilization using internal metal plates/screws, intramedullary rods, or external fixators. Here, we introduce the use of shape memory polymer (SMP) materials for grafting and adjunct stabilization of segmental defects. Self-deploying SMP grafts and SMP sleeves capable of expanding and contracting, respectively, under intraoperative conditions were developed and evaluated in a mouse segmental defect model invivo. Integration between grafts/sleeves and native bone was assessed using x-ray radiography, microcomputed tomography, and torsional mechanical testing. We found that SMP grafts were able to integrate with the native bone after 12 weeks, maintain defect stability, and provide torsional mechanical properties comparable to an allograft alone treatment; however no gross de novo bone formation was observed. SMP sleeves did not inhibit bony bridging at the margins, and limbs treated with a sleeve/allograft combination had torsional mechanical properties comparable to limbs treated with an allograft alone. Invitro torsional and bending tests suggest sleeves may provide additional torsional stability to defects. Incorporation of shape memory into synthetic bone graft substitutes and adjunct stabilization devices is anticipated to enhance functionality of synthetic materials employed in both applications. PMID:26561935

  20. Constructing a multi-scan synchrotron X-ray microscope to study the function of osteocyte canaliculi in mouse bone

    SciTech Connect

    Nango, Nobuhito; Kubota, Shogo; Yashiro, Wataru; Momose, Atsushi; Takada, Yasunari; Matsuo, Koichi

    2012-07-31

    Formulating a multi-scan method applied to an X-ray microscope CT with synchrotron radiation, we attempted to analyze the 3D functional structure of osteocyte canaliculi inside the cortical bone of a mouse tibia. We employed a two-method combination to scan the same position of the specimen. To extract the internal bone canalicular structure, we first combined a Talbot interferometer with an X-ray microscope, and applied a differential phase imaging method to measure the absolute value of bone mineral around the canaliculi. Next, we used the X-ray microscope without the Talbot interferometer under a defocus condition, moving the specimen toward the zone plate by 6 mm. This defocus contrast method visualizes the canaliculi by emphasizing the edges of the bone. We performed CT scans by the two configurations and precisely aligned resultant 3D images so that the same position in the specimen is compared. We could extract the osteocyte canaliculi and evaluate the mineral density of their surroundings. The degree of mineralization varied for each osteocyte lacuna and canaliculus. The multi-scan microscopic X-ray CT is a powerful tool for analyzing bone mineralization.

  1. Enumeration of the colony-forming units–fibroblast from mouse and human bone marrow in normal and pathological conditions

    PubMed Central

    Kuznetsov, Sergei A.; Mankani, Mahesh H.; Bianco, Paolo; Robey, Pamela G.

    2009-01-01

    Bone marrow stromal cell populations, containing a subset of multipotential skeletal stem cells, are increasingly contemplated for use in tissue engineering and stem cell therapy, whereas their involvement in the pathogenetic mechanisms of skeletal disorders is far less recognized. We compared the concentrations of stromal clonogenic cells, colony forming units–fibroblast (CFU-Fs), in norm and pathology. Initially, culture conditions were optimized by demonstrating that fetal bovine serum heat inactivation could significantly repress colony formation. Using non-heat-inactivated fetal bovine serum, the concentration of CFU-Fs (colony-forming efficiency, CFE) ranged from 3.5 ± 1.0 to 11.5 ± 4.0 per 1 × 105 nucleated cells in five inbred mouse strains. In four transgenic lines with profound bone involvement, CFE was either significantly reduced or increased compared to wild-type littermates. In normal human donors, CFE decreased slightly with age and averaged 52.2 ± 4.1 for children and 32.3 ± 3.0 for adults. CFE was significantly altered in patients with several skeletal, metabolic, and hematological disorders: reduced in congenital generalized lipodystrophy, achondroplasia (SADDAN), pseudoachondroplasia, and Paget disease of bone and elevated in alcaptonuria and sickle cell anemia. Our findings indicate that under appropriate culture conditions, CFE values may provide useful insights into bone/bone marrow pathophysiology. PMID:19383412

  2. Bone Tumor

    MedlinePLUS

    ... most common types of primary bone cancer are: • Multiple myeloma. Multiple myeloma is the most common primary bone cancer. It ... Any bone can be affected by this cancer. Multiple myeloma affects approximately six people per 100,000 each ...

  3. Cytokine Expression Pattern in Bone Marrow Microenvironment after Allogeneic Stem Cell Transplantation in Primary Myelofibrosis.

    PubMed

    Hussein, Kais; Stucki-Koch, Angelika; Alchalby, Haefaa; Triviai, Ioanna; Kröger, Nicolaus; Kreipe, Hans

    2016-04-01

    The only curative therapy for primary myelofibrosis (PMF) is allogeneic stem cell transplantation (ASCT). However, although we know that patients can benefit from ASCT, we do not know the extent of the changes of the expression profile of cytokines and matrix modulation factors. In this first systematic analysis, we evaluated the expression profile of 103 factors before and after transplantation to identify potential biomarkers. The expression of fibrosis-, inflammation-, and angiogenesis-associated genes was analyzed in a total of 52 bone marrow biopsies: PMF patients (n = 14) before and after ASCT and, for control purposes, post-ASCT multiple myeloma patients (n = 14) and non-neoplastic hematopoiesis (n = 10). In post-ASCT PMF cases, decreased expression of tissue inhibitor of metalloproteinases (TIMP) and platelet-derived growth factor alpha (PDGFA) correlated with bone marrow remodeling and hematological remission. Expression of several other matrix factors remained at high levels and may contribute to post-ASCT remodeling. This is the first systematic analysis of cytokine expression in post-ASCT PMF bone marrow that shows that normalization of bone marrow microenvironment is paralleled by decreased expression of TIMP and PDGFA. PMID:26708839

  4. Tissue Preparation and Immunostaining of Mouse Sensory Nerve Fibers Innervating Skin and Limb Bones

    PubMed Central

    Shepherd, Andrew J.; Mohapatra, Durga P.

    2012-01-01

    Detection and primary processing of physical, chemical and thermal sensory stimuli by peripheral sensory nerve fibers is key to sensory perception in animals and humans. These peripheral sensory nerve fibers express a plethora of receptors and ion channel proteins which detect and initiate specific sensory stimuli. Methods are available to characterize the electrical properties of peripheral sensory nerve fibers innervating the skin, which can also be utilized to identify the functional expression of specific ion channel proteins in these fibers. However, similar electrophysiological methods are not available (and are also difficult to develop) for the detection of the functional expression of receptors and ion channel proteins in peripheral sensory nerve fibers innervating other visceral organs, including the most challenging tissues such as bone. Moreover, such electrophysiological methods cannot be utilized to determine the expression of non-excitable proteins in peripheral sensory nerve fibers. Therefore, immunostaining of peripheral/visceral tissue samples for sensory nerve fivers provides the best possible way to determine the expression of specific proteins of interest in these nerve fibers. So far, most of the protein expression studies in sensory neurons have utilized immunostaining procedures in sensory ganglia, where the information is limited to the expression of specific proteins in the cell body of specific types or subsets of sensory neurons. Here we report detailed methods/protocols for the preparation of peripheral/visceral tissue samples for immunostaining of peripheral sensory nerve fibers. We specifically detail methods for the preparation of skin or plantar punch biopsy and bone (femur) sections from mice for immunostaining of peripheral sensory nerve fibers. These methods are not only key to the qualitative determination of protein expression in peripheral sensory neurons, but also provide a quantitative assay method for determining changes in protein expression levels in specific types or subsets of sensory fibers, as well as for determining the morphological and/or anatomical changes in the number and density of sensory fibers during various pathological states. Further, these methods are not confined to the staining of only sensory nerve fibers, but can also be used for staining any types of nerve fibers in the skin, bones and other visceral tissue. PMID:22314687

  5. The hedgehog target Vlk genetically interacts with Gli3 to regulate chondrocyte differentiation during mouse long bone development.

    PubMed

    Probst, Simone; Zeller, Rolf; Zuniga, Aime

    2013-01-01

    Endochondral bone development is orchestrated by the spatially and temporally coordinated differentiation of chondrocytes along the longitudinal axis of the cartilage anlage. Initially, the slowly proliferating, periarticular chondrocytes give rise to the pool of rapidly dividing columnar chondrocytes, whose expansion determines the length of the long bones. The Indian hedgehog (IHH) ligand regulates both the proliferation of columnar chondrocytes and their differentiation into post-mitotic hypertrophic chondrocytes in concert with GLI3, one of the main transcriptional effectors of HH signal transduction. In the absence of Hh signalling, the expression of Vlk (vertebrate lonesome kinase, also called Pkdcc) is increased. We now show that the shortening of limb long bones in Vlk-deficient mouse embryos is aggravated by additional inactivation of Gli3. Our analysis establishes that Vlk and Gli3 synergize to control the temporal kinetics of chondrocyte differentiation during long bone development. Whereas differentiation of limb mesenchymal progenitors into chondrocytes and the initial formation of the cartilage anlagen of the limb skeleton are not altered, Vlk and Gli3 are required for the temporally coordinated differentiation of periarticular into columnar and ultimately hypertrophic chondrocytes in long bones. In limbs lacking both Vlk and Gli3, the appearance of columnar and hypertrophic chondrocytes is severely delayed and zones of morphologically distinct chondrocytes are not established until E16.5. At the molecular level, these morphological alterations are reflected by delayed activation and lowered expression of Ihh, Pth1r and Col10a1 in long bone rudiments of double mutant limbs. In summary, our genetic analysis establishes that VLK plays a role in the IHH/GLI3 interactions and that Vlk and Gli3 cooperate to regulate long bone development by modulating the temporal kinetics of establishing columnar and hypertrophic chondrocyte domains. PMID:23792766

  6. Primary Ewing's sarcoma of the squamous part of temporal bone in a young girl treated with adjuvant volumetric arc therapy.

    PubMed

    Nandi, Moujhuri; Bhattacharya, Jibak; Goswami, Suchanda; Goswami, Chanchal

    2015-01-01

    Ewing's sarcoma (ES)/peripheral primitive neuroectodermal tumors usually arise in the long bones of children and young adults. Primary ES of the cranium is unusual. Treatment involves multi-modality therapy incorporating surgery, radiotherapy and chemotherapy; outcomes are similar to those arising from long bones. We report a case of Primary ES of the squamous part of temporal bone with intracranial extension in a 9-year-old girl who was treated with surgery, chemotherapy followed by adjuvant radiotherapy by volumetric arc therapy. Post 1-year of treatment the girl is performing well in her classes. PMID:26881573

  7. Radiotherapy Combined With Androgen Deprivation for Bone Oligometastases After Primary Curative Radiotherapy for Prostate Cancer

    PubMed Central

    Wu, Jun-Xin; Lin, Li-Mei; He, Jun-Yan; Hong, Liang; Li, Jin-Luan

    2016-01-01

    Abstract To evaluate the effects and toxicity of radiotherapy (RT) combined with androgen deprivation (AD) for bone oligometastases after primary curative RT for prostate cancer (PCa). We retrospectively analyzed 30 consecutively treated PCa patients with bone oligometastases from April 2005 to July 2014. All patients underwent RT combined with AD for oligometastatic bones after curative RT for PCa. Measured outcomes included overall survival (OS) rate, local control (LC), progression-free survival (PFS), pain relief, and toxicities. Statistical analysis was performed with SPSS17.0. The median follow-up was 32.5 months (range, 0.6–50.3). The 3-year PFS and OS rates were 22.8% (95% CI, 13.4–37.5%) and 69% (95% CI, 51.7–81.1%), respectively. The number of bone oligometastases and RT schedule were found to be significantly associated with OS on univariate analysis (P < 0.05, respectively). The 3-year OS for patients with 1 and >1 metastases was 78.8% versus 42.2%, respectively (P = 0.037). The long-course RT was associated with better 3-year OS compared with short-course (76.4% vs 44.1%, P = 0.03). A total of 15 (83.3%, 15/18) patients achieved pain relief. No grade 3 toxicity was observed. Long-course RT combined with ADT was effective and well-tolerated in PCa patients with bone oligometastases after curative RT for PCa. Further randomized controlled trials are needed to corroborate the findings. PMID:26871838

  8. Culture and Identification of Mouse Bone Marrow-Derived Dendritic Cells and Their Capability to Induce T Lymphocyte Proliferation

    PubMed Central

    Wang, Wenguang; Li, Jia; Wu, Kun; Azhati, Baihetiya; Rexiati, Mulati

    2016-01-01

    Background The aim of this study was to establish a culture method for mouse dendritic cells (DCs) in vitro and observe their morphology at different growth stages and their ability to induce the proliferation of T lymphocytes. Material/Methods Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) were used in combination to induce differentiation of mouse bone marrow (BM) mononucleocytes into DCs. The derived DCs were then assessed for morphology, phenotype, and function. Results The mouse BM-derived mononucleocytes had altered cell morphology 3 days after induction by GM-CSF and IL-4 and grew into colonies. Typical dendrites appeared 8 days after induction. Many mature DCs were generated, with typical dendritic morphology observed under scanning electron microscopy. Expression levels of CD11c, a specific marker of BM-derived DCs, and of co-stimulatory molecules such as CD40, CD80, CD86, and MHC-II were elevated in the mature DCs. Furthermore, the mature DCs displayed a strong potency in stimulating the proliferation of syngenic or allogenic T lymphocytes. Conclusions Mouse BM-derived mononucleocytes cultured in vitro can produce a large number of DCs, as well as immature DCs, in high purity. The described in vitro culture method lays a foundation for further investigations of anti-tumor vaccines. PMID:26802068

  9. Culture and Identification of Mouse Bone Marrow-Derived Dendritic Cells and Their Capability to Induce T Lymphocyte Proliferation.

    PubMed

    Wang, Wenguang; Li, Jia; Wu, Kun; Azhati, Baihetiya; Rexiati, Mulati

    2016-01-01

    BACKGROUND The aim of this study was to establish a culture method for mouse dendritic cells (DCs) in vitro and observe their morphology at different growth stages and their ability to induce the proliferation of T lymphocytes. MATERIAL AND METHODS Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) were used in combination to induce differentiation of mouse bone marrow (BM) mononucleocytes into DCs. The derived DCs were then assessed for morphology, phenotype, and function. RESULTS The mouse BM-derived mononucleocytes had altered cell morphology 3 days after induction by GM-CSF and IL-4 and grew into colonies. Typical dendrites appeared 8 days after induction. Many mature DCs were generated, with typical dendritic morphology observed under scanning electron microscopy. Expression levels of CD11c, a specific marker of BM-derived DCs, and of co-stimulatory molecules such as CD40, CD80, CD86, and MHC-II were elevated in the mature DCs. Furthermore, the mature DCs displayed a strong potency in stimulating the proliferation of syngenic or allogenic T lymphocytes. CONCLUSIONS Mouse BM-derived mononucleocytes cultured in vitro can produce a large number of DCs, as well as immature DCs, in high purity. The described in vitro culture method lays a foundation for further investigations of anti-tumor vaccines. PMID:26802068

  10. Radiogallium Complex-Conjugated Bifunctional Peptides for Detecting Primary Cancer and Bone Metastases Simultaneously.

    PubMed

    Ogawa, Kazuma; Yu, Jing; Ishizaki, Atsushi; Yokokawa, Masaru; Kitamura, Masanori; Kitamura, Yoji; Shiba, Kazuhiro; Odani, Akira

    2015-08-19

    (68)Ga (T(1/2) = 68 min, a generator-produced nuclide) is an interesting radionuclide for clinical positron emission tomography (PET). Recently, it was reported that radiogallium-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated (Asp)n peptide [Ga-DOTA-(Asp)n] has great potential for bone metastases imaging. In the current study, a compound containing an aspartic acid peptide linker (D11) as a carrier to bone metastases, an RGD peptide [c(RGDfK) peptide] as a carrier to the primary cancer, and Ga-DOTA as a stable radiometal complex for imaging in one molecule, Ga-DOTA-D11-c(RGDfK), was designed, prepared, and evaluated to detect both the primary cancer and bone metastases simultaneously using (67)Ga, which is easy to handle. After DOTA-D11-c(RGDfK) was synthesized using Fmoc-based solid-phase methodology, (67)Ga-DOTA-D11-c(RGDfK) was prepared by complexing DOTA-D11-c(RGDfK) with (67)Ga. Hydroxyapatite binding assays, integrin binding assays, biodistribution experiments, and single photon emission tomography (SPECT) imaging using tumor-bearing mice were performed using (67)Ga-DOTA-D11-c(RGDfK). (67)Ga-DOTA-D11-c(RGDfK) was prepared with a radiochemical purity of >97%. In vitro, (67)Ga-DOTA-D11-c(RGDfK) had a high affinity for hydroxyapatite and αvβ3 integrin. In vivo, (67)Ga-DOTA-D11-c(RGDfK) exhibited high uptake in bone and tumor. The accumulation of (67)Ga-DOTA-D11-c(RGDfK) in tumor decreased when it was co-injected with c(RGDfK) peptide. (68)Ga-DOTA-D11-c(RGDfK) has great potential as a PET tracer for the diagnosis of both the primary cancer and bone metastases simultaneously. PMID:26087328

  11. Stimulation of osteoclast-like cell formation by Pasteurella multocida toxin from hemopoietic progenitor cells in mouse bone marrow cultures.

    PubMed Central

    Jutras, I; Martineau-Doiz, B

    1996-01-01

    The effects of purified Pasteurella multocida toxin (PMT) on osteoclast formation from hemopoietic progenitor cells were studied using an in vitro system. Mononuclear adherent mouse bone marrow cells were cultured for 7 or 14 days in the presence of PMT, or 1,25-dihydroxy-vitamin D3, or both. Mononuclear osteoclast-like cells, which are postmitotic osteoclast precursor cells, were identified as tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells possessing calcitonin receptors. Multinucleated osteoclast-like cells were TRAP-positive multinuclear cells with calcitonin receptors. The results demonstrate that, as does 1,25(OH)2D3, Pasteurella multocida toxin stimulates proliferation of adherent bone marrow mononuclear cells (progenitor cells), and their differentiation into postmitotic mononuclear osteoclast precursor cells. It also causes fusion of the latter into multinuclear osteoclasts; however, the number of osteoclasts obtained with PMT is smaller than with 1,25-dihydroxy-vitamin D3. Images Figure 1. PMID:8825991

  12. Myelointegration of titanium implants: B lymphopoiesis and hemopoietic cell proliferation in mouse bone marrow exposed to titanium implants.

    PubMed

    Rahal, M D; Delorme, D; Brnemark, P I; Osmond, D G

    2000-01-01

    Multinucleated giant cells have been observed at interfaces between bone marrow and titanium implants in mouse femurs. This raises concern that macrophage-derived factors might perturb local lymphohemopoiesis, possibly even predisposing to neoplasia in the B lymphocyte lineage. It has been found that an implant-marrow interface with associated giant cells persists for at least 1.5 years. Precursor B cells show early increases in number and proliferative activity. At later intervals, however, they do not differ significantly from controls, and there are no perturbations in spatial localization of either B lineage cells or DNA-synthesizing hemopoietic cells. The results of this investigation in mice demonstrate that, following initial marrow regeneration and fluctuating precursor B cell activity, and despite the presence of giant cells, titanium implants apparently become well-tolerated by directly apposed bone marrow cells in a lasting state of "myelointegration." PMID:10795449

  13. Cytotoxic effects of propiconazole and its metabolites in mouse and human hepatoma cells and primary mouse hepatocytes

    EPA Science Inventory

    Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...

  14. Bone mass and body composition in children and adolescents with primary hypertension: preliminary data.

    PubMed

    Pludowski, Pawel; Litwin, Mieczyslaw; Sladowska, Joanna; Antoniewicz, Jolanta; Niemirska, Anna; Wierzbicka, Aldona; Lorenc, Roman S

    2008-01-01

    Because primary hypertension (PH) is associated with calcium metabolism, it is hypothesized that PH may be related to osteoporosis risk. The study aimed to evaluate the relationship between body composition and bone strength in hypertensive adolescents. Total body scans using x-ray absorptiometry (DPX-L, GE Healthcare) were performed in 94 PH children aged 6 to 18 years (21 girls and 73 boys). References of healthy control subjects were used for the calculation of Z scores (age and gender matched), SD scores (height and gender matched), and SDs scores (weight and gender matched). Total body bone mineral density, total body bone mineral content (TBBMC), lean body mass (LBM), and fat mass (FM) were investigated. Relative bone strength index was calculated as the TBBMC:LBM ratio. As evidenced by Z scores, PH case subjects had slightly higher total body bone mineral density, TBBMC, and LBM compared with healthy subjects. Reduced LBM/body weight (BW) Z scores of -1.9+/-1.5 and -1.2+/-1.4, increased FM Z scores of +2.5+/-2.5 and +1.7+/-2.0, and increased FM/BW Z scores of +1.6+/-1.3 and +1.1+/-1.4 were noted in girls and boys compared with healthy subjects, respectively (P<0.001). When increased BW was controlled for, PH girls differed in SDs scores for LBM (-1.4+/-1.7; P<0.01), FM (+1.6+/-2.2; P<0.05), FM/BW (+0.9+/-1.0; P<0.05), and FM/LBM (+1.3+/-1.4; P<0.01) but not for total body bone mineral density (+0.2+/-1.0; P value not significant), TBBMC (-1.2+/-1.6; P=0.07), LBM/BW (-0.7+/-1.0; P=0.07), and TBBMC/LBM (-1.0+/-2.1; P value not significant), when compared with respective SDs scores of -0.3+/-1.1, +0.3+/-1.1, +0.3+/-1.0, +0.3+/-1.0, -0.2+/-1.0, -0.6+/-1.9, -0.3+/-1.0, and -0.2+/-1.0 in PH boys. In conclusion, PH adolescents had increased FM and an imbalanced relationship among BW, FM, and LBM. In PH girls, bone strength, although proper for chronological age and body height, was lower than expected for BW. PMID:17984369

  15. Positive Selection in Bone Morphogenetic Protein 15 Targets a Natural Mutation Associated with Primary Ovarian Insufficiency in Human

    PubMed Central

    Meslin, Camille; Monestier, Olivier; Di Pasquale, Elisa; Pascal, Graldine; Persani, Luca; Fabre, Stphane

    2013-01-01

    Bone Morphogenetic Protein 15 (BMP15) is a TGF?-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated with primary ovarian insufficiency (POI) in women. To investigate the evolving role of BMP15, a phylogenetic analysis of this particular TGF? family member was performed. A maximum likelihood phylogenetic tree of several TGF?/BMP family members expressed by the ovary showed that BMP15 has a very strong divergence and a rapid evolution compared to others. Moreover, among 24 mammalian species, we detected signals of positive selection in the hominidae clade corresponding to F146, L189 and Y235 residues in human BMP15. The biological importance of these residues was tested functionally after site directed-mutagenesis in a COV434 cells luciferase assay. By replacing the positively selected amino acid either by alanine or the most represented residue in other studied species, only L189A, Y235A and Y235C mutants showed a significant increase of BMP15 signaling when compared to wild type. Additionally, the Y235C mutant was more potent than wild type in inhibiting progesterone secretion of ovine granulosa cells in primary culture. Interestingly, the Y235C mutation was previously identified in association with POI in women. In conclusion, this study evidences that the BMP15 gene has evolved faster than other members of the TGF family and was submitted to a positive selection pressure in the hominidae clade. Some residues under positive selection are of great importance for the normal function of the protein and thus for female fertility. Y235 represents a critical residue in the determination of BMP15 biological activity, thus indirectly confirming its role in the onset of POI in women. PMID:24147118

  16. Altered Bone Development in a Mouse Model of Peripheral Sensory Nerve Inactivation

    PubMed Central

    Heffner, Mollie A.; Anderson, Matthew J.; Yeh, Gregory C.; Genetos, Damian C.; Christiansen, Blaine A.

    2014-01-01

    Objectives The present study sought to determine the effects of decreased peripheral sensory nerve function on skeletal development and bone metabolism in mice. Methods C57BL/6 neonatal mice were treated with capsaicin to induce peripheral sensory nerve degeneration, and compared to vehicle-treated controls at 4, 8 and 12 weeks of age. Changes in bone structure were assessed using micro-computed tomography, mechanical properties and fracture resistance were assessed using three-point bending of radii, and bone turnover was assessed using dynamic histomorphometry and serum biomarkers. Results Capsaicin treatment resulted in small but significant decreases in bone structure, particularly affecting trabecular bone. Capsaicin-treated mice exhibited lower trabecular thickness at the femoral metaphysis and L5 vertebral body compared with vehicle-treated mice. However, capsaicin- and vehicle-treated mice had similar mechanical properties and bone turnover rates. Conclusion Neonatal capsaicin treatment affected trabecular bone during development; however these small changes may not be meaningful with respect to bone strength under normal loading conditions. It is possible that capsaicin-sensitive neurons may be more important for bone under stress conditions such as increased mechanical loading or injury. Future studies will investigate this potential role of peripheral sensory nerves in bone adaptation. PMID:24583535

  17. Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones.

    PubMed

    Kavukcuoglu, N B; Patterson-Buckendahl, P; Mann, A B

    2009-08-01

    In healthy bone there is a balance between bone resorption and formation. When an imbalance occurs there is an overall loss of bone mass leading to an increased risk of fracture. The deterioration is typically accompanied by changes in the non-collagenous proteins in the bone. Osteocalcin (OC) is the most abundant noncollageneous bone matrix protein and it is believed to play a role in bone formation and resorption. Nanoindentation and Raman microspectroscopy have been used to correlate the mechanical and chemical properties of cortical bone from femora of OC -/- (osteocalcin deficient) mice and their wild-type controls (OC +/+). There are significant intra-bone variations in mechanics and crystallinity especially in the mid-cortical section for OC -/- mice compared to OC +/+ mice. Type-B carbonate substitution decreased significantly in the absence of osteocalcin and this appears to affect the hardness more than the elasticity. The results suggest that OC plays a role in the growth of apatite crystals in bone by increasing the degree of carbonate substitutions. The addition of these defects to the apatite's crystal lattice has little effect on elasticity, but does appear to reduce the bone's hardness. PMID:19627841

  18. Progression of primary pneumonic plague: A mouse model of infection, pathology, and bacterial transcriptional activity

    PubMed Central

    Lathem, Wyndham W.; Crosby, Seth D.; Miller, Virginia L.; Goldman, William E.

    2005-01-01

    Although pneumonic plague is the deadliest manifestation of disease caused by the bacterium Yersinia pestis, there is surprisingly little information on the cellular and molecular mechanisms responsible for Y. pestis-triggered pathology in the lung. Therefore, to understand the progression of this unique disease, we characterized an intranasal mouse model of primary pneumonic plague. Mice succumbed to a purulent multifocal severe exudative bronchopneumonia that closely resembles the disease observed in humans. Analyses revealed a strikingly biphasic syndrome, in which the infection begins with an antiinflammatory state in the first 24-36 h that rapidly progresses to a highly proinflammatory state by 48 h and death by 3 days. To assess the adaptation of Y. pestis to a mammalian environment, we used DNA microarray technology to analyze the transcriptional responses of the bacteria during interaction with the mouse lung. Included among the genes up-regulated in vivo are those comprising the yop-ysc type III secretion system and genes contained within the chromosomal pigmentation locus, validating the use of this technology to identify loci essential to the virulence of Y. pestis. PMID:16306265

  19. A Mouse Primary Hepatocyte Culture Model for Studies of Circadian Oscillation.

    PubMed

    Molyneux, Penny C; Pyle, Lorna A; Dillon, Martha; Harrington, Mary E

    2015-01-01

    Circadian rhythms regulate many aspects of behavior and physiological processes, and, through external signals, help an organism entrain to its environment. These rhythms are driven by circadian clocks in many cells and tissues within our bodies, and are synchronized by a central pacemaker in the brain, the suprachiasmatic nucleus. Peripheral oscillators include the liver, whose circadian clock controls persistent daily rhythms in gene expression and in liver-specific functions such as metabolic homeostasis and drug metabolism. Chronic circadian clock disruption, as in rotating shiftwork, has been linked to disorders including obesity, diabetes, and cardiovascular disease. The mouse primary hepatocyte culture model allows the examination of circadian rhythms in these cells. This article describes a transgenic mouse model that uses a bioluminescent reporter to examine the circadian properties of a core clock gene Period2. Hepatocytes are isolated using a modified collagenase perfusion technique and cultured in a sandwich configuration, then sealed in a buffered medium containing luciferin for detection of whole-culture or single-cell bioluminescence. After synchronization by a medium change, cultures demonstrate coherent circadian period and phase measures of bioluminescence from the PERIOD2::LUCIFERASE reporter. 2015 by John Wiley & Sons, Inc. PMID:26629774

  20. Platinum cytostatics influence--the primary antibody response of mouse spleen cells in vitro.

    PubMed

    Vancurov, M; Prochzkov, J; Novkov, M; Blahuta, Z

    1987-01-01

    The effects of three platinum containing cytostatic drugs--cis-DDP, CBDCA, and OXO--on in vitro primary antibody production after the treatment of mouse spleen cells with these compounds were studied. The technique of Marbrook was employed, the antibody response was assessed according to the number of plaque-forming cells (PFC) after the antigenic stimulation by sheep red blood cells (SRBC) in vitro. All of the three platinum complexes studied had inhibitory effect on antibody response at concentrations of 1 X 10(-5) to 1 X 10(-7) mol/l without affecting the viability of the mouse spleen cells. A comparison of the effectiveness of the three cytostatic drugs showed that cis-DDP was the most potent inhibitor. To obtain a similar inhibitory effect with CBDCA and OXO, concentrations 10 times as high as that in cis-DDP were required, depending on the time relation to antigenic stimulation. The lowest inhibitory effect on antibody production was observed in CBDCA. These drugs acted either after a simultaneous administration or 48 h after the antigen, i.e., at the time of maximal proliferation and differentiation of the cells. DNA synthesis must undoubtedly have been affected as well. PMID:3302736

  1. Identification and Characterization of Lineage(-)CD45(-)Sca-1(+) VSEL Phenotypic Cells Residing in Adult Mouse Bone Tissue.

    PubMed

    Nakatsuka, Ryusuke; Iwaki, Ryuji; Matsuoka, Yoshikazu; Sumide, Keisuke; Kawamura, Hiroshi; Fujioka, Tatsuya; Sasaki, Yutaka; Uemura, Yasushi; Asano, Hiroaki; Kwon, A-Hon; Sonoda, Yoshiaki

    2016-01-01

    Murine bone marrow (BM)-derived very small embryonic-like stem cells (BM VSELs), defined by a lineage-negative (Lin(-)), CD45-negative (CD45(-)), Sca-1-positive (Sca-1(+)) immunophenotype, were previously reported as postnatal pluripotent stem cells (SCs). We developed a highly efficient method for isolating Lin(-)CD45(-)Sca-1(+) small cells using enzymatic treatment of murine bone. We designated these cells as bone-derived VSELs (BD VSELs). The incidences of BM VSELs in the BM-derived nucleated cells and that of BD VSELs in bone-derived nucleated cells were 0.002% and 0.15%, respectively. These BD VSELs expressed a variety of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and endothelial cell markers. The gene expression profile of the BD VSELs was clearly distinct from those of HSCs, MSCs, and ES cells. In the steady state, the BD VSELs proliferated slowly, however, the number of BD VSELs significantly increased in the bone after acute liver injury. Moreover, green fluorescent protein-mouse derived BD VSELs transplanted via tail vein injection after acute liver injury were detected in the liver parenchyma of recipient mice. Immunohistological analyses suggested that these BD VSELs might transdifferentiate into hepatocytes. This study demonstrated that the majority of the Lin(-)CD45(-)Sca-1(+) VSEL phenotypic cells reside in the bone rather than the BM. However, the immunophenotype and the gene expression profile of BD VSELs were clearly different from those of other types of SCs, including BM VSELs, MSCs, HSCs, and ES cells. Further studies will therefore be required to elucidate their cellular and/or SC characteristics and the potential relationship between BD VSELs and BM VSELs. PMID:26595762

  2. Effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    SciTech Connect

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-02-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. /sup 51/Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras.

  3. Primary Ovarian Insufficiency Induced by Fanconi Anemia E Mutation in a Mouse Model

    PubMed Central

    Fu, Chun; Begum, Khurshida; Overbeek, Paul A.

    2016-01-01

    In most cases of primary ovarian insufficiency (POI), the cause of the depletion of ovarian follicles is unknown. Fanconi anemia (FA) proteins are known to play important roles in follicular development. Using random insertional mutagenesis with a lentiviral transgene, we identified a family with reduced fertility in the homozygous transgenic mice. We identified the integration site and found that the lentivirus had integrated into intron 8 of the Fanconi E gene (Fance). By RT-PCR and in situ hybridization, we found that Fance transcript levels were significantly reduced. The Fance homozygous mutant mice were assayed for changes in ovarian development, follicle numbers and estrous cycle. Ovarian dysplasias and a severe lack of follicles were seen in the mutant mice. In addition, the estrous cycle was disrupted in adult females. Our results suggest that POI has been induced by the Fance mutation in this new mouse model. PMID:26939056

  4. Contribution of a thymic humoral factor to the development of an immunologically competent population from cells of mouse bone marrow.

    PubMed

    Small, M; Trainin, N

    1971-09-01

    The hypothesis that cells located in mouse bone marrow can acquire immunological competence by a process that involves interaction with a noncellular component of the thymus was tested using an in vitro assay of graft-versus-host reactivity as a criterion of cell competence. When suspensions of C57BL bone marrow cells were incubated in thymus extract and injected into mice incapable of inducing a response in the graft-versus-host assay as a result of neonatal thymectomy, or adult thymectomy plus irradiation, or because of genetic similarity with the (C3H x C57BL)F(1) tissue used for challenge in the assay, competent cells were recovered from the spleens of the injected mice. The reactive cells were shown to be of bone marrow origin since immune reactivity was related to the genetic makeup of the bone marrow cells rather than that of the intermediate recipients. A thymic factor was involved in the process leading to immune reactivity by these cells, as bone marrow cells incubated in xenogeneic or syngeneic thymic extracts induced a graft-versus-host response after passage through nonresponsive mice, whereas incubation of bone marrow cells in xenogeneic lymph node or spleen extracts or in culture medium only did not lead to subsequent reactivity. Participation of peripheral lymphoid tissue seemed essential in this process since bone marrow cells tested directly after exposure to thymic extract failed to induce a graft-versus-host response. C57BL bone marrow cells exposed to thymus extract and cultured together with fragments of (C3H x C57BL)F(1) spleen tissue in vitro were competent to induce a graft-versus-host response; thus, these components would seem to be sufficient as well as necessary for the immunodifferentiation process leading to graft-versus-host activity. It is concluded that one step in the process by which bone marrow cells acquire competence vis-a-vis the graft-versus-host response depends upon a thymic agent that is noncellular and extractable, and that another stage in this process is under the influence of components found within the peripheral lymphoid tissue environment. It is suggested that differentiation of precursor cells to competence could occur by progressive development of the cells in separate compartments of the lymphoid system. PMID:15776575

  5. Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model.

    PubMed

    Bhatta, Anil; Sangani, Rajnikumar; Kolhe, Ravindra; Toque, Haroldo A; Cain, Michael; Wong, Abby; Howie, Nicole; Shinde, Rahul; Elsalanty, Mohammed; Yao, Lin; Chutkan, Norman; Hunter, Monty; Caldwell, Ruth B; Isales, Carlos; Caldwell, R William; Fulzele, Sadanand

    2016-02-15

    A balanced diet is crucial for healthy development and prevention of musculoskeletal related diseases. Diets high in fat content are known to cause obesity, diabetes and a number of other disease states. Our group and others have previously reported that activity of the urea cycle enzyme arginase is involved in diabetes-induced dysregulation of vascular function due to decreases in nitric oxide formation. We hypothesized that diabetes may also elevate arginase activity in bone and bone marrow, which could lead to bone-related complications. To test this we determined the effects of diabetes on expression and activity of arginase, in bone and bone marrow stromal cells (BMSCs). We demonstrated that arginase 1 is abundantly present in the bone and BMSCs. We also demonstrated that arginase activity and expression in bone and bone marrow is up-regulated in models of diabetes induced by HFHS diet and streptozotocin (STZ). HFHS diet down-regulated expression of healthy bone metabolism markers (BMP2, COL-1, ALP, and RUNX2) and reduced bone mineral density, bone volume and trabecular thickness. However, treatment with an arginase inhibitor (ABH) prevented these bone-related complications of diabetes. In-vitro study of BMSCs showed that high glucose treatment increased arginase activity and decreased nitric oxide production. These effects were reversed by treatment with an arginase inhibitor (ABH). Our study provides evidence that deregulation of l-arginine metabolism plays a vital role in HFHS diet-induced diabetic complications and that these complications can be prevented by treatment with arginase inhibitors. The modulation of l-arginine metabolism in disease could offer a novel therapeutic approach for osteoporosis and other musculoskeletal related diseases. PMID:26704078

  6. Surgery for Bone Cancer

    MedlinePLUS

    ... Topic Radiation therapy for bone cancer Surgery for bone cancer Surgery is the primary (main) treatment for ... filled by bone grafts or by bone cement. Bone cement: The bone cement PMMA (polymethylmethyacrylate) starts out ...

  7. Compensating for poor primary implant stability in different bone densities by varying implant geometry: a laboratory study.

    PubMed

    Mhlhenrich, S C; Heussen, N; Elvers, D; Steiner, T; Hlzle, F; Modabber, A

    2015-12-01

    The aim of this study was to determine the influence of implant diameter and length on primary stability in artificial bone blocks. In total, 240 implants of various diameters ( 3.3, 4.1, and 4.8mm) and lengths (8 and 12mm) were inserted in four artificial bone blocks of different densities (D1-D4). The primary stability for each bone block density was measured and compared with the primary stability of a narrow and short implant ( 3.3mm, length 8mm) in the next higher density block. Analysis was done by three-way ANOVA, and mean differences were determined with the 95% confidence interval. Levels of primary stability achieved by choosing the next higher diameter or length were not comparable to those of the next level of block density. However, equivalent values could be achieved by selecting the largest diameter for short and long implants in the lowest block density D4, as well as for long implants in bone type D2. The diameter of an implant has greater influence on primary stability than length. In particular, in the case of poor bone quality, a variation of implant geometry can lead to significant improvement in primary stability. PMID:26362488

  8. Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells.

    PubMed

    Kassmer, Susannah H; Bruscia, Emanuela M; Zhang, Ping-Xia; Krause, Diane S

    2012-03-01

    Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM. PMID:22162244

  9. Pattern of primary tumors and tumor-like lesions of bone in children: retrospective survey of biopsy results

    PubMed Central

    zkan, Esra Akyz; Gret, Ceren Canbey; zdemir, Zeynep Tu?ba; Yan?k, Serdar; Do?an, Meryem; Gnlta?, Aylin; Akkoca, Ay?e Neslin

    2015-01-01

    Background: Although primary bone tumors are relatively uncommon, they constitute the most important tumors in patients less than 20 years. We aimed to determine the frequencies of primary bone tumors and tumor-like lesions of bone and the anatomical sites of their occurrence. Methods: A retrospective review of histopathology reports of all bone specimens received in a private pathology laboratory in Istanbul between 2009 and 2015. Results: A total of 57 patients (aged 5 to 18 years) with a mean of 13.12 years were studied. Thirty five patients (61.4%) were males and 22 (38.6%) were females. Fifty five (94.4%) of the tumors were benign. Osteochondroma was the commonest tumor accounting for 31 cases (54.3%) followed by osteoid osteoma, 9 cases (15.7%). Chondrosarcoma observed in two patients and Ewing sarcoma in one patient as malignant tumors. Of the 57 bone tumors 13 (22.8%) occurred in the upper extremities, while 44 (77.2%) were in the lower extremities. Proximal humerus was the most commonly involved site in upper extremity tumors, with osteochondromas representing the most frequent type of tumor (4 patients; 7%). In the lower extremities again osteochondromas were the most common type of tumor (8 cases, 14%), with the femur being the most common site of involvement (18 patients, 31.5%). Of the patients with tumor-like lesions; four patients had fibrous dysplasia, 4 patients had non-ossified fibromas, 4 patients had simple bone cysts and 3 had aneurismal bone cyst. Conclusion: This study showed that primary bone tumors were mainly benign, settled predominantly in the lower extremities mostly in the femur with a male preponderance. Osteochondroma was the most common benign bone tumor. We didnt observed osteosarcoma, which is the most frequent malignant bone tumor. PMID:26617888

  10. Benefit of Consolidative Radiation Therapy for Primary Bone Diffuse Large B-Cell Lymphoma

    SciTech Connect

    Tao, Randa; Allen, Pamela K.; Rodriguez, Alma; Shihadeh, Ferial; Pinnix, Chelsea C.; Arzu, Isadora; Reed, Valerie K.; Oki, Yasuhiro; Westin, Jason R.; Fayad, Luis E.; Medeiros, L. Jeffrey; Dabaja, Bouthaina

    2015-05-01

    Purpose: Outcomes for patients with diffuse large B-cell lymphoma (DLBCL) differ according to the site of presentation. With effective chemotherapy, the need for consolidative radiation therapy (RT) is controversial. We investigated the influence of primary bone presentation and receipt of consolidative RT on progression-free survival (PFS) and overall survival (OS) in patients with DLBCL. Methods and Materials: We identified 102 patients with primary bone DLBCL treated consecutively from 1988 through 2013 and extracted clinical, pathologic, and treatment characteristics from the medical records. Survival outcomes were calculated by the Kaplan-Meier method, with factors affecting survival determined by log-rank tests. Univariate and multivariate analyses were done with a Cox regression model. Results: The median age was 55 years (range, 16-87 years). The most common site of presentation was in the long bones. Sixty-five patients (63%) received R-CHOP–based chemotherapy, and 74 (72%) received rituximab. RT was given to 67 patients (66%), 47 with stage I to II and 20 with stage III to IV disease. The median RT dose was 44 Gy (range, 24.5-50 Gy). At a median follow-up time of 82 months, the 5-year PFS and OS rates were 80% and 82%, respectively. Receipt of RT was associated with improved 5-year PFS (88% RT vs 63% no RT, P=.0069) and OS (91% vs 68%, P=.0064). On multivariate analysis, the addition of RT significantly improved PFS (hazard ratio [HR] = 0.14, P=.014) with a trend toward an OS benefit (HR=0.30, P=.053). No significant difference in PFS or OS was found between patients treated with 30 to 35 Gy versus ≥36 Gy (P=.71 PFS and P=.31 OS). Conclusion: Patients with primary bone lymphoma treated with standard chemotherapy followed by RT can have excellent outcomes. The use of consolidative RT was associated with significant benefits in both PFS and OS.

  11. Analysis of human primary bone cells by fluorescence activated cell scanning: methodological problems and preliminary results.

    PubMed

    Siggelkow, H; Hilmes, D; Robenstorff, K; Kurre, W; Engel, I; Hüfner, M

    1998-04-27

    We describe the development of flowcytometrical methods to analyse human primary osteoblast-like cultures obtained from trabecular bone explants in comparison to the human osteosarcoma cell line HOS 58. Two antigens typical of osteoblasts were studied: bone alkaline phosphatase and collagen/procollagen I; the non-specific attachment protein fibronectin served as control. The morphology of all different antigens is shown by immunocytochemistry before flowcytometrical analysis. The establishment of flowcytometry is described in detail. While all antigens tested were nearly 100% positive in the HOS 58 cells in immunocytochemistry and flowcytometry, in primary osteoblast-like cells results varied widely between both methods. Cell permeabilisation before flowcytometry improved the homogeneity of results, probably by increasing the accessibility of the specific antibody to intracellular compartments. Though up to 80% of cells were lost during preparation the ratio of positive versus negative cells in specific experiment was not dependent on the cell recovery. Therefore, the cells finally analysed seemed to be representative of the total population. PMID:9641353

  12. Disrupted Bone Remodeling Leads to Cochlear Overgrowth and Hearing Loss in a Mouse Model of Fibrous Dysplasia

    PubMed Central

    Chang, Jolie; Li, Alfred; Chang, Wenhan; Lustig, Lawrence R.; Alliston, Tamara; Hsiao, Edward C.

    2014-01-01

    Normal hearing requires exquisite cooperation between bony and sensorineural structures within the cochlea. For example, the inner ear secretes proteins such as osteoprotegrin (OPG) that can prevent cochlear bone remodeling. Accordingly, diseases that affect bone regulation can also result in hearing loss. Patients with fibrous dysplasia develop trabecular bone overgrowth resulting in hearing loss if the lesions affect the temporal bones. Unfortunately, the mechanisms responsible for this hearing loss, which could be sensorineural and/or conductive, remain unclear. In this study, we used a unique transgenic mouse model of increased Gs G-protein coupled receptor (GPCR) signaling induced by expression of an engineered receptor, Rs1, in osteoblastic cells. These ColI(2.3)+/Rs1+ mice showed dramatic bone lesions that histologically and radiologically resembled fibrous dysplasia. We found that ColI(2.3)+/Rs1+ mice showed progressive and severe conductive hearing loss. Ossicular chain impingement increased with the size and number of dysplastic lesions. While sensorineural structures were unaffected, ColI(2.3)+/Rs1+ cochleae had abnormally high osteoclast activity, together with elevated tartrate resistant acid phosphatase (TRAP) activity and receptor activator of nuclear factor kappa-B ligand (Rankl) mRNA expression. ColI(2.3)+/Rs1+ cochleae also showed decreased expression of Sclerostin (Sost), an antagonist of the Wnt signaling pathway that normally increases bone formation. The osteocyte canalicular networks of ColI(2.3)+/Rs1+ cochleae were disrupted and showed abnormal osteocyte morphology. The osteocytes in the ColI(2.3)+/Rs1+ cochleae showed increased expression of matrix metalloproteinase 13 (MMP-13) and TRAP, both of which can support osteocyte-mediated peri-lacunar remodeling. Thus, while the ossicular chain impingement is sufficient to account for the progressive hearing loss in fibrous dysplasia, the deregulation of bone remodeling extends to the cochlea as well. Our findings suggest that factors regulating bone remodeling, including peri-lacunar remodeling by osteocytes, may be useful targets for treating the bony overgrowths and hearing changes of fibrous dysplasia and other bony pathologies. PMID:24788917

  13. Array CGH analysis identifies two distinct subgroups of primary angiosarcoma of bone.

    PubMed

    Verbeke, Sofie L J; de Jong, Danielle; Bertoni, Franco; Sciot, Raf; Antonescu, Cristina R; Szuhai, Karoly; Bove, Judith V M G

    2015-02-01

    Molecular genetic studies on vascular tumors are rare. Recently, possible involvement of MYC and KDR has been documented in a subset of angiosarcomas of soft tissue. We performed a cytogenetic analysis of primary angiosarcomas of bone (n?=?13) and soft tissue (n?=?5) using high density array-comparative genomic hybridization (array-CGH). Regions of interest were validated by fluorescence in situ hybridization (FISH). Antibodies for candidate genes (SKI, MYC, KDR, and MAPK9) were selected and immunohistochemistry was performed. Six angiosarcomas of bone and four angiosarcomas of soft tissue showed chromosomal losses, gains, and high level amplifications. Cluster analysis identified two groups: a group with a complex genetic profile and a group with only few genetic aberrations. Five regions of interest were selected, which were located at chromosome bands 1p36.23, 2q32-34, 5q35, 8q24, and 17q21.32-24.2. Interphase FISH confirmed the high-level amplifications. Immunohistochemical analysis showed high expression of MYC (16/60), MAPK9 (63/69), and SKI (52/62). There were no differences between the two groups with regards to location, immunohistochemical expression nor survival. In summary, we identified two subgroups of angiosarcoma: those with few or no gross aberrations and those which show numerous genetic aberrations consisting of chromosomal losses, gains and high level amplifications or complex aberrations. The most common finding was amplification of 2q and 17q in both angiosarcoma of bone and soft tissue, suggesting overlap in tumorigenesis irrespective of their location. We show MYC amplification in primary angiosarcoma indicating this is not entirely specific for radiation-induced angiosarcoma. PMID:25231439

  14. Tick-borne flaviviruses alter membrane structure and replicate in dendrites of primary mouse neuronal cultures.

    PubMed

    Hirano, Minato; Yoshii, Kentaro; Sakai, Mizuki; Hasebe, Rie; Ichii, Osamu; Kariwa, Hiroaki

    2014-04-01

    Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, detailed mechanisms of viral replication in the brain and features of viral pathogenesis remain poorly understood. We carried out a comparative analysis of replication of neurotropic flaviviruses: West Nile virus, Japanese encephalitis virus and tick-borne encephalitis virus (TBEV), in primary cultures of mouse brain neurons. All the flaviviruses multiplied well in primary neuronal cultures from the hippocampus, cerebral cortex and cerebellum. The distribution of viral-specific antigen in the neurons varied: TBEV infection induced accumulation of viral antigen in the neuronal dendrites to a greater extent than infection with other viruses. Viral structural proteins, non-structural proteins and dsRNA were detected in regions in which viral antigens accumulated in dendrites after TBEV replication. Replication of a TBEV replicon after infection with virus-like particles of TBEV also induced antigen accumulation, indicating that accumulated viral antigen was the result of viral RNA replication. Furthermore, electron microscopy confirmed that TBEV replication induced characteristic ultrastructural membrane alterations in the neurites: newly formed laminal membrane structures containing virion-like structures. This is the first report describing viral replication in and ultrastructural alterations of neuronal dendrites, which may cause neuronal dysfunction. These findings encourage further work aimed at understanding the molecular mechanisms of viral replication in the brain and the pathogenicity of neurotropic flaviviruses. PMID:24394700

  15. Surgical cytoreduction of the primary tumor reduces metastatic progression in a mouse model of prostate cancer.

    PubMed

    Cifuentes, Federico F; Valenzuela, Rodrigo H; Contreras, Hctor R; Castelln, Enrique A

    2015-12-01

    Metastatic prostate cancer (mPCa) is one of the most prevalent cancers in men worldwide. The main cause of death in these patients is androgen-resistant metastatic disease. Surgery of the primary tumor has been avoided in these patients as there is no strong evidence that supports a beneficial effect. From the biological point of view, it appears rational to hypothesize that the primary tumor may contribute to the establishment and growth of metastases. Considering this, we propose that cytoreductive surgery (CS) in advanced metastatic stage slows the progression of metastatic disease. To test this, we used a mouse model of resectable orthotopic prostate cancer (PCa) and performed CS. After surgery, metastases were smaller and less numerous in the treated mice; an effect that was observable until the end of the experiment. These results suggest that CS alone delays the progression of metastatic disease and that although this effect may be temporary, it may translate to prolonged survival, especially when used with adjuvant therapy. PMID:26503286

  16. Hydrocortisone effect of arylsulfatase A in primary mouse brain cell cultures

    SciTech Connect

    Marcelo, A.; Pieringer, R.A.

    1986-05-01

    The primary goal of this study was to study the mechanism of action of hydrocortisone (HC) on arylsulfatase A (ASA) in primary cultures of cells that were dissociated from the brains of embryonic mice. Cells were cultured in a defined medium in the absence or in the presence of 3 ..mu..M HC. The specific activity of ASA in nontreated cells was 1.297 U/mg (U = ..mu..mol/hr) while the value for the HC-treated cells was 0.783 U/mg. The authors data shows that HC inhibits ASA activity in these cultures cells (p < 0.001). The determination of the ASA enzyme activity was assayed primarily with the artificial substrate p-nitrocatechol sulfate. However, the natural substrate (cerebroside /sup 35/S-sulfate) also as active and correlated linearly with the activity of p-nitrocatechol sulfate. Purified ASA was isolated from calf brains and used to generate an antibody (Ab) against ASA. The specificity of the Ab for the ASA protein of cell cultures was tested in Ouchterlony double immunodiffusion studies. The Ab was used in a competitive enzyme-linked immunosorbent assay to quantify the number of ASA molecules in the cell extracts from the embryonic mouse cell cultures. Preliminary data suggest that HC decreases the number of ASA molecules.

  17. Surgical cytoreduction of the primary tumor reduces metastatic progression in a mouse model of prostate cancer

    PubMed Central

    CIFUENTES, FEDERICO F.; VALENZUELA, RODRIGO H.; CONTRERAS, HCTOR R.; CASTELLN, ENRIQUE A.

    2015-01-01

    Metastatic prostate cancer (mPCa) is one of the most prevalent cancers in men worldwide. The main cause of death in these patients is androgen-resistant metastatic disease. Surgery of the primary tumor has been avoided in these patients as there is no strong evidence that supports a beneficial effect. From the biological point of view, it appears rational to hypothesize that the primary tumor may contribute to the establishment and growth of metastases. Considering this, we propose that cytoreductive surgery (CS) in advanced metastatic stage slows the progression of metastatic disease. To test this, we used a mouse model of resectable orthotopic prostate cancer (PCa) and performed CS. After surgery, metastases were smaller and less numerous in the treated mice; an effect that was observable until the end of the experiment. These results suggest that CS alone delays the progression of metastatic disease and that although this effect may be temporary, it may translate to prolonged survival, especially when used with adjuvant therapy. PMID:26503286

  18. Role of abnormal neutral endopeptidase-like activities in Hyp mouse bone cells in renal phosphate transport.

    PubMed

    Dubois, Stphanie G; Ruchon, Andra Frota; Delalandre, Aline; Boileau, Guy; Lajeunesse, Daniel

    2002-11-01

    We investigated whether the absence of Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) in the Hyp mouse affects the expression and activity of neprilysin (NEP) and of endothelin-converting enzyme-like endopeptidase (ECEL1/DINE) in bone marrow stromal cells (BMSC) and osteoblasts (Ob). Total NEP-like activity was higher in Ob than in BMSC regardless of genotype, and Hyp cells showed higher activities than normal. Conditioned media (CM) from Hyp BMSC and Ob inhibited inorganic phosphate (P(i)) uptake by mouse proximal tubule cells, and incubating Hyp Ob with phosphoramidon prevented the production of the inhibitor of renal P(i) uptake. A linear relationship was observed between the NEP-like activity of Hyp and normal cells and the inhibition of P(i) uptake. NEP and ECEL1/DINE mRNA levels were higher in Hyp cells than in normal cells, and in situ hybridization of ECEL1/DINE confirmed higher levels of expression in the Hyp mouse than in normal cells. In conclusion, we observed a correlation between the inhibition of P(i) uptake by CM from Hyp cells and elevated NEP-like activities. PMID:12372802

  19. Overexpression of spermidine/spermine N1-acetyltransferase impairs osteoblastogenesis and alters mouse bone phenotype.

    PubMed

    Pirnes-Karhu, Sini; Mtt, Jorma; Finnil, Mikko; Alhonen, Leena; Uimari, Anne

    2015-04-01

    Spermidine/spermine N (1)-acetyltransferase (SSAT) is a catabolic regulator of polyamines, ubiquitous molecules essential for cell proliferation and differentiation. In pathological conditions, the increased polyamine catabolism has been shown to mediate its cellular functions not only by changed polyamine levels but also by the availability of metabolites shared with other metabolic pathways or by production of toxic compounds. Our previous results showed that mice overexpressing SSAT (SSAT mice) developed a myeloproliferative disease and the bone marrow microenvironment partly contributed to its development. In this study, the physiological role of SSAT and polyamines in bone remodeling was characterized. Skeletal development of the SSAT mice appeared outwardly similar to wild-type mice until maturity, after which the SSAT mice developed kyphosis. With aging, the SSAT overexpression elicited increased bone perimeter with strikingly thinned cortical bone, decreased trabecular thickness and increased trabecular number in mice. In vitro studies showed that the maturation of SSAT overexpressing osteoblasts was impaired and the expression of bone formation marker genes was dramatically decreased. The polyamine pattern in osteoblasts of SSAT mice was distorted in comparison with wild-type mice. However, treatment of osteoblasts with a SSAT-inducing functional polyamine analogue suggested that defective osteoblastogenesis resulted rather from other consequences of enhanced SSAT activity than lowered levels of the higher polyamines. In comparison to SSAT overexpressing mice, SSAT deficiency led to opposite changes in osteoblastogenesis and differences in bone phenotype in mice. In conclusion, the level of SSAT enzyme activity affected osteoblastogenesis and hence influenced bone remodeling and the bone phenotype in mice. Furthermore, our results suggest the contribution of the catabolic part of the polyamine cycle, other than polyamine depletion, in pathophysiological processes of bone remodeling. PMID:25231394

  20. Protective effect of dieckol against chemical hypoxia-induced cytotoxicity in primary cultured mouse hepatocytes.

    PubMed

    Jeon, Yu Jin; Kim, Hyoung Seok; Song, Kyung-Sik; Han, Ho Jae; Park, Soo Hyun; Chang, Woochul; Lee, Min Young

    2015-04-01

    Hepatic ischemic injury is a major complication arising from liver surgery, transplantation, or other ischemic diseases, and both reactive oxygen species (ROS) and pro-inflammatory mediators play the role of key mediators in hepatic ischemic injury. In this study, we examined the effect of dieckol in chemical hypoxia-induced injury in mouse hepatocytes. Cell viability was significantly decreased after treatment with cobalt chloride (CoCl2), a well-known hypoxia mimetic agent in a time- and dose-dependent manner. Pretreatment with dieckol before exposure to CoCl2 significantly attenuated the CoCl2-induced decrease of cell viability. Additionally, pretreatment with dieckol potentiated the CoCl2-induced decrease of Bcl-2 expression and attenuated the CoCl2-induced increase in the expression of Bax and caspase-3. Treatment with CoCl2 resulted in an increased intracellular ROS generation, which is inhibited by dieckol or N-acetyl cysteine (NAC, a ROS scavenger), and p38 MAPK phosphorylation, which is also blocked by dieckol or NAC. In addition, dieckol and SB203580 (p38 MAPK inhibitor) increased the CoCl2-induced decrease of Bcl-2 expression and decreased the CoCl2-induced increase of Bax and caspase-3 expressions. CoCl2-induced decrease of cell viability was attenuated by pretreatment with dieckol, NAC, and SB203580. Furthermore, dieckol attenuated CoCl2-induced COX-2 expression. Similar to the effect of dieckol, NAC also blocked CoCl2-induced COX-2 expression. Additionally, CoCl2-induced decrease of cell viability was attenuated not only by dieckol and NAC but also by NS-398 (a selective COX-2 inhibitor). In conclusion, dieckol protects primary cultured mouse hepatocytes against CoCl2-induced cell injury through inhibition of ROS-activated p38 MAPK and COX-2 pathway. PMID:25155888

  1. Glucocerebrosidase deficiency in zebrafish affects primary bone ossification through increased oxidative stress and reduced Wnt/β-catenin signaling.

    PubMed

    Zancan, Ilaria; Bellesso, Stefania; Costa, Roberto; Salvalaio, Marika; Stroppiano, Marina; Hammond, Chrissy; Argenton, Francesco; Filocamo, Mirella; Moro, Enrico

    2015-03-01

    Loss of lysosomal glucocerebrosidase (GBA1) function is responsible for several organ defects, including skeletal abnormalities in type 1 Gaucher disease (GD). Enhanced bone resorption by infiltrating macrophages has been proposed to lead to major bone defects. However, while more recent evidences support the hypothesis that osteoblastic bone formation is impaired, a clear pathogenetic mechanism has not been depicted yet. Here, by combining different molecular approaches, we show that Gba1 loss of function in zebrafish is associated with defective canonical Wnt signaling, impaired osteoblast differentiation and reduced bone mineralization. We also provide evidence that increased reactive oxygen species production precedes the Wnt signaling impairment, which can be reversed upon human GBA1 overexpression. Type 1 GD patient fibroblasts similarly exhibit reduced Wnt signaling activity, as a consequence of increased β-catenin degradation. Our results support a novel model in which a primary defect in canonical Wnt signaling antecedes bone defects in type 1 GD. PMID:25326392

  2. Ovariectomy enhances and estrogen replacement inhibits the activity of bone marrow factors that stimulate prostaglandin production in cultured mouse calvariae.

    PubMed Central

    Kawaguchi, H; Pilbeam, C C; Vargas, S J; Morse, E E; Lorenzo, J A; Raisz, L G

    1995-01-01

    To examine PG production in estrogen deficiency, we studied effects on cultured neonatal mouse calvariae of bone marrow supernatants (MSup) from sham-operated (SHAM), ovariectomized (OVX), or 17 beta-estradiol (OVX+E)-treated mice. MSups were obtained 3 wk after OVX when bone density had decreased significantly. 10-60% MSup increased medium PGE2 and levels of mRNA for inducible and constitutive prostaglandin G/H synthase (PGHS-2 and PGHS-1) and cytosolic phospholipase A2 in calvarial cultures. OVX MSups had twofold greater effects on PGHS-2 and medium PGE2 than other MSups. IL-1 receptor antagonist and anti-IL-1 alpha neutralizing antibody decreased MSup-stimulated PGHS-2 mRNA and PGE2 levels and diminished differences among OVX, sham-operated, and OVX+E groups. In contrast, antibodies to IL-1 beta, IL-6, IL-11, and TNF alpha had little effect. There were no significant differences in IL-1 alpha concentrations or IL-1 alpha mRNA levels in MSups or marrow cells. PGHS-2 mRNA in freshly isolated tibiae from OVX mice was slightly greater than from sham-operated. We conclude that bone marrow factors can increase PG production through stimulation of PGHS-2; that OVX increases and estrogen decreases activity of these factors; and that IL-1 alpha activity, together with additional unknown factors, mediates the differential MSup effects. Images PMID:7615826

  3. Cobalt, titanium and PMMA bone cement debris influence on mouse osteoblast cell elasticity, spring constant and calcium production activity

    PubMed Central

    Preedy, Emily Callard; Perni, Stefano

    2015-01-01

    Periprosthetic osteolysis and implant loosening are the outcomes of wear debris generation in total joint replacements. Wear debris formed from the implanted materials consisting of metals, polymers, ceramic and bone cement initiate the immune system response. Often osteoblasts, the principal cell type in bone tissue adjacent to the prostheses, are directly impacted. In this study, the influence of cobalt, titanium and PMMA bone cement particles of different sizes, charges and compositions on mouse osteoblast adhesion, nanomechanics (elasticity and spring constant) and metabolic activity were investigated. These studies were accompanied by osteoblast mineralisation experiments and cell uptake after exposure to particles at defined time points. Our results demonstrate that alteration of the nanomechanical properties are mainly dependent on the metal type rather than nanoparticles size and concentration. Moreover, despite uptake increasing over exposure time, the cell characteristics exhibit changes predominately after the first 24 hours, highlighting that the cell responses to nanoparticle exposure are not cumulative. Understanding these processes is critical to expanding our knowledge of implant loosening and elucidating the nature of prosthetic joint failure.

  4. The protocol for the isolation and cryopreservation of osteoclast precursors from mouse bone marrow and spleen.

    PubMed

    Boraschi-Diaz, Iris; Komarova, Svetlana V

    2016-01-01

    Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics. PMID:25245056

  5. PPAR? antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function.

    PubMed

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically "fatless" mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  6. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  7. A composite graft material containing bone particles and collagen in osteoinduction in mouse.

    PubMed

    Tsai, Chung-Hung; Chou, Ming-Yung; Jonas, Mecrehild; Tien, Yung-Tico; Chi, Emily Y

    2002-01-01

    Demineralized allogenic bone matrices (DABM) and demineralized freeze-dried bone allograft (DFDBA) have been successfully used as bone-graft materials in the treatment of acquired and congenital cranio-maxillofacial defects and in some orthopedic surgery. However, these bone-graft "powders" have many shortcomings. For example, placement of particulate graft material in a hemorrhaging site can result in inadequacies or inaccurate attachment as well as loss of the graft materials. To minimize the inadequacies of powderlike graft materials, xenogenic collagen isolated from human tendon, skin, or bone was added to the bone-graft particles to form a composite spongelike implant. This material is commercially available and consists of 60% collagen and 40% DFDBA (DynaGraft, GenSci Co., Irvine, CA). The goal of this study was to evaluate the characteristics of composite graft implants in the mineralization process in an animal model in comparison with DFDBA powder and pure collagen. Seventy-two Swiss Webster mice were divided into three groups: an experimental group implanted with DynaGraft, two comparison groups implanted with either DFDBA or collagen only. All the graft materials were surgically implanted and inserted into the left thigh muscle. Mice were humanely killed at 1, 2, 3, 4, 6, 8, and 12 weeks. Then the muscle tissues in the vicinity of the implants were excised and processed for histology. Paraffin sections were stained with hematoxylin and eosin (H&E), the Von Kossa method, and Masson's trichrome. Some selected specimens were processed for transmission electron microscopic observation. After 1 week of implantation, the DynaGraft group showed calcium deposition on the collagen material and on the periphery of the DFDBA particles. Increased calcification and bone-forming cells were observed at 4-6 weeks. After 8 weeks, the implant formed a calcified nodule and only heavily mineralized connective tissue was observed at the implanted site. The group implanted with DFDBA powder showed calcification around the particulates. The collagen-sponge control group revealed no calcification or bone formation during the period of implantation. The light microscopic findings were confirmed by electron microscopy. Quantitative radiographic density DynaGraft and DFDBA graft followed sequentially over a period 120 days. It was concluded that a higher rate of calcification and bone formation was produced in the composite graft implant compared to the DFDBA implant. The composite graft material (DynaGraft), which contains both collagen and DFDBA, proved to be more effective for bone formation than particle components alone. PMID:11787031

  8. Pou3f4-Mediated Regulation of Ephrin-B2 Controls Temporal Bone Development in the Mouse

    PubMed Central

    Raft, Steven; Coate, Thomas M.; Kelley, Matthew W.; Crenshaw, E. Bryan; Wu, Doris K.

    2014-01-01

    The temporal bone encases conductive and sensorineural elements of the ear. Mutations of POU3F4 are associated with unique temporal bone abnormalities and X-linked mixed deafness (DFNX2/DFN3). However, the target genes and developmental processes controlled by POU3F4 transcription factor activity have remained largely uncharacterized. Ephrin-B2 (Efnb2) is a signaling molecule with well-documented effects on cell adhesion, proliferation, and migration. Our analyses of targeted mouse mutants revealed that Efnb2 loss-of-function phenocopies temporal bone abnormalities of Pou3f4 hemizygous null neonates: qualitatively identical malformations of the stapes, styloid process, internal auditory canal, and cochlear capsule were present in both mutants. Using failed/insufficient separation of the stapes and styloid process as a quantitative trait, we found that single gene Efnb2 loss-of-function and compound Pou3f4/Efnb2 loss-of-function caused a more severe phenotype than single gene Pou3f4 loss-of-function. Pou3f4 and Efnb2 gene expression domains overlapped at the site of impending stapes-styloid process separation and at subcapsular mesenchyme surrounding the cochlea; at both these sites, Efnb2 expression was attenuated in Pou3f4 hemizygous null mutants relative to control. Results of immunoprecipitation experiments using chromatin isolated from nascent middle ear mesenchyme supported the hypothesis of a physical association between Pou3f4 and specific non-coding sequence of Efnb2. We propose that Efnb2 is a target of Pou3f4 transcription factor activity and an effector of mesenchymal patterning during temporal bone development. PMID:25299585

  9. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study.

    PubMed

    Inoue, S; Osmond, D G

    2001-11-01

    Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the exceptionally large quantity of CSPG may represent a reservoir of CD44 receptor for use in hemopoiesis. PMID:11596011

  10. Multicentric Primary Angiosarcoma of Bone Mimicking Metastasis on (18)F-FDG PET/CT in a Patient with a History of Sigmoid Colon Cancer: a Case Report.

    PubMed

    Yoo, Min Young; Lee, Eun Seong; Kim, Seok-Ki; Park, Seog-Yun; Kwon, Youngmee; Yun, Tak; Kim, Tae Sung

    2015-12-01

    Primary angiosarcoma of the bone (PAB) is a rare and fatal high-grade malignant vascular bone tumor. We report a rare case of multicentric PAB mimicking bone metastasis in a 59-year-old female patient with a history of sigmoid colon cancer. This patient complained of lower back and pelvic pain and presented with multiple osteolytic bone lesions on plain radiography and pelvic computed tomography. First, bone metastasis of sigmoid colon cancer was suspected. However, on the (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) scan, the patient presented unusual multiple hypermetabolic osteolytic bone lesions involving contiguous bones of the lower half of the body. After bone biopsy, these lesions were confirmed to be multicentric PAB. To the best of our knowledge, this is the first case report of an (18)F-FDG PET/CT scan in a patient with multicentric primary bone angiosarcoma. PMID:26550053

  11. Primary bone marrow lymphoma presenting with cold-type autoimmune hemolytic anemia.

    PubMed

    Kosugi, Shigeki; Watanabe, Mai; Hoshikawa, Masahiro

    2014-09-01

    We report a rare case of primary bone marrow lymphoma with cold-type autoimmune hemolytic anemia (AIHA). A 70-year-old Japanese woman with suspected liver disorder presented to our hospital with palpitation. On physical examination, she had jaundice and signs of anemia. No lymphadenopathy or hepatosplenomegaly was noted. A direct antiglobulin test was positive for complement C3b and C3d. Anti-IgG testing was negative. Cold agglutinin was positive with a titer of 1:≥8,192, and haptoglobin was absent. A diagnosis of cold-type AIHA was made. Bone marrow biopsy revealed involvement with a population of lymphocytes that were positive for CD20 (L-26), CD79a, and Bcl-2. No lymphoma lesion was detected on computerized tomography or on upper and lower endoscopy. The patient was diagnosed with diffuse large B cell lymphoma (DLBCL) presenting with cold-type AIHA. She was treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone, resulting in complete remission after six cycles. As of 22 months after presentation, no signs of cold-type AIHA or lymphoma were present. PMID:25332595

  12. Inflammation as a Keystone of Bone Marrow Stroma Alterations in Primary Myelofibrosis

    PubMed Central

    Desterke, Christophe; Martinaud, Christophe; Ruzehaji, Nadira; Le Bousse-Kerdilès, Marie-Caroline

    2015-01-01

    Primary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm where severity as well as treatment complexity is mainly attributed to a long lasting disease and presence of bone marrow stroma alterations as evidenced by myelofibrosis, neoangiogenesis, and osteosclerosis. While recent understanding of mutations role in hematopoietic cells provides an explanation for pathological myeloproliferation, functional involvement of stromal cells in the disease pathogenesis remains poorly understood. The current dogma is that stromal changes are secondary to the cytokine “storm” produced by the hematopoietic clone cells. However, despite therapies targeting the myeloproliferation-sustaining clones, PMF is still regarded as an incurable disease except for patients, who are successful recipients of allogeneic stem cell transplantation. Although the clinical benefits of these inhibitors have been correlated with a marked reduction in serum proinflammatory cytokines produced by the hematopoietic clones, further demonstrating the importance of inflammation in the pathological process, these treatments do not address the role of the altered bone marrow stroma in the pathological process. In this review, we propose hypotheses suggesting that the stroma is inflammatory-imprinted by clonal hematopoietic cells up to a point where it becomes “independent” of hematopoietic cell stimulation, resulting in an inflammatory vicious circle requiring combined stroma targeted therapies. PMID:26640324

  13. Clinical Outcomes of Surgical Treatments for Primary Malignant Bone Tumors Arising in the Acetabulum

    PubMed Central

    Fujiwara, Tomohiro; Ogura, Koichi; Kobayashi, Eisuke; Tanzawa, Yoshikazu; Nakatani, Fumihiko; Chuman, Hirokazu; Kawai, Akira

    2015-01-01

    The functional and oncologic results of eighteen patients with primary malignant periacetabular tumors were reviewed to determine the impact of surgical treatment. The reconstruction procedures were endoprosthesis (11), hip transposition (4), iliofemoral arthrodesis (2), and frozen bone autograft (1). After a mean follow-up of 62 months, 13 patients were alive and 5 had died of their disease; the 5-year overall survival rate was 67.2%. The corresponding mean MSTS scores of patients with endoprosthesis (11) and other reconstructions (7) were 42% and 55% (49%, 68%, and 50%), respectively. Overall, postoperative complications including deep infection or dislocation markedly worsened the functional outcome. Iliofemoral arthrodesis provided better function than the other procedures, whereas endoprosthetic reconstruction demonstrated poor functional outcome except for patients who were reconstructed with the adequate soft tissue coverage. Avoiding postoperative complications is highly important for achieving better function, suggesting that surgical procedures with adequate soft tissue coverage or without the massive use of nonbiological materials are preferable. Appropriate selection of the reconstructive procedures for individual patients, considering the amount of remaining bone and soft tissues, would lead to better clinical outcomes. PMID:26451129

  14. Mechanical Properties of Calvarial Bones in a Mouse Model for Craniosynostosis

    PubMed Central

    Moazen, Mehran; Peskett, Emma; Babbs, Christian; Pauws, Erwin; Fagan, Michael J.

    2015-01-01

    The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unless there is surgical intervention. Research into the genetic basis of the disease has led to the development of various animal models that display this condition, e.g. mutant type Fgfr2C342Y/+ mice which display early fusion of the coronal suture (joining the parietal and frontal bones). However, whether the biomechanical properties of the mutant and wild type bones are affected has not been investigated before. Therefore, nanoindentation was used to compare the elastic modulus of cranial bone and sutures in wild type (WT) and Fgfr2C342Y/+mutant type (MT) mice during their postnatal development. Further, the variations in properties with indentation position and plane were assessed. No difference was observed in the elastic modulus of parietal bone between the WT and MT mice at postnatal (P) day 10 and 20. However, the modulus of frontal bone in the MT group was lower than the WT group at both P10 (1.390.30 vs. 5.320.68 GPa; p<0.05) and P20 (5.570.33 vs. 7.140.79 GPa; p<0.05). A wide range of values was measured along the coronal sutures for both the WT and MT samples, with no significant difference between the two groups. Findings of this study suggest that the inherent mechanical properties of the frontal bone in the mutant mice were different to the wild type mice from the same genetic background. These differences may reflect variations in the degree of biomechanical adaptation during skull growth, which could have implications for the surgical management of craniosynostosis patients. PMID:25966306

  15. Evaluation of the correlation between insertion torque and primary stability of dental implants using a block bone test

    PubMed Central

    Bayarchimeg, Dorjpalam; Namgoong, Hee; Kim, Byung Kook; Kim, Myung Duk; Kim, Sungtae; Kim, Tae-Il; Seol, Yang Jo; Lee, Yong Moo; Ku, Young; Rhyu, In-Chul; Lee, Eun Hee

    2013-01-01

    Purpose Implant stability at the time of surgery is crucial for the long-term success of dental implants. Primary stability is considered of paramount importance to achieve osseointegration. The purpose of the present study was to investigate the correlation between the insertion torque and primary stability of dental implants using artificial bone blocks with different bone densities and compositions to mimic different circumstances that are encountered in routine daily clinical settings. Methods In order to validate the objectives, various sized holes were made in bone blocks with different bone densities (#10, #20, #30, #40, and #50) using a surgical drill and insertion torque together with implant stability quotient (ISQ) values that were measured using the Osstell Mentor. The experimental groups under evaluation were subdivided into 5 subgroups according to the circumstances. Results In group 1, the mean insertion torque and ISQ values increased as the density of the bone blocks increased. For group 2, the mean insertion torque values decreased as the final drill size expanded, but this was not the case for the ISQ values. The mean insertion torque values in group 3 increased with the thickness of the cortical bone, and the same was true for the ISQ values. For group 4, the mean insertion torque values increased as the cancellous bone density increased, but the correlation with the ISQ values was weak. Finally, in group 5, the mean insertion torque decreased as the final drill size increased, but the correlation with the ISQ value was weak. Conclusions Within the limitations of the study, it was concluded that primary stability does not simply depend on the insertion torque, but also on the bone quality. PMID:23508040

  16. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes.

    PubMed

    Zheng, Jinying; Peng, Chuan; Ai, Yanbiao; Wang, Heng; Xiao, Xiaoqiu; Li, Jibin

    2016-01-01

    The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM) or fructose plus 4-phenylbutyric acid (PBA) for 24 h. Intracellular triglyceride (TG) accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α) and acyl-CoA oxidase 1 (ACOX1). DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78), total inositol-requiring kinase 1 (IRE1α) and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA. PMID:26805874

  17. Model-based analysis of pattern motion processing in mouse primary visual cortex

    PubMed Central

    Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Bjrn M.

    2015-01-01

    Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738

  18. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes

    PubMed Central

    Zheng, Jinying; Peng, Chuan; Ai, Yanbiao; Wang, Heng; Xiao, Xiaoqiu; Li, Jibin

    2016-01-01

    The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM) or fructose plus 4-phenylbutyric acid (PBA) for 24 h. Intracellular triglyceride (TG) accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α) and acyl-CoA oxidase 1 (ACOX1). DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78), total inositol-requiring kinase 1 (IRE1α) and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA. PMID:26805874

  19. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria.

    PubMed

    Klimesova, Klara; Whittamore, Jonathan M; Hatch, Marguerite

    2015-04-01

    Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can influence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice deficient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt(-/-), a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt(-/-) mice when compared to treatment with B. adolescentis. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64% of WT mice, but only 37% of Agxt(-/-) mice were colonized. Examining intestinal oxalate fluxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially influence dietary hyperoxaluria in mice. PMID:25269440

  20. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    PubMed Central

    2013-01-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultravioletvisible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 ?g/mL. This method uses a green, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications. PMID:24059222

  1. Nonviral direct conversion of primary mouse embryonic fibroblasts to neuronal cells.

    PubMed

    Adler, Andrew F; Grigsby, Christopher L; Kulangara, Karina; Wang, Hong; Yasuda, Ryohei; Leong, Kam W

    2012-01-01

    Transdifferentiation, where differentiated cells are reprogrammed into another lineage without going through an intermediate proliferative stem cell-like stage, is the next frontier of regenerative medicine. Wernig et al. first described the direct conversion of fibroblasts into functional induced neuronal cells (iNs). Subsequent reports of transdifferentiation into clinically relevant neuronal subtypes have further endorsed the prospect of autologous cell therapy for neurodegenerative disorders. So far, all published neuronal transdifferentiation protocols rely on lentiviruses, which likely precludes their clinical translation. Instead, we delivered plasmids encoding neuronal transcription factors (Brn2, Ascl1, Myt1l) to primary mouse embryonic fibroblasts with a bioreducible linear poly(amido amine). The low toxicity and high transfection efficiency of this gene carrier allowed repeated dosing to sustain high transgene expression levels. Serial 0.5g cm(-2) doses of reprogramming factors delivered at 48-hour intervals produced up to 7.6% Tuj1(+) (neuron-specific class III ?-tubulin) cells, a subset of which expressed MAP2 (microtubule-associated protein 2), tau, and synaptophysin. A synapsin-red fluorescent protein (RFP) reporter helped to identify more mature, electrophysiologically active cells, with 24/26 patch-clamped RFP(+) cells firing action potentials. Some non-virally induced neuronal cells (NiNs) were observed firing multiple and spontaneous action potentials. This study demonstrates the feasibility of nonviral neuronal transdifferentiation, and may be amenable to other transdifferentiation processes. PMID:23344148

  2. Hydroxyproline metabolism in a mouse model of Primary Hyperoxaluria Type 3.

    PubMed

    Li, Xingsheng; Knight, John; Todd Lowther, W; Holmes, Ross P

    2015-12-01

    Primary Hyperoxaluria Type 3 is a recently discovered form of this autosomal recessive disease that results from mutations in the gene coding for 4-hydroxy-2-oxoglutarate aldolase (HOGA1). This enzyme is one of the 2 unique enzymes in the hydroxyproline catabolism pathway. Affected individuals have increased urinary excretions of oxalate, 4-hydroxy-L-glutamate (4-OH-Glu), 4-hydroxy-2-oxoglutarate (HOG), and 2,4-dihydroxyglutarate (DHG). While 4-OH-Glu and HOG are precursor substrates of HOGA1 and increases in their concentrations are expected, how DHG is formed and how HOG to oxalate are unclear. To resolve these important questions and to provide insight into possible therapeutic avenues for treating this disease, an animal model of the disease would be invaluable. We have developed a mouse model of this disease which has null mutations in the Hoga1 gene and have characterized its phenotype. It shares many characteristics of the human disease, particularly when challenged by the inclusion of hydroxyproline in the diet. An increased oxalate excretion is not observed in the KO mice which may be consistent with the recent recognition that only a small fraction of the individuals with the genotype for HOGA deficiency develop PH. PMID:26428388

  3. Spatial organization of excitatory synaptic inputs to layer 4 neurons in mouse primary auditory cortex

    PubMed Central

    Kratz, Megan B.; Manis, Paul B.

    2015-01-01

    Layer 4 (L4) of primary auditory cortex (A1) receives a tonotopically organized projection from the medial geniculate nucleus of the thalamus. However, individual neurons in A1 respond to a wider range of sound frequencies than would be predicted by their thalamic input, which suggests the existence of cross-frequency intracortical networks. We used laser scanning photostimulation and uncaging of glutamate in brain slices of mouse A1 to characterize the spatial organization of intracortical inputs to L4 neurons. Slices were prepared to include the entire tonotopic extent of A1. We find that L4 neurons receive local vertically organized (columnar) excitation from layers 2 through 6 (L6) and horizontally organized excitation primarily from L4 and L6 neurons in regions centered ~300500 ?m caudal and/or rostral to the cell. Excitatory horizontal synaptic connections from layers 2 and 3 were sparse. The origins of horizontal projections from L4 and L6 correspond to regions in the tonotopic map that are approximately an octave away from the target cell location. Such spatially organized lateral connections may contribute to the detection and processing of auditory objects with specific spectral structures. PMID:25972787

  4. Transcriptomics analysis of primary mouse thymocytes exposed to bis(tri-n-butyltin)dioxide (TBTO).

    PubMed

    van Kol, Sandra W M; Hendriksen, Peter J M; van Loveren, Henk; Peijnenburg, Ad

    2012-06-14

    The biocide bis(tri-n-butyltin)oxide (TBTO) causes thymus atrophy in rodents and is toxic to many cell types of which thymocytes are the most sensitive. To obtain insight in the mechanisms of action of TBTO, we exposed primary mouse thymocytes in vitro for 3, 6 and 11 h to 0.1, 0.5, 1 and 2 μM TBTO. Subsequently, the cells were subjected to whole-genome gene expression profiling. Biological interpretation of the gene expression data revealed that TBTO affects a wide range of processes. Cell proliferation related genes were downregulated by all treatments except for 3 and 6 h 0.5 μM TBTO which upregulated these genes. Treatment with TBTO resulted in upregulation of genes involved in endoplasmatic reticulum (ER) stress, NFkB and TNFα pathways, and genes involved in DNA damage, p53 signaling and apoptosis. Remarkably, TBTO also increased the expression of genes that are known to be upregulated during T cell activation or during negative selection of thymocytes. The effect of TBTO on expression of genes involved in ER stress and apoptosis was confirmed by qPCR. Induction of the T cell activation response was corroborated by demonstrating that TBTO exposure resulted in translocation of NFAT to the nucleus, which is an essential event for T cell activation. PMID:22434021

  5. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells.

    PubMed

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-01-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a 'green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications. PMID:24059222

  6. Similar effects of phospholipase C and phorbol ester tumor promoters on primary mouse epidermal cells

    SciTech Connect

    Jeng, A.Y.; Lichti, U.; Strickland, J.E.; Blumberg, P.M.

    1985-11-01

    Interaction of tumor promoting phorbol esters with specific high affinity receptors is probably essential for many of the biological responses elicited by these agents. Since diacylglycerols which can be produced enzymatically from phospholipids by phospholipase C are postulated to be the physiological ligands for the phorbol ester receptor, the authors have examined primary cultures of mouse epidermal basal cells exposed to phospholipase C (Clostridium perfringens) for several biological and biochemical responses characteristic of treatment with 12-O-tetradecanoyl-phorbol-13-acetate, the most potent phorbol ester tumor promoter. Formation of diacylglycerols by treatment with phospholipase C was demonstrated by the dose-dependent release of radioactive diacylglycerols in cells prelabeled with (TH)arachidonic acid. Treatment with phospholipase C led to the morphological changes and to the reduction in epidermal growth factor binding (90%) associated with 12-O-tetradecanoylphorbol-13-acetate treatment. Continuous treatment at the same dose led to the induction of the enzymes ornithine decarboxylase and transglutaminase with a time course and extent similar to the inductions by 12-O-tetradecanoylphorbol-13-acetate. Treatment with phospholipase C yielded substantial suppression of the binding affinity of phorbol-12,13-dibutyrate for its receptors without reduction in total number of binding sites, consistent with the production by phospholipase C of a competitive inhibitor of phorbol ester binding.

  7. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  8. Bone Marrow Stromal Cells Modulate Mouse ENT1 Activity and Protect Leukemia Cells from Cytarabine Induced Apoptosis

    PubMed Central

    Macanas-Pirard, Patricia; Leisewitz, Andrea; Broekhuizen, Richard; Cautivo, Kelly; Barriga, Francisco M.; Leisewitz, Francisco; Gidi, Victoria; Riquelme, Erick; Montecinos, Viviana P.; Swett, Pilar; Besa, Pelayo; Ramirez, Pablo; Ocqueteau, Mauricio; Kalergis, Alexis M.; Holt, Matthew; Rettig, Michael; DiPersio, John F.; Nervi, Bruno

    2012-01-01

    Background Despite a high response rate to chemotherapy, the majority of patients with acute myeloid leukemia (AML) are destined to relapse due to residual disease in the bone marrow (BM). The tumor microenvironment is increasingly being recognized as a critical factor in mediating cancer cell survival and drug resistance. In this study, we propose to identify mechanisms involved in the chemoprotection conferred by the BM stroma to leukemia cells. Methods Using a leukemia mouse model and a human leukemia cell line, we studied the interaction of leukemia cells with the BM microenvironment. We evaluated in vivo and in vitro leukemia cell chemoprotection to different cytotoxic agents mediated by the BM stroma. Leukemia cell apoptosis was assessed by flow cytometry and western blotting. The activity of the equilibrative nucleoside transporter 1 (ENT1), responsible for cytarabine cell incorporation, was investigated by measuring transport and intracellular accumulation of 3H-adenosine. Results Leukemia cell mobilization from the bone marrow into peripheral blood in vivo using a CXCR4 inhibitor induced chemo-sensitization of leukemia cells to cytarabine, which translated into a prolonged survival advantage in our mouse leukemia model. In vitro, the BM stromal cells secreted a soluble factor that mediated significant chemoprotection to leukemia cells from cytarabine induced apoptosis. Furthermore, the BM stromal cell supernatant induced a 50% reduction of the ENT1 activity in leukemia cells, reducing the incorporation of cytarabine. No protection was observed when radiation or other cytotoxic agents such as etoposide, cisplatin and 5-fluorouracil were used. Conclusion The BM stroma secretes a soluble factor that significantly protects leukemia cells from cytarabine-induced apoptosis and blocks ENT1 activity. Strategies that modify the chemo-protective effects mediated by the BM microenvironment may enhance the benefit of conventional chemotherapy for patients with AML. PMID:22629369

  9. Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model.

    PubMed

    Saika, Takashi; Satoh, Takefumi; Kusaka, Nobuyuki; Ebara, Shin; Mouraviev, Vladimir B; Timme, Terry L; Thompson, Timothy C

    2004-05-01

    Gene-modified dendritic cells (DC) provide unique therapeutic strategies for prostate cancer; however, the comparative evaluation of specific delivery options using appropriate preclinical models has not been described. In this study, bone marrow-derived DC were genetically engineered to express high levels of interleukin-12 (IL-12) with or without the costimulatory molecule B7-1, by ex vivo infection with recombinant adenoviral vectors. We used an orthotopic metastatic mouse prostate cancer preclinical model (178-2 BMA) to compare two therapeutic protocols for DC delivery, in situ and subcutaneous. DC were generated from bone marrow of syngeneic 129/Sv mice by culturing in the presence of GM-CSF and IL-4. In vitro DC/IL-12 or DC/IL-12/B7 produced high levels of biologically active IL-12. In situ delivery of DC/IL-12 or DC/IL-12/B7 induced a significant suppression of primary tumor growth compared to DC/beta gal controls (P=.0328 and P=.0019, respectively), as well as reduced numbers of spontaneous lung metastatic nodules (P=.1404 and P=.0335, respectively). In survival experiments, in situ DC/IL-12 injection demonstrated a small but statistically significant advantage (P=.0041). Subcutaneous, tumor lysate pulsed DC/IL-12 significantly decreased tumor size (P=.0152) and increased survival (P=0.0433) compared to HBSS controls but the decrease in the number of spontaneous lung metastases did not achieve statistical significance. Both in situ and subcutaneous treatments enhanced cytolytic activities of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In this preclinical model, gene-modified DC-based intratumoral immunotherapy was shown to be an effective therapeutic strategy for locally advanced prostate cancer based on tumor growth suppression, inhibition of metastasis and survival improvement. PMID:15044961

  10. Characterization of murine dendritic cell line JAWS II and primary bone marrow-derived dendritic cells in Chlamydia muridarum antigen presentation and induction of protective immunity.

    PubMed

    Jiang, Xiaozhou; Shen, Caixia; Rey-Ladino, Jose; Yu, Hong; Brunham, Robert C

    2008-06-01

    Dendritic cells (DCs) appear to orchestrate much of the immunobiology of Chlamydia infection, but most studies of Chlamydia-DC interaction have been limited by the availability and heterogeneity of primary bone marrow-derived DCs (BMDCs). We therefore evaluated the immunobiology of Chlamydia muridarum infection in an immortal DC line termed JAWS II derived from BMDCs of a C57BL/6 p53-knockout mouse. JAWS II cells were permissive to the developmental cycle of Chlamydia. Infection-induced cell death was 50 to 80% less in JAWS II cells than in BMDCs. Chlamydia infected JAWS II cells and yielded infectious progeny 10-fold greater than that with primary BMDCs. JAWS II cells showed an expression pattern of cell activation markers and cytokine secretion following Chlamydia infection similar to that of primary BMDCs by up-regulating the expression of CD86, CD40, and major histocompatibility complex class II and secreting significant amounts of interleukin-12 (IL-12) but not IL-10. JAWS II cells pulsed with Chlamydia stimulated immune CD4(+) T cells to secrete gamma interferon. Adoptive transfer of ex vivo Chlamydia-pulsed JAWS II cells conferred levels of immunity on C57BL/6 mice similar to those conferred by primary BMDCs. Taken together, the data show that JAWS II cells exhibit immunobiological characteristics and functions similar to those of primary BMDCs in terms of Chlamydia antigen presentation in vitro and antigen delivery in vivo. We conclude that the JAWS II cell line can substitute for primary BMDCs in Chlamydia immunobiological studies. PMID:18362126

  11. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    PubMed

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-03-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer. PMID:26797476

  12. Three-dimensional culture of mouse bone marrow cells on stroma formed within a porous scaffold: influence of scaffold shape and cryopreservation of the stromal layer on expansion of haematopoietic progenitor cells.

    PubMed

    Miyoshi, Hirotoshi; Ohshima, Norio; Sato, Chiaki

    2013-01-01

    This study's primary goal was to develop an effective ex vivo expansion method for haematopoietic cells. 3D culture of mouse bone marrow cells was performed in porous scaffolds using a sheet or cube shape. Bone marrow cells were cultured on bone marrow-derived stromal layers formed within the scaffolds and the effect of scaffold shape on the expansion of haematopoietic cells was examined. In some experiments, stromal layers within cubic scaffolds were frozen and then used to culture bone marrow cells after thawing. Results show that after comparison, total cell density and expansion of haematopoietic cells were greater in cultures using the cubic scaffold, suggesting that it was superior to the sheet-like scaffold for expanding haematopoietic cells. When cryopreserved stroma was used, it effectively supported the expansion of haematopoietic cells, and a greater expansion of haematopoietic cells [(erythroid and haematopoietic progenitor cells (HPCs)] was achieved than in cultures with stromal cells that had not been cryopreserved. Expansion of cells using cryopreserved stroma had several other advantages such as a shorter culture period than the conventional method, a stable supply of stromal cells, and ease of handling and scaling up. As a result, this is an attractive method for ex vivo expansion of haematopoietic stem cells (HSCs) and HPCs for clinical use. PMID:22081538

  13. PDGFB-based stem cell gene therapy increases bone strength in the mouse

    PubMed Central

    Chen, Wanqiu; Baylink, David J.; Brier-Jones, Justin; Neises, Amanda; Kiroyan, Jason B.; Rundle, Charles H.; Lau, Kin-Hing William; Zhang, Xiao-Bing

    2015-01-01

    Substantial advances have been made in the past two decades in the management of osteoporosis. However, none of the current medications can eliminate the risk of fracture and rejuvenate the skeleton. To this end, we recently reported that transplantation of hematopoietic stem/progenitor cells (HSCs) or Sca1+ cells engineered to overexpress FGF2 results in a significant increase in lamellar bone matrix formation at the endosteum; but this increase was attended by the development of secondary hyperparathyroidism and severe osteomalacia. Here we switch the therapeutic gene to PDGFB, another potent mitogen for mesenchymal stem cells (MSCs) but potentially safer than FGF2. We found that modest overexpression of PDGFB using a relatively weak phosphoglycerate kinase (PGK) promoter completely avoided osteomalacia and secondary hyperparathyroidism, and simultaneously increased trabecular bone formation and trabecular connectivity, and decreased cortical porosity. These effects led to a 45% increase in the bone strength. Transplantation of PGK-PDGFBtransduced Sca1+ cells increased MSC proliferation, raising the possibility that PDGF-BB enhances expansion of MSC in the vicinity of the hematopoietic niche where the osteogenic milieu propels the differentiation of MSCs toward an osteogenic destination. Our therapy should have potential clinical applications for patients undergoing HSC transplantation, who are at high risk for osteoporosis and bone fractures after total body irradiation preconditioning. It could eventually have wider application once the therapy can be applied without the preconditioning. PMID:26150503

  14. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    SciTech Connect

    Werb, Z.; Chin, J.R.

    1983-10-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. The authors defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by (/sup 35/S)methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, la, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow-derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WHEI-3, RAW 264.1, and MGI.D/sup +/ secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated.

  15. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation

    PubMed Central

    Becker, Amy M.; Callahan, Derrick J.; Richner, Justin M.; Choi, Jaebok; DiPersio, John F.; Diamond, Michael S.; Bhattacharya, Deepta

    2015-01-01

    Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation. PMID:26197390

  16. A primary phosphorus-deficient skeletal phenotype in juvenile Atlantic salmon Salmo salar: the uncoupling of bone formation and mineralization.

    PubMed

    Witten, P E; Owen, M A G; Fontanillas, R; Soenens, M; McGurk, C; Obach, A

    2016-02-01

    To understand the effect of low dietary phosphorus (P) intake on the vertebral column of Atlantic salmon Salmo salar, a primary P deficiency was induced in post-smolts. The dietary P provision was reduced by 50% for a period of 10 weeks under controlled conditions. The animal's skeleton was subsequently analysed by radiology, histological examination, histochemical detection of minerals in bones and scales and chemical mineral analysis. This is the first account of how a primary P deficiency affects the skeleton in S. salar at the cellular and at the micro-anatomical level. Animals that received the P-deficient diet displayed known signs of P deficiency including reduced growth and soft, pliable opercula. Bone and scale mineral content decreased by c. 50%. On radiographs, vertebral bodies appear small, undersized and with enlarged intervertebral spaces. Contrary to the X-ray-based diagnosis, the histological examination revealed that vertebral bodies had a regular size and regular internal bone structures; intervertebral spaces were not enlarged. Bone matrix formation was continuous and uninterrupted, albeit without traces of mineralization. Likewise, scale growth continues with regular annuli formation, but new scale matrix remains without minerals. The 10 week long experiment generated a homogeneous osteomalacia of vertebral bodies without apparent induction of skeletal malformations. The experiment shows that bone formation and bone mineralization are, to a large degree, independent processes in the fish examined. Therefore, a deficit in mineralization must not be the only cause of the alterations of the vertebral bone structure observed in farmed S. salar. It is discussed how the observed uncoupling of bone formation and mineralization helps to better diagnose, understand and prevent P deficiency-related malformations in farmed S. salar. PMID:26707938

  17. Fast-in situ hybridization and immunoenzymatic color pigment detection of mouse bone marrow micronucleus.

    PubMed

    Kolanko, C J; Pyle, M D; Loats, H; Parton, J; Blakely, W F; Nath, J

    1999-05-01

    The development of a whole mouse genomic DNA probe coupled to color pigment painting detection methodology can accurately verify mouse micronuclei induced by chemicals or drugs leading to a lower probability of potential artifacts. Using color pigment painting detection of probes in conjunction with Wright's Giemsa counterstain instead of the current fluorescence detection technology ensures low cost, high resolution permanent documentation of slides for a particular test compound. The permanent color pigment-detected micronuclei and adjoining counterstain allows slides to be stored for future analysis without enhancing the signal or adding antifading agents that are associated with fluorescence detection. Combining innovative technology such as fast-in situ hybridization of DNA probes with immunoenzymatic color pigment detection provides rapid verification of true micronuclei (DNA containing) within 2-3 hr. PMID:10416782

  18. Arsenic Compromises Conducting Airway Epithelial Barrier Properties in Primary Mouse and Immortalized Human Cell Cultures

    PubMed Central

    Sherwood, Cara L.; Liguori, Andrew E.; Olsen, Colin E.; Lantz, R. Clark; Burgess, Jefferey L.; Boitano, Scott

    2013-01-01

    Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4?M [~300 ?g/L (ppb)] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE) cell model we found that both micromolar (3.9 ?M) and submicromolar (0.8 ?M) arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl) Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-). We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway. PMID:24349408

  19. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria

    PubMed Central

    Whittamore, Jonathan M.; Hatch, Marguerite

    2015-01-01

    Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can infuence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice defcient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt−/−, a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt−/− mice when compared to treatment with B. adolescent-is. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64 % of WT mice, but only 37 % of Agxt−/− mice were colonized. Examining intestinal oxalate fuxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially infuence dietary hyperoxaluria in mice. PMID:25269440

  20. Protection of primary neurons and mouse brain from Alzheimer’s pathology by molecular tweezers

    PubMed Central

    Attar, Aida; Ripoli, Cristian; Riccardi, Elisa; Maiti, Panchanan; Li Puma, Domenica D.; Liu, Tingyu; Hayes, Jane; Jones, Mychica R.; Lichti-Kaiser, Kristin; Yang, Fusheng; Gale, Greg D.; Tseng, Chi-hong; Tan, Miao; Xie, Cui-Wei; Straudinger, Jeffrey L.; Klärner, Frank-Gerrit; Schrader, Thomas; Frautschy, Sally A.; Grassi, Claudio

    2012-01-01

    Alzheimer’s disease is a devastating cureless neurodegenerative disorder affecting >35 million people worldwide. The disease is caused by toxic oligomers and aggregates of amyloid β protein and the microtubule-associated protein tau. Recently, the Lys-specific molecular tweezer CLR01 has been shown to inhibit aggregation and toxicity of multiple amyloidogenic proteins, including amyloid β protein and tau, by disrupting key interactions involved in the assembly process. Following up on these encouraging findings, here, we asked whether CLR01 could protect primary neurons from Alzheimer’s disease-associated synaptotoxicity and reduce Alzheimer’s disease–like pathology in vivo. Using cell culture and brain slices, we found that CLR01 effectively inhibited synaptotoxicity induced by the 42-residue isoform of amyloid β protein, including ∼80% inhibition of changes in dendritic spines density and long-term potentiation and complete inhibition of changes in basal synaptic activity. Using a radiolabelled version of the compound, we found that CLR01 crossed the mouse blood–brain barrier at ∼2% of blood levels. Treatment of 15-month-old triple-transgenic mice for 1 month with CLR01 resulted in a decrease in brain amyloid β protein aggregates, hyperphosphorylated tau and microglia load as observed by immunohistochemistry. Importantly, no signs of toxicity were observed in the treated mice, and CLR01 treatment did not affect the amyloidogenic processing of amyloid β protein precursor. Examining induction or inhibition of the cytochrome P450 metabolism system by CLR01 revealed minimal interaction. Together, these data suggest that CLR01 is safe for use at concentrations well above those showing efficacy in mice. The efficacy and toxicity results support a process-specific mechanism of action of molecular tweezers and suggest that these are promising compounds for developing disease-modifying therapy for Alzheimer’s disease and related disorders. PMID:23183235

  1. Nicotinic receptor activation on primary sensory afferents modulates autorhythmicity in the mouse renal pelvis

    PubMed Central

    Nguyen, M J; Angkawaijawa, S; Hashitani, H; Lang, R J

    2013-01-01

    BACKGROUND AND PURPOSE The modulation of the spontaneous electrical and Ca2+ signals underlying pyeloureteric peristalsis upon nicotinic receptor activation located on primary sensory afferents (PSAs) was investigated in the mouse renal pelvis. EXPERIMENTAL APPROACH Contractile activity was followed using video microscopy, electrical and Ca2+ signals in typical and atypical smooth muscle cells (TSMCs and ASMCs) within the renal pelvis were recorded separately using intracellular microelectrodes and Fluo-4 Ca2+ imaging. KEY RESULTS Nicotine and carbachol (CCh; 1100 ?M) transiently reduced the frequency and increased the amplitude of spontaneous phasic contractions in a manner unaffected by muscarininc antagonists, 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide) and pirenzipine (10 nM) or L-NAME (L-N?-nitroarginine methyl ester; 200 ?M), inhibitor of NO synthesis, but blocked by the nicotinic antagonist, hexamethonium or capsaicin, depletor of PSA neuropeptides. These negative chronotropic and delayed positive inotropic effects of CCh on TSMC contractions, action potentials and Ca2+ transients were inhibited by glibenclamide (Glib; 1 ?M), blocker of ATP-dependent K (KATP) channels. Nicotinic receptor-evoked inhibition of the spontaneous Ca2+ transients in ASMCs was prevented by capsaicin but not Glib. In contrast, the negative inotropic and chronotropic effects of the non-selective COX inhibitor indomethacin were not prevented by Glib. CONCLUSIONS AND IMPLICATIONS The negative chronotropic effect of nicotinic receptor activation results from the release of calcitonin gene-related peptide (CGRP) from PSAs, which suppresses Ca2+ signalling in ASMCs. PSA-released CGRP also evokes a transient hyperpolarization in TSMCs upon the opening of KATP channels, which reduces contraction propagation but promotes the recruitment of TSMC Ca2+ channels that underlie the delayed positive inotropic effects of CCh. PMID:24004375

  2. Delineation of a frequency-organized region isolated from the mouse primary auditory cortex.

    PubMed

    Tsukano, Hiroaki; Horie, Masao; Bo, Takeshi; Uchimura, Arikuni; Hishida, Ryuichi; Kudoh, Masaharu; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2015-04-01

    The primary auditory cortex (AI) is the representative recipient of information from the ears in the mammalian cortex. However, the delineation of the AI is still controversial in a mouse. Recently, it was reported, using optical imaging, that two distinct areas of the AI, located ventrally and dorsally, are activated by high-frequency tones, whereas only one area is activated by low-frequency tones. Here, we show that the dorsal high-frequency area is an independent region that is separated from the rest of the AI. We could visualize the two distinct high-frequency areas using flavoprotein fluorescence imaging, as reported previously. SMI-32 immunolabeling revealed that the dorsal region had a different cytoarchitectural pattern from the rest of the AI. Specifically, the ratio of SMI-32-positive pyramidal neurons to nonpyramidal neurons was larger in the dorsal high-frequency area than the rest of the AI. We named this new region the dorsomedial field (DM). Retrograde tracing showed that neurons projecting to the DM were localized in the rostral part of the ventral division of the medial geniculate body with a distinct frequency organization, where few neurons projected to the AI. Furthermore, the responses of the DM to ultrasonic courtship songs presented by males were significantly greater in females than in males; in contrast, there was no sex difference in response to artificial pure tones. Our findings offer a basic outline on the processing of ultrasonic vocal information on the basis of the precisely subdivided, multiple frequency-organized auditory cortex map in mice. PMID:25695649

  3. Neurogenic and Neurotrophic Effects of BDNF Peptides in Mouse Hippocampal Primary Neuronal Cell Cultures

    PubMed Central

    Cardenas-Aguayo, Maria del Carmen; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Iqbal, Khalid

    2013-01-01

    The level of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is down regulated in Alzheimers disease (AD), Parkinsons disease (PD), depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5) corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18) primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706) of the TrkB receptor, which could be blocked by the Trks inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H2O2-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated. PMID:23320097

  4. Analysis of and prognostic information from disseminated tumour cells in bone marrow in primary breast cancer: a prospective observational study

    PubMed Central

    2012-01-01

    Background Disseminated tumour cells (DTCs) in the bone marrow of patients with breast cancer have been identified as an independent predictor of poor prognosis in patients with non-metastatic disease. This prospective study aimed to evaluate the presence and prognostic value of DTCs in the bone marrow of female patients with primary breast cancer. Methods Between 1999 and 2003, bone marrow aspirates were obtained from patients at the time of surgery for primary invasive breast cancer. DTCs in bone marrow were identified using monoclonal antibodies against cytokeratins for detection of epithelial cells. The detection of DTCs was related to clinical follow-up with distant disease-free survival (DDFS) and breast cancer-specific survival as endpoints. Bone marrow aspirates from adult healthy bone marrow donors were analysed separately. Results DTCs were analysed in 401 patients, and cytokeratin-positive cells were found in 152 of these (38%). An immunofluorescence (IF) staining procedure was used in 327 patients, and immunocytochemistry (IC) was performed in 74 patients. The IF-based method resulted in 40% DTC-positive cases, whereas 30% were positive using IC (p?=?0.11). The presence of DTCs in bone marrow was not significantly related to patient or tumour characteristics. The presence of DTCs was not a prognostic factor for DDFS (IF: hazards ratio [HR], 2.2; 95% confidence interval [CI], 0.632.2; p?=?0.60; IC: HR, 0.84; 95% CI, 0.098.1; p?=?0.88). Significant prognostic factors were lymph node metastases, oestrogen receptor positivity, Nottingham histological grade, and tumour size using Cox univariate analysis. The analyses were positive for epithelial cells in bone marrow from adult healthy donors in 19 (25%) samples. Conclusions The detection of DTCs in bone marrow in primary breast cancer was previously shown to be a predictor of poor prognosis. We were not able to confirm these results in a prospective cohort including unselected patients before the standard procedure was established. Future studies with a standardised patient protocol and improved technique for isolating and detecting DTCs may reveal the clinical applications of DTC detection in patients with micrometastases in the bone marrow. PMID:22963449

  5. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes

    PubMed Central

    Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Landrock, Kerstin K.; Martin, Gregory G.; Landrock, Danilo; Payne, H. Ross; Atshaves, Barbara P.; Kier, Ann B.

    2012-01-01

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3?-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes. PMID:22241858

  6. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    PubMed

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3?-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null mice and hepatocytes. Taken together, these results suggest that L-FABP, particularly in the absence of SCP-2, plays a significant role in HDL-mediated cholesterol uptake in cultured primary hepatocytes. PMID:22241858

  7. Bone marrow origin of decidual cell precursors in the pseudopregnant mouse uterus

    PubMed Central

    1982-01-01

    Decidual cells are considered to be the endproduct of a hormonally induced transformation of endometrial stromal cells of the uterus. However, the source of these precursors remains unknown. This study of evaluated the possibility of their bone marrow origin by an examination of the H-2 phenotype of decidual cells in pseudopregnant bone marrow chimeras. These chimeras were produced by repopulating lethally irradiated CBA/J female (H-2k) mice with bone marrow from (CBA/J x C57BL/6J) F1 female (H-2kb) mice. Pseudopregnancy was produced with a hormonal regimen followed by an oil-induced decidual stimulus. Chimerism was evaluated radioautographically by an identification of the donor-specific Kb phenotype on cells with an immunolabeling technique with monospecific anti-H-2 serum followed by radioiodinated protein A. The extent of chimerism as indicated by the degree of Kb labeling on decidual cells as well as macrophages contained within the decidual nodules was quantitatively compared with that seen on splenic lymphocytes. Fair to good chimerism, as reflected by labeling for the donor-specific marker (Kb), was seen on splenic lymphocytes and macrophages within the decidual nodules in 6 out of 11 animals. A similar level of chimerism was detected on decidual cells in all but one of these six, in which case this was low. One animal showed low chimerism in the spleen but good chimerism on the decidual cells. The remaining four mice were nonchimeric for all three cell types. These results indicate that decidual cells and macrophages appearing within the decidual nodules of pseudopregnant mice are ultimate descendants of bone marrow cells. PMID:7069373

  8. ERR{alpha} regulates osteoblastic and adipogenic differentiation of mouse bone marrow mesenchymal stem cells

    SciTech Connect

    Rajalin, Ann-Marie; Pollock, Hanna; Aarnisalo, Piia; Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital

    2010-05-28

    The orphan nuclear receptor estrogen-related receptor-{alpha} (ERR{alpha}) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERR{alpha} in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERR{alpha} deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERR{alpha} deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERR{alpha} in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERR{alpha} deficient MSCs and enhanced upon ERR{alpha} overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERR{alpha}. Under adipogenic conditions, ERR{alpha} deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERR{alpha} in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERR{alpha} may play different roles in bone under different physiological conditions.

  9. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model.

    PubMed

    Boos, Anja M; Weigand, Annika; Deschler, Gloria; Gerber, Thomas; Arkudas, Andreas; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2014-01-01

    New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA) bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2), and different carrier materials (fibrin, cell culture medium, autologous serum) was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 ?g/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin). Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly in the group with autologous serum and after 12 weeks in every experimental group. This study clearly demonstrates the positive effects of autologous serum in combination with mesenchymal stem cells and rhBMP-2 on bone formation in a primary stable silica-embedded nano-HA bone grafting material in the sheep model. In further experiments, the results will be transferred to the sheep arteriovenous loop model in order to engineer an axially vascularized primary stable bone replacement in clinically relevant size for free transplantation. PMID:25429218

  10. Autologous serum improves bone formation in a primary stable silica-embedded nanohydroxyapatite bone substitute in combination with mesenchymal stem cells and rhBMP-2 in the sheep model

    PubMed Central

    Boos, Anja M; Weigand, Annika; Deschler, Gloria; Gerber, Thomas; Arkudas, Andreas; Kneser, Ulrich; Horch, Raymund E; Beier, Justus P

    2014-01-01

    New therapeutic strategies are required for critical size bone defects, because the gold standard of transplanting autologous bone from an unharmed area of the body often leads to several severe side effects and disadvantages for the patient. For years, tissue engineering approaches have been seeking a stable, axially vascularized transplantable bone replacement suitable for transplantation into the recipient bed with pre-existing insufficient conditions. For this reason, the arteriovenous loop model was developed and various bone substitutes have been vascularized. However, it has not been possible thus far to engineer a primary stable and axially vascularized transplantable bone substitute. For that purpose, a primary stable silica-embedded nanohydroxyapatite (HA) bone substitute in combination with blood, bone marrow, expanded, or directly retransplanted mesenchymal stem cells, recombinant human bone morphogenetic protein 2 (rhBMP-2), and different carrier materials (fibrin, cell culture medium, autologous serum) was tested subcutaneously for 4 or 12 weeks in the sheep model. Autologous serum lead to an early matrix change during degradation of the bone substitute and formation of new bone tissue. The best results were achieved in the group combining mesenchymal stem cells expanded with 60 μg/mL rhBMP-2 in autologous serum. Better ingrowth of fibrovascular tissue could be detected in the autologous serum group compared with the control (fibrin). Osteoclastic activity indicating an active bone remodeling process was observed after 4 weeks, particularly in the group with autologous serum and after 12 weeks in every experimental group. This study clearly demonstrates the positive effects of autologous serum in combination with mesenchymal stem cells and rhBMP-2 on bone formation in a primary stable silica-embedded nano-HA bone grafting material in the sheep model. In further experiments, the results will be transferred to the sheep arteriovenous loop model in order to engineer an axially vascularized primary stable bone replacement in clinically relevant size for free transplantation. PMID:25429218

  11. Incidence of distal bone metastases in patients treated for palliative radiotherapy and associations with primary tumour types

    PubMed Central

    Barnes, Mark; Tiwana, Manpreet S.; Kiraly, Andrew; Hutchison, Mitch; Olson, Robert A.

    2015-01-01

    Purpose This study assesses the incidence of distal bone metastases in palliative radiotherapy (RT) patients. Material and methods All courses of RT for bone metastases from 2007–2011 for patient living in British Columbia (BC) were identified in a provincial RT programme. Treated bone metastases (BoM) were categorized as distal if the BoM was located within or distal to the elbow or knee. Patients were grouped by primary tumour site as breast, lung, prostate gastrointestinal, haematological, melanoma, and other. The incidence of distal bone metastases and associations with primary tumour types were determined. Results From 2007 to 2011, 8008 patients were treated with 16,277 courses of RT, of which 425 (3%) were courses of RT for distal BoM. The incidence of distal BoM in decreasing order by primary tumour type was melanoma (5%), haematological (3%), lung (2%), other (2%), prostate (2%), breast (1%) and gastrointestinal (1%). Distal BoM where more commonly identified in the lower extremity (87%, p<0.001). Single fraction RT was used more commonly for distal vs non-distal BoM (66% vs. 49%; p<0.001). Conclusion The incidence of distal BoM among patients treated with palliative RT was 3% and most commonly identified in patients with melanoma and haematological malignancies. PMID:26730358

  12. EPO modulation of cell-cycle regulatory genes, and cell division, in primary bone marrow erythroblasts

    PubMed Central

    Fang, Jing; Menon, Madhu; Kapelle, William; Bogacheva, Olga; Bogachev, Oleg; Houde, Estelle; Browne, Sarah; Sathyanarayana, Pradeep

    2007-01-01

    Erythropoietin (EPO's) actions on erythroblasts are ascribed largely to survival effects. Certain studies, however, point to EPO-regulated proliferation. To investigate this problem in a primary system, KitposCD71high erythroblasts were prepared from murine bone marrow, and were first used in the array-based discovery of EPO-modulated cell-cycle regulators. Five cell-cycle progression factors were rapidly up-modulated: nuclear protein 1 (Nupr1), G1 to S phase transition 1 (Gspt1), early growth response 1 (Egr1), Ngfi-A binding protein 2 (Nab2), and cyclin D2. In contrast, inhibitory cyclin G2, p27/Cdkn1b, and B-cell leukemia/lymphoma 6 (Bcl6) were sharply down-modulated. For CYCLIN G2, ectopic expression also proved to selectively attenuate EPO-dependent UT7epo cell-cycle progression at S-phase. As analyzed in primary erythroblasts expressing minimal EPO receptor alleles, EPO repression of cyclin G2 and Bcl6, and induction of cyclin D2, were determined to depend on PY343 (and Stat5) signals. Furthermore, erythroblasts expressing a on PY-null EPOR-HM allele were abnormally distributed in G0/G1. During differentiation divisions, EPOR-HM Ter119pos erythroblasts conversely accumulated in S-phase and faltered in an apparent EPO-directed transition to G0/G1. EPO/EPOR signals therefore control the expression of select cell-cycle regulatory genes that are proposed to modulate stage-specific decisions for erythroblast cell-cycle progression. PMID:17548578

  13. Primary non-Hodgkins Lymphoma of the Bladder with Bone Marrow Involvement

    PubMed Central

    Oh, Kil Chan; Zang, Dae Young

    2003-01-01

    Involvement of the lower urinary tract by advanced non-Hodgkins lymphoma (NHL) has been reported in up to 13% of cases, but primary NHL of the urinary bladder is very rare. A 35-year-old man was admitted to our hospital with a chief complaint of gross hematuria with left flank pain on April 12, 2001. Cystoscopy revealed an edematous broad-based mass on the left lateral wall of the bladder, and transurethral biopsy showed NHL, diffuse large B-cell type. Abdomino-pelvic CT scan demonstrated left-side hydronephrosis and hydroureter with left proximal ureter infiltration and thickening of the left lateral wall of the bladder with perivesical fat infiltration without lymph node enlargement. Full-scale staging work-up revealed the bone marrow as the solely involved site. The lesions of the bladder and left urinary tract were nearly completely regressed after two cycles of systemic cyclophosphamide, doxorubicin, vincristine and predinisone (CHOP) chemotherapy with simultaneous restoration of urinary function. PMID:12760267

  14. A Common Variant in CLDN14 is Associated with Primary Biliary Cirrhosis and Bone Mineral Density

    PubMed Central

    Tang, Ruqi; Wei, Yiran; Li, Zhiqiang; Chen, Haoyan; Miao, Qi; Bian, Zhaolian; Zhang, Haiyan; Wang, Qixia; Wang, Zhaoyue; Lian, Min; Yang, Fan; Jiang, Xiang; Yang, Yue; Li, Enling; Seldin, Michael F.; Gershwin, M. Eric; Liao, Wilson; Shi, Yongyong; Ma, Xiong

    2016-01-01

    Primary biliary cirrhosis (PBC), a chronic autoimmune liver disease, has been associated with increased incidence of osteoporosis. Intriguingly, two PBC susceptibility loci identified through genome-wide association studies are also involved in bone mineral density (BMD). These observations led us to investigate the genetic variants shared between PBC and BMD. We evaluated 72 genome-wide significant BMD SNPs for association with PBC using two European GWAS data sets (n = 8392), with replication of significant findings in a Chinese cohort (685 cases, 1152 controls). Our analysis identified a novel variant in the intron of the CLDN14 gene (rs170183, Pfdr = 0.015) after multiple testing correction. The three associated variants were followed-up in the Chinese cohort; one SNP rs170183 demonstrated consistent evidence of association in diverse ethnic populations (Pcombined = 2.43 × 10−5). Notably, expression quantitative trait loci (eQTL) data revealed that rs170183 was correlated with a decline in CLDN14 expression in both lymphoblastoid cell lines and T cells (Padj = 0.003 and 0.016, respectively). In conclusion, our study identified a novel PBC susceptibility variant that has been shown to be strongly associated with BMD, highlighting the potential of pleiotropy to improve gene discovery. PMID:26842849

  15. A Common Variant in CLDN14 is Associated with Primary Biliary Cirrhosis and Bone Mineral Density.

    PubMed

    Tang, Ruqi; Wei, Yiran; Li, Zhiqiang; Chen, Haoyan; Miao, Qi; Bian, Zhaolian; Zhang, Haiyan; Wang, Qixia; Wang, Zhaoyue; Lian, Min; Yang, Fan; Jiang, Xiang; Yang, Yue; Li, Enling; Seldin, Michael F; Gershwin, M Eric; Liao, Wilson; Shi, Yongyong; Ma, Xiong

    2016-01-01

    Primary biliary cirrhosis (PBC), a chronic autoimmune liver disease, has been associated with increased incidence of osteoporosis. Intriguingly, two PBC susceptibility loci identified through genome-wide association studies are also involved in bone mineral density (BMD). These observations led us to investigate the genetic variants shared between PBC and BMD. We evaluated 72 genome-wide significant BMD SNPs for association with PBC using two European GWAS data sets (n?=?8392), with replication of significant findings in a Chinese cohort (685 cases, 1152 controls). Our analysis identified a novel variant in the intron of the CLDN14 gene (rs170183, Pfdr?=?0.015) after multiple testing correction. The three associated variants were followed-up in the Chinese cohort; one SNP rs170183 demonstrated consistent evidence of association in diverse ethnic populations (Pcombined?=?2.43??10(-5)). Notably, expression quantitative trait loci (eQTL) data revealed that rs170183 was correlated with a decline in CLDN14 expression in both lymphoblastoid cell lines and T cells (Padj?=?0.003 and 0.016, respectively). In conclusion, our study identified a novel PBC susceptibility variant that has been shown to be strongly associated with BMD, highlighting the potential of pleiotropy to improve gene discovery. PMID:26842849

  16. Proliferation effect of He-Ne laser intermittent irradiation on mouse bone-marrow cells

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Zhang, Jianjun

    1993-03-01

    The effect of He-Ne laser intermittent irradiation on the bone marrow cell suspension of donor mice is presented in this paper. The recipient mice, irradiated with 8.5 GY CO60-(gamma) ray, were then infused, and they were killed different days (1, 3, 5, 7, 9, and 11 days post injection). Spleens were removed and fixed in Bouin's solution for 24 hours, and then the numbers of protruding splenic nodules visible on the surface of the spleens were counted. According to statistics, the number of the splenic nodules increased with laser exposure over the control group.

  17. Development of a novel frontal bone defect mouse model for evaluation of osteogenesis efficiency.

    PubMed

    Kim, Ju-Young; Kwak, Sung Chul; Ahn, Sung-Jun; Baek, Jong Min; Jung, Sung Tae; Yun, Ki Jung; Yoon, Kwon-Ha; Oh, Jaemin; Lee, Myeung Su

    2015-12-01

    The skull defect model is the existing representative osteogenesis model. The skull defect model involves monitoring osteogenesis patterns at the site of a skull defect, which has the advantages that identical defects can be induced across individual experimental animals and the results can be quantitatively evaluated. However, it can damage the cerebrum because it requires a complex surgery performed on the parietal bone. This study aims to develop a new osteogenesis model that compensates for the weak points of the existing model. Male 8-week-old imprinting control region mice were put under inhalational anesthesia, and the surgery area was disinfected with 70% ethanol prior to the creation of a 5-mm incision along the sagittal line between the glabella with a pair of scissors. The incised area was opened and, after we checked the positions of the inferior cerebral vein and the sagittal suture, a 21-gauge needle was used to make two symmetrical holes with respect to the sagittal suture 3 mm below the inferior cerebral vein and 2 mm on either side of the sagittal suture. After images were obtained using micro-computed tomography, the degree of osteogenesis was quantitatively analyzed. In addition, mRNA extracted from the site of the defect confirmed a significant increase in mRNA levels of collagen 1a, alkaline phosphatase, bone sialoprotein, osteocalcin, and Runx2, known markers for osteoblasts. The promotion of osteogenesis could be observed at the site of the defect, by histological analysis. PMID:26053543

  18. Functional and Transcriptomic Recovery of Infarcted Mouse Myocardium Treated with Bone Marrow Mononuclear Cells

    PubMed Central

    Lachtermacher, Stephan; Esporcatte, Bruno L. B.; da Silva de Azevedo Fortes, Fábio; Rocha, Nazareth Novaes; Montalvão, Fabrício; Costa, Patricia C.; Belem, Luciano; Rabischoffisky, Arnaldo; Neto, Hugo C. C. Faria; Vasconcellos, Rita; Iacobas, Dumitru A.; Iacobas, Sanda; Spray, David C.; Thomas, Neil M.; Goldenberg, Regina C. S.; de Carvalho, Antonio C. Campos

    2011-01-01

    Although bone marrow-derived mononuclear cells (BMNC) have been extensively used in cell therapy for cardiac diseases, little mechanistic information is available to support reports of their efficacy. To address this shortcoming, we compared structural and functional recovery and associated global gene expression profiles in post-ischaemic myocardium treated with BMNC transplantation. BMNC suspensions were injected into cardiac scar tissue 10 days after experimental myocardial infarction. Six weeks later, mice undergoing BMNC therapy were found to have normalized antibody repertoire and improved cardiac performance measured by ECG, treadmill exercise time and echocardiography. After functional testing, gene expression profiles in cardiac tissue were evaluated using high-density oligonucleotide arrays. Expression of more than 18% of the 11981 quantified unigenes was significantly altered in the infarcted hearts. BMNC therapy restored expression of 2099 (96.2%) of the genes that were altered by infarction but led to altered expression of 286 other genes, considered to be a side effect of the treatment. Transcriptional therapeutic efficacy, a metric calculated using a formula that incorporates both recovery and side effect of treatment, was 73%. In conclusion, our results confirm a beneficial role for bone marrow-derived cell therapy and provide new information on molecular mechanisms operating after BMNC transplantation on post ischemic heart failure in mice. PMID:21671060

  19. Missense Mutations in LRP5 Associated with High Bone Mass Protect the Mouse Skeleton from Disuse- and Ovariectomy-Induced Osteopenia

    PubMed Central

    Niziolek, Paul J.; Bullock, Whitney; Warman, Matthew L.; Robling, Alexander G.

    2015-01-01

    The low density lipoprotein receptor-related protein-5 (LRP5), a co-receptor in the Wnt signaling pathway, modulates bone mass in humans and in mice. Lrp5 knock-out mice have severely impaired responsiveness to mechanical stimulation whereas Lrp5 gain-of-function knock-in and transgenic mice have enhanced responsiveness to mechanical stimulation. Those observations highlight the importance of Lrp5 protein in bone cell mechanotransduction. It is unclear if and how high bone mass-causing (HBM) point mutations in Lrp5 alter the bone-wasting effects of mechanical disuse. To address this issue we explored the skeletal effects of mechanical disuse using two models, tail suspension and Botulinum toxin-induced muscle paralysis, in two different Lrp5 HBM knock-in mouse models. A separate experiment employing estrogen withdrawal-induced bone loss by ovariectomy was also conducted as a control. Both disuse stimuli induced significant bone loss in WT mice, but Lrp5 A214V and G171V were partially or fully protected from the bone loss that normally results from disuse. Trabecular bone parameters among HBM mice were significantly affected by disuse in both models, but these data are consistent with DEXA data showing a failure to continue growing in HBM mice, rather than a loss of pre-existing bone. Ovariectomy in Lrp5 HBM mice resulted in similar protection from catabolism as was observed for the disuse experiments. In conclusion, the Lrp5 HBM alleles offer significant protection from the resorptive effects of disuse and from estrogen withdrawal, and consequently, present a potential mechanism to mimic with pharmaceutical intervention to protect against various bone-wasting stimuli. PMID:26554834

  20. Zearalenone induces chromosome aberrations in mouse bone marrow: preventive effect of 17beta-estradiol, progesterone and Vitamin E.

    PubMed

    Ouanes, Z; Ayed-Boussema, I; Baati, T; Creppy, E E; Bacha, H

    2005-01-01

    The cytogenetic effect of zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, was evaluated in vivo, in mouse bone marrow cells, by assessing the percentage of cells bearing different chromosome aberrations. The studies included different conditions for animal treatment, as follows: (1) single intraperitoneal (ip) injection, (2) repeated ip injections, (3) pre-treatment for 24h with Vitamin E (Vit E), and (4) pre-treatment for 4h with 17beta-estradiol (17beta-Est) or progesterone (Prog). ZEN induced different types of chromosome aberrations, which was concentration-dependent (2-20 mg/kg bw). These doses corresponded to 0.4-4% of the LD50 in the mouse. Interestingly, when the dose of ZEN (40 mg/kg) was fractionated into four equivalent doses (4 x 10 mg/kg bw), into three doses (15 + 10 + 15 mg/kg bw), or into two equivalent doses (2 x 20 mg/kg bw), given every 24 h, the percentage of chromosome aberrations increased significantly. This finding suggests that ZEN proceeds by reversible binding on receptors that could become saturated, and that it damages the chromosomes in a 'hit and go' manner. Furthermore, pre-treatment of animals with 17beta-estradiol or progesterone significantly decreased the percentage of chromosome aberrations, suggesting that (i) these hormones bind to the same cytoplasmic receptors transported into the nucleus to elicit DNA damage, (ii) they may play a role in preventing chromosome aberrations induced by ZEN. Similarly, Vit E prevented these chromosome aberrations indicating that Vit E, previously reported to prevent most of the toxic effects induced by ZEN, may also bind to the same receptors. PMID:15661612

  1. Effects of Kagocel on the Counts of Multipotent Stromal Cells, Expression of Cytokine Genes in Primary Cultures of Bone Marrow Stromal Cells, and Serum Cytokine Concentrations in CBA Mice.

    PubMed

    Gorskaya, Yu F; Grabko, V I; Konopleva, M V; Suslov, A P; Nesterenko, V G

    2015-06-01

    The efficiency of cloning of bone marrow multipotent stromal cells (ECF-MSC) from CBA mice and the MSC counts in the femoral bone increased 24 h after a single in vivo (but not in vitro) injection of kagocel (active substance of antiviral drug Kagocel () ) 1.4 times (in response to 50-80 ?g) and 4.6 times (in response to 250 ?g). The maximum increase of ECF-MSC in response to 50 ?g per mouse was detected just 1 h after Kagocel injection to intact mice and to mice previously receiving the drug for 3 days (2 and 1.7 times, respectively). The increase of ECF-MSC was 3-fold less intense in response to oral Kagocel in a dose of 250 ?g/mouse vs. intraperitoneal Kagocel, ECF-MSC corresponding to its level in response to oral Poly (I:C). In vivo Kagocel led to emergence of proinflammatory cytokine IFN-?, IL-1?, and IL-8 mRNA in primary cultures of bone marrow stromal cells. Serum concentrations of IL-2, IL-5, IL-10, GM-CSF, IFN-?, TNF-?, IL-4, and IL-12 increased 1.5 and 2 times just 1 h after Kagocel injection in doses of 30-50 and 250 ?g, respectively, to intact mice and to animals previously treated with the drug for 3 days. The cytokine concentrations normalized after 3 h and increased again after 24 h, though did not reach the levels recorded 1 h after the drug injection. These data indicated that the therapeutic and preventive effects of Kagocel, together with its previously demonstrated stimulation of ?- and ?-interferon production during several days, could be due to the capacity of this drug to increase the bone marrow ECF-MSC, serum cytokine concentrations, and induce the expression of proinflammatory cytokine genes in the bone marrow stromal cells 1 h after its injection. PMID:26087752

  2. [Influence of "zero" magnetic field on the growth of embryonic cells and primary embryos of mouse in vitro].

    PubMed

    Osipenko, M A; Mezhevikina, L M; Krasts, I V; Iashin, V A; Novikov, V V; Fesenko, E E

    2008-01-01

    The present investigation reveals that a 250-fold screening of the geomagnetic field ("zero" geomagnetic fields, 200 nT) is a biologically active factor that adversely affects embryonic cells and the processes of early embryogenesis as a whole. In particular, the cultivation of primary embryonic fibroblasts in "zero" geomagnetic fields causes reduces the capacity for adhesion and proliferation, changes the monolayer morphology and increases cell death. In a more highly organized experimental model, two-celled mouse embryos, the exposure to the "zero" field results in an increase of plasma membrane permeability for dyes, a reorganization of the cytoskeleton because of alpha-actin redistribution, and the disturbance of the spatial orientation of blastomeres. As a result, the development of two-celled mouse embryos stops, and they do not reach the stage of blastocyst. These data show the significant role of geomagnetic fields in the normal growth of embryonic cells in vitro and the regulation of mammalian embryogenesis. PMID:18819291

  3. Ultra-high performance liquid chromatography-tandem mass spectrometry for the quantification of icaritin in mouse bone.

    PubMed

    Zhang, Shuang-Qing

    2015-01-26

    Icaritin (ICT), a bioactive metabolite of prenylflavonoids from genus Epimedium, has displayed potential benefits for the treatment of osteoporosis, prostate cancer, liver cancer, renal cancer and breast cancer. To investigate the quantity of ICT in bones in vivo, a simple and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed. After a rapid one-step liquid-liquid extraction using ethyl acetate with recovery more than 87.2% at four levels (0.1, 0.2, 8 and 15 ng/mL), ICT and internal standard coumestrol were analyzed on a C18 column using a gradient elution of acetonitrile and water containing ammonium formate and formic acid at a flow rate of 0.3 mL/min. Quantification was performed using selected reaction monitoring mode to monitor precursor-product ion transitions of m/z 367.1→297.1 for ICT and of 267.0→211.1 for coumestrol in the negative ionization mode. A calibration curve with good linearity (r>0.99) within the concentration range of 0.1-20 ng/mL for ICT was obtained with the lower limit of quantification of 0.1 ng/mL. Matrix effect did not interfere with ICT analysis and ICT was stable under three freeze-thaw cycles, short-term temperature, post-preparative and long-term temperature conditions. The method was successfully applied to a dynamic distribution of ICT in mouse bone after a single intraperitoneal administration to ICT to mice. PMID:25531867

  4. Bone tissue ultrastructural defects in a mouse model for osteogenesis imperfecta: a Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Chen, Tsoching; Kozloff, Kenneth M.; Goldstein, Steven A.; Morris, Michael D.

    2004-07-01

    Osteogenesis imperfecta (OI) is genetic defect in which the genes that code for the ?1(I) or ?2(I) chains of type I collagen are defective. The defects often result in substitution of a bulky amino acid for glycine, causing formation of collagen that can not form the normal triple helix. Depending on the details of the defects, the outcomes range from controllable to lethal. This study focuses on OI type IV, a more common and moderately severe form of the disease. People with the disease have a substantial increase in the risk and rate of fracture. We examine the spectroscopic consequences of these defects, using a mouse model (BRTL) that mimics OI type IV. We compare Raman images from tibial cortical tissue of wild-type mice and BRTL mice with single copy of mutation and show that both mineral to matrix ratios and collagen inter-fibril cross-links are different in wild-type and mutant mice.

  5. ?-Adrenergic agonist and antagonist regulation of autophagy in HepG2 cells, primary mouse hepatocytes, and mouse liver.

    PubMed

    Farah, Benjamin L; Sinha, Rohit A; Wu, Yajun; Singh, Brijesh K; Zhou, Jin; Bay, Boon-Huat; Yen, Paul M

    2014-01-01

    Autophagy recently has been shown to be involved in normal hepatic function and in pathological conditions such as non-alcoholic fatty liver disease. Adrenergic signalling also is an important regulator of hepatic metabolism and function. However, currently little is known about the potential role of adrenergic signaling on hepatic autophagy, and whether the ?-adrenergic receptor itself may be a key regulator of autophagy. To address these issues, we investigated the actions of the ?2-adrenergic receptor agonist, clenbuterol on hepatic autophagy. Surprisingly, we found that clenbuterol stimulated autophagy and autophagic flux in hepatoma cells, primary hepatocytes and in vivo. Similar effects also were observed with epinephrine treatment. Interestingly, propranolol caused a late block in autophagy in the absence and presence of clenbuterol, both in cell culture and in vivo. Thus, our results demonstrate that the ?2-adrenergic receptor is a key regulator of hepatic autophagy, and that the ?-blocker propranolol can independently induce a late block in autophagy. PMID:24950230

  6. ?-Adrenergic Agonist and Antagonist Regulation of Autophagy in HepG2 Cells, Primary Mouse Hepatocytes, and Mouse Liver

    PubMed Central

    Farah, Benjamin L.; Sinha, Rohit A.; Wu, Yajun; Singh, Brijesh K.; Zhou, Jin; Bay, Boon-Huat; Yen, Paul M.

    2014-01-01

    Autophagy recently has been shown to be involved in normal hepatic function and in pathological conditions such as non-alcoholic fatty liver disease. Adrenergic signalling also is an important regulator of hepatic metabolism and function. However, currently little is known about the potential role of adrenergic signaling on hepatic autophagy, and whether the ?-adrenergic receptor itself may be a key regulator of autophagy. To address these issues, we investigated the actions of the ?2-adrenergic receptor agonist, clenbuterol on hepatic autophagy. Surprisingly, we found that clenbuterol stimulated autophagy and autophagic flux in hepatoma cells, primary hepatocytes and in vivo. Similar effects also were observed with epinephrine treatment. Interestingly, propranolol caused a late block in autophagy in the absence and presence of clenbuterol, both in cell culture and in vivo. Thus, our results demonstrate that the ?2- adrenergic receptor is a key regulator of hepatic autophagy, and that the ?-blocker propranolol can independently induce a late block in autophagy. PMID:24950230

  7. Combination therapy with BMP-2 and a systemic RANKL inhibitor enhances bone healing in a mouse critical-sized femoral defect.

    PubMed

    Bougioukli, Sofia; Jain, Ashish; Sugiyama, Osamu; Tinsley, Brian A; Tang, Amy H; Tan, Matthew H; Adams, Douglas J; Kostenuik, Paul J; Lieberman, Jay R

    2016-03-01

    Recombinant human BMP-2 (rhBMP-2) is a potent osteoinductive agent, but has been associated not only with bone formation, but also osteoclastogenesis and bone resorption. Osteoprotegerin (OPG) is a RANKL inhibitor that blocks differentiation and function of osteoclasts. We hypothesized that the combination of local BMP-2 (recombinant protein or a product of gene therapy) plus systemic OPG-Fc is more effective than BMP-2 alone in promoting bone repair. To test this hypothesis we used a mouse critical-sized femoral defect model. Col2.3eGFP (osteoblastic marker) male mice were treated with rhBMP-2 (group I), rhBMP-2 and systemic OPG (group II), rhBMP-2 and delayed administration of OPG (group III), mouse BM cells transduced with a lentiviral vector containing the BMP-2 gene (LV-BMP-2; group IV), LV-BMP-2 and systemic OPG (group V), a carrier alone (group VI) and administration of OPG alone (group VII). All bone defects treated with BMP-2 (alone or combined with OPG) healed, whereas minimal bone formation was noted in animals treated with the carrier alone or OPG alone. MicroCT analysis showed that bone volume (BV) in rhBMP-2+OPG and LV-BMP-2+OPG groups was significantly higher compared to rhBMP-2 alone (p<0.01) and LV-BMP-2 alone (p<0.001). Similar results were observed in histomorphometry, with rhBMP-2 alone defects exhibiting significantly lower bone area (B.Ar) compared to rhBMP-2+OPG defects (p<0.005) and LV-BMP-2 defects having a significantly lower B.Ar compared to all BMP-2+OPG treated groups (p≤0.01). TRAP staining demonstrated a major osteoclast response in the groups that did not receive OPG (rhBMP-2, LV-BMP-2 and sponge alone) beginning as early as 7days post-operatively. In conclusion, we demonstrated that locally delivered BMP-2 (recombinant protein or gene therapy) in combination with systemically administered OPG improved bone healing compared to BMP-2 alone in a mouse critical-sized bone defect. These data indicate that osteoclasts can diminish healing responses to BMP-2 and that RANKL inhibition may thus accentuate BMP-2 efficacy. PMID:26723577

  8. Development of micro-CT protocols for in vivo follow-up of mouse bone architecture without major radiation side effects.

    PubMed

    Laperre, K; Depypere, M; van Gastel, N; Torrekens, S; Moermans, K; Bogaerts, R; Maes, F; Carmeliet, G

    2011-10-01

    In vivo micro-computed tomography (micro-CT) will offer unique information on the time-related changes in bone mass and structure of living mice, provided that radiation-induced side effects are prevented. Lowering the radiation dose, however, inevitably decreases the image quality. In this study we developed and validated a protocol for in vivo micro-CT imaging of mouse bone architecture that retains high quality images but avoids radiation-induced side effects on bone structure and hematological parameters. The left hindlimb of male C57Bl/6 mice was scanned in vivo at 3 consecutive time points, separated each time by a 2-week interval. Two protocols for in vivo micro-CT imaging were evaluated, with pixel sizes of 9 and 18 ?m and administered radiation doses of 434 mGy and 166 mGy per scan, respectively. These radiation doses were found not to influence trabecular or cortical bone architecture in pre-pubertal or adult mice. In addition, there was no evidence for hematological side effects as peripheral blood cell counts and the colony-forming capacity of hematopoietic progenitor cells from bone marrow and spleen were not altered. Although the images obtained with these in vivo micro-CT protocols were more blurred than those obtained with high resolution (5 ?m) ex vivo CT imaging, longitudinal follow-up of trabecular bone architecture in an orchidectomy model proved to be feasible using the 9 ?m pixel size protocol in combination with a suitable bone segmentation technique (i.e. local thresholding). The image quality of the 18 ?m pixel size protocol was too degraded for accurate bone segmentation and the use of this protocol is therefore restricted to monitor marked changes in bone structure such as bone metastatic lesions or fracture healing. In conclusion, we developed two micro-CT protocols which are appropriate for detailed as well as global longitudinal studies of mouse bone architecture and lack noticeable radiation-induced side effects. PMID:21763477

  9. Water permeability of primary mouse keratinocyte cultures grown at the air-liquid interface

    SciTech Connect

    Cumpstone, M.B.; Kennedy, A.H.; Harmon, C.S.; Potts, R.O.

    1989-04-01

    In order to study the development of the epidermal permeability barrier in vitro, tritiated water (HTO) flux was measured across murine keratinocytes cultured at the air-liquid interface. Using a micro-diffusion technique, it was shown that air-liquid cultures form areas where the water diffusion is comparable to that of intact neonatal mouse skin. When water permeability is measured over a large area of the culture surface, however, significantly higher flux is obtained. These results show that under the culture conditions used, areas of water barrier comparable to intact neonatal mouse skin coexist with regions of less complete barrier formation.

  10. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis.

    PubMed

    Wang, Dong; Li, Shi-Ping; Fu, Jin-Sheng; Bai, Lin; Guo, Li

    2016-04-01

    Experimental autoimmune encephalitis (EAE) is an inflammatory demyelinating disease, which served as a useful model providing considerable insights into the pathogenesis of multiple sclerosis (MS). Mouse bone marrow mesenchymal stem cells (mBM-MSC) were shown to have neuroprotection capabilities in EAE. Resveratrol is a small polyphenolic compound and possess therapeutic activity in various immune-mediated diseases. The sensitivity of mBM-MSCs to resveratrol was determined by an established cell-viability assay. Resveratrol-treated mBM-MSCs were also characterized with flow cytometry using MSC-specific surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by immunization with MOG35-55. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct T helper type 1 (Th1) and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). In vivo efficacy experiments showed that mBM-MSCs or resveratrol alone led to a significant reduction in clinical scores, and combined treatment resulted in even more prominent reduction. The combined treatment with mBM-MSCs and resveratrol enhanced the immunomodulatory effects, showing suppressed proinflammatory cytokines (IFN-γ, TNF-α) and increased anti-inflammatory cytokines (IL-4, IL-10). The combination of mBM-MSCs and resveratrol provides a novel potential experimental protocol for alleviating EAE symptoms. PMID:26827767

  11. Cell Fusion Reprogramming Leads to a Specific Hepatic Expression Pattern during Mouse Bone Marrow Derived Hepatocyte Formation In Vivo

    PubMed Central

    Arza, Elvira; Alvarez-Barrientos, Alberto; Fabregat, Isabel; Garcia-Bravo, Maria; Meza, Nestor W.; Segovia, Jose C.

    2012-01-01

    The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-?1 (TGF-?1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation. PMID:22457803

  12. Blocking LFA-1 Activation with Lovastatin Prevents Graft-versus-Host Disease in Mouse Bone Marrow Transplantation

    PubMed Central

    Wang, Yang; Li, Dan; Jones, Dan; Bassett, Roland; Sale, George E.; Khalili, Jahan; Komanduri, Krishna V.; Couriel, Daniel R.; Champlin, Richard E.; Molldrem, Jeffrey J.; Ma, Qing

    2016-01-01

    Graft-versus-host disease (GVHD) following bone marrow transplantation (BMT) is mediated by alloreactive donor T lymphocytes. Migration and activation of donor-derived T lymphocytes play critical roles in the development of GVHD. Leukocyte function associated antigen-1 (LFA-1) regulates T cell adhesion and activation. We previously demonstrated that the I-domain, the ligand-binding site of LFA-1, changes from the low affinity state to the high affinity state upon LFA-1 activation. Therapeutic antagonists, such as statins, inhibit LFA-1 activation and immune responses by modulating the affinity state of the LFA-1 I-domain. In this study, we demonstrated that lovastatin blocked mouse T cell adhesion, proliferation and cytokine production in vitro. Furthermore, locking LFA-1 in the low affinity state with lovastatin reduced the mortality and morbidity associated with GVHD in a murine BMT model. Specifically, lovastatin prevented T lymphocytes homing to lymph nodes and Peyer’s Patches during the GVHD initiation phase, and following donor lymphocyte infusion after establishment of GVHD. In addition, treatment with lovastatin impaired donor-derived T cell proliferation in vivo. Taken together, these results indicate the important role of lovastatin in the treatment of GVHD. PMID:19896074

  13. CXCR4 expression on pathogenic T cells facilitates their bone marrow infiltration in a mouse model of aplastic anemia

    PubMed Central

    Arieta Kuksin, Christina; Gonzalez-Perez, Gabriela

    2015-01-01

    Aplastic anemia (AA) is a disease characterized by T-cellmediated destruction of bone marrow (BM) hematopoietic stem and progenitor cells. Physiologically, T cells migrate to the BM in response to chemokines, such as SDF-1?, the ligand for CXCR4. However, how T cells traffic to the BM in AA is poorly understood. CXCR4 is aberrantly expressed in immune-mediated diseases and its regulation by nuclear factor-?B (NF-?B) in cancer models is well documented. In this study, we show that CXCR4 is highly expressed on BM-infiltrating CD4+ and CD8+ T cells in a mouse model of AA. Inhibiting CXCR4 in AA mice, using CXCR4?/? splenocytes or AMD3100, significantly reduced BM infiltration of T cells. We also report that NF-?B occupancy at the CXCR4 promoter is enhanced in BM-infiltrating CD8+ T cells of AA mice. Moreover, inhibiting NF-?B signaling in AA mice using Bay11 or dehydroxymethylepoxyquinomicin, or transferring p50?/? splenocytes, decreased CXCR4 expression on CD8+ T cells, significantly reduced BM infiltration of T cells, and strongly attenuated disease symptoms. Remarkably, therapeutic administration of Bay11 significantly extended survival of AA mice. Overall, we demonstrate that CXCR4 mediates migration of pathogenic T cells to the BM in AA mice, and inhibiting NF-?B signaling may represent a novel therapeutic approach to treating AA. PMID:25647836

  14. Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease.

    PubMed

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Nishimaki, Kiyomi; Iuchi, Katsuya; Lee, Hyunjin; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Ueda, Masayuki; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-04-24

    Stem cell transplantation therapy is currently in clinical trials for the treatment of ischemic stroke, and several beneficial aspects have been reported. Similarly, in Alzheimer's disease (AD), stem cell therapy is expected to provide an efficient therapeutic approach. Indeed, the intracerebral transplantation of stem cells reduced amyloid-? (A?) deposition and rescued memory deficits in AD model mice. Here, we show that intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) improves cognitive function in two different AD mouse models, DAL and APP mice, and prevents neurodegeneration. GFP-positive BMMCs were isolated from tibiae and femurs of 4-week-old mice and then transplanted intravenously into DAL and APP mice. Transplantation of BMMCs suppressed neuronal loss and restored memory impairment of DAL mice to almost the same level as in wild-type mice. Transplantation of BMMCs to APP mice reduced A? deposition in the brain. APP mice treated with BMMCs performed significantly better on behavioral tests than vehicle-injected mice. Moreover, the effects were observed even with transplantation after the onset of cognitive impairment in DAL mice. Together, our results indicate that intravenous transplantation of BMMCs has preventive effects against the cognitive decline in AD model mice and suggest a potential therapeutic effect of BMMC transplantation therapy. PMID:25698614

  15. Genes affected by mouse mammary tumor virus (MMTV) proviral insertions in mouse mammary tumors are deregulated or mutated in primary human mammary tumors.

    PubMed

    Callahan, Robert; Mudunur, Uma; Bargo, Sharon; Raafat, Ahmed; McCurdy, David; Boulanger, Corinne; Lowther, William; Stephens, Robert; Luke, Brian T; Stewart, Claudia; Wu, Xiaolin; Munroe, David; Smith, Gilbert H

    2012-11-01

    The accumulation of mutations is a contributing factor in the initiation of premalignant mammary lesions and their progression to malignancy and metastasis. We have used a mouse model in which the carcinogen is the mouse mammary tumor virus (MMTV) which induces clonal premalignant mammary lesions and malignant mammary tumors by insertional mutagenesis. Identification of the genes and signaling pathways affected in MMTV-induced mouse mammary lesions provides a rationale for determining whether genetic alteration of the human orthologues of these genes/pathways may contribute to human breast carcinogenesis. A high-throughput platform for inverse PCR to identify MMTV-host junction fragments and their nucleotide sequences in a large panel of MMTV-induced lesions was developed. Validation of the genes affected by MMTV-insertion was carried out by microarray analysis. Common integration site (CIS) means that the gene was altered by an MMTV proviral insertion in at least two independent lesions arising in different hosts. Three of the new genes identified as CIS for MMTV were assayed for their capability to confer on HC11 mouse mammary epithelial cells the ability for invasion, anchorage independent growth and tumor development in nude mice. Analysis of MMTV induced mammary premalignant hyperplastic outgrowth (HOG) lines and mammary tumors led to the identification of CIS restricted to 35 loci. Within these loci members of the Wnt, Fgf and Rspo gene families plus two linked genes (Npm3 and Ddn) were frequently activated in tumors induced by MMTV. A second group of 15 CIS occur at a low frequency (2-5 observations) in mammary HOGs or tumors. In this latter group the expression of either Phf19 or Sdc2 was shown to increase HC11 cells invasion capability. Foxl1 expression conferred on HC11 cells the capability for anchorage-independent colony formation in soft agar and tumor development in nude mice. The published transcriptome and nucleotide sequence analysis of gene expression in primary human breast tumors was interrogated. Twenty of the human orthologues of MMTV CIS associated genes are deregulated and/or mutated in human breast tumors. PMID:23131872

  16. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.

    PubMed

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B; Spevak, Lyudmila; Boskey, Adele L; Jepsen, Karl J

    2008-11-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways. PMID:18855037

  17. Fourier Transform Infrared Imaging Microspectroscopy and Tissue-Level Mechanical Testing Reveal Intraspecies Variation in Mouse Bone Mineral and Matrix Composition

    PubMed Central

    Courtland, Hayden-William; Nasser, Philip; Goldstone, Andrew B.; Spevak, Lyudmila; Boskey, Adele L.; Jepsen, Karl J.

    2009-01-01

    Fracture susceptibility is heritable and dependent upon bone morphology and quality. However, studies of bone quality are typically overshadowed by emphasis on bone geometry and bone mineral density. Given that differences in mineral and matrix composition exist in a variety of species, we hypothesized that genetic variation in bone quality and tissue-level mechanical properties would also exist within species. Sixteen-week-old female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse femora were analyzed using Fourier transform infrared imaging and tissue-level mechanical testing for variation in mineral composition, mineral maturity, collagen cross-link ratio, and tissue-level mechanical properties. A/J femora had an increased mineral-to-matrix ratio compared to B6. The C3H mineral-to-matrix ratio was intermediate of A/J and B6. C3H femora had reduced acid phosphate and carbonate levels and an increased collagen cross-link ratio compared to A/J and B6. Modulus values paralleled mineral-to-matrix values, with A/J femora being the most stiff, B6 being the least stiff, and C3H having intermediate stiffness. In addition, work-to-failure varied among the strains, with the highly mineralized and brittle A/J femora performing the least amount of work-to-failure. Inbred mice are therefore able to differentially modulate the composition of their bone mineral and the maturity of their bone matrix in conjunction with tissue-level mechanical properties. These results suggest that specific combinations of bone quality and morphological traits are genetically regulated such that mechanically functional bones can be constructed in different ways. PMID:18855037

  18. Early-Stage Primary Bone Lymphoma: A Retrospective, Multicenter Rare Cancer Network (RCN) Study

    SciTech Connect

    Cai Ling; Stauder, Michael C.; Zhang Yujing; Poortmans, Philip; Li Yexiong; Constantinou, Nicolaos; Thariat, Juliette; Kadish, Sidney P.; Nguyen, Tan Dat; Kirova, Youlia M.; Ghadjar, Pirus; Weber, Damien C.; Bertran, Victoria Tuset; Ozsahin, Mahmut; Mirimanoff, Rene-Olivier

    2012-05-01

    Purpose: Primary bone lymphoma (PBL) represents less than 1% of all malignant lymphomas. In this study, we assessed the disease profile, outcome, and prognostic factors in patients with Stages I and II PBL. Patients and Methods: Thirteen Rare Cancer Network (RCN) institutions enrolled 116 consecutive patients with PBL treated between 1987 and 2008 in this study. Eighty-seven patients underwent chemoradiotherapy (CXRT) without (78) or with (9) surgery, 15 radiotherapy (RT) without (13) or with (2) surgery, and 14 chemotherapy (CXT) without (9) or with (5) surgery. Median RT dose was 40 Gy (range, 4-60). The median number of CXT cycles was six (range, 2-8). Median follow-up was 41 months (range, 6-242). Results: The overall response rate at the end of treatment was 91% (complete response [CR] 74%, partial response [PR] 17%). Local recurrence or progression was observed in 12 (10%) patients and systemic recurrence in 17 (15%). The 5-year overall survival (OS), lymphoma-specific survival (LSS), and local control (LC) were 76%, 78%, and 92%, respectively. In univariate analyses (log-rank test), favorable prognostic factors for OS and LSS were International Prognostic Index (IPI) score {<=}1 (p = 0.009), high-grade histology (p = 0.04), CXRT (p = 0.05), CXT (p = 0.0004), CR (p < 0.0001), and RT dose >40 Gy (p = 0.005). For LC, only CR and Stage I were favorable factors. In multivariate analysis, IPI score, RT dose, CR, and CXT were independently influencing the outcome (OS and LSS). CR was the only predicting factor for LC. Conclusion: This large multicenter retrospective study confirms the good prognosis of early-stage PBL treated with combined CXRT. An adequate dose of RT and complete CXT regime were associated with better outcome.

  19. CD34 immunohistochemistry of bone marrow biopsies: prognostic significance in primary myelodysplastic syndromes.

    PubMed

    Soligo, D A; Oriani, A; Annaloro, C; Cortelezzi, A; Calori, R; Pozzoli, E; Nosella, D; Orazi, A; Deliliers, G L

    1994-05-01

    Bone marrow (BM) biopsies from 58 patients with primary myelodysplastic syndrome (MDS) were studied using QBEND10, a monoclonal antibody that recognizes the human progenitor CD34 antigen in routine aldehyde-fixed paraffin-embedded samples. FAB subtypes were RA (5 patients), RARS (9 patients), RAEB (20 patients), RAEBt (11 patients), CMML (3 patients). In addition, 10 MDS patients whose BM biopsies revealed heavy reticulum fibrosis were included. Neither the percentage of CD34+ cells nor the number of CD34+ aggregates (defined as clusters of 3 or more cells) correlated with the presence and morphology of abnormal localizations of immature precursors (ALIP). When all patients were considered, median survival was 69 months in those with less, and 25 months in patients with more than 1% CD34+ cells (P < 0.05). Median survival was 15 months in patients with CD34+ aggregates and 41 months in those without aggregates (P = 0.0017). When RAEB patients were considered median survival was 41 months in those with less than 1%, and 29 months in those with more than 1% CD34+ cells; the 4-year survival chance was 45% in the former and 18.3% in the latter group. Therefore, CD34 positivity of more than 1% identifies a subset of RAEB patients with shorter life expectancy. In addition, leukemic transformation was observed in 11 of 35 patients (31%) with no CD34 aggregates, but in 14 of 23 patients (60%) with aggregates (P < 0.05). CD34 immunostaining, which can be easily performed on routinely prepared BM biopsies, was found to be a powerful prognostic tool for predicting survival and outcome in MDS. PMID:7514357

  20. Removal of a nasal bone intraosseous venous malformation and primary reconstruction of the surgical defect using open rhinoplasty.

    PubMed

    Yu, M S; Kim, H C; Jang, Y J

    2010-04-01

    Primary intraosseous venous malformations are rare benign tumors that account for approximately 1% of all primary osseous tumors. They are rarely found in the midface. The authors report a case of an intraosseous venous malformation in a 28-year-old woman who presented with a bony lesion in the nasal bone. Treatment involved surgical excision via open rhinoplasty. Histopathology indicated an intraosseous venous malformation. 16 months postoperatively, there was no evidence of recurrence, the functional and cosmetic results were good, and the patient was satisfied with the treatment outcome. PMID:20097542

  1. FDG-PET/CT Imaging Predicts Histopathologic Treatment Responses after Neoadjuvant Therapy in Adult Primary Bone Sarcomas

    DOE PAGESBeta

    Benz, Matthias R.; Czernin, Johannes; Tap, William D.; Eckardt, Jeffrey J.; Seeger, Leanne L.; Allen-Auerbach, Martin S.; Dry, Sarah M.; Phelps, Michael E.; Weber, Wolfgang A.; Eilber, Fritz C.

    2010-01-01

    Purpose . Tmore » he aim of this study was to prospectively evaluate whether FDG-PET allows an accurate assessment of histopathologic response to neoadjuvant treatment in adult patients with primary bone sarcomas. Methods . Twelve consecutive patients with resectable, primary high grade bone sarcomas were enrolled prospectively. FDG-PET/CT imaging was performed prior to the initiation and after completion of neoadjuvant treatment. Imaging findings were correlated with histopathologic response. Results . Histopathologic responders showed significantly more pronounced decreases in tumor FDG-SUVmax from baseline to late follow up than non-responders ( 64 ± 19 % versus 29 ± 30 %, resp.; P = .03 ). Using a 60% decrease in tumor FDG-uptake as a threshold for metabolic response correctly classified 3 of 4 histopathologic responders and 7 of 8 histopathologic non-responders as metabolic responders and non-responders, respectively (sensitivity, 75%; specificity, 88%). Conclusion . These results suggest that changes in FDG-SUVmax at the end of neoadjuvant treatment can identify histopathologic responders and non-responders in adult primary bone sarcoma patients.« less

  2. Zinc increases EGF-stimulated DNA synthesis in primary mouse hepatocytes. Studies in tumor promoter-treated cell cultures.

    PubMed

    Kobusch, A B; Bock, K W

    1990-02-01

    To investigate factors influencing cell proliferation, cells are often cultured in serum-free medium. In the present study it is shown that addition of zinc chloride (40 microM) to primary mouse hepatocytes, cultured in Dulbecco's minimal essential medium, markedly enhanced growth factor (EGF)-stimulated [3H]thymidine incorporation into DNA. Treatment of cell cultures with phenobarbital or 3,4,3',4'-tetrachlorobiphenyl (enzyme inducers and tumor promoters in vivo) or with 12-O-tetradecanoylphorbol-13-acetate (the classical skin tumor promoter) further increased EGF-stimulated DNA synthesis. The results emphasize the need to adequately substitute zinc in serum-free cultured cells. PMID:2106323

  3. Repression of multiple CYP2D genes in mouse primary hepatocytes with a single siRNA construct.

    PubMed

    Elraghy, Omaima; Baldwin, William S

    2015-01-01

    The Cyp2d subfamily is the second most abun-dant subfamily of hepatic drug-metabolizing CYPs. In mice, there are nine Cyp2d members that are believed to have redundant catalytic activity. We are testing and optimizing the ability of one short interfering RNA (siRNA) construct to knockdown the expression of multiple mouse Cyp2ds in primary hepatocytes. Expression of Cyp2d10, Cyp2d11, Cyp2d22, and Cyp2d26 was observed in the primary male mouse hepatocytes. Cyp2d9, which is male-specific and growth hormone-dependent, was not expressed in male primary hepatocytes, potentially because of its dependence on pulsatile growth hormone release from the anterior pituitary. Several different siRNAs at different concentrations and with different reagents were used to knockdown Cyp2d expression. siRNA constructs designed to repress only one construct often mildly repressed several Cyp2d isoforms. A construct designed to knockdown every Cyp2d isoform provided the best results, especially when incubated with transfection reagents designed specifically for primary cell culture. Interestingly, a construct designed to knockdown all Cyp2d isoforms, except Cyp2d10, caused a 2.5 increase in Cyp2d10 expression, presumably because of a compensatory response. However, while RNA expression is repressed 24h after siRNA treatment, associated changes in Cyp2d-mediated metabolism are tenuous. Overall, this study provides data on the expression of murine Cyp2ds in primary cell lines, valuable information on designing siRNAs for silencing multiple murine CYPs, and potential pros and cons of using siRNA as a tool for repressing Cyp2d and estimating Cyp2d's role in murine xenobiotic metabolism. PMID:25124873

  4. Primary mixed malignant tumor of bone in an 18-year-old male: Report of a case with radiologic-pathologic correlation

    PubMed Central

    Courtier, Jesse; Robbins, Elizabeth; Soares, Bruno; Horvai, Andrew; Mackenzie, John D.

    2012-01-01

    We report a case of primary malignant mixed tumor (MMT) of bone in an 18-year-old boy with X-ray, CT, MR, scintigraphic, FDG PET, and pathologic correlation. Primary MMT of bone is a highly aggressive tumor and presents both a diagnostic and clinical treatment challenge. This tumor is extremely rare and to the best of our knowledge, this is the first report of the diagnostic imaging findings for primary MMT arising from bone in a patient of this age group.

  5. Bone morphogenetic proteins, eye patterning, and retinocollicular map formation in the mouse

    PubMed Central

    Plas, Daniel T.; Dhande, Onkar; Lopez, Joshua E.; Murali, Deepa; Thaller, Christina; Henkemeyer, Mark; Furuta, Yasuhide; Overbeek, Paul; Crair, Michael C.

    2009-01-01

    Patterning events during early eye formation determine retinal cell fate and can dictate the behavior of retinal ganglion cell (RGC) axons as they navigate toward central brain targets. The temporally and spatially regulated expression of bone morphogenetic proteins (BMPs) and their receptors in the retina are thought to play a key role in this process, initiating gene expression cascades that distinguish different regions of the retina, particularly along the dorsoventral axis. Here, we examine the role of BMP and a potential downstream effector, EphB, in retinotopic map formation in the lateral geniculate nucleus (LGN) and superior colliculus (SC). RGC axon behaviors during retinotopic map formation in wild type mice are compared with those in several strains of mice with engineered defects of BMP and EphB signaling. Normal RGC axon sorting produces axon order in the optic tract that reflects the dorsoventral position of the parent RGCs in the eye. A dramatic consequence of disrupting BMP signaling is a missorting of RGC axons as they exit the optic chiasm. This sorting is not dependent on EphB. When BMP signaling in the developing eye is genetically modified, RGC order in the optic tract and targeting in the LGN and SC are correspondingly disrupted. These experiments show that BMP signaling regulates dorsoventral RGC cell fate, RGC axon behavior in the ascending optic tract and retinotopic map formation in the LGN and SC through mechanisms that are in part distinct from EphB signaling in the LGN and SC. PMID:18614674

  6. Bone morphogenetic proteins, eye patterning, and retinocollicular map formation in the mouse.

    PubMed

    Plas, Daniel T; Dhande, Onkar S; Lopez, Joshua E; Murali, Deepa; Thaller, Christina; Henkemeyer, Mark; Furuta, Yasuhide; Overbeek, Paul; Crair, Michael C

    2008-07-01

    Patterning events during early eye formation determine retinal cell fate and can dictate the behavior of retinal ganglion cell (RGC) axons as they navigate toward central brain targets. The temporally and spatially regulated expression of bone morphogenetic proteins (BMPs) and their receptors in the retina are thought to play a key role in this process, initiating gene expression cascades that distinguish different regions of the retina, particularly along the dorsoventral axis. Here, we examine the role of BMP and a potential downstream effector, EphB, in retinotopic map formation in the lateral geniculate nucleus (LGN) and superior colliculus (SC). RGC axon behaviors during retinotopic map formation in wild-type mice are compared with those in several strains of mice with engineered defects of BMP and EphB signaling. Normal RGC axon sorting produces axon order in the optic tract that reflects the dorsoventral position of the parent RGCs in the eye. A dramatic consequence of disrupting BMP signaling is a missorting of RGC axons as they exit the optic chiasm. This sorting is not dependent on EphB. When BMP signaling in the developing eye is genetically modified, RGC order in the optic tract and targeting in the LGN and SC are correspondingly disrupted. These experiments show that BMP signaling regulates dorsoventral RGC cell fate, RGC axon behavior in the ascending optic tract, and retinotopic map formation in the LGN and SC through mechanisms that are in part distinct from EphB signaling in the LGN and SC. PMID:18614674

  7. Mouse Bone Marrow-Derived Endothelial Progenitor Cells Do Not Restore Radiation-Induced Microvascular Damage

    PubMed Central

    Seemann, Ingar; te Poele, Johannes A. M.; Hoving, Saske; Stewart, Fiona A.

    2014-01-01

    Background. Radiotherapy is commonly used to treat breast and thoracic cancers but it also causes delayed microvascular damage and increases the risk of cardiac mortality. Endothelial cell proliferation and revascularization are crucial to restore microvasculature damage and maintain function of the irradiated heart. We have therefore examined the potential of bone marrow-derived endothelial progenitor cells (BM-derived EPCs) for restoration of radiation-induced microvascular damage. Material & Methods. 16?Gy was delivered to the heart of adult C57BL/6 mice. Mice were injected with BM-derived EPCs, obtained from Eng+/+ or Eng+/? mice, 16 weeks and 28 weeks after irradiation. Morphological damage was evaluated at 40 weeks in transplanted mice, relative to radiation only and age-matched controls. Results. Cardiac irradiation decreased microvascular density and increased endothelial damage in surviving capillaries (decrease alkaline phosphatase expression and increased von Willebrand factor). Microvascular damage was not diminished by treatment with BM-derived EPCs. However, BM-derived EPCs from both Eng+/+ and Eng+/? mice diminished radiation-induced collagen deposition. Conclusion. Treatment with BM-derived EPCs did not restore radiation-induced microvascular damage but it did inhibit fibrosis. Endoglin deficiency did not impair this process. PMID:25101181

  8. Mouse host unlicensed NK cells promote donor allogeneic bone marrow engraftment.

    PubMed

    Alvarez, Maite; Sun, Kai; Murphy, William J

    2016-03-01

    Natural killer (NK) cells exist as subsets based on expression of inhibitory receptors that recognize major histocompatibility complex I (MHCI) molecules. NK cell subsets bearing MHCI binding receptors for self-MHCI have been termed as "licensed" and exhibit a higher ability to respond to stimuli. In the context of bone marrow transplantation (BMT), host licensed-NK (L-NK) cells have also been demonstrated to be responsible for the acute rejection of allogeneic and MHCI-deficient BM cells (BMCs) in mice after lethal irradiation. However, the role of recipient unlicensed-NK (U-NK) cells has not been well established with regard to allogeneic BMC resistance. After NK cell stimulation, the prior depletion of host L-NK cells resulted in a marked increase of donor engraftment compared with the untreated group. Surprisingly, this increased donor engraftment was reduced after total host NK cell depletion, indicating that U-NK cells can actually promote donor allogeneic BMC engraftment. Furthermore, direct coculture of U-NK cells with allogeneic but not syngeneic BMCs resulted in increased colony-forming unit cell growth in vitro, which was at least partially mediated by granulocyte macrophage colony-stimulating factor (GM-CSF) production. These data demonstrate that host NK cell subsets exert markedly different roles in allogeneic BMC engraftment where host L- and U-NK cells reject or promote donor allogeneic BMC engraftment, respectively. PMID:26738538

  9. Mouse host unlicensed NK cells promote donor allogeneic bone marrow engraftment

    PubMed Central

    Alvarez, Maite; Sun, Kai

    2016-01-01

    Natural killer (NK) cells exist as subsets based on expression of inhibitory receptors that recognize major histocompatibility complex I (MHCI) molecules. NK cell subsets bearing MHCI binding receptors for self-MHCI have been termed as “licensed” and exhibit a higher ability to respond to stimuli. In the context of bone marrow transplantation (BMT), host licensed-NK (L-NK) cells have also been demonstrated to be responsible for the acute rejection of allogeneic and MHCI-deficient BM cells (BMCs) in mice after lethal irradiation. However, the role of recipient unlicensed-NK (U-NK) cells has not been well established with regard to allogeneic BMC resistance. After NK cell stimulation, the prior depletion of host L-NK cells resulted in a marked increase of donor engraftment compared with the untreated group. Surprisingly, this increased donor engraftment was reduced after total host NK cell depletion, indicating that U-NK cells can actually promote donor allogeneic BMC engraftment. Furthermore, direct coculture of U-NK cells with allogeneic but not syngeneic BMCs resulted in increased colony-forming unit cell growth in vitro, which was at least partially mediated by granulocyte macrophage colony-stimulating factor (GM-CSF) production. These data demonstrate that host NK cell subsets exert markedly different roles in allogeneic BMC engraftment where host L- and U-NK cells reject or promote donor allogeneic BMC engraftment, respectively. PMID:26738538

  10. The accuracy of computer-assisted primary mandibular reconstruction with vascularized bone flaps: iliac crest bone flap versus osteomyocutaneous fibula flap

    PubMed Central

    Modabber, Ali; Ayoub, Nassim; Mhlhenrich, Stephan Christian; Goloborodko, Evgeny; Snmez, Tolga Taha; Ghassemi, Mehrangiz; Loberg, Christina; Lethaus, Bernd; Ghassemi, Alireza; Hlzle, Frank

    2014-01-01

    Background The intention of mandibular reconstruction is to restore the complex anatomy with maximum possible functionality and high accuracy. The aim of this study was to evaluate the accuracy of computer-assisted surgery in primary mandibular reconstruction with an iliac crest bone flap compared with an osteomyocutaneous fibula flap. Materials and methods Preoperative computed tomography data of the mandible and the iliac crest or fibula donor site were imported into a specific surgical planning software program. Surgical guides were manufactured using a rapid prototyping technique for translating the virtual plan, including information on the transplant dimensions and shape, into real-time surgery. Using postoperative computed tomography scans and an automatic surface-comparison algorithm, the actual postoperative situation was compared with the preoperative virtual simulation. Results The actual flap position showed a mean difference from the virtual plan of 2.43 mm (standard deviation [SD] 1.26) and a surface deviation of 39% <2 mm and 15% <1 mm for the iliac crest bone flap, and a mean difference of 2.18 mm (SD 1.93) and a surface deviation of 60% <2 mm and 37% <1 mm for the osteomyocutaneous fibula flap. The position of the neomandible reconstructed with an osteomyocutaneous fibula flap indicated a mean difference from the virtual plan of 1.25 mm (SD 1.31) and a surface deviation of 82% <2 mm and 57% <1 mm, in contrast to a mean difference of 1.68 mm (SD 1.25) and a surface deviation of 63% <2 mm and 38% <1 mm for the neomandible after reconstruction with an iliac crest bone flap. For shape analysis, a similarly high accuracy could be calculated for both flaps. Conclusion Virtual surgical planning is an effective method for mandibular reconstruction with vascularized bone flaps, and can help to restore the anatomy of the mandible with high accuracy in position and shape. It seems that primary mandibular reconstruction with the osteomyocutaneous fibula flap is more accurate compared with the vascularized iliac crest bone flap. PMID:24966700

  11. [Construction and identification of primary open angle glaucoma disease MYOC Pro356Leu mutant plasmid in mouse.

    PubMed

    Li, Chunmei; Zhuo, Yehong; Chen, Mengfei; Sun, Xuerong; Qi, Ying; Ge, Jian

    2010-08-01

    PURPOSE:To construct and identify the plasmid of mutant MYOC Pro356Leu in mouse. METHODS:1.Transfering Red recombinantinase- expressing plasmid pKD46 was transferred to RP23-180F15 BAC clone by electroporation.2.Amplifying tThe pStart-K vector was amplified by PCR and electroporating the PCR product was electroporated into the bacteria containing the mMYOC. 3.PCR amplification of the mMyoc AfeI fragment and Subcloningand then subcloned it into pBluescript vector.4.Designing two oligonucleotides was designed and introducingthe Pro356Leu (C to T at codon 356) was introduced into the pBS_mMyoc AfeI clone. 5. the Introducing pBS_mMyoc AfeI mut clone was introduced to pStart-K_mMyoc by digestion and ligation reaction. Identifying correct the final clones were identified by restriction enzyme digestion and sequenceing. RESULTS: pStart-K_mMyoc mut clone,the mouse MYOC Pro356Leu mutant plasmid was constructed and identified well by restriction enzyme digest and sequenceing. CONCLUSIONS: It is a good method to construct a long DNA fragment clone by red recombinase and pStart-K vector. The constructed Mouse MYOC Pro356Leu plasmidwill be very helpful for the studies on the function and biologic effects of MYOC gene in primary open angle glaucoma. PMID:21166044

  12. Primary bone carcinosarcoma of the fibula with chondrosarcoma and squamous cell carcinoma components.

    PubMed

    Ishida, Mitsuaki; Kodama, Narihito; Takemura, Yoshinori; Iwai, Muneo; Yoshida, Keiko; Kagotani, Akiko; Matsusue, Yoshitaka; Okabe, Hidetoshi

    2013-01-01

    Carcinosarcoma is defined as a malignant neoplasm that is composed of both carcinomatous and sarcomatous components. The occurrence of carcinosarcoma in the bone is extremely rare. In this report, we describe the third documented de novo case of carcinosarcoma of the bone. A 59-year-old Japanese female presented with a painful tumor in her right lower leg. Plane radiography revealed an osteolytic destructive lesion with periosteal reaction and mineralization in the right fibula. Resection of the fibula tumor was performed under a clinical diagnosis of chondrosarcoma. Histopathological study revealed that the tumor was comprised of three components. The main component was proliferation of small round to short spindle cells (approximately 50%), and the remaining components were chondrosarcoma (30%) and squamous cell carcinoma (20%). Immunohistochemically, SOX9 was expressed in the small round to spindle cells and chondrosarcoma component, and p63 and p40 were expressed in all three components. Accordingly, an ultimate diagnosis of carcinosarcoma of the bone was made. The clinicopathological analysis of carcinosarcoma of the bone revealed that this type of tumor affects the middle-aged to elderly persons and occurs in the long bone. All three de novo cases had chondrosarcoma and squamous cell carcinoma components. One of the 3 patients died of the disease. The histogenesis of carcinosarcoma of the bone remains a matter of controversy, although a multpotential stem cell theory has been proposed. Additional studies are required to clarify the clinical behavior and histogenesis of carcinosarcoma of the bone. PMID:24133601

  13. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    PubMed Central

    2012-01-01

    Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5?g or 8?mg / day) for two months and 24?h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240?mg / kg body weight) or MMS (125?mg?/?kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60?days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life. PMID:22853637

  14. A mouse model of luciferase-transfected stromal cells of giant cell tumor of bone.

    PubMed

    Lau, Carol P Y; Wong, Kwok Chuen; Huang, Lin; Li, Gang; Tsui, Stephen K W; Kumta, Shekhar Madhukar

    2015-11-01

    A major barrier towards the study of the effects of drugs on Giant Cell Tumor of Bone (GCT) has been the lack of an animal model. In this study, we created an animal model in which GCT stromal cells survived and functioned as proliferating neoplastic cells. A proliferative cell line of GCT stromal cells was used to create a stable and luciferase-transduced cell line, Luc-G33. The cell line was characterized and was found that there were no significant differences on cell proliferation rate and recruitment of monocytes when compared with the wild type GCT stromal cells. We delivered the Luc-G33 cells either subcutaneously on the back or to the tibiae of the nude mice. The presence of viable Luc-G33 cells was assessed using real-time live imaging by the IVIS 200 bioluminescent imaging (BLI) system. The tumor cells initially propagated and remained viable on site for 7 weeks in the subcutaneous tumor model. We also tested in vivo antitumor effects of Zoledronate (ZOL) and Geranylgeranyl transferase-I inhibitor (GGTI-298) alone or their combinations in Luc-G33-transplanted nude mice. ZOL alone at 400?g/kg and the co-treatment of ZOL at 400?g/kg and GGTI-298 at 1.16?mg/kg reduced tumor cell viability in the model. Furthermore, the anti-tumor effects by ZOL, GGTI-298 and the co-treatment in subcutaneous tumor model were also confirmed by immunohistochemical (IHC) staining. In conclusion, we established a nude mice model of GCT stromal cells which allows non-invasive, real-time assessments of tumor development and testing the in vivo effects of different adjuvants for treating GCT. PMID:26327464

  15. Contribution of Bone Marrow Hematopoietic Stem Cells to Adult Mouse Inner Ear: Mesenchymal Cells and Fibrocytes

    PubMed Central

    Lang, Hainan; Ebihara, Yasuhiro; Schmiedt, Richard A.; Minamiguchi, Hitoshi; Zhou, Daohong; Smythe, Nancy; Liu, Liya; Ogawa, Makio; Schulte, Bradley A.

    2008-01-01

    Bone marrow (BM)-derived stem cells have shown plasticity with a capacity to differentiate into a variety of specialized cells. To test the hypothesis that some cells in the inner ear are derived from BM, we transplanted either isolated whole BM cells or clonally expanded hematopoietic stem cells (HSCs) prepared from transgenic mice expressing enhanced green fluorescent protein (EGFP) into irradiated adult mice. Isolated GFP+ BM cells also were transplanted into conditioned newborn mice derived from pregnant mice injected with busulfan (which ablates HSCs in the newborns). Quantification of GFP+ cells was performed 3-20 months after transplant. GFP+ cells were found in the inner ear with all transplant conditions. They were most abundant within the spiral ligament but were also found in other locations normally occupied by fibrocytes and mesenchymal cells. No GFP+ neurons or hair cells were observed in inner ears of transplanted mice. Dual immunofluorescence assays demonstrated that most of the GFP+ cells were negative for CD45, a macrophage and hematopoietic cell marker. A portion of the GFP+ cells in the spiral ligament expressed immunoreactive Na, K-ATPase or the Na-K-Cl transporter (NKCC), proteins used as markers for specialized ion transport fibrocytes. Phenotypic studies indicated that the GFP+ cells did not arise from fusion of donor cells with endogenous cells. This study provides the first evidence for the origin of inner ear cells from BM and more specifically from HSCs. The results suggest that mesenchymal cells, including fibrocytes in the adult inner ear, may be derived continuously from HSCs. PMID:16538683

  16. TNF-? Regulates the Effects of Irradiation in the Mouse Bone Marrow Microenvironment

    PubMed Central

    Cachao, Ana Sofia; Carvalho, Tnia; Santos, Ana Cristina; Igreja, Ctia; Fragoso, Rita; Osrio, Catarina; Ferreira, Manuela; Serpa, Jacinta; Correia, Sofia; Pinto-do-, Perptua; Dias, Srgio

    2010-01-01

    Background Secondary bone marrow (BM) myelodysplastic syndromes (MDS) are increasingly common, as a result of radio or chemotherapy administered to a majority of cancer patients. Patients with secondary MDS have increased BM cell apoptosis, which results in BM dysfunction (cytopenias), and an increased risk of developing fatal acute leukemias. In the present study we asked whether TNF-?, known to regulate cell apoptosis, could modulate the onset of secondary MDS. Principal Findings We show that TNF-? is induced by irradiation and regulates BM cells apoptosis in vitro and in vivo. In contrast to irradiated wild type (WT) mice, TNF-? deficient (TNF-? KO) mice or WT mice treated with a TNF-?-neutralizing antibody were partially protected from the apoptotic effects of irradiation. Next we established a 3-cycle irradiation protocol, in which mice were sub-lethally irradiated once monthly over a 3 month period. In this model, irradiated WT mice presented loss of microsatellite markers on BM cells, low white blood cell (WBC) counts, reduced megakaryocyte (MK) and platelet levels (thrombocytopenia) and macrocytic anemia, phenoypes that suggest the irradiation protocol resulted in BM dysfunction with clinical features of MDS. In contrast, TNF-? KO mice were protected from the irradiation effects: BM cell apoptosis following irradiation was significantly reduced, concomitant with sustained BM MK numbers and absence of other cytopenias. Moreover, irradiated WT mice with long term (?5 months) BM dysfunction had increased BM angiogenesis, MMPs and VEGF and NFkB p65, suggestive of disease progression. Conclusion Taken together, our data shows that TNF-? induction following irradiation modulates BM cell apoptosis and is a crucial event in BM dysfunction, secondary MDS onset and progression. PMID:20126546

  17. CS-13BONE MORPHOGENETIC PROTEIN SIGNALING PROMOTES TUMORIGENESIS IN A TRANSGENIC MOUSE MODEL OF GLIOMA

    PubMed Central

    Hover, Laura; Owens, Philip; Munden, Alex; Abel, Ty

    2014-01-01

    Improved therapies for high grade glioma (HGG) are imperative, as the median survival after diagnosis with grade IV glioma is 15 months. Recently pathways regulating neural development, such as the bone morphogenetic protein (BMP) pathway, have been investigated as potential therapeutic targets in HGG. In xenograft transplant models, BMP signaling has been shown to have a tumor suppressive effect on the subpopulation of cells known as glioma-initiating or glioma stem cells. However, the degree to which BMP signaling plays a role in the bulk tumor cells or the more differentiated component in HGG is unknown. To investigate these questions we used both human samples of HGG and a novel murine model of human HGG established in our laboratory. We determined that BMP signaling is present and active in human HGG using a human HGG tissue-microarray. Our analysis of phospho-smad1/5/8 staining suggests that BMP signaling is present and active in most cells in many HGG gliomas, suggesting that BMP signaling is not limited to the glioma stem cell compartment. To examine the role of BMP signaling in differentiated, tumorigenic astrocytes, we deleted the BMP type IA receptor gene (Bmpr1a) in transformed astrocytes, effectively abrogating canonical BMP signaling in these cells. The cells were then transplanted orthotopically into immunocompetent adult host mice. Preliminary data suggest that, while BMP signaling may be tumor suppressive in stem-like cells, it acts as a tumor promoter in differentiated tumorigenic astrocytes. Compared to controls receiving cells with intact Bmpr1a, mice receiving Bmpr1a-knockout cells showed a significant increase in survival time upon orthotopic injection (21 vs. 52 days, p = 0.001). In vitro, deletion of Bmpr1a in oncogenic astrocytes resulted in decreased proliferation and increased Olig2 expression. Studies to further investigate the role of BMPs in HGG are underway.

  18. The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent.

    PubMed

    Bakker, A D; Soejima, K; Klein-Nulend, J; Burger, E H

    2001-05-01

    Loading-induced flow of interstitial fluid through the lacuno-canalicular network is a likely signal for bone cell adaptive responses. However, the nature of the stimulus that activates the cell is debated. Candidate stimuli include wall shear stress, streaming potentials, and chemotransport. We have addressed the nature of the flow-derived cell stimulus by comparing variations in fluid transport with variations in wall shear stress, using nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production as a parameter of bone cell activation. Adult mouse long bone cell cultures were treated for 15min with or without pulsating fluid flow using the following regimes: Low PFF, mean flow rate 0.20 cm(3)/s, 3 Hz, shear stress 0.4+/-0.12 Pa; Medium PFF, 0.33 cm(3)/s, 5 Hz, 0.6+/-0.27 Pa; and High PFF, 0.63 cm(3)/s, 9Hz, 1.2+/-0.37 Pa. In some Low PFF experiments, 2.8% neutral dextran (mol. wt. 4.98x10(4)) was added to the flow medium to increase the viscosity, thereby increasing the wall shear stress 3-fold to a level similar of the High PFF stimulus, but without affecting streaming potentials or chemotransport. NO and PGE(2) production were stimulated by Low, Medium, and High PFF in a dose-dependent manner. Application of Low PFF using dextran-supplemented medium, enhanced both the NO and PGE(2) response by 3-fold, to a level mimicking the response to High PFF at normal viscosity. These results show that the production of NO and PGE(2) by bone cells can be enhanced in a dose-dependent manner by fluid flow of increasing wall shear stress. Therefore, the stimulus leading to NO and PGE(2) production is the flow-derived shear stress, and not streaming potentials or chemotransport. PMID:11311708

  19. Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone.

    PubMed

    Addison, W N; Nelea, V; Chicatun, F; Chien, Y-C; Tran-Khanh, N; Buschmann, M D; Nazhat, S N; Kaartinen, M T; Vali, H; Tecklenburg, M M; Franceschi, R T; McKee, M D

    2015-02-01

    Bone cell culture systems are essential tools for the study of the molecular mechanisms regulating extracellular matrix mineralization. MC3T3-E1 osteoblast cell cultures are the most commonly used in vitro model of bone matrix mineralization. Despite the widespread use of this cell line to study biomineralization, there is as yet no systematic characterization of the mineral phase produced in these cultures. Here we provide a comprehensive, multi-technique biophysical characterization of this cell culture mineral and extracellular matrix, and compare it to mouse bone and synthetic apatite mineral standards, to determine the suitability of MC3T3-E1 cultures for biomineralization studies. Elemental compositional analysis by energy-dispersive X-ray spectroscopy (EDS) showed calcium and phosphorus, and trace amounts of sodium and magnesium, in both biological samples. X-ray diffraction (XRD) on resin-embedded intact cultures demonstrated that similar to 1-month-old mouse bone, apatite crystals grew with preferential orientations along the (100), (101) and (111) mineral planes indicative of guided biogenic growth as opposed to dystrophic calcification. XRD of crystals isolated from the cultures revealed that the mineral phase was poorly crystalline hydroxyapatite with 10 to 20nm-sized nanocrystallites. Consistent with the XRD observations, electron diffraction patterns indicated that culture mineral had low crystallinity typical of biological apatites. Fourier-transform infrared spectroscopy (FTIR) confirmed apatitic carbonate and phosphate within the biological samples. With all techniques utilized, cell culture mineral and mouse bone mineral were remarkably similar. Scanning (SEM) and transmission (TEM) electron microscopy showed that the cultures had a dense fibrillar collagen matrix with small, 100nm-sized, collagen fibril-associated mineralization foci which coalesced to form larger mineral aggregates, and where mineralized sites showed the accumulation of the mineral-binding protein osteopontin. Light microscopy, confocal microscopy and three-dimensional reconstructions showed that some cells had dendritic processes and became embedded within the mineral in an osteocyte-like manner. In conclusion, we have documented characteristics of the mineral and matrix phases of MC3T3-E1 osteoblast cultures, and have determined that the structural and compositional properties of the mineral are highly similar to that of mouse bone. PMID:25460184

  20. Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging and the Responses to Ovariectomy and Altered Loading.

    PubMed

    Galea, Gabriel L; Hannuna, Sion; Meakin, Lee B; Delisser, Peter J; Lanyon, Lance E; Price, Joanna S

    2015-01-01

    Investigations into the effect of (re)modeling stimuli on cortical bone in rodents normally rely on analysis of changes in bone mass and architecture at a narrow cross-sectional site. However, it is well established that the effects of axial loading produce site-specific changes throughout bones' structure. Non-mechanical influences (e.g., hormones) can be additional to or oppose locally controlled adaptive responses and may have more generalized effects. Tools currently available to study site-specific cortical bone adaptation are limited. Here, we applied novel site specificity software to measure bone mass and architecture at each 1% site along the length of the mouse tibia from standard micro-computed tomography (?CT) images. Resulting measures are directly comparable to those obtained through ?CT analysis (R (2)?>?0.96). Site Specificity analysis was used to compare a number of parameters in tibiae from young adult (19-week-old) versus aged (19-month-old) mice; ovariectomized and entire mice; limbs subjected to short periods of axial loading or disuse induced by sciatic neurectomy. Age was associated with uniformly reduced cortical thickness and site-specific decreases in cortical area most apparent in the proximal tibia. Mechanical loading site-specifically increased cortical area and thickness in the proximal tibia. Disuse uniformly decreased cortical thickness and decreased cortical area in the proximal tibia. Ovariectomy uniformly reduced cortical area without altering cortical thickness. Differences in polar moment of inertia between experimental groups were only observed in the proximal tibia. Aging and ovariectomy also altered eccentricity in the distal tibia. In summary, site specificity analysis provides a valuable tool for measuring changes in cortical bone mass and architecture along the entire length of a bone. Changes in the (re)modeling response determined at a single site may not reflect the response at different locations within the same bone. PMID:25954246

  1. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells

    SciTech Connect

    Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M.

    2009-05-01

    Primary cells are ideal for in vitro toxicity studies since they closely resemble tissue environment. Here, we report a detailed study on the in vitro interactions of 7-20 nm spherical silver nanoparticles (SNP) with primary fibroblasts and primary liver cells isolated from Swiss albino mice. The intended use of silver nanoparticles is in the form of a topical antimicrobial gel formulation for the treatment of burns and wounds. Upon exposure to SNP for 24 h, morphology of primary fibroblasts and primary liver cells remained unaltered up to 25 {mu}g/mL and 100 {mu}g/mL SNP, respectively, although with minor decrease in confluence. IC{sub 50} values for primary fibroblasts and primary liver cells as revealed by XTT assay were 61 {mu}g/mL and 449 {mu}g/mL, respectively. Ultra-thin sections of primary cells exposed to 1/2 IC{sub 50} SNP for 24 h, visualized under Transmission electron microscope showed the presence of dark, electron dense, spherical aggregates inside the mitochondria, and cytoplasm, probably representing the intracellular SNP. When the cells were challenged with {approx} 1/2 IC{sub 50} concentration of SNP (i.e. 30 {mu}g/mL and 225 {mu}g/mL for primary fibroblasts and primary liver cells, respectively), enhancement of GSH ({approx} 1.2 fold) and depletion of lipid peroxidation ({approx} 1.4 fold) were seen in primary fibroblasts which probably protect the cells from functional damage. In case of primary liver cells; increased levels of SOD ({approx} 1.4 fold) and GSH ({approx} 1.1 fold) as compared to unexposed cells were observed. Caspase-3 activity assay indicated that the SNP concentrations required for the onset of apoptosis were found to be much lower (3.12 {mu}g/mL in primary fibroblasts, 12.5 {mu}g/mL in primary liver cells) than the necrotic concentration (100 {mu}g/mL in primary fibroblasts, 500 {mu}g/mL in primary liver cells). These observations were confirmed by CLSM studies by exposure of cells to 1/2 IC{sub 50} SNP (resulting in apoptosis) and 2x IC{sub 50}) cells (resulting in necrosis). These results clearly suggest that although silver nanoparticles seem to enter the eukaryotic cells, cellular antioxidant mechanisms protect the cells from possible oxidative damage. This property, in conjunction with the finding that primary cells possess much higher SNP tolerance than the concentration in the gel ({approx} 20 {mu}g/g), indicates preliminary safety of the formulation and warrants further study for possible human application.

  2. Primary Lymphoma of Bone Presenting as Spindle Cell Neoplasm of the Vertebral Body: A Case Report and Review of the Literature

    PubMed Central

    Inklab, Mahakit; Steingart, Richard H.; Freeman, Jonathan K.

    2015-01-01

    Spindle cell variant of lymphoma is a very rare but known disease entity that can mimic a sarcoma. Diagnosis can be even more challenging if the only site of the disease is in the bone. We report a case of primary lymphoma of bone with spindle cell morphology which was successfully treated with a combination of surgery, chemotherapy, and radiotherapy. PMID:25984371

  3. Photo-Induction and Automated Quantification of Reversible Mitochondrial Permeability Transition Pore Opening in Primary Mouse Myotubes

    PubMed Central

    Smeitink, Jan A. M.; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2014-01-01

    Opening of the mitochondrial permeability transition pore (mPTP) is involved in various cellular processes including apoptosis induction. Two distinct states of mPTP opening have been identified allowing the transfer of molecules with a molecular weight <1500 Da or <300 Da. The latter state is considered to be reversible and suggested to play a role in normal cell physiology. Here we present a strategy combining live-cell imaging and computer-assisted image processing allowing spatial visualization and quantitative analysis of reversible mPTP openings (“ΔΨ flickering”) in primary mouse myotubes. The latter were stained with the photosensitive cation TMRM, which partitions between the cytosol and mitochondrial matrix as a function of mitochondrial membrane potential (ΔΨ). Controlled illumination of TMRM-stained primary mouse myotubes induced ΔΨ flickering in particular parts of the cell (“flickering domains”). A novel quantitative automated analysis was developed and validated to detect and quantify the frequency, size, and location of individual ΔΨ flickering events in myotubes. PMID:25423172

  4. Suppression of Hepatic Cyp1a2 by Total Ginsenosides in Lipopolysaccharide-Treated Mice and Primary Mouse Hepatocytes.

    PubMed

    Sun, Haiyan; Yan, Yijing; Xu, Chenshu; Wan, Hongxia; Liu, Dong

    2016-03-23

    The roots of Panax ginseng (ginseng) have been extensively used in traditional Chinese medicine. However, herb-drug interactions between ginseng and other co-administered drugs are not fully understood concerning the effect of ginseng on drug metabolism and clearance. The current study aimed to elucidate the effect of total ginsenosides, a typical ginseng extract, on the regulation of Cyp1a2, a key enzyme to regulate drug metabolism under the normal and inflammatory conditions in mice. Female C57BL/6J mice treated with vehicle and lipopolysaccharide (LPS) were intragastrically administered ginseng extract for 7 days before hepatic P450 expression was analyzed. Primary mouse hepatocytes were also employed to further explore the effects of total ginsenosides on Cyp1a2 expression. The results showed that total ginsenosides in P. ginseng extract exhibited a concentration-dependent suppression on Cyp1a2 mRNA and protein level in both mice and primary mouse hepatocytes. Notably, the inhibitory effects of total ginsenosides on Cyp1a2 mRNA and protein expression were further enhanced following LPS treatment. Therefore, future research is warranted to investigate the role of ginsenosides in the regulation of hepatic CYP450s. Moreover, consumption of ginseng as food or supplement should be monitored for patients on combinational therapy, especially those with inflammatory diseases. PMID:26923348

  5. Establishment of Green Fluorescent Protein and Firefly Luciferase Expressing Mouse Primary Macrophages for In Vivo Bioluminescence Imaging

    PubMed Central

    Pajarinen, Jukka; Lin, Tzu-hua; Sato, Taishi; Loi, Florence; Yao, Zhenyu; Konttinen, Yrjö T.; Goodman, Stuart B.

    2015-01-01

    Macrophages play a key role in tissue homeostasis as well as in a range of pathological conditions including atherosclerosis, cancer, and autoimmunity. Many aspects of their in vivo behavior are, however, poorly understood. Bioluminescence imaging (BLI) with green fluorescent protein (GFP) and firefly luciferase (FLUC) labelled autologous reporter macrophages could potentially offer a powerful tool to study macrophage biology, but this approach has been hindered by the relative difficulty of efficient gene transfer into primary macrophages. Here we describe a straightforward method for producing large numbers of GFP/FLUC expressing mouse primary macrophages utilizing lentivirus vector, cyclosporine, and a double infection strategy. Using this method we achieved up to 60% of macrophages to express GFP with correspondingly high FLUC signal. When injected into the circulation using a mouse model of local biomaterial induced inflammation and osteolysis, macrophages were initially detectable within the lungs, followed by systemic homing to the local area of chronic inflammation in the distal femur. In addition, transduced macrophages maintained their ability to assume M1 and M2 phenotypes although the GFP/FLUC expression was altered by the polarizing signals. These reporter macrophages could prove to be valuable tools to study the role of macrophages in health and disease. PMID:26555613

  6. Gene Expression Profiles in Human and Mouse Primary Cells Provide New Insights into the Differential Actions of Vitamin D3 Metabolites

    PubMed Central

    Tuohimaa, Pentti; Wang, Jing-Huan; Khan, Sofia; Kuuslahti, Marianne; Qian, Kui; Manninen, Tommi; Auvinen, Petri; Vihinen, Mauno; Lou, Yan-Ru

    2013-01-01

    1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1−/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1−/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment. PMID:24116037

  7. Primary bone marrow diffuse large B-cell lymphoma accompanying cold agglutinin disease: A case report with review of the literature.

    PubMed

    Yamashita, Tomoko; Ishida, Mitsuaki; Moro, Hiroko; Yumoto, Hirofumi; Uchibayashi, Sachiko; Yoshii, Miyuki; Nakanishi, Ryota; Okuno, Hiroko; Yoshida, Takashi; Okuno, Takafumi; Hodohara, Keiko; Okabe, Hidetoshi

    2014-01-01

    Cold agglutinin disease (CAD) is a well-recognized complication of lymphoproliferative disorders. It has been previously recognized that cases of primary CAD frequently exhibit underlying malignant lymphoma in the bone marrow. Lymphoplasmacytic lymphoma is the most common subtype of malignant lymphoma; however, diffuse large B-cell lymphoma (DLBCL) has also been documented, albeit extremely rare. The current report presents a case of primary bone marrow DLBCL accompanying CAD. A 76-year-old male presented with fever and fatigue. Laboratory tests revealed anemia and elevated bilirubin and cold agglutinins with a titer of 8,192 at 4°C. Bone marrow biopsy demonstrated DLBCL and systemic surveillance failed to detect tumorous lesions or lymphadenopathy. Following R-THP-COP therapy, cold agglutinins titer was markedly decreased (by <4); however, malignant lymphoma relapsed and cold agglutinin levels increased again (4,096). This is the second documented case of primary bone marrow DLBCL accompanying CAD. Previously, malignant lymphoma exclusively involving the bone marrow, namely primary bone marrow lymphoma (PBML), has been recognized as a rare and aggressive subtype. The analyses of the present study revealed that the incidence of hemolytic anemia in primary bone marrow DLBCL may be high compared with conventional DLBCL. Therefore, additional analyses are required to clarify the clinicopathological features of PBML. PMID:24348825

  8. Primary malignant giant cell tumor of bone: a study of eight cases and review of the literature.

    PubMed

    Nascimento, A G; Huvos, A G; Marcove, R C

    1979-10-01

    Eight cases of primary malignant giant cell tumor of bone were reviewed. There was a wide range in age from 17 to 76 years, with the sixth decade of life being the most common. The tumor was more frequent among females (male to female ratio--3:5). The most common sites of occurrence were in the region of the knee, with the distal end of femur and the proximal end of tibia affected in three and two cases, respectively. Pain and swelling of the involved regions were the most common complaints. The roentgenographic and pathologic features and the treatment were analyzed in detail. Although these cases were considered malignant, the follow-up periods varying from 4 to 15 years were available in six of the eight cases; only one patient died of tumor, 8 months after the surgical procedure. One patient died of unrelated cause, but the others were all alive with no evidence of disease. The pertinent literature was analyzed and examples of secondary malignant giant cell tumors of bone were compared to those of this present series to delineate differences in natural history and clinicopathologic features. It was clearly established that primary malignant giant cell tumor of bone is a separate entity with a more favorable clinical behavior, particularly if the disease process is eradicated early on either by cryosurgery, en bloc radical resection, or amputation. PMID:227563

  9. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test

    PubMed Central

    Borges, Flávio Fernandes Veloso; Bernardes, Aline; Perez, Caridad Noda; Silva, Daniela de Melo e

    2015-01-01

    Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenyl)prop-2-enoyl]phenyl} benzenesulfonamide (CPN) were assessed using the Salmonella typhimurium reverse mutation test (Ames test) and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05). The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p < 0.05), whereas in strain TA100 this occurred only at doses higher than 50 μg/plate (p < 0.05). The results of the micronucleus test indicated that CPN significantly increased the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect of this compound. Also, a significant decrease in polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was observed at the higher doses of CPN at 24 h and 48 h (p < 0.05), indicating its cytotoxic action. CPN co-administered with mitomycin C (MMC) significantly decreased the frequency of MNPCE at almost all doses tested at 24 h (p < 0.05), showing its antigenotoxic activity, and also presented a small decrease in MNPCE at 48 h (p > 0.05). Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties. PMID:26335560

  10. Irisflorentin modifies properties of mouse bone marrow-derived dendritic cells and reduces the allergic contact hypersensitivity responses.

    PubMed

    Fu, Ru-Huei; Tsai, Chia-Wen; Tsai, Rong-Tzong; Liu, Shih-Ping; Chan, Tzu-Min; Ho, Yu-Chen; Lin, Hsin-Lien; Chen, Yue-Mi; Hung, Huey-Shan; Chiu, Shao-Chih; Tsai, Chang-Hai; Wang, Yu-Chi; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2015-01-01

    Irisflorentin is an isoflavone component derived from the roots of Belamcanda chinensis (L.) DC. In traditional Chinese medicine, this herb has pharmacological properties to treat inflammatory disorders. Dendritic cells (DCs) are crucial modulators for the development of optimal T-cell immunity and maintenance of tolerance. Aberrant activation of DCs can induce harmful immune responses, and so agents that effectively improve DC properties have great clinical value. We herein investigated the effects of irisflorentin on lipopolysaccharide (LPS)-stimulated maturation of mouse bone marrow-derived DCs in vitro and in the contact hypersensitivity response (CHSR) in vivo. Our results demonstrated that treatment with up to 40 ?M irisflorentin does not cause cellular toxicity. Irisflorentin significantly lessened the proinflammatory cytokine production (tumor necrosis factor-?, interleukin-6, and interleukin-12p70) by LPS-stimulated DCs. Irisflorentin also inhibited the expression of LPS-induced major histocompatibility complex class II and costimulatory molecules (CD40 and CD86) on LPS-stimulated DCs. In addition, irisflorentin diminished LPS-stimulated DC-elicited allogeneic T-cell proliferation. Furthermore, irisflorentin significantly interfered with LPS-induced activation of I?B kinase, c-Jun N-terminal kinase, and p38, as well as the nuclear translocation of NF-?B p65. Subsequently, treatment with irisflorentin obviously weakened 2,4-dinitro-1-fluorobenzene-induced delayed-type hypersensitivity. These findings suggest new insights into the role of irisflorentin as an immunotherapeutic adjuvant through its capability to modulate the properties of DCs. PMID:25654487

  11. Mesenchymal Bone Marrow Cell Therapy in a Mouse Model of Chagas Disease. Where Do the Cells Go?

    PubMed Central

    Jasmin; Jelicks, Linda A.; Koba, Wade; Tanowitz, Herbert B.; Mendez-Otero, Rosalia; Campos de Carvalho, Antonio C.; Spray, David C.

    2012-01-01

    Background Chagas disease, resulting from infection with the parasite Trypanosoma cruzi (T. cruzi), is a major cause of cardiomyopathy in Latin America. Drug therapy for acute and chronic disease is limited. Stem cell therapy with bone marrow mesenchymal cells (MSCs) has emerged as a novel therapeutic option for cell death-related heart diseases, but efficacy of MSC has not been tested in Chagas disease. Methods and Results We now report the use of cell-tracking strategies with nanoparticle labeled MSC to investigate migration of transplanted MSC in a murine model of Chagas disease, and correlate MSC biodistribution with glucose metabolism and morphology of heart in chagasic mice by small animal positron emission tomography (microPET). Mice were infected intraperitoneally with trypomastigotes of the Brazil strain of T. cruzi and treated by tail vein injection with MSC one month after infection. MSCs were labeled with near infrared fluorescent nanoparticles and tracked by an in vivo imaging system (IVIS). Our IVIS results two days after transplant revealed that a small, but significant, number of cells migrated to chagasic hearts when compared with control animals, whereas the vast majority of labeled MSC migrated to liver, lungs and spleen. Additionally, the microPET technique demonstrated that therapy with MSC reduced right ventricular dilation, a phenotype of the chagasic mouse model. Conclusions We conclude that the beneficial effects of MSC therapy in chagasic mice arise from an indirect action of the cells in the heart rather than a direct action due to incorporation of large numbers of transplanted MSC into working myocardium. PMID:23272265

  12. Bacteria-reactive immune response may induce RANKL-expressing T-cells in the mouse periapical bone loss lesion

    PubMed Central

    Silva, Marcelo J.B.; Kajiya, Mikihito; AlShwaimi, Emad; Sasaki, Hajime; Hong, Jennifer; Ok, Peter; Rezende, Taia M.B.; Pagonis, Tom C.; White, Robert R.; Paster, Bruce J; Stashenko, Philip; Kawai, Toshihisa

    2012-01-01

    Introduction The present study investigated if T-cells infiltrating the periapical lesion produce RANKL and whether bacteria infecting the root canal can activate T-cells to produce RANKL. Methods Using a mouse model of periapical lesion induced by artificial dental pulp exposure, the presence of RANKL-positive T-cells and osteoclasts in the periapical lesion was examined by an immuno-histochemical approach. The bacteria colonizing the exposed root canal were identified by 16S ribosomal RNA (rRNA) sequence analysis. The isolated endodontic bacteria were further immunized to normal mice, and sRANKL production by the T-cells isolated from the immunized mice was evaluated by ex vivo culture system. Results RANKL-positive T-cells, along with TARP+ osteoclasts, were identified in periapical bone resorption lesions. The Gram-negative bacterium Pasterurella pnumotropica (P. pnumotropica), which was most frequently detected from root canal of exposed pulp, showed remarkably elevated serum IgG antibody response in pulp-exposed mice compared to control non-treated mice. Immunization of mice with P. pneumotropica induced not only serum IgG antibody but also primed bacteria reactive T-cells that produced sRANKL in response to ex vivo exposure to P. pneumotropica. Conclusion T-cells infiltrating the periapical region express RANKL, and the endodontic bacteria colonizing the root canal appear to induce RANKL expression from bacteria-reactive T-cells, suggesting the possible pathogenic engagement of immune response to endodontic bacteria in the context of developing boneresorptive periapical lesions. PMID:22341072

  13. Prostaglandin E2 Production and T Cell Function in Mouse Adenovirus Type 1 Infection following Allogeneic Bone Marrow Transplantation

    PubMed Central

    McCarthy, Mary K.; Procario, Megan C.; Wilke, Carol A.; Moore, Bethany B.; Weinberg, Jason B.

    2015-01-01

    Adenovirus infections are important complications of bone marrow transplantation (BMT). We demonstrate delayed clearance of mouse adenovirus type 1 (MAV-1) from lungs of mice following allogeneic BMT. Virus-induced prostaglandin E2 (PGE2) production was greater in BMT mice than in untransplanted controls, but BMT using PGE2-deficient donors or recipients failed to improve viral clearance, and treatment of untransplanted mice with the PGE2 analog misoprostol did not affect virus clearance. Lymphocyte recruitment to the lungs was not significantly affected by BMT. Intracellular cytokine staining of lung lymphocytes demonstrated impaired production of INF-? and granzyme B by cells from BMT mice, and production of IFN-?, IL-2, IL-4, and IL-17 following ex vivo stimulation was impaired in lymphocytes obtained from lungs of BMT mice. Viral clearance was not delayed in untransplanted INF-?-deficient mice, suggesting that delayed viral clearance in BMT mice was not a direct consequence of impaired IFN-? production. However, lung viral loads were higher in untransplanted CD8-deficient mice than in controls, suggesting that delayed MAV-1 clearance in BMT mice is due to defective CD8 T cell function. We did not detect significant induction of IFN-? expression in lungs of BMT mice or untransplanted controls, and viral clearance was not delayed in untransplanted type I IFN-unresponsive mice. We conclude that PGE2 overproduction in BMT mice is not directly responsible for delayed viral clearance. PGE2-independent effects on CD8 T cell function likely contribute to the inability of BMT mice to clear MAV-1 from the lungs. PMID:26407316

  14. Aneurysmal bone cyst primary - about eight pediatric cases: radiological aspects and review of the literature

    PubMed Central

    Boubbou, Meryem; Atarraf, Karima; Chater, Lamiae; Afifi, Abderrahmane; Tizniti, Siham

    2013-01-01

    The aneurysmal bone cyst is a pseudotumoral lesion that can take several aspects. This is a rare lesion representing 1% of bone tumors. It appears usually during the first 30 years of life. The pathogenesis is that of a process of dysplasia/hyperplasia, favored by a circulatory deficiency and hemorrhage within the lesion and the phenomena of osteoclasis. The objective of this work is to illustrate with analysis, the specific forms and atypical aneurysmal bone cyst which often pose a diagnostic challenge requiring radiological investigation with histological confirmation. We report eight pediatric cases of aneurysmal cysts collected over a period of 3 years, 3 boys and 5 girls. All patients had standard radiographs. MRI was performed in three patients. The diagnosis was confirmed histologically. The atypia has been in the seat: fibula (1 case), metaphyseal (2 cases), diaphyseal (4 cases) and metatarsal (1 case). Aneurysmal bone cyst is a rare benign tumor with predilection to the metaphysis of long bones. Atypical forms even fewer are dominated by the atypical seat. PMID:24244797

  15. Aneurysmal bone cyst primary--about eight pediatric cases: radiological aspects and review of the literature.

    PubMed

    Boubbou, Meryem; Atarraf, Karima; Chater, Lamiae; Afifi, Abderrahmane; Tizniti, Siham

    2013-01-01

    The aneurysmal bone cyst is a pseudotumoral lesion that can take several aspects. This is a rare lesion representing 1% of bone tumors. It appears usually during the first 30 years of life. The pathogenesis is that of a process of "dysplasia/hyperplasia", favored by a circulatory deficiency and hemorrhage within the lesion and the phenomena of osteoclasis. The objective of this work is to illustrate with analysis, the specific forms and atypical aneurysmal bone cyst which often pose a diagnostic challenge requiring radiological investigation with histological confirmation. We report eight pediatric cases of aneurysmal cysts collected over a period of 3 years, 3 boys and 5 girls. All patients had standard radiographs. MRI was performed in three patients. The diagnosis was confirmed histologically. The atypia has been in the seat: fibula (1 case), metaphyseal (2 cases), diaphyseal (4 cases) and metatarsal (1 case). Aneurysmal bone cyst is a rare benign tumor with predilection to the metaphysis of long bones. Atypical forms even fewer are dominated by the atypical seat. PMID:24244797

  16. Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging and the Responses to Ovariectomy and Altered Loading

    PubMed Central

    Galea, Gabriel L.; Hannuna, Sion; Meakin, Lee B.; Delisser, Peter J.; Lanyon, Lance E.; Price, Joanna S.

    2015-01-01

    Investigations into the effect of (re)modeling stimuli on cortical bone in rodents normally rely on analysis of changes in bone mass and architecture at a narrow cross-sectional site. However, it is well established that the effects of axial loading produce site-specific changes throughout bones’ structure. Non-mechanical influences (e.g., hormones) can be additional to or oppose locally controlled adaptive responses and may have more generalized effects. Tools currently available to study site-specific cortical bone adaptation are limited. Here, we applied novel site specificity software to measure bone mass and architecture at each 1% site along the length of the mouse tibia from standard micro-computed tomography (μCT) images. Resulting measures are directly comparable to those obtained through μCT analysis (R2 > 0.96). Site Specificity analysis was used to compare a number of parameters in tibiae from young adult (19-week-old) versus aged (19-month-old) mice; ovariectomized and entire mice; limbs subjected to short periods of axial loading or disuse induced by sciatic neurectomy. Age was associated with uniformly reduced cortical thickness and site-specific decreases in cortical area most apparent in the proximal tibia. Mechanical loading site-specifically increased cortical area and thickness in the proximal tibia. Disuse uniformly decreased cortical thickness and decreased cortical area in the proximal tibia. Ovariectomy uniformly reduced cortical area without altering cortical thickness. Differences in polar moment of inertia between experimental groups were only observed in the proximal tibia. Aging and ovariectomy also altered eccentricity in the distal tibia. In summary, site specificity analysis provides a valuable tool for measuring changes in cortical bone mass and architecture along the entire length of a bone. Changes in the (re)modeling response determined at a single site may not reflect the response at different locations within the same bone. PMID:25954246

  17. Transplant of Primary Human Hepatocytes Cocultured With Bone Marrow Stromal Cells to SCID Alb-uPA Mice

    PubMed Central

    Mohajerani, S. A.; Nourbakhsh, M.; Cadili, A.; Lakey, J. R.; Kneteman, N. M.

    2010-01-01

    Hepatocytes are vulnerable to loss of function and viability in culture. Modified culture methods have been applied to maintain their functional status. Heterotypic interactions between hepatocytes and nonparenchymal neighbors in liver milieu are thought to modulate cell differentiation. Cocultivation of hepatocyte with various cell types has been applied to mimic the hepatic environment. Bone marrow stromal cells (BMSC) are plastic cell lines capable of transforming to other cell types. In this study hepatocyte coculture with BMSCs achieved long-term function of human hepatocytes in culture for 4 weeks. In vitro functional status of human hepatocytes in BMSC coculture was compared with fibroblast coculture and collagen culture by measuring albumin, human-α-1-antitrypsin (hAAT), urea secretion, CYP450 activity, and staining for intracellular albumin and glycogen. After 2 weeks in culture hepatocytes were retrieved and transplanted to severe combined immunodeficiency/albumin linked-urokinase type plasminogen activator (SCID Alb-uPA) mice and engraft-ment capacity was analyzed by human hepatic-specific function measured by hAAT levels in mouse serum, and Alu staining of mouse liver for human hepatocytes. Hepatocytes from BMSC coculture had significantly higher albumin, hAAT secretion, urea production, and cytochrome P450 (CYP450) activity than other culture groups. Staining confirmed the higher functional status in BMSC coculture. Transplantation of hepatocytes detached from BMSC cocultures showed significantly higher engraftment function than hepatocytes from other culture groups measured by hAAT levels in mouse serum. In conclusion, BMSC coculture has excellent potential for hepatocyte function preservation in vitro and in vivo after transplant. It is possible to use BMSC hepatocyte coculture as a supply of cell therapy in liver disease.

  18. [Effects of zinc deficiency on the c-fos gene expression and transcription in the epiphyses of fetal mouse long bone in culture].

    PubMed

    Ma, L; Yang, Q; Liu, K; Li, L

    2000-03-30

    The effects of zinc on c-fos gene expression and transcription in the epiphyses of fetal long bone were studied in mice. The long bones of 16-day fetal mouse were cultured for 48 hours(in medium GBJb) and then used for measuring c-fos gene expression and transcription by immunohistochemistry and in situ hybridization. The result was analyzed by an imaged-analyses system. The experiment was divided into zinc control group(ZC), zinc deficiency group(ZD), zinc deficiency replenish group(ZDR) and zinc stimulatory group(ZS) respectively. The result showed that 1) zinc deficiency caused c-fos protein and mRNA expression and the number of reactive cell decreased. 2) when zinc concentration of medium was 100 mumol/L, the expression and transcription of c-fos gene were increased in hypertrophic, proliferative and resting zone of epiphyses. The research suggested that zinc could affect the expression of c-fos gene in mouse fetal long bone. PMID:12725090

  19. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients

    PubMed Central

    Del Valle, Paulo Roberto; Milani, Cintia; Brentani, Maria Mitzi; Katayama, Maria Lucia Hirata; de Lyra, Eduardo Carneiro; Carraro, Dirce Maria; Brentani, Helena; Puga, Renato; Lima, Leandro A.; Rozenchan, Patricia Bortman; Nunes, Brbara dos Santos; Ges, Joo Carlos Guedes Sampaio; Azevedo Koike Folgueira, Maria Aparecida

    2014-01-01

    Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done in another 16 samples by RT-qPCR. Differences between CAF vs N+, CAF vs BM and N+ vs BM were represented by 20, 235 and 245 genes, respectively (SAM test, FDR < 0.01). Functional analysis revealed that genes related to development and morphogenesis were overrepresented. In a biological validation set, NOTCH2 was confirmed to be more expressed in N+ (vs CAF) and ADCY2, HECTD1, HNMT, LOX, MACF1, SLC1A3 and USP16 more expressed in BM (vs CAF). Only small differences were observed in the transcriptional profiles of fibroblasts from the primary tumor and lymph node of breast cancer patients, whereas greater differences were observed between bone marrow stromal cells and the other two sites. These differences may reflect the activities of distinct differentiation programs. PMID:25249769

  20. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients.

    PubMed

    Del Valle, Paulo Roberto; Milani, Cintia; Brentani, Maria Mitzi; Katayama, Maria Lucia Hirata; de Lyra, Eduardo Carneiro; Carraro, Dirce Maria; Brentani, Helena; Puga, Renato; Lima, Leandro A; Rozenchan, Patricia Bortman; Nunes, Brbara Dos Santos; Ges, Joo Carlos Guedes Sampaio; Azevedo Koike Folgueira, Maria Aparecida

    2014-09-01

    Cancer-associated fibroblasts (CAF) influence tumor development at primary as well as in metastatic sites, but there have been no direct comparisons of the transcriptional profiles of stromal cells from different tumor sites. In this study, we used customized cDNA microarrays to compare the gene expression profile of stromal cells from primary tumor (CAF, n = 4), lymph node metastasis (N+, n = 3) and bone marrow (BM, n = 4) obtained from breast cancer patients. Biological validation was done in another 16 samples by RT-qPCR. Differences between CAF vs N+, CAF vs BM and N+ vs BM were represented by 20, 235 and 245 genes, respectively (SAM test, FDR < 0.01). Functional analysis revealed that genes related to development and morphogenesis were overrepresented. In a biological validation set, NOTCH2 was confirmed to be more expressed in N+ (vs CAF) and ADCY2, HECTD1, HNMT, LOX, MACF1, SLC1A3 and USP16 more expressed in BM (vs CAF). Only small differences were observed in the transcriptional profiles of fibroblasts from the primary tumor and lymph node of breast cancer patients, whereas greater differences were observed between bone marrow stromal cells and the other two sites. These differences may reflect the activities of distinct differentiation programs. PMID:25249769

  1. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  2. First Neuromuscular Contact Correlates with Onset of Primary Myogenesis in Rat and Mouse Limb Muscles

    PubMed Central

    Duxson, Marilyn J.; Deries, Marianne

    2015-01-01

    Skeletal muscle development has been the focus of intensive study for many decades. Recent advances in genetic manipulation of the mouse have increased our understanding of the cell signalling involved in the development of muscle progenitors which give rise to adult skeletal muscles and their stem cell populations. However, the influence of a vital tissue type the peripheral nervehas largely been ignored since its earliest descriptions. Here we carefully describe the timing in which myogenic progenitors expressing Pax3 and Pax7 (the earliest markers of myogenic cells) enter the limb buds of rat and mouse embryos, as well as the spatiotemporal relationship between these progenitors and the ingrowing peripheral nerve. We show that progenitors expressing Pax3 enter the limb bud one full day ahead of the first neurites and that Pax7-expressing progenitors (associated with secondary myogenesis in the limb) are first seen in the limb bud at the time of nerve entry and in close proximity to the nerve. The initial entry of the nerve also coincides with the first expression of myosin heavy chain showing that the first contact between nerves and myogenic cells correlates with the onset of myogenic differentiation. Furthermore, as the nerve grows into the limb, Pax3 expression is progressively replaced by Pax7 expression in myogenic progenitors. These findings indicate that the ingrowing nerve enters the limb presumptive muscle masses earlier than what was generally described and raises the possibility that nerve may influence the differentiation of muscle progenitors in rodent limbs. PMID:26207754

  3. Does the degree of laminarity correlate with site-specific differences in collagen fibre orientation in primary bone? An evaluation in the turkey ulna diaphysis

    PubMed Central

    Skedros, John G; Hunt, Kenneth J

    2004-01-01

    de Margerie hypothesized that preferred orientations of primary vascular canals in avian primary cortical bone mediate important mechanical adaptations. Specifically, bones that receive habitual compression, tension or bending stresses typically have cortices with a low laminarity index (LI) (i.e. relatively lower cross-sectional areas of circularly (C) orientated primary vascular canals, and relatively higher areas of canals with radial (R), oblique (O) or longitudinal (L) orientations. By contrast, bones subject to habitual torsion have a high LI (i.e. relatively higher C-orientated canal area) [LI, based on percentage vascular canal area, = C/(C + R + O + L)]. Regional variations in predominant collagen fibre orientation (CFO) may be the adaptive characteristic mediated by LI. Using turkey ulnae, we tested the hypothesis that site-specific variations in predominant CFO and LI are strongly correlated. Mid-diaphyseal cross-sections (100 5 m) from subadult and adult bones were evaluated for CFO and LI using circularly polarized light images of cortical octants. Results showing significant differences between mean LI of subadult (40.0% 10.7%) and adult (50.9% 10.4%) (P < 0.01) bones suggest that adult bones experience more prevalent/predominant torsion. Alternatively, this relationship may reflect differences in growth rates. High positive correlations between LI and predominant CFO (subadults: r = 0.735; adults: r = 0.866; P < 0.001) suggest that primary bone can exhibit potentially adaptive material variations that are independent of secondary osteon formation. PMID:15291795

  4. Calcium Intake, Major Dietary Sources and Bone Health Indicators in Iranian Primary School Children

    PubMed Central

    Omidvar, Nasrin; Neyestani, Tirang-Reza; Hajifaraji, Majid; Eshraghian, Mohammad-Reza; Rezazadeh, Arezoo; Armin, Saloumeh; Haidari, Homa; Zowghi, Telma

    2015-01-01

    Background: Adequate calcium intake may have a crucial role with regards to prevention of many chronic diseases, including hypertension, hypercholesterolemia, different types of cancer, obesity and osteoporosis. In children, sufficient calcium intake is especially important to support the accelerated growth spurt during the preteen and teenage years and to increase bone mineral mass to lay the foundation for older age. Objectives: This study aimed to assess daily calcium intake in school-age children to ensure whether they fulfill the FGP dairy serving recommendations, the recommended levels of daily calcium intake and to assess the relationship between dietary calcium intake and major bone health indicators. Patients and Methods: A total of 501 Iranian school-age children were randomly selected. Calcium intake was assessed using a semi-quantitative food frequency questionnaire. Bone health indicators were also assessed. Results: Dairy products contributed to 69.3% of the total calcium intake of the children. Daily adequate intake of calcium was achieved by 17.8% of children. Only 29.8% met the Food guide pyramid recommendations for dairy intake. Dietary calcium intake was not significantly correlated with serum calcium and other selected biochemical indicators of bone health. Conclusions: The need for planning appropriate nutrition strategies for overcoming inadequate calcium intake in school age children in the city of Tehran is inevitable. PMID:26199684

  5. Development of a primary mouse intestinal epithelial cell monolayer culture system to evaluate factors that modulate IgA transcytosis

    PubMed Central

    Moon, Clara; VanDussen, Kelli L.; Miyoshi, Hiroyuki; Stappenbeck, Thaddeus S.

    2013-01-01

    There is significant interest in the use of primary intestinal epithelial cells in monolayer culture to model intestinal biology. However, it has proven to be challenging to create functional, differentiated monolayers using current culture methods, likely due to the difficulty in expanding these cells. Here, we adapted our recently developed method for the culture of intestinal epithelial spheroids to establish primary epithelial cell monolayers from the colon of multiple genetic mouse strains. These monolayers contained differentiated epithelial cells that displayed robust transepithelial electrical resistance. We then functionally tested them by examining IgA transcytosis across Transwells. IgA transcytosis required induction of polymeric immunoglobulin receptor (pIgR) expression, which could be stimulated by a combination of LPS and inhibition of γ-secretase. In agreement with previous studies using immortalized cell lines, we found that TNFα, IL-1β, IL-17 and heat-killed microbes also stimulated pIgR expression and IgA transcytosis. We used wild-type and knockout cells to establish that amongst these cytokines, IL-17 was the most potent inducer of pIgR expression/IgA transcytosis. IFNγ however did not induce pIgR expression, and instead led to cell death. This new method will allow the use of primary cells for studies of intestinal physiology. PMID:24220295

  6. Heterogeneity of (TH)phorbol 12,13-dibutyrate binding in primary mouse keratinocytes at different stages of maturation

    SciTech Connect

    Dunn, J.A.; Jeng, A.Y.; Yuspa, S.H.; Blumberg, P.M.

    1985-11-01

    Mouse keratinocytes respond heterogeneously to phorbol esters with distinct subpopulations stimulated to proliferate or induced to differentiate. The maturation state of the epidermal cell at the time of exposure may determine its response. The binding of phorbol esters to primary mouse keratinocytes was studied under culture conditions selecting for proliferating cells or differentiating cells. (20-TH)-12-Deoxyphorbol 13-isobutyrate ((TH)-DPB) bound to both types of cells at one class of binding sites. The dissociation constant (Kd) for (TH)DPB in the proliferative cells was 69 nM and the binding at saturation (Bmax) was 1.3 pmol/mg of protein. The corresponding values in the differentiative cells were 96 nM and 1.5 pmol/mg of protein, respectively. In contrast to the results obtained with (TH)DPB, (20-TH)phorbol 12,13-dibutyrate ((TH)PDBU) bound to both cell types in a heterogeneous fashion. The site for (TH)DPB binding seemed to correspond to the higher affinity (TH)PDBU binding site. The major difference in the cells grown in the medium containing 1.2 mM CaCl2 was an increase in the Bmax of the lower affinity binding site with the other three parameters remaining similar. The state of epidermal differentiation thus appears to modulate the amount of the lower affinity binding sites for phorbol esters.

  7. Inhibition of Transforming Growth Factor-β Activation Diminishes Tumor Progression and Osteolytic Bone Disease in Mouse Models of Multiple Myeloma.

    PubMed

    Lu, Ailing; Pallero, Manuel A; Lei, Weiqi; Hong, Huixian; Yang, Yang; Suto, Mark J; Murphy-Ullrich, Joanne E

    2016-03-01

    Transforming growth factor (TGF)-β supports multiple myeloma progression and associated osteolytic bone disease. Conversion of latent TGF-β to its biologically active form is a major regulatory node controlling its activity. Thrombospondin1 (TSP1) binds and activates TGF-β. TSP1 is increased in myeloma, and TSP1-TGF-β activation inhibits osteoblast differentiation. We hypothesized that TSP1 regulates TGF-β activity in myeloma and that antagonism of the TSP1-TGF-β axis inhibits myeloma progression. Antagonists (LSKL peptide, SRI31277) derived from the LSKL sequence of latent TGF-β that block TSP1-TGF-β activation were used to determine the role of the TSP1-TGF-β pathway in mouse models of myeloma. TSP1 binds to human myeloma cells and activates TGF-β produced by cultured human and mouse myeloma cell lines. Antagonists delivered via osmotic pump in an intratibial severe combined immunodeficiency CAG myeloma model or in a systemic severe combined immunodeficiency CAG-heparanase model of aggressive myeloma reduced TGF-β signaling (phospho-Smad 2) in bone sections, tumor burden, mouse IL-6, and osteoclasts, increased osteoblast number, and inhibited bone destruction as measured by microcomputed tomography. SRI31277 reduced tumor burden in the immune competent 5TGM1 myeloma model. SRI31277 was as effective as dexamethasone or bortezomib, and SRI31277 combined with bortezomib showed greater tumor reduction than either agent alone. These studies validate TSP1-regulated TGF-β activation as a therapeutic strategy for targeted inhibition of TGF-β in myeloma. PMID:26801735

  8. Purkinje cells and Bergmann glia are primary targets of the TR?1 thyroid hormone receptor during mouse cerebellum postnatal development.

    PubMed

    Fauquier, Teddy; Chatonnet, Fabrice; Picou, Frdric; Richard, Sabine; Fossat, Nicolas; Aguilera, Nadine; Lamonerie, Thomas; Flamant, Frdric

    2014-01-01

    Thyroid hormone is necessary for normal development of the central nervous system, as shown by the severe mental retardation syndrome affecting hypothyroid patients with low levels of active thyroid hormone. The postnatal defects observed in hypothyroid mouse cerebellum are recapitulated in mice heterozygous for a dominant-negative mutation of Thra, the gene encoding the ubiquitous TR?1 receptor. Using CRE/loxP-mediated conditional expression approach, we found that this mutation primarily alters the differentiation of Purkinje cells and Bergmann glia, two cerebellum-specific cell types. These primary defects indirectly affect cerebellum development in a global manner. Notably, the inward migration and terminal differentiation of granule cell precursors is impaired. Therefore, despite the broad distribution of its receptors, thyroid hormone targets few cell types that exert a predominant role in the network of cellular interactions that govern normal cerebellum maturation. PMID:24346699

  9. Therapeutic potential of canine bone marrow stromal cells (BMSCs) in the carbon tetrachloride (CCl4) induced chronic liver dysfunction mouse model.

    PubMed

    Haraguchi, Tomoya; Tani, Kenji; Takagishi, Ryo; Oda, Yasutaka; Itamoto, Kazuhito; Yamamoto, Naoki; Terai, Shuji; Sakaida, Isao; Nakazawa, Hiroshi; Taura, Yasuho

    2012-05-01

    Regenerative medicine using bone marrow cells is an attractive therapy for the cure of patients with severe liver disease. Here, we show the therapeutic potential of canine bone marrow stromal cells (BMSCs) in mouse models of CCl(4)-induced chronic liver dysfunction. We used two different models for xenotransplantation, nude mice and cyclosporine A (CSA) immunosuppressed mice. Serum parameters from a standard liver panel were not improved following transplantation. However, fibrotic liver lesions with severe inflammation were decreased in CCl(4)-treated CSA mice following BMSC transplantation. Effective migration of transplanted canine BMSCs was limited to persistently injured liver in CCl(4)-treated CSA mice, where they may be effective in resolving inflammatory fibrotic lesions. These results suggest that canine BMSCs are an effective cell source for liver regeneration. PMID:22198059

  10. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model.

    PubMed

    Ogawa, Yoko; Morikawa, Satoru; Okano, Hideyuki; Mabuchi, Yo; Suzuki, Sadafumi; Yaguchi, Tomonori; Sato, Yukio; Mukai, Shin; Yaguchi, Saori; Inaba, Takaaki; Okamoto, Shinichiro; Kawakami, Yutaka; Tsubota, Kazuo; Matsuzaki, Yumi; Shimmura, Shigeto

    2016-01-01

    Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα(+) Sca-1(+) BMSCs expressed MHC class II following transplantation and activated host T cells. A decrease in FOXP3(+) CD25(+) Treg population was observed. T cells proliferated and secreted IL-6 when stimulated with mismatched BMSCs in vitro. Donor T cells were not involved in fibrosis because transplanting T cell-deficient RAG2 knock out mice bone marrow still caused disease. Once initially triggered by mismatched BMSCs, the autoimmune phenotype was not donor BMSC dependent as the phenotype was observed after effector T cells were adoptively transferred into naïve syngeneic mice. Our data suggest that minor antigen mismatched BMSCs trigger systemic fibrosis in this autoimmune scleroderma model. PMID:26809474

  11. Cured of Primary Bone Cancer, But at What Cost: A Qualitative Study of Functional Impairment and Lost Opportunities

    PubMed Central

    Fauske, Lena; Bruland, Oyvind S.; Grov, Ellen Karine; Bondevik, Hilde

    2015-01-01

    Purpose. Our study aims to explore how former cancer patients experience physical and psychosocial late effects 3–7 years after they underwent treatment for primary bone sarcoma in the hip/pelvic region. A qualitative, phenomenological, and hermeneutic design was applied. Methods. Sarcoma survivors (n = 10) previously treated at Oslo University Hospital, Norwegian Radium Hospital were selected to participate. In-depth and semistructured interviews were conducted. The interviews were analysed using inductive thematic analysis. Results. The participants reported that the late effects had three core spheres of impact: “their current daily life,” “their future opportunities,” and “their identity.” They expressed negative changes in activity, increased dependence on others, and exclusion from participation in different areas. Their daily life, work, sports activities, and social life were all affected. Several of their experiences are similar to those described by people with functional impairment or disability. Conclusion. Patients cured of bone cancer in the hip/pelvic region pay a significant price in terms of functional impairment, practical challenges, exclusion from important aspects of life, and loss of previous identity. It is important to appreciate this in order to help bone cancer survivors who struggle to reorient their life and build a secure new identity. PMID:25949211

  12. In Vitro Differentiation of Insulin Secreting Cells from Mouse Bone Marrow Derived Stage-Specific Embryonic Antigen 1 Positive Stem Cells

    PubMed Central

    Abouzaripour, Morteza; Pasbakhsh, Parichehr; Atlasi, Nader; Shahverdi, Abdol Hossein; Mahmoudi, Reza; Kashani, Iraj Ragerdi

    2016-01-01

    Objective Bone marrow has recently been recognized as a novel source of stem cells for the treatment of wide range of diseases. A number of studies on murine bone mar- row have shown a homogenous population of rare stage-specific embryonic antigen 1 (SSEA-1) positive cells that express markers of pluripotent stem cells. This study focuses on SSEA-1 positive cells isolated from murine bone marrow in an attempt to differentiate them into insulin-secreting cells (ISCs) in order to investigate their differentiation potential for future use in cell therapy. Materials and Methods This study is an experimental research. Mouse SSEA-1 positive cells were isolated by Magnetic-activated cell sorting (MACS) followed by characteriza- tion with flow cytometry. Induced SSEA-1 positive cells were differentiated into ISCs with specific differentiation media. In order to evaluate differentiation quality and analysis, dithizone (DTZ) staining was use, followed by reverse transcription polymerase chain reaction (RT-PCR), immunocytochemistry and insulin secretion assay. Statistical results were analyzed by one-way ANOVA. Results The results achieved in this study reveal that mouse bone marrow contains a population of SSEA-1 positive cells that expresses pluripotent stem cells markers such as SSEA-1, octamer-binding transcription factor 4 (OCT-4) detected by immunocytochem- istry and C-X-C chemokine receptor type 4 (CXCR4) and stem cell antigen-1 (SCA-1) detected by flow cytometric analysis. SSEA-1 positive cells can differentiate into ISCs cell clusters as evidenced by their DTZ positive staining and expression of genes such as Pdx1 (pancreatic transcription factors), Ngn3 (endocrine progenitor marker), Insulin1 and Insulin2 (pancreaticβ-cell markers). Additionally, our results demonstrate expression of Pdx1 and Glut2 protein and insulin secretion in response to a glucose challenge in the differentiated cells. Conclusion Our study clearly demonstrates the potential of SSEA-1 positive cells to differentiate into insulin secreting cells in defined culture conditions for clinical ap- plications. PMID:26862529

  13. A comparison of long-term repopulating hematopoietic stem cells in fetal liver and adult bone marrow from the mouse.

    PubMed

    Rebel, V I; Miller, C L; Thornbury, G R; Dragowska, W H; Eaves, C J; Lansdorp, P M

    1996-04-01

    Previous studies have shown that stem cells able to competitively reconstitute the hematopoietic system of lethally irradiated mice (competitive repopulating units [CRU]) can be obtained in highly purified form from adult mouse bone marrow (BM) by the isolation of cells with a Sca-1+Lin-WGA+ phenotype. We now report on the phenotypic characteristics of CRU from day-14.5 murine fetal liver (FL). Our results confirm previous reports of similarities between the two CRU populations but also reveal a few striking differences. Both were found to express the Sca-1 antigen (SCA-1+ and surface molecules that bind wheat germ agglutinin (WGA+), and both show an absence or low expression of a number of markers characteristic of mature hematopoietic cells: B220, Gr-1,ly-1 and Ter119 (together termed Lin*-). Limiting dilution analysis of recipients transplanted with purified Sca-1+Lin*- FL cells with intermediate forward- and side-scatter properties showed that the frequency of CRU in this FL subpopulation was one in 39 cells. This represents an enrichment of approximately 450-fold over the labeled but unseparated FL starting population (one in 17,300 total FL cells). These FL CRU also resembled their counterparts in adult BM in that they expressed high levels of MHC class I and CD43 and intermediate levels of heat-stable antigen (HSA) and c-kit and did not express, or expressed at a low level, Thy-1.2, CD71, and the antigen recognized by the Fall-3 monoclonal antibody (mAb). In contrast, a high percentage of the Sca-1+Lin*- cells isolated from 14.5-day-old FL stained with the AA4.1, anti-Mac-1, and the anti-CD45RB mAbs and retained Rhodamine 123 (Rh123(bright)), whereas the Sca-1+Lin-WGA+ CRU-containing fraction of adult BM cells was found to be AA4.1-, Mac-1-, CD45RB-, and Rh123(dull). These differences in phenotype between CRU in FL and adult BM indicate changes that occur during ontogeny in cells that are similar with respect to their totipotentiality and long-term repopulating potential and complement parallel observations of functional differences between these two populations of CRU. PMID:8605969

  14. Mechanisms of benzene-induced hematotoxicity and leukemogenicity: cDNA microarray analyses using mouse bone marrow tissue.

    PubMed Central

    Yoon, Byung-Il; Li, Guang-Xun; Kitada, Kunio; Kawasaki, Yasushi; Igarashi, Katsuhide; Kodama, Yukio; Inoue, Tomoaki; Kobayashi, Kazuko; Kanno, Jun; Kim, Dae-Yong; Inoue, Tohru; Hirabayashi, Yoko

    2003-01-01

    Although the mechanisms underlying benzene-induced toxicity and leukemogenicity are not yet fully understood, they are likely to be complicated by various pathways, including those of metabolism, growth factor regulation, oxidative stress, DNA damage, cell cycle regulation, and programmed cell death. With this as a background, we performed cDNA microarray analyses on mouse bone marrow tissue during and after a 2-week benzene exposure by inhalation. Our goal was to clarify the mechanisms underlying the hematotoxicity and leukemogenicity induced by benzene at the level of altered multigene expression. Because a few researchers have postulated that the cell cycle regulation mediated by p53 is a critical event for benzene-induced hematotoxicity, the present study was carried out using p53-knockout (KO) mice and C57BL/6 mice. On the basis of the results of large-scale gene expression studies, we conclude the following: (a) Benzene induces DNA damage in cells at any phase of the cell cycle through myeloperoxidase and in the redox cycle, resulting in p53 expression through Raf-1 and cyclin D-interacting myb-like protein 1. (b) For G1/S cell cycle arrest, the p53-mediated pathway through p21 is involved, as well as the pRb gene-mediated pathway. (c) Alteration of cyclin G1 and Wee-1 kinase genes may be related to the G2/M arrest induced by benzene exposure. (d) DNA repair genes such as Rad50 and Rad51 are markedly downregulated in p53-KO mice. (e) p53-mediated caspase 11 activation, aside from p53-mediated Bax gene induction, may be an important pathway for cellular apoptosis after benzene exposure. Our results strongly suggest that the dysfunction of the p53 gene, possibly caused by strong and repeated genetic and epigenetic effects of benzene on candidate leukemia cells, may induce fatal problems such as those of cell cycle checkpoint, apoptosis, and the DNA repair system, finally resulting in hemopoietic malignancies. Our cDNA microarray data provide valuable information for future investigations of the mechanisms underlying the toxicity and leukemogenicity of benzene. PMID:12928149

  15. In Vitro Assessment of Nanosilver-Functionalized PMMA Bone Cement on Primary Human Mesenchymal Stem Cells and Osteoblasts

    PubMed Central

    Pauksch, Linda; Hartmann, Sonja; Szalay, Gabor; Alt, Volker; Lips, Katrin S.

    2014-01-01

    Peri-prosthetic infections caused by multidrug resistant bacteria have become a serious problem in surgery and orthopedics. The aim is to introduce biomaterials that avoid implant-related infections caused by multiresistant bacteria. The efficacy of silver nanoparticles (AgNP) against a broad spectrum of bacteria and against multiresistant pathogens has been repeatedly described. In the present study polymethylmethacrylate (PMMA) bone cement functionalized with AgNP and/or gentamicin were tested regarding their biocompatibility with bone forming cells. Therefore, influences on viability, cell number and differentiation of primary human mesenchymal stem cells (MSCs) and MSCs cultured in osteogenic differentiation media (MSC-OM) caused by the implant materials were studied. Furthermore, the growth behavior and the morphology of the cells on the testing material were observed. Finally, we examined the induction of cell stress, regarding antioxidative defense and endoplasmatic reticulum stress. We demonstrated similar cytocompatibility of PMMA loaded with AgNP compared to plain PMMA or PMMA loaded with gentamicin. There was no decrease in cell number, viability and osteogenic differentiation and no induction of cell stress for all three PMMA variants after 21 days. Addition of gentamicin to AgNP-loaded PMMA led to a slight decrease in osteogenic differentiation. Also an increase in cell stress was detectable for PMMA loaded with gentamicin and AgNP. In conclusion, supplementation of PMMA bone cement with gentamicin, AgNP, and both results in bone implants with an antibacterial potency and suitable cytocompatibility in MSCs and MSC-OM. PMID:25485700

  16. Distribution of /sup 3/H-proline in alveolar bone of the mouse as seen by radioautography

    SciTech Connect

    Johnson, R.B.

    1986-11-01

    Previous studies of the turnover of alveolar bone collagenous proteins have devoted little attention to the variable patterns in this process caused by bone remodeling. The present study seeks to document changes resulting from physiologic tooth movements in the incorporation and removal of the /sup 3/H-proline label within the interdental septum of alveolar bone. One week following /sup 3/H-proline injection, three zones could be distinguished: the appositional band, new bone, and old bone. Radioautography demonstrated that formation of new bone on the distal wall of the septum entrapped fibers of the periodontal ligament to create Sharpey's fibers. At the alveolar crest, new bone entrapped transseptal fibers to form transalveolar Sharpey's fibers. Grain counts were made within each area and over the total septum and were compared statistically. The data strongly suggested regional variations in protein remodeling. Counts from old and new bone were significantly different from the total septum or the appositional band (P less than .001). Regression lines were drawn to represent incorporation and removal of the isotope; slopes were calculated and compared statistically. The rate of incorporation and removal was significantly greater in the appositional band and in the total septum in comparison to old bone (P less than .001). The rates of incorporation and removal in the appositional band, old bone, and total septum were significantly different (P less than .001). Half-life of the labeled protein of old bone was 16.78 weeks; in the appositional band, 7.66 weeks; and in the total septum, 7.64 weeks. These data suggest that regional variations in collagen remodeling must be considered in a study of interdental bone and that the total septal grain counts are not indicative of the remodeling in the component zones.

  17. Creation of Primary Cell Lines from Lineage-Labeled Mouse Models of Cancer

    PubMed Central

    Rhim, Andrew D.

    2015-01-01

    Frequently, it is necessary to isolate pure populations of cancer cells for downstream assays, such as transcriptional analysis, signaling studies, and the creation of noncontaminated primary cell lines. Genetic lineage labeling with fluorescent reporter alleles allows for the identification of epithelial-derived cells within tumors. This protocol describes a method to isolate lineage-labeled pancreatic epithelial cells for ex vivo analysis, but it can be adapted for any type of lineage-labeled tumor. PMID:25934932

  18. Brg1 Controls the Expression of Pax7 to Promote Viability and Proliferation of Mouse Primary Myoblasts.

    PubMed

    Padilla-Benavides, Teresita; Nasipak, Brian T; Imbalzano, Anthony N

    2015-12-01

    Brg1 (Brahma-related gene 1) is a catalytic component of the evolutionarily conserved mammalian SWI/SNF ATP-dependent chromatin remodeling enzymes that disrupt histone-DNA contacts on the nucleosome. While the requirement for the SWI/SNF enzymes in cell differentiation has been extensively studied, its role in precursor cell proliferation and survival is not as well defined. Muscle satellite cells constitute the stem cell pool that sustains and regenerates myofibers in adult skeletal muscle. Here, we show that deletion of Brg1 in primary mouse myoblasts derived from muscle satellite cells cultured ex vivo leads to a cell proliferation defect and apoptosis. We determined that Brg1 regulates cell proliferation and survival by controlling chromatin remodeling and activating transcription at the Pax7 promoter, which is expressed during somite development and is required for controlling viability of the satellite cell population. Reintroduction of catalytically active Brg1 or of Pax7 into Brg1-deficient satellite cells rescued the apoptotic phenotype and restored proliferation. These data demonstrate that Brg1 functions as a positive regulator for cellular proliferation and survival of primary myoblasts. Therefore, the regulation of gene expression through Brg1-mediated chromatin remodeling is critical not just for skeletal muscle differentiation but for maintaining the myoblast population as well. PMID:26036967

  19. Zonisamide Enhances Neurite Elongation of Primary Motor Neurons and Facilitates Peripheral Nerve Regeneration In Vitro and in a Mouse Model

    PubMed Central

    Yagi, Hideki; Ohkawara, Bisei; Nakashima, Hiroaki; Ito, Kenyu; Tsushima, Mikito; Ishii, Hisao; Noto, Kimitoshi; Ohta, Kyotaro; Masuda, Akio; Imagama, Shiro; Ishiguro, Naoki; Ohno, Kinji

    2015-01-01

    No clinically applicable drug is currently available to enhance neurite elongation after nerve injury. To identify a clinically applicable drug, we screened pre-approved drugs for neurite elongation in the motor neuron-like NSC34 cells. We found that zonisamide, an anti-epileptic and anti-Parkinson’s disease drug, promoted neurite elongation in cultured primary motor neurons and NSC34 cells in a concentration-dependent manner. The neurite-scratch assay revealed that zonisamide enhanced neurite regeneration. Zonisamide was also protective against oxidative stress-induced cell death of primary motor neurons. Zonisamide induced mRNA expression of nerve growth factors (BDNF, NGF, and neurotrophin-4/5), and their receptors (tropomyosin receptor kinase A and B). In a mouse model of sciatic nerve autograft, intragastric administration of zonisamide for 1 week increased the size of axons distal to the transected site 3.9-fold. Zonisamide also improved the sciatic function index, a marker for motor function of hindlimbs after sciatic nerve autograft, from 6 weeks after surgery. At 8 weeks after surgery, zonisamide was protective against denervation-induced muscle degeneration in tibialis anterior, and increased gene expression of Chrne, Colq, and Rapsn, which are specifically expressed at the neuromuscular junction. We propose that zonisamide is a potential therapeutic agent for peripheral nerve injuries as well as for neuropathies due to other etiologies. PMID:26571146

  20. Genetic deletion of keratin 8 corrects the altered bone formation and osteopenia in a mouse model of cystic fibrosis.

    PubMed

    Le Henaff, Carole; Faria Da Cunha, Mélanie; Hatton, Aurélie; Tondelier, Danielle; Marty, Caroline; Collet, Corinne; Zarka, Mylène; Geoffroy, Valérie; Zatloukal, Kurt; Laplantine, Emmanuel; Edelman, Aleksander; Sermet-Gaudelus, Isabelle; Marie, Pierre J

    2016-04-01

    Patients with cystic fibrosis (CF) display low bone mass and alterations in bone formation. Mice carrying the F508del genetic mutation in the cystic fibrosis conductance regulator (Cftr) gene display reduced bone formation and decreased bone mass. However, the underlying molecular mechanisms leading to these skeletal defects are unknown, which precludes the development of an efficient anti-osteoporotic therapeutic strategy. Here we report a key role for the intermediate filament protein keratin 8 (Krt8), in the osteoblast dysfunctions in F508del-Cftr mice. We found that murine and human osteoblasts express Cftr and Krt8 at low levels. Genetic studies showed that Krt8 deletion (Krt8(-/-)) in F508del-Cftr mice increased the levels of circulating markers of bone formation, corrected the expression of osteoblast phenotypic genes, promoted trabecular bone formation and improved bone mass and microarchitecture. Mechanistically, Krt8 deletion in F508del-Cftr mice corrected overactive NF-κB signaling and decreased Wnt-β-catenin signaling induced by the F508del-Cftr mutation in osteoblasts. In vitro, treatment with compound 407, which specifically disrupts the Krt8-F508del-Cftr interaction in epithelial cells, corrected the abnormal NF-κB and Wnt-β-catenin signaling and the altered phenotypic gene expression in F508del-Cftr osteoblasts. In vivo, short-term treatment with 407 corrected the altered Wnt-β-catenin signaling and bone formation in F508del-Cftr mice. Collectively, the results show that genetic or pharmacologic targeting of Krt8 leads to correction of osteoblast dysfunctions, altered bone formation and osteopenia in F508del-Cftr mice, providing a therapeutic strategy targeting the Krt8-F508del-CFTR interaction to correct the abnormal bone formation and bone loss in cystic fibrosis. PMID:26769674

  1. Groped for a novel stimulation method for the prevention of lumbar vertebral compression pressure bone fracture and verification using a bone density drop model mouse.

    PubMed

    Yamada, Kouji; Nishii, Kazuhiro; Sakai, Kazuyoshi; Teranishi, Toshio; Matsubara, Mamoru

    2014-01-01

    Osteoporosis is leaving bones more fragile and susceptible to fracture. It has a massive impact, both physically and mentally, markedly diminishing quality of life. A new form of therapeutic exercise or physical therapy that mitigates the abrupt decrease in bone density in postmenopausal women must quickly be developed to avoid those problems. In this study, ovariectomy (OVX) mice were used as models to simulate the decrease in bone density observed in postmenopausal women. Physical therapy via a shaking stimulus, in the form of moving a platform that rotates in a roughly circular motion in the horizontal plane, was studied as a way to prevent the decrease in bone density of the lumbar vertebrae by analysis of bone histomorphometry, a feat that the stimulus from conventional therapeutic exercise and physical therapy have failed to achieve. Comparison of the stimulus/ovariectomized (+/+) group with the -/+ group indicated significant increases in ES (P < 0.01), N. Mu. Oc (P < 0.05), OV (P < 0.05), O. Th (P < 0.01), and L. Th (P < 0.01) in the +/+ group. If this finding is used clinically, we believe that it could lead to therapy that would prevent compression fractures of the lumbar vertebrae. PMID:25492842

  2. SCP-2/SCP-x gene ablation alters lipid raft domains in primary cultured mouse hepatocytes.

    PubMed

    Atshaves, Barbara P; McIntosh, Avery L; Payne, H Ross; Gallegos, Adalberto M; Landrock, Kerstin; Maeda, Nobuyo; Kier, Ann B; Schroeder, Friedhelm

    2007-10-01

    Although reverse cholesterol transport from peripheral cell types is mediated through plasma membrane microdomains termed lipid rafts, almost nothing is known regarding the existence, protein/lipid composition, or structure of these putative domains in liver hepatocytes, cells responsible for the net removal of cholesterol from the body. Lipid rafts purified from hepatocyte plasma membranes by a nondetergent affinity chromatography method were: i) present at 33 +/- 3% of total plasma membrane protein; ii) enriched in key proteins of the reverse cholesterol pathway [scavenger receptor class B type I (SR-B1), ABCA1, P-glycoprotein (P-gp), sterol carrier protein-2 (SCP-2)]; iii) devoid of caveolin-1; iv) enriched in cholesterol, sphingomyelin, GM1, and phospholipids low in polyunsaturated fatty acid and double bond index; and v) exhibited an intermediate liquid-ordered lipid phase with significant transbilayer fluidity gradient. Ablation of the gene encoding SCP-2 significantly altered lipid rafts to: i) increase the proportion of lipid rafts present, thereby increasing raft total content of ABCA1, P-gp, and SR-B1; ii) increase total phospholipids while decreasing GM1 in lipid rafts; iii) decrease the fluidity of lipid rafts, consistent with the increased intermediate liquid-ordered phase; and iv) abolish the lipid raft transbilayer fluidity gradient. Thus, despite the absence of caveolin-1 in liver hepatocytes, lipid rafts represented nearly one-third of the mouse hepatocyte plasma membrane proteins and displayed unique protein, lipid, and biophysical properties that were differentially regulated by SCP-2 expression. PMID:17609524

  3. Dual energy micro-CT imaging of radiation-induced vascular changes in primary mouse sarcomas

    PubMed Central

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.

    2013-01-01

    Purpose To evaluate the effects of radiation therapy on primary tumor vasculature using dual energy (DE) micro-computed tomography (micro-CT). Methods and Materials The Cre-loxP system was used to generate primary sarcomas with mutant Kras and p53. Unirradiated tumors were compared to tumors irradiated with 20 Gy. A long-circulating PEGylated liposomal-iodinated contrast agent was administered one day after treatment, and mice were imaged immediately after injection (day 1) and three days later (day 4) using DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically using CD31 immunofluorescence and fluorescently-labeled dextrans. Results Radiation treatment significantly decreased tumor growth (P<0.05). There was a positive correlation between CT-measurement of tumor FBV and extravasated iodine with microvascular density (MVD) (R2=0.53) and dextran accumulation (R2=0.63), respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs. 0.091, P<0.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation with dextran fractional area increasing 4.2-fold and liposomal-iodine concentration increasing 3.0-fold. Conclusions DE micro-CT is an effective tool for non-invasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment. PMID:23122984

  4. Cross-species bone marrow transplantation: Evidence for tolerance induction, stem cell engraftment, and maturation of T lymphocytes in a xenogeneic stromal environment (rat----mouse)

    SciTech Connect

    Ildstad, S.T.; Wren, S.M.; Boggs, S.S.; Hronakes, M.L.; Vecchini, F.; Van den Brink, M.R. )

    1991-08-01

    Transplantation of untreated F344 rat bone marrow into irradiated B10 mouse recipients (non-TCD F344----B10) to produce fully xenogeneic chimeras resulted in stable xenogeneic lymphoid chimerism, ranging from 82% to 97% rat. Survival of animals was excellent, without evidence for GVH disease. The specificity of tolerance which resulted was highly donor-specific; MHC disparate third party mouse and rat skin grafts were promptly rejected while donor-specific F344 grafts were significantly prolonged (MST greater than 130 days). Multi-lineage rat stem cell-derived progeny including lymphoid cells (T- and B-lymphocytes), myeloid cells, erythrocytes, platelets, and natural killer (NK) cells were present in the fully xenogenic chimeras up to 7 months after bone marrow transplantation. Immature rat T-lymphocytes matured and acquired the {alpha}/{beta} T-cell receptor in the thymus of chimeras in a pattern similar to normal rat controls, suggesting that immature T-lymphocytes of rat origin could interact with the murine xenogeneic thymic stroma to undergo normal maturation and differentiation. This model may be useful to study the mechanisms responsible for the induction and maintenance of donor-specific transplantation tolerance across a species barrier.

  5. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis

    PubMed Central

    Truong, Nhung Hai; Nguyen, Nam Hai; Le, Trinh Van; Vu, Ngoc Bich; Huynh, Nghia; Nguyen, Thanh Van; Le, Huy Minh; Phan, Ngoc Kim

    2016-01-01

    Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment. PMID:26839564

  6. A novel mouse model for the study of the inhibitory effects of chronic ethanol exposure on direct bone formation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excessive alcohol consumption has been reported to interfere with human bone homeostasis and repair in multiple ways. Previous studies have demonstrated that chronic ethanol exposure in the rat via an intragastric dietary delivery system inhibits direct bone formation during distraction osteogenesis...

  7. Impaired bone remodeling and its correction by combination therapy in a mouse model of mucopolysaccharidosis-I.

    PubMed

    Kuehn, Sonja C; Koehne, Till; Cornils, Kerstin; Markmann, Sandra; Riedel, Christoph; Pestka, Jan M; Schweizer, Michaela; Baldauf, Christina; Yorgan, Timur A; Krause, Matthias; Keller, Johannes; Neven, Mona; Breyer, Sandra; Stuecker, Ralf; Muschol, Nicole; Busse, Bjoern; Braulke, Thomas; Fehse, Boris; Amling, Michael; Schinke, Thorsten

    2015-12-15

    Mucopolysaccharidosis-I (MPS-I) is a lysosomal storage disease (LSD) caused by inactivating mutations of IDUA, encoding the glycosaminoglycan-degrading enzyme α-l-iduronidase. Although MPS-I is associated with skeletal abnormalities, the impact of IDUA deficiency on bone remodeling is poorly defined. Here we report that Idua-deficient mice progressively develop a high bone mass phenotype with pathological lysosomal storage in cells of the osteoblast lineage. Histomorphometric quantification identified shortening of bone-forming units and reduced osteoclast numbers per bone surface. This phenotype was not transferable into wild-type mice by bone marrow transplantation (BMT). In contrast, the high bone mass phenotype of Idua-deficient mice was prevented by BMT from wild-type donors. At the cellular level, BMT did not only normalize defects of Idua-deficient osteoblasts and osteocytes but additionally caused increased osteoclastogenesis. Based on clinical observations in an individual with MPS-I, previously subjected to BMT and enzyme replacement therapy (ERT), we treated Idua-deficient mice accordingly and found that combining both treatments normalized all histomorphometric parameters of bone remodeling. Our results demonstrate that BMT and ERT profoundly affect skeletal remodeling of Idua-deficient mice, thereby suggesting that individuals with MPS-I should be monitored for their bone remodeling status, before and after treatment, to avoid long-term skeletal complications. PMID:26427607

  8. Proteinase activated receptor 1 mediated fibrosis in a mouse model of liver injury: a role for bone marrow derived macrophages.

    PubMed

    Kallis, Yiannis N; Scotton, Christopher J; Mackinnon, Alison C; Goldin, Robert D; Wright, Nicholas A; Iredale, John P; Chambers, Rachel C; Forbes, Stuart J

    2014-01-01

    Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1) is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment. PMID:24475094

  9. Synchronous double primary cancer - intrahepatic cholangiocarcinoma with bone metastases and thyroid carcinoma: A case report

    PubMed Central

    WANG, QING-LIANG; LI, XIAO-JIE; ZHAO, KUN; LIU, BO; YE, XIAO-MING

    2015-01-01

    There is a low incidence of multiple primary cancer, particularly when the cancer is synchronous. The present report presents a case of synchronous double primary malignancies. A 58-year-old woman was admitted to Ling Nan Hospital (Guangzhou, China) complaining of pain in the left hip. X-ray revealed an osteolytic lesion and further examination indicated the presence of double primary cancer, consisting of hepatic cholangiocarcinoma and thyroid carcinoma. Biopsy of the osteolytic lesion showed a metastatic adenocarcinoma of unknown origin. Subsequently, final diagnosis was confirmed by I-131 scan and liver lesion biopsy. The patient received positive multidisciplinary treatments and survived for 9 months following diagnosis. The results of the present case suggest that multiplicity of primary malignancy is not necessarily an indicator of poor prognosis, as long as effective diagnosis and adequate disease management are achieved. PMID:26788211

  10. P15, MDM2, NF-κB, and Bcl-2 expression in primary bone tumor and correlation with tumor formation and metastasis

    PubMed Central

    Qian, Guibin; Hao, Songnan; Yang, Dawei; Meng, Qinggang

    2015-01-01

    Primary bone tumor is one of the most common malignant tumors in skeletal system. It seriously affected bone movement and development with unclear pathogenesis. In this paper, rabbit VX-2 malignant bone tumor model was applied to explore apoptotic genes P15, MDM2, NF-κB and Bcl-2 correlation with primary bone tumor occurrence and metastasis. 0.3 ml rabbit VX-2 tumor cell suspension (1×106/ml) was injected to the marrow cavity of the right tibia condyle to establish the rabbit malignant bone tumor model, while equal amount of the saline was injected to the left tibia as control. Real-time PCR was applied to determine P15, MDM2, NF-κB and Bcl-2 expression level. Immunohistochemistry was performed to detect the abovementioned genes expression in lung, stomach, kidney and bladder. Compared with control, P15 expression level in the inoculation site surrounding tissues decreased obviously following the inoculate time elongation (P<0.05), while Bcl-2, MDM2 and NF-κB expression significantly increased (P<0.05). Bcl-2 showed significant correlation with MDM2 and NF-κB (P<0.05). At the 2, 4, 6 weeks, Bcl-2, MDM2 and NF-κB in lung, Bcl-2 in kidney, and Bcl-2 and MDM2 in bladder positively expressed (P<0.05), whereas P15 gene exhibited no significant positive expression in these tissues (P>0.05). P15, MDM2, NF-κB, and Bcl-2 genes expression levels can effectively reflect malignant bone tumor growth of rabbit tibia. MDM2, NF-κB and Bcl-2 genes involved in primary bone tumors metastasis directly. It has important clinical significance for early diagnosis and treatment of primary bone tumor. PMID:26823818

  11. Murine Stem Cell-Based Retrovirus Production for Marking Primary Mouse Mammary Cells for Metastasis Studies.

    PubMed

    Beverly, Levi J; Podsypanina, Katrina

    2016-01-01

    Since the introduction of retroviral vector technology, permanent genetic marking of cells has considerably contributed to the understanding of different physiological and disease processes in vivo. Recent marking strategies aim to elucidate the contribution of cells on the clonal level, and the advent of fluorescent proteins has opened new avenues for the in vivo analysis of gene-marked cells. Gene-modified cells are easily identifiable (e.g., via the introduced fluorescent protein) within whole organ structures, allowing one to measure the contribution of transduced cells to malignant outgrowth. In our laboratory, we use the tetracycline-inducible system to study oncogene cooperation in metastatic progression. We use bicistronic retroviruses expressing the tetracycline transactivator (tTA) and the candidate gene (MIT-gene) or the tTA alone (MIT-Rx) to infect primary mammary cells from mice harboring tetracycline-inducible transgenes. This allows for constitutive expression of the candidate gene and tTA-dependent expression of the inducible oncogene. We also use MIG-based vectors, which allow for constitutive expression of the candidate gene and a green fluorescent protein. Here we describe how to produce retroviral particles carrying both MIT- and MIG-based vectors. Because of the fragility of the retroviral envelope, we do not attempt to concentrate the virus, and we directly use packaging cell media to infect primary epithelial cells (either normal or tumor). Infected cells can be transplanted into recipient mice to investigate metastatic colonization. PMID:26832680

  12. Circadian Rhythms of PER2::LUC in Individual Primary Mouse Hepatocytes and Cultures

    PubMed Central

    Molyneux, Penny C.; Yu, Jimmy K.; Li, Alexander S.; Leise, Tanya L.; Harrington, Mary E.

    2014-01-01

    Background Hepatocytes, the parenchymal cells of the liver, express core clock genes, such as Period2 and Cryptochrome2, which are involved in the transcriptional/translational feedback loop of the circadian clock. Whether or not the liver is capable of sustaining rhythms independent of a central pacemaker is controversial. Whether and how circadian information may be shared among cells in the liver in order to sustain oscillations is currently unknown. Results In this study we isolated primary hepatocytes from transgenic Per2Luc mice and used bioluminescence as a read-out of the state of the circadian clock. Hepatocytes cultured in a collagen gel sandwich configuration exhibited persistent circadian rhythms for several weeks. The amplitude of the rhythms damped, but medium changes consistently reset the phase and amplitude of the cultures. Cry2?/? Per2Luc cells oscillated robustly and expressed a longer period. Co-culturing with wildtype cells did not significantly shorten the period, indicating that coupling among hepatocytes is insufficient to synchronize cells with significantly differing periods. However, spatial patterns revealed by cellular imaging of wildtype cultures provided evidence of weak local coupling among the hepatocytes. Conclusions Our results with primary hepatocyte cultures demonstrate that cultured hepatocytes are weakly coupled. While this coupling is not sufficient to sustain global synchrony, it does increase local synchrony, which may stabilize the circadian rhythms of peripheral oscillators, such as the liver, against noise in the entraining signals. PMID:24498336

  13. Hepatocyte growth factor (HGF) signals through SHP2 to regulate primary mouse myoblast proliferation

    SciTech Connect

    Li, Ju; Reed, Sarah A.; Johnson, Sally E.

    2009-08-01

    Niche localized HGF plays an integral role in G{sub 0} exit and the return to mitotic activity of adult skeletal muscle satellite cells. HGF actions are regulated by MET initiated intracellular signaling events that include recruitment of SHP2, a protein tyrosine phosphatase. The importance of SHP2 in HGF-mediated signaling was examined in myoblasts and primary cultures of satellite cells. Myoblasts stably expressing SHP2 (23A2-SHP2) demonstrate increased proliferation rates by comparison to controls or myoblasts expressing a phosphatase-deficient SHP2 (23A2-SHP2DN). By comparison to 23A2 myoblasts, treatment of 23A2-SHP2 cells with HGF does not further increase proliferation rates and 23A2-SHP2DN myoblasts are unresponsive to HGF. Importantly, the effects of SHP2 are independent of downstream ERK1/2 activity as inclusion of PD98059 does not blunt the HGF-induced proliferative response. SHP2 function was further evaluated in primary satellite cell cultures. Ectopic expression of SHP2 in satellite cells tends to decrease proliferation rates and siSHP2 causes an increase the percentage of dividing myogenic cells. Interestingly, treatment of satellite cells with high concentrations of HGF (50 ng/ml) inhibits proliferation, which can be overcome by knockdown of SHP2. From these results, we conclude that HGF signals through SHP2 in myoblasts and satellite cells to directly alter proliferation rates.

  14. Multiple quantitative trait loci for cortical and trabecular bone regulation map to mid-distal mouse Chromosome 4 that shares linkage homology to human Chromosome 1p36

    PubMed Central

    Beamer, Wesley G.; Shultz, Kathryn L.; Coombs, Harold F.; Horton, Lindsay G.; Donahue, Leah Rae; Rosen, Clifford J.

    2011-01-01

    The mid-distal region of mouse chromosome 4 (Chr 4) is homologous with human Chr 1p36. Previously, we reported that mouse Chr 4 carries a QTL with strong regulatory effect on vBMD. The intent of this report is to utilize nested congenic strains to decompose the genetic complexity of this gene rich region. Adult females and males from eighteen nested congenic strains carrying discrete C3H sequences were phenotyped for femoral mineral and volume by pQCT and for trabecular BV, TV, Trab.no and Trab.thk by MicroCT40. Our data show that the mouse Chr 4 region consists of at least 10 regulatory QTL regions that affected either or both pQCT and Micro CT40 phenotypes. The pQCT phenotypes were typically similar between sexes, whereas the microCT40 phenotypes were divergent. Individual congenic strains contained one to seven QTL regions. These regions conferred large positive or negative effects in some congenic strains, depending on the particular bone phenotype. The QTL regions, II to X, are syntenic with human 1p36, contained from 1 to 102 known genes. We identified 13 candidate genes that can be linked to bone within these regions. Six of these genes were linked to osteoblasts, three linked to osteoclasts, and two linked to skeletal development. Three of these genes have been identified in GWAS studies linked to 1p36. In region III, there is only one gene, Lck, which conferred negative pQCT and Micro CT40 phenotypes in both sexes. This gene is important to development and functioning of T cells, has been associated with osteoclast activity, and represents a novel bone regulatory gene that merits further experimental evaluation. In summary, congenic strains are powerful tools for identifying regulatory regions that influence bone biology, and offer models for testing hypotheses about gene-gene and gene-environment interactions that are not available to experimental work in humans. PMID:22031020

  15. Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse

    PubMed Central

    Coelho, Paula A.; Bury, Leah; Shahbazi, Marta N.; Liakath-Ali, Kifayathullah; Tate, Peri H.; Wormald, Sam; Hindley, Christopher J.; Huch, Meritxell; Archer, Joy; Skarnes, William C.; Zernicka-Goetz, Magdalena; Glover, David M.

    2015-01-01

    To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of α- and β-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development. PMID:26701933

  16. Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse.

    PubMed

    Coelho, Paula A; Bury, Leah; Shahbazi, Marta N; Liakath-Ali, Kifayathullah; Tate, Peri H; Wormald, Sam; Hindley, Christopher J; Huch, Meritxell; Archer, Joy; Skarnes, William C; Zernicka-Goetz, Magdalena; Glover, David M

    2015-12-01

    To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of ?- and ?-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development. PMID:26701933

  17. Effects of Fatty Acids on CYP2A5 and Nrf2 Expression in Mouse Primary Hepatocytes.

    PubMed

    Cui, Yizhe; Wang, Qiuju; Yi, Xing; Zhang, Xiuying

    2016-02-01

    Abnormal fatty acid metabolism is observed throughout nonalcoholic fatty liver disease (NAFLD) pathogenesis, and fatty acid storage is an important inducing factor in insulin resistance, lipid oxidation, hepatic cell damage, and inflammation. During NAFLD pathogenesis, changes in blood and liver contents of different fatty acid types also vary. Cytochrome P450 2A5 (CYP2A5), an important enzyme in mouse liver, metabolizes many drugs and activates multiple pro-carcinogens with widely varying structures. According to the changes in liver fatty acid profiles observed in NAFLD animal models developed in our laboratory and others, saturated (PA/palmitic, and SA/stearic acids) and unsaturated (OA/oleic, LA/linoleic, ALA/α-linolenic and AA/arachidonic acids) fatty acids were selected to induce mouse primary hepatocytes, at concentrations under 1 mM, as detected by MTT assay. After 24 h treatment with various fatty acid concentrations and types, CYP2A5 mRNA and protein amounts, and enzyme activity were determined by real-time PCR, Western blot, and Coumarin 7-hydroxylation, respectively. Meanwhile, Nrf2 mRNA and protein levels were evaluated by real-time PCR and Western blot. The results indicated that saturated fatty acids are more potent in inducing CYP2A5 than unsaturated ones, except arachidonic acid. In addition, the changes in CYP2A5 expression were consistent with the alterations observed in Nrf2 expression, indicating that Nrf2 might play a regulatory role in CYP2A5 expression. PMID:26423681

  18. Pathologic fracture after radiation therapy for primary non-Hodgkin's malignant lymphoma of bone

    SciTech Connect

    Stokes, S.H.; Walz, B.J.

    1983-08-01

    Between 1963 and 1981, 32 patients with biopsy proven non-Hodgkin's lymphoma involving bone were treated at the Mallinckrodt Institute of Radiology either with radiation alone or in conjunction with chemotherapy. An unexpectedly high rate of fracture at the site of the tumor was observed. Six patients were excluded because they survived less than six months after the completion of radiotherapy or were lost to follow-up within six months. There were 15 appendicular and 17 axial sites treated. Local control was achieved in 30 of 32. There were 10 patients with appendicular lesions of which seven suffered a fracture. Of the seven patients with lesions in a weight bearing bone, six suffered fractures. Twenty-six sites of involvement received less than 5000 rad. Of the six patients receiving high dose, two presented with pathologic fractures of the femur requiring surgical stabilization and the remaining four patients suffered subsequent fractures 7 to 30 months after completion of therapy. Two of these six had local recurrence of disease. It appears that involvement of the appendicular skeleton by lymphoma frequently results in fracture. Doses of 5000 rad or greater do not increase the probability of local control but may contribute to the risk of fracture following radiotherapy.

  19. Space Radiation and Bone Loss.

    PubMed

    Willey, Jeffrey S; Lloyd, Shane A J; Nelson, Gregory A; Bateman, Ted A

    2011-01-01

    Exposure to ionizing radiation may negatively impact skeletal integrity during extended spaceflight missions to the moon, Mars, or near-Earth asteroids. However, our understanding of the effects of radiation on bone is limited when compared to the effects of weightlessness. In addition to microgravity, astronauts will be exposed to space radiation from solar and cosmic sources. Historically, radiation exposure has been shown to damage both osteoblast precursors and local vasculature within the irradiated volume. The resulting suppression of bone formation and a general state of low bone-turnover is thought to be the primary contributor to bone loss and eventual fracture. Recent investigations using mouse models have identified a rapid, but transient, increase in osteoclast activity immediately after irradiation with both spaceflight and clinically-relevant radiation qualities and doses. Together with a chronic suppression of bone formation after radiation exposure, this acute skeletal damage may contribute to long-term deterioration of bone quality, potentially increasing fracture risk. Direct evidence for the damaging effects of radiation on human bone are primarily demonstrated by the increased incidence of fractures at sites that absorb high doses of radiation during cancer therapy: exposures are considerably higher than what could be expected during spaceflight. However, both the rapidity of bone damage and the chronic nature of the changes appear similar between exposure scenarios. This review will outline our current knowledge of space and clinical exploration exposure to ionizing radiation on skeletal health. PMID:22826632

  20. A Direct Projection from Mouse Primary Visual Cortex to Dorsomedial Striatum

    PubMed Central

    Sabatini, Bernardo L.

    2014-01-01

    The mammalian striatum receives inputs from many cortical areas, but the existence of a direct axonal projection from the primary visual cortex (V1) is controversial. In this study we use anterograde and retrograde tracing techniques to demonstrate that V1 directly innervates a topographically defined longitudinal strip of dorsomedial striatum in mice. We find that this projection forms functional excitatory synapses with direct and indirect pathway striatal projection neurons (SPNs) and engages feed-forward inhibition onto these cells. Importantly, stimulation of V1 afferents is sufficient to evoke phasic firing in SPNs. These findings therefore identify a striatal region that is functionally innervated by V1 and suggest that early visual processing may play an important role in striatal-based behaviors. PMID:25141172

  1. Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle x-ray scattering.

    PubMed

    Fratzl, P; Paris, O; Klaushofer, K; Landis, W J

    1996-01-15

    We have studied the size and orientation of mineral crystals in cortical bone of oim/oim mice, which are known to produce only alpha 1(I) collagen homotrimers and which may serve as a model for human osteogenesis imperfecta. Long bones (femur and tibia) from young (5 wk old) oim/oim mice and from unaffected heterozygous counterparts were investigated by small-angle x-ray scattering (SAXS), which is sensitive to structures smaller than 50 nm. Mineral crystals were compared in terms of their thickness and their alignment with respect to the long bone axis. While electron microscopic tomography has recently shown the existence of large mineral blocks (with all dimensions typically exceeding 50 nm) in mineralized tendons of oim/oim mice, SAXS revealed a family of thin, possibly needle-like, crystals in cortical bone. These crystals were similar in shape to those observed previously in normal mice, but they were thinner and less well aligned in oim/oim mice relative to heterozygotes. Moreover, the crystal thickness and their alignment with the bone axis were more variable in oim/oim bone, with a close correlation (r = 0.94, P < 0.001) between the two parameters. The presence of smaller crystals with more variable alignment in corticalis of oim/oim mice may contribute to the brittleness of their bone, similar to that of human osteogenesis imperfecta. PMID:8567960

  2. Global miRNA expression and correlation with mRNA levels in primary human bone cells

    PubMed Central

    Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Pastinen, Tomi; Grundberg, Elin; Kindmark, Andreas

    2015-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA–mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA–mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, α1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression. PMID:26078267

  3. Global miRNA expression and correlation with mRNA levels in primary human bone cells.

    PubMed

    Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Pastinen, Tomi; Grundberg, Elin; Kindmark, Andreas

    2015-08-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA-mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA-mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, ?1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression. PMID:26078267

  4. Prognostic relevance of urokinase plasminogen activator detection in micrometastatic cells in the bone marrow of patients with primary breast cancer.

    PubMed Central

    Solomayer, E. F.; Diel, I. J.; Wallwiener, D.; Bode, S.; Meyberg, G.; Sillem, M.; Gollan, C.; Kramer, M. D.; Krainick, U.; Bastert, G.

    1997-01-01

    Patients with an elevated level of urokinase plasminogen activator (uPA) in breast cancer tissue have an adverse prognosis. This study evaluated the prognostic relevance of uPA detection in disseminated tumour cells in bone marrow. Bone marrow was sampled intraoperatively from both iliac crests in 280 patients with primary breast cancer. Interphase cells were enhanced and stained immunocytologically with two antibodies: 2E11, which detects TAG 12--a tumour-associated glycoprotein typically expressed by almost all breast cancer cells--and the anti-uPA antibody HD-UK9. Thirty-five of the 2E11-positive women (n = 132, 47%) developed metastatic disease (median follow-up time 44 months). Of these, most were uPA positive (n = 23, 65%) and only 12 were uPA negative. Patients with uPA-positive cells in bone marrow (n = 98, 35%) had a significantly shorter metastasis-free interval (36 months) than women who were uPA negative (44.5 months). The worst prognosis was seen in patients positive for both markers (29.5 months), followed by those who were uPA negative and 2E11 positive (37 months). The detection of uPA on disseminated tumour cells characterizes a subgroup of patients with an even worse prognosis, who should undergo more aggressive adjuvant systemic therapy. For the first time, it was possible to evaluate an important qualitative parameter involved in the process of breast cancer metastases. Images Figure 1 PMID:9310251

  5. Bone-grafting for acetabular deficiency during primary and revision total hip arthroplasty. A radiographic and clinical analysis.

    PubMed

    Knight, J L; Fujii, K; Atwater, R; Grothaus, L

    1993-08-01

    The use of bone-graft to augment the deficient acetabulum in primary and revision total hip arthroplasty (THA) is controversial. To identify factors affecting cup loosening in patients who received a bone-graft during THA, two orthopaedic surgeons retrospectively examined sequential radiographs. The surgeons also obtained independent computer measurements of hip center and cup abduction migration from preoperative, initial, and latest postoperative radiographs. Variables studied included host factors, graft factors, and technique factors. All conclusions were based on Kaplan-Meier log-rank analysis to account for differing lengths of follow-up periods among the cases. The authors report a series of 74 consecutive cases with a minimum 24-month follow-up period (mean, 40 months). All grafts appeared to unite. The clinicians found 80% stable cups, 8% possibly loose cups, and 12% (n = 9) definitely loose cups. In retrospect, technical errors were seen in six loose cups. Five revisions for loosening (6.7% of cases) were performed. Computer measurement found cup loosening in a higher percentage of cases than detected by the clinicians and did so an average of 18 months sooner. Acetabular cup loosening was associated with the American Academy of Orthopaedic Surgeons type III defects, use of allograft versus autograft, and initial cup abduction of 50 degrees or more. Kaplan-Meier survivorship analysis found 31% of cups radiographically loose and 15% revised at 5 years or more since surgery. Acetabular bone-grafting is technically demanding and should be employed when alternative reconstructions will not give a durable result. PMID:8409988

  6. Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes.

    PubMed

    Lpez-Islas, Anayelly; Chagoya-Hazas, Victoria; Prez-Aguilar, Benjamin; Palestino-Domnguez, Mayrel; Souza, Vernica; Miranda, Roxana U; Bucio, Leticia; Gmez-Quiroz, Luis Enrique; Gutirrez-Ruiz, Mara-Concepcin

    2016-01-01

    Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol. PMID:26788255

  7. Cholesterol Enhances the Toxic Effect of Ethanol and Acetaldehyde in Primary Mouse Hepatocytes

    PubMed Central

    Lpez-Islas, Anayelly; Chagoya-Hazas, Victoria; Prez-Aguilar, Benjamin; Palestino-Domnguez, Mayrel; Souza, Vernica; Miranda, Roxana U.; Bucio, Leticia; Gmez-Quiroz, Luis Enrique; Gutirrez-Ruiz, Mara-Concepcin

    2016-01-01

    Obesity and alcohol consumption are risk factors for hepatic steatosis, and both commonly coexist. Our objective was to evaluate the effect of ethanol and acetaldehyde on primary hepatocytes obtained from mice fed for two days with a high cholesterol (HC) diet. HC hepatocytes increased lipid and cholesterol content. HC diet sensitized hepatocytes to the toxic effect of ethanol and acetaldehyde. Cyp2E1 content increased with HC diet, as well as in those treated with ethanol or acetaldehyde, while the activity of this enzyme determined in microsomes increased in the HC and in all ethanol treated hepatocytes, HC and CW. Oxidized proteins were increased in the HC cultures treated or not with the toxins. Transmission electron microscopy showed endoplasmic reticulum (ER) stress and megamitochondria in hepatocytes treated with ethanol as in HC and the ethanol HC treated hepatocytes. ER stress determined by PERK content was increased in ethanol treated hepatocytes from HC mice and CW. Nuclear translocation of ATF6 was observed in HC hepatocytes treated with ethanol, results that indicate that lipids overload and ethanol treatment favor ER stress. Oxidative stress, ER stress, and mitochondrial damage underlie potential mechanisms for increased damage in steatotic hepatocyte treated with ethanol. PMID:26788255

  8. Astaxanthin prevents and reverses the activation of mouse primary hepatic stellate cells.

    PubMed

    Yang, Yue; Bae, Minkyung; Kim, Bohkyung; Park, Young-Ki; Koo, Sung I; Lee, Ji-Young

    2016-03-01

    Activation of hepatic stellate cells (HSCs) is a critical step that leads to the development of liver fibrosis. We showed that astaxanthin (ASTX), a xanthophyll carotenoid, displays antifibrogenic effects in LX-2 cells, a human HSC cell line. In this study, we further determined the effect of ASTX on HSC activation and inactivation using primary HSCs from C57BL/6J mice. Quiescent and activated HSCs were incubated with ASTX (25μM) at different stages of activation. ASTX prevented the activation of quiescent HSCs, as evidenced by the presence of intracellular lipid droplets and reduction of α-smooth muscle actin, an HSC activation marker. Also, ASTX reverted activated HSCs to a quiescent phenotype with the reappearance of lipid droplets with a concomitant increase in lecithin retinol acyltransferase mRNA. Cellular accumulation of reactive oxygen species was significantly reduced by ASTX, which was attributable to a decrease in NADPH oxidase 2 expression. The antifibrogenic effect of ASTX was independent of nuclear erythroid 2-related factor 2 as it was observed in HSCs from wild-type and Nrf2(-/-) mice. In conclusion, ASTX inhibits HSC activation and reverts activated HSCs to a quiescent state. Further investigation is warranted to determine if ASTX effectively prevents the development of liver fibrosis. PMID:26895661

  9. Primary neuroendocrine carcinoma of breast with liver and bone metastasis detected with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography

    PubMed Central

    Kamaleshwaran, Koramadai Karuppusamy; Mohanan, Vyshak; Shibu, Deepu; Radhakrishnan, Edathuruthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Cases of primary neuroendocrine carcinoma (NEC) of the breast have been reported, though rare. We report the case of a 45-year-old woman presented with jaundice and evaluated to have liver metastasis from neuroendocrine origin. She underwent whole body positron emission tomography/computed tomography, which showed left breast lesion and bone metastasis. Fine-needle aspiration (FNA) of breast revealed a NEC. A diagnosis of a primary NEC of the breast was rendered with hepatic and bone metastasis. She was treated with peptide receptor radionuclide therapy and is on follow-up. PMID:24591780

  10. Primary neuroendocrine carcinoma of breast with liver and bone metastasis detected with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Mohanan, Vyshak; Shibu, Deepu; Radhakrishnan, Edathuruthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Cases of primary neuroendocrine carcinoma (NEC) of the breast have been reported, though rare. We report the case of a 45-year-old woman presented with jaundice and evaluated to have liver metastasis from neuroendocrine origin. She underwent whole body positron emission tomography/computed tomography, which showed left breast lesion and bone metastasis. Fine-needle aspiration (FNA) of breast revealed a NEC. A diagnosis of a primary NEC of the breast was rendered with hepatic and bone metastasis. She was treated with peptide receptor radionuclide therapy and is on follow-up. PMID:24591780

  11. Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development

    PubMed Central

    James, Claudine G; Ulici, Veronica; Tuckermann, Jan; Underhill, T Michael; Beier, Frank

    2007-01-01

    Background Glucocorticoids (GCs) are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation in children and adolescents, and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR) as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated. Results This study systematically identifies a spectrum of GC target genes in embryonic growth plate chondrocytes treated with a synthetic GR agonist, dexamethasone (DEX), at 6 and 24 hrs. Conventional analysis of this data set and gene set enrichment analysis (GSEA) was performed. Transcripts associated with metabolism were enriched in the DEX condition along with extracellular matrix genes. In contrast, a subset of growth factors and cytokines were negatively correlated with DEX treatment. Comparing DEX-induced gene expression data to developmental changes in gene expression in micromass cultures revealed an additional layer of complexity in which DEX maintains the expression of certain chondrocyte marker genes while inhibiting factors that promote vascularization and ultimately ossification of the cartilaginous template. Conclusion Together, these results provide insight into the mechanisms and major molecular classes functioning downstream of DEX in primary chondrocytes. In addition, comparison of our data with microarray studies of DEX treatment in other cell types demonstrated that the majority of DEX effects are tissue-specific. This study provides novel insights into the effects of pharmacological GC on chondrocyte gene transcription and establishes the foundation for subsequent functional studies. PMID:17603917

  12. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  13. Rictor is required for optimal bone accrual in response to anti-sclerostin therapy in the mouse.

    PubMed

    Sun, Weiwei; Shi, Yu; Lee, Wen-Chih; Lee, Seung-Yon; Long, Fanxin

    2016-04-01

    Wnt signaling has emerged as a major target pathway for the development of novel bone anabolic therapies. Neutralizing antibodies against the secreted Wnt antagonist sclerostin (Scl-Ab) increase bone mass in both animal models and humans. Because we have previously shown that Rictor-dependent mTORC2 activity contributes to Wnt signaling, we test here whether Rictor is required for Scl-Ab to promote bone anabolism. Mice with Rictor deleted in the early embryonic limb mesenchyme (Prx1-Cre;Rictor(f/f), hereafter RiCKO) were subjected to Scl-Ab treatment for 5weeks starting at 4months of age. In vivo micro-computed tomography (μCT) analyses before the treatment showed that the RiCKO mice displayed normal trabecular, but less cortical bone mass than the littermate controls. After 5weeks of treatment, Scl-Ab dose-dependently increased trabecular and cortical bone mass in both control and RiCKO mice, but the increase was significantly blunted in the latter. Dynamic histomorphometry revealed that the RiCKO mice formed less bone than the control in response to Scl-Ab. In addition, the RiCKO mice possessed fewer osteoclasts than normal under the basal condition and exhibited lesser suppression in osteoclast number by Scl-Ab. Consistent with the fewer osteoclasts in vivo, bone marrow stromal cells (BMSC) from the RiCKO mice expressed less Rankl but normal levels of Opg or M-CSF, and were less effective than the control cells in supporting osteoclastogenesis in vitro. The reliance of Rankl on Rictor appeared to be independent of Wnt-β-catenin or Wnt-mTORC2 signaling as Wnt3a had no effect on Rankl expression by BMSC from either control or RICKO mice. Overall, Rictor in the limb mesenchymal lineage is required for the normal response to the anti-sclerostin therapy in both bone formation and resorption. PMID:26780446

  14. Connexin43 gap junctions in normal, regenerating, and cultured mouse bone marrow and in human leukemias: their possible involvement in blood formation.

    PubMed

    Krenacs, T; Rosendaal, M

    1998-04-01

    Communicating channels called gap junctions are thought to play a ubiquitous part in cell growth and development. Based on earlier work, we have recently found functional evidence of their presence in human and mouse bone marrow. In this study we studied the cell-type association of the gap junction channel-forming protein, connexin, in mouse and human bone marrow under different physiological and pathological conditions and tested the pathway of communication in bone marrow cultures. For high-resolution antigen demonstration we took advantage of semi-thin resin sections, antigen retrieval methods, immunofluorescence, and confocal laser scanning microscopy. Connexin43 (Cx43) and its mRNA were consistently expressed in human and rodent marrow. Cx37 was found only in the arteriolar endothelium, but neither Cx32 nor -26 were expressed. In tissue sections, the immunostained junctions appeared as dots, which were digitally measured and counted. Their average size was 0.40 mm in human and 0.49 mm in mice marrow. There were at least twice as many gap junctions in the femoral midshaft of 6-week-old mice (1.75 x 10(5)/mm3) as in those older than 12 weeks (0.89 x 10(5)/mm3). Most Cx43 was associated with collagen III+ endosteal and adventitial stromal cells and with megakaryocytes. Elsewhere, they were few and randomly distributed between all kinds of hematopoietic cells. In the femoral epiphysis of juvenile mice, stromal cell processes full of Cx43 enmeshed three to six layers of hematopoietic cells near the endosteum. The same pattern was seen in the midshaft of regenerating mouse marrow 3 to 5 days after cytotoxic treatment with 5-fluorouracil. Functional tests in cultures showed the transfer of small fluorescent dyes, Lucifer Yellow and 2',7'-bis-(2-carboxyethyl)-5, 6-carboxyfluorescein, between stromal cells and in rare cases between stromal and hematopoietic cells too. The stromal cells were densely packed with Cx43 and we found aggregates of connexon particles in their membrane replicas. In normocellular human bone marrow, gap junctions were as rare as in adult mouse and similarly distributed, except that they were also on adipocytic membranes. In a few leukemic samples, characterized by an increased stromal/hematopoietic cell ratio, there were two- to fourfold more Cx43 (2.8 x 10(5) to 3.9 x 10(5)/mm3) than in the normal (1.0 x 10(5) to 1.2 x 10(5)/mm3). The cases included a hypoplastic acute lymphoblastic leukemia, an acute myeloid leukemia (French-American-British classification M4-5), a case of myelodysplastic syndrome with elevated number of megakaryocytes, and a CD34+ acute hemoblastosis, probably acute myeloid leukemia (French-American-British classification M7). Taken together, our results indicate that direct cell-cell communication may be involved in hematopoiesis, ie, in developmentally active epiphyseal bone marrow and when there is a demand for progenitors in regeneration. However, gap junctions may not play as important a role in resting adult hematopoiesis and in leukemias. PMID:9546360

  15. Connexin43 gap junctions in normal, regenerating, and cultured mouse bone marrow and in human leukemias: their possible involvement in blood formation.

    PubMed Central

    Krenacs, T.; Rosendaal, M.

    1998-01-01

    Communicating channels called gap junctions are thought to play a ubiquitous part in cell growth and development. Based on earlier work, we have recently found functional evidence of their presence in human and mouse bone marrow. In this study we studied the cell-type association of the gap junction channel-forming protein, connexin, in mouse and human bone marrow under different physiological and pathological conditions and tested the pathway of communication in bone marrow cultures. For high-resolution antigen demonstration we took advantage of semi-thin resin sections, antigen retrieval methods, immunofluorescence, and confocal laser scanning microscopy. Connexin43 (Cx43) and its mRNA were consistently expressed in human and rodent marrow. Cx37 was found only in the arteriolar endothelium, but neither Cx32 nor -26 were expressed. In tissue sections, the immunostained junctions appeared as dots, which were digitally measured and counted. Their average size was 0.40 mm in human and 0.49 mm in mice marrow. There were at least twice as many gap junctions in the femoral midshaft of 6-week-old mice (1.75 x 10(5)/mm3) as in those older than 12 weeks (0.89 x 10(5)/mm3). Most Cx43 was associated with collagen III+ endosteal and adventitial stromal cells and with megakaryocytes. Elsewhere, they were few and randomly distributed between all kinds of hematopoietic cells. In the femoral epiphysis of juvenile mice, stromal cell processes full of Cx43 enmeshed three to six layers of hematopoietic cells near the endosteum. The same pattern was seen in the midshaft of regenerating mouse marrow 3 to 5 days after cytotoxic treatment with 5-fluorouracil. Functional tests in cultures showed the transfer of small fluorescent dyes, Lucifer Yellow and 2',7'-bis-(2-carboxyethyl)-5, 6-carboxyfluorescein, between stromal cells and in rare cases between stromal and hematopoietic cells too. The stromal cells were densely packed with Cx43 and we found aggregates of connexon particles in their membrane replicas. In normocellular human bone marrow, gap junctions were as rare as in adult mouse and similarly distributed, except that they were also on adipocytic membranes. In a few leukemic samples, characterized by an increased stromal/hematopoietic cell ratio, there were two- to fourfold more Cx43 (2.8 x 10(5) to 3.9 x 10(5)/mm3) than in the normal (1.0 x 10(5) to 1.2 x 10(5)/mm3). The cases included a hypoplastic acute lymphoblastic leukemia, an acute myeloid leukemia (French-American-British classification M4-5), a case of myelodysplastic syndrome with elevated number of megakaryocytes, and a CD34+ acute hemoblastosis, probably acute myeloid leukemia (French-American-British classification M7). Taken together, our results indicate that direct cell-cell communication may be involved in hematopoiesis, ie, in developmentally active epiphyseal bone marrow and when there is a demand for progenitors in regeneration. However, gap junctions may not play as important a role in resting adult hematopoiesis and in leukemias. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 PMID:9546360

  16. The Structure of Pairwise Correlation in Mouse Primary Visual Cortex Reveals Functional Organization in the Absence of an Orientation Map

    PubMed Central

    Denman, Daniel J.; Contreras, Diego

    2014-01-01

    Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in primary visual cortex (V1), correlation is strongly related to the underlying functional architecture, but it is unclear whether this correlation structure is an essential feature of the system or arises from the arrangement of cells in the map. We assessed the relationship between functional architecture and pairwise correlation by measuring both synchrony and correlated spike count variability in mouse V1, which lacks an orientation map. We observed significant pairwise synchrony, which was organized by distance and relative orientation preference between cells. We also observed nonzero correlated variability in both the anesthetized (0.16) and awake states (0.18). Our results indicate that the structure of pairwise correlation is maintained in the absence of an underlying anatomical organization and may be an organizing principle of the mammalian visual system preserved by nonrandom connectivity within local networks. PMID:23689635

  17. Therapeutic Touch Has Significant Effects on Mouse Breast Cancer Metastasis and Immune Responses but Not Primary Tumor Size.

    PubMed

    Gronowicz, Gloria; Secor, Eric R; Flynn, John R; Jellison, Evan R; Kuhn, Liisa T

    2015-01-01

    Evidence-based integrative medicine therapies have been introduced to promote wellness and offset side-effects from cancer treatment. Energy medicine is an integrative medicine technique using the human biofield to promote well-being. The biofield therapy chosen for study was Therapeutic Touch (TT). Breast cancer tumors were initiated in mice by injection of metastatic 66cl4 mammary carcinoma cells. The control group received only vehicle. TT or mock treatments were performed twice a week for 10 minutes. Two experienced TT practitioners alternated treatments. At 26 days, metastasis to popliteal lymph nodes was determined by clonogenic assay. Changes in immune function were measured by analysis of serum cytokines and by fluorescent activated cells sorting (FACS) of immune cells from the spleen and lymph nodes. No significant differences were found in body weight gain or tumor size. Metastasis was significantly reduced in the TT-treated mice compared to mock-treated mice. Cancer significantly elevated eleven cytokines. TT significantly reduced IL-1-a, MIG, IL-1b, and MIP-2 to control/vehicle levels. FACS demonstrated that TT significantly reduced specific splenic lymphocyte subsets and macrophages were significantly elevated with cancer. Human biofield therapy had no significant effect on primary tumor but produced significant effects on metastasis and immune responses in a mouse breast cancer model. PMID:26113869

  18. Skp2 promotes adipocyte differentiation via a p27{sup Kip1}-independent mechanism in primary mouse embryonic fibroblasts

    SciTech Connect

    Okada, Mitsuru; Sakai, Tamon; Nakamura, Takehiro; Tamamori-Adachi, Mimi; Kitajima, Shigetaka; Matsuki, Yasushi; Watanabe, Eijiro; Hiramatsu, Ryuji; Sakaue, Hiroshi Kasuga, Masato

    2009-02-06

    Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27{sup Kip1}, a principal target of the SCF{sup Skp2} complex. Genetic ablation of p27{sup Kip1} in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27{sup Kip1} by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2{sup -/-} MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), largely restored lipid accumulation and PPAR{gamma} gene expression in Skp2{sup -/-} MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27{sup Kip1} expression.

  19. Therapeutic Touch Has Significant Effects on Mouse Breast Cancer Metastasis and Immune Responses but Not Primary Tumor Size

    PubMed Central

    Gronowicz, Gloria; Secor, Eric R.; Flynn, John R.; Jellison, Evan R.; Kuhn, Liisa T.

    2015-01-01

    Evidence-based integrative medicine therapies have been introduced to promote wellness and offset side-effects from cancer treatment. Energy medicine is an integrative medicine technique using the human biofield to promote well-being. The biofield therapy chosen for study was Therapeutic Touch (TT). Breast cancer tumors were initiated in mice by injection of metastatic 66cl4 mammary carcinoma cells. The control group received only vehicle. TT or mock treatments were performed twice a week for 10 minutes. Two experienced TT practitioners alternated treatments. At 26 days, metastasis to popliteal lymph nodes was determined by clonogenic assay. Changes in immune function were measured by analysis of serum cytokines and by fluorescent activated cells sorting (FACS) of immune cells from the spleen and lymph nodes. No significant differences were found in body weight gain or tumor size. Metastasis was significantly reduced in the TT-treated mice compared to mock-treated mice. Cancer significantly elevated eleven cytokines. TT significantly reduced IL-1-a, MIG, IL-1b, and MIP-2 to control/vehicle levels. FACS demonstrated that TT significantly reduced specific splenic lymphocyte subsets and macrophages were significantly elevated with cancer. Human biofield therapy had no significant effect on primary tumor but produced significant effects on metastasis and immune responses in a mouse breast cancer model. PMID:26113869

  20. Human A53T α-synuclein causes reversible deficits in mitochondrial function and dynamics in primary mouse cortical neurons.

    PubMed

    Li, Li; Nadanaciva, Sashi; Berger, Zdenek; Shen, Wei; Paumier, Katrina; Schwartz, Joel; Mou, Kewa; Loos, Paula; Milici, Anthony J; Dunlop, John; Hirst, Warren D

    2013-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. A key pathological feature of PD is Lewy bodies, of which the major protein component is α-synuclein (α-syn). Human genetic studies have shown that mutations (A53T, A30P, E46K) and multiplication of the α-syn gene are linked to familial PD. Mice overexpressing the human A53T mutant α-syn gene develop severe movement disorders. However, the molecular mechanisms of α-syn toxicity are not well understood. Recently, mitochondrial dysfunction has been linked with multiple neurodegenerative diseases including Parkinson's disease. Here we investigated whether mitochondrial motility, dynamics and respiratory function are affected in primary neurons from a mouse model expressing the human A53T mutation. We found that mitochondrial motility was selectively inhibited in A53T neurons while transport of other organelles was not affected. In addition, A53T expressing neurons showed impairment in mitochondrial membrane potential and mitochondrial respiratory function. Furthermore, we found that rapamycin, an autophagy inducer, rescued the decreased mitochondrial mobility. Taken together, these data demonstrate that A53T α-syn impairs mitochondrial function and dynamics and the deficit of mitochondrial transport is reversible, providing further understanding of the disease pathogenesis and a potential therapeutic strategy for PD. PMID:24392030

  1. Cellular Mechanism of Decreased Bone in Brtl Mouse Model of OI: Imbalance of Decreased Osteoblast Function and Increased Osteoclasts and Their Precursors

    PubMed Central

    Uveges, Thomas E; Collin-Osdoby, Patricia; Cabral, Wayne A; Ledgard, Felicia; Goldberg, Leah; Bergwitz, Clemens; Forlino, Antonella; Osdoby, Philip; Gronowicz, Gloria A; Marini, Joan C

    2008-01-01

    The Brtl mouse, a knock-in model for moderately severe osteogenesis imperfecta (OI), has a G349C substitution in half of type I collagen ?1(I) chains. We studied the cellular contribution to Brtl bone properties. Brtl cortical and trabecular bone are reduced before and after puberty, with BV/TV decreased 4045%. Brtl ObS/BS is comparable to wildtype, and Brtl and wildtype marrow generate equivalent number of colony-forming units (CFUs) at both ages. However, OcS/BS is increased in Brtl at both ages (3645%), as are TRACP+ cell numbers (5747%). After puberty, Brtl ObS/BS decreases comparably to wildtype mice, but osteoblast matrix production (MAR) decreases to one half of wildtype values. In contrast, Brtl OcS falls only moderately (?16%), and Brtl TRACP staining remains significantly elevated compared with wildtype. Consequently, Brtl BFR decreases from normal at 2 mo to one half of wildtype values at 6 mo. Immunohistochemistry and real-time RT-PCR show increased RANK, RANKL, and osteoprotegerin (OPG) levels in Brtl, although a normal RANKL/OPG ratio is maintained. TRACP+ precursors are markedly elevated in Brtl marrow cultures and form more osteoclasts, suggesting that osteoclast increases arise from more RANK-expressing precursors. We conclude that osteoblasts and osteoclasts are unsynchronized in Brtl bone. This cellular imbalance results in declining BFR as Brtl ages, consistent with reduced femoral geometry. The disparity in cellular number and function results from poorly functioning osteoblasts in addition to increased RANK-expressing precursors that respond to normal RANKL/OPG ratios to generate more bone-resorbing osteoclasts. Interruption of the stimulus that increases osteoclast precursors may lead to novel OI therapies. PMID:18684089

  2. Chronic axial compression of the mouse tail segment induces MRI bone marrow edema changes that correlate with increased marrow vasculature and cellularity.

    PubMed

    Papuga, M Owen; Proulx, Steven T; Kwok, Edmund; You, Zhigang; Rubery, Paul T; Dougherty, Paul E; Hilton, Matthew J; Awad, Hani A; Schwarz, Edward M

    2010-09-01

    Magnetic resonance imaging (MRI) of bone marrow edema (BME) has been found to be helpful in the diagnosis of back pain attributed to degenerative disk disease (DDD) and spondyloarthropathy (SA), but its interpretation is limited by a lack of knowledge of its nature and natural history. We assessed effects of compressive forces to mouse tail segments of WT and TNF-Tg mice with SA, via contrast enhanced-MRI and histology. Normalized marrow contrast enhancement (NMCE) of uninstrumented WT vertebrae significantly decrease, threefold (p < 0.01) from 8 to 12 weeks of age, while the NMCE of TNF-Tg vertebrae remained elevated. Compressive loading (6x body weight) increased NMCE twofold (p < 0.02) within 2 weeks in WT tails, which was equal to 6x loaded TNF-Tg tails within 4 weeks. Histology confirmed degenerative changes and that load-induced NMCE corresponded to increased vascular sinus tissue (35 +/- 3% vs. 19 +/- 3%; p < 0.01) and cellularity (4,235 +/- 886 vs.1,468 +/- 320 cells/mm(2); p < 0.01) for the loaded versus unloaded WT, respectively. However, micro-computed tomography (CT) analyses failed to detect significant load-induced changes to bone. While the bone marrow of loaded WT and TNF-Tg vertebrae were similar, histology demonstrated mild cellular infiltrate and increased osteoclastic resorption in the WT tails versus severe inflammatory-erosive arthritis in TNF-Tg joints. Significant (p < 0.05) decreases in cortical and trabecular bone volume in uninstrumented TNF-Tg versus WT vertebrae were confirmed by micro-CT. Thus, chronic load-induced DDD causes BME signals in vertebrae similar to those observed from SA, and both DDD and SA signals correlate with a conversion from yellow to red marrow, with increased vascularity. PMID:20187115

  3. Effect of microgravity and mechanical stimulation on the in vitro mineralization and resorption of fetal mouse long bones (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, J. Paul

    1992-01-01

    Mechanical forces play an important role in the differentiation, growth, and remodeling of skeletal tissues. An increase in the normal loading pattern of the skeleton leads to an increase in bone mass. An overall decrease in the functional load exerted on the skeleton produces mineral loss and osteoporosis. However, the responses of the skeletal tissue cells to various loading conditions are still largely unresolved, as is the mechanism of the cellular response to changed mechanical environment. Using an in vitro approach, we hope to avoid some problems encountered in the use of in vivo animal and man models, which have been extensively used in the past. In a number of experiments we have demonstrated that 16 and 17 day old fetal mouse long bone rudiments (metatarsalia), cultured in a liquid culture medium, are very suitable to study mineralization and resorption, respectively. We have also demonstrated that under hydrostatic compression, mineralization is increased while resorption is decreased. Culture of long bone rudiments under noncompressed control conditions can be regarded as a situation of partial unloading, showing some phenomena of a disuse situation. Under microgravity conditions, responses of osteoblasts and chondrocytes (involved in mineralization) and osteoclasts (involved in mineral resorption), to culture with and without compression, may be much more outspoken. This will have advantages for the study and the interpretation of the role of cellular events in the process of mineralization and resorption of developing skeletal tissues under various loading conditions. The BONES Experiment is carried out in four type I/O and four type I/E containers. Various aspects of the investigation are discussed.

  4. Age-Related Modulation of the Effects of Obesity on Gene Expression Profiles of Mouse Bone Marrow and Epididymal Adipocytes

    PubMed Central

    Liu, Li-Fen; Shen, Wen-Jun; Ueno, Masami; Patel, Shailja; Azhar, Salman; Kraemer, Fredric B.

    2013-01-01

    This study aimed to characterize and compare the effects of obesity on gene expression profiles in two distinct adipose depots, epididymal and bone marrow, at two different ages in mice. Alterations in gene expression were analyzed in adipocytes isolated from diet-induced obese (DIO) C57BL/6J male mice at 6 and 14 months of age and from leptin deficient mice (ob/ob) at 6 months of age using microarrays. DIO affected gene expression in both depots at 6 and 14 months, but more genes were altered in epididymal than bone marrow adipocytes at each age and younger mice displayed more changes than older animals. In epididymal adipocytes a total of 2789 (9.6%) genes were differentially expressed at 6-months with DIO, whereas 952 (3.3%) were affected at 14-months. In bone marrow adipocytes, 347 (1.2%) genes were differentially expressed at 6-months with DIO, whereas only 189 (0.66%) were changed at 14-months. 133 genes were altered by DIO in both fat depots at 6-months, and 37 genes at 14-months. Only four genes were altered in both depots at both ages with DIO. Bone marrow adipocytes are less responsive to DIO than epididymal adipocytes and the response of both depots to DIO declines with age. This loss of responsiveness with age is likely due to age-associated changes in expression of genes related to adipogenesis, inflammation and mitochondrial function that are similar to and obscure the changes commonly associated with DIO. Patterns of gene expression were generally similar in epididymal adipocytes from ob/ob and DIO mice; however, several genes were differentially expressed in bone marrow adipocytes from ob/ob and DIO mice, perhaps reflecting the importance of leptin signaling for bone metabolism. In conclusion, obesity affects age-associated alterations in gene expression in both epididymal and bone marrow adipocytes regardless of diet or genetic background. PMID:23967297

  5. Bone marrow histology and CD34 immunostaining in the prognostic evaluation of primary myelodysplastic syndromes.

    PubMed

    Oriani, A; Annaloro, C; Soligo, D; Pozzoli, E; Cortelezzi, A; Lambertenghi Deliliers, G

    1996-02-01

    The prognostic impact of bone marrow biopsy (BMB) histology and CD34 immunoreactivity was compared with that of the more conventional parameters (the FAB diagnosis, peripheral blood values, percentage of BM blasts and some common prognostic scores) in 100 MDS patients. Statistical correlations among the cytological, haematological, histological and immunohistochemical parameters and their relationship with clinical outcome were searched for. At univariate analysis, FAB classification (P < 0.001), pattern of blastic infiltration at BMB (P < 0.005), presence of CD34+ aggregates (P < 0.0005), percentage of blasts in BM aspirate (P < 0.0001) and percentage of CD34 positivity (P < 0.0001) proved to be linked to leukaemic transformation and, except for FAB classification, retained a high degree of prognostic significance in terms of survival. Leukaemic transformation occurred in 16/18 patients simultaneously presenting 'large' blastic infiltrates at BMB and CD34+ aggregates (P < 0.00001); 9/17 evaluable patients died within 12 months of diagnosis (P < 0.001)> Discriminant functions for leukaemic transformation and survival did not offer any advantage over univariate analysis in the prognostic work-up. The results indicate that the size of blastic aggregates and CD34 positivity allowed patients with a worse prognosis to be identified irrespective of their FAB subtype, but the prognostic impact is considerably greater when both parameters are simultaneously taken into account, as testified by the restricted and homogeneous subgroup of patients with both 'large' and CD34-positive aggregates. PMID:8603000

  6. Radiation and mechanical unloading effects on mouse vertebral bone: Ground-based models of the spaceflight environment

    NASA Astrophysics Data System (ADS)

    Alwood, Joshua Stewart

    Astronauts on long-duration space missions experience increased ionizing radiation background levels and occasional acute doses of ionizing radiation from solar particle events, in addition to biological challenges introduced by weightlessness. Previous research indicates that cancer radiotherapy damages bone marrow cell populations and reduces mechanical strength of bone. However, the cumulative doses in radiotherapy are an order of magnitude or greater than dose predictions for long-duration space missions. Further detriments to the skeletal system are the disuse and mechanical unloading experienced during weightlessness, which causes osteopenia in weight-bearing cancellous bone (a sponge-like bony network of rods, plates and voids) and cortical bone (dense, compact bone). Studies of radiation exposure utilizing spaceflight-relevant types and doses, and in combination with mechanical unloading, have received little attention. Motivated by the future human exploration of the solar system, the effects of acute and increased background radiation on astronaut skeletal health are important areas of study in order to prevent osteopenic deterioration and, ultimately, skeletal fracture. This dissertation addresses how spaceflight-relevant radiation affects bone microarchitecture and mechanical properties in the cancellous-rich vertebrae and compares results to that of mechanical unloading. In addition, a period of re-ambulation is used to test whether animals recover skeletal tissue after irradiation. Whether radiation exposure displays synergism with mechanical unloading is further investigated. Finite element structural and statistical analyses are used to investigate how changes in architecture affect mechanical stress within the vertebra and to interpret the mechanical testing results. In this dissertation, ground-based models provide evidence that ionizing radiation, both highly energetic gamma-rays and charged iron ions, resulted in a persistent loss of cancellous bone in male mice. Mechanical unloading, by contrast, is shown to cause bone loss in the vertebrae via cancellous and cortical thinning that resulted in decreased whole-bone mechanical properties. The effects of mechanical unloading were altogether reversible in the vertebra after re-ambulation, though some residual alteration of trabecular morphology persisted. The combination of unloading and radiation exposure appeared to worsen the reductions of strength. Under either environmental condition, cancellous bone loss occurred near the vertebral endplates and at the centrum midplane. Finite element analysis suggested that tissue-level stresses increase in the centrum after either unloading or irradiation in agreement with the cellular-solid model of dense, plate-like trabeculae. Force-sharing between cancellous and cortical bone decreased after radiation, with stress concentrating on the cortex. In conclusion, acute exposure to spaceflight-relevant ionizing radiation altered trabecular microarchitecture and stress distribution, without a loss of whole-bone strength at the endpoints investigated, while unloading presented the greater immediate detriment to whole-bone mechanical properties. From a skeletal-health perspective, strategies to mitigate and counteract astronaut exposure to acute doses of radiation and mechanical unloading should be developed in preparation for long-term human spaceflight.

  7. Osteocyte-directed bone demineralization along canaliculi.

    PubMed

    Nango, Nobuhito; Kubota, Shogo; Hasegawa, Tomoka; Yashiro, Wataru; Momose, Atsushi; Matsuo, Koichi

    2016-03-01

    The mammalian skeleton stores calcium and phosphate ions in bone matrix. Osteocytes in osteocyte lacunae extend numerous dendrites into canaliculi less than a micron in diameter and which are distributed throughout bone matrix. Although osteoclasts are the primary bone-resorbing cells, osteocytes also reportedly dissolve hydroxyapatite at peri-lacunar bone matrix. However, robust three-dimensional evidence for peri-canalicular bone mineral dissolution has been lacking. Here we applied a previously reported Talbot-defocus multiscan tomography method for synchrotron X-ray microscopy and analyzed the degree of bone mineralization in mouse cortical bone around the lacuno-canalicular network, which is connected both to blood vessels and the peri- and endosteum. We detected cylindrical low mineral density regions spreading around canaliculi derived from a subset of osteocytes. Transmission electron microscopy revealed both intact and demineralized bone matrix around the canaliculus. Peri-canalicular low mineral density regions were also observed in osteopetrotic mice lacking osteoclasts, indicating that osteoclasts are dispensable for peri-canalicular demineralization. These data suggest demineralization can occur from within bone through the canalicular system, and that peri-canalicular demineralization occurs not uniformly but directed by individual osteocytes. Blockade of peri-canalicular demineralization may be a therapeutic strategy to increase bone mass and quality. PMID:26709236

  8. Bone sialoprotein, matrix metalloproteinases and type I collagen expression after sealing infected caries dentin in primary teeth.

    PubMed

    Chibinski, A C R; Gomes, J R; Camargo, K; Reis, A; Wambier, D S

    2014-01-01

    The objective of this in vivo study was to compare the expression of matrix metalloproteinases (MMP-2, MMP-8, MMP-9), type I collagen and bone sialoprotein (BSP) in infected dentin of primary teeth at baseline and after cavity sealing with glass ionomer cement. Dentin samples from 45 primary molars with deep and active carious lesions were collected before (baseline sample) and after cavity sealing (60-day sample). The samples were fixed, demineralized and processed for immunohistochemistry assays. Monoclonal antibodies were used for the localization of the cited antigens with an avidin-biotin method. Digital images of the sections were captured and analyzed with ImageJ software. The mean intensity of RGB channels in the images was obtained and compared using Student's t test (? = 0.05). The expression of the MMPs, type I collagen and BSP increased after sealing, but statistical differences were observed only for MMP-8, type I collagen and BSP. MMP-2 and MMP-9 were more concentrated around dentin tubules; MMP-8 and collagen showed strong expression throughout the organic matrix; BSP exhibited strong expression both in the matrix and around dentin tubules. The increased expression of the enzymes investigated 60 days after cavity sealing suggests that they are not related with disease progression but with the healing process of dentin. PMID:24556583

  9. Primary Pulmonary Fibrosarcoma With Bone Metastasis: a Successful Treatment With Post-Operation Adjuvant Chemotherapy

    PubMed Central

    Hiradfar, Amirataollah; Pourlak, Tala; Badebarin, Davoud

    2015-01-01

    Introduction: Pulmonary fibrosarcoma has been an extremely rare tumor in children. Wide surgical resection of infantile fibrosarcoma would be the treatment of choice. Case Presentation: Post-operative chemotherapy has shown the benefit in the cases of residual disease after initial surgery and metastatic disease in the literature. We have presented the case of a 70-days old male child with primary infantile fibrosarcoma of the left lung and distant metastasis of skull. Conclusions: The aim of this publication was to highlight the role of adjuvant chemotherapy to improve outcome of infantile fibrosarcoma with residual tumor and / or metastatic disease. PMID:26413248

  10. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2

    PubMed Central

    Chumanevich, Alena; Wedman, Piper; Oskeritzian, Carole A.

    2016-01-01

    Mast cells (MC) are present in most vascularized tissues around the vasculature likely exerting immunomodulatory functions. Endowed with diverse mediators, resident MC represent first-line fine-tuners of local microenvironment. Sphingosine-1-phosphate (S1P) functions as a pluripotent signaling sphingolipid metabolite in health and disease. S1P formation occurs at low levels in resting MC and is upregulated upon activation. Its export can result in type 2 S1P receptor- (S1PR2-) mediated stimulation of MC, further fueling inflammation. However, the role of S1PR2 ligation in proangiogenic vascular endothelial growth factor- (VEGF-) A and matrix metalloproteinase- (MMP-) 2 release from MC is unknown. Using a preclinical MC-dependent model of acute allergic responses and in vitro stimulated primary mouse bone marrow-derived MC (BMMC) or human primary skin MC, we report that S1P signaling resulted in substantial amount of VEGF-A release. Similar experiments using S1pr2-deficient mice or BMMC or selective S1P receptor agonists or antagonists demonstrated that S1P/S1PR2 ligation on MC is important for VEGF-A secretion. Further, we show that S1P stimulation triggered transcriptional upregulation of VEGF-A and MMP-2 mRNA in human but not in mouse MC. S1P exposure also triggered MMP-2 secretion from human MC. These studies identify a novel proangiogenic axis encompassing MC/S1P/S1PR2 likely relevant to inflammation. PMID:26884643

  11. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2.

    PubMed

    Chumanevich, Alena; Wedman, Piper; Oskeritzian, Carole A

    2016-01-01

    Mast cells (MC) are present in most vascularized tissues around the vasculature likely exerting immunomodulatory functions. Endowed with diverse mediators, resident MC represent first-line fine-tuners of local microenvironment. Sphingosine-1-phosphate (S1P) functions as a pluripotent signaling sphingolipid metabolite in health and disease. S1P formation occurs at low levels in resting MC and is upregulated upon activation. Its export can result in type 2 S1P receptor- (S1PR2-) mediated stimulation of MC, further fueling inflammation. However, the role of S1PR2 ligation in proangiogenic vascular endothelial growth factor- (VEGF-) A and matrix metalloproteinase- (MMP-) 2 release from MC is unknown. Using a preclinical MC-dependent model of acute allergic responses and in vitro stimulated primary mouse bone marrow-derived MC (BMMC) or human primary skin MC, we report that S1P signaling resulted in substantial amount of VEGF-A release. Similar experiments using S1pr2-deficient mice or BMMC or selective S1P receptor agonists or antagonists demonstrated that S1P/S1PR2 ligation on MC is important for VEGF-A secretion. Further, we show that S1P stimulation triggered transcriptional upregulation of VEGF-A and MMP-2 mRNA in human but not in mouse MC. S1P exposure also triggered MMP-2 secretion from human MC. These studies identify a novel proangiogenic axis encompassing MC/S1P/S1PR2 likely relevant to inflammation. PMID:26884643

  12. Haploinsufficiency of Runx2 results in bone formation decrease and different BSP expression pattern changes in two transgenic mouse models

    PubMed Central

    Tu, Qisheng; Zhang, Jin; Paz, Jeff; Wade, Katherine; Yang, Pishan; Chen, Jake

    2009-01-01

    Runx2 has been identified as a master gene for the differentiation of osteoblasts and Runx2-deficient mice has demonstrated a complete absence of mature osteoblast and ossification. To further characterize the Runx2 responsive elements within the bone sialoprotein (BSP) promoter and further investigate into the role of Runx2 haploinsufficiency in osteoblast differentiation, mBSP9.0Luc mice and mBSP4.8Luc mice were crossed with Runx2-deficient mice respectively. Luciferase assay, micro CT scan, and histological analysis were performed using tissues isolated from mBSP9.0luc/Runx2+/? mice, mBSP4.8luc/Runx2+/? mice and their corresponding Runx2+/+ littermates. Alkaline phosphatase activity, mineralization assays and RT-PCR analysis using calvarial osteoblasts isolated from these transgenic mice were also performed. Luciferase assay demonstrated an early increase in luciferase expression in mBSP9.0luc/Runx2+/? mice before the expression level of luciferase dramatically decreased and turned lower than that in their control littermates in later stages. In contrast, luciferase expression in mBSP4.8luc/Runx2+/? failed to show such an early increase. Micro CT scan and histological analysis showed that BMD and trabecular bone volume were decreased and bone formation was delayed in Runx2+/? mice. Furthermore, mineralization assay and semi-quantitative RT-PCR assay demonstrated a gene-dose-dependent decrease in bone nodule formation and bone marker genes expression levels in cultured calvarial osteoblasts derived from Runx2 knockout mice. Reconstitution of Runx2-null cells with Runx2 vector partially rescued the osteoblast function defects. In conclusion, the 9.0 kb BSP promoter demonstrated a higher tissue-specific regulation of the BSP gene by Runx2 in vivo and full Runx2 gene dose is essential for osteoblast differentiation and normal bone formation. PMID:18459139

  13. Resistance to infection with Eimeria vermiformis in mouse radiation chimeras is determined by donor bone-marrow cells

    SciTech Connect

    Joysey, H.S.; Wakelin, D.; Rose, M.E.

    1988-05-01

    The course of infection with Eimeria vermiformis was determined in BALB/b, BALB/c, and C57BL/10ScSn (B10) mice and in radiation chimeras prepared from the H-2-compatible BALB/b and B10 mice. The BALB strains, irrespective of H-2 haplotype, were resistant, the B10 mice were susceptible, and in the chimeras infection was characterized by the genotype of the donated bone-marrow cells and not by the phenotype of the recipient. Thus, the genetic control of relative resistance or susceptibility to infection with this parasite is expressed through bone-marrow-derived cells.

  14. Evaluation of the Therapeutic Potential of Bone Marrow-Derived Myeloid Suppressor Cell (MDSC) Adoptive Transfer in Mouse Models of Autoimmunity and Allograft Rejection

    PubMed Central

    Bouchet-Delbos, Laurence; Beriou, Gaelle; Merieau, Emmanuel; Hill, Marcelo; Delneste, Yves; Cuturi, Maria Cristina; Louvet, Cedric

    2014-01-01

    Therapeutic use of immunoregulatory cells represents a promising approach for the treatment of uncontrolled immunity. During the last decade, myeloid-derived suppressor cells (MDSC) have emerged as novel key regulatory players in the context of tumor growth, inflammation, transplantation or autoimmunity. Recently, MDSC have been successfully generated in vitro from naive mouse bone marrow cells or healthy human PBMCs using minimal cytokine combinations. In this study, we aimed to evaluate the potential of adoptive transfer of such cells to control auto- and allo-immunity in the mouse. Culture of bone marrow cells with GM-CSF and IL-6 consistently yielded a majority of CD11b+Gr1hi/lo cells exhibiting strong inhibition of CD8+ T cell proliferation in vitro. However, adoptive transfer of these cells failed to alter antigen-specific CD8+ T cell proliferation and cytotoxicity in vivo. Furthermore, MDSC could not prevent the development of autoimmunity in a stringent model of type 1 diabetes. Rather, loading the cells prior to injection with a pancreatic neo-antigen peptide accelerated the development of the disease. Contrastingly, in a model of skin transplantation, repeated injection of MDSC or single injection of LPS-activated MDSC resulted in a significant prolongation of allograft survival. The beneficial effect of MDSC infusions on skin graft survival was paradoxically not explained by a decrease of donor-specific T cell response but associated with a systemic over-activation of T cells and antigen presenting cells, prominently in the spleen. Taken together, our results indicate that in vitro generated MDSC bear therapeutic potential but will require additional in vitro factors or adjunct immunosuppressive treatments to achieve safe and more robust immunomodulation upon adoptive transfer. PMID:24927018

  15. Bone Histology and Primary Growth Rates in Hatchling Titanosaurs from Madagascar: New Insights from Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Bagley, B. C.; Whitney, M.; Rogers, K. C.

    2012-12-01

    Sauropods are the largest known terrestrial vertebrates and exhibit a greater ontogenetic variation in body size than any other taxon. More than 120 species of sauropods are known from the Jurassic and Cretaceous, and a wealth of specimens documents their enormous adult body sizes. Juvenile sauropods, in contrast, are rare. Though titanosaur eggs containing embryos have been recovered, to date the smallest known post-hatching juveniles are only a little less than half of known adult size, and details of the earliest stages of sauropod ontogeny remain particularly poorly understood. Here we report on two partial skeletons of hatchling Rapetosaurus krausei, a titanosaur from the Upper Cretaceous Maevarano Formation of Madagascar, and provide important new data on primary early stage growth rates in sauropods. The two partial skeletons come from different localities in the Anembalemba Member of the Maevarano Formation. There is no duplication of elements for either specimen. Comparison of greatest length ratios for appendicular elements to those of a complete sub-adult Rapetosaurus confirms that there are only two individuals present, that there is no significant allometry in Rapetosaurus postcranial ontogeny, and that each individual is less than 15% adult size. The smaller specimen includes a sacral neural arch, three caudal centra, three caudal neural arches, left pubis, right femur (maximum length [ml] = 19.3 cm), tibia (ml = 12.7 cm), and metacarpal III, left and right fibulae, humeri, and metatarsal I, and a phalanx. The larger specimen includes a caudal centrum and neural arch, right metacarpal I, right tibia (ml = 17.9 cm), and left metacarpal IV. In order to non-destructively sample these exceptional Rapetosaurus juvenile elements, we employed micro-computed tomography to garner bone histology data. The micro-computed tomography was carried out using an X5000 high-resolution microfocus X-ray CT system located in the Department of Earth Sciences, University of Minnesota. The microfocus head has a minimum focal spot size of < 6 microns and the detector has a pixel pitch of 74.8 ?m. Machine parameters (e.g. voltage, current, tube to detector distance) vary based on sample size and desired magnification. For this study 70-100 kV (260-370 ?A) was sufficient to penetrate the samples and obtain good contrast. We were able to achieve an effective pixel pitch of 36-48 ?m for the larger samples and 14-28 ?m for sub-volumes. 2-D radiographs were collected and these data were reconstructed to produce a 3-D volume for visual analysis, and slices of the 3-D volume for quantitative analysis. Our results indicate that primary bone growth in Rapetosaurus is highly vascularized woven and fibrolamellar bone. However, even in these very small juvenile individuals, endosteal remodeling is common at the mid-diaphysis and extends in some areas into the mid-cortex. The presence of a single line of arrested growth is recorded in each individual. These results are surprising given the small size of the elements, and support the hypothesis that intensive remodeling observed in the bones of older juvenile Rapetosaurus may be dictated, at least in part, by resource limitations during periods of drought/ecological stress recorded in the Maevarano Formation of Madagascar.

  16. XactMice: humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer.

    PubMed

    Morton, J J; Bird, G; Keysar, S B; Astling, D P; Lyons, T R; Anderson, R T; Glogowska, M J; Estes, P; Eagles, J R; Le, P N; Gan, G; McGettigan, B; Fernandez, P; Padilla-Just, N; Varella-Garcia, M; Song, J I; Bowles, D W; Schedin, P; Tan, A-C; Roop, D R; Wang, X-J; Refaeli, Y; Jimeno, A

    2016-01-21

    The limitations of cancer cell lines have led to the development of direct patient-derived xenograft models. However, the interplay between the implanted human cancer cells and recruited mouse stromal and immune cells alters the tumor microenvironment and limits the value of these models. To overcome these constraints, we have developed a technique to expand human hematopoietic stem and progenitor cells (HSPCs) and use them to reconstitute the radiation-depleted bone marrow of a NOD/SCID/IL2rg(-/-) (NSG) mouse on which a patient's tumor is then transplanted (XactMice). The human HSPCs produce immune cells that home into the tumor and help replicate its natural microenvironment. Despite previous passage on nude mice, the expression of epithelial, stromal and immune genes in XactMice tumors aligns more closely to that of the patient tumor than to those grown in non-humanized mice-an effect partially facilitated by human cytokines expressed by both the HSPC progeny and the tumor cells. The human immune and stromal cells produced in the XactMice can help recapitulate the microenvironment of an implanted xenograft, reverse the initial genetic drift seen after passage on non-humanized mice and provide a more accurate tumor model to guide patient treatment. PMID:25893296

  17. KINETICS OF IN VIVO SISTER CHROMATID EXCHANGE INDUCTION IN MOUSE BONE MARROW CELLS BY ALKYLATING AGENTS: CYCLOPHOSPHAMIDE

    EPA Science Inventory

    Administration of cyclophosphamide (5, 10, 20 and 25 mg/kg body weight) to male CD-1 mice 2 hours after subcutaneous implantation of a 5-bromo-2'-deoxyuridine (BrdU) pellet (55 mg) resulted in a dose-dependent increase in sister chromatid exchanges (SCE) in bone marrow cells. Tre...

  18. Coactivator PGC-1{alpha} regulates the fasting inducible xenobiotic-metabolizing enzyme CYP2A5 in mouse primary hepatocytes

    SciTech Connect

    Arpiainen, Satu; Jaervenpaeae, Sanna-Mari; Manninen, Aki; Viitala, Pirkko; Lang, Matti A.; Pelkonen, Olavi; Hakkola, Jukka

    2008-10-01

    The nutritional state of organisms and energy balance related diseases such as diabetes regulate the metabolism of xenobiotics such as drugs, toxins and carcinogens. However, the mechanisms behind this regulation are mostly unknown. The xenobiotic-metabolizing cytochrome P450 (CYP) 2A5 enzyme has been shown to be induced by fasting and by glucagon and cyclic AMP (cAMP), which mediate numerous fasting responses. Peroxisome proliferator-activated receptor {gamma} coactivator (PGC)-1{alpha} triggers many of the important hepatic fasting effects in response to elevated cAMP levels. In the present study, we were able to show that cAMP causes a coordinated induction of PGC-1{alpha} and CYP2A5 mRNAs in murine primary hepatocytes. Furthermore, the elevation of the PGC-1{alpha} expression level by adenovirus mediated gene transfer increased CYP2A5 transcription. Co-transfection of Cyp2a5 5' promoter constructs with the PGC-1{alpha} expression vector demonstrated that PGC-1{alpha} is able to activate Cyp2a5 transcription through the hepatocyte nuclear factor (HNF)-4{alpha} response element in the proximal promoter of the Cyp2a5 gene. Chromatin immunoprecipitation assays showed that PGC-1{alpha} binds, together with HNF-4{alpha}, to the same region at the Cyp2a5 proximal promoter. In conclusion, PGC-1{alpha} mediates the expression of CYP2A5 induced by cAMP in mouse hepatocytes through coactivation of transcription factor HNF-4{alpha}. This strongly suggests that PGC-1{alpha} is the major factor mediating the fasting response of CYP2A5.

  19. Melanocortin-4 Receptor Expression in Different Classes of Spinal and Vagal Primary Afferent Neurons in the Mouse

    PubMed Central

    Gautron, Laurent; Lee, Charlotte E.; Lee, Syann; Elmquist, Joel K.

    2013-01-01

    Melanocortin-4 receptor (MC4R) ligands are known to modulate nociception, but the site of action of MC4R signaling on nociception remains to be elucidated. The current study investigated MC4R expression in dorsal root ganglia (DRG) of the MC4R-GFP reporter mouse. Because MC4R is known to be expressed in vagal afferent neurons in the nodose ganglion (NG), we also systematically compared MC4R-expressing vagal and spinal afferent neurons. Abundant green fluorescent protein (GFP) immunoreactivity was found in about 45% of DRG neuronal profiles (at the mid-thoracic level), the majority being small-sized profiles. Immunohistochemistry combined with in situ hybridization confirmed that GFP was genuinely produced in MC4R-expressing neurons in the DRG. While a large number of GFP profiles in the DRG coexpressed Nav1.8 mRNA (84%) and bound isolectin B4 (72%), relatively few GFP profiles were positive for NF200 (16%) or CGRP (13%), suggesting preferential MC4R expression in C-fiber nonpeptidergic neurons. By contrast, GFP in the NG frequently colocalized with Nav1.8 mRNA (64%) and NF200 (29%), but only to a moderate extent with isolectin B4 (16%). Lastly, very few GFP profiles in the NG expressed CGRP (5%) or CART (4%). Together, our findings demonstrate variegated MC4R expression in different classes of vagal and spinal primary afferent neurons, and underscore the role of the melanocortin system in modulating nociceptive and nonnociceptive peripheral sensory modalities. PMID:22592759

  20. Transplanted Bone MarrowDerived Circulating PDGFR?+ Cells Restore Type VII Collagen in Recessive Dystrophic Epidermolysis Bullosa Mouse Skin Graft

    PubMed Central

    Iinuma, Shin; Aikawa, Eriko; Fujita, Ryo; Kikuchi, Yasushi; Chino, Takenao; Kikuta, Junichi; McGrath, John A.; Uitto, Jouni; Ishii, Masaru; Iizuka, Hajime; Kaneda, Yasufumi

    2015-01-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is an intractable genetic blistering skin disease in which the epithelial structure easily separates from the underlying dermis because of genetic loss of functional type VII collagen (Col7) in the cutaneous basement membrane zone. Recent studies have demonstrated that allogeneic bone marrow transplantation (BMT) ameliorates the skin blistering phenotype of RDEB patients by restoring Col7. However, the exact therapeutic mechanism of BMT in RDEB remains unclear. In this study, we investigated the roles of transplanted bone marrowderived circulating mesenchymal cells in RDEB (Col7-null) mice. In wild-type mice with prior GFP-BMT after lethal irradiation, lineage-negative/GFP-positive (Lin?/GFP+) cells, including platelet-derived growth factor receptor ?-positive (PDGFR?+) mesenchymal cells, specifically migrated to skin grafts from RDEB mice and expressed Col7. Vascular endothelial cells and follicular keratinocytes in the deep dermis of the skin grafts expressed SDF-1?, and the bone marrowderived PDGFR?+ cells expressed CXCR4 on their surface. Systemic administration of the CXCR4 antagonist AMD3100 markedly decreased the migration of bone marrowderived PDGFR?+ cells into the skin graft, resulting in persistent epidermal detachment with massive necrosis and inflammation in the skin graft of RDEB mice; without AMD3100 administration, Col7 was significantly supplemented to ameliorate the pathogenic blistering phenotype. Collectively, these data suggest that the SDF1?/CXCR4 signaling axis induces transplanted bone marrowderived circulating PDGFR?+ mesenchymal cells to migrate and supply functional Col7 to regenerate RDEB skin. PMID:25601922

  1. Effects of Viscum album L. extract and quercetin on methotrexate-induced cyto-genotoxicity in mouse bone-marrow cells.

    PubMed

    Sekero?lu, Zlal Atl?; Sekero?lu, Vedat

    2012-07-01

    Viscum album, a semi-parasitic plant, has been used both in traditional and supplementary medicine in the treatment of many diseases. Quercetin (QE), one of the major flavonoids in some fruits and vegetables, has anti-oxidative and anti-carcinogenic activities. Methotrexate (MTX), an anti-folate anti-metabolite, is a widely used anti-neoplastic drug with significant clastogenic effects. The aim of this study was to investigate the anti-cytogenotoxic effects of pre-treatment with V. album extract (VAE) and QE on MTX-induced chromosomal aberrations (CAs) in mouse bone-marrow cells. Pre-treatment of mice by gavage with VAE (250mg/kgbw/day for 10 days) and QE (50mg/kgbw/day for 10 days) caused a significant decrease in CAs and in the number of aberrant cells with CAs induced by intramuscular treatment of the mice with MTX (10mg/kgbw/day for 3 days), when compared with the group treated with MTX alone. These compounds also significantly increased the mitotic index (MI) in bone-marrow cells that had been suppressed by MTX. In conclusion, from the findings we suggest that VAE and QE may play a role in reducing cyto-genotoxicity induced by anti-neoplastic drugs during cancer chemotherapy. PMID:22464986

  2. Dual Effects of Bisphosphonates onEctopicSkin and Vascular Soft TissueMineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy.

    PubMed

    Li, Qiaoli; Kingman, Joshua; Sundberg, John P; Levine, Michael A; Uitto, Jouni

    2016-01-01

    Generalized arterial calcification of infancy is an intractable ectopic mineralization disorder caused by mutations in the ENPP1 gene, resulting in reduced plasma inorganic pyrophosphate (PPi) levels. We previously characterized the Enpp1(asj) mutant mouse as a model of generalized arterial calcification of infancy, and we have now explored the potential efficacy of bisphosphonates, nonhydrolyzable PPi analogs, in preventing ectopic mineralization in these mice. The mice were maintained on either basic diet (control) or diets containing etidronate or alendronate in three different concentrations (experimental). Considering low bioavailability of bisphosphonates when administered orally, subsequent studies tested the mice with subcutaneous injections of etidronate. The treatments were initiated at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks of age by quantitation of calcium deposits in the muzzle skin containing dermal sheath of vibrissae and in aorta. We found that bisphosphonate treatments significantly reduced mineralization in skin and aorta. These changes in treated mice were accompanied with restoration of their bone microarchitecture, determined by microcomputed tomography. The inhibitory capacity of bisphosphonates, with mechanistic implications, was confirmed in a cell-based mineralization assay invitro. Collectively, these results suggest that bisphosphonate treatment may be beneficial by a dual effect for preventing ectopic soft tissue mineralization while correcting decreased bone mineralization in generalized arterial calcification of infancy caused by ENPP1 mutations. PMID:26763447

  3. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model