Sample records for primed vesicle state

  1. v-SNAREs control exocytosis of vesicles from priming to fusion.

    PubMed

    Borisovska, Maria; Zhao, Ying; Tsytsyura, Yaroslav; Glyvuk, Nataliya; Takamori, Shigeo; Matti, Ulf; Rettig, Jens; Südhof, Thomas; Bruns, Dieter

    2005-06-15

    SNARE proteins (soluble NSF-attachment protein receptors) are thought to be central components of the exocytotic mechanism in neurosecretory cells, but their precise function remained unclear. Here, we show that each of the vesicle-associated SNARE proteins (v-SNARE) of a chromaffin granule, synaptobrevin II or cellubrevin, is sufficient to support Ca(2+)-dependent exocytosis and to establish a pool of primed, readily releasable vesicles. In the absence of both proteins, secretion is abolished, without affecting biogenesis or docking of granules indicating that v-SNAREs are absolutely required for granule exocytosis. We find that synaptobrevin II and cellubrevin differentially control the pool of readily releasable vesicles and show that the v-SNARE's amino terminus regulates the vesicle's primed state. We demonstrate that dynamics of fusion pore dilation are regulated by v-SNAREs, indicating their action throughout exocytosis from priming to fusion of vesicles.

  2. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  3. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.

    PubMed

    Kabachinski, Greg; Kielar-Grevstad, D Michelle; Zhang, Xingmin; James, Declan J; Martin, Thomas F J

    2016-02-15

    The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. © 2016 Kabachinski, Kielar-Grevstad, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Munc13 homology domain-1 in CAPS/UNC31 mediates SNARE binding required for priming vesicle exocytosis.

    PubMed

    Khodthong, Chuenchanok; Kabachinski, Greg; James, Declan J; Martin, Thomas F J

    2011-08-03

    Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming.

    PubMed

    Snellman, Josefin; Mehta, Bhupesh; Babai, Norbert; Bartoletti, Theodore M; Akmentin, Wendy; Francis, Adam; Matthews, Gary; Thoreson, Wallace; Zenisek, David

    2011-07-24

    In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.

  6. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate.

    PubMed

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian; Sørensen, Jakob Balslev; Verhage, Matthijs; Cornelisse, Lennart Niels

    2015-04-14

    The energy required to fuse synaptic vesicles with the plasma membrane ('activation energy') is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca(2+)-dependent release.

  7. UNC-18 and Tomosyn Antagonistically Control Synaptic Vesicle Priming Downstream of UNC-13 in Caenorhabditis elegans

    PubMed Central

    Park, Seungmee; Bin, Na-Ryum; Wong, Raymond; Sitarska, Ewa; Sugita, Kyoko; Ma, Ke; Algouneh, Arash; Turlova, Ekaterina; Wang, Siyan; Siriya, Pranay; Kalia, Lorraine; Feng, Zhong-Ping; Monnier, Philippe P.; Zhen, Mei; Gao, Shangbang

    2017-01-01

    Munc18-1/UNC-18 is believed to prime SNARE-mediated membrane fusion, yet the underlying mechanisms remain enigmatic. Here, we examine how potential gain-of-function mutations of Munc18-1/UNC-18 affect locomotory behavior and synaptic transmission, and how Munc18-1-mediated priming is related to Munc13-1/UNC-13 and Tomosyn/TOM-1, positive and negative SNARE regulators, respectively. We show that a Munc18-1(P335A)/UNC-18(P334A) mutation leads to significantly increased locomotory activity and acetylcholine release in Caenorhabditis elegans, as well as enhanced synaptic neurotransmission in cultured mammalian neurons. Importantly, similar to tom-1 null mutants, unc-18(P334A) mutants partially bypass the requirement of UNC-13. Moreover, unc-18(P334A) and tom-1 null mutations confer a strong synergy in suppressing the phenotypes of unc-13 mutants. Through biochemical experiments, we demonstrate that Munc18-1(P335A) exhibits enhanced activity in SNARE complex formation as well as in binding to the preformed SNARE complex, and partially bypasses the Munc13-1 requirement in liposome fusion assays. Our results indicate that Munc18-1/UNC-18 primes vesicle fusion downstream of Munc13-1/UNC-13 by templating SNARE complex assembly and acts antagonistically with Tomosyn/TOM-1. SIGNIFICANCE STATEMENT At presynaptic sites, SNARE-mediated membrane fusion is tightly regulated by several key proteins including Munc18/UNC-18, Munc13/UNC-13, and Tomosyn/TOM-1. However, how these proteins interact with each other to achieve the precise regulation of neurotransmitter release remains largely unclear. Using Caenorhabditis elegans as an in vivo model, we found that a gain-of-function mutant of UNC-18 increases locomotory activity and synaptic acetylcholine release, that it partially bypasses the requirement of UNC-13 for release, and that this bypass is synergistically augmented by the lack of TOM-1. We also elucidated the biochemical basis for the gain-of-function caused by this mutation

  8. CAPS and Munc13: CATCHRs that SNARE Vesicles.

    PubMed

    James, Declan J; Martin, Thomas F J

    2013-12-04

    CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mammalian Unc-13) proteins function to prime vesicles for Ca(2+)-triggered exocytosis in neurons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal domains that promote the assembly of SNARE complexes for vesicle priming. Similarities of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs) have been reported. MTCs coordinate multiple interactions for SNARE complex assembly at constitutive membrane fusion steps. We review aspects of these diverse tethering and priming factors to identify common operating principles.

  9. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  10. Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking

    PubMed Central

    Wang, Shan Shan H.; Held, Richard G.; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S.

    2016-01-01

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483

  11. Phase diagram of single vesicle dynamical states in shear flow.

    PubMed

    Deschamps, J; Kantsler, V; Steinberg, V

    2009-03-20

    We report the first experimental phase diagram of vesicle dynamical states in a shear flow presented in a space of two dimensionless parameters suggested recently by V. Lebedev et al. To reduce errors in the control parameters, 3D geometrical reconstruction and determination of the viscosity contrast of a vesicle in situ in a plane Couette flow device prior to the experiment are developed. Our results are in accord with the theory predicting three distinctly separating regions of vesicle dynamical states in the plane of just two self-similar parameters.

  12. Differential Regulation of Synaptic Vesicle Tethering and Docking by UNC-18 and TOM-1.

    PubMed

    Gracheva, Elena O; Maryon, Ed B; Berthelot-Grosjean, Martine; Richmond, Janet E

    2010-01-01

    The assembly of SNARE complexes between syntaxin, SNAP-25 and synaptobrevin is required to prime synaptic vesicles for fusion. Since Munc18 and tomosyn compete for syntaxin interactions, the interplay between these proteins is predicted to be important in regulating synaptic transmission. We explored this possibility, by examining genetic interactions between C. elegans unc-18(Munc18), unc-64(syntaxin) and tom-1(tomosyn). We have previously demonstrated that unc-18 mutants have reduced synaptic transmission, whereas tom-1 mutants exhibit enhanced release. Here we show that the unc-18 mutant release defect is associated with loss of two morphologically distinct vesicle pools; those tethered within 25 nm of the plasma membrane and those docked with the plasma membrane. In contrast, priming defective unc-13 mutants accumulate tethered vesicles, while docked vesicles are greatly reduced, indicating tethering is UNC-18-dependent and occurs in the absence of priming. C. elegans unc-64 mutants phenocopy unc-18 mutants, losing both tethered and docked vesicles, whereas overexpression of open syntaxin preferentially increases vesicle docking, suggesting UNC-18/closed syntaxin interactions are responsible for vesicle tethering. Given the competition between vertebrate tomosyn and Munc18, for syntaxin binding, we hypothesized that C. elegans TOM-1 may inhibit both UNC-18-dependent vesicle targeting steps. Consistent with this hypothesis, tom-1 mutants exhibit enhanced UNC-18 plasma membrane localization and a concomitant increase in both tethered and docked synaptic vesicles. Furthermore, in tom-1;unc-18 double mutants the docked, primed vesicle pool is preferentially rescued relative to unc-18 single mutants. Together these data provide evidence for the differential regulation of two vesicle targeting steps by UNC-18 and TOM-1 through competitive interactions with syntaxin.

  13. Topical delivery of roxithromycin solid-state forms entrapped in vesicles.

    PubMed

    Csongradi, Candice; du Plessis, Jeanetta; Aucamp, Marique Elizabeth; Gerber, Minja

    2017-05-01

    Recently, considerable interest developed in using newer/improved antibiotics for the treatment of Acne vulgaris. During this study, different roxithromycin solid-state forms (i.e. crystalline and amorphous) were encapsulated into vesicle systems (niosomes, proniosomes, ufosomes and pro-ufosomes) for dermis targeted delivery. Characterization of the vesicles was done with transmission electron microscopy, light microscopy, droplet size, droplet size distribution, pH, zeta-potential and entrapment efficiency percentage. Finally, comparative release and topical diffusion studies were performed, to evaluate if targeted topical delivery was obtained and if the roxithromycin solid-state amorphous forms resulted in improved topical delivery. Vesicle systems containing different roxithromycin (2%) solid-state forms were successfully prepared and characterized. The vesicles showed optimal properties for topical delivery. All carrier systems had topical delivery to the epidermis-dermis, whilst no roxithromycin was found in the receptor compartment or stratum corneum-epidermis. The niosomes were the leading formulation and the two amorphous forms had better topical delivery than the crystalline form. Successful targeted delivery of roxithromycin was obtained in the dermis, where the activity against Propionibacterium acnes is needed. The amorphous forms seemed to have held their solid-state form during formulation and in the vesicles, showing improved topical delivery in comparison to the crystalline form. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Outer Membrane Vesicles Prime and Activate Macrophage Inflammasomes and Cytokine Secretion In Vitro and In Vivo

    PubMed Central

    Cecil, Jessica D.; O’Brien-Simpson, Neil M.; Lenzo, Jason C.; Holden, James A.; Singleton, William; Perez-Gonzalez, Alexis; Mansell, Ashley; Reynolds, Eric C.

    2017-01-01

    Outer membrane vesicles (OMVs) are proteoliposomes blebbed from the surface of Gram-negative bacteria. Chronic periodontitis is associated with an increase in subgingival plaque of Gram-negative bacteria, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. In this study, we investigated the immune-modulatory effects of P. gingivalis, T. denticola, and T. forsythia OMVs on monocytes and differentiated macrophages. All of the bacterial OMVs were phagocytosed by monocytes, M(naïve) and M(IFNγ) macrophages in a dose-dependent manner. They also induced NF-κB activation and increased TNFα, IL-8, and IL-1β cytokine secretion. P. gingivalis OMVs were also found to induce anti-inflammatory IL-10 secretion. Although unprimed monocytes and macrophages were resistant to OMV-induced cell death, lipopolysaccharide or OMV priming resulted in a significantly reduced cell viability. P. gingivalis, T. denticola, and T. forsythia OMVs all activated inflammasome complexes, as monitored by IL-1β secretion and ASC speck formation. ASC was critical for OMV-induced inflammasome formation, while AIM2−/− and Caspase-1−/− cells had significantly reduced inflammasome formation and NLRP3−/− cells exhibited a slight reduction. OMVs were also found to provide both priming and activation of the inflammasome complex. High-resolution microscopy and flow cytometry showed that P. gingivalis OMVs primed and activated macrophage inflammasomes in vivo with 80% of macrophages exhibiting inflammasome complex formation. In conclusion, periodontal pathogen OMVs were found to have significant immunomodulatory effects upon monocytes and macrophages and should therefore influence pro-inflammatory host responses associated with disease. PMID:28890719

  15. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

    PubMed

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  16. A sequential vesicle pool model with a single release sensor and a Ca(2+)-dependent priming catalyst effectively explains Ca(2+)-dependent properties of neurosecretion.

    PubMed

    Walter, Alexander M; Pinheiro, Paulo S; Verhage, Matthijs; Sørensen, Jakob B

    2013-01-01

    Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca(2+) dependence, but also upstream steps depend on Ca(2+). After deletion of the Ca(2+) sensor for fast release - synaptotagmin-1 - slower Ca(2+)-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca(2+) sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca(2+)-dependent action: a Ca(2+)-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca(2+)-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca(2+)-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca(2+)-dependent fusion from the NRP. We conclude that the elusive 'alternative Ca(2+) sensor' for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca(2+)-dependent

  17. A Sequential Vesicle Pool Model with a Single Release Sensor and a Ca2+-Dependent Priming Catalyst Effectively Explains Ca2+-Dependent Properties of Neurosecretion

    PubMed Central

    Walter, Alexander M.; Pinheiro, Paulo S.; Verhage, Matthijs; Sørensen, Jakob B.

    2013-01-01

    Neurotransmitter release depends on the fusion of secretory vesicles with the plasma membrane and the release of their contents. The final fusion step displays higher-order Ca2+ dependence, but also upstream steps depend on Ca2+. After deletion of the Ca2+ sensor for fast release – synaptotagmin-1 – slower Ca2+-dependent release components persist. These findings have provoked working models involving parallel releasable vesicle pools (Parallel Pool Models, PPM) driven by alternative Ca2+ sensors for release, but no slow release sensor acting on a parallel vesicle pool has been identified. We here propose a Sequential Pool Model (SPM), assuming a novel Ca2+-dependent action: a Ca2+-dependent catalyst that accelerates both forward and reverse priming reactions. While both models account for fast fusion from the Readily-Releasable Pool (RRP) under control of synaptotagmin-1, the origins of slow release differ. In the SPM the slow release component is attributed to the Ca2+-dependent refilling of the RRP from a Non-Releasable upstream Pool (NRP), whereas the PPM attributes slow release to a separate slowly-releasable vesicle pool. Using numerical integration we compared model predictions to data from mouse chromaffin cells. Like the PPM, the SPM explains biphasic release, Ca2+-dependence and pool sizes in mouse chromaffin cells. In addition, the SPM accounts for the rapid recovery of the fast component after strong stimulation, where the PPM fails. The SPM also predicts the simultaneous changes in release rate and amplitude seen when mutating the SNARE-complex. Finally, it can account for the loss of fast- and the persistence of slow release in the synaptotagmin-1 knockout by assuming that the RRP is depleted, leading to slow and Ca2+-dependent fusion from the NRP. We conclude that the elusive ‘alternative Ca2+ sensor’ for slow release might be the upstream priming catalyst, and that a sequential model effectively explains Ca2+-dependent properties of

  18. Exocytosis of Neutrophil Granule Subsets and Activation of Prolyl Isomerase 1 are required for Respiratory Burst Priming

    PubMed Central

    McLeish, Kenneth R.; Uriarte, Silvia M.; Tandon, Shweta; Creed, Timothy M.; Le, Junyi; Ward, Richard A.

    2013-01-01

    This study tested the hypothesis that priming the neutrophil respiratory burst requires both granule exocytosis and activation of the prolyl isomerase, Pin1. Fusion proteins containing the TAT cell permeability sequence and either the SNARE domain of syntaxin-4 or the N-terminal SNARE domain of SNAP-23 were used to examine the role of granule subsets in TNF-mediated respiratory burst priming using human neutrophils. Concentration-inhibition curves for exocytosis of individual granule subsets and for priming of fMLF-stimulated superoxide release and phagocytosis-stimulated H2O2 production were generated. Maximal inhibition of priming ranged from 72% to 88%. Linear regression lines for inhibition of priming versus inhibition of exocytosis did not differ from the line of identity for secretory vesicles and gelatinase granules, while the slopes or the y-intercepts were different from the line of identity for specific and azurophilic granules. Inhibition of Pin1 reduced priming by 56%, while exocytosis of secretory vesicles and specific granules was not affected. These findings indicate that exocytosis of secretory vesicles and gelatinase granules and activation of Pin1 are independent events required for TNF-mediated priming of neutrophil respiratory burst. PMID:23363774

  19. Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.

    PubMed

    Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang

    2013-07-01

    The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments.

  20. Activity-Dependence of Synaptic Vesicle Dynamics

    PubMed Central

    Forte, Luca A.

    2017-01-01

    The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release. SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in

  1. Removal of Default-State Associated Inhibition During Repetition Priming Improves Response Articulation

    PubMed Central

    Dacks, Andrew M.; Siniscalchi, Michael J.; Weiss, Klaudiusz R.

    2012-01-01

    Behavior is a product of both the stimuli encountered and the current internal state. At the level of the nervous system, the internal state alters the biophysical properties of, and connections between, neurons establishing a “network state”. To establish a network state, the nervous system must be altered from an initial default/resting state, but what remains unclear is the extent to which this process represents induction from a passive default state or the removal of suppression by an active default state. We use repetition priming (a history-dependent improvement of behavioral responses to repeatedly encountered stimuli) to determine the cellular mechanisms underlying the transition from the default to the primed network state. We demonstrate that both removal of active suppression and induction of neuron excitability changes each contribute separately to the production of a primed state. The feeding system of Aplysia californica displays repetition priming via an increase in the activity of the radula closure neuron B8, which results in increased bite strength with each motor program. We found that during priming, B8 received progressively less inhibitory input from the multi-functional neurons B4/5. Additionally, priming enhanced the excitability of B8, but the rate at which B8 activity increased as a result of these changes was regulated by the progressive removal of inhibitory input. Thus, the establishment of the network state involves the induction of processes from a rested state, yet the consequences of these processes are conditional upon critical gating mechanisms actively enforced by the default state. PMID:23223294

  2. Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses

    PubMed Central

    Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E

    2017-01-01

    Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (Otof Ala515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone. PMID:29111973

  3. Otoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses.

    PubMed

    Michalski, Nicolas; Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E; Dulon, Didier; Safieddine, Saaid; Petit, Christine

    2017-11-07

    Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C 2 -domain, Ca 2+ -binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice ( Otof Ala515,Ala517/Ala515,Ala517 ) with lower Ca 2+ -binding affinity of the C 2 C domain. The IHC ribbon synapse structure, synaptic Ca 2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca 2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca 2+ concentration, by varying Ca 2+ influx through voltage-gated Ca 2+ -channels or Ca 2+ uncaging. Otoferlin thus functions as a Ca 2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.

  4. Subliminal Priming-State of the Art and Future Perspectives.

    PubMed

    Elgendi, Mohamed; Kumar, Parmod; Barbic, Skye; Howard, Newton; Abbott, Derek; Cichocki, Andrzej

    2018-05-30

    The influence of subliminal priming (behavior outside of awareness) in humans is an interesting phenomenon and its understanding is crucial as it can impact behavior, choices, and actions. Given this, research about the impact of priming continues to be an area of investigative interest, and this paper provides a technical overview of research design strengths and issues in subliminal priming research. Efficient experiments and protocols, as well as associated electroencephalographic and eye movement data analyses, are discussed in detail. We highlight the strengths and weaknesses of different priming experiments that have measured affective (emotional) and cognitive responses. Finally, very recent approaches and findings are described to summarize and emphasize state-of-the-art methods and potential future directions in research marketing and other commercial applications.

  5. Vesicle electrohydrodynamics.

    PubMed

    Schwalbe, Jonathan T; Vlahovska, Petia M; Miksis, Michael J

    2011-04-01

    A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.

  6. Translation-priming effects on tip-of-the-tongue states

    PubMed Central

    Gollan, Tamar H.; Ferreira, Victor S.; Cera, Cynthia; Flett, Susanna

    2013-01-01

    Bilinguals experience more tip-of-the-tongue (TOT) states than monolinguals, but it is not known if this is caused in part by access of representations from both of bilinguals’ languages, or dual-language activation. In two translation priming experiments, bilinguals were given three Spanish primes and produced either semantically (Experiment 1) or phonologically related Spanish words (Experiment 2) to each. They then named a picture in English. On critical trials, one of the primes was the Spanish translation of the English picture name. Translation primes significantly increased TOTs regardless of task, and also speeded correct retrievals but only with the semantic task. In both experiments translation-primed TOTs were significantly more likely to resolve spontaneously. These results illustrate an effect of non-dominant language activation on dominant-language retrieval, as well as imply that TOTs can arise during (not after) lexical retrieval, at a level of processing where translation equivalent lexical representations normally interact (possibly competing for selection, or mutually activating each other, or both depending on the locus of retrieval failure). PMID:24644375

  7. Lipopolysaccharide structure impacts the entry kinetics of bacterial outer membrane vesicles into host cells

    PubMed Central

    Hadis, Mohammed; Alderwick, Luke

    2017-01-01

    Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-negative bacteria and play important roles in immune priming and disease pathogenesis. However, our current mechanistic understanding of vesicle-host cell interactions is limited by a lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our findings highlight the composition of the bacterial cell wall as a major determinant of secretion-independent delivery of virulence factors during Gram-negative infections. PMID:29186191

  8. PI(4,5)P2-binding effector proteins for vesicle exocytosis

    PubMed Central

    Martin, Thomas F. J.

    2014-01-01

    PI(4,5)P2 participates directly in priming and possibly fusion steps of Ca2+-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P2 reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P2 domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P2 directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P2-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P2 effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P2, which promotes clustering, but an activating role for PI(4,5)P2 in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P2-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P2-binding proteins. PMID:25280637

  9. Theoretical study of the A prime 5Sigma(+)g and C double prime 5Pi u states of N2 - Implications for the N2 afterglow

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Schwenke, David W.

    1988-01-01

    Theoretical spectroscopic constants are reported for the A prime 5Sigma(+)g and C double prime 5Pi u states of N2 based on CASSCF/MRCI calculations using large ANO Gaussian basis sets. The calculated A prime Sigma(+)g potential differs qualitatively from previous calculations in that the inner well is significantly deeper (De = 3450/cm). This deeper well provides considerable support for the suggestion of Berkowitz et al. (1956) that A prime 5Sigma(+)g is the primary precursor state involved in the yellow Lewis-Rayleigh afterglow of N2.

  10. The 'prime-ome': towards a holistic approach to priming.

    PubMed

    Balmer, Andrea; Pastor, Victoria; Gamir, Jordi; Flors, Victor; Mauch-Mani, Brigitte

    2015-07-01

    Plants can be primed to respond faster and more strongly to stress and multiple pathways, specific for the encountered challenge, are involved in priming. This adaptability of priming makes it difficult to pinpoint an exact mechanism: the same phenotypic observation might be the consequence of unrelated underlying events. Recently, details of the molecular aspects of establishing a primed state and its transfer to offspring have come to light. Advances in techniques for detection and quantification of elements spanning the fields of transcriptomics, proteomics, and metabolomics, together with adequate bioinformatics tools, will soon allow us to take a holistic approach to plant defence. This review highlights the state of the art of new strategies to study defence priming in plants and provides perspectives towards 'prime-omics'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.

    Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca 2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. In conclusion, the tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less

  12. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.

    Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. The tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less

  13. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis

    DOE PAGES

    Zhou, Qiangjun; Zhou, Peng; Wang, Austin L.; ...

    2017-08-16

    Synaptotagmin, complexin, and neuronal SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins mediate evoked synchronous neurotransmitter release, but the molecular mechanisms mediating the cooperation between these molecules remain unclear. Here we determine crystal structures of the primed pre-fusion SNARE–complexin–synaptotagmin-1 complex. These structures reveal an unexpected tripartite interface between synaptotagmin-1 and both the SNARE complex and complexin. Simultaneously, a second synaptotagmin-1 molecule interacts with the other side of the SNARE complex via the previously identified primary interface. Mutations that disrupt either interface in solution also severely impair evoked synchronous release in neurons, suggesting that both interfaces are essential for themore » primed pre-fusion state. Ca 2+ binding to the synaptotagmin-1 molecules unlocks the complex, allows full zippering of the SNARE complex, and triggers membrane fusion. In conclusion, the tripartite SNARE–complexin–synaptotagmin-1 complex at a synaptic vesicle docking site has to be unlocked for triggered fusion to start, explaining the cooperation between complexin and synaptotagmin-1 in synchronizing evoked release on the sub-millisecond timescale.« less

  14. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchard, J.B.

    p-Aminohippuric acid (PAH) transport by basolateral membrane (BLM) vesicles isolated from rat renal cortex was stimulated very little by a Na{sup +} gradient (out > in). However, when micromolar concentrations of glutaric acid or {alpha}-ketoglutaric acid were added in the presence of a out > in Na{sup +} gradient, PAH uptake was accelerated >20-fold and an overshoot of greater than fivefold was produced. Other anions, e.g., fumarate, stimulated PAH uptake very modestly under these conditions, and that stimulation was totally prevented by short circuiting, i.e., with K{sup +} (in = out) and valinomycin. Glutarate-stimulated uptake was inhibited by 4-acetamide-4{prime}-({sup 14}C)-isothiocyanostilbene-2,2{prime}-disulfonicmore » acid (SITS) and probenecid and was slightly stimulated by the imposition of an inside-negative membrane potential. Furthermore, even in the absence of a Na{sup +} gradient, glutarate-loaded vesicles exhibited a marked acceleration of ({sup 3}H)-PAH uptake (5-fold) and a modest overshoot (2.5-fold). These results suggest an indirect coupling of BLM PAH uptake to the Na{sup +} gradient by a cyclic accumulation (Na{sup +}-dependent) of glutarate followed by its efflux from the vesicle in exchange for PAH. This coupled system was absent in apical membranes. Thus net secretory transport of PAH may entail Na{sup +}-dependent, glutarate-driven PAH uptake at the BLM, followed by the exit of PAH into the lumen down its electrochemical gradient, probably in exchange for other anions, e.g., {sup 36}Cl{sup {minus}}, HCO{sub 3}{sup {minus}}, or OH{sup {minus}}.« less

  15. Word encoding during sleep is suggested by correlations between word-evoked up-states and post-sleep semantic priming

    PubMed Central

    Ruch, Simon; Koenig, Thomas; Mathis, Johannes; Roth, Corinne; Henke, Katharina

    2014-01-01

    To test whether humans can encode words during sleep we played everyday words to men while they were napping and assessed priming from sleep-played words following waking. Words were presented during non-rapid eye movement (NREM) sleep. Priming was assessed using a semantic and a perceptual priming test. These tests measured differences in the processing of words that had been or had not been played during sleep. Synonyms to sleep-played words were the targets in the semantic priming test that tapped the meaning of sleep-played words. All men responded to sleep-played words by producing up-states in their electroencephalogram. Up-states are NREM sleep-specific phases of briefly increased neuronal excitability. The word-evoked up-states might have promoted word processing during sleep. Yet, the mean performance in the priming tests administered following sleep was at chance level, which suggests that participants as a group failed to show priming following sleep. However, performance in the two priming tests was positively correlated to each other and to the magnitude of the word-evoked up-states. Hence, the larger a participant's word-evoked up-states, the larger his perceptual and semantic priming. Those participants who scored high on all variables must have encoded words during sleep. We conclude that some humans are able to encode words during sleep, but more research is needed to pin down the factors that modulate this ability. PMID:25452740

  16. Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles

    PubMed Central

    Morrow, Isabel C.; Harper, Callista B.

    2016-01-01

    Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti–green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)–pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2–pHluorin/Atto647N–tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings. PMID:27810917

  17. [Medical doctors as the state presidents and prime ministers--a biographical analysis].

    PubMed

    Lass, Piotr; Szarszewski, Adam; Gaworska-Krzemińska, Aleksandra; Sławek, Jarosław

    2012-01-01

    The authors overviewed the biographies of 29 medical doctors who became the heads of the state or the prime ministers of their countries. Most of them ruled in a countries of fresh or unstable democracies, most often in Asia, Africa and Latin America, three of them were bloody dictators. With the exemptions of Georges Clemenceau and Sun-Yat-Sen they were not famous as historical figures, although some were good administrators like the prime minister of Norway, Gro Harlem Brundtland, Malayan prime minister Mahatir bin Mohamad, Brasilian and Chilean presidents, Juscelino Kubitschek and Veronica Bachelet. Regarding specialisation was mostly general medics or they specialised in public health.

  18. Granule Exocytosis Contributes to Priming and Activation of the Human Neutrophil Respiratory Burst

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Luerman, Gregory C.; Barati, Michelle T.; Ward, Richard A.; Nauseef, William M.; McLeish, Kenneth R.

    2013-01-01

    The role of exocytosis in the human neutrophil respiratory burst was determined using a fusion protein (TAT–SNAP-23) containing the HIV transactivator of transcription (TAT) cell-penetrating sequence and the N-terminal SNARE domain of synaptosome-associated protein-23 (SNAP-23). This agent inhibited stimulated exocytosis of secretory vesicles and gelatinase and specific granules but not azurophil granules. GST pulldown showed that TAT–SNAP-23 bound to the combination of vesicle-associated membrane protein-2 and syntaxin-4 but not to either individually. TAT–SNAP-23 reduced phagocytosis-stimulated hydrogen peroxide production by 60% without affecting phagocytosis or generation of HOCl within phagosomes. TAT–SNAP-23 had no effect on fMLF-stimulated superoxide release but significantly inhibited priming of this response by TNF-α and platelet-activating factor. Pretreatment with TAT–SNAP-23 inhibited the increase in plasma membrane expression of gp91phox in TNF-α–primed neutrophils, whereas TNF-α activation of ERK1/2 and p38 MAPK was not affected. The data demonstrate that neutrophil granule exocytosis contributes to phagocytosis-induced respiratory burst activity and plays a critical role in priming of the respiratory burst by increasing expression of membrane components of the NADPH oxidase. PMID:21642540

  19. Overall energy conversion efficiency of a photosynthetic vesicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in amore » quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.« less

  20. Overall energy conversion efficiency of a photosynthetic vesicle

    DOE PAGES

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; ...

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in amore » quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.« less

  1. PGE2 /EP4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles.

    PubMed

    Lin, Meng-Chieh; Chen, Shih-Yin; Tsai, Ho-Min; He, Pei-Lin; Lin, Yen-Chun; Herschman, Harvey; Li, Hua-Jung

    2017-02-01

    Prostaglandin E 2 (PGE 2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE 2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE 2 /prostaglandin E receptor 4 (EP 4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP 4 ) antagonism. EP 4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP 4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP 4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP 4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP 4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE 2 /EP 4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP 4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444. © 2016 The Authors STEM CELLS

  2. Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) and cadmium(II) coordination polymers based on bifunctional 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Na; Guo, Hui-Lin; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN

    2013-02-15

    Five new coordination polymers, [Zn{sub 2}(ctpy){sub 2}Cl{sub 2}]{sub n} (1), [Zn{sub 2}(ctpy){sub 2}(ox)(H{sub 2}O){sub 2}]{sub n} (2), [Zn{sub 2}(ctpy)(3-btc)(H{sub 2}O)]{sub n}{center_dot}0.5nH{sub 2}O (3), [Cd(ctpy){sub 2}(H{sub 2}O)]{sub n} (4), [Cd{sub 4}(ctpy){sub 2}(2-btc){sub 2}(H{sub 2}O){sub 2}]{sub n}{center_dot}2nH{sub 2}O (5), (Hctpy=3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid, H{sub 2}ox=oxalic acid, H{sub 3}(3-btc)=1,3,5-benzenetricarboxylic acid, H{sub 3}(2-btc)=1,2,4-benzenetricarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1-2 are a one-dimensional chain with weak interactions to form 3D supramolecular structures. Compound 3 is a 4-nodal 3D topology framework comprised of binuclear zincmore » units and (ctpy){sup -} anions. Compound 4 shows two dimensional net. Compound 5 is a (4,5,6)-connected framework with {l_brace}4{sup 4}{center_dot}6{sup 2}{r_brace}{l_brace}4{sup 6}{center_dot}6{sup 4}{r_brace}{sub 2}{l_brace}4{sup 9}{center_dot}6{sup 6}{r_brace} topology. In addition, the thermal stabilities and photoluminescence properties of 1-5 were also studied in the solid state. - Graphical abstract: Five new Zn/Cd compounds with 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid were prepared. The photoluminescence and thermal stabilities properties of 1-5 were investigated in the solid state. Highlights: Black-Right-Pointing-Pointer Five new zinc/cadmium metal-organic frameworks have been hydrothermal synthesized. Black-Right-Pointing-Pointer The structural variation is attributed to the diverse metal ions and auxiliary ligand. Black-Right-Pointing-Pointer Compounds 1-5 exhibit 1D ring chain, 2D layer and 3D open-framework, respectively. Black-Right-Pointing-Pointer These compounds exhibit strong solid state luminescence emission at room temperature.« less

  3. Theory of Disk-to-Vesicle Transformation

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  4. Overall energy conversion efficiency of a photosynthetic vesicle

    PubMed Central

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854

  5. Shrink-wrap Vesicles

    PubMed Central

    Fujikawa, Shelly M.; Chen, Irene A.; Szostak, Jack W.

    2008-01-01

    We describe a simple approach to the controlled removal of molecules from the membrane of large unilamellar vesicles made of fatty acids. Such vesicles shrink dramatically upon mixing with micelles composed of a mixture of fatty acid and phospholipid (POPC), as fatty acid molecules leave the vesicle membrane and accumulate within the mixed micelles. Vesicle shrinkage was confirmed by dynamic light scattering, fluorescence recovery after photobleaching of labeled vesicles, and fluorescence resonance energy transfer between lipid dyes incorporated into the vesicle membrane. Most of the encapsulated impermeable solute is retained during shrinkage, becoming concentrated by a factor of at least 50-fold in the final small vesicles. This unprecedented combination of vesicle shrinkage with retention of contents allows for the preparation of small vesicles containing high solute concentrations, and may find applications in liposomal drug delivery. PMID:16342983

  6. On the Computing Potential of Intracellular Vesicles

    PubMed Central

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle ‘programming’ in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  7. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  8. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements.

    PubMed

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  9. The affective regulation of cognitive priming.

    PubMed

    Storbeck, Justin; Clore, Gerald L

    2008-04-01

    Semantic and affective priming are classic effects observed in cognitive and social psychology, respectively. The authors discovered that affect regulates such priming effects. In Experiment 1, positive and negative moods were induced before one of three priming tasks; evaluation, categorization, or lexical decision. As predicted, positive affect led to both affective priming (evaluation task) and semantic priming (category and lexical decision tasks). However, negative affect inhibited such effects. In Experiment 2, participants in their natural affective state completed the same priming tasks as in Experiment 1. As expected, affective priming (evaluation task) and category priming (categorization and lexical decision tasks) were observed in such resting affective states. Hence, the authors conclude that negative affect inhibits semantic and affective priming. These results support recent theoretical models, which suggest that positive affect promotes associations among strong and weak concepts, and that negative affect impairs such associations (Clore & Storbeck, 2006; Kuhl, 2000). (Copyright) 2008 APA.

  10. Kinetic regulation of coated vesicle secretion

    PubMed Central

    Foret, Lionel; Sens, Pierre

    2008-01-01

    The secretion of vesicles for intracellular transport often relies on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the endoplasmic reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behavior, also triggered by factors, such as the presence of cargo and variation of the membrane mechanical tension, allows for efficient regulation of vesicle secretion. We propose a model, supported by different experimental observations, in which vesiculation of secretory membranes is impaired by the energy-consuming desorption of coat proteins, until the presence of cargo or other factors triggers a dynamical switch into a vesicle producing state. PMID:18824695

  11. Seed priming: state of the art and new perspectives.

    PubMed

    Paparella, S; Araújo, S S; Rossi, G; Wijayasinghe, M; Carbonera, D; Balestrazzi, Alma

    2015-08-01

    Priming applied to commercial seed lots is widely used by seed technologists to enhance seed vigour in terms of germination potential and increased stress tolerance. Priming can be also valuable to seed bank operators who need improved protocols of ex situ conservation of germplasm collections (crop and native species). Depending on plant species, seed morphology and physiology, different priming treatments can be applied, all of them triggering the so-called 'pre-germinative metabolism'. This physiological process takes place during early seed imbibition and includes the seed repair response (activation of DNA repair pathways and antioxidant mechanisms), essential to preserve genome integrity, ensuring proper germination and seedling development. The review provides an overview of priming technology, describing the range of physical-chemical and biological treatments currently available. Optimised priming protocols can be designed using the 'hydrotime concept' analysis which provides the theoretical bases for assessing the relationship between water potential and germination rate. Despite the efforts so far reported to further improve seed priming, novel ideas and cutting-edge investigations need to be brought into this technological sector of agri-seed industry. Multidisciplinary translational research combining digital, bioinformatic and molecular tools will significantly contribute to expand the range of priming applications to other relevant commercial sectors, e.g. the native seed market.

  12. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements

    PubMed Central

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E.

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  13. Puzzling Out Synaptic Vesicle 2 Family Members Functions.

    PubMed

    Bartholome, Odile; Van den Ackerveken, Priscilla; Sánchez Gil, Judit; de la Brassinne Bonardeaux, Orianne; Leprince, Pierre; Franzen, Rachelle; Rogister, Bernard

    2017-01-01

    Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer's or Parkinson's disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.

  14. Puzzling Out Synaptic Vesicle 2 Family Members Functions

    PubMed Central

    Bartholome, Odile; Van den Ackerveken, Priscilla; Sánchez Gil, Judit; de la Brassinne Bonardeaux, Orianne; Leprince, Pierre; Franzen, Rachelle; Rogister, Bernard

    2017-01-01

    Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer’s or Parkinson’s disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders. PMID:28588450

  15. Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses

    PubMed Central

    Sinha, Raunak; Ahmed, Saheeb; Jahn, Reinhard; Klingauf, Jurgen

    2011-01-01

    Exocytosis of synaptic vesicles (SVs) during fast synaptic transmission is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly formed by the coil-coiling of three members of this protein family: vesicle SNARE protein, synaptobrevin 2 (syb2), and the presynaptic membrane SNAREs syntaxin-1A and SNAP-25. However, it is controversially debated how many SNARE complexes are minimally needed for SV priming and fusion. To quantify this effective number, we measured the fluorescence responses from single fusing vesicles expressing pHluorin (pHl), a pH-sensitive variant of GFP, fused to the luminal domain of the vesicular SNARE syb2 (spH) in cultured hippocampal neurons lacking endogenous syb2. Fluorescence responses were quantal, with the unitary signals precisely corresponding to single pHluorin molecules. Using this approach we found that two copies of spH per SV fully rescued evoked fusion whereas SVs expressing only one spH were unable to rapidly fuse upon stimulation. Thus, two syb2 molecules and likely two SNARE complexes are necessary and sufficient for SV fusion during fast synaptic transmission. PMID:21844343

  16. Quantal basis of vesicle growth and information content, a unified approach.

    PubMed

    Nitzany, Eyal; Hammel, Ilan; Meilijson, Isaac

    2010-09-07

    Secretory vesicles express a periodic multimodal size distribution. The successive modes are integral multiples of the smallest mode (G(1)). The vesicle content ranges from macromolecules (proteins, mucopolysaccharides and hormones) to low molecular weight molecules (neurotransmitters). A steady-state model has been developed to emulate a mechanism for the introduction of vesicles of monomer size, which grow by a unit addition mechanism, G(1)+G(n)-->G(n+1) which, at a later stage are eliminated from the system. We describe a model of growth and elimination transition rates which adequately illustrates the distributions of vesicle population size at steady-state and upon elimination. Consequently, prediction of normal behavior and pathological perturbations is feasible. Careful analysis of spontaneous secretion, as compared to short burst-induced secretion, suggests that the basic character-code for reliable communication should be within a range of only 8-10 vesicles' burst which may serve as a yes/no message. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Rapid Detection of an ABT-737-Sensitive Primed for Death State in Cells Using Microplate-Based Respirometry

    PubMed Central

    Clerc, Pascaline; Carey, Gregory B.; Mehrabian, Zara; Wei, Michael; Hwang, Hyehyun; Girnun, Geoffrey D.; Chen, Hegang; Martin, Stuart S.; Polster, Brian M.

    2012-01-01

    Cells that exhibit an absolute dependence on the anti-apoptotic BCL-2 protein for survival are termed “primed for death” and are killed by the BCL-2 antagonist ABT-737. Many cancers exhibit a primed phenotype, including some that are resistant to conventional chemotherapy due to high BCL-2 expression. We show here that 1) stable BCL-2 overexpression alone can induce a primed for death state and 2) that an ABT-737-induced loss of functional cytochrome c from the electron transport chain causes a reduction in maximal respiration that is readily detectable by microplate-based respirometry. Stable BCL-2 overexpression sensitized non-tumorigenic MCF10A mammary epithelial cells to ABT-737-induced caspase-dependent apoptosis. Mitochondria within permeabilized BCL-2 overexpressing cells were selectively vulnerable to ABT-737-induced cytochrome c release compared to those from control-transfected cells, consistent with a primed state. ABT-737 treatment caused a dose-dependent impairment of maximal O2 consumption in MCF10A BCL-2 overexpressing cells but not in control-transfected cells or in immortalized mouse embryonic fibroblasts lacking both BAX and BAK. This impairment was rescued by delivering exogenous cytochrome c to mitochondria via saponin-mediated plasma membrane permeabilization. An ABT-737-induced reduction in maximal O2 consumption was also detectable in SP53, JeKo-1, and WEHI-231 B-cell lymphoma cell lines, with sensitivity correlating with BCL-2:MCL-1 ratio and with susceptibility (SP53 and JeKo-1) or resistance (WEHI-231) to ABT-737-induced apoptosis. Multiplexing respirometry assays to ELISA-based determination of cytochrome c redistribution confirmed that respiratory inhibition was associated with cytochrome c release. In summary, cell-based respiration assays were able to rapidly identify a primed for death state in cells with either artificially overexpressed or high endogenous BCL-2. Rapid detection of a primed for death state in individual cancers

  18. Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Oya, Yutaka; Kawakatsu, Toshihiro

    2018-03-01

    We propose a systematic formulation of the migration behaviors of a vesicle in a Poiseuille flow based on Onsager's variational principle, which can be used to determine the most stable steady state. Our model is described by a combination of the phase field theory for the vesicle and the hydrodynamics for the flow field. The dynamics is governed by the bending elastic energy and the dissipation functional, the latter being composed of viscous dissipation of the flow field, dissipation of the bending energy of the vesicle, and the friction between the vesicle and the flow field. We performed a series of simulations on 2-dimensional systems by changing the bending elasticity of the membrane and observed 3 types of steady states, i.e., those with slipper shape, bullet shape, and snaking motion, and a quasi-steady state with zig-zag motion. We show that the transitions among these steady states can be quantitatively explained by evaluating the dissipation functional, which is determined by the competition between the friction on the vesicle surface and the viscous dissipation in the bulk flow.

  19. Topological defects and shapes of triatic liquid crystal vesicles

    NASA Astrophysics Data System (ADS)

    Serafin, Francesco; Manyuhina, Oksana; Bowick, Mark

    Is shape the manifestation of function, or does shape determine function? Since the time of Aristotle, the study of shape has proven to be a fruitful way to understand the behavior of physical systems, from atomic to biological systems scales. Two dimensional soft membranes are a perfect setting to understand the emergence of shape. An interesting possibility is to control and design new self-assemblable supramolecular shapes by coating the surface of soft closed vesicles with liquid crystals (LC) of various symmetries. The microscopic geometry of the liquid crystal molecules, in particular the structure of topological defects, when combined with the topology of the vesicle's surface, ultimately determines the vesicle's shape. Recent work has shown that the minimal energy shapes of smectic and nematic vesicles are faceted polyhedra. A very soft smectic vesicle develops sharp creases and forms a faceted tetrahedron. When the coating LC has the symmetries of the square, the vesicle forms a cube. In this work we extend these results to a 3-fold symmetric LC, proving that the vesicle's ground state is an octahedron. This gives a systematic way of predicting vesicle's shapes as we change the liquid crystal's symmetry. Soft Matter Program of Syracuse University.

  20. Inactivation of the ribonucleoside triphosphate reductase from Lactobacillus leichmannii by 2 prime -chloro-2 prime -deoxyuridine 5 prime -triphosphate: A 3 prime -2 prime hydrogen transfer during the formation of 3 prime -keto-2 prime -deoxyuridine 5 prime -triphosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, G.W.; Harris, G.; Stubbe, J.

    1988-10-04

    The ribonucleoside triphosphate reductase of Lactobacillus leichmannii converts the substrate analogue 2{prime}-chloro-2{prime}-deoxyuridine 5{prime}-triphosphate (C1UTP) into a mixture of 2{prime}-deoxyuridine triphosphate (dUTP) and the unstable product 3{prime}-keto-2{prime}-deoxyuridine triphosphate (3{prime}-keto-dUTP). This ketone can be trapped by reduction with NaBH{sub 4}, producing a 4:1 mixture of xylo-dUTP and dUTP. When (3{prime}-{sup 3}H)C1UTP is treated with enzyme in the presence of NaBH{sub 4}, the isomeric deoxyuridines isolated after alkaline phosphatase treatment retained 15% of the {sup 3}H in C1UTP. Degradation of these isomeric nucleosides has established the location of the {sup 3}H in 3{prime}-keto-dUTP as predominantly 2{prime}(S). The xylo-dU had 98.6% of its labelmore » at the 2{prime}(S) position and 1.5% at 2{prime}(R). The isolated dU had 89.6% of its label at 2{prime}(S) and 1.4% at 2{prime}(R), with the remaining 9% label inferred to be at the 3{prime}-carbon, this resulting from the direct enzymic production of dUTP. These results are consistent with enzymic production of a 1:1,000 mixture of dUTP and 3{prime}-keto-dUTP, where the 3{prime}-hydrogen of C1UTP is retained at 3{prime} during production of dUTP and is transferred to 2{prime}(S) during production of 3{prime}-keto-dUTP. The implications of these results and the unique role of the cofactor adenosylcobalamin are discussed in terms of reductase being a model for the B{sub 12}-dependent rearrangement reactions.« less

  1. The motion of a train of vesicles in channel flow

    NASA Astrophysics Data System (ADS)

    Barakat, Joseph; Shaqfeh, Eric

    2017-11-01

    The inertialess motion of a train of lipid-bilayer vesicles flowing through a channel is simulated using a 3D boundary integral equation method. Steady-state results are reported for vesicles positioned concentrically inside cylindrical channels of circular, square, and rectangular cross sections. The vesicle translational velocity U and excess channel pressure drop Δp+ depend strongly on the ratio of the vesicle radius to the hydraulic radius λ and the vesicle reduced volume υ. ``Deflated vesicles'' of lower reduced volume υ are more streamlined and translate with greater velocity U relative to the mean flow velocity V. Increasing the vesicle size (λ) increases the wall friction force and extra pressure drop Δp+, which in turn reduces the vesicle velocity U. Hydrodynamic interactions between vesicles in a periodic train are largely screened by the channel walls, in accordance with previous results for spheres and drops. The hydraulic resistance is compared across different cross sections, and a simple correction factor is proposed to unify the results. Nonlinear effects are observed when β - the ratio of membrane bending elasticity to viscous traction - is changed. The simulation results show excellent agreement with available experimental measurements as well as a previously reported ``small-gap theory'' valid for large values of λ. NSF CBET 1066263/1066334.

  2. Priming states of mind can affect disclosure of threatening self-information: Effects of self-affirmation, mortality salience, and attachment orientations.

    PubMed

    Davis, Deborah; Soref, Assaf; Villalobos, J Guillermo; Mikulincer, Mario

    2016-08-01

    Interviewers often face respondents reluctant to disclose sensitive, embarrassing or potentially damaging information. We explored effects of priming 5 states of mind on willingness to disclose: including 2 expected to facilitate disclosure (self-affirmation, attachment security), and 3 expected to inhibit disclosure (self-disaffirmation, attachment insecurity, mortality salience). Israeli Jewish participants completed a survey including a manipulation of 1 of these states of mind, followed by questions concerning hostile thoughts and behaviors toward the Israeli Arab outgroup, past minor criminal behaviors, and socially undesirable traits and behaviors. Self-affirmation led to more disclosures of all undesirable behaviors than neutral priming, whereas self-disaffirmation led to less disclosures. Mortality salience led to fewer disclosures of socially undesirable and criminal behaviors compared to neutral priming, but more disclosures of hostile thoughts and behaviors toward Israeli Arabs. Security priming facilitated disclosure of hostile attitudes toward Israeli Arabs. However, neither security nor insecurity priming had any other significant effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites: Part II. Short-range order parameter as a criterion of the distinction between relaxor and normal ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.; Jang, H.M.

    1997-08-01

    A classification scheme of Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites with respect to the B-site order parameters was proposed based on the theoretical calculation of the short-range order parameter ({sigma}) using the pair-correlation model. The calculated order parameters predict that a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskite without any charge difference between B{sup {prime}} and B{sup {prime}{prime}} cations [e.g., Pb(Zr{sub 1/2}Ti{sub 1/2})O{sub 3} (PZT)] is represented by a completely disordered state with the absence of a finite coherence length. On the other hand, a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3} type perovskite system having different ionic charges ismore » characterized either by the short-range ordering with a nanoscale coherence length or by the macroscopic long-range ordering, depending on the magnitude of ionic charge difference between B{sup {prime}} and B{sup {prime}{prime}} ions. The normal ferroelectricity in Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type complex perovskites was then correlated either with a completely disordered state ({sigma}=0) or with a perfectly ordered state ({sigma}=1), whereas the relaxor behavior was attributed to the nanoscale short-range ordering (0{lt}{sigma}{lt}1) in the configuration of the B-site cations. {copyright} {ital 1997 Materials Research Society.}« less

  4. Associative and repetition priming with the repeated masked prime technique: no priming found.

    PubMed

    Avons, S E; Russo, Riccardo; Cinel, Caterina; Verolini, Veronica; Glynn, Kevin; McDonald, Rebecca; Cameron, Marie

    2009-01-01

    Wentura and Frings (2005) reported evidence of subliminal categorical priming on a lexical decision task, using a new method of visual masking in which the prime string consisted of the prime word flanked by random consonants and random letter masks alternated with the prime string on successive refresh cycles. We investigated associative and repetition priming on lexical decision, using the same method of visual masking. Three experiments failed to show any evidence of associative priming, (1) when the prime string was fixed at 10 characters (three to six flanking letters) and (2) when the number of flanking letters were reduced or absent. In all cases, prime detection was at chance level. Strong associative priming was observed with visible unmasked primes, but the addition of flanking letters restricted priming even though prime detection was still high. With repetition priming, no priming effects were found with the repeated masked technique, and prime detection was poor but just above chance levels. We conclude that with repeated masked primes, there is effective visual masking but that associative priming and repetition priming do not occur with experiment-unique prime-target pairs. Explanations for this apparent discrepancy across priming paradigms are discussed. The priming stimuli and prime-target pairs used in this study may be downloaded as supplemental materials from mc.psychonomic-journals.org/content/supplemental.

  5. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  6. Membrane Transport in Isolated Vesicles from Sugarbeet Taproot 1

    PubMed Central

    Briskin, Donald P.; Thornley, W. Robert; Wyse, Roger E.

    1985-01-01

    Sealed membrane vesicles were isolated from homogenates of sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI, and dextran gradient centrifugation. Relative to the KI-extracted microsomes, the content of plasma membranes, mitochondrial membranes, and Golgi membranes was much reduced in the final vesicle fraction. A component of ATPase activity that was inhibited by nitrate co-enriched with the capacity of the vesicles to form a steady state pH gradient during the purification procedure. This suggests that the nitrate-sensitive ATPase may be involved in driving H+-transport, and this is consistent with the observation that H+-transport, in the final vesicle fraction was inhibited by nitrate. Proton transport in the sugarbeet vesicles was substrate specific for ATP, insensitive to sodium vanadate and oligomycin but was inhibited by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide. The formation of a pH gradient in the vesicles was enhanced by halide ions in the sequence I− > Br− > Cl− while F− was inhibitory. These stimulatory effects occur from both a direct stimulation of the ATPase by anions and a reduction in the vesicle membrane potential. In the presence of Cl−, alkali cations reduce the pH gradient relative to that observed with bis-tris-propane, possibly by H+/alkali cation exchange. Based upon the properties of the H+-transporting vesicles, it is proposed that they are most likely derived from the tonoplast so that this vesicle preparation would represent a convenient system for studying the mechanism of transport at this membrane boundary. PMID:16664342

  7. Vesicle Docking Is a Key Target of Local PI(4,5)P2 Metabolism in the Secretory Pathway of INS-1 Cells.

    PubMed

    Ji, Chen; Fan, Fan; Lou, Xuelin

    2017-08-08

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) signaling is transient and spatially confined in live cells. How this pattern of signaling regulates transmitter release and hormone secretion has not been addressed. We devised an optogenetic approach to control PI(4,5)P 2 levels in time and space in insulin-secreting cells. Combining this approach with total internal reflection fluorescence microscopy, we examined individual vesicle-trafficking steps. Unlike long-term PI(4,5)P 2 perturbations, rapid and cell-wide PI(4,5)P 2 reduction in the plasma membrane (PM) strongly inhibits secretion and intracellular Ca 2+ concentration ([Ca 2+ ] i ) responses, but not sytaxin1a clustering. Interestingly, local PI(4,5)P 2 reduction selectively at vesicle docking sites causes remarkable vesicle undocking from the PM without affecting [Ca 2+ ] i . These results highlight a key role of local PI(4,5)P 2 in vesicle tethering and docking, coordinated with its role in priming and fusion. Thus, different spatiotemporal PI(4,5)P 2 signaling regulates distinct steps of vesicle trafficking, and vesicle docking may be a key target of local PI(4,5)P 2 signaling in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.

    PubMed

    Gabriel, N E; Agman, N V; Roberts, M F

    1987-11-17

    Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.

  9. Low-resolution simulations of vesicle suspensions in 2D

    NASA Astrophysics Data System (ADS)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  10. Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes.

    PubMed

    Hoopmann, Peer; Rizzoli, Silvio O; Betz, William J

    2012-01-01

    The synaptic vesicle is the essential organelle of the synapse. Many approaches for studying synaptic vesicle recycling have been devised, one of which, the styryl (FM) dye, is well suited for this purpose. FM dyes reversibly stain, but do not permeate, membranes; hence they can specifically label membrane-bound organelles. Their quantum yield is drastically higher when bound to membranes than when in aqueous solution. This protocol describes the imaging of synaptic vesicle recycling by staining and destaining vesicles with FM dyes. Nerve terminals are stimulated (electrically or by depolarization with high K(+)) in the presence of dye, their vesicles are then allowed to recycle, and finally dye is washed from the chamber. In neuromuscular junction (NMJ) preparations, movements of the muscle must be inhibited if imaging during stimulation is desired (e.g., by application of curare, a potent acetylcholine receptor inhibitor). The main characteristics of FM dyes are also reviewed here, as are recent FM dye monitoring techniques that have been used to investigate the kinetics of synaptic vesicle fusion.

  11. Development and characterization of nanopore system for nano-vesicle analysis

    NASA Astrophysics Data System (ADS)

    Goyal, Gaurav

    Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations < 50 mM. When using low electrolyte strength, surface effects become predominant and resulted in unconventional current signatures in our experiments. It prompted us to explore the effects of different experimental parameters using Multiphysics simulations, in order to optimize our system

  12. Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.

    PubMed

    Komorowski, Karlo; Salditt, Annalena; Xu, Yihui; Yavuz, Halenur; Brennich, Martha; Jahn, Reinhard; Salditt, Tim

    2018-04-24

    We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca 2+ or Mg 2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission

    PubMed Central

    Kavalali, Ege T

    2007-01-01

    Short-term synaptic depression during repetitive activity is a common property of most synapses. Multiple mechanisms contribute to this rapid depression in neurotransmission including a decrease in vesicle fusion probability, inactivation of voltage-gated Ca2+ channels or use-dependent inhibition of release machinery by presynaptic receptors. In addition, synaptic depression can arise from a rapid reduction in the number of vesicles available for release. This reduction can be countered by two sources. One source is replenishment from a set of reserve vesicles. The second source is the reuse of vesicles that have undergone exocytosis and endocytosis. If the synaptic vesicle reuse is fast enough then it can replenish vesicles during a brief burst of action potentials and play a substantial role in regulating the rate of synaptic depression. In the last 5 years, we have examined the impact of synaptic vesicle reuse on neurotransmission using fluorescence imaging of synaptic vesicle trafficking in combination with electrophysiological detection of short-term synaptic plasticity. These studies have revealed that synaptic vesicle reuse shapes the kinetics of short-term synaptic depression in a frequency-dependent manner. In addition, synaptic vesicle recycling helps maintain the level of neurotransmission at steady state. Moreover, our studies showed that synaptic vesicle reuse is a highly plastic process as it varies widely among synapses and can adapt to changes in chronic activity levels. PMID:17690145

  14. Oligomerizations of deoxyadenosine bis-phosphates and of their 3-prime-5-prime, 3-prime-3-prime, and 5-prime-5-prime dimers - Effects of a pyrophosphate-linked, poly(T) analog

    NASA Technical Reports Server (NTRS)

    Visscher, J.; Bakker, C. G.; Schwartz, Alan W.

    1990-01-01

    The effect of a 3-prime-5-prime pyrophosphate-linked oligomer of pTp on oligomerizations of pdAp and of its 3-prime-5-prime, 3-prime-3-prime, and 5-prime-5-prime dimers was investigated, using HPLC to separate the reaction mixtures; peak detection was by absorbance monitoring at 254 nm. It was expected that the dimers would form stable complexes with the template, with the degree of stability depending upon the internal linkage of each dimer. It was found that, although the isomers differ substantially in their oligomerization behavior in the absence of template, the analog-template catalyzes the oligomerization to about the same extent in all three cases.

  15. Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells.

    PubMed

    Xu, Zhuojin; Robitaille, Aaron M; Berndt, Jason D; Davidson, Kathryn C; Fischer, Karin A; Mathieu, Julie; Potter, Jennifer C; Ruohola-Baker, Hannele; Moon, Randall T

    2016-10-18

    In both mice and humans, pluripotent stem cells (PSCs) exist in at least two distinct states of pluripotency, known as the naïve and primed states. Our understanding of the intrinsic and extrinsic factors that enable PSCs to self-renew and to transition between different pluripotent states is important for understanding early development. In mouse embryonic stem cells (mESCs), Wnt proteins stimulate mESC self-renewal and support the naïve state. In human embryonic stem cells (hESCs), Wnt/β-catenin signaling is active in naïve-state hESCs and is reduced or absent in primed-state hESCs. However, the role of Wnt/β-catenin signaling in naïve hESCs remains largely unknown. Here, we demonstrate that inhibition of the secretion of Wnts or inhibition of the stabilization of β-catenin in naïve hESCs reduces cell proliferation and colony formation. Moreover, we show that addition of recombinant Wnt3a partially rescues cell proliferation in naïve hESCs caused by inhibition of Wnt secretion. Notably, inhibition of Wnt/β-catenin signaling in naïve hESCs did not cause differentiation. Instead, it induced primed hESC-like proteomic and metabolic profiles. Thus, our results suggest that naïve hESCs secrete Wnts that activate autocrine or paracrine Wnt/β-catenin signaling to promote efficient self-renewal and inhibit the transition to the primed state.

  16. Membrane damage-induced vesicle–vesicle fusion of dysferlin-containing vesicles in muscle cells requires microtubules and kinesin

    PubMed Central

    McDade, Joel R.; Michele, Daniel E.

    2014-01-01

    Mutations in the dysferlin gene resulting in dysferlin-deficiency lead to limb-girdle muscular dystrophy 2B and Myoshi myopathy in humans. Dysferlin has been proposed as a critical regulator of vesicle-mediated membrane resealing in muscle fibers, and localizes to muscle fiber wounds following sarcolemma damage. Studies in fibroblasts and urchin eggs suggest that trafficking and fusion of intracellular vesicles with the plasma membrane during resealing requires the intracellular cytoskeleton. However, the contribution of dysferlin-containing vesicles to resealing in muscle and the role of the cytoskeleton in regulating dysferlin-containing vesicle biology is unclear. Here, we use live-cell imaging to examine the behavior of dysferlin-containing vesicles following cellular wounding in muscle cells and examine the role of microtubules and kinesin in dysferlin-containing vesicle behavior following wounding. Our data indicate that dysferlin-containing vesicles move along microtubules via the kinesin motor KIF5B in muscle cells. Membrane wounding induces dysferlin-containing vesicle–vesicle fusion and the formation of extremely large cytoplasmic vesicles, and this response depends on both microtubules and functional KIF5B. In non-muscle cell types, lysosomes are critical mediators of membrane resealing, and our data indicate that dysferlin-containing vesicles are capable of fusing with lysosomes following wounding which may contribute to formation of large wound sealing vesicles in muscle cells. Overall, our data provide mechanistic evidence that microtubule-based transport of dysferlin-containing vesicles may be critical for resealing, and highlight a critical role for dysferlin-containing vesicle–vesicle and vesicle–organelle fusion in response to wounding in muscle cells. PMID:24203699

  17. Origins of microstructural transformations in charged vesicle suspensions: the crowding hypothesis.

    PubMed

    Seth, Mansi; Ramachandran, Arun; Murch, Bruce P; Leal, L Gary

    2014-09-02

    It is observed that charged unilamellar vesicles in a suspension can spontaneously deflate and subsequently transition to form bilamellar vesicles, even in the absence of externally applied triggers such as salt or temperature gradients. We provide strong evidence that the driving force for this deflation-induced transition is the repulsive electrostatic pressure between charged vesicles in concentrated suspensions, above a critical effective volume fraction. We use volume fraction measurements and cryogenic transmission electron microscopy imaging to quantitatively follow both the macroscopic and microstructural time-evolution of cationic diC18:1 DEEDMAC vesicle suspensions at different surfactant and salt concentrations. A simple model is developed to estimate the extent of deflation of unilamellar vesicles caused by electrostatic interactions with neighboring vesicles. It is determined that when the effective volume fraction of the suspension exceeds a critical value, charged vesicles in a suspension can experience "crowding" due to overlap of their electrical double layers, which can result in deflation and subsequent microstructural transformations to reduce the effective volume fraction of the suspension. Ordinarily in polydisperse colloidal suspensions, particles interacting via a repulsive potential transform into a glassy state above a critical volume fraction. The behavior of charged vesicle suspensions reported in this paper thus represents a new mechanism for the relaxation of repulsive interactions in crowded situations.

  18. The effect of spontaneous curvature on a two-phase vesicle

    PubMed Central

    Cox, Geoffrey; Lowengrub, John

    2015-01-01

    Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature’s propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. PMID:26097287

  19. Interaction and rheology of vesicle suspensions in confined shear flow

    NASA Astrophysics Data System (ADS)

    Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi

    2017-10-01

    Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.

  20. Irradiation-induced fusion between giant vesicles and photoresponsive large unilamellar vesicles containing malachite green derivative.

    PubMed

    Uda, Ryoko M; Yoshikawa, Yuki; Kitaba, Moe; Nishimoto, Noriko

    2018-07-01

    Light-initiated fusion between vesicles has attracted much attention in the research community. In particular, fusion between photoresponsive and non-photoresponsive vesicles has been of much interest in the development of systems for the delivery of therapeutic agents to cells. We have performed fusion between giant vesicles (GVs) and photoresponsive smaller vesicles containing malachite green (MG) derivative, which undergoes ionization to afford a positive charge on the molecule by irradiation. The fusion proceeds as the concentration of GV lipid increases toward equimolarity with the lipid of the smaller vesicle. It is also dependent on the molar percentage of photoionized MG in the lipid of the smaller vesicle. On the other hand, the fusion is hardly affected by the anionic component of the GV. The photoinduced fusion was characterized by two methods, involving the mixing of lipid membranes and of aqueous contents. Fluorescence microscopy revealed that irradiation triggered the fusion of a single GV with the smaller vesicles containing MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer

    PubMed Central

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M.; Carracedo, Arkaitz

    2016-01-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. PMID:27366992

  2. Masked priming effect reflects evidence accumulated by the prime.

    PubMed

    Kinoshita, Sachiko; Norris, Dennis

    2010-01-01

    In the same-different match task, masked priming is observed with the same responses but not different responses. Norris and Kinoshita's (2008) Bayesian reader account of masked priming explains this pattern based on the same principle as that explaining the absence of priming for nonwords in the lexical decision task. The pattern of priming follows from the way the model makes optimal decisions in the two tasks; priming does not depend on first activating the prime and then the target. An alternative explanation is in terms of a bias towards responding "same" that exactly counters the facilitatory effect of lexical access. The present study tested these two views by varying both the degree to which the prime predicts the response and the visibility of the prime. Unmasked primes produced effects expected from the view that priming is influenced by the degree to which the prime predicts the response. In contrast, with masked primes, the size of priming for the same response was completely unaffected by predictability. These results rule out response bias as an explanation of the absence of masked priming for different responses and, in turn, indicate that masked priming is not a consequence of automatic lexical access of the prime.

  3. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    PubMed

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.

  4. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    PubMed

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide

    NASA Technical Reports Server (NTRS)

    O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.

    1992-01-01

    Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.

  6. Dynamics of small unilamellar vesicles

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ingo; Hoffmann, Claudia; Farago, Bela; Prévost, Sylvain; Gradzielski, Michael

    2018-03-01

    In this paper, we investigate the dynamics of small unilamellar vesicles with the aid of neutron spin-echo spectroscopy. The purpose of this investigation is twofold. On the one hand, we investigate the influence of solubilised cosurfactant on the dynamics of the vesicle's surfactant bilayer. On the other hand, the small unilamellar vesicles used here have a size between larger vesicles, with dynamics being well described by the Zilman-Granek model and smaller microemulsion droplets which can be described by the Milner-Safran model. Therefore, we want to elucidate the question, which model is more suitable for the description of the membrane dynamics of small vesicles, where the finite curvature of the bilayer is felt by the contained amphiphilic molecules. This question is of substantial relevance for our understanding of membranes and how their dynamics is affected by curvature, a problem that is also of key importance in a number of biological questions. Our results indicate the even down to vesicle radii of 20 nm the Zilman-Granek model appears to be the more suitable one.

  7. Effect of Ca2+ on Vesicle Fusion on Solid Surface: An In vitro Model of Protein-Accelerated Vesicle Fusion

    NASA Astrophysics Data System (ADS)

    Shinozaki, Youichi; Siitonen, Ari M.; Sumitomo, Koji; Furukawa, Kazuaki; Torimitsu, Keiichi

    2008-07-01

    Lipid vesicle fusion is an important reaction in the cell. Calcium ions (Ca2+) participate in various important biological events including the fusion of vesicles with cell membranes in cells. We studied the effect of Ca2+ on the fusion of egg yolk phosphatidylcholine/brain phosphatidylserine (eggPC/brainPS) lipid vesicles on a mica substrate with fast scanning atomic force microscopy (AFM). When unattached and unfused lipid vesicles on mica were rinsed away, discrete patches of fused vesicles were observed under high Ca2+ concentrations. At 0 mM Ca2+, lipid vesicles were fused on mica and formed continuous supported lipid bilayers (SLBs) covering almost the entire mica surface. The effect of Ca2+ on SLB formation was offset by a Ca2+ chelating agent. When lipid vesicles were added during AFM observation, vesicles fused on mica and covered almost all areas even under high Ca2+ concentrations. These results indicate that force between AFM tip and vesicles overcomes the Ca2+-reduced fusion of lipid vesicles.

  8. Methods for the physical characterization and quantification of extracellular vesicles in biological samples.

    PubMed

    Rupert, Déborah L M; Claudio, Virginia; Lässer, Cecilia; Bally, Marta

    2017-01-01

    Our body fluids contain a multitude of cell-derived vesicles, secreted by most cell types, commonly referred to as extracellular vesicles. They have attracted considerable attention for their function as intercellular communication vehicles in a broad range of physiological processes and pathological conditions. Extracellular vesicles and especially the smallest type, exosomes, have also generated a lot of excitement in view of their potential as disease biomarkers or as carriers for drug delivery. In this context, state-of-the-art techniques capable of comprehensively characterizing vesicles in biological fluids are urgently needed. This review presents the arsenal of techniques available for quantification and characterization of physical properties of extracellular vesicles, summarizes their working principles, discusses their advantages and limitations and further illustrates their implementation in extracellular vesicle research. The small size and physicochemical heterogeneity of extracellular vesicles make their physical characterization and quantification an extremely challenging task. Currently, structure, size, buoyant density, optical properties and zeta potential have most commonly been studied. The concentration of vesicles in suspension can be expressed in terms of biomolecular or particle content depending on the method at hand. In addition, common quantification methods may either provide a direct quantitative measurement of vesicle concentration or solely allow for relative comparison between samples. The combination of complementary methods capable of detecting, characterizing and quantifying extracellular vesicles at a single particle level promises to provide new exciting insights into their modes of action and to reveal the existence of vesicle subpopulations fulfilling key biological tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Transfer of Oleic Acid between Albumin and Phospholipid Vesicles

    NASA Astrophysics Data System (ADS)

    Hamilton, James A.; Cistola, David P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by 13C NMR spectroscopy and 90% isotopically substituted [1-13C]oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles (vesicles or albumin with oleic acid) and acceptor particles (fatty acid-free albumin or vesicles), the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with >= 80% of the oleic acid associated with albumin at pH 7.4; association was >= 90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin; at pH 5.4, <= 10% of the oleic acid was bound to albumin and >90% was associated with vesicles. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The 13C NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data.

  10. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of

  11. Profiling of Altered Metabolomic States in Nicotiana tabacum Cells Induced by Priming Agents

    PubMed Central

    Mhlongo, Msizi I.; Steenkamp, Paul A.; Piater, Lizelle A.; Madala, Ntakadzeni E.; Dubery, Ian A.

    2016-01-01

    Metabolomics has developed into a valuable tool for advancing our understanding of plant metabolism. Plant innate immune defenses can be activated and enhanced so that, subsequent to being pre-sensitized, plants are able to launch a stronger and faster defense response upon exposure to pathogenic microorganisms, a phenomenon known as priming. Here, three contrasting chemical activators, namely acibenzolar-S-methyl, azelaic acid and riboflavin, were used to induce a primed state in Nicotiana tabacum cells. Identified biomarkers were then compared to responses induced by three phytohormones—abscisic acid, methyljasmonate, and salicylic acid. Altered metabolomes were studied using a metabolite fingerprinting approach based on liquid chromatography and mass spectrometry. Multivariate data models indicated that these inducers cause time-dependent metabolic perturbations in the cultured cells and revealed biomarkers of which the levels are affected by these agents. A total of 34 metabolites were annotated from the mass spectral data and online databases. Venn diagrams were used to identify common biomarkers as well as those unique to a specific agent. Results implicate 20 cinnamic acid derivatives conjugated to (i) quinic acid (chlorogenic acids), (ii) tyramine, (iii) polyamines, or (iv) glucose as discriminatory biomarkers of priming in tobacco cells. Functional roles for most of these metabolites in plant defense responses could thus be proposed. Metabolites induced by the activators belong to the early phenylpropanoid pathway, which indicates that different stimuli can activate similar pathways but with different metabolite fingerprints. Possible linkages to phytohormone-dependent pathways at a metabolomic level were indicated in the case of cells treated with salicylic acid and methyljasmonate. The results contribute to a better understanding of the priming phenomenon and advance our knowledge of cinnamic acid derivatives as versatile defense metabolites. PMID

  12. Ca2+ Dependence of Synaptic Vesicle Endocytosis.

    PubMed

    Leitz, Jeremy; Kavalali, Ege T

    2016-10-01

    Ca(2+)-dependent synaptic vesicle recycling is essential for structural homeostasis of synapses and maintenance of neurotransmission. Although, the executive role of intrasynaptic Ca(2+) transients in synaptic vesicle exocytosis is well established, identifying the exact role of Ca(2+) in endocytosis has been difficult. In some studies, Ca(2+) has been suggested as an essential trigger required to initiate synaptic vesicle retrieval, whereas others manipulating synaptic Ca(2+) concentrations reported a modulatory role for Ca(2+) leading to inhibition or acceleration of endocytosis. Molecular studies of synaptic vesicle endocytosis, on the other hand, have consistently focused on the roles of Ca(2+)-calmodulin dependent phosphatase calcineurin and synaptic vesicle protein synaptotagmin as potential Ca(2+) sensors for endocytosis. Most studies probing the role of Ca(2+) in endocytosis have relied on measurements of synaptic vesicle retrieval after strong stimulation. Strong stimulation paradigms elicit fusion and retrieval of multiple synaptic vesicles and therefore can be affected by several factors besides the kinetics and duration of Ca(2+) signals that include the number of exocytosed vesicles and accumulation of released neurotransmitters thus altering fusion and retrieval processes indirectly via retrograde signaling. Studies monitoring single synaptic vesicle endocytosis may help resolve this conundrum as in these settings the impact of Ca(2+) on synaptic fusion probability can be uncoupled from its putative role on synaptic vesicle retrieval. Future experiments using these single vesicle approaches will help dissect the specific role(s) of Ca(2+) and its sensors in synaptic vesicle endocytosis. © The Author(s) 2015.

  13. Mathematical modeling of vesicle drug delivery systems 2: targeted vesicle interactions with cells, tumors, and the body.

    PubMed

    Ying, Chong T; Wang, Juntian; Lamm, Robert J; Kamei, Daniel T

    2013-02-01

    Vesicles have been studied for several years in their ability to deliver drugs. Mathematical models have much potential in reducing time and resources required to engineer optimal vesicles, and this review article summarizes these models that aid in understanding the ability of targeted vesicles to bind and internalize into cancer cells, diffuse into tumors, and distribute in the body. With regard to binding and internalization, radiolabeling and surface plasmon resonance experiments can be performed to determine optimal vesicle size and the number and type of ligands conjugated. Binding and internalization properties are also inputs into a mathematical model of vesicle diffusion into tumor spheroids, which highlights the importance of the vesicle diffusion coefficient and the binding affinity of the targeting ligand. Biodistribution of vesicles in the body, along with their half-life, can be predicted with compartmental models for pharmacokinetics that include the effect of targeting ligands, and these predictions can be used in conjunction with in vivo models to aid in the design of drug carriers. Mathematical models can prove to be very useful in drug carrier design, and our hope is that this review will encourage more investigators to combine modeling with quantitative experimentation in the field of vesicle-based drug delivery.

  14. Spontaneous charged lipid transfer between lipid vesicles.

    PubMed

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  15. Priming mortality salience: supraliminal, subliminal and "double-death" priming techniques.

    PubMed

    Mahoney, Melissa B; Saunders, Benjamin A; Cain, Nicole M

    2014-01-01

    The study examined whether successively presented subliminal and supraliminal morality salience primes ("double death" prime) would have a stronger influence on death thought accessibility than subliminal or supraliminal primes alone. A between-subjects 2 (subliminal prime/control) × 2 (supraliminal prime/control) design was used. The supraliminal prime prompted participants to answer questions about death. For the subliminal prime, the word death was presented outside of awareness. Both priming techniques differed significantly from a control in ability to elicit mortality salience. There was an interactive influence of both primes. Implications for unconscious neutral networks relating to death are discussed.

  16. Transdermal delivery of flurbiprofen from surfactant-based vesicles: particle characterization and the effect of water on in vitro transport.

    PubMed

    Uchino, Tomonobu; Matsumoto, Yuiko; Murata, Akiko; Oka, Toshihiko; Miyazaki, Yasunori; Kagawa, Yoshiyuki

    2014-04-10

    Flurbiprofen loaded rigid and elastic vesicles comprising the bilayer-forming surfactant sucrose-ester laurate were prepared by the film rehydration and extrusion method. The charge-inducing agent sodium dodecyl sulfate, and the micelle-forming surfactants, sorbitan monolaurate, polyethylene glycol monolaurate, and polysorbate 20, were used to enhance elasticity. Vesicle formulations were evaluated for size, zeta potential, (1)H and (19)F nuclear magnetic resonance (NMR) spectra, and in vitro skin permeation across Yucatan micropig (YMP) skin. Vesicle formulations were stable for 2 weeks and their mean sizes were 95-135 nm. NMR spectroscopy showed that flurbiprofen molecular mobility was restricted by interaction with vesicle components because of entrapment in vesicle bilayers. Moreover, sorbitan monolaurate-containing vesicles strongly retained flurbiprofen molecules. After non-occlusive application to YMP skin, flurbiprofen transport from all vesicle formulations was superior to that of flurbiprofen alone and remarkably decreased after water vaporization. Polarization microscopy and small-angle X-ray diffraction analysis showed that the vesicle formulation was transferred to liquid crystalline state. Suppression of vesicle transition to the liquid crystalline state was observed with applications of both large quantities and diluted samples. The presence of water in the formulations was associated with maintenance of the vesicle structure and greater flurbiprofen transport across YMP skin. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Cathode Priming vs. RF Priming for Relativistic Magnetrons

    NASA Astrophysics Data System (ADS)

    White, W. M.; Spencer, T. A.; Price, D.

    2005-10-01

    Magnetron start-oscillation time, pulsewidth and pi-mode locking are experimentally compared for RF priming versus cathode priming on the Michigan-Titan relativistic magnetron (-300 kV, 2-10 kA, 300-500 ns). Cathode priming [1, 2] is an innovative technique first demonstrated experimentally at UM. In this technique, the cathode is fabricated with N/2 emitting strips or N/2-separate cathodes (for an N-cavity magnetron), which generate the desired number of spokes for pi-mode. Cathode priming yields 13% faster startup with more reproducible pi-mode oscillation. Radio Frequency (RF) priming is investigated as the baseline priming technique for magnetrons. The external priming source is a 100kW, 3μs pulsewidth magnetron on loan from AFRL. RF priming reduced startup delay by 15% and increased pulsewidth by 9%. [1] M.C. Jones, V.B. Neculaes, R.M. Gilgenbach, W.M. White, M.R. Lopez, Y.Y. Lau, T.A. Spencer, and D. Price, Rev. Sci. Inst., 75, 2976 (2004) [2] M.C. Jones, Doctoral Dissertation, University of Michigan, 2005

  18. Vesicles

    MedlinePlus

    ... herpetiformis Chickenpox Contact dermatitis (may be caused by poison ivy) Herpes simplex (cold sores, genital herpes ) Herpes zoster ( ... available for certain conditions that cause vesicles, including poison ivy and cold sores. When to Contact a Medical ...

  19. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  20. Amyloglucosidase enzymatic reactivity inside lipid vesicles

    PubMed Central

    Li, Mian; Hanford, Michael J; Kim, Jin-Woo; Peeples, Tonya L

    2007-01-01

    Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG) (EC 3.2.1.3) from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles (MLVs) and large unilamellar vesicles (LUVs) was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose) formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations. PMID:18271982

  1. Functionalized Vesicles by Microfluidic Device.

    PubMed

    Vallejo, Derek; Lee, Shih-Hui; Lee, Abraham

    2017-01-01

    In recent years, lipid vesicles have become popular vehicles for the creation of biosensors. Vesicles can hold reaction components within a selective permeable membrane that provides an ideal environment for membrane protein biosensing elements. The lipid bilayer allows a protein to retain its native structure and function, and the membrane fluidity can allow for conformational changes and physiological interactions with target analytes. Here, we present two methods for the production of giant unilamellar vesicles (GUVs) within a microfluidic device that can be used as the basis for a biosensor. The vesicles are produced from water-in-oil-in-water (W/O/W) double emulsion templates using a nonvolatile oil phase. To create the GUVs, the oil can be removed via extraction with ethanol, or by altering the interfacial tension between the oil and carrier solution causing the oil to retract into a cap on one side of the structure, leaving behind an exposed lipid bilayer. Methods to integrate sensing elements and membrane protein pores onto the vesicles are also introduced in this work.

  2. Subliminal priming with nearly perfect performance in the prime-classification task.

    PubMed

    Finkbeiner, Matthew

    2011-05-01

    The subliminal priming paradigm is widely used by cognitive scientists, and claims of subliminal perception are common nowadays. Nevertheless, there are still those who remain skeptical. In a recent critique of subliminal priming, Pratte and Rouder (Attention, Perception, & Psychophysics, 71, 1276-1283, 2009) suggested that previous claims of subliminal priming may have been due to a failure to control the task difficulty between the experiment proper and the prime-classification task. Essentially, because the prime-classification task is more difficult than the experiment proper, the prime-classification task results may underrepresent the subjects' true ability to perceive the prime stimuli. To address this possibility, prime words were here presented in color. In the experiment proper, priming was observed. In the prime-classification task, subjects reported the color of the primes very accurately, indicating almost perfect control of task difficulty, but they could not identify the primes. Thus, I conclude that controlling for task difficulty does not eliminate subliminal priming.

  3. Hemifusion and fusion of giant vesicles induced by reduction of inter-membrane distance

    NASA Astrophysics Data System (ADS)

    Heuvingh, J.; Pincet, F.; Cribier, S.

    2004-07-01

    Proteins involved in membrane fusion, such as SNARE or influenza virus hemagglutinin, share the common function of pulling together opposing membranes in closer contact. The reduction of inter-membrane distance can be sufficient to induce a lipid transition phase and thus fusion. We have used functionalized lipids bearing DNA bases as head groups incorporated into giant unilamellar vesicles in order to reproduce the reduction of distance between membranes and to trigger fusion in a model system. In our experiments, two vesicles were isolated and brought into adhesion by the mean of micromanipulation; their evolution was monitored by fluorescence microscopy. Actual fusion only occurred in about 5% of the experiments. In most cases, a state of “hemifusion” is observed and quantified. In this state, the outer leaflets of both vesicles' bilayers merged whereas the inner leaflets and the aqueous inner contents remained independent. The kinetics of the lipid probes redistribution is in good agreement with a diffusion model in which lipids freely diffuse at the circumference of the contact zone between the two vesicles. The minimal density of bridging structures, such as stalks, necessary to explain this redistribution kinetics can be estimated.

  4. DNA-mediated self-assembly of artificial vesicles.

    PubMed

    Hadorn, Maik; Eggenberger Hotz, Peter

    2010-03-26

    Although multicompartment systems made of single unilamellar vesicles offer the potential to outperform single compartment systems widely used in analytic, synthetic, and medical applications, their use has remained marginal to date. On the one hand, this can be attributed to the binary character of the majority of the current tethering protocols that impedes the implementation of real multicomponent or multifunctional systems. On the other hand, the few tethering protocols theoretically providing multicompartment systems composed of several distinct vesicle populations suffer from the readjustment of the vesicle formation procedure as well as from the loss of specificity of the linking mechanism over time. In previous studies, we presented implementations of multicompartment systems and resolved the readjustment of the vesicle formation procedure as well as the loss of specificity by using linkers consisting of biotinylated DNA single strands that were anchored to phospholipid-grafted biotinylated PEG tethers via streptavidin as a connector. The systematic analysis presented herein provides evidences for the incorporation of phospholipid-grafted biotinylated PEG tethers to the vesicle membrane during vesicle formation, providing specific anchoring sites for the streptavidin loading of the vesicle membrane. Furthermore, DNA-mediated vesicle-vesicle self-assembly was found to be sequence-dependent and to depend on the presence of monovalent salts. This study provides a solid basis for the implementation of multi-vesicle assemblies that may affect at least three distinct domains. (i) Analysis. Starting with a minimal system, the complexity of a bottom-up system is increased gradually facilitating the understanding of the components and their interaction. (ii) Synthesis. Consecutive reactions may be implemented in networks of vesicles that outperform current single compartment bioreactors in versatility and productivity. (iii) Personalized medicine. Transport and

  5. Optogenetic Acidification of Synaptic Vesicles and Lysosomes

    PubMed Central

    Grauel, M. Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J.; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2016-01-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes. PMID:26551543

  6. Optogenetic acidification of synaptic vesicles and lysosomes.

    PubMed

    Rost, Benjamin R; Schneider, Franziska; Grauel, M Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2015-12-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes.

  7. Trafficking of astrocytic vesicles in hippocampal slices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potokar, Maja; Kreft, Marko; Celica Biomedical Center, Technology Park 24, 1000 Ljubljana

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing livemore » cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.« less

  8. Effect of thermal noise on vesicles and capsules in shear flow.

    PubMed

    Abreu, David; Seifert, Udo

    2012-07-01

    We add thermal noise consistently to reduced models of undeformable vesicles and capsules in shear flow and derive analytically the corresponding stochastic equations of motion. We calculate the steady-state probability distribution function and construct the corresponding phase diagrams for the different dynamical regimes. For fluid vesicles, we predict that at small shear rates thermal fluctuations induce a tumbling motion for any viscosity contrast. For elastic capsules, due to thermal mixing, an intermittent regime appears in regions where deterministic models predict only pure tank treading or tumbling.

  9. A Phase of Liposomes with Entangled Tubular Vesicles

    NASA Astrophysics Data System (ADS)

    Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.

    1994-11-01

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.

  10. Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2017-07-01

    The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.

  11. Exosome-like vesicles in Gloydius blomhoffii blomhoffii venom.

    PubMed

    Ogawa, Yuko; Kanai-Azuma, Masami; Akimoto, Yoshihiro; Kawakami, Hayato; Yanoshita, Ryohei

    2008-05-01

    Exosomes are small membrane vesicles (30-100 nm) with an endosome-derived limiting membrane that are secreted by a diverse range of cell types. We provide here the first evidence for the presence of exosome-like vesicles in snake venom. We isolated vesicles from fresh venom from Gloydius blomhoffii blomhoffii by gel-filtration. We found that the vesicles showed a typical exosome-like size and morphology as analyzed by electron microscopy. We observed that the vesicles contained dipeptidyl peptidase IV, aminopeptidase A, ecto-5'-nucleotidase and actin. Vesicle preparations truncated bioactive peptides such as angiotensin II, substance P, cholecystokinin-octapeptide, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. The role of these vesicles is still unknown, but they may affect blood pressure and glucose homeostasis following envenomation.

  12. All Prime Contract Awards by State or Country, Place, and Contractor, FY 84. Part 1 (Antigua - Zaire).

    DTIC Science & Technology

    1984-01-01

    AD-RI65 86 ALL PRIME CONTRACT AWARDS BY STATE OR COUNTRY PLACE AND 1/ 9 CONTRACTOR FY 84, (U) WA HINGTON HEADQUARTERS SERVICES (DOD) DC DIRECTORATE...ISPONSORING I8b. OFFICE SYMBOL 9 . PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER *ORGANIZATION I (if applicable) 8c ADDRESS (City, State, and ZIP Code) 10...number) FIELD GROUP SUB-GROUP 9 . ABSTRACT (Continue on reverse if necessary and identify by block number) ....- 00 E / ELEGT F . _,0 ISTRIBUITION

  13. Thermodynamics and kinetics of vesicles formation processes.

    PubMed

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  14. Bioengineering anembryonic human trophoblast vesicles.

    PubMed

    Robins, Jared C; Morgan, Jeffrey R; Krueger, Paula; Carson, Sandra A

    2011-02-01

    Trophoblast cells in vivo form a 3-dimensional structure that promotes complex cell-to-cell interactions that cannot be studied with traditional monolayer culture. We describe a 3-dimensional trophoblast bioreactor to study cellular interactions. Nonadhesive agarose hydrogels were cast from molds using computer-assisted prototyping. Trophoblast cells were seeded into the gels for 10 days. Morphology, viability, and vesicle behavior were assessed. Trophoblast cells formed uniform spheroids. Serial sectioning on days 3, 7, and 10 revealed central vacuolization with a consistent outer rim 12.3-μ thick. The vesicle configuration has been confirmed with confocal imaging. Electron Microscopic (EM) imaging revealed its ultrastructure. The vesicles migrate across a fibronectin-coated surface and invaded basement membrane. Trophoblast cells cultured in a novel substrate-free 3-dimensional system form trophoblast vesicles. This new cell culture technique allows us to better study placental cell-to-cell interactions with the potential of forming microtissues.

  15. Oxygen transfer rate identifies priming compounds in parsley cells.

    PubMed

    Schilling, Jana Viola; Schillheim, Britta; Mahr, Stefan; Reufer, Yannik; Sanjoyo, Sandi; Conrath, Uwe; Büchs, Jochen

    2015-11-25

    In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin

  16. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles.

    PubMed

    Tan, Kok Hian; Tan, Soon Sim; Sze, Siu Kwan; Lee, Wai Kheong Ryan; Ng, Mor Jack; Lim, Sai Kiang

    2014-10-01

    To circumvent the complex protein milieu of plasma and discover robust predictive biomarkers for preeclampsia (PE), we investigate if phospholipid-binding ligands can reduce the milieu complexity by extracting plasma extracellular vesicles for biomarker discovery. Cholera toxin B chain (CTB) and annexin V (AV) which respectively binds GM1 ganglioside and phosphatidylserine were used to isolate extracellular vesicles from plasma of PE patients and healthy pregnant women. The proteins in the vesicles were identified using enzyme-linked immunosorbent assay, antibody array, and mass spectrometry. CTB and AV were found to bind 2 distinct groups of extracellular vesicles. Antibody array and enzyme-linked immunosorbent assay revealed that PE patients had elevated levels of CD105, interleukin-6, placental growth factor, tissue inhibitor of metallopeptidase 1, and atrial natriuretic peptide in cholera toxin B- but not AV-vesicles, and elevated levels of plasminogen activator inhibitor-1, pro-calcitonin, S100b, tumor growth factor β, vascular endothelial growth factor receptor 1, brain natriuretic peptide, and placental growth factor in both cholera toxin B- and AV-vesicles. CD9 level was elevated in cholera toxin B-vesicles but reduced in AV vesicles of PE patients. Proteome analysis revealed that in cholera toxin B-vesicles, 87 and 222 proteins were present only in PE patients and healthy pregnant women respectively while in AV-vesicles, 104 and 157 proteins were present only in PE and healthy pregnant women, respectively. This study demonstrated for the first time that CTB and AV bind unique extracellular vesicles, and their protein cargo reflects the disease state of the patient. The successful use of these 2 ligands to isolate circulating plasma extracellular vesicles for biomarker discovery in PE represents a novel technology for biomarker discovery that can be applied to other specialties. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Extravasation of adhering vesicles

    NASA Astrophysics Data System (ADS)

    Tordeux, C.; Fournier, J.-B.

    2002-12-01

    We study how the passage of lipid vesicles through a small pore can be induced by the difference in non-specific adhesion energy between the two sides of the substrate bearing the pore. This process is inspired from the extravasation of cells or liposomes from blood vessels, which involves adhesion binders. We study the adhesion-dominated regime and we show that the passage of a vesicle of volume V and area A is selective in terms of the reduced volume v ~ V/A3/2. Extravasation occurs for adhesion ratios of order unity. We also consider the possibility of pressure-induced extravasation in the presence of adhesion. Finally, we propose a micro-device based on adhesion-induced extravasation, which is designed to sort vesicles according to their deflatedness.

  18. Elastic energy of polyhedral bilayer vesicles

    PubMed Central

    Haselwandter, Christoph A.; Phillips, Rob

    2011-01-01

    In recent experiments the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron. PMID:21797397

  19. Interaction of prime and target in the subliminal affective priming effect.

    PubMed

    Haneda, Kaoruko; Nomura, Michio; Iidaka, Tetsuya; Ohira, Hideki

    2003-04-01

    It has been found that an emotional stimulus such as a facial expression presented subliminally can affect subsequent information processing and behavior, usually by shifting evaluation of a subsequent stimulus to a valence congruent with the previous stimulus. This phenomenon is called subliminal affective priming. The present study was conducted to replicate and expand previous findings by investigating interaction of primes and targets in the affective priming effect. Two conditions were used. Prime (subliminal presentation 35 msec.) of an angry face of a woman and a No Prime control condition. Just after presentation of the prime, an ambiguous angry face or an emotionally neutral face was presented above the threshold of awareness (500 msec.). 12 female undergraduate women judged categories of facial expressions (Anger, Neutral, or Happiness) for the target faces. Analysis indicated that the Anger primes significantly facilitated judgment of anger for the ambiguous angry faces; however, the priming effect of the Anger primes was not observed for neutral faces. Consequently, the present finding suggested that a subliminal affective priming effect should be more prominent when affective valence of primes and targets is congruent.

  20. Prime Retrieval of Motor Responses in Negative Priming

    ERIC Educational Resources Information Center

    Mayr, Susanne; Buchner, Axel; Dentale, Sandra

    2009-01-01

    Three auditory identification experiments were designed to specify the prime-response retrieval model of negative priming (S. Mayr & A. Buchner, 2006), which assumes that the prime response is retrieved in ignored repetition trials and interferes with probe responding. In Experiment 1, shortly before (in Experiment 1A) or after (in Experiment 1B)…

  1. Fusion of vesicles with the air-water interface: the influence of polar head group, salt concentration, and vesicle size.

    PubMed

    Gugliotti, M; Chaimovich, H; Politi, M J

    2000-02-15

    Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.

  2. Loading capacity and interaction of DNA binding on catanionic vesicles with different cationic surfactants.

    PubMed

    Xu, Lu; Chen, Jingfei; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2014-12-07

    Cationic and anionic (catanionic) vesicles were constructed from the mixtures of sodium laurate (SL) and alkyltrimethylammonium bromide (CnTAB, n = 12, 14, and 16) and were used to control the loading capacity of DNA. The binding saturation point (BSP) of DNA to catanionic vesicles increases with the chain length of cationic surfactants, which is at 1.0, 1.3 and 1.5 for CnTAB with n = 12, 14, and 16, respectively. Our measurements showed that the loading capacity and affinity of DNA can be controlled by catanionic vesicles. It increases with the chain length of cationic surfactants. Because of a large reduction in surface charge density, catanionic vesicles are prone to undergo re-aggregation or fusion with the addition of DNA. DNA molecules can still maintain original coil state during the interaction with catanionic CnTAL vesicles. (1)H NMR data reveals that the obvious dissociation of anionic ions, L(-), from catanionic C14TAL vesicles is due to the interaction with DNA; however, this phenomenon cannot be observed in C12TAB-SL vesicles. Agarose gel electrophoresis (AGE) results demonstrate that the electrostatic interaction between the two oppositely charged cationic and anionic surfactants is stronger than that between DNA and cationic surfactant, CnTAB (n = 12, 14, and 16). Not only is the dissociation of L(-) simply determined by the charge competition, but it also depends largely on the variations in the surface charge density as well as the cationic and anionic surfactant competing ability in geometry configuration of catanionic vesicles. The complicated interaction between DNA and catanionic vesicles induces the deformation of cationic vesicles. Our results should provide clear guidance for choosing more proper vectors for DNA delivery and gene therapy in cell experiments.

  3. Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?

    PubMed

    Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M

    2007-03-01

    Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.

  4. Priming healthy eating. You can't prime all the people all of the time☆

    PubMed Central

    Forwood, Suzanna E.; Ahern, Amy L.; Hollands, Gareth J.; Ng, Yin-Lam; Marteau, Theresa M.

    2015-01-01

    Objective In the context of a food purchasing environment filled with advertising and promotions, and an increased desire from policy makers to guide individuals toward choosing healthier foods, this study tests whether priming methods that use healthy food adverts to increase preference for healthier food generalize to a representative population. MethodsIn two studies (Study 1 n = 143; Study 2 n = 764), participants were randomly allocated to a prime condition, where they viewed fruit and vegetable advertisements, or a control condition, with no advertisements. A subsequent forced choice task assessed preference between fruits and other sweet snacks. Additional measures included current hunger and thirst, dietary restraint, age, gender, education and self-reported weight and height. ResultsIn Study 1, hunger reduced preferences for fruits (OR (95% CI) = 0.38 (0.26–0.56), p < 0.0001), an effect countered by the prime (OR (95% CI) = 2.29 (1.33–3.96), p = 0.003). In Study 2, the effect of the prime did not generalize to a representative population. More educated participants, as used in Study 1, chose more fruit when hungry and primed (OR (95% CI) = 1.42 (1.13–1.79), p = 0.003), while less educated participants' fruit choice was unaffected by hunger or the prime. ConclusionThis study provides preliminary evidence that the effects of adverts on healthy eating choices depend on key individual traits (education level) and states (hunger), do not generalize to a broader population and have the potential to increase health inequalities arising from food choice. PMID:25636234

  5. Priming healthy eating. You can't prime all the people all of the time.

    PubMed

    Forwood, Suzanna E; Ahern, Amy L; Hollands, Gareth J; Ng, Yin-Lam; Marteau, Theresa M

    2015-06-01

    In the context of a food purchasing environment filled with advertising and promotions, and an increased desire from policy makers to guide individuals toward choosing healthier foods, this study tests whether priming methods that use healthy food adverts to increase preference for healthier food generalize to a representative population. In two studies (Study 1 n = 143; Study 2 n = 764), participants were randomly allocated to a prime condition, where they viewed fruit and vegetable advertisements, or a control condition, with no advertisements. A subsequent forced choice task assessed preference between fruits and other sweet snacks. Additional measures included current hunger and thirst, dietary restraint, age, gender, education and self-reported weight and height. In Study 1, hunger reduced preferences for fruits (OR (95% CI) = 0.38 (0.26-0.56), p <0.0001), an effect countered by the prime (OR (95% CI) = 2.29 (1.33-3.96), p = 0.003). In Study 2, the effect of the prime did not generalize to a representative population. More educated participants, as used in Study 1, chose more fruit when hungry and primed (OR (95% CI) = 1.42 (1.13-1.79), p = 0.003), while less educated participants' fruit choice was unaffected by hunger or the prime. This study provides preliminary evidence that the effects of adverts on healthy eating choices depend on key individual traits (education level) and states (hunger), do not generalize to a broader population and have the potential to increase health inequalities arising from food choice. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Vesicles Are Persistent Features of Different Plastids.

    PubMed

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Repetition priming influences distinct brain systems: evidence from task-evoked data and resting-state correlations.

    PubMed

    Wig, Gagan S; Buckner, Randy L; Schacter, Daniel L

    2009-05-01

    Behavioral dissociations suggest that a single experience can separately influence multiple processing components. Here we used a repetition priming functional magnetic resonance imaging paradigm that directly contrasted the effects of stimulus and decision changes to identify the underlying brain systems. Direct repetition of stimulus features caused marked reductions in posterior regions of the inferior temporal lobe that were insensitive to whether the decision was held constant or changed between study and test. By contrast, prefrontal cortex showed repetition effects that were sensitive to the exact stimulus-to-decision mapping. Analysis of resting-state functional connectivity revealed that the dissociated repetition effects are embedded within distinct brain systems. Regions that were sensitive to changes in the stimulus correlated with perceptual cortices, whereas the decision changes attenuated activity in regions correlated with middle-temporal regions and a frontoparietal control system. These results thus explain the long-known dissociation between perceptual and conceptual components of priming by revealing how a single experience can separately influence distinct, concurrently active brain systems.

  8. Interaction of recombinant human epidermal growth factor with phospholipid vesicles. A steady-state and time-resolved fluorescence study of the bis-tryptophan sequence (Trp49-Trp50).

    PubMed

    Li De La Sierra, I M; Vincent, M; Padron, G; Gallay, J

    1992-01-01

    The interaction of recombinant human epidermal growth factor with small unilamellar phospholipid vesicles was studied by steady-state and time-resolved fluorescence of the bis-tryptophan sequence (Trp49-Trp50). Steady-state anisotropy measurements demonstrate that strong binding occurred with small unilamellar vesicles made up of acidic phospholipids at acidic pH only (pH < or = 4.7). An apparent stoichiometry for 1,2-dimyristoyl-sn-phosphoglycerol of about 12 phospholipid molecules per molecule of human epidermal growth factor was estimated. The binding appears to be more efficient at temperatures above the gel to liquid-crystalline phase transition. The conformation and the environment of the Trp-Trp sequence are not greatly modified after binding, as judged from the invariance of the excited state lifetime distribution and from that of the fast processes affecting the anisotropy decay. This suggests that the Trp-Trp sequence is not embedded within the bilayer, in contrast to the situation in surfactant micelles (Mayo et al. 1987; Kohda and Inigaki 1992).

  9. Spontaneous vesicle formation at lipid bilayer membranes.

    PubMed

    Edwards, D A; Schneck, F; Zhang, I; Davis, A M; Chen, H; Langer, R

    1996-09-01

    Unilamellar vesicles are observed to form spontaneously at planar lipid bilayers agitated by exothermic chemical reactions. The membrane-binding reaction between biotin and streptavidin, two strong transmembrane neutralization reactions, and a weak neutralization reaction involving an "antacid" buffer, all lead to spontaneous vesicle formation. This formation is most dramatic when a viscosity differential exists between the two phases bounding the membrane, in which case vesicles appear exclusively in the more viscous phase. A hydrodynamic analysis explains the phenomenon in terms of a membrane flow driven by liberated reaction energy, leading to vesicle formation. These results suggest that energy liberated by intra- and extracellular chemical reactions near or at cell and internal organelle membranes can play an important role in vesicle formation, membrane agitation, or enhanced transmembrane mass transfer.

  10. The effects of divided attention on auditory priming.

    PubMed

    Mulligan, Neil W; Duke, Marquinn; Cooper, Angela W

    2007-09-01

    Traditional theorizing stresses the importance of attentional state during encoding for later memory, based primarily on research with explicit memory. Recent research has begun to investigate the role of attention in implicit memory but has focused almost exclusively on priming in the visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual identification, word-stem completion and word-fragment completion. Participants heard study words under full attention conditions or while simultaneously carrying out a distractor task (the divided attention condition). In Experiment 1, a distractor task with low response frequency failed to disrupt later auditory priming (but diminished explicit memory as assessed with auditory recognition). In Experiment 2, a distractor task with greater response frequency disrupted priming on all three of the auditory priming tasks as well as the explicit test. These results imply that although auditory priming is less reliant on attention than explicit memory, it is still greatly affected by at least some divided-attention manipulations. These results are consistent with research using visual priming tasks and have relevance for hypotheses regarding attention and auditory priming.

  11. Membrane vesicles shed by oligodendroglioma cells induce neuronal apoptosis.

    PubMed

    D'Agostino, Stefania; Salamone, Monica; Di Liegro, Italia; Vittorelli, M Letizia

    2006-11-01

    In order to investigate the mechanism by which oligodendrogliomas cause neuronal damage, media conditioned by G26/24 oligodendroglioma cells, were fractionated into shed vesicles and vesicle-free supernatants, and added to primary cultures of rat fetal cortical neurons. After one night treatment with vesicles, a reproducible, dose-dependent, inhibitory effect on neurite outgrowth was already induced and, after 48-72 h of incubation, neuronal apoptosis was evident. Vesicle-free supernatants and vesicles shed by NIH-3T3 cells had no inhibitory effects on neurons. Western blot analyses showed that treated neurons expressed a decreased amount of neurofilament (NF), growth-associated protein (GAP-43) and microtubule-associated protein (MAP-2). Moreover procaspase-3 and -8 were activated while Bcl-2 expression was reduced. Vesicles were found positive for the proapoptotic molecule, Fas-ligand (Fas-L), and for the B isoform of Nogo protein, a myelin component with inhibitory effects on neurons. Nogo B involvement in the vesicle effects was analyzed both by testing the neutralizing capability of anti-Nogo antibodies and by removing the Nogo receptor from neurons by phospholipase C digestion. These treatments did not revert the vesicle effects. To test the role of Fas-L, vesicles were treated with functional anti-Fas-L monoclonals. Vesicle inhibitory and proapoptotic effects were reduced. Vesicles shed by ovarian carcinoma cells (OvCa), which are known to vehicle biologically active Fas-L, had similar effects on neurons to those of oligodendroglioma vesicles, and their inhibitory effects were also reduced by anti Fas-L antibodies. We therefore conclude that vesicles shed by G26/24 cells induce neuronal apoptosis at least partially by a Fas-L mediated mechanism.

  12. From primed construct to motivated behavior: validation processes in goal pursuit.

    PubMed

    Demarree, Kenneth G; Loersch, Chris; Briñol, Pablo; Petty, Richard E; Payne, B Keith; Rucker, Derek D

    2012-12-01

    Past research has found that primes can automatically initiate unconscious goal striving. Recent models of priming have suggested that this effect can be moderated by validation processes. According to a goal-validation perspective, primes should cause changes in one's motivational state to the extent people have confidence in the prime-related mental content. Across three experiments, we provided the first direct empirical evidence for this goal-validation account. Using a variety of goal priming manipulations (cooperation vs. competition, achievement, and self-improvement vs. saving money) and validity inductions (power, ease, and writing about confidence), we demonstrated that the impact of goal primes on behavior occurs to a greater extent when conditions foster confidence (vs. doubt) in mental contents. Indeed, when conditions foster doubt, goal priming effects are eliminated or counter to the implications of the prime. The implications of these findings for research on goal priming and validation processes are discussed.

  13. Replication of Simulated Prebiotic Amphiphilic Vesicles in a Finite Environment Exhibits Complex Behavior That Includes High Progeny Variability and Competition

    PubMed Central

    Armstrong, Don L.; Lancet, Doron

    2018-01-01

    Abstract We studied the simulated replication and growth of prebiotic vesicles composed of 140 phospholipids and cholesterol using our R-GARD (Real Graded Autocatalysis Replication Domain) formalism that utilizes currently extant lipids that have known rate constants of lipid-vesicle interactions from published experimental data. R-GARD normally modifies kinetic parameters of lipid-vesicle interactions based on vesicle composition and properties. Our original R-GARD model tracked the growth and division of one vesicle at a time in an environment with unlimited lipids at a constant concentration. We explore here a modified model where vesicles compete for a finite supply of lipids. We observed that vesicles exhibit complex behavior including initial fast unrestricted growth, followed by intervesicle competition for diminishing resources, then a second growth burst driven by better-adapted vesicles, and ending with a final steady state. Furthermore, in simulations without kinetic parameter modifications (“invariant kinetics”), the initial replication was an order of magnitude slower, and vesicles' composition variability at the final steady state was much lower. The complex kinetic behavior was not observed either in the previously published R-GARD simulations or in additional simulations presented here with only one lipid component. This demonstrates that both a finite environment (inducing selection) and multiple components (providing variation for selection to act upon) are crucial for portraying evolution-like behavior. Such properties can improve survival in a changing environment by increasing the ability of early protocellular entities to respond to rapid environmental fluctuations likely present during abiogenesis both on Earth and possibly on other planets. This in silico simulation predicts that a relatively simple in vitro chemical system containing only lipid molecules might exhibit properties that are relevant to prebiotic processes. Key Words

  14. The pressure-dependence of the size of extruded vesicles.

    PubMed

    Patty, Philipus J; Frisken, Barbara J

    2003-08-01

    Variations in the size of vesicles formed by extrusion through small pores are discussed in terms of a simple model. Our model predicts that the radius should decrease as the square root of the applied pressure, consistent with data for vesicles extruded under various conditions. The model also predicts dependencies on the pore size used and on the lysis tension of the vesicles being extruded that are consistent with our data. The pore size was varied by using track-etched polycarbonate membranes with average pore diameters ranging from 50 to 200 nm. To vary the lysis tension, vesicles made from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine), mixtures of POPC and cholesterol, and mixtures of POPC and C(16)-ceramide were studied. The lysis tension, as measured by an extrusion-based technique, of POPC:cholesterol vesicles is higher than that of pure POPC vesicles whereas POPC:ceramide vesicles have lower lysis tensions than POPC vesicles.

  15. The Pressure-Dependence of the Size of Extruded Vesicles

    PubMed Central

    Patty, Philipus J.; Frisken, Barbara J.

    2003-01-01

    Variations in the size of vesicles formed by extrusion through small pores are discussed in terms of a simple model. Our model predicts that the radius should decrease as the square root of the applied pressure, consistent with data for vesicles extruded under various conditions. The model also predicts dependencies on the pore size used and on the lysis tension of the vesicles being extruded that are consistent with our data. The pore size was varied by using track-etched polycarbonate membranes with average pore diameters ranging from 50 to 200 nm. To vary the lysis tension, vesicles made from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine), mixtures of POPC and cholesterol, and mixtures of POPC and C16-ceramide were studied. The lysis tension, as measured by an extrusion-based technique, of POPC:cholesterol vesicles is higher than that of pure POPC vesicles whereas POPC:ceramide vesicles have lower lysis tensions than POPC vesicles. PMID:12885646

  16. A kinetic model for chemical neurotransmission

    NASA Astrophysics Data System (ADS)

    Ramirez-Santiago, Guillermo; Martinez-Valencia, Alejandro; Fernandez de Miguel, Francisco

    Recent experimental observations in presynaptic terminals at the neuromuscular junction indicate that there are stereotyped patterns of cooperativeness in the fusion of adjacent vesicles. That is, a vesicle in hemifusion process appears on the side of a fused vesicle and which is followed by another vesicle in a priming state while the next one is in a docking state. In this talk we present a kinetic model for this morphological pattern in which each vesicle state previous to the exocytosis is represented by a kinetic state. This chain states kinetic model can be analyzed by means of a Master equation whose solution is simulated with the stochastic Gillespie algorithm. With this approach we have reproduced the responses to the basal release in the absence of stimulation evoked by the electrical activity and the phenomena of facilitation and depression of neuromuscular synapses. This model offers new perspectives to understand the underlying phenomena in chemical neurotransmission based on molecular interactions that result in the cooperativity between vesicles during neurotransmitter release. DGAPA Grants IN118410 and IN200914 and Conacyt Grant 130031.

  17. Electrohydrodynamics of a compound vesicle under an AC electric field

    NASA Astrophysics Data System (ADS)

    Priti Sinha, Kumari; Thaokar, Rochish M.

    2017-07-01

    Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius λ {{R}o} , is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.

  18. A phase of liposomes with entangled tubular vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiruvolu, S.; Naranjo, E.; Warriner, H.E.

    1994-11-18

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled L{sub tv}, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the L{sub tv} phase coexists with the well-known L{sub 4} phase of spherical vesicles and a bulk L{sub {alpha}} phase. However, the defining characteristic of themore » L{sub tv} phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure. 26 refs., 5 figs.« less

  19. Prime Diagnosticity in Short-Term Repetition Priming: Is Primed Evidence Discounted, Even when It Reliably Indicates the Correct Answer?

    ERIC Educational Resources Information Center

    Weidemann, Christoph T.; Huber, David E.; Shiffrin, Richard M.

    2008-01-01

    The authors conducted 4 repetition priming experiments that manipulated prime duration and prime diagnosticity in a visual forced-choice perceptual identification task. The strength and direction of prime diagnosticity produced marked effects on identification accuracy, but those effects were resistant to subsequent changes of diagnosticity.…

  20. Studies of matrix vesicle-induced mineralization in a gelatin gel

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Boyan, B. D.; Doty, S. B.; Feliciano, A.; Greer, K.; Weiland, D.; Swain, L. D.; Schwartz, Z.

    1992-01-01

    Matrix vesicles isolated from fourth-passage cultures of chondrocytes were tested for their ability to induce hydroxyapatite formation in a gelatin gel in order to gain insight into the function of matrix vesicles in in situ mineralization. These matrix vesicles did not appear to be hydroxyapatite nucleators per se since the extent of mineral accumulation in the gel diffusion system was not altered by the presence of matrix vesicles alone, and in the vesicle containing gels, mineral crystals were formed whether associated with vesicles or not. In gels with these matrix vesicles and beta-glycerophosphate, despite the presence of alkaline phosphatase activity, there was no increase in mineral deposition. This suggested that in the gel system these culture-derived vesicles did not increase local phosphate concentrations. However, when known inhibitors of mineral crystal formation and growth (proteoglycan aggregates [4 mg/ml], or ATP [1 mM], or both proteoglycan and ATP) were included in the gel, more mineral was deposited in gels with the vesicles than in comparable gels without vesicles, indicating that enzymes within these vesicles were functioning to remove the inhibition. These data support the suggestion that one function of the extracellular matrix vesicles is to transport enzymes for matrix modification.

  1. Synaptic vesicle recycling: steps and principles.

    PubMed

    Rizzoli, Silvio O

    2014-04-16

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle.

  2. Synaptic vesicle recycling: steps and principles

    PubMed Central

    Rizzoli, Silvio O

    2014-01-01

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248

  3. The Role of Representation Strength of the Prime in Subliminal Visuomotor Priming.

    PubMed

    Wang, Yongchun; Wang, Yonghui; Liu, Peng; Di, Meilin; Gong, Yanyan; Tan, Mengge

    2017-11-01

    This study investigated the role of representation strength of the prime in subliminal visuomotor priming in two experiments. Prime/target compatibility (compatible and incompatible) and preposed object type (jumbled lines, strong masking; and rectangular outlines, weak masking) were manipulated in Experiment 1. A significant negative compatibility effect (NCE) was observed in the rectangle condition, whereas no compatibility effect was found in the line condition. However, when a new variable, prime duration, was introduced in Experiment 2, the NCE was reversed with an increase in the prime duration in the rectangle condition, whereas the NCE was maintained in the line condition. This result is consistent with the claim that increasing the prime duration causes the prime representation to be too strong for inhibition in the rectangle condition but strong enough to reliably trigger inhibition in the line condition. The findings demonstrated that prime representation has a causal role in subliminal visuomotor priming.

  4. Osmotic shrinkage of giant egg-lecithin vesicles.

    PubMed Central

    Boroske, E; Elwenspoek, M; Helfrich, W

    1981-01-01

    Osmotic shrinkage of giant egg-lecithin vesicles was observed by phase-contrast microscopy. The vesicles remained or became spherical when shrinking. Small and thick-walled vesicles formed visible fingers attached to the sphere. The water permeability of the single bilayer was found to be 41 micrometers/s. A variety of observations indicate that osmosis induces a parallel lipid flow between the monolayers of the bilayer, leading to a strong positive spontaneous curvature. They also suggest the formation of mostly submicroscopic daughter vesicles. The estimated coupling constant, 2 . 10(-6) mol/mol, is large enough to be biologically significant. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:7213933

  5. 5[prime] to 3[prime] nucleic acid synthesis using 3[prime]-photoremovable protecting group

    DOEpatents

    Pirrung, M.C.; Shuey, S.W.; Bradley, J.C.

    1999-06-01

    The present invention relates, in general, to a method of synthesizing a nucleic acid, and, in particular, to a method of effecting 5[prime] to 3[prime] nucleic acid synthesis. The method can be used to prepare arrays of oligomers bound to a support via their 5[prime] end. The invention also relates to a method of effecting mutation analysis using such arrays. The invention further relates to compounds and compositions suitable for use in such methods.

  6. Motor Priming in Neurorehabilitation

    PubMed Central

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2014-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few are practical for the current clinical environment, and the optimal priming modalities for specific clinical presentations are not known. Accordingly, developing an understanding of the various types of motor priming paradigms and their underlying neural mechanisms is an important step for therapists in neurorehabilitation. Most importantly, an understanding of the methods and their underlying mechanisms is essential for optimizing rehabilitation outcomes. The future of neurorehabilitation is likely to include these priming methods, which are delivered prior to or in conjunction with primary neurorehabilitation therapies. In this Special Interest article we discuss those priming paradigms that are supported by the greatest amount of evidence including: (i) stimulation-based priming, (ii) motor imagery and action observation, (iii) sensory priming, (iv) movement-based priming, and (v) pharmacological priming. PMID:25415551

  7. Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles

    PubMed Central

    Ellis, Terri N.; Kuehn, Meta J.

    2010-01-01

    Summary: Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens. PMID:20197500

  8. Relational integrativity of prime-target pairs moderates congruity effects in evaluative priming.

    PubMed

    Ihmels, Max; Freytag, Peter; Fiedler, Klaus; Alexopoulos, Theodore

    2016-05-01

    In evaluative priming, positive or negative primes facilitate reactions to targets that share the same valence. While this effect is commonly explained as reflecting invariant structures in semantic long-term memory or in the sensorimotor system, the present research highlights the role of integrativity in evaluative priming. Integrativity refers to the ease of integrating two concepts into a new meaningful compound representation. In extended material tests using paired comparisons from two pools of positive and negative words, we show that evaluative congruity is highly correlated with integrativity. Therefore, in most priming studies, congruity and integrativity are strongly confounded. When both aspects are disentangled by manipulating congruity and integrativity orthogonally, three priming experiments show that evaluative-priming effects were confined to integrative prime-target pairs. No facilitation of prime-congruent targets was obtained for non-integrative stimuli. These findings are discussed from a broader perspective on priming conceived as flexible, context-dependent, and serving a generative adaptation function.

  9. An Introduction to Project PRIME and CAMPUS MINNESOTA. Project PRIME Report, Number 2.

    ERIC Educational Resources Information Center

    Cordes, David C.

    PRIME is an acronym for Planning Resources in Minnesota Education. The project's primary objective is to test the implementation of CAMPUS (Comprehensive Analytical Methods for Planning University Systems) in one State College, one Junior College, and in one school at the University of Minnesota. The CAMPUS model was developed by the Institute for…

  10. Problems with Primes

    ERIC Educational Resources Information Center

    Melrose, Tim; Scott, Paul

    2005-01-01

    This article discusses prime numbers, defined as integers greater than 1 that are divisible only by only themselves and the number 1. A positive integer greater than 1 that is not a prime is called composite. The number 1 itself is considered neither prime nor composite. As the name suggests, prime numbers are one of the most basic but important…

  11. Bubble-induced microstreaming: guiding and destroying lipid vesicles

    NASA Astrophysics Data System (ADS)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2002-11-01

    Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.

  12. ABC Triblock Copolymer Vesicles with Mesh-like Morphology

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Russell, Thomas; Grason, Gregory

    2010-03-01

    Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.

  13. AC-electric field dependent electroformation of giant lipid vesicles.

    PubMed

    Politano, Timothy J; Froude, Victoria E; Jing, Benxin; Zhu, Yingxi

    2010-08-01

    Giant vesicles of larger than 5 microm, which have been of intense interest for their potential as drug delivery vehicles and as a model system for cell membranes, can be rapidly formed from a spin-coated lipid thin film under an electric field. In this work, we explore the AC-field dependent electroformation of giant lipid vesicles in aqueous media over a wide range of AC-frequency from 1 Hz to 1 MHz and peak-to-peak field strength from 0.212 V/mm to 40 V/mm between two parallel conducting electrode surfaces. By using fluorescence microscopy, we perform in-situ microscopic observations of the structural evolution of giant vesicles formed from spin-coated lipid films under varied uniform AC-electric fields. The real-time observation of bilayer bulging from the lipid film, vesicle growth and fusing further examine the critical role of AC-induced electroosmotic flow of surrounding fluids for giant vesicle formation. A rich AC-frequency and field strength phase diagram is obtained experimentally to predict the AC-electroformation of giant unilamellar vesicles (GUVs) of l-alpha-phosphatidylcholine, where a weak dependence of vesicle size on AC-frequency is observed at low AC-field voltages, showing decreased vesicle size with a narrowed size distribution with increased AC-frequency. Formation of vesicles was shown to be constrained by an upper field strength of 10 V/mm and an upper AC-frequency of 10 kHz. Within these parameters, giant lipid vesicles were formed predominantly unilamellar and prevalent across the entire electrode surfaces. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Dynamics of vesicles in electric fields

    NASA Astrophysics Data System (ADS)

    Vlahovska, Petia; Gracia, Ruben

    2007-11-01

    Electromechanical forces are widely used for cell manipulation. Knowledge of the physical mechanisms underlying the interaction of cells and external fields is essential for practical applications. Vesicles are model cells made of a lipid bilayer membrane. They are examples of ``soft'' particles, i.e., their shape when subjected to flow or electric field is not given a priori but it is governed by the balance of membrane, fluid and electrical stresses. This generic ``softness'' gives rise to a very complex vesicle dynamics in external fields. In an AC electric field, as the frequency is increased, vesicles filled with a fluid less conducting than the surrounding fluid undergo shape transition from prolate to oblate ellipsoids. The opposite effect is observed with drops. We present an electro- hydrodynamic theory based on the leaky dielectric model that quantitatively describes experimental observations. We compare drops and vesicles, and show how their distinct behavior stems from different interfacial properties.

  15. Ultrastructure and biological function of matrix vesicles in bone mineralization.

    PubMed

    Hasegawa, Tomoka

    2018-04-01

    Bone mineralization is initiated by matrix vesicles, small extracellular vesicles secreted by osteoblasts, inducing the nucleation and subsequent growth of calcium phosphate crystals inside. Although calcium ions (Ca 2+ ) are abundant throughout the tissue fluid close to the matrix vesicles, the influx of phosphate ions (PO4 3- ) into matrix vesicles is a critical process mediated by several enzymes and transporters such as ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), ankylosis (ANK), and tissue nonspecific alkaline phosphatase (TNSALP). The catalytic activity of ENPP1 in osteoblasts generates inorganic pyrophosphate (PPi) intracellularly and extracellularly, and ANK may allow the intracellular PPi to pass through the plasma membrane to the outside of the osteoblasts. Although the extracellular PPi binds to growing hydroxyapatite crystals to prevent crystal overgrowth, TNSALP on the osteoblasts and matrix vesicles hydrolyzes PPi into PO4 3- monomers: the prevention of crystal growth is blocked, and PO4 3- monomers are supplied to matrix vesicles. In addition, PHOSPHO1 is thought to function inside matrix vesicles to catalyze phosphocoline, a constituent of the plasma membrane, consequently increasing PO4 3- in the vesicles. Accumulation of Ca 2+ and PO4 3- inside the matrix vesicles then initiates crystalline nucleation associated with the inner leaflet of the matrix vesicles. Calcium phosphate crystals elongate radially, penetrate the matrix vesicle's membrane, and finally grow out of the vesicles to form calcifying nodules, globular assemblies of needle-shaped mineral crystals retaining some of those transporters and enzymes. The subsequent growth of calcifying nodules appears to be regulated by surrounding organic compounds, finally leading to collagen mineralization.

  16. Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping.

    PubMed

    Jørgensen, Malene; Bæk, Rikke; Pedersen, Shona; Søndergaard, Evo K L; Kristensen, Søren R; Varming, Kim

    2013-01-01

    Exosomes are one of the several types of cell-derived vesicles with a diameter of 30-100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define their phenotype and determine their concentration in biological fluids. To identify circulating as well as cell culture-derived vesicles, the current standard is immunoblotting or a flow cytometrical analysis for specific proteins, both of which requires large amounts of purified vesicles. Based on the technology of protein microarray, we hereby present a highly sensitive Extracellular Vesicle (EV) Array capable of detecting and phenotyping exosomes and other extracellular vesicles from unpurified starting material in a high-throughput manner. To only detect the exosomes captured on the EV Array, a cocktail of antibodies against the tetraspanins CD9, CD63 and CD81 was used. These antibodies were selected to ensure that all exosomes captured are detected, and concomitantly excluding the detection of other types of microvesicles. The limit of detection (LOD) was determined on exosomes derived from the colon cancer cell line LS180. It clarified that supernatant from only approximately 10(4) cells was needed to obtain signals or that only 2.5×10(4) exosomes were required for each microarray spot (~1 nL). Phenotyping was performed on plasma (1-10 µL) from 7 healthy donors, which were applied to the EV Array with a panel of antibodies against 21 different cellular surface antigens and cancer antigens. For each donor, there was considerable heterogeneity in the expression levels of individual markers. The protein profiles of the exosomes (defined as positive for CD9, CD63 and CD81) revealed that only the expression level of CD9 and CD81 was approximately equal in the 7 donors. This implies questioning the use of CD63 as a standard exosomal marker since the expression level of this

  17. Synaptic vesicle distribution by conveyor belt.

    PubMed

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S; Tang, Hui; McGurren, Kelly A; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have distinct capability for renal repair, but may have safety concerns. MSC-derived extracellular vesicles emerged as a novel noncellular alternative. Using a porcine model of metabolic syndrome and renal artery stenosis we tested whether extracellular vesicles attenuate renal inflammation, and if this capacity is mediated by their cargo of the anti-inflammatory cytokine interleukin (IL) 10. Pigs with metabolic syndrome were studied after 16 weeks of renal artery stenosis untreated or treated four weeks earlier with a single intrarenal delivery of extracellular vesicles harvested from adipose tissue-derived autologous MSCs. Lean and sham metabolic syndrome animals served as controls (seven each). Five additional pigs with metabolic syndrome and renal artery stenosis received extracellular vesicles with pre-silenced IL10 (IL10 knock-down). Single-kidney renal blood flow, glomerular filtration rate, and oxygenation were studied in vivo and renal injury pathways ex vivo. Retention of extracellular vesicles in the stenotic kidney peaked two days after delivery and decreased thereafter. Four weeks after injection, extracellular vesicle fragments colocalized with stenotic-kidney tubular cells and macrophages, indicating internalization or fusion. Extracellular vesicle delivery attenuated renal inflammation, and improved medullary oxygenation and fibrosis. Renal blood flow and glomerular filtration rate fell in metabolic syndrome and renal artery stenosis compared to metabolic syndrome, but was restored in pigs treated with extracellular vesicles. These renoprotective effects were blunted in pigs treated with IL10-depleted extracellular vesicles. Thus, extracellular vesicle-based regenerative strategies might be useful for patients with metabolic syndrome and renal artery stenosis. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Effect of vesicle size on the prodan fluorescence in diheptadecanoylphosphatidylcholine bilayer membrane under atmospheric and high pressures.

    PubMed

    Goto, Masaki; Sawaguchi, Hiroshi; Tamai, Nobutake; Matsuki, Hitoshi; Kaneshina, Shoji

    2010-08-17

    The bilayer phase behavior of diheptadecanoylphosphatidylcholine (C17PC) with different vesicle sizes (large multilamellar vesicle (LMV) and giant multilamellar vesicle (GMV)) was investigated by fluorescence spectroscopy using a polarity-sensitive fluorescent probe Prodan under atmospheric and high pressures. The difference in phase transitions and thermodynamic quantities of the transition was hardly observed between LMV and GMV used here. On the contrary, the Prodan fluorescence in the bilayer membranes changed depending on the size of vesicles as well as on the phase states. From the second derivative of fluorescence spectra, the three-dimensional image plots in which we can see the location of Prodan in the bilayer membrane as blue valleys were constructed for LMV and GMV under atmospheric pressure. The following characteristic behavior was found: (1) the Prodan molecules in GMV can be distributed to not only adjacent glycerol backbone region, but also near bulk-water region in the lamellar gel or ripple gel phase; (2) the blue valleys of GMV became deeper than those of LMV because of the greater surface density of the Prodan molecules per unit area of GMV than LMV; (3) the liquid crystalline phase of the bilayer excludes the Prodan molecules to a more hydrophilic region at the membrane surface with an increase in vesicle size; (4) the accurate information as to the phase transitions is gradually lost with increasing vesicle size. Under the high-pressure condition, the difference in Prodan fluorescence between LMV and GMV was essentially the same as the difference under atmospheric pressure except for the existence of the pressure-induced interdigitated gel phase. Further, we found that Prodan fluorescence spectra in the interdigitated gel phase were especially affected by the size of vesicles. This study revealed that the Prodan molecules can move around the headgroup region by responding not only to the phase state but also to the vesicle size, and they

  20. Novel interactions of CAPS (Ca2+-dependent activator protein for secretion) with the three neuronal SNARE proteins required for vesicle fusion.

    PubMed

    Daily, Neil J; Boswell, Kristin L; James, Declan J; Martin, Thomas F J

    2010-11-12

    CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca(2+)-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis.

  1. Novel Interactions of CAPS (Ca2+-dependent Activator Protein for Secretion) with the Three Neuronal SNARE Proteins Required for Vesicle Fusion*

    PubMed Central

    Daily, Neil J.; Boswell, Kristin L.; James, Declan J.; Martin, Thomas F. J.

    2010-01-01

    CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca2+-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis. PMID:20826818

  2. Metal Sorbing Vesicles: Light Scattering Characterization and Metal Sorbtion Behavior.

    NASA Astrophysics Data System (ADS)

    van Zanten, John Hollis

    1992-01-01

    The research described herein consisted of two parts: light scattering characterization of vesicles and kinetic investigations of metal sorbing vesicles. Static light scattering techniques can be used to determine the geometric size, shape and apparent molecular weight of phosphatidylcholine vesicles in aqueous suspension. A Rayleigh-Gans-Debye (RGD) approximation analysis of multiangle scattered light intensity data yields the size and degree of polydispersity of the vesicles in solution, while the Zimm plot technique provides the radius of gyration and apparent weight-average molecular weight. Together the RGD approximation and Zimm plots can be used to confirm the geometric shape of vesicles and can give a good estimate of the vesicle wall thickness in some cases. Vesicles varying from 40 to 115 nm in diameter have been characterized effectively. The static light scattering measurements indicate that, as expected, phosphatidylcholine vesicles in this size range scatter light as isotropic hollow spheres. Additionally, static and dynamic light scattering measurements have been made and compared with one another. The values for geometric radii determined by static light scattering typically agree with those estimated by dynamic light scattering to within a few percent. Interestingly however, dynamic measurements suggest that there is a significant degree of polydispersity present in the vesicle dispersions, while static measurements indicate near size monodisperse dispersions. Metal sorbing vesicles which harbor ionophores, such as antibiotic A23187 and synthetic carriers, in their bilayer membranes have been produced. These vesicles also encapsulate the chelating compound, nitrilotriacetate, to provide the driving force for metal ion uptake. Very dilute dispersions (on the order of 0.03% w/v) of these metal sorbing vesicles were capable of removing Cd ^{2+} and Pb^{2+ } from dilute aqueous solution (5 ppm and less) and concentrating these metal ions several

  3. Formation and size distribution of self-assembled vesicles

    PubMed Central

    Huang, Changjin; Quinn, David; Suresh, Subra

    2017-01-01

    When detergents and phospholipid membranes are dispersed in aqueous solutions, they tend to self-assemble into vesicles of various shapes and sizes by virtue of their hydrophobic and hydrophilic segments. A clearer understanding of such vesiculation processes holds promise for better elucidation of human physiology and disease, and paves the way to improved diagnostics, drug development, and drug delivery. Here we present a detailed analysis of the energetics and thermodynamics of vesiculation by recourse to nonlinear elasticity, taking into account large deformation that may arise during the vesiculation process. The effects of membrane size, spontaneous curvature, and membrane stiffness on vesiculation and vesicle size distribution were investigated, and the critical size for vesicle formation was determined and found to compare favorably with available experimental evidence. Our analysis also showed that the critical membrane size for spontaneous vesiculation was correlated with membrane thickness, and further illustrated how the combined effects of membrane thickness and physical properties influenced the size, shape, and distribution of vesicles. These findings shed light on the formation of physiological extracellular vesicles, such as exosomes. The findings also suggest pathways for manipulating the size, shape, distribution, and physical properties of synthetic vesicles, with potential applications in vesicle physiology, the pathobiology of cancer and other diseases, diagnostics using in vivo liquid biopsy, and drug delivery methods. PMID:28265065

  4. Primary vesicles, vesicle-rich segregation structures and recognition of primary and secondary porosities in lava flows from the Paraná igneous province, southern Brazil

    NASA Astrophysics Data System (ADS)

    Barreto, Carla Joana S.; de Lima, Evandro F.; Goldberg, Karin

    2017-04-01

    This study focuses on a volcanic succession of pāhoehoe to rubbly lavas of the Paraná-Etendeka Province exposed in a single road profile in southernmost Brazil. This work provides an integrated approach for examining primary vesicles and vesicle-rich segregation structures at the mesoscopic scale. In addition, this study provides a quantitative analysis of pore types in thin section. We documented distinct distribution patterns of vesicle and vesicle-rich segregation structures according to lava thickness. In compound pāhoehoe lavas, the cooling allows only vesicles (<1 cm size) and pipe vesicles to be frozen into place. In inflated pāhoehoe lavas, vesicles of different sizes are common, including pipe vesicles, and also segregation structures such as proto-cylinders, cylinders, cylinder sheets, vesicle sheets, and pods. In rubbly lavas, only vesicles of varying sizes occur. Gas release from melt caused the formation of primary porosity, while hydrothermal alteration and tectonic fracturing are the main processes that generated secondary porosity. Although several forms of porosity were created in the basaltic lava flows, the precipitation of secondary minerals within the pores has tended to reduce the original porosities. Late-stage fractures could create efficient channel networks for possible hydrocarbon/groundwater migration and entrapment owing to their ability to connect single pores. Quantitative permeability data should be gathered in future studies to confirm the potential of these lavas for store hydrocarbons or groundwater.

  5. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends

    PubMed Central

    Konoshenko, Maria Yu.; Laktionov, Pavel P.

    2018-01-01

    Background Extracellular vesicles (EVs) play an essential role in the communication between cells and transport of diagnostically significant molecules. A wide diversity of approaches utilizing different biochemical properties of EVs and a lack of accepted protocols make data interpretation very challenging. Scope of Review This review consolidates the data on the classical and state-of-the-art methods for isolation of EVs, including exosomes, highlighting the advantages and disadvantages of each method. Various characteristics of individual methods, including isolation efficiency, EV yield, properties of isolated EVs, and labor consumption are compared. Major Conclusions A mixed population of vesicles is obtained in most studies of EVs for all used isolation methods. The properties of an analyzed sample should be taken into account when planning an experiment aimed at studying and using these vesicles. The problem of adequate EVs isolation methods still remains; it might not be possible to develop a universal EV isolation method but the available protocols can be used towards solving particular types of problems. General Significance With the wide use of EVs for diagnosis and therapy of various diseases the evaluation of existing methods for EV isolation is one of the key problems in modern biology and medicine. PMID:29662902

  6. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressuremore » and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment.« less

  7. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials

    DOE PAGES

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; ...

    2014-10-15

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressuremore » and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment.« less

  8. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials

    PubMed Central

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-01-01

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment. DOI: http://dx.doi.org/10.7554/eLife.03695.001 PMID:25318069

  9. Reversed Priming Effects May Be Driven by Misperception Rather than Subliminal Processing.

    PubMed

    Sand, Anders

    2016-01-01

    A new paradigm for investigating whether a cognitive process is independent of perception was recently suggested. In the paradigm, primes are shown at an intermediate signal strength that leads to trial-to-trial and inter-individual variability in prime perception. Here, I used this paradigm and an objective measure of perception to assess the influence of prime identification responses on Stroop priming. I found that sensory states producing correct and incorrect prime identification responses were also associated with qualitatively different priming effects. Incorrect prime identification responses were associated with reversed priming effects but in contrast to previous studies, I interpret this to result from the (mis-)perception of primes rather than from a subliminal process. Furthermore, the intermediate signal strength also produced inter-individual variability in prime perception that strongly influenced priming effects: only participants who on average perceived the primes were Stroop primed. I discuss how this new paradigm, with a wide range of d' values, is more appropriate when regression analysis on inter-individual identification performance is used to investigate perception-dependent processing. The results of this study, in line with previous results, suggest that drawing conclusions about subliminal processes based on data averaged over individuals may be unwarranted.

  10. Reversed Priming Effects May Be Driven by Misperception Rather than Subliminal Processing

    PubMed Central

    Sand, Anders

    2016-01-01

    A new paradigm for investigating whether a cognitive process is independent of perception was recently suggested. In the paradigm, primes are shown at an intermediate signal strength that leads to trial-to-trial and inter-individual variability in prime perception. Here, I used this paradigm and an objective measure of perception to assess the influence of prime identification responses on Stroop priming. I found that sensory states producing correct and incorrect prime identification responses were also associated with qualitatively different priming effects. Incorrect prime identification responses were associated with reversed priming effects but in contrast to previous studies, I interpret this to result from the (mis-)perception of primes rather than from a subliminal process. Furthermore, the intermediate signal strength also produced inter-individual variability in prime perception that strongly influenced priming effects: only participants who on average perceived the primes were Stroop primed. I discuss how this new paradigm, with a wide range of d′ values, is more appropriate when regression analysis on inter-individual identification performance is used to investigate perception-dependent processing. The results of this study, in line with previous results, suggest that drawing conclusions about subliminal processes based on data averaged over individuals may be unwarranted. PMID:26925016

  11. Deformation of phospholipid vesicles in an optical stretcher.

    PubMed

    Delabre, Ulysse; Feld, Kasper; Crespo, Eleonore; Whyte, Graeme; Sykes, Cecile; Seifert, Udo; Guck, Jochen

    2015-08-14

    Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelengths, optically induced mechanical stresses and temperature increase can be tuned fairly independently with a single setup. The phase transition temperature of vesicles can be clearly identified by an increase in deformation. In the case of no heating effects, a minimal model for drop deformation in an optical stretcher and a more specific model for vesicle deformation that takes explicitly into account the angular dependence of the optical stress are presented to account for the experimental results. Elastic constants are extracted from the fitting procedures, which agree with literature data. This study demonstrates the utility of optical stretching, which is easily combined with microfluidic delivery, for the future serial, high-throughput study of the mechanical and thermodynamic properties of phospholipid vesicles.

  12. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    PubMed

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  13. Haloarchaea and the Formation of Gas Vesicles

    PubMed Central

    Pfeifer, Felicitas

    2015-01-01

    Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes. PMID:25648404

  14. Diffusion behavior of lipid vesicles in entangled polymer solutions.

    PubMed Central

    Cao, X; Bansil, R; Gantz, D; Moore, E W; Niu, N; Afdhal, N H

    1997-01-01

    Dynamic light scattering was used to follow the tracer diffusion of phospholipid/cholesterol vesicles in aqueous polyacrylamide solutions and compared with the diffusive behavior of polystyrene (PS) latex spheres of comparable diameters. Over the range of the matrix concentration examined (Cp = 0.1-10 mg/ml), the diffusivities of the PS spheres and the large multilamellar vesicles exhibited the Stokes-Einstein (SE) relation, while the diffusivity of the unilamellar vesicles did not follow the increase of the solution's viscosity caused by the presence of the matrix molecules. The difference between the diffusion behaviors of unilamellar vesicles and hard PS spheres of similar size is possibly due to the flexibility of the lipid bilayer of the vesicles. The unilamellar vesicles are capable of changing their shape to move through the entangled polymer solution so that the hindrance to their diffusion due to the presence of the polymer chains is reduced, while the rigid PS spheres have little flexibility and they encounter greater resistance. The multilamellar vesicles are less flexible, thus their diffusion is similar to the hard PS spheres of similar diameter. Images FIGURE 2 PMID:9336189

  15. Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles.

    PubMed

    Dufes, Christine; Muller, Jean-Marc; Couet, William; Olivier, Jean-Christophe; Uchegbu, Ijeoma F; Schätzlein, Andreas G

    2004-01-01

    The study reports the initial biological evaluation of targeted polymeric glycol chitosan vesicles as carrier systems for doxorubicin (Dox). Transferrin (Tf) was covalently bound to the Dox-loaded palmitoylated glycol chitosan (GCP) vesicles using dimethylsuberimidate (DMSI). For comparison, glucose targeted niosomes were prepared using N-palmitoyl glucosamine. Biological properties were studied using confocal microscopy, flow cytometry, and cytotoxicity assays as well as a mouse xenograft model. Tf vesicles were taken up rapidly with a plateau after 1-2 h and Dox reached the nucleus after 60-90 min. Uptake was not increased with the use of glucose ligands, but higher uptake and increased cytotoxicity were observed for Tf targeted as compared to GCP Dox alone. In the drug-resistant A2780AD cells and in A431 cells, the relative increase in activity was significantly higher for the Tf-GCP vesicles than would have been expected from the uptake studies. All vesicle formulations had a superior in vivo safety profile compared to the free drug. The in vitro advantage of targeted Tf vesicles did not translate into a therapeutic advantage in vivo. All vesicles reduced tumor size on day 2 but were overall less active than the free drug.

  16. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.

    PubMed

    Lötvall, Jan; Hill, Andrew F; Hochberg, Fred; Buzás, Edit I; Di Vizio, Dolores; Gardiner, Christopher; Gho, Yong Song; Kurochkin, Igor V; Mathivanan, Suresh; Quesenberry, Peter; Sahoo, Susmita; Tahara, Hidetoshi; Wauben, Marca H; Witwer, Kenneth W; Théry, Clotilde

    2014-01-01

    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.

  17. Sculpting and fusing biomimetic vesicle networks using optical tweezers.

    PubMed

    Bolognesi, Guido; Friddin, Mark S; Salehi-Reyhani, Ali; Barlow, Nathan E; Brooks, Nicholas J; Ces, Oscar; Elani, Yuval

    2018-05-14

    Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components.

  18. Associative polymers bridging between layers of multilamellar vesicles.

    NASA Astrophysics Data System (ADS)

    Choi, Seo; Bhatia, Surita

    2006-03-01

    Multilamellar vesicles can be found in a variety of pharmaceutical formulations, personal care products, and home care products. Hydrophobically modified associative polymers are often used to stabilize the vesicles or to control the rheological properties of these formulations. The hydrophobic groups are expected to insert themselves into the vesicle bilayers. Recent experimental work shows that hydrophobically modified polymers may from bridges between vesicles or may bridge between layers of a single vesicle. The latter configuration forces an interlayer spacing roughly equal to the radius of gyration of the backbone between associative groups. We have performed simple mean-field calculations on ideal telechelic associative polymers between concentric spherical surfaces. We find that the free energy per chain has an attractive minimum when the layer spacing is approximately N^1/2l, which is consistent with experimental results. The depth of the minimum depends on both chain length and curvature, and as expected when the curvature becomes small, the result for telechelic chains between flat surfaces is recovered.

  19. Non-cognate translation priming in masked priming lexical decision experiments: A meta-analysis.

    PubMed

    Wen, Yun; van Heuven, Walter J B

    2017-06-01

    The masked translation priming paradigm has been widely used in the last 25 years to investigate word processing in bilinguals. Motivated by studies reporting mixed findings, in particular for second language (L2) to first language (L1) translation priming, we conducted, for the first time in the literature, a meta-analysis of 64 masked priming lexical decision experiments across 24 studies to assess the effect sizes of L1-L2 and L2-L1 non-cognate translation priming effects in bilinguals. Our meta-analysis also investigated the influence of potential moderators of translation priming effects. The results provided clear evidence of significant translation priming effects for both directions, with L1-L2 translation priming significantly larger than L2-L1 translation priming (i.e., effect size of 0.86 vs. 0.31). The analyses also revealed that L1-L2 translation effect sizes were moderated by the interval between prime and target (ISI), whereas L2-L1 translation effect sizes were modulated by the number of items per cell. Theoretical and methodological implications of this meta-analysis are discussed and recommendations for future studies are provided.

  20. Vesicle Pool Size at the Salamander Cone Ribbon Synapse

    PubMed Central

    Bartoletti, Theodore M.; Babai, Norbert

    2010-01-01

    Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizontal or off bipolar cells in the salamander retinal slice preparation. We found that properties of spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are representative of mEPSCs evoked by depolarizing presynaptic stimulation. Strong, brief depolarization of the cone stimulated release of the entire rapidly releasable pool (RRP) of vesicles. Comparing charge transfer of the EPSC with mEPSC charge transfer, we determined that the fast component of the EPSC reflects release of ∼40 vesicles. Comparing EPSCs with simultaneous presynaptic capacitance measurements, we found that horizontal cell EPSCs constitute 14% of the total number of vesicles released from a cone terminal. Using a fluorescent ribeye-binding peptide, we counted ∼13 ribbons per cone. Together, these results suggest each cone contacts a single horizontal cell at ∼2 ribbons. The size of discrete components in the EPSC amplitude histogram also suggested ∼2 ribbon contacts per cell pair. We therefore conclude there are ∼20 vesicles per ribbon in the RRP, similar to the number of vesicles contacting the plasma membrane at the ribbon base. EPSCs evoked by lengthy depolarization suggest a reserve pool of ∼90 vesicles per ribbon, similar to the number of additional docking sites further up the ribbon. PMID:19923246

  1. Release of outer membrane vesicles from Bordetella pertussis.

    PubMed

    Hozbor, D; Rodriguez, M E; Fernández, J; Lagares, A; Guiso, N; Yantorno, O

    1999-05-01

    The aim of the study reported here was to investigate the production of Bordetella pertussis outer membrane vesicles (OMVs). Numerous vesicles released from cells grown in Stainer-Scholte liquid medium were observed. The formation of similar vesicle-like structures could also be artificially induced by sonication of concentrated bacterial suspensions. Immunoblot analysis showed that OMVs contain adenylate cyclase-hemolysin (AC-Hly), among other polypeptides, as well as the lipopolysaccharide (LPS). Experiments carried out employing purified AC-Hly and OMVs isolated from B. pertussis AC-Hly- showed that AC-Hly is an integral component of the vesicles. OMVs reported here contain several protective immunogens and might be considered a possible basic material for the development of acellular pertussis vaccines.

  2. Plasma membrane aquaporins mediates vesicle stability in broccoli

    PubMed Central

    Martínez-Ballesta, Maria del Carmen; García-Gomez, Pablo; Yepes-Molina, Lucía; Guarnizo, Angel L.; Teruel, José A.

    2018-01-01

    The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability. PMID:29420651

  3. Yeast Membrane Vesicles: Isolation and General Characteristics1

    PubMed Central

    Christensen, Michael S.; Cirillo, Vincent P.

    1972-01-01

    Yeast membrane vesicles are formed when packed yeast are ground manually in a porcelain mortar and pestle with glass beads (0.2 mm diameter). These vesicles can be separated from the other components of the grinding mixture by a combination of centrifugation steps and elution from a column of the same glass beads (0.2 mm diameter). Isolated vesicles are osmotically sensitive, contain cytoplasmic components, and have energy-independent transport function. They are unable to metabolize glucose, but have respiratory function which is thought to be associated with intravesicular mitochondria. Invertase and oligomycin-insensitive adenosine triphosphatase are present in lysed vesicle preparations, and the appropriateness of these enzyme activities as membrane markers is discussed. Images PMID:4337848

  4. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    PubMed Central

    Rey, Stephanie A.; Smith, Catherine A.; Fowler, Milena W.; Crawford, Freya; Burden, Jemima J.; Staras, Kevin

    2015-01-01

    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution. PMID:26292808

  5. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, G.B.; Block, E.R.

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxicmore » (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.« less

  6. Reading a standing wave: figure-ground-alternation masking of primes in evaluative priming.

    PubMed

    Bermeitinger, Christina; Kuhlmann, Michael; Wentura, Dirk

    2012-09-01

    We propose a new masking technique for masking word stimuli. Drawing on the phenomena of metacontrast and paracontrast, we alternately presented two prime displays of the same word with the background color in one display matching the font color in the other display and vice versa. The sequence of twenty alterations (spanning approx. 267 ms) was sandwich-masked by structure masks. Using this masking technique, we conducted evaluative priming experiments with positive and negative target and prime words. Significant priming effects were found - for primes and targets drawn from the same as well as from different word sets. Priming effects were independent of prime discrimination performance in direct tests and they were still significant after the sample was restricted to those participants who showed random responding in the direct test. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Magnetic vesicles as MRI-trackable biogenic nanovectors

    NASA Astrophysics Data System (ADS)

    Andriola Silva, Amanda K.; Luciani, Nathalie; Gazeau, Florence; Wilhelm, Claire

    2012-03-01

    Magnetic labeling renders cells MRI-detectable which provides attractive solutions for tracking the fate of a transplanted cell population. Understanding the interplay of magnetic nanoparticles and cells is then an important point that should not be neglected. Here we show that in the condition of food starvation, macrophage cells emit vesicles containing nanoparticles. First, we inferred the intracellular iron oxide load from the magnetophoretic velocity of cells at a calibrated magnetic field gradient. After magnetic labeling and culture in stress conditions, the intracellular iron oxide load was once more determined and a detectable difference was observed before and after stress. Moreover, we identified in the stress conditioned medium membrane vesicle structures carrying magnetic particles. Besides pointing out the role of cell-derived vesicles in the sequestration of the intracellular magnetic label, experiments also demonstrated that vesicles were able to chaperone the magnetic cargo into naïve cells.

  8. CO2-filled vesicles in mid-ocean basalt

    USGS Publications Warehouse

    Moore, J.G.; Batchelder, J.N.; Cunningham, C.G.

    1977-01-01

    Volatile-filled vesicles are present in minor amounts in all samples of mid-ocean basalt yet collected (and presumably erupted) down to depths of 4.8 km. When such vesicles are pierced in liquid under standard conditions, the volume expansion of the gas is 0.2 ?? 0.05 times the eruption pressure in bars or 20 ?? 5 times the eruption depth in km. Such expansion could be used as a measure of eruption depth. A variety of techniques: (1) vacuum crushing and gas chromatographic, freezing separation, and mass spectrographic analyses; (2) measurements of phase changes on a freezing microscope stage; (3) microscopic chemical and solubility observations; and (4) volume change measurements, all indicate that CO2 comprises more than 95% by volume of the vesicle gas in several submarine basalt samples from the Atlantic and Pacific. The CO2 held in vesicles is present in quantities about equal to or greater than that presumed to be dissolved in the glass (melt) and amounts to 400-900 ppm of the rock. The rigid temperature of the glass is 800-1000??C and increases for shallower samples. A sulfur gas was originally present in subordinate amounts in the vesicles, but has largely reacted with iron in the vesicle walls to produce sulfide spherules. ?? 1977.

  9. Studies of vesicle distribution patterns in Hawaiian lavas

    NASA Technical Reports Server (NTRS)

    Walker, George P. L.

    1987-01-01

    Basaltic lava flows are generally vesicular, and the broader facts relating to vesicle distribution have long been established; few studies have yet been made with a view to determining how and when vesicles form in the cooling history of the lava, explaining vesicle shape and size distribution, and gaining enough understanding to employ vesicles as a geological tool. Various avenues of approach exist by which one may seek to gain a better understanding of these ubiquitous structures and make a start towards developing a general theory, and three such avenues have recently been explored. One avenue involves the study of pipe vesicles; these are a well known feature of lava flows and are narrow pipes which occur near the base of many pahoehoe flow units. Another avenue of approach is that presented by the distinctive spongy pahoehoe facies of lava that is common in distal locations on Hawaiian volcanoes. A third avenue of approach is that of the study of gas blisters in lava. Gas blisters are voids, which can be as much as tens of meters wide, where the lava split along a vesicle-rich layer and the roof up-arched by gas pressure. These three avenues are briefly discussed.

  10. Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons.

    PubMed

    Villarreal, Seth; Lee, Sung Hoon; Wu, Ling-Gang

    2017-09-04

    During endocytosis, fused synaptic vesicles are retrieved at nerve terminals, allowing for vesicle recycling and thus the maintenance of synaptic transmission during repetitive nerve firing. Impaired endocytosis in pathological conditions leads to decreases in synaptic strength and brain functions. Here, we describe methods used to measure synaptic vesicle endocytosis at the mammalian hippocampal synapse in neuronal culture. We monitored synaptic vesicle protein endocytosis by fusing a synaptic vesicular membrane protein, including synaptophysin and VAMP2/synaptobrevin, at the vesicular lumenal side, with pHluorin, a pH-sensitive green fluorescent protein that increases its fluorescence intensity as the pH increases. During exocytosis, vesicular lumen pH increases, whereas during endocytosis vesicular lumen pH is re-acidified. Thus, an increase of pHluorin fluorescence intensity indicates fusion, whereas a decrease indicates endocytosis of the labelled synaptic vesicle protein. In addition to using the pHluorin imaging method to record endocytosis, we monitored vesicular membrane endocytosis by electron microscopy (EM) measurements of Horseradish peroxidase (HRP) uptake by vesicles. Finally, we monitored the formation of nerve terminal membrane pits at various times after high potassium-induced depolarization. The time course of HRP uptake and membrane pit formation indicates the time course of endocytosis.

  11. Active elastohydrodynamics of vesicles in narrow blind constrictions

    NASA Astrophysics Data System (ADS)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  12. CTP:phosphocholine cytidylyltransferase binds anionic phospholipid vesicles in a cross-bridging mode.

    PubMed

    Taneva, Svetla G; Patty, Philipus J; Frisken, Barbara J; Cornell, Rosemary B

    2005-07-05

    CTP:phosphocholine cytidylyltransferase (CCT) catalyzes the rate-limiting step in phosphatidylcholine (PC) synthesis, and its activity is regulated by reversible association with membranes, mediated by an amphipathic helical domain M. Here we describe a new feature of the CCTalpha isoform, vesicle tethering. We show, using dynamic light scattering and transmission electron microscopy, that dimers of CCTalpha can cross-bridge separate vesicles to promote vesicle aggregation. The vesicles contained either class I activators (anionic phospholipids) or the less potent class II activators, which favor nonlamellar phase formation. CCT increased the apparent hydrodynamic radius and polydispersity of anionic phospholipid vesicles even at low CCT concentrations corresponding to only one or two dimers per vesicle. Electron micrographs of negatively stained phosphatidylglycerol (PG) vesicles confirmed CCT-mediated vesicle aggregation. CCT conjugated to colloidal gold accumulated on the vesicle surfaces and in areas of vesicle-vesicle contact. PG vesicle aggregation required both the membrane-binding domain and the intact CCT dimer, suggesting binding of CCT to apposed membranes via the two M domains situated on opposite sides of the dimerization domain. In contrast to the effects on anionic phospholipid vesicles, CCT did not induce aggregation of PC vesicles containing the class II lipids, oleic acid, diacylglycerol, or phosphatidylethanolamine. The different behavior of the two lipid classes reflected differences in measured binding affinity, with only strongly binding phospholipid vesicles being susceptible to CCT-induced aggregation. Our findings suggest a new model for CCTalpha domain organization and membrane interaction, and a potential involvement of the enzyme in cellular events that implicate close apposition of membranes.

  13. Physical determinants of vesicle mobility and supply at a central synapse

    PubMed Central

    Rothman, Jason Seth; Kocsis, Laszlo; Herzog, Etienne; Nusser, Zoltan; Silver, Robin Angus

    2016-01-01

    Encoding continuous sensory variables requires sustained synaptic signalling. At several sensory synapses, rapid vesicle supply is achieved via highly mobile vesicles and specialized ribbon structures, but how this is achieved at central synapses without ribbons is unclear. Here we examine vesicle mobility at excitatory cerebellar mossy fibre synapses which sustain transmission over a broad frequency bandwidth. Fluorescent recovery after photobleaching in slices from VGLUT1Venus knock-in mice reveal 75% of VGLUT1-containing vesicles have a high mobility, comparable to that at ribbon synapses. Experimentally constrained models establish hydrodynamic interactions and vesicle collisions are major determinants of vesicle mobility in crowded presynaptic terminals. Moreover, models incorporating 3D reconstructions of vesicle clouds near active zones (AZs) predict the measured releasable pool size and replenishment rate from the reserve pool. They also show that while vesicle reloading at AZs is not diffusion-limited at the onset of release, diffusion limits vesicle reloading during sustained high-frequency signalling. DOI: http://dx.doi.org/10.7554/eLife.15133.001 PMID:27542193

  14. Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field

    PubMed Central

    Yoshina-Ishii, Chiaki; Boxer, Steven G.

    2008-01-01

    We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833

  15. RF Priming Experiments and Simulations of Magnetic Priming in Relativistic Magnetrons

    NASA Astrophysics Data System (ADS)

    White, W. M.; Gilgenbach, R. M.; Jones, M. C.; Neculaes, V. B.; Lau, Y. Y.; Jordan, N.; Pengvanich, P.; Edgar, R.; Hoff, B.; Spencer, T. A.; Price, D.

    2004-11-01

    We investigate 2 priming techniques in relativistic magnetrons for rapid startup and mode-locking: RF priming experiments with 0.1-1 MW from a 2nd magnetron; Magnetic-priming simulations by azimuthally-varying-axial magnetic field. Experiments utilize MELBA-C with a Titan 6-vane magnetron: V = -300kV, I = 1-10kA, e-beam T = 0.5 μs, microwave power = 100-500 MW, f= 1-1.3 GHz, base vacuum= 8.5 x 10-10 Torr. The AFRL RF priming magnetron is at 0.1-2 MW, 3 μsec, 1.27-1.32 GHz. About 0.2-0.3 MW is injected into 1 of 3 open coupling slots in the relativistic magnetron. Analysis of the relativistic magnetron's microwave output shows a clear effect of RF priming. Simulations of magnetic priming in the pi-mode are run in MAGIC code by imposing N/2 azimuthal-variations in the axial magnetic field of an N-vane magnetron. Faster startup and mode-locking are simulated by rapid-electron spoke formation and excitation of RF fields.

  16. Feruloyl Dioleoyglycerol Antioxidant Capacity in Phospholipid Vesicles

    USDA-ARS?s Scientific Manuscript database

    Ferulic acid and its esters are known to be effective antioxidants. Feruloyl dioleoylglycerol was assessed for its ability to serve as an antioxidant in model membrane phospholipid vesicles. The molecule was incorporated into single-lamellar vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine at ...

  17. Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria

    PubMed Central

    Tashiro, Yosuke; Monson, Rita E.; Ramsay, Joshua P.

    2016-01-01

    Summary Different modes of bacterial taxis play important roles in environmental adaptation, survival, colonization and dissemination of disease. One mode of taxis is flotation due to the production of gas vesicles. Gas vesicles are proteinaceous intracellular organelles, permeable only to gas, that enable flotation in aquatic niches. Gene clusters for gas vesicle biosynthesis are partially conserved in various archaea, cyanobacteria, and some proteobacteria, such as the enterobacterium, S erratia sp. ATCC 39006 (S39006). Here we present the first systematic analysis of the genes required to produce gas vesicles in S39006, identifying how this differs from the archaeon H alobacterium salinarum. We define 11 proteins essential for gas vesicle production. Mutation of gvpN or gvpV produced small bicone gas vesicles, suggesting that the cognate proteins are involved in the morphogenetic assembly pathway from bicones to mature cylindrical forms. Using volumetric compression, gas vesicles were shown to comprise 17% of S39006 cells, whereas in E scherichia coli heterologously expressing the gas vesicle cluster in a deregulated environment, gas vesicles can occupy around half of cellular volume. Gas vesicle production in S39006 and E . coli was exploited to calculate the instantaneous turgor pressure within cultured bacterial cells; the first time this has been performed in either strain. PMID:26743231

  18. Early steps of supported bilayer formation probed by single vesicle fluorescence assays.

    PubMed Central

    Johnson, Joseph M; Ha, Taekjip; Chu, Steve; Boxer, Steven G

    2002-01-01

    We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles. PMID:12496104

  19. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    PubMed Central

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge. PMID:27989272

  20. Indole is an essential herbivore-induced volatile priming signal in maize

    PubMed Central

    Erb, Matthias; Veyrat, Nathalie; Robert, Christelle A. M.; Xu, Hao; Frey, Monika; Ton, Jurriaan; Turlings, Ted C. J.

    2015-01-01

    Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that indole may be involved in airborne priming. Using indole-deficient mutants and synthetic indole dispensers, we show that herbivore-induced indole enhances the induction of defensive volatiles in neighbouring maize plants in a species-specific manner. Furthermore, the release of indole is essential for priming of mono- and homoterpenes in systemic leaves of attacked plants. Indole exposure markedly increases the herbivore-induced production of the stress hormones jasmonate-isoleucine conjugate and abscisic acid, which represents a likely mechanism for indole-dependent priming. These results demonstrate that indole functions as a rapid and potent aerial priming agent that prepares systemic tissues and neighbouring plants for incoming attacks. PMID:25683900

  1. ABC triblock copolymer vesicles with mesh-like morphology.

    PubMed

    Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P

    2011-01-25

    Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.

  2. A Paradox of Syntactic Priming: Why Response Tendencies Show Priming for Passives, and Response Latencies Show Priming for Actives

    PubMed Central

    Segaert, Katrien; Menenti, Laura; Weber, Kirsten; Hagoort, Peter

    2011-01-01

    Speakers tend to repeat syntactic structures across sentences, a phenomenon called syntactic priming. Although it has been suggested that repeating syntactic structures should result in speeded responses, previous research has focused on effects in response tendencies. We investigated syntactic priming effects simultaneously in response tendencies and response latencies for active and passive transitive sentences in a picture description task. In Experiment 1, there were priming effects in response tendencies for passives and in response latencies for actives. However, when participants' pre-existing preference for actives was altered in Experiment 2, syntactic priming occurred for both actives and passives in response tendencies as well as in response latencies. This is the first investigation of the effects of structure frequency on both response tendencies and latencies in syntactic priming. We discuss the implications of these data for current theories of syntactic processing. PMID:22022352

  3. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    PubMed Central

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  4. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis

    PubMed Central

    Dragovic, Rebecca A.; Gardiner, Christopher; Brooks, Alexandra S.; Tannetta, Dionne S.; Ferguson, David J.P.; Hole, Patrick; Carr, Bob; Redman, Christopher W.G.; Harris, Adrian L.; Dobson, Peter J.; Harrison, Paul; Sargent, Ian L.

    2011-01-01

    Cellular microvesicles and nanovesicles (exosomes) are involved in many disease processes and have major potential as biomarkers. However, developments in this area are constrained by limitations in the technology available for their measurement. Here we report on the use of fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles. In this system vesicles are visualized by light scattering using a light microscope. A video is taken, and the NTA software tracks the brownian motion of individual vesicles and calculates their size and total concentration. Using human placental vesicles and plasma, we have demonstrated that NTA can measure cellular vesicles as small as ∼50 nm and is far more sensitive than conventional flow cytometry (lower limit ∼300 nm). By combining NTA with fluorescence measurement we have demonstrated that vesicles can be labeled with specific antibody-conjugated quantum dots, allowing their phenotype to be determined. From the Clinical Editor The authors of this study utilized fluorescence nanoparticle tracking analysis (NTA) to rapidly size and phenotype cellular vesicles, demonstrating that NTA is far more sensitive than conventional flow cytometry. PMID:21601655

  5. Emerging therapeutic delivery capabilities and challenges utilizing enzyme/protein packaged bacterial vesicles.

    PubMed

    Alves, Nathan J; Turner, Kendrick B; Medintz, Igor L; Walper, Scott A

    2015-07-01

    Nanoparticle-based therapeutics are poised to play a critical role in treating disease. These complex multifunctional drug delivery vehicles provide for the passive and active targeted delivery of numerous small molecule, peptide and protein-derived pharmaceuticals. This article will first discuss some of the current state of the art nanoparticle classes (dendrimers, lipid-based, polymeric and inorganic), highlighting benefits/drawbacks associated with their implementation. We will then discuss an emerging class of nanoparticle therapeutics, bacterial outer membrane vesicles, that can provide many of the nanoparticle benefits while simplifying assembly. Through molecular biology techniques; outer membrane vesicle hijacking potentially allows for stringent control over nanoparticle production allowing for targeted protein packaged nanoparticles to be fully synthesized by bacteria.

  6. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.

    PubMed

    Liu, Shu; Hossinger, André; Hofmann, Julia P; Denner, Philip; Vorberg, Ina M

    2016-07-12

    Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. Prions are proteinaceous infectious particles that propagate by templating their quaternary structure onto nascent proteins of the same kind. Prions in yeast act as heritable epigenetic elements that can alter the phenotype when transmitted to daughter cells or during mating. Prion activity is conferred by so-called prion domains often enriched in glutamine and asparagine residues. Interestingly, many mammalian proteins also contain domains with compositional similarity to yeast prion domains. We have recently provided a proof-of-principle demonstration that a yeast prion domain also retains its prion activity in mammalian cells. We demonstrate here that cytosolic prions composed of a yeast prion domain are

  7. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β.

    PubMed

    Pieters, Bartijn C H; Arntz, Onno J; Bennink, Miranda B; Broeren, Mathijs G A; van Caam, Arjan P M; Koenders, Marije I; van Lent, Peter L E M; van den Berg, Wim B; de Vries, Marieke; van der Kraan, Peter M; van de Loo, Fons A J

    2015-01-01

    Extracellular vesicles, including exosomes, have been identified in all biological fluids and rediscovered as an important part of the intercellular communication. Breast milk also contains extracellular vesicles and the proposed biological function is to enhance the antimicrobial defense in newborns. It is, however, unknown whether extracellular vesicles are still present in commercial milk and, more importantly, whether they retained their bioactivity. Here, we characterize the extracellular vesicles present in semi-skimmed cow milk available for consumers and study their effect on T cells. Extracellular vesicles from commercial milk were isolated and characterized. Milk-derived extracellular vesicles contained several immunomodulating miRNAs and membrane protein CD63, characteristics of exosomes. In contrast to RAW 267.4 derived extracellular vesicles the milk-derived extracellular vesicles were extremely stable under degrading conditions, including low pH, boiling and freezing. Milk-derived extracellular vesicles were easily taken up by murine macrophages in vitro. Furthermore, we found that they can facilitate T cell differentiation towards the pathogenic Th17 lineage. Using a (CAGA)12-luc reporter assay we showed that these extracellular vesicles carried bioactive TGF-β, and that anti-TGF-β antibodies blocked Th17 differentiation. Our findings show that commercial milk contains stable extracellular vesicles, including exosomes, and carry immunoregulatory cargo. These data suggest that the extracellular vesicles present in commercial cow milk remains intact in the gastrointestinal tract and exert an immunoregulatory effect.

  8. Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools

    PubMed Central

    Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan

    2016-01-01

    The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila. We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. SIGNIFICANCE STATEMENT Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for

  9. Regulated Production of Mineralization-competent Matrix Vesicles in Hypertrophic Chondrocytes

    PubMed Central

    Kirsch, Thorsten; Nah, Hyun-Duck; Shapiro, Irving M.; Pacifici, Maurizio

    1997-01-01

    Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells are structurally and functionally different from those released by nonmineralizing cells. To test this hypothesis, we made use of cultures of chick embryonic hypertrophic chondrocytes in which mineralization was triggered by treatment with vitamin C and phosphate. Ultrastructural analysis revealed that both control nonmineralizing and vitamin C/phosphatetreated mineralizing chondrocytes produced and released matrix vesicles that exhibited similar round shape, smooth contour, and average size. However, unlike control vesicles, those produced by mineralizing chondrocytes had very strong alkaline phosphatase activity and contained annexin V, a membrane-associated protein known to mediate Ca2+ influx into matrix vesicles. Strikingly, these vesicles also formed numerous apatite-like crystals upon incubation with synthetic cartilage lymph, while control vesicles failed to do so. Northern blot and immunohistochemical analyses showed that the production and release of annexin V-rich matrix vesicles by mineralizing chondrocytes were accompanied by a marked increase in annexin V expression and, interestingly, were followed by increased expression of type I collagen. Studies on embryonic cartilages demonstrated a similar sequence of phenotypic changes during the mineralization process in vivo. Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro–osseous mineralizing border exhibited expression of both annexin V and type I collagen. These findings reveal that

  10. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes

    NASA Astrophysics Data System (ADS)

    Kamiya, Koki; Kawano, Ryuji; Osaki, Toshihisa; Akiyoshi, Kazunari; Takeuchi, Shoji

    2016-09-01

    Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid-lipid and lipid-membrane protein interactions involved in the regulation of cellular functions.

  11. Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

    PubMed Central

    2010-01-01

    A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. PMID:21886342

  12. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT

    PubMed Central

    Aguilar, Jenny I.; Dunn, Matthew; Mingote, Susana; Karam, Caline S.; Farino, Zachary J.; Sonders, Mark S.; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J.; McCabe, Brian D.; Mosharov, Eugene V.; Krantz, David E.; Javitch, Jonathan A.; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-01-01

    SUMMARY The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. PMID:28823729

  13. Subliminal semantic priming in speech.

    PubMed

    Daltrozzo, Jérôme; Signoret, Carine; Tillmann, Barbara; Perrin, Fabien

    2011-01-01

    Numerous studies have reported subliminal repetition and semantic priming in the visual modality. We transferred this paradigm to the auditory modality. Prime awareness was manipulated by a reduction of sound intensity level. Uncategorized prime words (according to a post-test) were followed by semantically related, unrelated, or repeated target words (presented without intensity reduction) and participants performed a lexical decision task (LDT). Participants with slower reaction times in the LDT showed semantic priming (faster reaction times for semantically related compared to unrelated targets) and negative repetition priming (slower reaction times for repeated compared to semantically related targets). This is the first report of semantic priming in the auditory modality without conscious categorization of the prime.

  14. Subliminal Semantic Priming in Speech

    PubMed Central

    Tillmann, Barbara; Perrin, Fabien

    2011-01-01

    Numerous studies have reported subliminal repetition and semantic priming in the visual modality. We transferred this paradigm to the auditory modality. Prime awareness was manipulated by a reduction of sound intensity level. Uncategorized prime words (according to a post-test) were followed by semantically related, unrelated, or repeated target words (presented without intensity reduction) and participants performed a lexical decision task (LDT). Participants with slower reaction times in the LDT showed semantic priming (faster reaction times for semantically related compared to unrelated targets) and negative repetition priming (slower reaction times for repeated compared to semantically related targets). This is the first report of semantic priming in the auditory modality without conscious categorization of the prime. PMID:21655277

  15. Activation of calcineurin by phosphotidylserine containing vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Politino, M.; King, M.M.

    1986-05-01

    Calcineurin (CaN) is a Ca/sup 2 +/- and calmodulin-regulated phosphatase. Recent findings suggested an association of CaN with biological membranes and prompted the present investigation into the interactions of the phosphatase with phospholipids in vitro. In the absence of calmodulin, sonicated preparations of phosphatidylserine (PS) provided a five-fold activation of the Ni- and Mn-supported activities of CaN towards (/sup 32/P) histone Hl; activation in the presence of calmodulin was much less pronounced. Half-maximal activation in the absence of calmodulin required approximately 0.1 mg/ml of PS. Activation of CaN was also observed with mixed vesicles of phosphatidylcholine (PC) containing 20% PSmore » but not with PC alone, or with phosphatidylethanolamine (PE). Molecular sieve chromatography on Ultrogel AcA 34 provided further evidence that CaN associates with phospholipid vesicles composed of PS, or PC containing 20% PS, but not with vesicles of PC or PE. Complete association with medium sized vesicles of PS and PC/PS required Ca/sup 2 +/ ions; in the absence of the metal ion at least 60% of the enzyme failed to interact with the lipids while the remainder preferentially migrated with larger vesicles. These results suggest a role for Ca/sup 2 +/ in regulating CaN's interaction with phospholipids.« less

  16. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery.

    PubMed

    Merchant, Michael L; Rood, Ilse M; Deegens, Jeroen K J; Klein, Jon B

    2017-12-01

    Urine is a valuable diagnostic medium and, with the discovery of urinary extracellular vesicles, is viewed as a dynamic bioactive fluid. Extracellular vesicles are lipid-enclosed structures that can be classified into three categories: exosomes, microvesicles (or ectosomes) and apoptotic bodies. This classification is based on the mechanisms by which membrane vesicles are formed: fusion of multivesicular bodies with the plasma membranes (exosomes), budding of vesicles directly from the plasma membrane (microvesicles) or those shed from dying cells (apoptotic bodies). During their formation, urinary extracellular vesicles incorporate various cell-specific components (proteins, lipids and nucleic acids) that can be transferred to target cells. The rigour needed for comparative studies has fueled the search for optimal approaches for their isolation, purification, and characterization. RNA, the newest extracellular vesicle component to be discovered, has received substantial attention as an extracellular vesicle therapeutic, and compelling evidence suggests that ex vivo manipulation of microRNA composition may have uses in the treatment of kidney disorders. The results of these studies are building the case that urinary extracellular vesicles act as mediators of renal pathophysiology. As the field of extracellular vesicle studies is burgeoning, this Review focuses on primary data obtained from studies of human urine rather than on data from studies of laboratory animals or cultured immortalized cells.

  17. Prominin-1-containing membrane vesicles: origins, formation, and utility.

    PubMed

    Marzesco, Anne-Marie

    2013-01-01

    The stem cell antigen prominin-1 (CD133) is associated with two major types (small and large) of extracellular membrane vesicles in addition to its selective concentration in various kinds of plasma membrane protrusion. During development of the mammalian central nervous system, differentiating neuroepithelial stem cells release these vesicles into the embryonic cerebrospinal fluid. In glioblastoma patients, an increase of such vesicles, particularly the smaller ones, have been also observed in cerebrospinal fluid. Similarly, hematopoietic stem and progenitor cells release small ones concomitantly with their differentiation. Although the functional significance of these prominin-1-containing membrane vesicles is poorly understood, a link between differentiation of stem (and cancer stem) cells and their release is emerging. In this chapter, I will summarize our knowledge about prominin-1-containing membrane vesicles including a potential role in cell-cell communication and highlight their prospective value as a new biomarker for tumorigenesis diagnostics.

  18. Compartmentalization and Transport in Synthetic Vesicles

    PubMed Central

    Schmitt, Christine; Lippert, Anna H.; Bonakdar, Navid; Sandoghdar, Vahid; Voll, Lars M.

    2016-01-01

    Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins. PMID:26973834

  19. The Bretherton Problem for a Vesicle

    NASA Astrophysics Data System (ADS)

    Barakat, Joseph; Spann, Andrew; Shaqfeh, Eric

    2016-11-01

    The motion of a lipid bilayer vesicle through a circular tube is investigated by singular perturbation theory in the limit of vanishing clearance. The vesicle is treated as a sac of fluid enclosed by a thin, elastic sheet that admits a bending stiffness. It is assumed that the vesicle is axisymmetric and swollen to a near-critical volume such that the clearance "e" between the membrane and the tube wall is very small. In this limit, bending resistance is of negligible importance compared to the isotropic tension, allowing the vesicle to be treated as a "no-slip bubble." The effective membrane tension is found to scale inversely with "e" raised to the 3/2 power with a comparatively weak Marangoni gradient. The extra pressure drop is found to have a leading contribution due to the cylindrical midsection, which scales inversely with "e," as well as a correction due to the end caps, which scales inversely with the square root of "e." The apparent viscosity is predicted as a unique function of the geometry. The theory exhibits excellent agreement with a simplified, "quasi-parallel" theory and with direct numerical simulations using the boundary element method. The results of this work are compared to those for bubbles, rigid particles, and red blood cells in confined flows.

  20. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    PubMed Central

    Sakuma, Yuka; Imai, Masayuki

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256

  1. An Extracellular Subtilase Switch for Immune Priming in Arabidopsis

    PubMed Central

    Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity. PMID:23818851

  2. An extracellular subtilase switch for immune priming in Arabidopsis.

    PubMed

    Ramírez, Vicente; López, Ana; Mauch-Mani, Brigitte; Gil, Ma José; Vera, Pablo

    2013-01-01

    In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity.

  3. How neurosecretory vesicles release their cargo.

    PubMed

    Scalettar, Bethe A

    2006-04-01

    Neurons and related cell types often contain two major classes of neurosecretory vesicles, synaptic vesicles (SVs) and dense-core granules (DCGs), which store and release distinct cargo. SVs store and release classic neurotransmitters, which facilitate propagation of action potentials across the synaptic cleft, whereas DCGs transport, store, and release hormones, proteins, and neuropeptides, which facilitate neuronal survival, synaptic transmission, and learning. Over the past few years, there has been a major surge in our understanding of many of the key molecular mechanisms underlying cargo release from SVs and DCGs. This surge has been driven largely by the use of fluorescence microscopy (especially total internal reflection fluorescence microscopy) to visualize SVs or DCGs in living cells. This review highlights some of the recent insights into cargo release from neurosecretory vesicles provided by fluorescence microscopy, with emphasis on DCGs.

  4. Sulfur vesicles from Thermococcales: A possible role in sulfur detoxifying mechanisms

    PubMed Central

    Gorlas, A.; Marguet, E.; Gill, S.; Geslin, C.; Guigner, J.-M.; Guyot, F.; Forterre, P.

    2015-01-01

    The euryarchaeon Thermococcus prieurii inhabits deep-sea hydrothermal vents, one of the most extreme environments on Earth, which is reduced and enriched with heavy metals. Transmission electron microscopy and cryo-electron microscopy imaging of T. prieurii revealed the production of a plethora of diverse membrane vesicles (MVs) (from 50 nm to 400 nm), as is the case for other Thermococcales. T. prieurii also produces particularly long nanopods/nanotubes, some of them containing more than 35 vesicles encased in a S-layer coat. Notably, cryo-electron microscopy of T. prieurii cells revealed the presence of numerous intracellular dark vesicles that bud from the host cells via interaction with the cytoplasmic membrane. These dark vesicles are exclusively found in conjunction with T. prieurii cells and never observed in the purified membrane vesicles preparations. Energy-Dispersive-X-Ray analyses revealed that these dark vesicles are filled with sulfur. Furthermore, the presence of these sulfur vesicles (SVs) is exclusively observed when elemental sulfur was added into the growth medium. In this report, we suggest that these atypical vesicles sequester the excess sulfur not used for growth, thus preventing the accumulation of toxic levels of sulfur in the host's cytoplasm. These SVs transport elemental sulfur out of the cell where they are rapidly degraded. Intriguingly, closely related archaeal species, Thermococcus nautili and Thermococcus kodakaraensis, show some differences about the production of sulfur vesicles. Whereas T. kodakaraensis produces less sulfur vesicles than T. prieurii, T. nautili does not produce such sulfur vesicles, suggesting that Thermococcales species exhibit significant differences in their sulfur metabolic pathways. PMID:26234734

  5. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation†

    PubMed Central

    Stachowiak, Jeanne C.; Richmond, David L.; Li, Thomas H.; Brochard-Wyart, Françoise

    2010-01-01

    Encapsulation of macromolecules within lipid vesicles has the potential to drive biological discovery and enable development of novel, cell-like therapeutics and sensors. However, rapid and reliable production of large numbers of unilamellar vesicles loaded with unrestricted and precisely-controlled contents requires new technologies that overcome size, uniformity, and throughput limitations of existing approaches. Here we present a high-throughput microfluidic method for vesicle formation and encapsulation using an inkjet printer at rates up to 200 Hz. We show how multiple high-frequency pulses of the inkjet’s piezoelectric actuator create a microfluidic jet that deforms a bilayer lipid membrane, controlling formation of individual vesicles. Variations in pulse number, pulse voltage, and solution viscosity are used to control the vesicle size. As a first step toward cell-like reconstitution using this method, we encapsulate the cytoskeletal protein actin and use co-encapsulated microspheres to track its polymerization into a densely entangled cytoskeletal network upon vesicle formation. PMID:19568667

  6. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva.

    PubMed

    Ogawa, Yuko; Kanai-Azuma, Masami; Akimoto, Yoshihiro; Kawakami, Hayato; Yanoshita, Ryohei

    2008-06-01

    Saliva contains a large number of proteins that participate in the protection of oral tissue. We found, for the first time, small vesicles (30-130 nm in diameter) in human whole saliva. Vesicles from saliva were identified by electron microscopy after isolation by gel-filtration on Sepharose CL-4B. They resemble exosomes, which are vesicles with an endosome-derived limiting membrane that are secreted by a diverse range of cell types. We performed a biochemical characterization of these vesicles by amino acid sequence analysis and Western blot analysis. We found that they contain dipeptidyl peptidase IV (DPP IV), galectin-3 and immunoglobulin A, which have potential to influence immune response. The DPP IV in the vesicles was metabolically active in cleaving substance P and glucose-dependent insulinotropic polypeptide to release N-terminal dipeptides. Our results demonstrate that human whole saliva contains exosome-like vesicles; they might participate in the catabolism of bioactive peptides and play a regulatory role in local immune defense in the oral cavity.

  7. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    PubMed

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Asymmetric osmotic water permeation through a vesicle membrane

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Zhao, Yunzhen; Fang, Chang; Shi, Yue

    2017-05-01

    Understanding the water permeation through a cell membrane is of primary importance for biological activities and a key step to capture its shape transformation in salt solution. In this work, we reveal the dynamical behaviors of osmotically driven transport of water molecules across a vesicle membrane by molecular dynamics simulations. Of particular interest is that the water transport in and out of vesicles is highly distinguishable given the osmotic force are the same, suggesting an asymmetric osmotic transportation. This asymmetric phenomenon exists in a broad range of parameter space such as the salt concentration, temperature, and vesicle size and can be ascribed to the similar asymmetric potential energy of lipid-ion, lipid-water, lipid-solution, lipid-lipid, and the lipid-lipid energy fluctuation. Specifically, the water flux has a linear increase with the salt concentration, similar to the prediction by Nernst-Planck equation or Fick's first law. Furthermore, due to the Arrhenius relation between the membrane permeability and temperature, the water flux also exhibits excellent Arrhenius dependence on the temperature. Meanwhile, the water flux shows a linear increase with the vesicle surface area since the flux amount across a unit membrane area should be a constant. Finally, we also present the anonymous diffusion behaviors for the vesicle itself, where transitions from normal diffusion at short times to subdiffusion at long times are identified. Our results provide significant new physical insights for the osmotic water permeation through a vesicle membrane and are helpful for future experimental studies.

  9. Ca{sup 2+}-dependent mobility of vesicles capturing anti-VGLUT1 antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenovec, Matjaz; Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana; Kreft, Marko

    2007-11-01

    Several aspects of secretory vesicle cycle have been studied in the past, but vesicle trafficking in relation to the fusion site is less well understood. In particular, the mobility of recaptured vesicles that traffic back toward the central cytoplasm is still poorly defined. We exposed astrocytes to antibodies against the vesicular glutamate transporter 1 (VGLUT1), a marker of glutamatergic vesicles, to fluorescently label vesicles undergoing Ca{sup 2+}-dependent exocytosis and examined their number, fluorescence intensity, and mobility by confocal microscopy. In nonstimulated cells, immunolabeling revealed discrete fluorescent puncta, indicating that VGLUT1 vesicles, which are approximately 50 nm in diameter, cycle slowlymore » between the plasma membrane and the cytoplasm. When the cytosolic Ca{sup 2+} level was raised with ionomycin, the number and fluorescence intensity of the puncta increased, likely because the VGLUT1 epitopes were more accessible to the extracellularly applied antibodies following Ca{sup 2+}-triggered exocytosis. In nonstimulated cells, the mobility of labeled vesicles was limited. In stimulated cells, many vesicles exhibited directional mobility that was abolished by cytoskeleton-disrupting agents, indicating dependence on intact cytoskeleton. Our findings show that postfusion vesicle mobility is regulated and may likely play a role in synaptic vesicle cycle, and also more generally in the genesis and removal of endocytic vesicles.« less

  10. Electrophysiology reveals semantic priming at a short SOA irrespective of depth of prime processing.

    PubMed

    Küper, Kristina; Heil, Martin

    2009-04-03

    The otherwise robust behavioral semantic priming effect is reduced to the point of being absent when a letter search has to be performed on the prime word. As a result the automaticity of semantic activation has been called into question. It is unclear, however, in how far automatic processes are even measurable in the letter search priming paradigm as the prime task necessitates a long prime-probe stimulus-onset asynchrony (SOA). In a modified procedure, a short SOA can be realized by delaying the prime task response until after participants have made a lexical decision on the probe. While the absence of lexical decision priming has already been demonstrated in this design it seems premature to draw any definite conclusions from this purely behavioral result since event related potential (ERP) measures have been shown to be a more sensitive index of semantic activation. Using the modified paradigm we thus recorded ERP in addition to lexical decision times. Stimuli were presented at two different SOAs (240 ms vs. 840 ms) and participants performed either a grammatical discrimination (Experiment 1) or a letter search (Experiment 2) on the prime. Irrespective of prime task, the modulation of the N400, the ERP correlate of semantic activation, provided clear-cut evidence of semantic processing at the short SOA. Implications for theories of semantic activation as well as the constraints of the delayed prime task procedure are discussed.

  11. Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools.

    PubMed

    Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan; Chang, Karen T

    2016-08-24

    The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in

  12. Isolation of Tonoplast Vesicles from Tomato Fruit Pericarp

    PubMed Central

    Snowden, Christopher J.; Thomas, Benjamin; Baxter, Charles J.; Smith, J. Andrew C.; Sweetlove, Lee J.

    2017-01-01

    This protocol describes the isolation of tonoplast vesicles from tomato fruit. The vesicles isolated using this procedure are of sufficiently high purity for downstream proteomic analysis whilst remaining transport competent for functional assays. The methodology was used to study the transport of amino acids during tomato fruit ripening (Snowden et al., 2015) and based on the procedure used by Betty and Smith (Bettey and Smith, 1993). Such vesicles may be useful in further studies into the dynamic transfer of metabolites across the tonoplast for storage and metabolism during tomato fruit development. PMID:29085859

  13. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  14. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins

    DOE PAGES

    Jang, Yeongseon; Choi, Won Tae; Heller, William T.; ...

    2017-07-27

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermalmore » driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. Lastly, these results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure.« less

  15. Selective flow-induced vesicle rupture to sort by membrane mechanical properties

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria

    2015-08-01

    Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells.

  16. Selective flow-induced vesicle rupture to sort by membrane mechanical properties

    PubMed Central

    Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria

    2015-01-01

    Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells. PMID:26302783

  17. Cognate status and cross-script translation priming.

    PubMed

    Voga, Madeleine; Grainger, Jonathan

    2007-07-01

    Greek-French bilinguals were tested in three masked priming experiments with Greek primes and French targets. Related primes were the translation equivalents of target words, morphologically related to targets, or phonologically related to targets. In Experiment 1, cognate translation equivalents (phonologically similar translations) showed facilitatory priming, relative to matched phonologically related primes, in conditions in which morphologically related primes showed no effect (50-msec prime exposure). Cross-language morphological priming emerged at longer prime exposure durations (66 msec), but cognate primes continued to generate more priming than did those in the morphological condition. In Experiments 2 and 3, the level of phonological overlap across translation equivalents was varied, and priming effects were measured against those for matched phonologically related primes and those in an unrelated prime condition. When measured against the unrelated baseline, cognate primes showed the typical advantage over noncognate primes. However, this cognate advantage disappeared when priming was measured against the phonologically related prime condition. The results are discussed in terms of how translation equivalents are represented in bilingual memory.

  18. False memories and lexical decision: even twelve primes do not cause long-term semantic priming.

    PubMed

    Zeelenberg, René; Pecher, Diane

    2002-03-01

    Semantic priming effects are usually obtained only if the prime is presented shortly before the target stimulus. Recent evidence obtained with the so-called false memory paradigm suggests, however, that in both explicit and implicit memory tasks semantic relations between words can result in long-lasting effects when multiple 'primes' are presented. The aim of the present study was to investigate whether these effects would generalize to lexical decision. In four experiments we showed that even as many as 12 primes do not cause long-term semantic priming. In all experiments, however, a repetition priming effect was obtained. The present results are consistent with a number of other results showing that semantic information plays a minimal role in long-term priming in visual word recognition.

  19. Passive Diffusion as a Mechanism Underlying Ribbon Synapse Vesicle Release and Resupply

    PubMed Central

    Graydon, Cole W.; Zhang, Jun; Oesch, Nicholas W.; Sousa, Alioscka A.; Leapman, Richard D.

    2014-01-01

    Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, “analog” sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon–vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. PMID:24990916

  20. Mover Is a Homomeric Phospho-Protein Present on Synaptic Vesicles

    PubMed Central

    Kremer, Thomas; Hoeber, Jan; Kiran Akula, Asha; Urlaub, Henning; Islinger, Markus; Kirsch, Joachim; Dean, Camin; Dresbach, Thomas

    2013-01-01

    With remarkably few exceptions, the molecules mediating synaptic vesicle exocytosis at active zones are structurally and functionally conserved between vertebrates and invertebrates. Mover was found in a yeast-2-hybrid assay using the vertebrate-specific active zone scaffolding protein bassoon as a bait. Peptides of Mover have been reported in proteomics screens for self-interacting proteins, phosphorylated proteins, and synaptic vesicle proteins, respectively. Here, we tested the predictions arising from these screens. Using flotation assays, carbonate stripping of peripheral membrane proteins, mass spectrometry, immunogold labelling of purified synaptic vesicles, and immuno-organelle isolation, we found that Mover is indeed a peripheral synaptic vesicle membrane protein. In addition, by generating an antibody against phosphorylated Mover and Western blot analysis of fractionated rat brain, we found that Mover is a bona fide phospho-protein. The localization of Mover to synaptic vesicles is phosphorylation dependent; treatment with a phosphatase caused Mover to dissociate from synaptic vesicles. A yeast-2-hybrid screen, co-immunoprecipitation and cell-based optical assays of homomerization revealed that Mover undergoes homophilic interaction, and regions within both the N- and C- terminus of the protein are required for this interaction. Deleting a region required for homomeric interaction abolished presynaptic targeting of recombinant Mover in cultured neurons. Together, these data prove that Mover is associated with synaptic vesicles, and implicate phosphorylation and multimerization in targeting of Mover to synaptic vesicles and presynaptic sites. PMID:23723986

  1. Buoyancy Limitation of Filamentous Cyanobacteria under Prolonged Pressure due to the Gas Vesicles Collapse

    NASA Astrophysics Data System (ADS)

    Abeynayaka, Helayaye Damitha Lakmali; Asaeda, Takashi; Kaneko, Yasuko

    2017-08-01

    Freshwater cyanobacterium Pseudanabaena galeata were cultured in chambers under artificially generated pressures, which correspond to the hydrostatic pressures at deep water. Variations occurred in gas vesicles volume, and buoyancy state of cells under those conditions were analyzed at different time intervals (5 min, 1 day, and 5 days). Variations in gas vesicles morphology of cells were observed by transmission electron microscopy images. Settling velocity ( Vs) of cells which governs the buoyancy was observed with the aid of a modified optical microscope. Moreover, effects of the prolonged pressure on cell ballast composition (protein and polysaccharides) were examined. Elevated pressure conditions reduced the cell ballast and caused a complete disappearance of gas vesicles in Pseudanabaena galeata cells. Hence cyanobacteria cells were not able to float within the study period. Observations and findings of the study indicate the potential application of hydrostatic pressure, which naturally occurred in hypolimnion of lakes, to inhibit the re-suspension of cyanobacteria cells.

  2. Buoyancy Limitation of Filamentous Cyanobacteria under Prolonged Pressure due to the Gas Vesicles Collapse.

    PubMed

    Abeynayaka, Helayaye Damitha Lakmali; Asaeda, Takashi; Kaneko, Yasuko

    2017-08-01

    Freshwater cyanobacterium Pseudanabaena galeata were cultured in chambers under artificially generated pressures, which correspond to the hydrostatic pressures at deep water. Variations occurred in gas vesicles volume, and buoyancy state of cells under those conditions were analyzed at different time intervals (5 min, 1 day, and 5 days). Variations in gas vesicles morphology of cells were observed by transmission electron microscopy images. Settling velocity (Vs) of cells which governs the buoyancy was observed with the aid of a modified optical microscope. Moreover, effects of the prolonged pressure on cell ballast composition (protein and polysaccharides) were examined. Elevated pressure conditions reduced the cell ballast and caused a complete disappearance of gas vesicles in Pseudanabaena galeata cells. Hence cyanobacteria cells were not able to float within the study period. Observations and findings of the study indicate the potential application of hydrostatic pressure, which naturally occurred in hypolimnion of lakes, to inhibit the re-suspension of cyanobacteria cells.

  3. Priming Gestures with Sounds

    PubMed Central

    Lemaitre, Guillaume; Heller, Laurie M.; Navolio, Nicole; Zúñiga-Peñaranda, Nicolas

    2015-01-01

    We report a series of experiments about a little-studied type of compatibility effect between a stimulus and a response: the priming of manual gestures via sounds associated with these gestures. The goal was to investigate the plasticity of the gesture-sound associations mediating this type of priming. Five experiments used a primed choice-reaction task. Participants were cued by a stimulus to perform response gestures that produced response sounds; those sounds were also used as primes before the response cues. We compared arbitrary associations between gestures and sounds (key lifts and pure tones) created during the experiment (i.e. no pre-existing knowledge) with ecological associations corresponding to the structure of the world (tapping gestures and sounds, scraping gestures and sounds) learned through the entire life of the participant (thus existing prior to the experiment). Two results were found. First, the priming effect exists for ecological as well as arbitrary associations between gestures and sounds. Second, the priming effect is greatly reduced for ecologically existing associations and is eliminated for arbitrary associations when the response gesture stops producing the associated sounds. These results provide evidence that auditory-motor priming is mainly created by rapid learning of the association between sounds and the gestures that produce them. Auditory-motor priming is therefore mediated by short-term associations between gestures and sounds that can be readily reconfigured regardless of prior knowledge. PMID:26544884

  4. Storage vesicles in neurons are related to Golgi complex alterations in mucopolysaccharidosis IIIB.

    PubMed

    Vitry, Sandrine; Bruyère, Julie; Hocquemiller, Michaël; Bigou, Stéphanie; Ausseil, Jérôme; Colle, Marie-Anne; Prévost, Marie-Christine; Heard, Jean Michel

    2010-12-01

    The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.

  5. Strain-Dependent Effects of Acute Alcohol on Synaptic Vesicle Recycling and Post-Tetanic Potentiation in Medial Glutamate Inputs to the Mouse Basolateral Amygdala.

    PubMed

    Gioia, Dominic A; McCool, Brian

    2017-04-01

    Inbred mouse strains are differentially sensitive to the acute effects of ethanol (EtOH) and are useful tools for examining how unique genomes differentially affect alcohol-related behaviors and physiology. DBA/2J mice have been shown to be sensitive to the acute anxiolytic effects of alcohol as well as the anxiogenic effects of withdrawal from chronic alcohol exposure, while B6 mice are resistant to both. Considering that the basolateral amygdala (BLA) is an important brain region for the acute and chronic effects of EtOH on fear and anxiety related behaviors, we hypothesized that there would be strain-dependent differences in the acute effects of EtOH in BLA slices. We utilized patch clamp electrophysiology in BLA coronal slices from 4 inbred mouse strains (A/J, BALBcJ, C57BL/6J, and DBA/2J) to examine how genetic background influences acute EtOH effects on synaptic vesicle recycling and post-tetanic potentiation (PTP) in response to low (2 Hz)- and high (40 Hz)-frequency stimulation. We found that EtOH inhibited synaptic vesicle recycling in a strain- and stimulation frequency-dependent manner. Vesicle recycling in DBA/2J and BALBcJ cells was inhibited by acute EtOH during both low- and high-frequency stimulation, while recycling measured from A/J cells was sensitive only during high-frequency stimulation. Recycling at C57BL/6J synapses was insensitive to EtOH regardless of stimulation frequency. We additionally found that cells from DBA/2J and BALBcJ mice were sensitive to EtOH-mediated inhibition of PTP. Acute EtOH application inhibited vesicle recycling and PTP at glutamatergic synapses in both a strain- and frequency-dependent fashion. Several presynaptic proteins that contribute to synaptic vesicle priming in addition to PTP have been implicated in alcohol-related behaviors, including Munc13, Munc18, and RIM proteins, making them potential candidates for the molecular mechanism controlling these effects. Copyright © 2017 by the Research Society on

  6. Passive diffusion as a mechanism underlying ribbon synapse vesicle release and resupply.

    PubMed

    Graydon, Cole W; Zhang, Jun; Oesch, Nicholas W; Sousa, Alioscka A; Leapman, Richard D; Diamond, Jeffrey S

    2014-07-02

    Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, "analog" sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon-vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. Copyright © 2014 the authors 0270-6474/14/348948-15$15.00/0.

  7. Functional transferred DNA within extracellular vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Jin; Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province; Wu, Gengze

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmicmore » macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.« less

  8. The parasite Toxoplasma sequesters diverse Rab host vesicles within an intravacuolar network

    PubMed Central

    2017-01-01

    Many intracellular pathogens subvert host membrane trafficking pathways to promote their replication. Toxoplasma multiplies in a membrane-bound parasitophorous vacuole (PV) that interacts with mammalian host organelles and intercepts Golgi Rab vesicles to acquire sphingolipids. The mechanisms of host vesicle internalization and processing within the PV remain undefined. We demonstrate that Toxoplasma sequesters a broad range of Rab vesicles into the PV. Correlative light and electron microscopy analysis of infected cells illustrates that intravacuolar Rab1A vesicles are surrounded by the PV membrane, suggesting a phagocytic-like process for vesicle engulfment. Rab11A vesicles concentrate to an intravacuolar network (IVN), but this is reduced in Δgra2 and Δgra2Δgra6 parasites, suggesting that tubules stabilized by the TgGRA2 and TgGRA6 proteins secreted by the parasite within the PV contribute to host vesicle sequestration. Overexpression of a phospholipase TgLCAT, which is localized to the IVN, results in a decrease in the number of intravacuolar GFP-Rab11A vesicles, suggesting that TgLCAT controls lipolytic degradation of Rab vesicles for cargo release. PMID:29070609

  9. Chromatic response of polydiacetylene vesicle induced by the permeation of methotrexate.

    PubMed

    Shin, Min Jae; Kim, Ye Jin; Kim, Jong-Duk

    2015-07-07

    The noble vesicular system of polydiacetylene showed a red shift using two types of detecting systems. One of the systems involves the absorption of target materials from the outer side of the vesicle, and the other system involves the permeation through the vesicular layers from within the vesicle. The chromatic mixed vesicles of N-(2-aminoethyl)pentacosa-10,12-diynamide (AEPCDA) and dimethyldioctadecylammonium chloride (DODAC) were fabricated by sonication, followed by polymerization by UV irradiation. The stability of monomeric vesicles was observed to increase with the polymerization of the vesicles. Methotrexate was used as a target material. The polymerized mixed vesicles having a blue color were exposed to a concentration gradient of methotrexate, and a red shift was observed indicating the adsorption of methotrexate on the polydiacetylene bilayer. In order to check the chromatic change by the permeation of methotrexate, we separated the vesicle portion, which contained methotrexate inside the vesicle, and checked chromatic change during the permeation of methotrexate through the vesicle. The red shift apparently indicates the disturbance in the bilayer induced by the permeation of methotrexate. The maximum contrast of color appeared at the equal molar ratio of AEPCDA and DODAC, indicating that the formation of flexible and deformable vesicular layers is important for red shift. Therefore, it is hypothesized that the system can be applicable for the chromatic detection of the permeation of methotrexate through the polydiacetylene layer.

  10. Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly

    PubMed Central

    Cho, Nam-Joon; Hwang, Lisa Y.; Solandt, Johan J.R.; Frank, Curtis W.

    2013-01-01

    Lipid vesicles are an important class of biomaterials that have a wide range of applications, including drug delivery, cosmetic formulations and model membrane platforms on solid supports. Depending on the application, properties of a vesicle population such as size distribution, charge and permeability need to be optimized. Preparation methods such as mechanical extrusion and sonication play a key role in controlling these properties, and yet the effects of vesicle preparation method on vesicular properties and integrity (e.g., shape, size, distribution and tension) remain incompletely understood. In this study, we prepared vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid by either extrusion or sonication, and investigated the effects on vesicle size distribution over time as well as the concomitant effects on the self-assembly of solid-supported planar lipid bilayers. Dynamic light scattering (DLS), quartz crystal microbalance with dissipation (QCM-D) monitoring, fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM) experiments were performed to characterize vesicles in solution as well as their interactions with silicon oxide substrates. Collectively, the data support that sonicated vesicles offer more robust control over the self-assembly of homogenous planar lipid bilayers, whereas extruded vesicles are vulnerable to aging and must be used soon after preparation. PMID:28811437

  11. Sequential Stereotype Priming: A Meta-Analysis.

    PubMed

    Kidder, Ciara K; White, Katherine R; Hinojos, Michelle R; Sandoval, Mayra; Crites, Stephen L

    2017-08-01

    Psychological interest in stereotype measurement has spanned nearly a century, with researchers adopting implicit measures in the 1980s to complement explicit measures. One of the most frequently used implicit measures of stereotypes is the sequential priming paradigm. The current meta-analysis examines stereotype priming, focusing specifically on this paradigm. To contribute to ongoing discussions regarding methodological rigor in social psychology, one primary goal was to identify methodological moderators of the stereotype priming effect-whether priming is due to a relation between the prime and target stimuli, the prime and target response, participant task, stereotype dimension, stimulus onset asynchrony (SOA), and stimuli type. Data from 39 studies yielded 87 individual effect sizes from 5,497 participants. Analyses revealed that stereotype priming is significantly moderated by the presence of prime-response relations, participant task, stereotype dimension, target stimulus type, SOA, and prime repetition. These results carry both practical and theoretical implications for future research on stereotype priming.

  12. A task-difficulty artifact in subliminal priming.

    PubMed

    Pratte, Michael S; Rouder, Jeffrey N

    2009-08-01

    Subliminal priming is said to occur when a subliminal prime influences the classification of a subsequent target. Most subliminal-priming claims are based on separate target- and prime-classification tasks. Because primes are intended to be subliminal, the prime-classification task is difficult, and the target-classification task is easy. To assess whether this task-difficulty difference accounts for previous claims of subliminal priming, we manipulated the ease of the prime-classification task by intermixing long-duration (visible) primes with short-duration (near liminal) ones. In Experiment 1, this strategy of intermixing long-duration primes raised classification of the short-duration ones. In Experiments 2 and 3, prime duration was lowered in such a way that prime classification was at chance in intermixed presentations. Under these conditions, we failed to observe any priming effects; hence, previous demonstrations of subliminal priming may simply have reflected a task-difficulty artifact.

  13. Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

    PubMed Central

    Barroso, M Fátima; Luna, M Alejandra; Tabares, Juan S Flores; Delerue-Matos, Cristina; Correa, N Mariano

    2016-01-01

    Summary In this contribution a strategy is shown to covalently immobilize gold nanoparticles (AuNPs) onto vesicle bilayers with the aim of using this nanomaterial as platform for the future design of immunosensors. A novel methodology for the self-assembly of AuNPs onto large unilamellar vesicle structures is described. The vesicles were formed with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1-undecanethiol (SH). After, the AuNPs photochemically synthesized in pure glycerol were mixed and anchored onto SH–DOPC vesicles. The data provided by voltammetry, spectrometry and microscopy techniques indicated that the AuNPs were successfully covalently anchored onto the vesicle bilayer and decorated vesicles exhibit a spherical shape with a size of 190 ± 10 nm. The developed procedure is easy, rapid and reproducible to start designing a possible immunosensor by using environmentally friendly procedures. PMID:27335755

  14. Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons

    PubMed Central

    Kwon, Sung E.; Chapman, Edwin R.

    2011-01-01

    Summary Despite being the most abundant synaptic vesicle membrane protein, the function of synaptophysin remains enigmatic. For example, synaptic transmission was reported to be completely normal in synaptophysin knockout mice; however, direct experiments to monitor the synaptic vesicle cycle have not been carried out. Here, using optical imaging and electrophysiological experiments, we demonstrate that synaptophysin is required for kinetically efficient endocytosis of synaptic vesicles in cultured hippocampal neurons. Truncation analysis revealed that distinct structural elements of synaptophysin differentially regulate vesicle retrieval during and after stimulation. Thus, synaptophysin regulates at least two phases of endocytosis to ensure vesicle availability during and after sustained neuronal activity. PMID:21658579

  15. Colorimetry and prime colours--a theorem.

    PubMed

    Hornaes, Hans Petter; Wold, Jan Henrik; Farup, Ivar

    2005-08-01

    Human colour vision is the result of a complex process involving topics ranging from physics of light to perception. Whereas the diversity of light entering the eye in principle span an infinite-dimensional vector space in terms of the spectral power distributions, the space of human colour perceptions is three dimensional. One important consequence of this is that a variety of colours can be visually matched by a mixture of only three adequately chosen reference lights. It has been observed that there exists one particular set of monochromatic reference lights that, according to a certain definition, is optimal for producing colour matches. These reference lights are commonly denoted prime colours. In the present paper, we intend to rigorously show that the existence of prime colours is not particular to the human visual system as sometimes stated, but rather an algebraic consequence of the manner in which a kind of colorimetric functions called colour-matching functions are defined and transformed. The solution is based on maximisation of a determinant determining the gamut size of the colour space spanned by the prime colours. Cramer's rule for solving a set of linear equations is an essential part of the proof. By means of examples, it is shown that mathematically the optimal set of reference lights is not unique in general, and that the existence of a maximum determinant is not a necessary condition for the existence of prime colours.

  16. The Effect of Prime Duration in Masked Orthographic Priming Depends on Neighborhood Distribution

    ERIC Educational Resources Information Center

    Robert, Christelle; Mathey, Stephanie

    2012-01-01

    A lexical decision task was used with a masked priming procedure to investigate whether and to what extent neighborhood distribution influences the effect of prime duration in masked orthographic priming. French word targets had two higher frequency neighbors that were either distributed over two letter positions (e.g., "LOBE/robe-loge")…

  17. Influence of prime-target relationship on semantic priming effects from words in a lexical-decision task.

    PubMed

    Abad, María J F; Noguera, Carmen; Ortells, Juan J

    2003-07-01

    The present research examines the influence of prime-target relationship (associative and categorical versus categorical only) on priming effects from attended and ignored parafoveal words. Participants performed a lexical-decision task on a single central target, which was preceded by two parafoveal prime words, one of which (the attended prime) was spatially precued. The results showed reliable positive and negative priming effects from attended and ignored words, respectively. However, this priming pattern was observed only for the "associative and categorical", but not for the "categorical only" relationship condition. These results suggest that the lack of semantic priming effects from words in some prior studies may be attributed to the kind of material used (i.e. weakly-associated word pairs).

  18. Adhesion signals of phospholipid vesicles at an electrified interface.

    PubMed

    DeNardis, Nadica Ivošević; Žutić, Vera; Svetličić, Vesna; Frkanec, Ruža

    2012-09-01

    General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.

  19. Early dynamics of the semantic priming shift

    PubMed Central

    Lavigne, Frédéric; Chanquoy, Lucile; Dumercy, Laurent; Vitu, Françoise

    2013-01-01

    Semantic processing of sequences of words requires the cognitive system to keep several word meanings simultaneously activated in working memory with limited capacity. The real- time updating of the sequence of word meanings relies on dynamic changes in the associates to the words that are activated. Protocols involving two sequential primes report a semantic priming shift from larger priming of associates to the first prime to larger priming of associates to the second prime, in a range of long SOAs (stimulus-onset asynchronies) between the second prime and the target. However, the possibility for an early semantic priming shift is still to be tested, and its dynamics as a function of association strength remain unknown. Three multiple priming experiments are proposed that cross-manipulate association strength between each of two successive primes and a target, for different values of short SOAs and prime durations. Results show an early priming shift ranging from priming of associates to the first prime only to priming of strong associates to the first prime and all of the associates to the second prime. We investigated the neural basis of the early priming shift by using a network model of spike frequency adaptive cortical neurons (e.g., Deco & Rolls, 2005), able to code different association strengths between the primes and the target. The cortical network model provides a description of the early dynamics of the priming shift in terms of pro-active and retro-active interferences within populations of excitatory neurons regulated by fast and unselective inhibitory feedback. PMID:23717346

  20. Study of in-medium {\\eta }^{\\prime} properties in the (γ, \\eta ^{\\prime} p) reaction on nuclei

    NASA Astrophysics Data System (ADS)

    Paryev, E. Ya

    2016-01-01

    We study the near-threshold photoproduction of {η }\\prime mesons from nuclei in coincidence with forward going protons in the kinematical conditions of the Crystal Barrel/TAPS experiment, recently performed at ELSA. The calculations have been performed within a collision model based on the nuclear spectral function. The model accounts for both the primary γ p\\to η \\prime p process and the two-step intermediate nucleon rescattering processes as well as the effect of the nuclear η \\prime mean-field potential. We calculate the exclusive η \\prime kinetic energy distributions for the 12C(γ, η \\prime p) reaction for different scenarios of η \\prime in-medium modification. We find that the considered two-step rescattering mechanism plays an insignificant role in η \\prime p photoproduction off the carbon target. We also demonstrate that the calculated η \\prime kinetic energy distributions in primary photon-proton η \\prime p production reveal strong sensitivity to the depth of the real η \\prime potential at normal nuclear matter density (or to the η \\prime in-medium mass shift) in the studied incident photon energy regime. Therefore, such observables may be useful to help determine the above η \\prime in-medium renormalization from the comparison of the results of our calculations with the data from the CBELSA/TAPS experiment. In addition, we show that these distributions are also strongly influenced by the momentum-dependent optical potential, which the outgoing participant proton feels inside the carbon nucleus. This potential should be taken into account in the analysis of these data with the aim to obtain information on the η \\prime modification in cold nuclear matter.

  1. Quantification of mixing in vesicle suspensions using numerical simulations in two dimensions.

    PubMed

    Kabacaoğlu, G; Quaife, B; Biros, G

    2017-02-01

    We study mixing in Stokesian vesicle suspensions in two dimensions on a cylindrical Couette apparatus using numerical simulations. The vesicle flow simulation is done using a boundary integral method, and the advection-diffusion equation for the mixing of the solute is solved using a pseudo-spectral scheme. We study the effect of the area fraction, the viscosity contrast between the inside (the vesicles) and the outside (the bulk) fluid, the initial condition of the solute, and the mixing metric. We compare mixing in the suspension with mixing in the Couette apparatus without vesicles. On the one hand, the presence of vesicles in most cases slightly suppresses mixing. This is because the solute can be only diffused across the vesicle interface and not advected. On the other hand, there exist spatial distributions of the solute for which the unperturbed Couette flow completely fails to mix whereas the presence of vesicles enables mixing. We derive a simple condition that relates the velocity and solute and can be used to characterize the cases in which the presence of vesicles promotes mixing.

  2. Quantification of mixing in vesicle suspensions using numerical simulations in two dimensions

    PubMed Central

    Quaife, B.; Biros, G.

    2017-01-01

    We study mixing in Stokesian vesicle suspensions in two dimensions on a cylindrical Couette apparatus using numerical simulations. The vesicle flow simulation is done using a boundary integral method, and the advection-diffusion equation for the mixing of the solute is solved using a pseudo-spectral scheme. We study the effect of the area fraction, the viscosity contrast between the inside (the vesicles) and the outside (the bulk) fluid, the initial condition of the solute, and the mixing metric. We compare mixing in the suspension with mixing in the Couette apparatus without vesicles. On the one hand, the presence of vesicles in most cases slightly suppresses mixing. This is because the solute can be only diffused across the vesicle interface and not advected. On the other hand, there exist spatial distributions of the solute for which the unperturbed Couette flow completely fails to mix whereas the presence of vesicles enables mixing. We derive a simple condition that relates the velocity and solute and can be used to characterize the cases in which the presence of vesicles promotes mixing. PMID:28344432

  3. Vesicle biomechanics in a time-varying magnetic field.

    PubMed

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (<200 KHz), including the frequency used in TMS, the computed radial pressure and translational forces on the vesicle were both negligible. This work

  4. Unconscious Congruency Priming from Unpracticed Words Is Modulated by Prime-Target Semantic Relatedness

    ERIC Educational Resources Information Center

    Ortells, Juan J.; Mari-Beffa, Paloma; Plaza-Ayllon, Vanesa

    2013-01-01

    Participants performed a 2-choice categorization task on visible word targets that were preceded by novel (unpracticed) prime words. The prime words were presented for 33 ms and followed either immediately (Experiments 1-3) or after a variable delay (Experiments 1 and 4) by a pattern mask. Both subjective and objective measures of prime visibility…

  5. Masked priming by misspellings: Word frequency moderates the effects of SOA and prime-target similarity.

    PubMed

    Burt, Jennifer S

    2016-02-01

    University students made lexical decisions to eight- or nine-letter words preceded by masked primes that were the target, an unrelated word, or a typical misspelling of the target. At a stimulus onset asynchrony (SOA) of 47 ms, primes that were misspellings of the target produced a priming benefit for low-, medium-, and high-frequency words, even when the misspelled primes were changed to differ phonologically from their targets. At a longer SOA of 80 ms, misspelled primes facilitated lexical decisions only to medium- and low-frequency targets, and a phonological change attenuated the benefit for medium-frequency targets. The results indicate that orthographic similarity can be preserved over changes in letter position and word length, and that the priming effect of misspelled words at the shorter SOA is orthographically based. Orthographic-priming effects depend on the quality of the orthographic learning of the target word.

  6. Semantic priming of familiar songs.

    PubMed

    Johnson, Sarah K; Halpern, Andrea R

    2012-05-01

    We explored the functional organization of semantic memory for music by comparing priming across familiar songs both within modalities (Experiment 1, tune to tune; Experiment 3, category label to lyrics) and across modalities (Experiment 2, category label to tune; Experiment 4, tune to lyrics). Participants judged whether or not the target tune or lyrics were real (akin to lexical decision tasks). We found significant priming, analogous to linguistic associative-priming effects, in reaction times for related primes as compared to unrelated primes, but primarily for within-modality comparisons. Reaction times to tunes (e.g., "Silent Night") were faster following related tunes ("Deck the Hall") than following unrelated tunes ("God Bless America"). However, a category label (e.g., Christmas) did not prime tunes from within that category. Lyrics were primed by a related category label, but not by a related tune. These results support the conceptual organization of music in semantic memory, but with potentially weaker associations across modalities.

  7. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  8. Leading, but not trailing, primes influence temporal order perception: further evidence for an attentional account of perceptual latency priming.

    PubMed

    Scharlau, Ingrid

    2002-11-01

    Presenting a masked prime leading a target influences the perceived onset of the masking target (perceptual latency priming; Scharlau & Neumann, in press). This priming effect is explained by the asynchronous updating model (Neumann, 1982; Scharlau & Neumann, in press): The prime initiates attentional allocation toward its location, which renders a trailing target at the same place consciously available earlier. In three experiments, this perceptual latency priming by leading primes was examined jointly with the effects of trailing primes in order to compare the explanation of the asynchronous updating model with the onset-averaging and the P-center hypotheses. Experiment 1 showed that an attended, as well as an unattended, prime leads to perceptual latency priming. In addition, a large effect of trailing primes on the onset of a target was found. As Experiment 2 demonstrated, this effect is quite robust, although smaller than that of a leading prime. In Experiment 3, masked primes were used. Under these conditions, no influence of trailing primes could be found, whereas perceptual latency priming persisted. Thus, a nonattentional explanation for the effect of trailing primes seems likely.

  9. Analysis of Extracellular Vesicles in the Tumor Microenvironment.

    PubMed

    Al-Nedawi, Khalid; Read, Jolene

    2016-01-01

    Extracellular vesicles (ECV) are membrane compartments shed from all types of cells in various physiological and pathological states. In recent years, ECV have gained an increasing interest from the scientific community for their role as an intercellular communicator that plays important roles in modifying the tumor microenvironment. Multiple techniques have been established to collect ECV from conditioned media of cell culture or physiological fluids. The gold standard methodology is differential centrifugation. Although alternative techniques exist to collect ECV, these techniques have not proven suitable as a substitution for the ultracentrifugation procedure.

  10. Mechanisms of subliminal response priming.

    PubMed

    Kiesel, Andrea; Kunde, Wilfried; Hoffmann, Joachim

    2008-07-15

    Subliminal response priming has been considered to operate on several stages, e.g. perceptual, central or motor stages might be affected. While primes' impact on target perception has been clearly demonstrated, semantic response priming recently has been thrown into doubt (e.g. Klinger, Burton, & Pitts, 2000). Finally, LRP studies have revealed that subliminal primes evoke motor processes. Yet, the premises for such prime-evoked motor activation are not settled. A transfer of priming to stimuli that have never been presented as targets appears particularly interesting because it suggests a level of processing that goes beyond a reactivation of previously acquired S-R links. Yet, such transfer has not always withstood empirical testing. To account for these contradictory results, we proposed a two-process model (Kunde, Kiesel, & Hoffmann, 2003): First, participants build up expectations regarding imperative stimuli for the required responses according to experience and/or instructions. Second, stimuli that match these "action triggers" directly activate the corresponding motor responses irrespective of their conscious identification. In line with these assumptions, recent studies revealed that non-target primes induce priming when they fit the current task intentions and when they are expected in the experimental setting.

  11. Thermodynamically stable vesicle formation from glycolipid biosurfactant sponge phase.

    PubMed

    Imura, Tomohiro; Yanagishita, Hiroshi; Ohira, Junko; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2005-06-25

    Thermodynamically stable vesicle (L(alpha1)) formation from glycolipid biosurfactant sponge phase (L(3)) and its mechanism were investigated using a "natural" biocompatible mannosyl-erythritol lipid-A (MEL-A)/L-alpha-dilauroylphosphatidylcholine (DLPC) mixture by varying the composition. The trapping efficiency for calcein and turbidity measurements clearly indicated the existence of three regions: while the trapping efficiencies of the mixed MEL-A/DLPC assemblies at the compositions with X(DLPC)< or =0.1 or X(DLPC)> or =0.8 were almost zero, the mixed assemblies at the compositions with 0.1 or =0.8 were multilamellar vesicles (L(alpha)) with diameter from 2 to 10 microm. Meanwhile, dynamic light scattering (DLS) measurement revealed that the average size of the vesicles at the composition of X(DLPC)=0.3 was 633.2 nm, which is remarkably small compared to other compositions. Moreover, the mixed vesicle solution at the composition of X(DLPC)=0.3 was slightly bluish and turbid and kept its dispersion stability at 25 degrees C for more than 3 months, indicating the formation of a thermodynamically stable vesicle (L(alpha1)). These results exhibited the formation of a thermodynamically stable vesicle (L(alpha1)) with a high dispersibility from the MEL-A/DLPC mixture. The asymmetric distribution of MEL-A and DLPC in the two vesicle monolayers caused by the difference in geometrical structures is very likely to have changed their self-assembled structure from a sponge phase (L(3)) to a thermodynamically stable vesicle (L(alpha1)).

  12. Deformation of giant vesicles in AC electric fields —Dependence of the prolate-to-oblate transition frequency on vesicle radius

    NASA Astrophysics Data System (ADS)

    Antonova, K.; Vitkova, V.; Mitov, M. D.

    2010-02-01

    The electrodeformation of giant vesicles is studied as a function of their radii and the frequency of the applied AC field. At low frequency the shape is prolate, at sufficiently high frequency it is oblate and at some frequency, fc, the shape changes from prolate to oblate. A linear dependence of the prolate-to-oblate transition inverse frequency, 1/fc, on the vesicle radius is found. The nature of this phenomenon does not change with the variation of both the solution conductivity, σ, and the type of the fluid enclosed by the lipid membrane (water, sucrose or glucose aqueous solution). When σ increases, the value of fc increases while the slope of the line 1/fc(r) decreases. For vesicles in symmetrical conditions (the same conductivity of the inner and the outer solution) a linear dependence between σ and the critical frequency, fc, is obtained for conductivities up to σ=114 μS/cm. For vesicles with sizes below a certain minimum radius, depending on the solution conductivity, no shape transition could be observed.

  13. Retro-priming, priming, and double testing: psi and replication in a test–retest design

    PubMed Central

    Rabeyron, Thomas

    2014-01-01

    Numerous experiments have been conducted in recent years on anomalous retroactive influences on cognition and affect (Bem, 2010), yet more data are needed to understand these processes precisely. For this purpose, we carried out an initial retro-priming study in which the response times of 162 participants were measured (Rabeyron and Watt, 2010). In the current paper, we present the results of a second study in which we selected those participants who demonstrated the strongest retro-priming effect during the first study, in order to see if we could replicate this effect and therefore select high scoring participants. An additional objective was to try to find correlations between psychological characteristics (anomalous experiences, mental health, mental boundaries, trauma, negative life events) and retro-priming results for the high scoring participants. The retro-priming effect was also compared with performance on a classical priming task. Twenty-eight participants returned to the laboratory for this new study. The results, for the whole group, on the retro-priming task, were negative and non-significant (es = −0.25, ns) and the results were significant on the priming task (es = 0.63, p < 0.1). We obtained overall negative effects on retro-priming results for all the sub-groups (students, male, female). Ten participants were found to have positive results on the two retro-priming studies, but no specific psychological variables were found for these participants compared to the others. Several hypotheses are considered in explaining these results, and the author provide some final thoughts concerning psi and replicability. PMID:24672466

  14. Integral equation methods for vesicle electrohydrodynamics in three dimensions

    NASA Astrophysics Data System (ADS)

    Veerapaneni, Shravan

    2016-12-01

    In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.

  15. Single-step isolation of extracellular vesicles by size-exclusion chromatography

    PubMed Central

    Böing, Anita N.; van der Pol, Edwin; Grootemaat, Anita E.; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk

    2014-01-01

    Background Isolation of extracellular vesicles from plasma is a challenge due to the presence of proteins and lipoproteins. Isolation of vesicles using differential centrifugation or density-gradient ultracentrifugation results in co-isolation of contaminants such as protein aggregates and incomplete separation of vesicles from lipoproteins, respectively. Aim To develop a single-step protocol to isolate vesicles from human body fluids. Methods Platelet-free supernatant, derived from platelet concentrates, was loaded on a sepharose CL-2B column to perform size-exclusion chromatography (SEC; n=3). Fractions were collected and analysed by nanoparticle tracking analysis, resistive pulse sensing, flow cytometry and transmission electron microscopy. The concentrations of high-density lipoprotein cholesterol (HDL) and protein were measured in each fraction. Results Fractions 9–12 contained the highest concentrations of particles larger than 70 nm and platelet-derived vesicles (46%±6 and 61%±2 of totals present in all collected fractions, respectively), but less than 5% of HDL and less than 1% of protein (4.8%±1 and 0.65%±0.3, respectively). HDL was present mainly in fractions 18–20 (32%±2 of total), and protein in fractions 19–21 (36%±2 of total). Compared to the starting material, recovery of platelet-derived vesicles was 43%±23 in fractions 9–12, with an 8-fold and 70-fold enrichment compared to HDL and protein. Conclusions SEC efficiently isolates extracellular vesicles with a diameter larger than 70 nm from platelet-free supernatant of platelet concentrates. Application SEC will improve studies on the dimensional, structural and functional properties of extracellular vesicles. PMID:25279113

  16. [Schizophrenia and semantic priming effects].

    PubMed

    Lecardeur, L; Giffard, B; Eustache, F; Dollfus, S

    2006-01-01

    This article is a review of studies using the semantic priming paradigm to assess the functioning of semantic memory in schizophrenic patients. Semantic priming describes the phenomenon of increasing the speed with which a string of letters (the target) is recognized as a word (lexical decision task) by presenting to the subject a semantically related word (the prime) prior to the appearance of the target word. This semantic priming is linked to both automatic and controlled processes depending on experimental conditions (stimulus onset asynchrony (SOA), percentage of related words and explicit memory instructions). Automatic process observed with short SOA, low related word percentage and instructions asking only to process the target, could be linked to the "automatic spreading activation" through the semantic network. Controlled processes involve "semantic matching" (the number of related and unrelated pairs influences the subjects decision) and "expectancy" (the prime leads the subject to generate an expectancy set of potential target to the prime). These processes can be observed whatever the SOA for the former and with long SOA for the later, but both with only high related word percentage and explicit memory instructions. Studies evaluating semantic priming effects in schizophrenia show conflicting results: schizophrenic patients can present hyperpriming (semantic priming effect is larger in patients than in controls), hypopriming (semantic priming effect is lower in patients than in controls) or equal semantic priming effects compared to control subjects. These results could be associated to a global impairment of controlled processes in schizophrenia, essentially to a dysfunction of semantic matching process. On the other hand, efficiency of semantic automatic spreading activation process is controversial. These discrepancies could be linked to the different experimental conditions used (duration of SOA, proportion of related pairs and instructions), which

  17. Deformation analysis of vesicles in an alternating-current electric field.

    PubMed

    Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao

    2014-08-01

    In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.

  18. Semantic priming in the lexical decision task: roles of prospective prime-generated expectancies and retrospective semantic matching.

    PubMed

    Neely, J H; Keefe, D E; Ross, K L

    1989-11-01

    In semantic priming paradigms for lexical decisions, the probability that a word target is semantically related to its prime (the relatedness proportion) has been confounded with the probability that a target is a nonword, given that it is unrelated to its prime (the nonword ratio). This study unconfounded these two probabilities in a lexical decision task with category names as primes and with high- and low-dominance exemplars as targets. Semantic priming for high-dominance exemplars was modulated by the relatedness proportion and, to a lesser degree, by the nonword ratio. However, the nonword ratio exerted a stronger influence than did the relatedness proportion on semantic priming for low-dominance exemplars and on the nonword facilitation effect (i.e., the superiority in performance for nonword targets that follow a category name rather than a neutral XXX prime). These results suggest that semantic priming for lexical decisions is affected by both a prospective prime-generated expectancy, modulated by the relatedness proportion, and a retrospective target/prime semantic matching process, modulated by the nonword ratio.

  19. Vesicle Stability and Dynamics: An Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Del Bianco, Cristina; Torino, Domenica; Mansy, Sheref S.

    2014-01-01

    A laboratory exercise is described that helps students learn about lipid self-assembly by making vesicles under different solution conditions. Concepts covering the chemical properties of different lipids, the dynamics of lipids, and vesicle stability are explored. Further, the described protocol is easy and cheap to implement. One to two…

  20. Invariance to Rotation in Depth Measured by Masked Repetition Priming is Dependent on Prime Duration

    PubMed Central

    Eddy, Marianna D.; Holcomb, Phillip J.

    2011-01-01

    The current experiment examined invariance to pictures of objects rotated in depth using event-related potentials (ERPs) and masked repetition priming. Specifically we rotated objects 30°, 60° or 150° from their canonical view and, across two experiments, varied the prime duration (50 or 90 milliseconds (ms)). We examined three ERP components, the P/N190, N300 and N400. In Experiment 1, only the 30° rotation condition produced repetition priming effects on the N/P190, N300 and N400. The other rotation conditions only showed repetition priming effects on the early perceptual component, the N/P190. Experiment 2 extended the prime duration to 90 ms to determine whether additional exposure to the prime may produce invariance on the N300 and N400 for the 60° and 150° rotation conditions. Repetition priming effects were found for all rotation conditions across the N/P190, N300 and N400 components. We interpret these results to suggest that whether or not view invariant priming effects are found depends partly on the extent to which representation of an object has been activated. PMID:22005687

  1. The roles of scene priming and location priming in object-scene consistency effects

    PubMed Central

    Heise, Nils; Ansorge, Ulrich

    2014-01-01

    Presenting consistent objects in scenes facilitates object recognition as compared to inconsistent objects. Yet the mechanisms by which scenes influence object recognition are still not understood. According to one theory, consistent scenes facilitate visual search for objects at expected places. Here, we investigated two predictions following from this theory: If visual search is responsible for consistency effects, consistency effects could be weaker (1) with better-primed than less-primed object locations, and (2) with less-primed than better-primed scenes. In Experiments 1 and 2, locations of objects were varied within a scene to a different degree (one, two, or four possible locations). In addition, object-scene consistency was studied as a function of progressive numbers of repetitions of the backgrounds. Because repeating locations and backgrounds could facilitate visual search for objects, these repetitions might alter the object-scene consistency effect by lowering of location uncertainty. Although we find evidence for a significant consistency effect, we find no clear support for impacts of scene priming or location priming on the size of the consistency effect. Additionally, we find evidence that the consistency effect is dependent on the eccentricity of the target objects. These results point to only small influences of priming to object-scene consistency effects but all-in-all the findings can be reconciled with a visual-search explanation of the consistency effect. PMID:24910628

  2. Case report: endoscopic management of seminal vesicle stones with cutaneous fistula.

    PubMed

    Modi, Pranjal R

    2006-06-01

    Stones in the seminal vesicle are rare. Open surgery to remove either the seminal vesicle or the stone usually is required. We report a case of seminal-vesicle stones compounded by cutaneous fistula that was treated by ureteroscopy, intracorporeal lithotripsy, and fulguration of the fistulous tract.

  3. Unconscious and conscious processing of negative emotions examined through affective priming.

    PubMed

    Okubo, Chisa; Ogawa, Toshiki

    2013-04-01

    This study investigated unconscious and conscious processes by which negative emotions arise. Participants (26 men, 47 women; M age = 20.3 yr.) evaluated target words that were primed with subliminally or supraliminally presented emotional pictures. Stimulus onset asynchrony was either 200 or 800 msec. With subliminal presentations, reaction times to negative targets were longer than reaction times to positive targets after negative primes for the 200-msec. stimulus onset asynchrony. Reaction times to positive targets after negative or positive primes were shorter when the stimulus onset asynchrony was 800 msec. For supraliminal presentations, reaction times were longer when evaluating targets that followed emotionally opposite primes. When emotional stimuli were consciously distinguished, the evoked emotional states might lead to emotional conflicts, although the qualitatively different effects might be caused when subliminally presented emotion evoking stimulus was appraised unconsciously; that possibility was discussed.

  4. Microfluidic Approaches for Isolation, Detection, and Characterization of Extracellular Vesicles: Current Status and Future Directions

    PubMed Central

    Gholizadeh, Shima; Draz, Mohamed; Zarghooni, Maryam; Nezhad, Amir Sanati; Ghavami, Saeid; Shafiee, Hadi; Akbari, Mohsen

    2017-01-01

    Extracellular vesicles (EVs) are cell-derived vesicles present in body fluids that play an essential role in various cellular processes, such as intercellular communication, inflammation, cellular homeostasis, survival, transport, and regeneration. Their isolation and analysis from body fluids have a great clinical potential to provide information on a variety of disease states such as cancer, cardiovascular complication and inflammatory disorders. Despite increasing scientific and clinical interest in this field, at the time of writing there are still no standardized procedures available for the purification, detection, and characterization of EVs. Advances in microfluidics allow for chemical sampling with increasingly high spatial resolution and under precise manipulation down to single molecule level. In this review, our objective is to give a brief overview on the working principle and examples of the isolation and detection methods with the potential to be used for extracellular vesicles. This review will also highlight the integrated on-chip systems for isolation and characterization of EVs. PMID:28088752

  5. Mechanisms of masked evaluative priming: task sets modulate behavioral and electrophysiological priming for picture and words differentially

    PubMed Central

    Liegel, Nathalie; Zovko, Monika; Wentura, Dirk

    2017-01-01

    Abstract Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. PMID:27998994

  6. The unbearable lightness of priming.

    PubMed

    Speelman, Craig P; Simpson, Terry A; Kirsner, Kim

    2002-09-01

    Repetition priming from text to isolated words has been difficult to observe. One explanation for this difficulty is that previous attempts to observe this type of priming have utilised conditions that normally reduce priming. Two experiments were conducted to evaluate this hypothesis. Experiment 1 involved participants being presented with words in isolation and in text passages. The words were then presented again in a lexical decision test. Results indicated that priming occurred as a result of exposure to both isolated words and words in text, although priming was greater in the word-word condition. Experiment 2 investigated whether priming occurred in a lexical decision test on words that had been read prior to the test in Milan Kundera's novel "The Unbearable Lightness of Being." There was some evidence that participants who had read the book recently were faster at lexical decision to words from the book than participants who had not read the book. The two experiments therefore indicate that priming can occur from text to isolated words, although it is smaller in magnitude to that observed from word to word. Reasons for this difference, as suggested by Kirsner and Speelman (J. Exp. Psychol.: Learn. Mem. Cogn. 22 (1996) 563) model of repetition priming, are discussed.

  7. Effects of exosome-like vesicles on cumulus expansion in pigs in vitro.

    PubMed

    Matsuno, Yuta; Onuma, Asuka; Fujioka, Yoshie A; Yasuhara, Kazuma; Fujii, Wataru; Naito, Kunihiko; Sugiura, Koji

    2017-02-16

    Cell-secreted vesicles, such as exosomes, have recently been recognized as mediators of cell communication. A recent study in cattle showed the involvement of exosome-like vesicles in the control of cumulus expansion, a prerequisite process for normal ovulation; however, whether this is the case in other mammalian species is not known. Therefore, this study aimed to examine the presence of exosome-like vesicles in ovarian follicles and their effects on cumulus expansion in vitro in pigs. The presence of exosome-like vesicles in porcine follicular fluid (pFF) was confirmed by transmission electron microscopic observation, the detection of marker proteins, and RNA profiles specific to exosomes. Fluorescently labeled exosome-like vesicles isolated from pFF were incorporated into both cumulus and mural granulosa cells in vitro. Exosome-like vesicles were not capable of inducing cumulus expansion to a degree comparable to that induced by follicle-stimulating hormone (FSH). Moreover, exosome-like vesicles had no significant effects on the expression levels of transcripts required for the normal expansion process (HAS2, TNFAIP6, and PTGS2). Interestingly, FSH-induced expression of HAS2 and TNFAIP6 mRNA, but not of PTGS2 mRNA, was significantly increased by the presence of exosome-like vesicles; however, the degree of FSH-induced expansion was not affected. In addition, porcine exosome-like vesicles had no significant effects on the expansion of mouse cumulus-oocyte complexes. Collectively, the present results suggest that exosome-like vesicles are present in pFF, but they are not efficient in inducing cumulus expansion in pigs.

  8. Effects of exosome-like vesicles on cumulus expansion in pigs in vitro

    PubMed Central

    MATSUNO, Yuta; ONUMA, Asuka; FUJIOKA, Yoshie A; YASUHARA, Kazuma; FUJII, Wataru; NAITO, Kunihiko; SUGIURA, Koji

    2017-01-01

    Cell-secreted vesicles, such as exosomes, have recently been recognized as mediators of cell communication. A recent study in cattle showed the involvement of exosome-like vesicles in the control of cumulus expansion, a prerequisite process for normal ovulation; however, whether this is the case in other mammalian species is not known. Therefore, this study aimed to examine the presence of exosome-like vesicles in ovarian follicles and their effects on cumulus expansion in vitro in pigs. The presence of exosome-like vesicles in porcine follicular fluid (pFF) was confirmed by transmission electron microscopic observation, the detection of marker proteins, and RNA profiles specific to exosomes. Fluorescently labeled exosome-like vesicles isolated from pFF were incorporated into both cumulus and mural granulosa cells in vitro. Exosome-like vesicles were not capable of inducing cumulus expansion to a degree comparable to that induced by follicle-stimulating hormone (FSH). Moreover, exosome-like vesicles had no significant effects on the expression levels of transcripts required for the normal expansion process (HAS2, TNFAIP6, and PTGS2). Interestingly, FSH-induced expression of HAS2 and TNFAIP6 mRNA, but not of PTGS2 mRNA, was significantly increased by the presence of exosome-like vesicles; however, the degree of FSH-induced expansion was not affected. In addition, porcine exosome-like vesicles had no significant effects on the expansion of mouse cumulus-oocyte complexes. Collectively, the present results suggest that exosome-like vesicles are present in pFF, but they are not efficient in inducing cumulus expansion in pigs. PMID:28163264

  9. Revisiting synaptic vesicle pool localization in the Drosophila neuromuscular junction

    PubMed Central

    Denker, Annette; Kröhnert, Katharina; Rizzoli, Silvio O

    2009-01-01

    The synaptic vesicles are organized in distinct populations or ‘pools’: the readily releasable pool (the first vesicles released upon stimulation), the recycling pool (which maintains release under moderate stimulation) and the reserve pool (which is called into action only upon strong, often unphysiological stimulation). A major question in the field is whether the pools consist of biochemically different vesicles or whether the pool tag is a spatial one (with the recycling vesicles found next to the release sites, and the reserve ones farther away). A strong and stable spatial segregation has been proposed in the last decade in the Drosophila larval neuromuscular junction – albeit based solely on light microscopy experiments. We have tested here this hypothesis using electron microscopy (EM) photoconversion. We found the recycling and reserve pools to be thoroughly intermixed at the EM level, indicating that spatial location is irrelevant for the functional properties of the vesicle. PMID:19403600

  10. Shape fluctuations of nearly spherical lipid vesicles and emulsion droplets.

    PubMed

    Bivas, Isak

    2010-06-01

    It is known that the relaxation of the shape fluctuations of nearly spherical lipid vesicles is accompanied by a lateral displacement of the monolayers, comprising their bilayers. In this work a dissipation mechanism of the mechanical energy stored in the fluctuation is revealed that concerns the viscous friction of the flow in the liquid around the vesicle caused by this displacement. The time correlation functions of each of the vesicle's fluctuation modes are calculated as a function of the mechanical and rheological properties of the system which are the tension of the vesicle bilayer, its bending elasticities at free and blocked flip-flop, the viscosities of the liquids bathing the bilayer, the friction coefficient between the two monolayers, as well as the vesicle's dimensions: its bilayer thickness and radius. The correlations of the shape fluctuations of nearly spherical emulsion droplets are also calculated for different viscosities of the liquid inside and outside the droplet.

  11. Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation

    PubMed Central

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.

    2014-01-01

    Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  12. Involvement of vesicle coat material in casein secretion and surface regeneration

    PubMed Central

    1976-01-01

    The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces. PMID:1254641

  13. Lipid vesicles chaperone an encapsulated RNA aptamer.

    PubMed

    Saha, Ranajay; Verbanic, Samuel; Chen, Irene A

    2018-06-13

    The organization of molecules into cells is believed to have been critical for the emergence of living systems. Early protocells likely consisted of RNA functioning inside vesicles made of simple lipids. However, little is known about how encapsulation would affect the activity and folding of RNA. Here we find that confinement of the malachite green RNA aptamer inside fatty acid vesicles increases binding affinity and locally stabilizes the bound conformation of the RNA. The vesicle effectively 'chaperones' the aptamer, consistent with an excluded volume mechanism due to confinement. Protocellular organization thereby leads to a direct benefit for the RNA. Coupled with previously described mechanisms by which encapsulated RNA aids membrane growth, this effect illustrates how the membrane and RNA might cooperate for mutual benefit. Encapsulation could thus increase RNA fitness and the likelihood that functional sequences would emerge during the origin of life.

  14. Time-resolved SERS for characterizing extracellular vesicles

    NASA Astrophysics Data System (ADS)

    Rojalin, Tatu; Saari, Heikki; Somersalo, Petter; Laitinen, Saara; Turunen, Mikko; Viitala, Tapani; Wachsmann-Hogiu, Sebastian; Smith, Zachary J.; Yliperttula, Marjo

    2017-02-01

    The aim of this work is to develop a platform for characterizing extracellular vesicles (EV) by using gold-polymer nanopillar SERS arrays simultaneously circumventing the photoluminescence-related disadvantages of Raman with a time-resolved approach. EVs are rich of biochemical information reporting of, for example, diseased state of the biological system. Currently, straightforward, label-free and fast EV characterization methods with low sample consumption are warranted. In this study, SERS spectra of red blood cell and platelet derived EVs were successfully measured and their biochemical contents analyzed using multivariate data analysis techniques. The developed platform could be conveniently used for EV analytics in general.

  15. Unconscious response priming during continuous flash suppression

    PubMed Central

    Grassini, Simone

    2018-01-01

    Continuous flash suppression (CFS) has become a popular tool for studying unconscious processing, but the level at which unconscious processing of visual stimuli occurs under CFS is not clear. Response priming is a robust and well-understood phenomenon, in which the prime stimulus facilitates overt responses to targets if the prime and target are associated with the same response. We used CFS to study unconscious response priming of shape: arrows with left or right orientation served as primes and targets. The prime was presented near the limen of consciousness and each trial was followed by subjective rating of visibility and a forced-choice response concerning the orientation of the prime in counterbalanced order. In trials without any reported awareness of the presence of the prime, discrimination of the prime’s orientation was at chance level. However, priming was elicited in such unconscious trials. Unconscious priming was not influenced by the prime-target onset-asynchrony (SOA)/prime duration, whereas conscious processing, as indicated by the enhanced discriminability of the prime’s orientation and conscious priming, increased at the longest SOAs/prime durations. These results show that conscious and unconscious processes can be dissociated with CFS and that CFS-masking does not completely suppress unconscious visual processing of shape. PMID:29401503

  16. New sterically stabilized vesicles based on nonionic surfactant, cholesterol, and poly(ethylene glycol)-cholesterol conjugates.

    PubMed Central

    Beugin, S; Edwards, K; Karlsson, G; Ollivon, M; Lesieur, S

    1998-01-01

    Monomethoxypoly(ethylene glycol) cholesteryl carbonates (M-PEG-Chol) with polymer chain molecular weights of 1000 (M-PEG1000-Chol) and 2000 (M-PEG2000-Chol) have been newly synthesized and characterized. Their aggregation behavior in mixture with diglycerol hexadecyl ether (C16G2) and cholesterol has been examined by cryotransmission electron microscopy, high-performance gel exclusion chromatography, and quasielastic light scattering. Nonaggregated, stable, unilamellar vesicles were obtained at low polymer levels with optimal shape and size homogeneity at cholesteryl conjugate/ lipids ratios of 10 mol% M-PEG1000-Chol or 5 mol% M-PEG2000-Chol, corresponding to the theoretically predicted brush conformational state of the PEG chains. At 20 mol% M-PEG1000-Chol or 10 mol% M-PEG2000-Chol, the saturation threshold of the C16G2/cholesterol membrane in polymer is exceeded, and open disk-shaped aggregates are seen in coexistence with closed vesicles. Higher levels up to 30 mol% lead to the complete solubilization of the vesicles into disk-like structures of decreasing size with increasing PEG content. This study underlines the bivalent role of M-PEG-Chol derivatives: while behaving as solubilizing surfactants, they provide an efficient steric barrier, preventing the vesicles from aggregation and fusion over a period of at least 2 weeks. PMID:9635773

  17. Evaluative Priming in the Pronunciation Task.

    PubMed

    Klauer, Karl Christoph; Becker, Manuel; Spruyt, Adriaan

    2016-01-01

    We replicated and extended a study by Spruyt and Hermans (2008) in which picture primes engendered an evaluative-priming effect on the pronunciation of target words. As preliminary steps, we assessed data reproducibility of the original study, conducted Pilot Study I to identify highly semantically related prime-target pairs, reanalyzed the original data excluding such pairs, conducted Pilot Study II to demonstrate that we can replicate traditional associative priming effects in the pronunciation task, and conducted Pilot Study III to generate relatively unrelated sets of prime pictures and target words. The main study comprised three between-participants conditions: (1) a close replication of the original study, (2) the same condition excluding highly related prime-target pairs, and (3) a condition based on the relatively unrelated sets of prime pictures and target words developed in Pilot Study III. There was little evidence for an evaluative priming effect independent of semantic relatedness.

  18. Membrane trafficking: decoding vesicle identity with contrasting chemistries.

    PubMed

    Frost, Adam

    2011-10-11

    Proteins involved in membrane traffic must distinguish between different classes of vesicles. New work now shows that α-synuclein and ALPS motifs represent two extreme types of amphipathic helix that are tuned to detect both the curvature of transport vesicles as well as their bulk lipid content. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Freeze-thaw and high-voltage discharge allow macromolecule uptake into ileal brush-border vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donowitz, M.; Emmer, E.; McCullen, J.

    1987-06-01

    High-voltage discharge or one cycle of freeze-thawing are shown to transiently permeabilize rabbit ileal brush-border membrane vesicles to macromolecules. Uptake of the radiolabeled macromolecule dextran, mol wt 70,000, used as a marker for vesicle permeability, was determined by a rapid filtration technique, with uptake defined as substrate associated with the vesicle and releasable after incubation of vesicles with 0.1% saponin. Dextran added immediately after electric shock (2000 V) or at the beginning of one cycle of freeze-thawing was taken up approximately eightfold compared with control. ATP also was taken up into freeze-thawed vesicles, whereas there was no significant uptake intomore » control vesicles. The increase in vesicle permeability was reversible, based on Na-dependent D-glucose uptake being decreased when studied 5 but not 15 min after electric shock, and was not significantly decreased after completion of one cycle of freeze-thawing. In addition, adenosine 3',5'-cyclic monophosphate and Ca/sup 2 +/-calmodulin-dependent protein kinase activity were similar in control vesicles and vesicles exposed to high-voltage discharge or freeze-thawing. Also, vesicles freeze-thawed with (/sup 32/P)ATP demonstrated increased phosphorylation compared with nonfrozen vesicles, while freeze-thawing did not alter vesicle protein as judged by Coomassie blue staining. These techniques should allow intestinal membrane vesicles to be used for studies of intracellular control of transport processes, for instance, studies of protein kinase regulation of transport.« less

  20. Subfractionation, characterization and in-depth proteomic analysis of glomerular membrane vesicles in human urine

    PubMed Central

    Hogan, Marie C.; Johnson, Kenneth L.; Zenka, Roman M.; Charlesworth, M. Cristine; Madden, Benjamin J.; Mahoney, Doug W.; Oberg, Ann L.; Huang, Bing Q.; Nesbitt, Lisa L.; Bakeberg, Jason L.; Bergen, H. Robert; Ward, Christopher J.

    2014-01-01

    Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40–200nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV) enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin positive irregularly shaped membranous vesicles and podocin/podocalyxin negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton and RhoGDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases and complement proteins involved in glomerular disease are in GMVs and some were shed in the disease state (nephrin, TRPC6 and INF2 and PLA2R). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease. PMID:24196483

  1. Rapid response learning of brand logo priming: Evidence that brand priming is not dominated by rapid response learning.

    PubMed

    Boehm, Stephan G; Smith, Ciaran; Muench, Niklas; Noble, Kirsty; Atherton, Catherine

    2017-08-31

    Repetition priming increases the accuracy and speed of responses to repeatedly processed stimuli. Repetition priming can result from two complementary sources: rapid response learning and facilitation within perceptual and conceptual networks. In conceptual classification tasks, rapid response learning dominates priming of object recognition, but it does not dominate priming of person recognition. This suggests that the relative engagement of network facilitation and rapid response learning depends on the stimulus domain. Here, we addressed the importance of the stimulus domain for rapid response learning by investigating priming in another domain, brands. In three experiments, participants performed conceptual decisions for brand logos. Strong priming was present, but it was not dominated by rapid response learning. These findings add further support to the importance of the stimulus domain for the relative importance of network facilitation and rapid response learning, and they indicate that brand priming is more similar to person recognition priming than object recognition priming, perhaps because priming of both brands and persons requires individuation.

  2. Calcium transport in vesicles energized by cytochrome oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosier, Randy N.

    1979-01-01

    Experiments on the reconstitution of cytochrome oxidase into phospholipid vesicles were carried out using techniques of selectivity energizing the suspensions with ascorbate and cytochrome c or ascorbate, PMS, and internally trapped cytochrome c. It was found that the K + selective ionophore valinomycin stimulated the rate of respiration of cytochrome oxidase vesicles regardless of the direction of the K + flux across the vesicle membranes. The stimulation occurred in the presence of protonophoric uncouplers and in the complete absence of potassium or in detergent-lysed suspensions. Gramicidin had similar effects and it was determined that the ionophores acted by specific interactionmore » with cytochrome oxidase rather than by the previously assumed collapse of membrane potentials. When hydrophobic proteins and appropriate coupling factors were incorporated into the cytochrome oxidase, vesicles phosphorylation of ADP could be coupled to the oxidation reaction of cytochrome oxidase. Relatively low P:O, representing poor coupling of the system, were problematical and precluded measurements of protonmotive force. However the system was used to study ion translocation.« less

  3. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less

  4. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  5. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae.

    PubMed

    Olaya-Abril, Alfonso; Prados-Rosales, Rafael; McConnell, Michael J; Martín-Peña, Reyes; González-Reyes, José Antonio; Jiménez-Munguía, Irene; Gómez-Gascón, Lidia; Fernández, Javier; Luque-García, José L; García-Lidón, Carlos; Estévez, Héctor; Pachón, Jerónimo; Obando, Ignacio; Casadevall, Arturo; Pirofski, Liise-Anne; Rodríguez-Ortega, Manuel J

    2014-06-25

    Extracellular vesicles are produced by many pathogenic microorganisms and have varied functions that include secretion and release of microbial factors, which contribute to virulence. Very little is known about vesicle production by Gram-positive bacteria, as well as their biogenesis and release mechanisms. In this work, we demonstrate the active production of vesicles by Streptococcus pneumoniae from the plasma membrane, rather than being a product from cell lysis. We biochemically characterized them by proteomics and fatty acid analysis, showing that these vesicles and the plasma membrane resemble in essential aspects, but have some differences: vesicles are more enriched in lipoproteins and short-chain fatty acids. We also demonstrate that these vesicles act as carriers of surface proteins and virulence factors. They are also highly immunoreactive against human sera and induce immune responses that protect against infection. Overall, this work provides insights into the biology of this important Gram-positive human pathogen and the role of extracellular vesicles in clinical applications. Pneumococcus is one of the leading causes of bacterial pneumonia worldwide in children and the elderly, being responsible for high morbidity and mortality rates in developing countries. The augment of pneumococcal disease in developed countries has raised major public health concern, since the difficulties to treat these infections due to increasing antibiotic resistance. Vaccination is still the best way to combat pneumococcal infections. One of the mechanisms that bacterial pathogens use to combat the defense responses of invaded hosts is the production and release of extracellular vesicles derived from the outer surface. Little is known about this phenomenon in Gram-positives. We show that pneumococcus produces membrane-derived vesicles particularly enriched in lipoproteins. We also show the utility of pneumococcal vesicles as a new type of vaccine, as they induce protection

  6. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction.

    PubMed

    Heuser, J E; Reese, T S

    1973-05-01

    When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane

  7. EVIDENCE FOR RECYCLING OF SYNAPTIC VESICLE MEMBRANE DURING TRANSMITTER RELEASE AT THE FROG NEUROMUSCULAR JUNCTION

    PubMed Central

    Heuser, J. E.; Reese, T. S.

    1973-01-01

    When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane

  8. Mechanisms of masked evaluative priming: task sets modulate behavioral and electrophysiological priming for picture and words differentially.

    PubMed

    Kiefer, Markus; Liegel, Nathalie; Zovko, Monika; Wentura, Dirk

    2017-04-01

    Research with the evaluative priming paradigm has shown that affective evaluation processes reliably influence cognition and behavior, even when triggered outside awareness. However, the precise mechanisms underlying such subliminal evaluative priming effects, response activation vs semantic processing, are matter of a debate. In this study, we determined the relative contribution of semantic processing and response activation to masked evaluative priming with pictures and words. To this end, we investigated the modulation of masked pictorial vs verbal priming by previously activated perceptual vs semantic task sets and assessed the electrophysiological correlates of priming using event-related potential (ERP) recordings. Behavioral and electrophysiological effects showed a differential modulation of pictorial and verbal subliminal priming by previously activated task sets: Pictorial priming was only observed during the perceptual but not during the semantic task set. Verbal priming, in contrast, was found when either task set was activated. Furthermore, only verbal priming was associated with a modulation of the N400 ERP component, an index of semantic processing, whereas a priming-related modulation of earlier ERPs, indexing visuo-motor S-R activation, was found for both picture and words. The results thus demonstrate that different neuro-cognitive processes contribute to unconscious evaluative priming depending on the stimulus format. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Phase equilibria and formation of vesicles of dioleoylphosphatidylcholine in glycerol/water mixtures.

    PubMed

    Johansson, L B; Kalman, B; Wikander, G; Fransson, A; Fontell, K; Bergenståhl, B; Lindblom, G

    1993-07-04

    The lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) forms a lamellar liquid crystalline phase (L alpha) in arbitrary mixtures of glycerol and water. The phase has been characterized by means of X-ray diffraction, 31P-NMR spectroscopy and differential scanning calorimetry (DSC). In the L alpha state, and for DOPC concentrations greater than 50% (w/w), the thickness of the lipid bilayer decreases, while the area of the polar head group increases with increasing glycerol concentration. The phase transition from gel to L alpha state occurs in the range of 240 to 260 K. Contrary to a previous (McDaniel, R.V., McIntosh, T.J. and Simon, S.A. (1983) Biochim. Biophys. Acta 731, 97) study of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) we find that in the gel state, the thickness of the DOPC lipid bilayer is greater than that in the L alpha state. This suggests that in the gel state, the lipid acyl chains of DOPC are in extended configuration. The lamellar phase reaches its maximum swelling at about 50% (w/w) of DOPC. At lower DOPC concentrations a two-phase system is formed where the lamellar phase exists in equilibrium with excess of solvent. Unilamellar vesicles can be prepared from a diluted suspension of the lamellar phase either by using the sonicator or extruder technique. We show this by means of 31P-NMR, EPR and fluorescence spectroscopy. The mean radius of the vesicles, prepared by a sonicator, has been determined at different glycerol/water mixtures. It is found to decrease continuously from 100 A at 100% water to a minimum of 75 A at about 50% water in the solvent mixture. By further decreasing the water content in the solution, the radius rapidly increases, and a mean radius of 450 A is estimated at a water content of 10%. The rotational relaxation times of a fluorescent probe and two EPR spin probes, solubilized in DOPC vesicles, have been measured at different glycerol/water mixtures. It is found that the rotational rates are always much slower in

  10. Label-free tracking of single extracellular vesicles in a nano-fluidic optical fiber (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    van der Pol, Edwin; Weidlich, Stefan; Lahini, Yoav; Coumans, Frank A. W.; Sturk, Auguste; Nieuwland, Rienk; Schmidt, Markus A.; Faez, Sanli; van Leeuwen, Ton G.

    2016-03-01

    Background: Extracellular vesicles, such as exosomes, are abundantly present in human body fluids. Since the size, concentration and composition of these vesicles change during disease, vesicles have promising clinical applications, including cancer diagnosis. However, since ~70% of the vesicles have a diameter <70 nm, detection of single vesicles remains challenging. Thus far, vesicles <70 nm have only be studied by techniques that require the vesicles to be adhered to a surface. Consequently, the majority of vesicles have never been studied in their physiological environment. We present a novel label-free optical technique to track single vesicles <70 nm in suspension. Method: Urinary vesicles were contained within a single-mode light-guiding silica fiber containing a 600 nm nano-fluidic channel. Light from a diode laser (660 nm wavelength) was coupled to the fiber, resulting in a strongly confined optical mode in the nano-fluidic channel, which continuously illuminated the freely diffusing vesicles inside the channel. The elastic light scattering from the vesicles, in the direction orthogonal to the fiber axis, was collected using a microscope objective (NA=0.95) and imaged with a home-built microscope. Results: We have tracked single urinary vesicles as small as 35 nm by elastic light scattering. Please note that vesicles are low-refractive index (n<1.4) particles, which we confirmed by combining data on thermal diffusion and light scattering cross section. Conclusions: For the first time, we have studied vesicles <70 nm freely diffusing in suspension. The ease-of-use and performance of this technique support its potential for vesicle-based clinical applications.

  11. Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers

    PubMed Central

    Chan, Yee-Hung M.; Lenz, Peter; Boxer, Steven G.

    2007-01-01

    Membrane–membrane recognition and binding are crucial in many biological processes. We report an approach to studying the dynamics of such reactions by using DNA-tethered vesicles as a general scaffold for displaying membrane components. This system was used to characterize the docking reaction between two populations of tethered vesicles that display complementary DNA. Deposition of vesicles onto a supported lipid bilayer was performed by using a microfluidic device to prevent mixing of the vesicles in bulk during sample preparation. Once tethered onto the surface, vesicles mixed via two-dimensional diffusion. DNA-mediated docking of two reacting vesicles results in their colocalization after collision and their subsequent tandem motion. Individual docking events and population kinetics were observed via epifluorescence microscopy. A lattice-diffusion simulation was implemented to extract from experimental data the probability, Pdock, that a collision leads to docking. For individual vesicles displaying small numbers of docking DNA, Pdock shows a first-order relationship with copy number as well as a strong dependence on the DNA sequence. Both trends are explained by a model that includes both tethered vesicle diffusion on the supported bilayer and docking DNA diffusion over each vesicle's surface. These results provide the basis for the application of tethered vesicles to study other membrane reactions including protein-mediated docking and fusion. PMID:18025472

  12. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions

    PubMed Central

    Di Trapani, Mariano; Bassi, Giulio; Midolo, Martina; Gatti, Alessandro; Kamga, Paul Takam; Cassaro, Adriana; Carusone, Roberta; Adamo, Annalisa; Krampera, Mauro

    2016-01-01

    Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases. PMID:27071676

  13. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions.

    PubMed

    Di Trapani, Mariano; Bassi, Giulio; Midolo, Martina; Gatti, Alessandro; Kamga, Paul Takam; Cassaro, Adriana; Carusone, Roberta; Adamo, Annalisa; Krampera, Mauro

    2016-04-13

    Mesenchymal stromal cells (MSCs) are multipotent cells, immunomodulatory stem cells that are currently used for regenerative medicine and treatment of a number of inflammatory diseases, thanks to their ability to significantly influence tissue microenvironments through the secretion of large variety of soluble factors. Recently, several groups have reported the presence of extracellular vesicles (EVs) within MSC secretoma, showing their beneficial effect in different animal models of disease. Here, we used a standardized methodological approach to dissect the immunomodulatory effects exerted by MSC-derived EVs on unfractionated peripheral blood mononuclear cells and purified T, B and NK cells. We describe here for the first time: i. direct correlation between the degree of EV-mediated immunosuppression and EV uptake by immune effector cells, a phenomenon further amplified following MSC priming with inflammatory cytokines; ii. induction in resting MSCs of immunosuppressive properties towards T cell proliferation through EVs obtained from primed MSCs, without any direct inhibitory effect towards T cell division. Our conclusion is that the use of reproducible and validated assays is not only useful to characterize the mechanisms of action of MSC-derived EVs, but is also capable of justifying EV potential use as alternative cell-free therapy for the treatment of human inflammatory diseases.

  14. Calmodulin stimulation of calcium transport in carrot microsomal vesicles. [Daucus carota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, W.S.; Sze, H.

    1987-04-01

    ATP-dependent /sup 45/Ca/sup 2 +/ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca/sup 2 +/ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca/sup 2 +/ uptake (at 1.17 g/cc) was not affected bymore » oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca/sup 2 +/. These results are consistent with the ER being an important site of intracellular Ca/sup 2 +/ regulation.« less

  15. Equilibrium electrodeformation of a spheroidal vesicle in an ac electric field

    NASA Astrophysics Data System (ADS)

    Nganguia, H.; Young, Y.-N.

    2013-11-01

    In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.

  16. A novel assay to identify the trafficking proteins that bind to specific vesicle populations

    PubMed Central

    Bentley, Marvin; Banker, Gary

    2016-01-01

    Here we describe a method capable of identifying interactions between candidate trafficking proteins and a defined vesicle population in intact cells. The assay involves the expression of an FKBP12-rapamycin–binding domain (FRB)–tagged candidate vesicle-binding protein that can be inducibly linked to an FKBP-tagged molecular motor. If the FRB-tagged candidate protein binds the labeled vesicles, then linking the FRB and FKBP domains recruits motors to the vesicles and causes a predictable, highly distinctive change in vesicle trafficking. We describe two versions of the assay: a general protocol for use in cells with a typical microtubule-organizing center and a specialized protocol designed to detect protein-vesicle interactions in cultured neurons. We have successfully used this assay to identify kinesins and Rabs that bind to a variety of different vesicle populations. In principle, this assay could be used to investigate interactions between any category of vesicle trafficking proteins and any vesicle population that can be specifically labeled. PMID:26621371

  17. Mechanisms of subliminal response priming

    PubMed Central

    Kiesel, Andrea; Kunde, Wilfried; Hoffmann, Joachim

    2008-01-01

    Subliminal response priming has been considered to operate on several stages, e.g. perceptual, central or motor stages might be affected. While primes’ impact on target perception has been clearly demonstrated, semantic response priming recently has been thrown into doubt (e.g. Klinger, Burton, & Pitts, 2000). Finally, LRP studies have revealed that subliminal primes evoke motor processes. Yet, the premises for such prime-evoked motor activation are not settled. A transfer of priming to stimuli that have never been presented as targets appears particularly interesting because it suggests a level of processing that goes beyond a reactivation of previously acquired S-R links. Yet, such transfer has not always withstood empirical testing. To account for these contradictory results, we proposed a two-process model (Kunde, Kiesel, & Hoffmann, 2003): First, participants build up expectations regarding imperative stimuli for the required responses according to experience and/or instructions. Second, stimuli that match these “action triggers” directly activate the corresponding motor responses irrespective of their conscious identification. In line with these assumptions, recent studies revealed that non-target primes induce priming when they fit the current task intentions and when they are expected in the experimental setting. PMID:20517516

  18. Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina

    PubMed Central

    Van Hook, Matthew J.; Thoreson, Wallace B.

    2013-01-01

    Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726

  19. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates

    PubMed Central

    Biller, Steven J; McDaniel, Lauren D; Breitbart, Mya; Rogers, Everett; Paul, John H; Chisholm, Sallie W

    2017-01-01

    Diverse microbes release membrane-bound extracellular vesicles from their outer surfaces into the surrounding environment. Vesicles are found in numerous habitats including the oceans, where they likely have a variety of functional roles in microbial ecosystems. Extracellular vesicles are known to contain a range of biomolecules including DNA, but the frequency with which DNA is packaged in vesicles is unknown. Here, we examine the quantity and distribution of DNA associated with vesicles released from five different bacteria. The average quantity of double-stranded DNA and size distribution of DNA fragments released within vesicles varies among different taxa. Although some vesicles contain sufficient DNA to be visible following staining with the SYBR fluorescent DNA dyes typically used to enumerate viruses, this represents only a small proportion (<0.01–1%) of vesicles. Thus DNA is packaged heterogeneously within vesicle populations, and it appears that vesicles are likely to be a minor component of SYBR-visible particles in natural sea water compared with viruses. Consistent with this hypothesis, chloroform treatment of coastal and offshore seawater samples reveals that vesicles increase epifluorescence-based particle (viral) counts by less than an order of magnitude and their impact is variable in space and time. PMID:27824343

  20. Diagnosis and management of symptomatic seminal vesicle calculi.

    PubMed

    Christodoulidou, Michelle; Parnham, Arie; Nigam, Raj

    2017-08-01

    The aim of this study was to review the management of patients with symptomatic seminal vesicle calculi, from presentation and diagnosis to postoperative outcomes. A systematic review of the English literature in MEDLINE and Embase was performed, based on the following model: patients with a diagnosis of seminal vesicle calculi; all interventions considered with or without control groups with single and comparator interventions; outcomes considered were incidence, presentation, diagnostic methods and treatment. A narrative synthesis of the data was performed according to PRISMA 2009 guidelines. The study protocol was registered on PROSPERO (CRD42016032971). In total, 213 cases of seminal vesicle calculi from 37 studies were identified between 1928 and 2016. Published articles included cohort studies (16), case-control studies (two) and case reports (19). The most likely aetiology was stasis of ejaculate secondary to impaired drainage of secretions from the seminal vesicles. Transrectal ultrasound remains the primary investigation for haematospermia and painful ejaculation; however, magnetic resonance imaging seems to play an increasingly important role, especially when considering surgery. Transurethral seminal vesiculoscopy and lithotripsy is the ideal procedure for small calculi but requires surgical expertise. For larger calculi a transperitoneal laparoscopic approach is safe in the hands of experienced laparoscopic surgeons. Modern imaging techniques and cross-sectional imaging are leading to an increased number of diagnosed cases of seminal vesicle calculi. Optimal treatment depends on the stone size and burden, and centralization of services will assist in the development of specialized centres.

  1. Understanding crumpling lipid vesicles at the gel phase transition

    NASA Astrophysics Data System (ADS)

    Hirst, Linda; Ossowski, Adam; Fraser, Matthew

    2011-03-01

    Wrinkling and crumpling transitions in different membrane types have been studied extensively in recent years both theoretically and computationally. There has also been very interesting recent work on defects in liquid crystalline shells. Lipid bilayer vesicles, widely used in biophysical research can be considered as a single layer smectic shell in the liquid crystalline phase. On cooling the lipid vesicle a transition to the gel phase may take place in which the lipid chains tilt and assume a more ordered packing arrangement. We observe large scale morphological changes in vesicles close to this transition point using fluorescence microscopy and investigate the possible mechanisms for this transition. Confocal microscopy is used to map 3D vesicle shape and crumpling length-scales. We also employ the molecular tilt sensitive dye, Laurdan to investigate the role of tilt domain formation on macroscopic structure. Funded by NSF CAREER award (DMR - BMAT #0852791).

  2. Phasic affective modulation of semantic priming.

    PubMed

    Topolinski, Sascha; Deutsch, Roland

    2013-03-01

    The present research demonstrates that very brief variations in affect, being around 1 s in length and changing from trial to trial independently from semantic relatedness of primes and targets, modulate the amount of semantic priming. Implementing consonant and dissonant chords (Experiments 1 and 5), naturalistic sounds (Experiment 2), and visual facial primes (Experiment 3) in an (in)direct semantic priming paradigm, as well as brief facial feedback in a summative priming paradigm (Experiment 4), yielded increased priming effects under brief positive compared to negative affect. Furthermore, this modulation took place on the level of semantic spreading rather than on strategic mechanisms (Experiment 5). Alternative explanations such as distraction, motivation, arousal, and cognitive tuning could be ruled out. This phasic affective modulation constitutes a mechanism overlooked thus far that may contaminate priming effects in all priming paradigms that involve affective stimuli. Furthermore, this mechanism provides a novel explanation for the observation that priming effects are usually larger for positive than for negative stimuli. Finally, it has important implications for linguistic research, by suggesting that association norms may be biased for affective words. (c) 2013 APA, all rights reserved.

  3. Lexical enhancement during prime-target integration: ERP evidence from matched-case identity priming.

    PubMed

    Vergara-Martínez, Marta; Gómez, Pablo; Jiménez, María; Perea, Manuel

    2015-06-01

    A number of experiments have revealed that matched-case identity PRIME-TARGET pairs are responded to faster than mismatched-case identity prime-TARGET pairs for pseudowords (e.g., JUDPE-JUDPE < judpe-JUDPE), but not for words (JUDGE-JUDGE = judge-JUDGE). These findings suggest that prime-target integration processes are enhanced when the stimuli tap onto lexical representations, overriding physical differences between the stimuli (e.g., case). To track the time course of this phenomenon, we conducted an event-related potential (ERP) masked-priming lexical decision experiment that manipulated matched versus mismatched case identity in words and pseudowords. The behavioral results replicated previous research. The ERP waves revealed that matched-case identity-priming effects were found at a very early time epoch (N/P150 effects) for words and pseudowords. Importantly, around 200 ms after target onset (N250), these differences disappeared for words but not for pseudowords. These findings suggest that different-case word forms (lower- and uppercase) tap into the same abstract representation, leading to prime-target integration very early in processing. In contrast, different-case pseudoword forms are processed as two different representations. This word-pseudoword dissociation has important implications for neural accounts of visual-word recognition.

  4. Development of Targeted Nonionic Surfactant Vesicles for Treatment of Vascular Injury

    DTIC Science & Technology

    2008-12-01

    antibody and containing drug atorvastatin (test substance-low drug concentration) Test (high) 2. Surfactant vesicle coated with antibody and...containing atorvastatin (test substance-high drug concentration) Control (targeted no drug) 3. Surfactant vesicle coated with antibody and containing...buffered saline solution Control (non targeted with drug) 4. Surfactant vesicle without antibody containing atorvastatin Control (free drug

  5. Growth and instability of a phospholipid vesicle in a bath of fatty acids

    NASA Astrophysics Data System (ADS)

    Dervaux, J.; Noireaux, V.; Libchaber, A. J.

    2017-06-01

    Using a microfluidic trap, we study the behavior of individual phospholipid vesicles in contact with fatty acids. We show that spontaneous fatty acids insertion inside the bilayer is controlled by the vesicle size, osmotic pressure difference across the membrane and fatty acids concentration in the external bath. Depending on these parameters, vesicles can grow spherically or become unstable and fragment into several daughter vesicles. We establish the phase diagram for vesicle growth and we derive a simple thermodynamic model that reproduces the time evolution of the vesicle volume. Finally, we show that stable growth can be achieved on an artificial cell expressing a simple set of bacterial cytoskeletal proteins, paving the way toward artificial cell reproduction.

  6. Molecular aspects of defence priming.

    PubMed

    Conrath, Uwe

    2011-10-01

    Plants can be primed for more rapid and robust activation of defence to biotic or abiotic stress. Priming follows perception of molecular patterns of microbes or plants, recognition of pathogen-derived effectors or colonisation by beneficial microbes. However the process can also be induced by treatment with some natural or synthetic compounds and wounding. The primed mobilization of defence is often associated with development of immunity and stress tolerance. Although the phenomenon has been known for decades, the molecular basis of priming is poorly understood. Here, I summarize recent progress made in unravelling molecular aspects of defence priming that is the accumulation of dormant mitogen-activated protein kinases, chromatin modifications and alterations of primary metabolism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Test Sequence Priming in Recognition Memory

    ERIC Educational Resources Information Center

    Johns, Elizabeth E.; Mewhort, D. J. K.

    2009-01-01

    The authors examined priming within the test sequence in 3 recognition memory experiments. A probe primed its successor whenever both probes shared a feature with the same studied item ("interjacent priming"), indicating that the study item like the probe is central to the decision. Interjacent priming occurred even when the 2 probes did…

  8. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets

    PubMed Central

    Li, Ying C.

    2017-01-01

    Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle—such as exocytosis and endocytosis—require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders. PMID:28265000

  9. Lipid Vesicle Shape Analysis from Populations Using Light Video Microscopy and Computer Vision

    PubMed Central

    Zupanc, Jernej; Drašler, Barbara; Boljte, Sabina; Kralj-Iglič, Veronika; Iglič, Aleš; Erdogmus, Deniz; Drobne, Damjana

    2014-01-01

    We present a method for giant lipid vesicle shape analysis that combines manually guided large-scale video microscopy and computer vision algorithms to enable analyzing vesicle populations. The method retains the benefits of light microscopy and enables non-destructive analysis of vesicles from suspensions containing up to several thousands of lipid vesicles (1–50 µm in diameter). For each sample, image analysis was employed to extract data on vesicle quantity and size distributions of their projected diameters and isoperimetric quotients (measure of contour roundness). This process enables a comparison of samples from the same population over time, or the comparison of a treated population to a control. Although vesicles in suspensions are heterogeneous in sizes and shapes and have distinctively non-homogeneous distribution throughout the suspension, this method allows for the capture and analysis of repeatable vesicle samples that are representative of the population inspected. PMID:25426933

  10. Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin.

    PubMed

    Manconi, Maria; Sinico, Chiara; Caddeo, Carla; Vila, Amparo Ofelia; Valenti, Donatella; Fadda, Anna Maria

    2011-06-30

    The ability of a recently developed novel class of liposomes to promote dermal delivery of tretinoin (TRA) was evaluated. New penetration enhancer-containing vesicles (PEVs) were prepared adding to conventional phosphatidylcholine vesicles (control liposomes) different hydrophilic penetration enhancers: Oramix NS10 (OrNS10), Labrasol (Lab), Transcutol P (Trc), and propylene glycol (PG). Vesicles were characterized by morphology, size distribution, zeta potential, incorporation efficiency, stability, rheological behaviour, and deformability. Small, negatively charged, non-deformable, multilamellar vesicles were obtained. Rheological studies showed that PEVs had fluidity higher than conventional liposomes. The influence of the obtained PEVs on (trans)dermal delivery of tretinoin was studied by ex vivo diffusion experiments through new born pig skin using formulations having the drug both inside and outside the vesicles, having TRA only inside, in comparison with non-incorporated drug dispersions of the same composition used to produce the studied vesicles. Main result of these experiments was an improved cutaneous drug accumulation and a reduced transdermal TRA delivery (except for PG-PEVs). TRA deposition provided by PEVs was higher for dialysed than for non-dialysed vesicles. Further, the accumulation increased in the order: control liposomes

  11. A role for microtubules in sorting endocytic vesicles in rat hepatocytes.

    PubMed Central

    Goltz, J S; Wolkoff, A W; Novikoff, P M; Stockert, R J; Satir, P

    1992-01-01

    The vectorial nature of hepatocyte receptor-mediated endocytosis (RME) and its susceptibility to cytoskeletal disruptors has suggested that a polarized network of microtubules plays a vital role in directed movement during sorting. Using as markers a well-known ligand, asialoorosomucoid, and its receptor, we have isolated endocytic vesicles that bind directly to and interact with stabilized endogenous hepatocyte microtubules at specific times during a synchronous, experimentally initiated, single wave of RME. Both ligand- and receptor-containing vesicles copelleted with microtubules in the absence of ATP but did not pellet under similar conditions when microtubules were not polymerized. When 5 mM ATP was added to preparations of microtubule-bound vesicles, ligand-containing vesicles were released into the supernatant, while receptor-containing vesicles remained immobilized on the microtubules. Release of ligand-containing vesicles from microtubules was prevented by monensin treatment during the endocytic wave. Several proteins, including the microtubule motor protein cytoplasmic dynein, were present in these preparations and were released from microtubule pellets by ATP addition concomitantly with ligand. These results suggest that receptor domains within the endosome can be immobilized by attachment to microtubules so that, following monensin-sensitive dissociation of ligand from receptor, ligand-containing vesicles can be pulled along microtubules away from the receptor domains by a motor molecule, such as cytoplasmic dynein, thereby delineating sorting. Images PMID:1353884

  12. Subliminal speech priming.

    PubMed

    Kouider, Sid; Dupoux, Emmanuel

    2005-08-01

    We present a novel subliminal priming technique that operates in the auditory modality. Masking is achieved by hiding a spoken word within a stream of time-compressed speechlike sounds with similar spectral characteristics. Participants were unable to consciously identify the hidden words, yet reliable repetition priming was found. This effect was unaffected by a change in the speaker's voice and remained restricted to lexical processing. The results show that the speech modality, like the written modality, involves the automatic extraction of abstract word-form representations that do not include nonlinguistic details. In both cases, priming operates at the level of discrete and abstract lexical entries and is little influenced by overlap in form or semantics.

  13. Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins.

    PubMed

    Flavin, William P; Bousset, Luc; Green, Zachary C; Chu, Yaping; Skarpathiotis, Stratos; Chaney, Michael J; Kordower, Jeffrey H; Melki, Ronald; Campbell, Edward M

    2017-10-01

    Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.

  14. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles

    PubMed Central

    Durcin, Maëva; Fleury, Audrey; Taillebois, Emiliane; Hilairet, Grégory; Krupova, Zuzana; Henry, Céline; Truchet, Sandrine; Trötzmüller, Martin; Köfeler, Harald; Mabilleau, Guillaume; Hue, Olivier; Andriantsitohaina, Ramaroson; Martin, Patrice; Le Lay, Soazig

    2017-01-01

    ABSTRACT Extracellular vesicles (EVs) are biological vectors that can modulate the metabolism of target cells by conveying signalling proteins and genomic material. The level of EVs in plasma is significantly increased in cardiometabolic diseases associated with obesity, suggesting their possible participation in the development of metabolic dysfunction. With regard to the poor definition of adipocyte-derived EVs, the purpose of this study was to characterise both qualitatively and quantitatively EVs subpopulations secreted by fat cells. Adipocyte-derived EVs were isolated by differential centrifugation of conditioned media collected from 3T3-L1 adipocytes cultured for 24 h in serum-free conditions. Based on morphological and biochemical properties, as well as quantification of secreted EVs, we distinguished two subpopulations of adipocyte-derived EVs, namely small extracellular vesicles (sEVs) and large extracellular vesicles (lEVs). Proteomic analyses revealed that lEVs and sEVs exhibit specific protein signatures, allowing us not only to define novel markers of each population, but also to predict their biological functions. Despite similar phospholipid patterns, the comparative lipidomic analysis performed on these EV subclasses revealed a specific cholesterol enrichment of the sEV population, whereas lEVs were characterised by high amounts of externalised phosphatidylserine. Enhanced secretion of lEVs and sEVs is achievable following exposure to different biological stimuli related to the chronic low-grade inflammation state associated with obesity. Finally, we demonstrate the ability of primary murine adipocytes to secrete sEVs and lEVs, which display physical and biological characteristics similar to those described for 3T3-L1. Our study provides additional information and elements to define EV subtypes based on the characterisation of adipocyte-derived EV populations. It also underscores the need to distinguish EV subpopulations, through a combination of

  15. Discovery: Prime Numbers

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2008-01-01

    Prime numbers are important as the building blocks for the set of all natural numbers, because prime factorisation is an important and useful property of all natural numbers. Students can discover them by using the method known as the Sieve of Eratosthenes, named after the Greek geographer and astronomer who lived from c. 276-194 BC. Eratosthenes…

  16. Fibronectin on extracellular vesicles from microvascular endothelial cells is involved in the vesicle uptake into oligodendrocyte precursor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Sho; Department of Molecular and Cellular Neurobiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511; Kurachi, Masashi

    We previously reported transplantation of brain microvascular endothelial cells (MVECs) into cerebral white matter infarction model improved the animal's behavioral outcome by increasing the number of oligodendrocyte precursor cells (OPCs). We also revealed extracellular vesicles (EVs) derived from MVECs promoted survival and proliferation of OPCs in vitro. In this study, we investigated the mechanism how EVs derived from MVECs contribute to OPC survival and proliferation. Protein mass spectrometry and enzyme-linked immunosorbent assay revealed fibronectin was abundant on the surface of EVs from MVECs. As fibronectin has been reported to promote OPC survival and proliferation via integrin signaling pathway, we blocked themore » binding between fibronectin and integrins using RGD sequence mimics. Blocking the binding, however, did not attenuate the survival and proliferation promoting effect of EVs on OPCs. Flow cytometric and imaging analyses revealed fibronectin on EVs mediates their internalization into OPCs by its binding to heparan sulfate proteoglycan on OPCs. OPC survival and proliferation promoted by EVs were attenuated by blocking the internalization of EVs into OPCs. These lines of evidence suggest that fibronectin on EVs mediates their internalization into OPCs, and the cargo of EVs promotes survival and proliferation of OPCs, independent of integrin signaling pathway. - Highlights: • Fibronectin exists on the surface of extracellular vesicles from endothelial cells. • Integrin signaling is not involved in effects of extracellular vesicles on OPCs. • Fibronectin on the surface of extracellular vesicles mediates their uptake into OPCs.« less

  17. Re-naming D Double Prime

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    1999-01-01

    "Knowledge about the dynamics of the D double prime region is a key to unlock some fundamental mysteries of the Earth heat engine which governs a wide range of global geophysical processes from tectonics to geodynamo." This benign sentence makes complete sense to many geophysicists. But for many others, it makes sense all except the odd nomenclature "D double prime". One knows about the crust, upper and lower mantle, outer and inner core, but where is the D double prime region? What meaning does it try to convey? Where is D prime region, or D, or A, B, C regions for that matter, and are there higher-order primes? How does such an odd name come about anyway? D double prime, or more "simply" D", is a generic designation given to the thin shell, about 200 km thick, of the lowermost mantle just above the core-mantle boundary inside the Earth. Incidentally, whether D" is "simpler" than "D double prime" depends on whether you are pronouncing it or writing/typing it; and D" can be confusing to readers in distinguishing quotation marks (such as in the above sentences) and second derivatives, and to word processors in spelling check and indexing.

  18. Masked Repetition Priming Using Magnetoencephalography

    ERIC Educational Resources Information Center

    Monahan, Philip J.; Fiorentino, Robert; Poeppel, David

    2008-01-01

    Masked priming is used in psycholinguistic studies to assess questions about lexical access and representation. We present two masked priming experiments using MEG. If the MEG signal elicited by words reflects specific aspects of lexical retrieval, then one expects to identify specific neural correlates of retrieval that are sensitive to priming.…

  19. Calcium regulates vesicle replenishment at the cone ribbon synapse

    PubMed Central

    Babai, Norbert; Bartoletti, Theodore M.; Thoreson, Wallace B.

    2010-01-01

    Cones release glutamate-filled vesicles continuously in darkness and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording post-synaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attaining a steady-state between vesicle release and replenishment using trains of test pulses. Increasing Ca2+ currents (ICa) by changing the test step from −30 to −10 mV increased replenishment. Lengthening −30 mV test pulses to match the Ca2+ influx during 25 ms test pulses to −10 mV produced similar replenishment rates. Reducing Ca2+ driving force by using test steps to +30 mV slowed replenishment. Using UV flashes to reverse inhibition of ICa by nifedipine accelerated replenishment. Increasing [Ca2+]i by flash photolysis of caged Ca2+ also accelerated replenishment. Replenishment, but not the initial burst of release, was enhanced by using an intracellular Ca2+ buffer of 0.5 mM EGTA rather than 5 mM EGTA, and diminished by 1 mM BAPTA. This suggests that although release and replenishment and release exhibited similar Ca2+-dependencies, release sites are <200 nm from Ca2+ channels but replenishment sites are >200 nm away. Membrane potential thus regulates replenishment by controlling Ca2+ influx, principally by effects on replenishment mechanisms but also by altering releasable pool size. This in turn provides a mechanism for converting changes in light intensity into changes in sustained release at the cone ribbon synapse. PMID:21106825

  20. Characterization, stabilization and activity of uricase loaded in lipid vesicles.

    PubMed

    Tan, Q Y; Wang, N; Yang, H; Zhang, L K; Liu, S; Chen, L; Liu, J; Zhang, L; Hu, N N; Zhao, C J; Zhang, J Q

    2010-01-15

    Uricase-containing lipid vesicles (UOXLVs) were prepared by reverse-phase evaporation method with high efficiency and the characteristics of UOXLVs were described. The average size and zeta potential of UOXLVs obtained by the optimized formulation were 205.47 nm and -37.33 mV, respectively. Uricase was encapsulated in the alkaline aqueous phase of the lipid vesicle and the stability of its tetrameric structure was thus improved and its activity preserved. The storage stability of uricase in lipid vesicles was significantly increased compared to that of free uricase at 4 degrees C in borate buffer of pH 8.5. At 55 degrees C, free uricase was deactivated much more quickly especially at lower concentration predominantly due to enhanced dissociation of uricase into subunits. An intrinsic tryptophan of uricase recovered from the lipid vesicle thermally treated at 55 degrees C revealed that a partially denatured uricase molecule was stabilized through its hydrophobic interaction with lipid vesicle membrane. This interaction was depressed mainly by dissociation of uricase into subunits. At the physiological pH, significant increase of enzyme activity was found for the uricase entrapped in the lipid vesicles (1.8 times that of free uricase) at their respective optimum pH. The shift of optimum pH and increased uricolytic activity suggested the conformation change of the uricase during the entrapment process. The stability to proteolytic digestion was increased obviously by entrapping the uricase in the lipid vesicles. UOXLVs also showed relatively slower loss in activity compared with free uricase when treated with some chemical reagents. Lastly, in vitro study explicitly indicated that the uricase entrapped by UOXLVs possessed higher uricolytic activity than that of native uricase solution.

  1. Brivaracetam augments short-term depression and slows vesicle recycling.

    PubMed

    Yang, Xiaofeng; Bognar, Joseph; He, Tianyu; Mohammed, Mouhari; Niespodziany, Isabelle; Wolff, Christian; Esguerra, Manuel; Rothman, Steven M; Dubinsky, Janet M

    2015-12-01

    Brivaracetam (BRV) decreases seizure activity in a number of epilepsy models and binds to the synaptic vesicle glycoprotein 2A (SV2A) with a higher affinity than the antiepileptic drug levetiracetam (LEV). Experiments were performed to determine if BRV acted similarly to LEV to induce or augment short-term depression (STD) under high-frequency neuronal stimulation and slow synaptic vesicle recycling. Electrophysiologic field excitatory postsynaptic potential (fEPSP) recordings were made from CA1 synapses in rat hippocampal slices loaded with BRV or LEV during intrinsic activity or with BRV actively loaded during hypertonic stimulation. STD was examined in response to 5 or 40 Hz stimulus trains. Presynaptic release of FM1-43 was visualized using two-photon microscopy to assess drug effects upon synaptic vesicle mobilization. When hippocampal slices were incubated in 0.1-30 μm BRV or 30 μm-1 mm LEV for 3 h, the relative CA1 field EPSPs decreased over the course of a high-frequency train of stimuli more than for control slices. This STD was frequency- and concentration-dependent, with BRV being 100-fold more potent than LEV. The extent of STD depended on the length of the incubation time for both drugs. Pretreatment with LEV occluded the effects of BRV. Repeated hypertonic sucrose treatments and train stimulation successfully unloaded BRV from recycling vesicles and reversed BRVs effects on STD, as previously reported for LEV. At their maximal concentrations, BRV slowed FM1-43 release to a greater extent than in slices loaded with LEV during prolonged stimulation. BRV, similar to LEV, entered into recycling synaptic vesicles and produced a frequency-dependent decrement of synaptic transmission at 100-fold lower concentrations than LEV. In addition, BRV slowed synaptic vesicle mobilization more effectively than LEV, suggesting that these drugs may modify multiple functions of the synaptic vesicle protein SV2A to curb synaptic transmission and limit epileptic activity

  2. Masked response priming in expert typists.

    PubMed

    Heinemann, Alexander; Kiesel, Andrea; Pohl, Carsten; Kunde, Wilfried

    2010-03-01

    In masked priming tasks responses are usually faster when prime and target require identical rather than different responses. Previous research has extensively manipulated the nature and number of response-affording stimuli. However, little is known about the constraints of masked priming regarding the nature and number of response alternatives. The present study explored the limits of masked priming in a six-choice reaction time task, where responses from different fingers of both hands were required. We studied participants that were either experts for the type of response (skilled typists) or novices. Masked primes facilitated responding to targets that required the same response, responses with a different finger of the same hand, and with a homologous finger of the other hand. These effects were modulated by expertise. The results show that masked primes facilitate responding especially for experts in the S-R mapping and with increasing similarity of primed and required response.

  3. Changing the threshold-Signals and mechanisms of mast cell priming.

    PubMed

    Halova, Ivana; Rönnberg, Elin; Draberova, Lubica; Vliagoftis, Harissios; Nilsson, Gunnar P; Draber, Petr

    2018-03-01

    Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E 2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Semantic priming from crowded words.

    PubMed

    Yeh, Su-Ling; He, Sheng; Cavanagh, Patrick

    2012-06-01

    Vision in a cluttered scene is extremely inefficient. This damaging effect of clutter, known as crowding, affects many aspects of visual processing (e.g., reading speed). We examined observers' processing of crowded targets in a lexical decision task, using single-character Chinese words that are compact but carry semantic meaning. Despite being unrecognizable and indistinguishable from matched nonwords, crowded prime words still generated robust semantic-priming effects on lexical decisions for test words presented in isolation. Indeed, the semantic-priming effect of crowded primes was similar to that of uncrowded primes. These findings show that the meanings of words survive crowding even when the identities of the words do not, suggesting that crowding does not prevent semantic activation, a process that may have evolved in the context of a cluttered visual environment.

  5. Uniform and Janus-like nanoparticles in contact with vesicles: energy landscapes and curvature-induced forces.

    PubMed

    Agudo-Canalejo, Jaime; Lipowsky, Reinhard

    2017-03-15

    Biological membranes and lipid vesicles often display complex shapes with non-uniform membrane curvature. When adhesive nanoparticles with chemically uniform surfaces come into contact with such membranes, they exhibit four different engulfment regimes as recently shown by a systematic stability analysis. Depending on the local curvature of the membrane, the particles either remain free, become partially or completely engulfed by the membrane, or display bistability between free and completely engulfed states. Here, we go beyond stability analysis and develop an analytical theory to leading order in the ratio of particle-to-vesicle size. This theory allows us to determine the local and global energy landscapes of uniform nanoparticles that are attracted towards membranes and vesicles. While the local energy landscape depends only on the local curvature of the vesicle membrane and not on the overall membrane shape, the global energy landscape describes the variation of the equilibrium state of the particle as it probes different points along the membrane surface. In particular, we find that the binding energy of a partially engulfed particle depends on the 'unperturbed' local curvature of the membrane in the absence of the particle. This curvature dependence leads to local forces that pull the partially engulfed particles towards membrane segments with lower and higher mean curvature if the particles originate from the exterior and interior solution, respectively, corresponding to endo- and exocytosis. Thus, for partial engulfment, endocytic particles undergo biased diffusion towards the membrane segments with the lowest membrane curvature, whereas exocytic particles move towards segments with the highest curvature. The curvature-induced forces are also effective for Janus particles with one adhesive and one non-adhesive surface domain. In fact, Janus particles with a strongly adhesive surface domain are always partially engulfed which implies that they provide

  6. Chloroform induces outstanding crystallization of poly(hydroxybutyrate) (PHB) vesicles within bacteria.

    PubMed

    Rebois, Rolando; Onidas, Delphine; Marcott, Curtis; Noda, Isao; Dazzi, Alexandre

    2017-03-01

    Poly[(R)-3-hydroxyalkanoate]s or PHAs are aliphatic polyesters produced by numerous microorganisms. They are accumulated as energy and carbon reserve in the form of small intracellular vesicles. Poly[(R)-3-hydroxybutyrate] (PHB) is the most ubiquitous and simplest PHA. An atomic force microscope coupled with a tunable infrared laser (AFM-IR) was used to record highly spatially resolved infrared spectra of commercial purified PHB and native PHB within bacteria. For the first time, the crystallinity degree of native PHB within vesicle has been directly evaluated in situ without alteration due to the measure or extraction and purification steps of the polymer: native PHB is in crystalline state at 15% whereas crystallinity degree reaches 57% in commercial PHB. Chloroform addition on native PHB induces crystallization of the polymer within bacteria up to 60%. This possibility of probing and changing the physical state of polymer in situ could open alternative ways of production for PHB and others biopolymers. Graphical abstract An atomic force microscope coupled with a tunable infrared laser (AFM-IR) has been used to record local infrared spectra of biopolymer PHB within bacteria. Deconvolution of those spectra has allowed to determine in situ the crystallinity degree of native PHB.

  7. Shape and Displacement Fluctuations in Soft Vesicles Filled by Active Particles

    PubMed Central

    Paoluzzi, Matteo; Di Leonardo, Roberto; Marchetti, M. Cristina; Angelani, Luca

    2016-01-01

    We investigate numerically the dynamics of shape and displacement fluctuations of two-dimensional flexible vesicles filled with active particles. At low concentration most of the active particles accumulate at the boundary of the vesicle where positive particle number fluctuations are amplified by trapping, leading to the formation of pinched spots of high density, curvature and pressure. At high concentration the active particles cover the vesicle boundary almost uniformly, resulting in fairly homogeneous pressure and curvature, and nearly circular vesicle shape. The change between polarized and spherical shapes is driven by the number of active particles. The center-of-mass of the vesicle performs a persistent random walk with a long time diffusivity that is strongly enhanced for elongated active particles due to orientational correlations in their direction of propulsive motion. In our model shape-shifting induces directional sensing and the cell spontaneously migrate along the polarization direction. PMID:27678166

  8. The priming function of in-car audio instruction.

    PubMed

    Keyes, Helen; Whitmore, Antony; Naneva, Stanislava; McDermott, Daragh

    2018-05-01

    Studies to date have focused on the priming power of visual road signs, but not the priming potential of audio road scene instruction. Here, the relative priming power of visual, audio, and multisensory road scene instructions was assessed. In a lab-based study, participants responded to target road scene turns following visual, audio, or multisensory road turn primes which were congruent or incongruent to the primes in direction, or control primes. All types of instruction (visual, audio, and multisensory) were successful in priming responses to a road scene. Responses to multisensory-primed targets (both audio and visual) were faster than responses to either audio or visual primes alone. Incongruent audio primes did not affect performance negatively in the manner of incongruent visual or multisensory primes. Results suggest that audio instructions have the potential to prime drivers to respond quickly and safely to their road environment. Peak performance will be observed if audio and visual road instruction primes can be timed to co-occur.

  9. Vesicle Fusion Observed by Content Transfer across a Tethered Lipid Bilayer

    PubMed Central

    Rawle, Robert J.; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G.

    2011-01-01

    Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. PMID:22004762

  10. Extracellular vesicles released by mesenchymal-like prostate carcinoma cells modulate EMT state of recipient epithelial-like carcinoma cells through regulation of AR signaling.

    PubMed

    El-Sayed, Ihsan Y; Daher, Ahmad; Destouches, Damien; Firlej, Virginie; Kostallari, Enis; Maillé, Pascale; Huet, Eric; Haidar-Ahmad, Nathaline; Jenster, Guido; de la Taille, Alexandre; Abou Merhi, Raghida; Terry, Stéphane; Vacherot, Francis

    2017-12-01

    Extracellular vesicles released from cancer cells may play an important role in cancer progression by shuttling oncogenic information into recipient cells. However, our knowledge is still fragmentary and there remain numerous questions regarding the mechanisms at play and the functional consequences of these interactions. We have recently established a mesenchymal-like prostate cancer cell line (22Rv1/CR-1; Mes-PCa). In this study, we assessed the effects of the extracellular vesicles released by these cells on recipient androgen-dependent epithelial VCaP prostate cancer cells. Mes-PCa derived vesicles were found to promote mesenchymal features in the recipient epithelial-like prostate cancer cells. This transformation was accompanied by a modulation of androgen receptor signaling and activation of TGFβ signaling pathway. Moreover, recipient cells acquiring mesenchymal traits displayed enhanced migratory and invasive features as well as increased resistance to the androgen receptor antagonist, enzalutamide. Our results suggest a previously unappreciated role for Mes-PCa secreted vesicles in cancer promotion by transferring cell-mediated signals and promoting phenotypic changes in recipient prostate cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. "Fell" Primes "Fall", but Does "Bell" Prime "Ball"? Masked Priming with Irregularly-Inflected Primes

    ERIC Educational Resources Information Center

    Crepaldi, Davide; Rastle, Kathleen; Coltheart, Max; Nickels, Lyndsey

    2010-01-01

    Recent masked priming experiments have brought to light a morphological level of analysis that is exclusively based on the orthographic appearance of words, so that it breaks down corner into corn- and -er, as well as dealer into deal- and -er (Rastle, Davis, & New, 2004). Being insensitive to semantic factors, this morpho-orthographic…

  12. Extracellular Vesicles Produced by the Gram-positive Bacterium Bacillus subtilis are Disrupted by the Lipopeptide Surfactin

    PubMed Central

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L.; Casadevall, Arturo

    2014-01-01

    Summary Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harboring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. PMID:24826903

  13. Evaluative priming reveals dissociable effects of cognitive versus physiological anxiety on action monitoring.

    PubMed

    De Saedeleer, Lien; Pourtois, Gilles

    2016-06-01

    Performance monitoring enables the rapid detection of mismatches between goals or intentions and actions, as well as subsequent behavioral adjustment by means of enhanced attention control. These processes are not encapsulated, but they are readily influenced by affective or motivational variables, including negative affect. Here we tested the prediction that worry, the cognitive component of anxiety, and arousal, its physiological counterpart, can each influence specific processes during performance monitoring. In 2 experiments, participants were asked to discriminate the valence of emotional words that were preceded by either correct (good) or incorrect (bad) actions, serving as primes in a standard evaluative priming procedure. In Experiment 1 (n = 36) we examined the influence of trait worry and arousal. Additionally, we included a face priming task to examine the specificity of this effect. Stepwise linear regression analyses showed that increased worry, but not arousal, weakened the evaluative priming effect and therefore the rapid and automatic processing of actions as good or bad. By contrast, arousal, but not worry, increased posterror slowing. In Experiment 2 (n = 30) state worry was induced using an anagram task. Effects of worry on action monitoring were trait but not state dependent, and only evidenced when actions were directly used as primes. These results suggest a double dissociation between worry and arousal during performance monitoring. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. You prime what you code: The fAIM model of priming of pop-out

    PubMed Central

    Meeter, Martijn

    2017-01-01

    Our visual brain makes use of recent experience to interact with the visual world, and efficiently select relevant information. This is exemplified by speeded search when target- and distractor features repeat across trials versus when they switch, a phenomenon referred to as intertrial priming. Here, we present fAIM, a computational model that demonstrates how priming can be explained by a simple feature-weighting mechanism integrated into an established model of bottom-up vision. In fAIM, such modulations in feature gains are widespread and not just restricted to one or a few features. Consequentially, priming effects result from the overall tuning of visual features to the task at hand. Such tuning allows the model to reproduce priming for different types of stimuli, including for typical stimulus dimensions such as ‘color’ and for less obvious dimensions such as ‘spikiness’ of shapes. Moreover, the model explains some puzzling findings from the literature: it shows how priming can be found for target-distractor stimulus relations rather than for their absolute stimulus values per se, without an explicit representation of relations. Similarly, it simulates effects that have been taken to reflect a modulation of priming by an observers’ goals—without any representation of goals in the model. We conclude that priming is best considered as a consequence of a general adaptation of the brain to visual input, and not as a peculiarity of visual search. PMID:29166386

  15. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes

    PubMed Central

    1980-01-01

    The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812

  16. Viscoelastic deformation of lipid bilayer vesicles.

    PubMed

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  17. The temporal dynamics of masked repetition picture priming effects: manipulations of stimulus-onset asynchrony (SOA) and prime duration

    PubMed Central

    Eddy, Marianna D.; Holcomb, Phillip J.

    2010-01-01

    The current study used event-related potentials (ERPs) and masked repetition priming to examine the time-course of picture processing. We manipulated the stimulus-onset asynchrony (110 ms, 230 ms, 350 ms, 470 ms) between repeated and unrepeated prime-target pairs while holding the prime duration constant (50 ms) (Experiment 1) as well as the prime duration (30 ms, 50 ms, 70 ms, 90 ms) (Experiment 2) with a constant SOA of 110 ms in a masked repetition priming paradigm with pictures. The aim of this study was to further elucidate the mechanisms underlying previously observed ERP components in masked priming with pictures. We found both the N/P190 and N400 are modulated by changes in prime duration and SOA, however, it appears that longer prime exposure rather than a longer SOA leads to more in-depth processing as indexed by larger N400 effects. PMID:20403342

  18. Polymer Vesicle Sensor for Visual and Sensitive Detection of SO2 in Water.

    PubMed

    Huang, Tong; Hou, Zhilin; Xu, Qingsong; Huang, Lei; Li, Chuanlong; Zhou, Yongfeng

    2017-01-10

    This study reports the first polymer vesicle sensor for the visual detection of SO 2 and its derivatives in water. A strong binding ability between tertiary alkanolamines and SO 2 has been used as the driving force for the detection by the graft of tertiary amine alcohol (TAA) groups onto an amphiphilic hyperbranched multiarm polymer, which can self-assemble into vesicles with enriched TAA groups on the surface. The polymer vesicles will undergo proton exchange with cresol red (CR) to produce CR-immobilized vesicles (CR@vesicles). Subsequently, through competitive binding with the TAA groups between CR and SO 2 or HSO 3 - , the CR@vesicles (purple) can quickly change into SO 2 @vesicles (colorless) with the release of protonated CR (yellow). Such a fast purple to yellow transition in the solution allows the visual detection of SO 2 or its derivatives in water by the naked eye. A visual test paper for SO 2 gas has also been demonstrated by the adsorption of CR@vesicles onto paper. Meanwhile, the detection limit of CR@vesicles for HSO 3 - is approximately 25 nM, which is improved by approximately 30 times when compared with that of small molecule-based sensors with a similar structure (0.83 μM). Such an enhanced detection sensitivity should be related to the enrichment of TAA groups as well as the CR in CR@vesicles. In addition, the CR@vesicle sensors also show selectivity and specificity for the detection of SO 2 or HSO 3 - among anions such as F - , Br - , Cl - , SO 4 2- , NO 2 - , C 2 O 4 2- , S 2 O 3 2- , SCN - , AcO - , SO 3 2- , S 2- , and HCO 3 - .

  19. Superficial Priming in Episodic Recognition

    ERIC Educational Resources Information Center

    Dopkins, Stephen; Sargent, Jesse; Ngo, Catherine T.

    2010-01-01

    We explored the effect of superficial priming in episodic recognition and found it to be different from the effect of semantic priming in episodic recognition. Participants made recognition judgments to pairs of items, with each pair consisting of a prime item and a test item. Correct positive responses to the test item were impeded if the prime…

  20. Cerebral bases of subliminal speech priming.

    PubMed

    Kouider, Sid; de Gardelle, Vincent; Dehaene, Stanislas; Dupoux, Emmanuel; Pallier, Christophe

    2010-01-01

    While the neural correlates of unconscious perception and subliminal priming have been largely studied for visual stimuli, little is known about their counterparts in the auditory modality. Here we used a subliminal speech priming method in combination with fMRI to investigate which regions of the cerebral network for language can respond in the absence of awareness. Participants performed a lexical decision task on target items preceded by subliminal primes, which were either phonetically identical or different from the target. Moreover, the prime and target could be spoken by the same speaker or by two different speakers. Word repetition reduced the activity in the insula and in the left superior temporal gyrus. Although the priming effect on reaction times was independent of voice manipulation, neural repetition suppression was modulated by speaker change in the superior temporal gyrus while the insula showed voice-independent priming. These results provide neuroimaging evidence of subliminal priming for spoken words and inform us on the first, unconscious stages of speech perception.

  1. Exosomes and other extracellular vesicles in host–pathogen interactions

    PubMed Central

    Schorey, Jeffrey S; Cheng, Yong; Singh, Prachi P; Smith, Victoria L

    2015-01-01

    An effective immune response requires the engagement of host receptors by pathogen-derived molecules and the stimulation of an appropriate cellular response. Therefore, a crucial factor in our ability to control an infection is the accessibility of our immune cells to the foreign material. Exosomes—which are extracellular vesicles that function in intercellular communication—may play a key role in the dissemination of pathogen- as well as host-derived molecules during infection. In this review, we highlight the composition and function of exosomes and other extracellular vesicles produced during viral, parasitic, fungal and bacterial infections and describe how these vesicles could function to either promote or inhibit host immunity. PMID:25488940

  2. Effects of psychological priming, video, and music on anaerobic exercise performance.

    PubMed

    Loizou, G; Karageorghis, C I

    2015-12-01

    Peak performance videos accompanied by music can help athletes to optimize their pre-competition mindset and are often used. Priming techniques can be incorporated into such videos to influence athletes' motivational state. There has been limited empirical work investigating the combined effects of such stimuli on anaerobic performance. The present study examined the psychological and psychophysiological effects of video, music, and priming when used as a pre-performance intervention for an anaerobic endurance task. Psychological measures included the main axes of the circumplex model of affect and liking scores taken pre-task, and the Exercise-induced Feeling Inventory, which was administered post-task. Physiological measures comprised heart rate variability and heart rate recorded pre-task. Fifteen males (age = 26.3 ± 2.8 years) were exposed to four conditions prior to performing the Wingate Anaerobic Test: music-only, video and music, video with music and motivational primes, and a no-video/no-music control. Results indicate that the combined video, music, and primes condition was the most effective in terms of influencing participants' pre-task affect and subsequent anaerobic performance; this was followed by the music-only condition. The findings indicate the utility of such stimuli as a pre-performance technique to enhance athletes' or exercisers' psychological states. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Visual consciousness and intertrial feature priming.

    PubMed

    Peremen, Ziv; Hilo, Rinat; Lamy, Dominique

    2013-04-01

    Intertrial repetition priming plays a striking role in visual search. For instance, when searching for a target with a unique color, performance is substantially better when the specific color of the target repeats on successive trials (Maljkovic & Nakayama, 1994). Recent research has relied on objective measures of performance to show that priming improves the perceptual quality of the repeated target. Here, we examined the relation between priming and conscious perception of the target by adding a subjective measure of perception. We used backward masking to create liminal perception, that is, different levels of subjectively conscious perception of the target using exactly the same stimulus conditions. The displays in either probe trials (in which priming benefits are measured, experiment 1) or in prime trials (in which memory traces are laid down, experiment 2) were masked. The results showed that intertrial priming improves full access to awareness of the repeated target but only for targets that already achieved partial access to awareness. In addition, they show that full awareness of the target is necessary in both the prime and probe trials for intertrial priming effects to emerge. Implications for the role of implicit short-term memory in visual search are discussed.

  4. Syntactic priming in American Sign Language.

    PubMed

    Hall, Matthew L; Ferreira, Victor S; Mayberry, Rachel I

    2015-01-01

    Psycholinguistic studies of sign language processing provide valuable opportunities to assess whether language phenomena, which are primarily studied in spoken language, are fundamentally shaped by peripheral biology. For example, we know that when given a choice between two syntactically permissible ways to express the same proposition, speakers tend to choose structures that were recently used, a phenomenon known as syntactic priming. Here, we report two experiments testing syntactic priming of a noun phrase construction in American Sign Language (ASL). Experiment 1 shows that second language (L2) signers with normal hearing exhibit syntactic priming in ASL and that priming is stronger when the head noun is repeated between prime and target (the lexical boost effect). Experiment 2 shows that syntactic priming is equally strong among deaf native L1 signers, deaf late L1 learners, and hearing L2 signers. Experiment 2 also tested for, but did not find evidence of, phonological or semantic boosts to syntactic priming in ASL. These results show that despite the profound differences between spoken and signed languages in terms of how they are produced and perceived, the psychological representation of sentence structure (as assessed by syntactic priming) operates similarly in sign and speech.

  5. Packing of flexible 2D materials in vesicles

    NASA Astrophysics Data System (ADS)

    Zou, Guijin; Yi, Xin; Zhu, Wenpeng; Gao, Huajian

    2018-06-01

    To understand the mechanics of cellular packing of two-dimensional (2D) materials, we perform systematic molecular dynamics simulations and theoretical analysis to investigate the packing of a flexible circular sheet in a spherical vesicle and the 2D packing problem of a strip in a cylindrical vesicle. Depending on the system dimensions and the bending rigidity ratio between the confined sheet and the vesicle membrane, a variety of packing morphologies are observed, including a conical shape, a shape of three-fold symmetry, a cylindrically curved shape, an axisymmetrically buckled shape, as well as the initial circular shape. A set of buckling analyses lead to phase diagrams of the packing morphologies of the encapsulated sheets. These results may have important implications on the mechanism of intracellular packing and toxicity of 2D materials.

  6. Dynamic light scattering study on vesicles of Netaine-Cholesterol system

    NASA Astrophysics Data System (ADS)

    Alenaizi, R.; Radiman, S.; Mohamed, F.; Rahman, I. Abdul

    2014-09-01

    The morphology of vesicles system with defined particle size and shape is one of interest in our technical applications. Here we have used dynamic light scattering technique and transmission electron microscopy for structural characterization of N-dimethylglycine Betaine with 5-cholesten-3β-ol vesicles in aqueous solutions. An isotropic one phase region is found in the very diluted regions depending on Betaine/Cholesterol ratio. The isotropic region was stable for more than 3 months at room temperature, with monodispersed unilamellar vesicles ˜ 300nm.

  7. Acute isoproterenol induces anxiety-like behavior in rats and increases plasma content of extracellular vesicles.

    PubMed

    Leo, Giuseppina; Guescini, Michele; Genedani, Susanna; Stocchi, Vilberto; Carone, Chiara; Filaferro, Monica; Sisti, Davide; Marcoli, Manuela; Maura, Guido; Cortelli, Pietro; Guidolin, Diego; Fuxe, Kjell; Agnati, Luigi Francesco

    2015-04-01

    Several clinical observations have demonstrated a link between heart rate and anxiety or panic disorders. In these patients, β-adrenergic receptor function was altered. This prompted us to investigate whether the β-adrenergic receptor agonist isoproterenol, at a dose that stimulates peripheral β-adrenergic system but has no effects at the central nervous system, can induce anxiety-like behavior in rats. Moreover, some possible messengers involved in the peripheral to brain communication were investigated. Our results showed that isoproterenol (5 mg kg(-1) i.p.) increased heart rate, evoked anxiety-like behavior, did not result in motor impairments and increased extracellular vesicle content in the blood. Plasma corticosterone level was unmodified as well as vesicular Hsp70 content. Vesicular miR-208 was also unmodified indicating a source of increased extracellular vesicles different from cardiomyocytes. We can hypothesize that peripheral extracellular vesicles might contribute to the β-adrenergic receptor-evoked anxiety-like behavior, acting as peripheral signals in modulating the mental state. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Priming of microglia in a DNA-repair deficient model of accelerated aging.

    PubMed

    Raj, Divya D A; Jaarsma, Dick; Holtman, Inge R; Olah, Marta; Ferreira, Filipa M; Schaafsma, Wandert; Brouwer, Nieske; Meijer, Michel M; de Waard, Monique C; van der Pluijm, Ingrid; Brandt, Renata; Kreft, Karim L; Laman, Jon D; de Haan, Gerald; Biber, Knut P H; Hoeijmakers, Jan H J; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2014-09-01

    Aging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Complex architecture of primes and natural numbers.

    PubMed

    García-Pérez, Guillermo; Serrano, M Ángeles; Boguñá, Marián

    2014-08-01

    Natural numbers can be divided in two nonoverlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blocks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramér's conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramér's version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers.

  10. Conductive choline transport by alveolar epithelial plasma membrane vesicles.

    PubMed

    Oelberg, D G; Xu, F

    1998-11-01

    Choline is an important substrate in alveolar epithelia for both surfactant production and cellular maintenance. The underlying mechanisms of uptake and sites of membrane transport remain uncertain. To test the hypothesis that choline transport occurs at the basolateral side of alveolar epithelia by both Na+-independent and -dependent mechanisms, plasma membrane vesicles were prepared from the apical and basolateral membranes of mature porcine type II pneumocytes. Choline+ transport was assayed by uptake of [3H]choline+ by enriched apical or basolateral vesicles. In the presence of imposed, inside-negative charge gradients, basolateral vesicles exhibited early overshoot of [3H]choline+ uptake unaffected by the presence or absence of external Na+ (541 +/- 53 vs 564 +/- 79 pmol/mg protein (NS)). High sensitivity to hemicholinium-3 was observed in the presence or absence of Na+. In the absence of inside-negative charge gradients, uptake was reduced 12-fold in the presence or absence of Na+, and external choline+ induced internal alkalization of acidified basolateral vesicles. Accumulative [3H]choline+ uptakes by apical vesicles in the presence or absence of inside-negative charge gradients and Na+ were insignificant. We conclude that predominant choline+ uptake by type II pneumocytes occurs at the basolateral membrane by Na+-independent, electrogenic choline+ conductance. The presence of electroneutral choline+/H+ exchange is suggested. Copyright 1998 Academic Press.

  11. Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by Histoplasma capsulatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matos Baltazar, Ludmila; Nakayasu, Ernesto S.; Sobreira, Tiago J. P.

    ABSTRACT Histoplasma capsulatumproduces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment ofH. capsulatumcells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bindH. capsulatumheat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. Wemore » identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCEDiverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However

  12. The temporal dynamics of masked repetition picture priming effects: manipulations of stimulus-onset asynchrony (SOA) and prime duration.

    PubMed

    Eddy, Marianna D; Holcomb, Phillip J

    2010-06-22

    The current study used event-related potentials (ERPs) and masked repetition priming to examine the time-course of picture processing. We manipulated the stimulus-onset asynchrony (110 ms, 230 ms, 350 ms, and 470 ms) between repeated and unrepeated prime-target pairs while holding the prime duration constant (50 ms) (Experiment 1) as well as the prime durations (30 ms, 50 ms, 70 ms, and 90 ms) (Experiment 2) with a constant SOA of 110 ms in a masked repetition priming paradigm with pictures. The aim of this study was to further elucidate the mechanisms underlying previously observed ERP components in masked priming with pictures. We found that both the N/P190 and N400 are modulated by changes in prime duration and SOA, however, it appears that longer prime exposure rather than a longer SOA leads to more in-depth processing as indexed by larger N400 effects. (c) 2010 Elsevier B.V. All rights reserved.

  13. A perspective on extracellular vesicles proteomics

    NASA Astrophysics Data System (ADS)

    Rosa-Fernandes, Livia; Rocha, Victória Bombarda; Carregari, Victor Corasolla; Urbani, Andrea; Palmisano, Giuseppe

    2017-11-01

    Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieve from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  14. Method for loading lipid like vesicles with drugs of other chemicals

    DOEpatents

    Mehlhorn, R.J.

    1998-06-09

    A method for accumulating drugs or other chemicals within synthetic, lipid-like vesicles by means of a pH gradient imposed on the vesicles just prior to use is described. The method is suited for accumulating molecules with basic or acid moieties which are permeable to the vesicles membranes in their uncharged form and for molecules that contain charge moieties that are hydrophobic ions and can therefore cross the vesicle membranes in their charged form. The method is advantageous over prior art methods for encapsulating biologically active materials within vesicles in that is achieves very high degrees of loading with simple procedures that are economical and require little technical expertise, furthermore kits which can be stored for prolonged periods prior to use without impairment of the capacity to achieve drug accumulation are described. A related application of the method consists of using this technology to detoxify animals that have been exposed to poisons with basic, weak acid or hydrophobic charge groups within their molecular structures. 2 figs.

  15. Method for loading lipid like vesicles with drugs of other chemicals

    DOEpatents

    Mehlhorn, Rolf Joachim

    1998-01-01

    A method for accumulating drugs or other chemicals within synthetic, lipid-like vesicles by means of a pH gradient imposed on the vesicles just prior to use is described. The method is suited for accumulating molecules with basic or acid moieties which are permeable to the vesicles membranes in their uncharged form and for molecules that contain charge moieties that are hydrophobic ions and can therefore cross the vesicle membranes in their charged form. The method is advantageous over prior art methods for encapsulating biologically active materials within vesicles in that is achieves very high degrees of loading with simple procedures that are economical and require little technical expertise, furthermore kits which can be stored for prolonged periods prior to use without impairment of the capacity to achieve drug accumulation are described. A related application of the method consists of using this technology to detoxify animals that have been exposed to poisons with basic, weak acid or hydrophobic charge groups within their molecular structures.

  16. Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity

    PubMed Central

    Farsi, Zohreh; Rammner, Burkhard; Woehler, Andrew; Lafer, Eileen M; Mim, Carsten; Jahn, Reinhard

    2018-01-01

    Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling. PMID:29652249

  17. Does conal prime CANAL more than cinal? Masked phonological priming effects in Spanish with the lexical decision task.

    PubMed

    Pollatsek, Alexander; Perea, Manuel; Carreiras, Manuel

    2005-04-01

    Evidence for an early involvement of phonology in word identification usually relies on the comparison between a target word preceded by a homophonic prime and an orthographic control (rait-RATE vs. raut-RATE). This comparison rests on the assumption that the two control primes are equally orthographically similar to the target. Here, we tested for phonological effects with a masked priming paradigm in which orthographic similarity between priming conditions was perfectly controlled at the letter level and in which identification of the prime was virtually at chance for both stimulus onset asynchronies (SOAs) (66 and 50 msec). In the key prime-target pairs, each prime differed from the target by one vowel letter, but one changed the sound of the initial c, and the other did not (cinal-CANAL vs. conal-CANAL). In the control prime-target pairs, the primes had the identical vowel manipulation, but neither changed the initial consonant sound (pinel-PANEL vs. ponel-PANEL). For both high- and low-frequency words, lexical decision responses to the target were slower when the prime changed the sound of the c than when it did not, whereas there was no difference for the controls at both SOAs. However, this phonological effect was small and was not significant when the SOA was 50 msec. The pattern of data is consistent with an early phonological coding of primes that occurs just a little later than orthographic coding.

  18. Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry.

    PubMed

    Ofir-Birin, Yifat; Abou Karam, Paula; Rudik, Ariel; Giladi, Tal; Porat, Ziv; Regev-Rudzki, Neta

    2018-01-01

    Extracellular vesicles are essential for long distance cell-cell communication. They function as carriers of different compounds, including proteins, lipids and nucleic acids. Pathogens, like malaria parasites ( Plasmodium falciparum, Pf ), excel in employing vesicle release to mediate cell communication in diverse processes, particularly in manipulating the host response. Establishing research tools to study the interface between pathogen-derived vesicles and their host recipient cells will greatly benefit the scientific community. Here, we present an imaging flow cytometry (IFC) method for monitoring the uptake of malaria-derived vesicles by host immune cells. By staining different cargo components, we were able to directly track the cargo's internalization over time and measure the kinetics of its delivery. Impressively, we demonstrate that this method can be used to specifically monitor the translocation of a specific protein within the cellular milieu upon internalization of parasitic cargo; namely, we were able to visually observe how uptaken parasitic Pf -DNA cargo leads to translocation of transcription factor IRF3 from the cytosol to the nucleus within the recipient immune cell. Our findings demonstrate that our method can be used to study cellular dynamics upon vesicle uptake in different host-pathogen and pathogen-pathogen systems.

  19. Endothelial cell membrane vesicles in the study of organ preference of metastasis.

    PubMed

    Johnson, R C; Augustin-Voss, H G; Zhu, D Z; Pauli, B U

    1991-01-01

    Many malignancies exhibit distinct patterns of metastasis that appear to be mediated by receptor/ligand-like interactions between tumor cells and organ-specific vascular endothelium. In order to study endothelial cell surface molecules involved in the binding of metastatic cells, we developed a perfusion method to isolate outside-out membrane vesicles from the lumenal surface of rat lung microvascular endothelium. Lungs were perfused in situ for 4 h at 37 degrees C with a solution of 100 mM formaldehyde, 2 mM dithiothreitol in phosphate-buffered saline to induce endothelial cell vesiculation. Radioiodinated rat lung endothelial cell membrane vesicles bound lung-metastatic tumor cells (B16F10, R323OAC-MET) in significantly higher numbers than their low or nonmetastatic counterparts (B16F0, R323OAC-LR). In contrast, leg endothelial membrane vesicle showed no binding preference for either cell line. Neuraminidase treatment of vesicles abolished specificity of adhesion of lung-derived vesicles to lung metastatic tumor cells. These results demonstrate that in situ perfusion is an appropriate technique to obtain pure endothelial cell membrane vesicles containing functionally active adhesion molecules. The preferential binding of lung-derived endothelial cell membrane vesicles by lung metastatic tumor cells is evidence of the importance of endothelial cell adhesion molecules in the formation of metastases.

  20. Transposed-letter priming of prelexical orthographic representations.

    PubMed

    Kinoshita, Sachiko; Norris, Dennis

    2009-01-01

    A prime generated by transposing two internal letters (e.g., jugde) produces strong priming of the original word (judge). In lexical decision, this transposed-letter (TL) priming effect is generally weak or absent for nonword targets; thus, it is unclear whether the origin of this effect is lexical or prelexical. The authors describe the Bayesian Reader theory of masked priming (D. Norris & S. Kinoshita, 2008), which explains why nonwords do not show priming in lexical decision but why they do in the cross-case same-different task. This analysis is followed by 3 experiments that show that priming in this task is not based on low-level perceptual similarity between the prime and target, or on phonology, to make the case that priming is based on prelexical orthographic representation. The authors then use this task to demonstrate equivalent TL priming effects for nonwords and words. The results are interpreted as the first reliable evidence based on the masked priming procedure that letter position is not coded absolutely within the prelexical, orthographic representation. The implications of the results for current letter position coding schemes are discussed.

  1. Vesicle sizing by static light scattering: a Fourier cosine transform approach

    NASA Astrophysics Data System (ADS)

    Wang, Jianhong; Hallett, F. Ross

    1995-08-01

    A Fourier cosine transform method, based on the Rayleigh-Gans-Debye thin-shell approximation, was developed to retrieve vesicle size distribution directly from the angular dependence of scattered light intensity. Its feasibility for real vesicles was partially tested on scattering data generated by the exact Mie solutions for isotropic vesicles. The noise tolerance of the method in recovering unimodal and biomodal distributions was studied with the simulated data. Applicability of this approach to vesicles with weak anisotropy was examined using Mie theory for anisotropic hollow spheres. A primitive theory about the first four moments of the radius distribution about the origin, excluding the mean radius, was obtained as an alternative to the direct retrieval of size distributions.

  2. Vesicle fusion observed by content transfer across a tethered lipid bilayer.

    PubMed

    Rawle, Robert J; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G

    2011-10-19

    Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. It Takes Time to Prime: Semantic Priming in the Ocular Lexical Decision Task

    PubMed Central

    Hoedemaker, Renske S.; Gordon, Peter C.

    2014-01-01

    Two eye-tracking experiments were conducted in which the manual response mode typically used in lexical decision tasks (LDT) was replaced with an eye-movement response through a sequence of three words. This ocular LDT combines the explicit control of task goals found in LDTs with the highly practiced ocular response used in reading text. In Experiment 1, forward saccades indicated an affirmative LD on each word in the triplet. In Experiment 2, LD responses were delayed until all three letter strings had been read. The goal of the study was to evaluate the contribution of task goals and response mode to semantic priming. Semantic priming is very robust in tasks that involve recognition of words in isolation, such as LDT, while limited during text reading as measured using eye movements. Gaze durations in both experiments showed robust semantic priming even though ocular response times were much shorter than manual LDs for the same words in the English Lexicon Project. Ex-Gaussian distribution fits revealed that the priming effect was concentrated in estimates of τ, meaning that priming was most pronounced in the slow tail of the distribution. This pattern shows differential use of the prime information, which may be more heavily recruited in cases where the LD is difficult as indicated by longer response times. Compared to the manual LD responses, ocular LDs provide a more sensitive measure of this task-related influence on word recognition as measured by the LDT. PMID:25181368

  4. Background fluorescence estimation and vesicle segmentation in live cell imaging with conditional random fields.

    PubMed

    Pécot, Thierry; Bouthemy, Patrick; Boulanger, Jérôme; Chessel, Anatole; Bardin, Sabine; Salamero, Jean; Kervrann, Charles

    2015-02-01

    Image analysis applied to fluorescence live cell microscopy has become a key tool in molecular biology since it enables to characterize biological processes in space and time at the subcellular level. In fluorescence microscopy imaging, the moving tagged structures of interest, such as vesicles, appear as bright spots over a static or nonstatic background. In this paper, we consider the problem of vesicle segmentation and time-varying background estimation at the cellular scale. The main idea is to formulate the joint segmentation-estimation problem in the general conditional random field framework. Furthermore, segmentation of vesicles and background estimation are alternatively performed by energy minimization using a min cut-max flow algorithm. The proposed approach relies on a detection measure computed from intensity contrasts between neighboring blocks in fluorescence microscopy images. This approach permits analysis of either 2D + time or 3D + time data. We demonstrate the performance of the so-called C-CRAFT through an experimental comparison with the state-of-the-art methods in fluorescence video-microscopy. We also use this method to characterize the spatial and temporal distribution of Rab6 transport carriers at the cell periphery for two different specific adhesion geometries.

  5. Structure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.

    PubMed

    Noguchi, Hiroshi

    2013-01-14

    Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and their size is determined by the concentrations of lipids and detergents and the interactions between the two species. The detergent-adsorption induces spontaneous curvature of the vesicle bilayer and results in vesicle division into two vesicles or vesicle rupture into worm-like micelles. The division occurs mainly via the inverse pathway of the modified stalk model. For large spontaneous curvature of the monolayers of the detergents, a pore is often opened, thereby leading to vesicle division or worm-like micelle formation.

  6. Prime Minister Pierre Trudeau and Cruise Missile Testing.

    ERIC Educational Resources Information Center

    Bennett, Paul W.

    1986-01-01

    Based on the 1983 controversy over cruise missile testing by the United States over Canadian air space, this article provides the text of an open letter to the people and an interview by Prime Minister Trudeau. Parenthetical comments inserted by the author point out contradiction contained in the two documents. (JDH)

  7. Centre-surround inhibition is a general aspect of famous-person recognition: evidence from negative semantic priming from clearly visible primes.

    PubMed

    Stone, Anna

    2012-05-01

    A centre-surround attentional mechanism was proposed by Carr and Dagenbach (Journal of Experimental Psychology: Learning, Memory, and Cognition 16: 341-350, 1990) to account for their observations of negative semantic priming from hard-to-perceive primes. Their mechanism cannot account for the observation of negative semantic priming when primes are clearly visible. Three experiments (Ns = 30, 46, and 30) used a familiarity decision with names of famous people, preceded by a prime name with the same occupation as the target or with a different occupation. Negative semantic priming was observed at a 150- or 200-ms SOA, with positive priming at shorter (50-ms) and longer (1,000-ms) SOAs. In Experiment 3, we verified that the primes were easily recognisable in the priming task at an SOA that yielded negative semantic priming, which cannot be predicted by the original centre-surround mechanism. A modified version is proposed that explains transiently negative semantic priming by proposing that centre-surround inhibition is a normal, automatically invoked aspect of the semantic processing of visually presented famous names.

  8. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.

    PubMed

    Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua

    2016-07-01

    At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as

  9. Three-dimensional visualization of coated vesicle formation in fibroblasts

    PubMed Central

    1980-01-01

    Fibroblasts apparently ingest low density lipoproteins (LDL) by a selective mechanism of receptor-mediated endocytosis involving the formation of coated vesicles from the plasma membrane. However, it is not known exactly how coated vesicles collect LDL receptors and pinch off from the plasma membrane. In this report, the quick-freeze, deep- etch, rotary-replication method has been applied to fibroblasts; it displays with unusual clarity the coats that appear under the plasma membrane at the start of receptor-mediated endocytosis. These coats appear to be polygonal networks of 7-nm strands or struts arranged into 30-nm polygons, most of which are hexagons but some of which are 5- and 7-sided rings. The proportion of pentagons in each network increases as the coated area of the plasma membrane puckers up from its planar configuration (where the network is mostly hexagons) to its most sharply curved condition as a pinched-off coated vesicle. Coats around the smallest vesicles (which are icosahedrons of hexagons and pentagons) appear only slightly different from "empty coats" purified from homogenized brain, which are less symmetrical baskets containing more pentagons than hexagons. A search for structural intermediates in this coat transformation allows a test of T. Kanaseki and K. Kadota's (1969. J. Cell Biol. 42:202--220.) original idea that an internal rearrangement in this basketwork from hexagons to pentagons could "power" coated vesicle formation. The most noteworthy variations in the typical hexagonal honeycomb are focal juxtapositions of 5- and 7-sided polygons at points of partial contraction and curvature in the basketwork. These appear to precede complete contraction into individual pentagons completely surrounded by hexagons, which is the pattern that characterizes the final spherical baskets around coated vesicles. PMID:6987244

  10. Replicable effects of primes on human behavior.

    PubMed

    Payne, B Keith; Brown-Iannuzzi, Jazmin L; Loersch, Chris

    2016-10-01

    [Correction Notice: An Erratum for this article was reported online in Journal of Experimental Psychology: General on Oct 31 2016 (see record 2016-52334-001). ] The effect of primes (i.e., incidental cues) on human behavior has become controversial. Early studies reported counterintuitive findings, suggesting that primes can shape a wide range of human behaviors. Recently, several studies failed to replicate some earlier priming results, raising doubts about the reliability of those effects. We present a within-subjects procedure for priming behavior, in which participants decide whether to bet or pass on each trial of a gambling game. We report 6 replications (N = 988) showing that primes consistently affected gambling decisions when the decision was uncertain. Decisions were influenced by primes presented visibly, with a warning to ignore the primes (Experiments 1 through 3) and with subliminally presented masked primes (Experiment 4). Using a process dissociation procedure, we found evidence that primes influenced responses through both automatic and controlled processes (Experiments 5 and 6). Results provide evidence that primes can reliably affect behavior, under at least some conditions, without intention. The findings suggest that the psychological question of whether behavior priming effects are real should be separated from methodological issues affecting how easily particular experimental designs will replicate. PsycINFO Database Record (c) 2016 APA, all rights reserved

  11. Individual differences in automatic semantic priming.

    PubMed

    Andrews, Sally; Lo, Steson; Xia, Violet

    2017-05-01

    This research investigated whether masked semantic priming in a semantic categorization task that required classification of words as animals or nonanimals was modulated by individual differences in lexical proficiency. A sample of 89 skilled readers, assessed on reading comprehension, vocabulary and spelling ability, classified target words preceded by brief (50 ms) masked primes that were either congruent or incongruent with the category of the target. Congruent primes were also selected to be either high (e.g., hawk EAGLE, pistol RIFLE) or low (e.g., mole EAGLE, boots RIFLE) in semantic feature overlap with the target. "Overall proficiency," indexed by high performance on both a "semantic composite" measure of reading comprehension and vocabulary and a "spelling composite," was associated with stronger congruence priming from both high and low feature overlap primes for animal exemplars, but only predicted priming from low overlap primes for nonexemplars. Classification of high frequency nonexemplars was also significantly modulated by an independent "spelling-meaning" factor, indexed by the discrepancy between the semantic and spelling composites, because relatively higher scores on the semantic than the spelling composite were associated with stronger semantic priming. These findings show that higher lexical proficiency is associated with stronger evidence of automatic semantic priming and suggest that individual differences in lexical quality modulate the division of labor between orthographic and semantic processing in early lexical retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Annexin A1 Complex Mediates Oxytocin Vesicle Transport

    PubMed Central

    Makani, Vishruti; Sultana, Rukhsana; Sie, Khin Sander; Orjiako, Doris; Tatangelo, Marco; Dowling, Abigail; Cai, Jian; Pierce, William; Butterfield, D. Allan; Hill, Jennifer; Park, Joshua

    2013-01-01

    Oxytocin is a major neuropeptide that modulates the brain functions involved in social behavior and interaction. Despite of the importance of oxytocin for neural control of social behavior, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesized in the cell bodies of hypothalamic neurons in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighboring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behavior. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150), and microtubule motor, that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localization with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localization of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localization of oxytocin vesicles. Our study suggests that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body. PMID:24118254

  13. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity.

    PubMed

    Arntzen, Magnus Ø; Várnai, Anikó; Mackie, Roderick I; Eijsink, Vincent G H; Pope, Phillip B

    2017-07-01

    Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbivores where it utilizes an enigmatic mechanism to deconstruct cellulose into cellobiose and glucose, which serve as carbon sources for growth. Here, we illustrate that outer membrane vesicles (OMVs) released by F. succinogenes are enriched with carbohydrate-active enzymes and that intact OMVs were able to depolymerize a broad range of linear and branched hemicelluloses and pectin, despite the inability of F. succinogenes to utilize non-cellulosic (pentose) sugars for growth. We hypothesize that the degradative versatility of F. succinogenes OMVs is used to prime hydrolysis by destabilising the tight networks of polysaccharides intertwining cellulose in the plant cell wall, thus increasing accessibility of the target substrate for the host cell. This is supported by observations that OMV-pretreatment of the natural complex substrate switchgrass increased the catalytic efficiency of a commercial cellulose-degrading enzyme cocktail by 2.4-fold. We also show that the OMVs contain a putative multiprotein complex, including the fibro-slime protein previously found to be important in binding to crystalline cellulose. We hypothesize that this complex has a function in plant cell wall degradation, either by catalysing polysaccharide degradation itself, or by targeting the vesicles to plant biomass. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Transcutol containing vesicles for topical delivery of minoxidil.

    PubMed

    Mura, Simona; Manconi, Maria; Valenti, Donatella; Sinico, Chiara; Vila, Amparo Ofelia; Fadda, Anna Maria

    2011-04-01

    The aim of this work was to evaluate the ability of Transcutol (Trc) to produce elastic vesicles with soy lecithin (SL) and study the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called penetration enhancer-containing vesicles (PEVs) were prepared using Trc aqueous solutions (5-10-20-30% v/v) as hydrophilic phase. SL liposomes, without Trc, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, deformability, and rheological behavior. The influence of the obtained PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through pig skin. Results showed that all prepared PEVs were able to give good entrapment efficiency (E%≈67) similar to that of conventional liposomes. Trc-containing PEVs showed to be more deformable than liposomes only when minoxidil was loaded in 5 and 10% Trc-containing vesicles. Rheological studies showed that PEVs have higher fluidity than conventional liposomes. All PEVs showed a higher stability than liposomes as shown by studying zeta potential and size distribution during three months. Results of in vitro diffusion experiments showed that Trc-containing PEVs are able to deliver minoxidil to deep skin layers without any transdermal permeation.

  15. Mechanisms of masked priming: a meta-analysis.

    PubMed

    Van den Bussche, Eva; Van den Noortgate, Wim; Reynvoet, Bert

    2009-05-01

    The extent to which unconscious information can influence behavior has been a topic of considerable debate throughout the history of psychology. A frequently used method for studying subliminal processing is the masked priming paradigm. The authors focused on studies in which this paradigm was used. Their aim was twofold: first, to assess the magnitude of subliminal priming across the literature and to determine whether subliminal primes are processed semantically, and second, to examine potential moderators of priming effects. The authors found significant priming in their analyses, indicating that unconsciously presented information can influence behavior. Furthermore, priming was observed under circumstances in which a nonsemantic interpretation could not fully explain the effects, suggesting that subliminally presented information can be processed semantically. Nonetheless, the nonsemantic processing of primes is enhanced and priming effects are boosted when the experimental context allows the formation of automatic stimulus-response mappings. This quantitative review also revealed several moderators that influence the strength of priming. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  16. Blending of diblock and triblock copolypeptide amphiphiles yields cell penetrating vesicles with low toxicity.

    PubMed

    Rodriguez, April R; Choe, Uh-Joo; Kamei, Daniel T; Deming, Timothy J

    2015-01-01

    We prepared dual hydrophilic triblock copolypeptide vesicles that form both micron and nanometer scale vesicles in aqueous media. The incorporation of terminal homoarginine segments into methionine sulfoxide-based vesicles was found to significantly enhance their cellular uptake compared to a non-ionic control. We also demonstrated that diblock and triblock copolypeptides with similar hydrophobic domains were found to mix well and form vesicle populations with uniform compositions. Blending of amphiphiles in vesicle nanocarriers was found to impart these materials with many advantageous properties, including good cellular uptake while maintaining minimal toxicity, as well as biological responsiveness to promote vesicle disruption and release of encapsulated cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Shear-stress sensitive lenticular vesicles for targeted drug delivery.

    PubMed

    Holme, Margaret N; Fedotenko, Illya A; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas

    2012-08-01

    Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.

  18. Shear-stress sensitive lenticular vesicles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Holme, Margaret N.; Fedotenko, Illya A.; Abegg, Daniel; Althaus, Jasmin; Babel, Lucille; Favarger, France; Reiter, Renate; Tanasescu, Radu; Zaffalon, Pierre-Léonard; Ziegler, André; Müller, Bert; Saxer, Till; Zumbuehl, Andreas

    2012-08-01

    Atherosclerosis results in the narrowing of arterial blood vessels and this causes significant changes in the endogenous shear stress between healthy and constricted arteries. Nanocontainers that can release drugs locally with such rheological changes can be very useful. Here, we show that vesicles made from an artificial 1,3-diaminophospholipid are stable under static conditions but release their contents at elevated shear stress. These vesicles have a lenticular morphology, which potentially leads to instabilities along their equator. Using a model cardiovascular system based on polymer tubes and an external pump to represent shear stress in healthy and constricted vessels of the heart, we show that drugs preferentially release from the vesicles in constricted vessels that have high shear stress.

  19. The impact of dissociation on perceptual priming and intrusions after listening to auditory narratives.

    PubMed

    Dorahy, Martin J; Peck, Rowan K; Huntjens, Rafaele J C

    2016-01-01

    This study investigates the causal role of dissociation in intrusive memory development and possible underlying aberrant memory processes (e.g., increased perceptual priming). Using an audio-only adaption of the trauma film paradigm, we divided 60 participants into 3 conditions and presented them with different visual tasks-mirror staring, dot staring, or neutral images. The former 2 conditions were hypothesized to induce dissociation. Postaudio, a number of factors were assessed, including state dissociation, perceptual priming and conceptual priming, as well as intrusions over 3 days. Participants in the dissociation conditions displayed an increase in perceptual priming compared to those in the control condition and reported more distressing intrusions. No differences were found in conceptual priming and the overall number of intrusions between conditions. Findings contribute to the growing knowledge on the impact of dissociation and cognitive processing in the etiology of posttraumatic stress disorder intrusions.

  20. Interaction of phospholipid vesicles with cultured mammalial cells. I. Characteristics of uptake

    PubMed Central

    1975-01-01

    The interaction of monolayer cultures of Chinese hamster V79 cells with artificially generated, unilamellar lipid vesicles (approximately 500 A diameter) was examined. Vesicles prepared from a variety of natural and synthetic radiolabeled phosphatidyl cholines (lecithins) were incubated with V79 cells bathed in a simple balanced salt solution. After incubation, the cells were analyzed for exogenous lipid incorporation. Large quantities (approximately 10(8) molecules/cell/h) of lecithin became cell associated without affecting cell viability. The effects of pH, charged lipids, and the influence of the vesicle lipid phase transition on the uptake process were examined. Glutaraldehyde fixation of cells before vesicle treatment, or incubation in the presence of metabolic inhibitors, failed to reduce the lecithin uptake by more than 25-50%, suggesting that the lipid uptake is largely energy independent. Cells in sparse culture took up about ten times more lipid than dense cultures. Prolonged incubation (greater than 15 h) of sparse cell cultures with lecithin vesicles resulted in significant cell death while no deleterious effect was found in dense cultures, or with 1:1 lecithin/cholesterol vesicles. When vesicle-treated cells were homogenized and fractionated, about 20-30% of the exogenous lipid was found in the plasma membrane fraction, with the remainder being distributed into intracellular fractions. Electron microscope radioautography further demonstrated that most of the internalized lipid was present in the cytoplasm, with little in the nucleus. These results are discussed in terms of possible modification of cell behavior by lipid vesicle treatment. PMID:240860

  1. Semantic priming, not repetition priming, is to blame for false hearing.

    PubMed

    Rogers, Chad S

    2017-08-01

    Contextual and sensory information are combined in speech perception. Conflict between the two can lead to false hearing, defined as a high-confidence misidentification of a spoken word. Rogers, Jacoby, and Sommers (Psychology and Aging, 27(1), 33-45, 2012) found that older adults are more susceptible to false hearing than are young adults, using a combination of semantic priming and repetition priming to create context. In this study, the type of context (repetition vs. sematic priming) responsible for false hearing was examined. Older and young adult participants read and listened to a list of paired associates (e.g., ROW-BOAT) and were told to remember the pairs for a later memory test. Following the memory test, participants identified words masked in noise that were preceded by a cue word in the clear. Targets were semantically associated to the cue (e.g., ROW-BOAT), unrelated to the cue (e.g., JAW-PASS), or phonologically related to a semantic associate of the cue (e.g., ROW-GOAT). How often each cue word and its paired associate were presented prior to the memory test was manipulated (0, 3, or 5 times) to test effects of repetition priming. Results showed repetitions had no effect on rates of context-based listening or false hearing. However, repetition did significantly increase sensory information as a basis for metacognitive judgments in young and older adults. This pattern suggests that semantic priming dominates as the basis for false hearing and highlights context and sensory information operating as qualitatively different bases for listening and metacognition.

  2. The Feasibility, Acceptability, and Outcomes of PRIME-D: A Novel Mobile Intervention Treatment for Depression

    PubMed Central

    Schlosser, Danielle A.; Campellone, Timothy R.; Truong, Brandy; Anguera, Joaquin A.; Vergani, Silvia; Vinogradov, Sophia; Arean, Patricia

    2017-01-01

    Background Despite decades of research and development, depression has risen from the 5th to the leading cause of disability in the U.S. Barriers to progress in the field are 1) Poor access to high quality care; 2) Limited mental health workforce; and 3) Few providers trained in the delivery of evidence-based treatments (EBTs). While mobile platforms are being developed to give consumers greater access to high quality care, too often these tools do not have empirical support for their effectiveness. In this study, we evaluated PRIME-D, a mobile app intervention that uses social networking, goal setting, and a mental health coach to deliver text-based, EBT’s to treat mood symptoms and functioning in adults with depression. Methods Thirty-six adults with depression remotely participated in PRIME-D over an 8-week period with a 4-week follow up, with 83% retained over the 12-week course of the study. Results On average, participants logged into the app 5 days/week. Depression scores (PHQ-9) significantly improved over time (over 50% reduction), with coach interactions enhancing these effects. Mood-related disability (SDS) also significantly decreased over time with participants no longer being impaired by their mood symptoms. Overall use of PRIME-D predicted greater gains in functioning. Improvements in mood and functioning were sustained over the 4-week follow-up. Conclusions Results suggest that PRIME-D is a feasible, acceptable, and effective intervention for adults with depression and that a mobile service delivery model may address the serious public health problem of poor access to high quality mental health care. PMID:28419621

  3. Modified Multi Prime RSA Cryptosystem

    NASA Astrophysics Data System (ADS)

    Ghazali Kamardan, M.; Aminudin, N.; Che-Him, Norziha; Sufahani, Suliadi; Khalid, Kamil; Roslan, Rozaini

    2018-04-01

    RSA [1] is one of the mostly used cryptosystem in securing data and information. Though, it has been recently discovered that RSA has some weaknesses and in advance technology, RSA is believed to be inefficient especially when it comes to decryption. Thus, a new algorithm called Multi prime RSA, an extended version of the standard RSA is studied. Then, a modification is made to the Multi prime RSA where another keys is shared secretly between the receiver and the sender to increase the securerity. As in RSA, the methodology used for modified Multi-prime RSA also consists of three phases; 1. Key Generation in which the secret and public keys are generated and published. In this phase, the secrecy is improved by adding more prime numbers and addition of secret keys. 2. Encryption of the message using the public and secret keys given. 3. Decryption of the secret message using the secret key generated. For the decryption phase, a method called Chinese Remainder Theorem is used which helps to fasten the computation. Since Multi prime RSA use more than two prime numbers, the algorithm is more efficient and secure when compared to the standard RSA. Furthermore, in modified Multi prime RSA another secret key is introduced to increase the obstacle to the attacker. Therefore, it is strongly believed that this new algorithm is better and can be an alternative to the RSA.

  4. Structural alterations in lecithin-cholesterol vesicles following interactions with monomeric and micellar bile salts: physical-chemical basis for subselection of biliary lecithin species and aggregative states of biliary lipids during bile formation.

    PubMed

    Cohen, D E; Angelico, M; Carey, M C

    1990-01-01

    Using complementary physical-chemical methods including turbidimetry, quasielastic light scattering, gel filtration, and phase analysis, we examined the interactions between dilute concentrations of the common bile salt, taurochenodeoxycholate (TCDC), and uni- and multilamellar vesicles (MLVs) composed of defined molecular species of lecithin (L) and varying contents of cholesterol (Ch). Dissolution rates of MLVs with micellar TCDC, as assessed by turbidimetry, were more rapid with vesicles composed of sn-1 palmitoyl species, typical of biliary L, compared with those composed of the more hydrophobic sn-1 stearoyl species. Incorporation of Ch retarded MLV dissolution rates in proportion to the Ch content, and only at high Ch contents were dissolution rates appreciably influenced by the sn-2 fatty acid composition of L. When MLVs contained Ch in amounts characteristic of intracellular membranes (Ch/L approximately 0.1), the dissolution rates of the individual L species by TCDC accurately predicted the steady state L composition of human bile. TCDC interacted with small unilamellar L/Ch vesicles (SUVs) at concentrations well below, as well as appreciably above, its critical micellar concentration. In accordance with the TCDC-egg yolk L-H2O phase diagram, perimicellar concentrations of TCDC interacted with SUVs to form aggregates that were approximately twice the size of the SUVs. These were consistent with the formation of a dispersed hexagonal (rod-like) phase, which co-existed with aqueous bile salt (BS) monomers and either micellar or unilamellar SUV phases. Micellar TCDC completely solubilized SUVs as mixed micelles, putatively via this transient hexagonal phase. With modest Ch-supersaturation, dissolution was followed by the reemergence of a new vesicle population that coexisted metastably with mixed micelles. With high Ch supersaturation, TCDC extracted L and Ch molecules from SUVs in different proportions to form Ch-supersaturated mixed micelles and Ch

  5. The pros and cons of masked priming.

    PubMed

    Forster, K I

    1998-03-01

    Masked priming paradigms offer the promise of tapping automatic, strategy-free lexical processing, as evidenced by the lack of expectancy disconfirmation effects, and proportionality effects in semantic priming experiments. But several recent findings suggest the effects may be prelexical. These findings concern nonword priming effects in lexical decision and naming, the effects of mixed-case presentation on nonword priming, and the dependence of priming on the nature of the distractors in lexical decision, suggesting possible strategy effects. The theory underlying each of these effects is discussed, and alternative explanations are developed that do not preclude a lexical basis for masked priming effects.

  6. Experimental observation of the asymmetric instability of intermediate-reduced-volume vesicles in extensional flow.

    PubMed

    Dahl, Joanna B; Narsimhan, Vivek; Gouveia, Bernardo; Kumar, Sanjay; Shaqfeh, Eric S G; Muller, Susan J

    2016-04-20

    Vesicles provide an attractive model system to understand the deformation of living cells in response to mechanical forces. These simple, enclosed lipid bilayer membranes are suitable for complementary theoretical, numerical, and experimental analysis. A recent study [Narsimhan, Spann, Shaqfeh, J. Fluid Mech., 2014, 750, 144] predicted that intermediate-aspect-ratio vesicles extend asymmetrically in extensional flow. Upon infinitesimal perturbation to the vesicle shape, the vesicle stretches into an asymmetric dumbbell with a cylindrical thread separating the two ends. While the symmetric stretching of high-aspect-ratio vesicles in extensional flow has been observed and characterized [Kantsler, Segre, Steinberg, Phys. Rev. Lett., 2008, 101, 048101] as well as recapitulated in numerical simulations by Narsimhan et al., experimental observation of the asymmetric stretching has not been reported. In this work, we present results from microfluidic cross-slot experiments observing this instability, along with careful characterization of the flow field, vesicle shape, and vesicle bending modulus. The onset of this shape transition depends on two non-dimensional parameters: reduced volume (a measure of vesicle asphericity) and capillary number (ratio of viscous to bending forces). We observed that every intermediate-reduced-volume vesicle that extends forms a dumbbell shape that is indeed asymmetric. For the subset of the intermediate-reduced-volume regime we could capture experimentally, we present an experimental phase diagram for asymmetric vesicle stretching that is consistent with the predictions of Narsimhan et al.

  7. Rapid changes in synaptic vesicle cytochemistry after depolarization of cultured cholinergic sympathetic neurons

    PubMed Central

    1985-01-01

    Sympathetic neurons taken from rat superior cervical ganglia and grown in culture acquire cholinergic function under certain conditions. These cholinergic sympathetic neurons, however, retain a number of adrenergic properties, including the enzymes involved in the synthesis of norepinephrine (NE) and the storage of measurable amounts of NE. These neurons also retain a high affinity uptake system for NE; despite this, the majority of the synaptic vesicles remain clear even after incubation in catecholamines. The present study shows, however, that if these neurons are depolarized before incubation in catecholamine, the synaptic vesicles acquire dense cores indicative of amine storage. These manipulations are successful when cholinergic function is induced with either a medium that contains human placental serum and embryo extract or with heart-conditioned medium, and when the catecholamine is either NE or 5-hydroxydopamine. In some experiments, neurons are grown at low densities and shown to have cholinergic function by electrophysiological criteria. After incubation in NE, only 6% of the synaptic vesicles have dense cores. In contrast, similar neurons depolarized (80 mM K+) before incubation in catecholamine contain 82% dense-cored vesicles. These results are confirmed in network cultures where the percentage of dense-cored vesicles is increased 2.5 to 6.5 times by depolarizing the neurons before incubation with catecholamine. In both single neurons and in network cultures, the vesicle reloading is inhibited by reducing vesicle release during depolarization with an increased Mg++/Ca++ ratio or by blocking NE uptake either at the plasma membrane (desipramine) or at the vesicle membrane (reserpine). In addition, choline appears to play a competitive role because its presence during incubation in NE or after reloading results in decreased numbers of dense-cored vesicles. We conclude that the depolarization step preceding catecholamine incubation acts to empty the

  8. Inverse target- and cue-priming effects of masked stimuli.

    PubMed

    Mattler, Uwe

    2007-02-01

    The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses are facilitated after dissimilar primes. Previous studies on inverse priming effects examined target-priming effects, which arise when the prime and the target stimuli share features that are critical for the response decision. In contrast, 3 experiments of the present study demonstrate inverse priming effects in a nonmotor cue-priming paradigm. Inverse cue-priming effects exhibited time courses comparable to inverse target-priming effects. Results suggest that inverse priming effects do not arise from specific processes of the response system but follow from operations that are more general.

  9. Energy transduction inside vesicles, photocatalysis by titanium dioxide and formation of NADH

    NASA Astrophysics Data System (ADS)

    Summers, David; Noveron, Juan; Rodoni, David; Basa, Ranor

    A number of theories on the origin and early evolution of life have focused on the role of lipid bilayer membrane structures (vesicles). These vesicles are similar to modern cellular membranes , and have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth to provide compartments for early cellular life. They can contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy to drive metabolism (ie. energy transduction) is also one of the central issues in our attempts to understand the origin and evolution of life. When did energy transduction and photosynthesis begin? What was the original system for capturing photochemical energy? How simple can such a system be? It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has been shown that pH gradients can be photo-chemically created, but it has been found difficult to couple these to drive chemical reactions. Minerals can introduce a number of properties to a vesicle system. The incorporation of clay particles into vesicles can provide catalytic activity that mediates both vesicle assembly and RNA oligomerization. It is known that colloidal semiconducting mineral particles can act as photocatalysts and drive redox chemistry. We show that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry and represent a model system for early photosynthesis. TiO2 particles can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to be able concentrate species inside a vesicle. It is shown that these can be used to produce biochemical species such as enzymatically active NADH in such structures. This system demonstrates a simple energy source inside vesicles

  10. Is masked priming modulated by memory load? A test of the automaticity of masked identity priming in lexical decision.

    PubMed

    Perea, Manuel; Marcet, Ana; Lozano, Mario; Gomez, Pablo

    2018-05-29

    One of the key assumptions of the masked priming lexical decision task (LDT) is that primes are processed without requiring attentional resources. Here, we tested this assumption by presenting a dual-task manipulation to increase memory load and measure the change in masked identity priming on the targets in the LDT. If masked priming does not require attentional resources, increased memory load should have no influence on the magnitude of the observed identity priming effects. We conducted two LDT experiments, using a within-subjects design, to investigate the effect of memory load (via a concurrent matching task Experiment 1 and a concurrent search task in Experiment 2) on masked identity priming. Results showed that the magnitude of masked identity priming on word targets was remarkably similar under high and low memory load. Thus, these experiments provide empirical evidence for the automaticity assumption of masked identity priming in the LDT.

  11. Vesicle solubilization by bile salts: comparison of macroscopic theory and simulation.

    PubMed

    Haustein, M; Wahab, M; Mögel, H-J; Schiller, P

    2015-04-14

    Lipid metabolism is accompanied by the solubilization of lipid bilayer membranes by bile salts. We use Brownian dynamics simulations to study the solubilization of model membranes and vesicles by sodium cholate. The solubilization pathways of small and large vesicles are found to be different. Both results for small and large vesicles can be compared with predictions of a macroscopic theoretical description. The line tension of bilayer edges is an important parameter in the solubilization process. We propose a simple method to determine the line tension by analyzing the shape fluctuations of planar membrane patches. Macroscopic mechanical models provide a reasonable explanation for processes observed when a spherical vesicle consisting of lipids and adsorbed bile salt molecules is transformed into mixed lipid-bile salt micelles.

  12. Models for randomly distributed nanoscopic domains on spherical vesicles

    NASA Astrophysics Data System (ADS)

    Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John

    2018-06-01

    The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.

  13. Magnetron magnetic priming for rapid startup and noise reduction

    NASA Astrophysics Data System (ADS)

    Neculaes, Vasile Bogdan

    The magnetron is a vacuum electronics crossed-field device: perpendicular electric and magnetic fields determine the electron dynamics. Compactness, efficiency and reliability make magnetrons suitable for a wide range of military and civilian applications: radar, industrial heating, plasma sources, and medical accelerators. The most ubiquitous use of magnetrons is as the microwave power source in microwave ovens, operating at 2.45 GHz and delivering about 800--1000 W. University of Michigan and several other research programs are actively pursuing the development of GW range relativistic magnetrons. This dissertation presents experimental and computational results concerning innovative techniques to improve magnetron noise, startup and mode stability. The DC-operated oven magnetron studies performed at University of Michigan opened new directions by utilizing azimuthally varying magnetic fields (magnetic priming). Magnetic priming for rapid startup in an N-cavity magnetron operating in the pi-mode is based on implementation of an axial magnetic field with N/2 azimuthal periods, to prebunch the electrons in the desired number of spokes (N/2). Experiments with magnetic priming on DC oven magnetrons using perturbing magnets added on the upper existing magnet of the magnetron showed rapid startup (pi-mode oscillation observed at low currents) and up to 35 dB noise reduction (close to the carrier and in sidebands). A complex 3-dimensional (3D) ICEPIC computational model recovered the oven magnetron magnetic priming experimental results: rapid electron prebunching due to presence of perturbing magnets, fast startup and tendency towards a lower noise state. Simulations in 6-cavity relativistic magnetrons show that ideal magnetic priming causes fast startup, rapid mode growth (with radial electron diffusion) and suppression of mode competition. A highly idealized model (planar, crossed-field, non-resonant, non-relativistic structure) using single particle dynamics showed

  14. Ion transport studies with H+-K+-ATPase-rich vesicles: implications for HCl secretion and parietal cell physiology.

    PubMed

    Wolosin, J M

    1985-06-01

    A summary of recent studies on relations between the properties of the membrane incorporating the H+-K+-ATPase, the H+ motive force in gastric acid secretion, and the secretory state of the parietal cell is presented. Depending on tissue secretory state, two distinct H+-K+-ATPase-rich membranes predominate in tissue homogenates, the gastric microsomes derived from the intracellular tubulovesicles of the resting cell and the stimulation-associated (SA) vesicle derived from the apical membrane of the acid-secreting cell. Structural and chemical differences between both vesicular types lend support to the notion that the formation of an expanded, elaborated apical membrane in the secreting parietal cell results from fusion of tubulovesicles containing the H+-K+-ATPase to an apical membrane of different chemical composition. Comparison of polypeptide composition of microsomes and SA membranes provides a way to identify and isolate membrane and cytoskeletal components putatively involved in the membrane interconversion process. Comparison of transport properties between gastric microsomes and SA vesicles demonstrates that stimulation triggers the appearance of rapid K+ and Cl- permeabilities in the H+-K+-ATPase membrane, allowing efficient acid accumulation in SA vesicles by the combination of rapid KCl influx followed by ATPase-driven H+ for K+ exchange, i.e., by K+ recycling. These stimulation-triggered conductances are functionally independent. Nevertheless, their concurrent inhibition by certain divalent cations (Mn2+,Zn2+) suggests their location within a single physical domain. The compatibility of the K+-recycling model for HCl accumulation in SA vesicles with gastric HCl secretion and selected electrophysiological observations and certain implications of the findings for cellular mechanisms of transport regulation in the context of a membrane fusion and recycling model are discussed.

  15. Endocytic pathway rapidly delivers internalized molecules to lysosomes: an analysis of vesicle trafficking, clustering and mass transfer.

    PubMed

    Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir

    2012-08-20

    Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Priming Ability Emotional Intelligence

    ERIC Educational Resources Information Center

    Schutte, Nicola S.; Malouff, John M.

    2012-01-01

    Two studies examined whether priming self-schemas relating to successful emotional competency results in better emotional intelligence performance. In the first study participants were randomly assigned to a successful emotional competency self-schema prime condition or a control condition and then completed an ability measure of emotional…

  17. Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission.

    PubMed

    Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A

    2013-06-15

    Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction 'buds' suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior.

  18. Visualizing the effect of dynamin inhibition on annular gap vesicle formation and fission

    PubMed Central

    Nickel, Beth; Boller, Marie; Schneider, Kimberly; Shakespeare, Teresa; Gay, Vernon; Murray, Sandra A.

    2013-01-01

    Summary Although gap junction plaque assembly has been extensively studied, mechanisms involved in plaque disassembly are not well understood. Disassembly involves an internalization process in which annular gap junction vesicles are formed. These vesicles undergo fission, but the molecular machinery needed for these fissions has not been described. The mechanoenzyme dynamin has been previously demonstrated to play a role in gap junction plaque internalization. To investigate the role of dynamin in annular gap junction vesicle fission, immunocytochemical, time-lapse and transmission electron microscopy were used to analyze SW-13 adrenocortical cells in culture. Dynamin was demonstrated to colocalize with gap junction plaques and vesicles. Dynamin inhibition, by siRNA knockdown or treatment with the dynamin GTPase inhibitor dynasore, increased the number and size of gap junction ‘buds’ suspended from the gap junction plaques. Buds, in control populations, were frequently released to form annular gap junction vesicles. In dynamin-inhibited populations, the buds were larger and infrequently released and thus fewer annular gap junction vesicles were formed. In addition, the number of annular gap junction vesicle fissions per hour was reduced in the dynamin-inhibited populations. We believe this to be the first report addressing the details of annular gap junction vesicle fissions and demonstrating a role of dynamin in this process. This information is crucial for elucidating the relationship between gap junctions, membrane regulation and cell behavior. PMID:23591819

  19. No negative priming without cognitive control.

    PubMed

    de Fockert, Jan W; Mizon, Guy A; D'Ubaldo, Mariangela

    2010-12-01

    There is evidence that the efficiency of selective attention depends on the availability of cognitive control mechanisms as distractor processing has been found to increase with high load on working memory or dual task coordination (Lavie, Hirst, de Fockert, & Viding, 2004). We tested the prediction that cognitive control load would also affect the negative priming effect produced when a distractor from 1 trial appears as a target on the next trial. We measured priming on trials that involved either high or low cognitive control load, and found that under high control load, negative priming was eliminated, and could even be reversed to positive priming, suggesting that the negative priming effect depends on the availability of cognitive control resources.

  20. Affective Priming with Associatively Acquired Valence

    ERIC Educational Resources Information Center

    Aguado, Luis; Pierna, Manuel; Saugar, Cristina

    2005-01-01

    Three experiments explored the effect of affectively congruent or incongruent primes on evaluation responses to positive or negative valenced targets (the "affective priming" effect). Experiment 1 replicated the basic affective priming effect with Spanish nouns: reaction time for evaluative responses (pleasant/unpleasant) were slower on…

  1. Wrath of God: religious primes and punishment

    PubMed Central

    McKay, Ryan; Efferson, Charles; Whitehouse, Harvey; Fehr, Ernst

    2011-01-01

    Recent evidence indicates that priming participants with religious concepts promotes prosocial sharing behaviour. In the present study, we investigated whether religious priming also promotes the costly punishment of unfair behaviour. A total of 304 participants played a punishment game. Before the punishment stage began, participants were subliminally primed with religion primes, secular punishment primes or control primes. We found that religious primes strongly increased the costly punishment of unfair behaviours for a subset of our participants—those who had previously donated to a religious organization. We discuss two proximate mechanisms potentially underpinning this effect. The first is a ‘supernatural watcher’ mechanism, whereby religious participants punish unfair behaviours when primed because they sense that not doing so will enrage or disappoint an observing supernatural agent. The second is a ‘behavioural priming’ mechanism, whereby religious primes activate cultural norms pertaining to fairness and its enforcement and occasion behaviour consistent with those norms. We conclude that our results are consistent with dual inheritance proposals about religion and cooperation, whereby religions harness the byproducts of genetically inherited cognitive mechanisms in ways that enhance the survival prospects of their adherents. PMID:21106588

  2. Psychotherapy Augmentation through Preconscious Priming

    PubMed Central

    Borgeat, François; O’Connor, Kieron; Amado, Danielle; St-Pierre-Delorme, Marie-Ève

    2013-01-01

    Objective: To test the hypothesis that repeated preconscious (masked) priming of personalized positive cognitions could augment cognitive change and facilitate achievement of patients’ goals following a therapy. Methods: Twenty social phobic patients (13 women) completed a 36-weeks study beginning by 12 weeks of group behavioral therapy. After the therapy, they received 6 weeks of preconscious priming and 6 weeks of a control procedure in a randomized cross-over design. The Priming condition involved listening twice daily with a passive attitude to a recording of individualized formulations of appropriate cognitions and attitudes masked by music. The Control condition involved listening to an indistinguishable recording where the formulations had been replaced by random numbers. Changes in social cognitions were measured by the Social Interaction Self Statements Test (SISST). Results: Patients improved following therapy. The Priming procedure was associated with increased positive cognitions and decreased negative cognitions on the SISST while the Control procedure was not. The Priming procedure induced more cognitive change when applied immediately after the group therapy. Conclusion: An effect of priming was observed on social phobia related cognitions in the expected direction. This self administered addition to a therapy could be seen as an augmentation strategy. PMID:23508724

  3. A Novel Pulse-Chase Paradigm to Visualize the Trafficking of Transport Vesicles in Neurons

    NASA Astrophysics Data System (ADS)

    Al-Bassam, Sarmad

    In neurons transmembrane proteins are targeted to dendrites in vesicles that traffic solely within the somatodendritic compartment. How these vesicles are retained within the somatodendritic domain is unknown. Here we adapt a novel pulse chase system that allows synchronous release of exogenous transmembrane proteins from the endoplasmic reticulum using FKBP12 and Rapamycin. We demonstrate proof-of-concept and establish protein trafficking controls in incremental steps. We demonstrate the utility of this approach in studying protein trafficking and establish parameters for analysis of time-lapse images. We implement this novel pulse-chase strategy to track the movements of post-Golgi transport vesicles. Surprisingly, we found that post-Golgi vesicles carrying dendritic proteins were equally likely to enter axons and dendrites. However, once such vesicles entered the axon they very rarely moved beyond the axon initial segment, but instead either halted or reversed direction in an actin and Myosin Va-dependent manner. In contrast, vesicles carrying either an axonal or a nonspecifically localized protein only rarely halted or reversed and instead generally proceeded to the distal axon. Thus, our results are consistent with the axon initial segment behaving as a vesicle filter that mediates the differential trafficking of transport vesicles.

  4. Prime time news: the influence of primed positive and negative emotion on susceptibility to false memories.

    PubMed

    Porter, Stephen; ten Brinke, Leanne; Riley, Sean N; Baker, Alysha

    2014-01-01

    We examined the relation between emotion and susceptibility to misinformation using a novel paradigm, the ambiguous stimuli affective priming (ASAP) paradigm. Participants (N = 88) viewed ambiguous neutral images primed either at encoding or retrieval to be interpreted as either highly positive or negative (or neutral/not primed). After viewing the images, they either were asked misleading or non-leading questions. Following a delay, memory accuracy for the original images was assessed. Results indicated that any emotional priming at encoding led to a higher susceptibility to misinformation relative to priming at recall. In particular, inducing a negative interpretation of the image at encoding led to an increased susceptibility of false memories for major misinformation (an entire object not actually present in the scene). In contrast, this pattern was reversed when priming was used at recall; a negative reinterpretation of the image decreased memory distortion relative to unprimed images. These findings suggest that, with precise experimental control, the experience of emotion at event encoding, in particular, is implicated in false memory susceptibility.

  5. Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release

    PubMed Central

    Nelson, Jessica; Richmond, Janet E; Colón-Ramos, Daniel A; Shen, Kang

    2017-01-01

    Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release. PMID:29160205

  6. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil.

    PubMed

    Mura, Simona; Manconi, Maria; Sinico, Chiara; Valenti, Donatella; Fadda, Anna Maria

    2009-10-01

    The aim of this work was to evaluate the ability of a few different penetration enhancers to produce elastic vesicles with soy lecithin and the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called Penetration Enhancer-containing Vesicles (PEVs) were prepared as dehydrated-rehydrated vesicles by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy)ethanol (Transcutol), capryl-caproyl macrogol 8-glyceride (Labrasol), and cineole. Soy lecithin liposomes, without penetration enhancers, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, and vesicle deformability. The influence of PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through newborn pig skin in comparison with traditional liposomes and ethanolic solutions of the drug also containing each penetration enhancer. A skin pre-treatment study using empty PEVs and conventional liposomes was also carried out. Results showed that all the used penetration enhancers were able to give more deformable vesicles than conventional liposomes with a good drug entrapment efficiency and stability. In vitro skin penetration data showed that PEVs were able to give a statistically significant improvement of minoxidil deposition in the skin in comparison with classic liposomes and penetration enhancer-containing drug ethanolic solutions without any transdermal delivery. Moreover, the most deformable PEVs, prepared with Labrasol and cineole, were also able to deliver to the skin a higher total amount of minoxidil than the PE alcoholic solutions thus suggesting that minoxidil delivery to the skin was strictly correlated to vesicle deformability, and therefore to vesicle composition.

  7. Export of Virulence Genes and Shiga Toxin by Membrane Vesicles of Escherichia coli O157:H7

    PubMed Central

    Kolling, Glynis L.; Matthews, Karl R.

    1999-01-01

    Membrane vesicles released by Escherichia coli O157:H7 into culture medium were purified and analyzed for protein and DNA content. Electron micrographs revealed vesicles that are spherical, range in size from 20 to 100 nm, and have a complete bilayer. Analysis of vesicle protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrates vesicles that contain many proteins with molecular sizes similar to outer membrane proteins and a number of cellular proteins. Immunoblot (Western) analysis of vesicles suggests the presence of cell antigens. Treatment of vesicles with exogenous DNase hydrolyzed surface-associated DNA; PCR demonstrated that vesicles contain DNA encoding the virulence genes eae, stx1 and stx2, and uidA, which encodes for β-galactosidase. Immunoblot analysis of intact and lysed, proteinase K-treated vesicles demonstrate that Shiga toxins 1 and 2 are contained within vesicles. These results suggest that vesicles contain toxic material and transfer experiments demonstrate that vesicles can deliver genetic material to other gram-negative organisms. PMID:10223967

  8. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  9. Emotional arousal enhances word repetition priming

    PubMed Central

    Thomas, Laura A.; LaBar, Kevin S.

    2012-01-01

    Three experiments were conducted to determine if emotional content increases repetition priming magnitude. In the study phase of Experiment 1, participants rated high-arousing negative (taboo) words and neutral words for concreteness. In the test phase, they made lexical decision judgements for the studied words intermixed with novel words (half taboo, half neutral) and pseudowords. In Experiment 2, low-arousing negative (LAN) words were substituted for the taboo words, and in Experiment 3 all three word types were used. Results showed significant priming in all experiments, as indicated by faster reaction times for studied words than for novel words. A priming × emotion interaction was found in Experiments 1 and 3, with greater priming for taboo relative to neutral words. The LAN words in Experiments 2 and 3 showed no difference in priming magnitude relative to the other word types. These results show selective enhancement of word repetition priming by emotional arousal. PMID:26321783

  10. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    PubMed Central

    Iraci, Nunzio; Leonardi, Tommaso; Gessler, Florian; Vega, Beatriz; Pluchino, Stefano

    2016-01-01

    Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain. PMID:26861302

  11. The effect of priming materialism on women's responses to thin-ideal media.

    PubMed

    Ashikali, Eleni-Marina; Dittmar, Helga

    2012-12-01

    Consumer culture is characterized by two prominent ideals: the 'body perfect' and the material 'good life'. Although the impact of these ideals has been investigated in separate research literatures, no previous research has examined whether materialism is linked to women's responses to thin-ideal media. Data from several studies confirm that the internalization of materialistic and body-ideal values is positively linked in women. After developing a prime for materialism (N = 50), we present an experimental examination (N = 155) of the effects of priming materialism on women's responses to thin-ideal media, using multiple outcome measures of state body dissatisfaction. Priming materialism affects women's body dissatisfaction after exposure to thin media models, but differently depending on the dimension of body image measured. The two main novel findings are that (1) priming materialism heightens the centrality of appearance to women's self-concept and (2) priming materialism influences the activation of body-related self-discrepancies (BRSDs), particularly for highly materialistic women. Exposure to materialistic media has a clear influence on women's body image, with trait materialism a further vulnerability factor for negative exposure effects in response to idealized, thin media models. ©2011 The British Psychological Society.

  12. Stimulus-driven changes in the direction of neural priming during visual word recognition.

    PubMed

    Pas, Maciej; Nakamura, Kimihiro; Sawamoto, Nobukatsu; Aso, Toshihiko; Fukuyama, Hidenao

    2016-01-15

    Visual object recognition is generally known to be facilitated when targets are preceded by the same or relevant stimuli. For written words, however, the beneficial effect of priming can be reversed when primes and targets share initial syllables (e.g., "boca" and "bono"). Using fMRI, the present study explored neuroanatomical correlates of this negative syllabic priming. In each trial, participants made semantic judgment about a centrally presented target, which was preceded by a masked prime flashed either to the left or right visual field. We observed that the inhibitory priming during reading was associated with a left-lateralized effect of repetition enhancement in the inferior frontal gyrus (IFG), rather than repetition suppression in the ventral visual region previously associated with facilitatory behavioral priming. We further performed a second fMRI experiment using a classical whole-word repetition priming paradigm with the same hemifield procedure and task instruction, and obtained well-known effects of repetition suppression in the left occipito-temporal cortex. These results therefore suggest that the left IFG constitutes a fast word processing system distinct from the posterior visual word-form system and that the directions of repetition effects can change with intrinsic properties of stimuli even when participants' cognitive and attentional states are kept constant. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Enzyme-triggered cargo release from methionine sulfoxide containing copolypeptide vesicles.

    PubMed

    Rodriguez, April R; Kramer, Jessica R; Deming, Timothy J

    2013-10-14

    We have developed a facile, scalable method for preparation of enzyme-responsive copolypeptide vesicles that requires no protecting groups or expensive components. We designed amphiphilic copolypeptides containing segments of water-soluble methionine sulfoxide, M(O), residues that were prepared by synthesis of a fully hydrophobic precursor diblock copolypeptide, poly(l-methionine)65-b-poly(L-leucine0.5-stat-L-phenylalanine0.5)20, M65(L0.5/F0.5)20, followed by its direct oxidation in water to give the amphiphilic M(O) derivative, M(O)65(L0.5/F0.5)20. Assembly of M(O)65(L0.5/F0.5)20 in water gave vesicles with average diameters of a few micrometers that could then be extruded to nanoscale diameters. The M(O) segments in the vesicles were found to be substrates for reductase enzymes, which regenerated hydrophobic M segments and resulted in a change in supramolecular morphology that caused vesicle disruption and release of cargos.

  14. Placental Nano-vesicles Target to Specific Organs and Modulate Vascular Tone In Vivo.

    PubMed

    Tong, Mancy; Stanley, Joanna L; Chen, Q; James, Joanna L; Stone, Peter R; Chamley, Larry W

    2017-11-01

    How do nano-vesicles extruded from normal first trimester human placentae affect maternal vascular function? Placental nano-vesicles affect the ability of systemic mesenteric arteries to undergo endothelium- and nitric oxide- (NO-) dependent vasodilation in vivo in pregnant mice. Dramatic cardiovascular adaptations occur during human pregnancy, including a substantial decrease in total peripheral resistance in the first trimester. The human placenta constantly extrudes extracellular vesicles that can enter the maternal circulation and these vesicles may play an important role in feto-maternal communication. Human placental nano-vesicles were administered into CD1 mice via a tail vein and their localization and vascular effects at 30 min and 24 h post-injection were investigated. Nano-vesicles from normal first trimester human placentae were collected and administered into pregnant (D12.5) or non-pregnant female mice. After either 30 min or 24 h of exposure, all major organs were dissected for imaging (n = 7 at each time point) while uterine and mesenteric arteries were dissected for wire myography (n = 6 at each time point). Additional in vitro studies using HMEC-1 endothelial cells were also conducted to investigate the kinetics of interaction between placental nano-vesicles and endothelial cells. Nano-vesicles from first trimester human placentae localized to the lungs, liver and kidneys 24 h after injection into pregnant mice (n = 7). Exposure of pregnant mice to placental nano-vesicles for 30 min in vivo increased the vasodilatory response of mesenteric arteries to acetylcholine, while exposure for 24 h had the opposite effect (P < 0.05, n = 6). These responses were prevented by L-NAME, an NO synthase inhibitor. Placental nano-vesicles did not affect the function of uterine arteries or mesenteric arteries from non-pregnant mice. Placental nano-vesicles rapidly interacted with endothelial cells via a combination of phagocytosis, endocytosis and cell surface

  15. Hydrodynamic interaction between two vesicles in a linear shear flow: asymptotic study.

    PubMed

    Gires, P Y; Danker, G; Misbah, C

    2012-07-01

    Interactions between two vesicles in an imposed linear shear flow are studied theoretically, in the limit of almost spherical vesicles, with a large intervesicle distance, in a strong flow, with a large inner to outer viscosity ratio. This allows to derive a system of ordinary equations describing the dynamics of the two vesicles. We provide an analytic expression for the interaction law. We find that when the vesicles are in the same shear plane, the hydrodynamic interaction leads to a repulsion. When they are not, the interaction may turn into attraction instead. The interaction law is discussed and analyzed as a function of relevant parameters.

  16. Space-valence priming with subliminal and supraliminal words.

    PubMed

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime "up" before the target "happy") than with an incongruent prime (e.g., the prime "up" before the target "sad"). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments.

  17. Space-Valence Priming with Subliminal and Supraliminal Words

    PubMed Central

    Ansorge, Ulrich; Khalid, Shah; König, Peter

    2013-01-01

    To date it is unclear whether (1) awareness-independent non-evaluative semantic processes influence affective semantics and whether (2) awareness-independent affective semantics influence non-evaluative semantic processing. In the current study, we investigated these questions with the help of subliminal (masked) primes and visible targets in a space-valence across-category congruence effect. In line with (1), we found that subliminal space prime words influenced valence classification of supraliminal target words (Experiment 1): classifications were faster with a congruent prime (e.g., the prime “up” before the target “happy”) than with an incongruent prime (e.g., the prime “up” before the target “sad”). In contrast to (2), no influence of subliminal valence primes on the classification of supraliminal space targets into up- and down-words was found (Experiment 2). Control conditions showed that standard masked response priming effects were found with both subliminal prime types, and that an across-category congruence effect was also found with supraliminal valence primes and spatial target words. The final Experiment 3 confirmed that the across-category congruence effect indeed reflected priming of target categorization of a relevant meaning category. Together, the data jointly confirmed prediction (1) that awareness-independent non-evaluative semantic priming influences valence judgments. PMID:23439863

  18. Affective Priming with Auditory Speech Stimuli

    ERIC Educational Resources Information Center

    Degner, Juliane

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In Experiment 2, stimulus onset asynchrony (SOA) was…

  19. Synaptic vesicle pool‐specific modification of neurotransmitter release by intravesicular free radical generation

    PubMed Central

    Afuwape, Olusoji A. T.; Wasser, Catherine R.; Schikorski, Thomas

    2016-01-01

    Key points Synaptic transmission is mediated by the release of neurotransmitters from synaptic vesicles in response to stimulation or through the spontaneous fusion of a synaptic vesicle with the presynaptic plasma membrane.There is growing evidence that synaptic vesicles undergoing spontaneous fusion versus those fusing in response to stimuli are functionally distinct.In this study, we acutely probe the effects of intravesicular free radical generation on synaptic vesicles that fuse spontaneously or in response to stimuli.By targeting vesicles that preferentially release spontaneously, we can dissociate the effects of intravesicular free radical generation on spontaneous neurotransmission from evoked neurotransmission and vice versa.Taken together, these results further advance our knowledge of the synapse and the nature of the different synaptic vesicle pools mediating neurotransmission. Abstract Earlier studies suggest that spontaneous and evoked neurotransmitter release processes are maintained by synaptic vesicles which are segregated into functionally distinct pools. However, direct interrogation of the link between this putative synaptic vesicle pool heterogeneity and neurotransmission has been difficult. To examine this link, we tagged vesicles with horseradish peroxidase (HRP) – a haem‐containing plant enzyme – or antibodies against synaptotagmin‐1 (syt1). Filling recycling vesicles in hippocampal neurons with HRP and subsequent treatment with hydrogen peroxide (H2O2) modified the properties of neurotransmitter release depending on the route of HRP uptake. While strong depolarization‐induced uptake of HRP suppressed evoked release and augmented spontaneous release, HRP uptake during mild activity selectively impaired evoked release, whereas HRP uptake at rest solely potentiated spontaneous release. Expression of a luminal HRP‐tagged syt1 construct and subsequent H2O2 application resulted in a similar increase in spontaneous release and

  20. Thin film drainage between pre-inflated capsules or vesicles

    NASA Astrophysics Data System (ADS)

    Keh, Martin; Walter, Johann; Leal, Gary

    2013-11-01

    Capsules and vesicles are often used as vehicles to carry active ingredients or fragrance in drug delivery and consumer products and oftentimes in these applications the particles may be pre-inflated due to the existence of a small osmotic pressure difference between the interior and exterior fluid. We study the dynamics of thin film drainage between capsules and vesicles in flow as it is crucial to fusion and deposition of the particles and, therefore, the stability and effectiveness of the products. Simulations are conducted using a numerical model coupling the boundary integral method for the motion of the fluids and a finite element method for the membrane mechanics. For low capillary numbers, the drainage behavior of vesicles and capsules are approximately the same, and also similar to that of drops as the flow-independent and uniform tension due to pre-inflation dominates. The tension due to deformation caused by flow will become more important as the strength of the external flow (i.e. the capillary number) increases. In this case, the shapes of the thin film region are fundamentally different for capsules and vesicles, and the drainage behavior in both cases differs from a drop. Funded by P&G.

  1. Thermally assisted acoustofluidic separation of extracellular vesicles from cells

    NASA Astrophysics Data System (ADS)

    Mirtaheri, Elnaz; Dolatmoradi, Ata; Pimentel, Krystine; Bhansali, Shekhar; El-Zahab, Bilal

    2018-02-01

    Extracellular vesicles (EVs) have been gaining increasing attention given their role in communicating information between cells. Composition-based isolation of EVs is particularly of high significance as the proteomic and lipidomic characterization of their cargo could provide valuable clues to the role of EVs in mediating the biology of various conditions. This has, however, proved to be challenging as EVs, despite their abundance, are very small and difficult to be differentiated from the other constituents of host media. In addition, currently available methods like ultracentrifugation and filtration are cumbersome and capable of achieving mostly size-based separations. In this work, we demonstrate the possibility of separating submicron EV-like vesicles from cancer cells using a thermally-assisted acoustophoretic device. In a system composed of MCF-7 breast cancer cells spiked with two different types of same-size vesicles, composition-based isolation of vesicles was shown to be realizable through opposite focusing of the system's components at the node and antinodes of the overlaid ultrasonic standing wave. By proper choice of temperature in the microchannel, we were able to achieve separations with purities exceeding 93%. Furthermore, cells recovered from the channel were shown to be viable after the separation.

  2. Carrier priming or suppression: understanding carrier priming enhancement of anti-polysaccharide antibody response to conjugate vaccines.

    PubMed

    Pobre, Karl; Tashani, Mohamed; Ridda, Iman; Rashid, Harunor; Wong, Melanie; Booy, Robert

    2014-03-14

    With the availability of newer conjugate vaccines, immunization schedules have become increasingly complex due to the potential for unpredictable immunologic interference such as 'carrier priming' and 'carrier induced epitopic suppression'. Carrier priming refers to an augmented antibody response to a carbohydrate portion of a glycoconjugate vaccine in an individual previously primed with the carrier protein. This review aims to provide a critical evaluation of the available data on carrier priming (and suppression) and conceptualize ways by which this phenomenon can be utilized to strengthen vaccination schedules. We conducted this literature review by searching well-known databases to date to identify relevant studies, then extracted and synthesized the data on carrier priming of widely used conjugate polysaccharide vaccines, such as, pneumococcal conjugate vaccine (PCV), meningococcal conjugate vaccine (MenCV) and Haemophilus influenzae type b conjugate vaccines (HibV). We found evidence of carrier priming with some conjugate vaccines, particularly HibV and PCV, in both animal and human models but controversy surrounds MenCV. This has implications for the immunogenicity of conjugate polysaccharide vaccines following the administration of tetanus-toxoid or diphtheria-toxoid containing vaccine (such as DTP). Available evidence supports a promising role for carrier priming in terms of maximizing the immunogenicity of conjugate vaccines and enhancing immunization schedule by making it more efficient and cost effective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Quantification of vesicle characteristics in some diatreme-filling deposits, and the explosivity levels of magma-water interactions within diatremes

    NASA Astrophysics Data System (ADS)

    Ross, Pierre-Simon; White, James D. L.

    2012-11-01

    Vesicles within juvenile fragments in mafic pyroclastic deposits contain important information about the state of the magma at the time of fragmentation. There have been few vesicle studies of juvenile pyroclasts from mafic phreatomagmatic deposits, however, and none we can find from maar-diatreme volcanoes. In this paper we document the vesicularity and vesicle-population characteristics of juvenile fragments sampled from non-bedded lithified deposits of the Coombs Hills diatreme complex, part of the Ferrar large igneous province, Antarctica. The diatreme-filling pyroclastic deposits, dominated by lapilli tuffs and tuff breccias, contain typically abundant lithic clasts derived mostly from the enclosing sedimentary sequence, and several types of juvenile clasts ranging from blocky to fluidal or "raggy". In the samples measured, 77-80% of the juvenile pyroclasts ranging in size from 0.5 mm to fine lapilli is in the 'non-vesicular' to 'incipiently vesicular' range (< 20% vesicles). Such low vesicularities are expected for pyroclasts from maar-diatreme volcanoes where fragmentation takes place at depth in the diatreme or root zone due to magma-water interaction. A few juvenile clasts, however, are more vesicular, and seven of these were chosen and sectioned for 2D analysis of vesicle shapes and orientation, vesicle number densities (Nv), and vesicle volume distributions. The shapes of the vesicles in the studied sections are mostly elliptical (sometimes polylobate), with mean aspect ratios ranging between 0.67 and 0.72. Circular statistics are used to test for trends in the vesicle long-axis orientation data; non-uniformity of orientations is found in most cases, but the trends are weak. Vesicle volume distributions are often bimodal due to variable coalescence. Total Nv values range from 1.0 × 102 to 5.7 × 103 mm- 3; taking the effects of bubble coalescence into account, these values are similar to those found in pyroclasts from other phreatomagmatic volcanoes

  4. Boundary conditions for the influence of unfamiliar non-target primes in unconscious evaluative priming: The moderating role of attentional task sets.

    PubMed

    Kiefer, Markus; Sim, Eun-Jim; Wentura, Dirk

    2015-09-01

    Evaluative priming by masked emotional stimuli that are not consciously perceived has been taken as evidence that affective stimulus evaluation can also occur unconsciously. However, as masked priming effects were small and frequently observed only for familiar primes that there also presented as visible targets in an evaluative decision task, priming was thought to reflect primarily response activation based on acquired S-R associations and not evaluative semantic stimulus analysis. The present study therefore assessed across three experiments boundary conditions for the emergence of masked evaluative priming effects with unfamiliar primes in an evaluative decision task and investigated the role of the frequency of target repetition on priming with pictorial and verbal stimuli. While familiar primes elicited robust priming effects in all conditions, priming effects by unfamiliar primes were reliably obtained for low repetition (pictures) or unrepeated targets (words), but not for targets repeated at a high frequency. This suggests that unfamiliar masked stimuli only elicit evaluative priming effects when the task set associated with the visible target involves evaluative semantic analysis and is not based on S-R triggered responding as for high repetition targets. The present results therefore converge with the growing body of evidence demonstrating attentional control influences on unconscious processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Building Numbers from Primes

    ERIC Educational Resources Information Center

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  6. Recognizing Plant Defense Priming.

    PubMed

    Martinez-Medina, Ainhoa; Flors, Victor; Heil, Martin; Mauch-Mani, Brigitte; Pieterse, Corné M J; Pozo, Maria J; Ton, Jurriaan; van Dam, Nicole M; Conrath, Uwe

    2016-10-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The structure factor of primes

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Martelli, F.; Torquato, S.

    2018-03-01

    Although the prime numbers are deterministic, they can be viewed, by some measures, as pseudo-random numbers. In this article, we numerically study the pair statistics of the primes using statistical-mechanical methods, particularly the structure factor S(k) in an interval M ≤slant p ≤slant M + L with M large, and L/M smaller than unity. We show that the structure factor of the prime-number configurations in such intervals exhibits well-defined Bragg-like peaks along with a small ‘diffuse’ contribution. This indicates that primes are appreciably more correlated and ordered than previously thought. Our numerical results definitively suggest an explicit formula for the locations and heights of the peaks. This formula predicts infinitely many peaks in any non-zero interval, similar to the behavior of quasicrystals. However, primes differ from quasicrystals in that the ratio between the location of any two predicted peaks is rational. We also show numerically that the diffuse part decays slowly as M and L increases. This suggests that the diffuse part vanishes in an appropriate infinite-system-size limit.

  8. Test-retest reliability of subliminal facial affective priming.

    PubMed

    Dannlowski, Udo; Suslow, Thomas

    2006-02-01

    Since the seminal 1993 demonstrations o f Murphy an d Zajonc, researchers have replicated and extended findings concerning subliminal affective priming. So far, however, no data on test-retest reliability of affective priming effects are available. A subliminal facial affective priming task was administered to 22 healthy individuals (15 women and 7 men) twice about 7 wk. apart. Happy and sad facial expressions were used as affective primes and neutral Chinese ideographs served as target masks, which had to be evaluated. Neutral facial primes and a no-face condition served as baselines. All participants reported not having seen any of the prime faces at either testing session. Priming scores for affective faces compared to the baselines were computed. Acceptable test-retest correlations (rs) of up to .74 were found for the affective priming scores. Although measured almost 2 mo. apart, subliminal affective priming seems to be a temporally stable effect.

  9. Revealing Transient Interactions between Phosphatidylinositol-specific Phospholipase C and Phosphatidylcholine--Rich Lipid Vesicles

    NASA Astrophysics Data System (ADS)

    Yang, Boqian; He, Tao; Grauffel, Cédric; Reuter, Nathalie; Roberts, Mary; Gershenson, Anne

    2013-03-01

    Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes transiently interact with target membranes. Previous fluorescence correlation spectroscopy (FCS) experiments showed that Bacillus thuringiensis PI-PLC specifically binds to phosphatidylcholine (PC)-rich membranes and preferentially interacts with unilamellar vesicles that show larger curvature. Mutagenesis studies combined with FCS measurements of binding affinity highlighted the importance of interfacial PI-PLC tyrosines in the PC specificity. All-atom molecular dynamics simulations of PI-PLC performed in the presence of a PC membrane indicate these tyrosines are involved in specific cation-pi interactions with choline headgroups. To further understand those transient interactions between PI-PLC and PC-rich vesicles, we monitor single fluorescently labeled PI-PLC proteins as they cycle on and off surface-tethered small unilamellar vesicles using total internal reflection fluorescent microscopy. The residence times on vesicles along with vesicle size information, based on vesicle fluorescence intensity, reveal the time scales of PI-PLC membrane interactions as well as the curvature dependence. The PC specificity and the vesicle curvature dependence of this PI-PLC/membrane interaction provide insight into how the interface modulates protein-membrane interactions. This work was supported by the National Institute of General Medical Science of the National Institutes of Health (R01GM060418).

  10. Trapping of vesicles on patterned surfaces by physisorption for potential biosensing applications.

    PubMed

    Bera, L K; Ong, Kian Soo; Wong, Zheng Zheng; Fu, Zhikang; Nallani, Madhavan; Shea, Sean O'

    2012-01-01

    The pre-defined selective positioning of a controlled number of vesicles on a rigid substrate is crucial in many potential applications such as diagnostics, biosensors, lab-on-a chip, microanalyses and reaction chambers. In this paper, the vesicles made up of block copolymer using Poly [-(2-methyloxazoline) -poly- (dimethylsiloxane)-poly- (2-methyloxazoline)] (ABA) with dimensions of 100-200 nm are trapped by physisorption on hydrophilic surfaces. We discuss the protocols established for vesicle trapping. The optimum conditions obtained for physisorption is 15 minutes incubation followed by one cycle of DI water rinse. Trapping of 1-10 vesicles in lobe shape micro-wells fabricated by photo lithography using photoresist on UltraStick(™) slides was demonstrated. To overcome the issue of amalgamation of emitted light from optically sensitive photoresist and fluorescently tagged vesicles, an alternative approach of Si/SiO(2) microwell array coupled with APTES (3-AminoPropylTriEthoxySilane) treated bottom surfaces was developed.

  11. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    PubMed

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  12. Vesicle formation as a result of interaction between polymorphonuclear neutrophils and Staphylococcus aureus biofilm.

    PubMed

    Chebotar, Igor' V; Konchakova, Evgenia D; Maianskii, Andrey N

    2013-08-01

    Staphylococcus aureus, a major opportunistic pathogen, is a leading cause of biofilm-related infections in clinical practice. Staphylococcal biofilms are highly resistant to antibacterial medicines and immune effector cells. The main result of our work is the discovery of nano-vesicles in the supernatant of the human neutrophil-S. aureus biofilm system. We also found that phospholipase C treatment causes complete destruction of these vesicles. While the addition of proteinase K led to a partial structural disorganization of the vesicles, DNase treatment did not influence the vesicle structure. These observations allowed us to conclude that phospholipids and proteins play a structure-forming role in the formation of these nano-vesicles. The vesicles demonstrated anti-biofilm activities when tested against Staphylococcus epidermidis (strains 178M and 328/5) biofilms, but were ineffective for S. aureus (strains 5983/2, 5663 and 18A) biofilms.

  13. SOA-dependent N400 and P300 semantic priming effects using pseudoword primes and a delayed lexical decision.

    PubMed

    Hill, Holger; Ott, Friederike; Weisbrod, Matthias

    2005-06-01

    In a previous semantic priming study, we found a semantic distance effect on the lexical-decision-related P300 when SOA was short (150 ms) only, but no different RT and N400 priming effects between short and long (700 ms) SOAs. To investigate this further, we separated priming from lexical decision, using a delayed lexical decision in the present study. In the short SOA only, primed targets evoked an early peaking (approximately 480 ms) P300-like component, probably because the subject detected the semantic relationship implicitly. We hypothesize that in tasks requiring an immediate lexical decision, this early P300 and the later lexical decision P300 (approximately 600 ms) are additive. Secondly, we found both a direct and an indirect priming effect for both SOAs for the ERP amplitude of the N400 time window. However the N400 component itself was considerably larger in the long SOA than in the short SOA. We interpreted this finding as an ERP correlate for deeper semantic processing in the long SOA, due to increased attention that was provoked by the use of pseudoword primes. In contrast, in the short SOA, subjects might have used a shallowed semantic processing. N400, P300, and RTs are sensitive to semantic priming-but the modulation patterns are not consistent. This raises the question as to which variable reflects an immediate physiological correlate of semantic priming, and which variable reflects co-occurring processes associated with semantic priming.

  14. Iconic gestures prime words: comparison of priming effects when gestures are presented alone and when they are accompanying speech

    PubMed Central

    So, Wing-Chee; Yi-Feng, Alvan Low; Yap, De-Fu; Kheng, Eugene; Yap, Ju-Min Melvin

    2013-01-01

    Previous studies have shown that iconic gestures presented in an isolated manner prime visually presented semantically related words. Since gestures and speech are almost always produced together, this study examined whether iconic gestures accompanying speech would prime words and compared the priming effect of iconic gestures with speech to that of iconic gestures presented alone. Adult participants (N = 180) were randomly assigned to one of three conditions in a lexical decision task: Gestures-Only (the primes were iconic gestures presented alone); Speech-Only (the primes were auditory tokens conveying the same meaning as the iconic gestures); Gestures-Accompanying-Speech (the primes were the simultaneous coupling of iconic gestures and their corresponding auditory tokens). Our findings revealed significant priming effects in all three conditions. However, the priming effect in the Gestures-Accompanying-Speech condition was comparable to that in the Speech-Only condition and was significantly weaker than that in the Gestures-Only condition, suggesting that the facilitatory effect of iconic gestures accompanying speech may be constrained by the level of language processing required in the lexical decision task where linguistic processing of words forms is more dominant than semantic processing. Hence, the priming effect afforded by the co-speech iconic gestures was weakened. PMID:24155738

  15. Functional advantages conferred by extracellular prokaryotic membrane vesicles.

    PubMed

    Manning, Andrew J; Kuehn, Meta J

    2013-01-01

    The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane-derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials and ridding the cell of toxic envelope proteins. Here, we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane-bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world. Copyright © 2013 S. Karger AG, Basel.

  16. Preparation of giant myelin vesicles and proteoliposomes to register ionic channels.

    PubMed

    Regueiro, P; Monreal, J; Díaz, R S; Sierra, F

    1996-11-01

    Myelin vesicles, reconstituted liposomes with proteolipid protein (PLP), the main protein component of myelin, and electrophysiological patch-clamp are potentially powerful tools to study the role of myelin in functional ionic channels. However, technical difficulties in the vesiculation of myelin and the small size of the vesicles obtained do not permit the application of micropipettes for current recordings. From a suspension of purified myelin we have prepared oligolamellar vesicles (mean diameter of 144 nm) using the so-called French pressure system. From this preparation we obtained giant myelin vesicles approximately 10 microns in mean diameter, using a dehydration-rehydration procedure. Qualitative analysis of proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed no significant loss of any component in these vesicles due to pressure, in comparison with non-vesiculated myelin. A way of preparing giant liposomes of approximately 80-100 microns and proteoliposomes of approximately 30 microns in mean diameter, using the same dehydration-rehydration procedure, is also reported. Reconstitution of purified PLP in giant liposomes was confirmed by fluorescent labeling of PLP and by fluorescence microscopy. The current recordings from these vesicles prove the validity of these methods and provide significant evidence of the existence of ionic channels in myelin membranes and the possibility that PLP functions as a channel. The physiological significance and characterization of these channels remain yet unresolved. These results have a special significance for elucidating the molecular role of myelin in the regulation of neural activity and in the brain ion microenvironment.

  17. An immersed boundary method for simulating vesicle dynamics in three dimensions

    NASA Astrophysics Data System (ADS)

    Seol, Yunchang; Hu, Wei-Fan; Kim, Yongsam; Lai, Ming-Chih

    2016-10-01

    We extend our previous immersed boundary (IB) method for 3D axisymmetric inextensible vesicle in Navier-Stokes flows (Hu et al., 2014 [17]) to general three dimensions. Despite a similar spirit in numerical algorithms to the axisymmetric case, the fully 3D numerical implementation is much more complicated and is far from straightforward. A vesicle membrane surface is known to be incompressible and exhibits bending resistance. As in 3D axisymmetric case, instead of keeping the vesicle locally incompressible, we adopt a modified elastic tension energy to make the vesicle surface patch nearly incompressible so that solving the unknown tension (Lagrange multiplier for the incompressible constraint) can be avoided. Nevertheless, the new elastic force derived from the modified tension energy has exactly the same mathematical form as the original one except the different definitions of tension. The vesicle surface is discretized on a triangular mesh where the elastic tension and bending force are calculated on each vertex (Lagrangian marker in the IB method) of the triangulation. A series of numerical tests on the present scheme are conducted to illustrate the robustness and applicability of the method. We perform the convergence study for the immersed boundary forces and the fluid velocity field. We then study the vesicle dynamics in various flows such as quiescent, simple shear, and gravitational flows. Our numerical results show good agreements with those obtained in previous theoretical, experimental and numerical studies.

  18. Structure and function of Frankia vesicles in denitrogen fixation by actinorhizal plants: Annual technical progress report for period January 1, 1987-November 15, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torrey, J.G.

    1987-11-20

    Frankia is a filamentous soil bacterium of the Actinomycetales that is capable of fixation of atmospheric dinitrogen both in the free-living state and within root modules of a number of woody dicotyledonous plants in a symbiotic process. The bacterium is of special interest because of its genetic capacity to differentiate terminal swellings of the hyphal filaments called vesicles. Vesicles form in the free-living organism when deprived of combined nitrogen substrates under aerobic conditions. A multilaminate envelope surrounds the vesicle providing a barrier to direct exposure of the oxygen-labile nitrogenase enzyme that forms within the vesicle. In root nodules, vesicles maymore » or may not form, depending upon the structural configuration of the host plant cells, the ambient oxygen concentration surrounding the root nodule and the expression of host-microbial interactions under the control of the two genomes. Under varying stresses of nutrient availability and the changing gaseous environment, remarkable adaptations may occur in either or both partners of the symbiosis to optimize dinitrogen fixation. 9 refs.« less

  19. Interactions between antimicrobial polynorbornenes and phospholipid vesicles monitored by light scattering and microcalorimetry.

    PubMed

    Gabriel, Gregory J; Pool, Joanna G; Som, Abhigyan; Dabkowski, Jeffrey M; Coughlin, E Bryan; Muthukumar, M; Tew, Gregory N

    2008-11-04

    Antimicrobial polynorbornenes composed of facially amphiphilic monomers have been previously reported to accurately emulate the antimicrobial activity of natural host-defense peptides (HDPs). The lethal mechanism of most HDPs involves binding to the membrane surface of bacteria leading to compromised phospholipid bilayers. In this paper, the interactions between biomimetic vesicle membranes and these cationic antimicrobial polynorbornenes are reported. Vesicle dye-leakage experiments were consistent with previous biological assays and corroborated a mode of action involving membrane disruption. Dynamic light scattering (DLS) showed that these antimicrobial polymers cause extensive aggregation of vesicles without complete bilayer disintegration as observed with surfactants that efficiently solubilize the membrane. Fluorescence microscopy on vesicles and bacterial cells also showed polymer-induced aggregation of both synthetic vesicles and bacterial cells. Isothermal titration calorimetry (ITC) afforded free energy of binding values (Delta G) and polymer to lipid binding ratios, plus revealed that the interaction is entropically favorable (Delta S>0, Delta H>0). It was observed that the strength of vesicle binding was similar between the active polymers while the binding stoichiometries were dramatically different.

  20. Priming methods in semantics and pragmatics.

    PubMed

    Maldonado, Mora; Spector, Benjamin; Chemla, Emmanuel

    2017-01-01

    Structural priming is a powerful method to inform linguistic theories. We argue that this method extends nicely beyond syntax to theories of meaning. Priming, however, should still be seen as only one of the tools available for linguistic data collection. Specifically, because priming can occur at different, potentially conflicting levels, it cannot detect every aspect of linguistic representations.

  1. Light-induced DELTApH and DELTApsi in halobacterial vesicles related to sodium transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamo, N.; Racanclli, T.; Packer, L.

    1986-01-01

    Membranes of Halobacterium halobium contain two retinoproteins, baceteriorhodopsin (BR/sub 568nm/) and halorhodopsin (HR/sub 588nm/). We have investigated the light- and sodium-dependent activities in vesicles from the HR containing R/sub 1/mR strain, and the BR + HR containing S/sub 9/ strain to study energy conversion and ion flow mechanisms. Simultaneous ..delta..pH and ..delta..psi measurements have been made with electrodes. In R/sub 1/mR vesicles, -..delta..psi and H/sup +/ uptake occurs in NaCl but not in KCl medium. In S/sub 9/ vesicles, net H/sup +/ extrusion is reduced at high light intensity in NaCl but not KCl medium. Such results indicate Na/sup +//H/supmore » +/ exchange in vesicles from both strains. As S/sub 9/ contains BR + HR, it is unclear whether the Na/sup +/ extrusion is due to a Na/sup +//H/sup +/ antiporter and/or HR which has been proposed to be a light driven Na/sup +/ pump. To evaluate these concepts for Na/sup +/ transport, the light intensity dependence and action of several membrane transport active agents have been compared. Digitoxin, electro-neutral exchangers (triphenyltin and monensin), and phloretin yielded similar results for HR (R/sub 1/mR) and HR + BR (S/sub 9/) vesicles. Moreover treatment of vesicles with carboxyl reacting reagents inhibited Na/sup +/ dependent activity in both types of vesicles. Thus, common mechanisms of Na/sup +/ transport are indicated in S/sub 9/ and R/sub 1/mR vesicles. 22 refs., 9 figs., 1 tab.« less

  2. Mechanics and stability of vesicles and droplets in confined spaces

    PubMed Central

    Benet, Eduard; Vernerey, Franck J.

    2017-01-01

    The permeation and trapping of soft colloidal particles in the confined space of porous media are of critical importance in cell migration studies, design of drug delivery vehicles, and colloid separation devices. Our current understanding of these processes is however limited by the lack of quantitative models that can relate how the elasticity, size, and adhesion properties of the vesicle-pore complex affect colloid transport. We address this shortcoming by introducing a semianalytical model that predicts the equilibrium shapes of a soft vesicle driven by pressure in a narrow pore. Using this approach, the problem is recast in terms of pressure and energy diagrams that characterize the vesicle stability and permeation pressures in different conditions. We particularly show that the critical permeation pressure for a vesicle arises from a compromise between the critical entry pressure and exit pressure, both of which are sensitive to geometrical features, mechanics, and adhesion. We further find that these results can be leveraged to rationally design microfluidic devices and diodes that can help characterize, select, and separate colloids based on physical properties. PMID:28085314

  3. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles

    PubMed Central

    Antrobus, Robin; Hirst, Jennifer; Bhumbra, Gary S.; Kozik, Patrycja; Jackson, Lauren P.; Sahlender, Daniela A.

    2012-01-01

    Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions. PMID:22472443

  4. Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling

    PubMed Central

    Wasser, Catherine R; Ertunc, Mert; Liu, Xinran; Kavalali, Ege T

    2007-01-01

    Cholesterol is a prominent component of nerve terminals. To examine cholesterol's role in central neurotransmission, we treated hippocampal cultures with methyl-β-cyclodextrin, which reversibly binds cholesterol, or mevastatin, an inhibitor of cholesterol biosynthesis, to deplete cholesterol. We also used hippocampal cultures from Niemann-Pick type C1-deficient mice defective in intracellular cholesterol trafficking. These conditions revealed an augmentation in spontaneous neurotransmission detected electrically and an increase in spontaneous vesicle endocytosis judged by horseradish peroxidase uptake after cholesterol depletion by methyl-β-cyclodextrin. In contrast, responses evoked by action potentials and hypertonicity were severely impaired after the same treatments. The increase in spontaneous vesicle recycling and the decrease in evoked neurotransmission were reversible upon cholesterol addition. Cholesterol removal did not impact on the low level of evoked neurotransmission seen in the absence of synaptic vesicle SNARE protein synaptobrevin-2 whereas the increase in spontaneous fusion remained. These results suggest that synaptic cholesterol balances evoked and spontaneous neurotransmission by hindering spontaneous synaptic vesicle turnover and sustaining evoked exo-endocytosis. PMID:17170046

  5. Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission

    PubMed Central

    Chung, ChiHye; Barlyko, Barbara; Leitz, Jeremy; Liu, Xinran; Kavalali, Ege T.

    2010-01-01

    Synapses maintain synchronous, asynchronous and spontaneous forms of neurotransmission that are distinguished by their Ca2+-dependence and time course. Despite recent advances in our understanding of the mechanisms that underlie these three forms of release, it remains unclear whether they originate from the same vesicle population or arise from distinct vesicle pools with diverse propensities for release. Here, we used a reversible inhibitor of dynamin, dynasore, to dissect the vesicle pool dynamics underlying the three forms of neurotransmitter release in hippocampal GABAergic inhibitory synapses. In dynasore, evoked synchronous release and asynchronous neurotransmission detected after activity showed marked and unrecoverable depression within seconds. In contrast, spontaneous release remained intact after intense stimulation in dynasore or during prolonged (~1 hour) application of dynasore at rest, suggesting that separate recycling pathways maintain evoked and spontaneous synaptic vesicle trafficking. In addition, simultaneous imaging of spectrally separable styryl dyes revealed that in a given synapse vesicles that recycle spontaneously and in response to activity do not mix. These findings suggest that evoked synchronous and asynchronous release originate from the same vesicle pool that recycles rapidly in a dynamin-dependent manner, while a distinct vesicle pool sustains spontaneous release independent of dynamin activation. This result lends further support to the notion that synapses harbor distinct vesicle populations with divergent release properties that maintain independent forms of neurotransmission. PMID:20107062

  6. Transformation priming helps to disambiguate sudden changes of sensory inputs.

    PubMed

    Pastukhov, Alexander; Vivian-Griffiths, Solveiga; Braun, Jochen

    2015-11-01

    Retinal input is riddled with abrupt transients due to self-motion, changes in illumination, object-motion, etc. Our visual system must correctly interpret each of these changes to keep visual perception consistent and sensitive. This poses an enormous challenge, as many transients are highly ambiguous in that they are consistent with many alternative physical transformations. Here we investigated inter-trial effects in three situations with sudden and ambiguous transients, each presenting two alternative appearances (rotation-reversing structure-from-motion, polarity-reversing shape-from-shading, and streaming-bouncing object collisions). In every situation, we observed priming of transformations as the outcome perceived in earlier trials tended to repeat in subsequent trials and this repetition was contingent on perceptual experience. The observed priming was specific to transformations and did not originate in priming of perceptual states preceding a transient. Moreover, transformation priming was independent of attention and specific to low level stimulus attributes. In summary, we show how "transformation priors" and experience-driven updating of such priors helps to disambiguate sudden changes of sensory inputs. We discuss how dynamic transformation priors can be instantiated as "transition energies" in an "energy landscape" model of the visual perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Selective Metal-Ion-Mediated Vesicle Adhesion Based on Dynamic Self-Organization of a Pyrene-Appended Glutamic Acid.

    PubMed

    Xing, Pengyao; Wang, Yajie; Yang, Minmin; Zhang, Yimeng; Wang, Bo; Hao, Aiyou

    2016-07-13

    Vesicles with dynamic membranes provide an ideal model system for investigating biological membrane activities, whereby vesicle aggregation behaviors including adhesion, fusion, fission, and membrane contraction/extension have attracted much attention. In this work we utilize an aromatic amino acid (pyrene-appended glutamic acid, PGlu) to prepare nanovesicles that aggregate to form vesicle clusters selectively induced by Fe(3+) or Cu(2+), and the vesicles transform into irregular nano-objects when interacting with Al(3+). Vesicle clusters have better stability than pristine vesicles, which hinders the spontaneous morphological transformation from vesicles into lamellar nanosheets with long incubation period. The difference between complexation of Fe(3+) and Al(3+) with vesicles was studied by various techniques. On the basis of metal ion-vesicle interactions, this self-assembled nanovesicle system also behaves as an effective fluorescent sensor for Fe(3+) and Al(3+), which cause fluorescence quenching and enhanced excimer emission, respectively.

  8. Comparison of Prime Movers Suitable for USMC Expeditionary Power Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theiss, T J; Conklin, J. C.; Thomas, John F.

    2000-04-18

    This report documents the results of the ORNL investigation into prime movers that would be desirable for the construction of a power system suitable for the United States Marine Corps (USMC) expeditionary forces under Operational Maneuvers From The Sea (OMFTS) doctrine. Discrete power levels of {approx}1, 5, 15, and 30 kW are considered. The only requirement is that the prime mover consumes diesel fuel. A brief description is given for the prime movers to describe their basic scientific foundations and relative advantages and disadvantages. A list of key attributes developed by ORNL has been weighted by the USMC to indicatemore » the level of importance. A total of 14 different prime movers were scored by ORNL personnel in four size ranges (1,5, 15, & 30 kW) for their relative strength in each attribute area. The resulting weighted analysis was used to indicate which prime movers are likely to be suitable for USMC needs. No single engine or prime mover emerged as the clear-cut favorite but several engines scored as well or better than the diesel engine. At the higher load levels (15 & 30 kW), the results indicate that the open Brayton (gas turbine) is a relatively mature technology and likely a suitable choice to meet USMC needs. At the lower power levels, the situation is more difficult and the market alone is not likely to provide an optimum solution in the time frame desired (2010). Several prime movers should be considered for future developments and may be satisfactory; specifically, the Atkinson cycle, the open Brayton cycle (gas turbine), the 2-stroke diesel. The rotary diesel and the solid oxide fuel cell should be backup candidates. Of all these prime movers, the Atkinson cycle may well be the most suitable for this application but is an immature technology. Additional demonstrations of this engine will be conducted at ORNL. If this analysis is positive, then the performance of a generator set using this engine, the open Brayton and the 2-stroke diesel

  9. Irregular bilayer structure in vesicles prepared from Halobacterium cutirubrum lipids

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1974-01-01

    Fluorescent probes were used to study the structure of the cell envelope of Halobacterium cutirubrum, and, in particular, to explore the effect of the heterogeneity of the lipids in this organism on the structure of the bilayers. The fluorescence polarization of perylene was followed in vesicles of unfractionated lipids and polar lipids as a function of temperature in 3.4 M solutions of NaCl, NaNO3, and KSCN, and it was found that vesicles of unfractionated lipids were more perturbed by chaotropic agents than polar lipids. The dependence of the relaxation times of perylene on temperature was studied in cell envelopes and in vesicles prepared from polar lipids, unfractionated lipids, and mixtures of polar and neutral lipids.

  10. The (un)reliability of item-level semantic priming effects.

    PubMed

    Heyman, Tom; Bruninx, Anke; Hutchison, Keith A; Storms, Gert

    2018-04-05

    Many researchers have tried to predict semantic priming effects using a myriad of variables (e.g., prime-target associative strength or co-occurrence frequency). The idea is that relatedness varies across prime-target pairs, which should be reflected in the size of the priming effect (e.g., cat should prime dog more than animal does). However, it is only insightful to predict item-level priming effects if they can be measured reliably. Thus, in the present study we examined the split-half and test-retest reliabilities of item-level priming effects under conditions that should discourage the use of strategies. The resulting priming effects proved extremely unreliable, and reanalyses of three published priming datasets revealed similar cases of low reliability. These results imply that previous attempts to predict semantic priming were unlikely to be successful. However, one study with an unusually large sample size yielded more favorable reliability estimates, suggesting that big data, in terms of items and participants, should be the future for semantic priming research.

  11. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression

    NASA Astrophysics Data System (ADS)

    Pi, Fengmei; Binzel, Daniel W.; Lee, Tae Jin; Li, Zhefeng; Sun, Meiyan; Rychahou, Piotr; Li, Hui; Haque, Farzin; Wang, Shaoying; Croce, Carlo M.; Guo, Bin; Evers, B. Mark; Guo, Peixuan

    2018-01-01

    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft.

  12. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    NASA Astrophysics Data System (ADS)

    Moon, James J.; Suh, Heikyung; Bershteyn, Anna; Stephan, Matthias T.; Liu, Haipeng; Huang, Bonnie; Sohail, Mashaal; Luo, Samantha; Ho Um, Soong; Khant, Htet; Goodwin, Jessica T.; Ramos, Jenelyn; Chiu, Wah; Irvine, Darrell J.

    2011-03-01

    Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.

  13. Can Achievement Goals be Primed in Competitive Tasks?

    PubMed Central

    Greenlees, Iain; Figgins, Sean; Kearney, Philip

    2014-01-01

    This study examined whether achievement goal priming effects would be observed within an overtly competitive setting. Male soccer players (N = 66) volunteered to participate in a soccer penalty-kick taking competition during which they took 20 penalty-kicks on 2 occasions. Following a pretest, participants were allocated to 1 of 5 priming conditions. Immediately prior to the posttest, participants in the priming conditions were asked to complete what was presented as an ostensibly unrelated task that took the form of either a computer task (subliminal priming) or wordsearch task (supraliminal priming). Results revealed that priming had no significant influence on performance. PMID:25031692

  14. Being forward not backward: lexical limits to masked priming.

    PubMed

    Davis, Chris; Kim, Jeesun; Forster, Kenneth I

    2008-05-01

    This study investigated whether masked priming is mediated by existing memory representations by determining whether nonwords targets would show repetition priming. To avoid the potential confound that nonword repetition priming would be obscured by a familiarity response bias, the standard lexical decision and naming tasks were modified to make targets unfamiliar. Participants were required to read a target string from right to left (i.e., "ECAF" should be read as "FACE") and then make a response. To examine if priming was based on lexical representations, repetition primes consisted of words when read forwards or backwards (e.g., "face", "ecaf") and nonwords (e.g., "pame", "emap"). Forward and backward primes were used to test if task instruction affected prime encoding. The lexical decision and naming tasks showed the same pattern of results: priming only occurred for forward primes with word targets (e.g., "face-ECAF"). Additional experiments to test if response priming affected the LDT indicated that the lexical status of the prime per se did not affect target responses. These results showed that the encoding of masked primes was unaffected by the novel task instruction and support the view that masked priming is due to the automatic triggering of pre-established computational processes based on stored information.

  15. Exosome-like vesicles in uterine aspirates: a comparison of ultracentrifugation-based isolation protocols.

    PubMed

    Campoy, Irene; Lanau, Lucia; Altadill, Tatiana; Sequeiros, Tamara; Cabrera, Silvia; Cubo-Abert, Montserrat; Pérez-Benavente, Assumpción; Garcia, Angel; Borrós, Salvador; Santamaria, Anna; Ponce, Jordi; Matias-Guiu, Xavier; Reventós, Jaume; Gil-Moreno, Antonio; Rigau, Marina; Colas, Eva

    2016-06-18

    Uterine aspirates are used in the diagnostic process of endometrial disorders, yet further applications could emerge if its complex milieu was simplified. Exosome-like vesicles isolated from uterine aspirates could become an attractive source of biomarkers, but there is a need to standardize isolation protocols. The objective of the study was to determine whether exosome-like vesicles exist in the fluid fraction of uterine aspirates and to compare protocols for their isolation, characterization, and analysis. We collected uterine aspirates from 39 pre-menopausal women suffering from benign gynecological diseases. The fluid fraction of 27 of those aspirates were pooled and split into equal volumes to evaluate three differential centrifugation-based procedures: (1) a standard protocol, (2) a filtration protocol, and (3) a sucrose cushion protocol. Characterization of isolated vesicles was assessed by electron microscopy, nanoparticle tracking analysis and immunoblot. Specifically for RNA material, we evaluate the effect of sonication and RNase A treatment at different steps of the protocol. We finally confirmed the efficiency of the selected methods in non-pooled samples. All protocols were useful to isolate exosome-like vesicles. However, the Standard procedure was the best performing protocol to isolate exosome-like vesicles from uterine aspirates: nanoparticle tracking analysis revealed a higher concentration of vesicles with a mode of 135 ± 5 nm, and immunoblot showed a higher expression of exosome-related markers (CD9, CD63, and CD81) thus verifying an enrichment in this type of vesicles. RNA contained in exosome-like vesicles was successfully extracted with no sonication treatment and exogenous nucleic acids digestion with RNaseA, allowing the analysis of the specific inner cargo by Real-Time qPCR. We confirmed the existence of exosome-like vesicles in the fluid fraction of uterine aspirates. They were successfully isolated by differential centrifugation

  16. Semantic Priming from Letter-Searched Primes Occurs for Low- but Not High-Frequency Targets: Automatic Semantic Access May Not Be a Myth

    ERIC Educational Resources Information Center

    Tse, Chi-Shing; Neely, James H.

    2007-01-01

    Letter-search (LS) within a prime often eliminates semantic priming. In 2 lexical decision experiments, the authors found that priming from LS primes occurred for low-frequency (LF) but not high-frequency (HF) targets whether the target's word frequency was manipulated between or within participants and whether the prime-target pairs were…

  17. Monitoring changes of paramagnetically-shifted 31P signals in phospholipid vesicles

    NASA Astrophysics Data System (ADS)

    Joyce, Rebecca E.; Williams, Thomas L.; Serpell, Louise C.; Day, Iain J.

    2016-03-01

    Phospholipid vesicles are commonly used as biomimetics in the investigation of the interaction of various species with cell membranes. In this letter we present a 31P NMR investigation of a simple vesicle system using a paramagnetic shift reagent to probe the inner and outer layers of the lipid bilayer. Time-dependent changes in the 31P NMR signal are observed, which differ whether the paramagnetic species is inside or outside the vesicle, and on the choice of buffer solution used. An interpretation of these results is given in terms of the interaction of the paramagnetic shift reagent with the lipids.

  18. Structures and mechanisms of vesicle coat components and multisubunit tethering complexes

    PubMed Central

    Jackson, Lauren P; Kümmel, Daniel; Reinisch, Karin M; Owen, David J

    2012-01-01

    Eukaryotic cells face a logistical challenge in ensuring prompt and precise delivery of vesicular cargo to specific organelles within the cell. Coat protein complexes select cargo and initiate vesicle formation, while multisubunit tethering complexes participate in the delivery of vesicles to target membranes. Understanding these macromolecular assemblies has greatly benefited from their structural characterization. Recent structural data highlight principles in coat recruitment and uncoating in both the endocytic and retrograde pathways, and studies on the architecture of tethering complexes provide a framework for how they might link vesicles to the respective acceptor compartments and the fusion machinery. PMID:22728063

  19. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model

    NASA Astrophysics Data System (ADS)

    Guillén-González, F.; Tierra, G.

    2018-02-01

    Numerical schemes to simulate the deformation of vesicles membranes via minimizing the bending energy have been widely studied in recent times due to its connection with many biological motivated problems. In this work we propose a new unconditionally energy stable numerical scheme for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area constraint. Moreover, we extend these ideas to present an unconditionally energy stable splitting scheme decoupling the interaction of the vesicle with a surrounding fluid. Finally, the well behavior of the proposed schemes are illustrated through several computational experiments.

  20. Sorting by COP I-coated vesicles under interphase and mitotic conditions

    PubMed Central

    1996-01-01

    COP I-coated vesicles were analyzed for their content of resident Golgi enzymes (N-acetylgalactosaminyltransferase; N- acetylglucosaminyltransferase I; mannosidase II; galactosyltransferase), cargo (rat serum albumin; polyimmunoglobulin receptor), and recycling proteins (-KDEL receptor; ERGIC-53/p58) using biochemical and morphological techniques. The levels of these proteins were similar when the vesicles were prepared under interphase or mitotic conditions showing that sorting was unaffected. The average density relative to starting membranes for resident enzymes (14-30%), cargo (16-23%), and recycling proteins (81-125%) provides clues to the function of COP I vesicles in transport through the Golgi apparatus. PMID:8830771

  1. Investigating Degassing in Felsic and Mafic Magmas by 3-D Imaging of Vesicle Pathways

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Baker, D. R.; Piochi, M.; Mancini, L.

    2009-12-01

    Volatiles are the motor of volcanic eruptions. Studies of vesiculation in erupted products can provide information on how volatiles exsolve, grow and are lost from magmas as lava and tephra fragments bear the fingerprints of such processes in vesicle and crystal textures. We summarize here the results of a series of X-ray computed microtomographic experiments that were performed on about 70 volcanic specimens of mainly basaltic and trachytic compositions. A first sample suite comprises samples collected from explosive activity at persistently degassing basaltic volcanoes, namely Stromboli (Aeolian Islands), Etna (Eastern Sicily) and Ambrym (Vanuatu Islands); a second suite consists of pumice and scoria clasts from Plinian to Subplinian to Vulcanian eruptions that occurred in the Campi Flegrei caldera (Southern Italy). The tomographic images provide us with a complete 3-D view of our sampled material through which it is possible to reconstruct the geometry of the vesicle network and explore how gas was transported in the investigated magmas. We find that basaltic scoriae exhibit two types of vesicles: large (~ mm^3), coalescing vesicles with complex, convoluted shapes and small-to-intermediate sized (<~1x10^-3 mm^3), spherical to sub-spherical, poorly connected or isolated vesicles. The former vesicles were interpreted as percolation pathways for gas to flow non-explosively to the volcano crater and thought to sustain the persistent passive gas release that characterizes these volcanoes. The fact that such vesicles were found in products erupted from active basaltic volcanoes located in different tectonic settings and characterized by different explosivity strongly suggests that basaltic systems appear to follow a common degassing pathway. However, not all explosive basaltic rocks contain large, coalescing vesicles. Pumice clasts from the much more violent, dangerous and less frequent paroxysmal explosions at Stromboli do not have this type of vesicles

  2. Plant-to-plant communication triggered by systemin primes anti-herbivore resistance in tomato.

    PubMed

    Coppola, Mariangela; Cascone, Pasquale; Madonna, Valentina; Di Lelio, Ilaria; Esposito, Francesco; Avitabile, Concetta; Romanelli, Alessandra; Guerrieri, Emilio; Vitiello, Alessia; Pennacchio, Francesco; Rao, Rosa; Corrado, Giandomenico

    2017-11-14

    Plants actively respond to herbivory by inducing various defense mechanisms in both damaged (locally) and non-damaged tissues (systemically). In addition, it is currently widely accepted that plant-to-plant communication allows specific neighbors to be warned of likely incoming stress (defense priming). Systemin is a plant peptide hormone promoting the systemic response to herbivory in tomato. This 18-aa peptide is also able to induce the release of bioactive Volatile Organic Compounds, thus also promoting the interaction between the tomato and the third trophic level (e.g. predators and parasitoids of insect pests). In this work, using a combination of gene expression (RNA-Seq and qRT-PCR), behavioral and chemical approaches, we demonstrate that systemin triggers metabolic changes of the plant that are capable of inducing a primed state in neighboring unchallenged plants. At the molecular level, the primed state is mainly associated with an elevated transcription of pattern -recognition receptors, signaling enzymes and transcription factors. Compared to naïve plants, systemin-primed plants were significantly more resistant to herbivorous pests, more attractive to parasitoids and showed an increased response to wounding. Small peptides are nowadays considered fundamental signaling molecules in many plant processes and this work extends the range of downstream effects of this class of molecules to intraspecific plant-to-plant communication.

  3. Self-assembly of star micelle into vesicle in solvents of variable quality: the star micelle retains its core-shell nanostructure in the vesicle.

    PubMed

    Liu, Nijuan; He, Qun; Bu, Weifeng

    2015-03-03

    Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.

  4. Anticardiolipin antibodies from syphilis and systemic lupus erythematosus induce leakage in cardiolipin vesicles.

    PubMed

    Gremião, M P; Celli, C M; Chaimovich, H

    1996-04-01

    Anticardiolipin antibodies from sera of patients with systemic lupus erythematosus or syphilis induced leakage of entrapped carboxyfluorescein (CF) from cardiolipin (CL)/phosphatidylcholine(PC) vesicles prepared by sonication of equimolar mixtures of CL:PC. The sera dilution used here was 1:7500. IgG (5-20 micrograms/ml) from the same sera, not containing beta 2GPI, also produced a concentration-dependent leak. Vesicle leakage was inhibited by salt and was not detected with vesicles prepared exclusively with phosphatidylcholine. The demonstration of antibody-induced vesicle leakage offers a convenient system to investigate the mechanism of antibody-lipid binding as well as a potential diagnostic tool.

  5. Phonological and Orthographic Overlap Effects in Fast and Masked Priming

    PubMed Central

    Frisson, Steven; Bélanger, Nathalie N.; Rayner, Keith

    2014-01-01

    We investigated how orthographic and phonological information is activated during reading, using a fast priming task, and during single word recognition, using masked priming. Specifically, different types of overlap between prime and target were contrasted: high orthographic and high phonological overlap (track-crack), high orthographic and low phonological overlap (bear-gear), or low orthographic and high phonological overlap (fruit-chute). In addition, we examined whether (orthographic) beginning overlap (swoop-swoon) yielded the same priming pattern as end (rhyme) overlap (track-crack). Prime durations were 32 and 50ms in the fast priming version, and 50ms in the masked priming version, and mode of presentation (prime and target in lower case) was identical. The fast priming experiment showed facilitatory priming effects when both orthography and phonology overlapped, with no apparent differences between beginning and end overlap pairs. Facilitation was also found when prime and target only overlapped orthographically. In contrast, the masked priming experiment showed inhibition for both types of end overlap pairs (with and without phonological overlap), and no difference for begin overlap items. When prime and target only shared principally phonological information, facilitation was only found with a long prime duration in the fast priming experiment, while no differences were found in the masked priming version. These contrasting results suggest that fast priming and masked priming do not necessarily tap into the same type of processing. PMID:24365065

  6. Schoolbook Texts: Behavioral Achievement Priming in Math and Language.

    PubMed

    Engeser, Stefan; Baumann, Nicola; Baum, Ingrid

    2016-01-01

    Prior research found reliable and considerably strong effects of semantic achievement primes on subsequent performance. In order to simulate a more natural priming condition to better understand the practical relevance of semantic achievement priming effects, running texts of schoolbook excerpts with and without achievement primes were used as priming stimuli. Additionally, we manipulated the achievement context; some subjects received no feedback about their achievement and others received feedback according to a social or individual reference norm. As expected, we found a reliable (albeit small) positive behavioral priming effect of semantic achievement primes on achievement in math (Experiment 1) and language tasks (Experiment 2). Feedback moderated the behavioral priming effect less consistently than we expected. The implication that achievement primes in schoolbooks can foster performance is discussed along with general theoretical implications.

  7. Schoolbook Texts: Behavioral Achievement Priming in Math and Language

    PubMed Central

    Engeser, Stefan; Baumann, Nicola; Baum, Ingrid

    2016-01-01

    Prior research found reliable and considerably strong effects of semantic achievement primes on subsequent performance. In order to simulate a more natural priming condition to better understand the practical relevance of semantic achievement priming effects, running texts of schoolbook excerpts with and without achievement primes were used as priming stimuli. Additionally, we manipulated the achievement context; some subjects received no feedback about their achievement and others received feedback according to a social or individual reference norm. As expected, we found a reliable (albeit small) positive behavioral priming effect of semantic achievement primes on achievement in math (Experiment 1) and language tasks (Experiment 2). Feedback moderated the behavioral priming effect less consistently than we expected. The implication that achievement primes in schoolbooks can foster performance is discussed along with general theoretical implications. PMID:26938446

  8. Early Morphological Decomposition of Suffixed Words: Masked Priming Evidence with Transposed-Letter Nonword Primes

    ERIC Educational Resources Information Center

    Beyersmann, Elisabeth; Dunabeitia, Jon Andoni; Carreiras, Manuel; Coltheart, Max; Castles, Anne

    2013-01-01

    Many studies have previously reported that the recognition of a stem target (e.g., "teach") is facilitated by the prior masked presentation of a prime consisting of a derived form of it (e.g., "teacher"). We conducted two lexical decision experiments to investigate masked morphological priming in Spanish. Experiment 1 showed…

  9. The negative priming effect in cognitive conflict processing.

    PubMed

    Pan, Fada; Shi, Liang; Lu, Qingyun; Wu, Xiaogang; Xue, Song; Li, Qiwei

    2016-08-15

    The present study used event-related potentials (ERPs) to investigate the specific physiological mechanisms underlying the negative nature of cognitive conflict and its influence on affective word evaluations. The present study used an affective priming paradigm where Stroop stimuli were presented for 200ms after which affective target words had to be evaluated as being positive or negative. Behavioral results showed that reaction times (RTs) were shorter for positive targets following congruent primes relative to incongruent primes, and for negative targets following incongruent primes relative to congruent primes. The ERP results showed that the N2 amplitude (200-300ms) for incongruent stimuli was significantly larger than for congruent stimuli in the Stroop task, which indicated a significant conflict effect. Moreover, the N400 amplitude (300-500ms) was smaller for negative words following incongruent primes relative to congruent primes, and for positive words following congruent primes relative to incongruent primes. The results demonstrated that cognitive conflict modulated both behavioral and electrophysiological correlates of subsequent emotional processing, consistent with its hypothesized registration as an aversive signal. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. EVpedia: A community web resource for prokaryotic and eukaryotic extracellular vesicles research.

    PubMed

    Kim, Dae-Kyum; Lee, Jaewook; Simpson, Richard J; Lötvall, Jan; Gho, Yong Song

    2015-04-01

    For cell-to-cell communication, all living cells including archaea, bacteria, and eukaryotes secrete nano-sized membrane vesicles into the extracellular space. These extracellular vesicles harbor specific subsets of proteins, mRNAs, miRNAs, lipids, and metabolites that represent their cellular status. These vesicle-specific cargos are considered as novel diagnostic biomarkers as well as therapeutic targets. With the advancement in high-throughput technologies on multiomics studies and improvements in bioinformatics approaches, a huge number of vesicular proteins, mRNAs, miRNAs, lipids, and metabolites have been identified, and our understanding of these complex extracellular organelles has considerably increased during these past years. In this review, we highlight EVpedia (http://evpedia.info), a community web portal for systematic analyses of prokaryotic and eukaryotic extracellular vesicles research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Salt-induced aggregation and fusion of dioctadecyldimethylammonium chloride and sodium dihexadecylphosphate vesicles.

    PubMed Central

    Carmona-Ribeiro, A M; Chaimovich, H

    1986-01-01

    Small dioctadecyldimethylammonium chloride (DODAC) vesicles prepared by sonication fuse upon addition of NaCl as detected by several methods (electron microscopy, trapped volume determinations, temperature-dependent phase transition curves, and osmometer behavior. In contrast, small sodium dihexadecyl phosphate (DHP) vesicles mainly aggregate upon NaCl addition as shown by electron microscopy and the lack of osmometer behavior. Scatter-derived absorbance changes of small and large DODAC or DHP vesicles as a function of time after salt addition were obtained for a range of NaCl or amphiphile concentration. These changes were interpreted in accordance with a phenomenological model based upon fundamental light-scattering laws and simple geometrical considerations. Short-range hydration repulsion between DODAC (or DHP) vesicles is possibly the main energy barrier for the fusion process. Images FIGURE 2 FIGURE 9 PMID:3779002

  12. Dynamic modes of quasispherical vesicles: exact analytical solutions.

    PubMed

    Guedda, M; Abaidi, M; Benlahsen, M; Misbah, C

    2012-11-01

    In this paper we introduce a simple mathematical analysis to reexamine vesicle dynamics in the quasispherical limit (small deformation) under a shear flow. In this context, a recent paper [Misbah, Phys. Rev. Lett. 96, 028104 (2006)] revealed a dynamic referred to as the vacillating-breathing (VB) mode where the vesicle main axis oscillates about the flow direction and the shape undergoes a breathinglike motion, as well as the tank-treading and tumbling (TB) regimes. Our goal here is to identify these three modes by obtaining explicit analytical expressions of the vesicle inclination angle and the shape deformation. In particular, the VB regime is put in evidence and the transition dynamics is discussed. Not surprisingly, our finding confirms the Keller-Skalak solutions (for rigid particles) and shows that the VB and TB modes coexist, and whether one prevails over the other depends on the initial conditions. An interesting additional element in the discussion is the prediction of the TB and VB modes as functions of a control parameter Γ, which can be identified as a TB-VB parameter.

  13. Therapeutic application of extracellular vesicles in acute and chronic renal injury.

    PubMed

    Rovira, Jordi; Diekmann, Fritz; Campistol, Josep M; Ramírez-Bajo, María José

    A new cell-to-cell communication system was discovered in the 1990s, which involves the release of vesicles into the extracellular space. These vesicles shuttle bioactive particles, including proteins, mRNA, miRNA, metabolites, etc. This particular communication has been conserved throughout evolution, which explains why most cell types are capable of producing vesicles. Extracellular vesicles (EVs) are involved in the regulation of different physiological processes, as well as in the development and progression of several diseases. EVs have been widely studied over recent years, especially those produced by embryonic and adult stem cells, blood cells, immune system and nervous system cells, as well as tumour cells. EV analysis from bodily fluids has been used as a diagnostic tool for cancer and recently for different renal diseases. However, this review analyses the importance of EVs generated by stem cells, their function and possible clinical application in renal diseases and kidney transplantation. Copyright © 2016. Published by Elsevier España, S.L.U.

  14. Selective impairment of masked priming in dual-task performance.

    PubMed

    Fischer, Rico; Kiesel, Andrea; Kunde, Wilfried; Schubert, Torsten

    2011-03-01

    This study investigated the impact of divided attention on masked priming. In a dual-task setting, two tasks had to be carried out in close temporal succession: a tone discrimination task and a masked priming task. The order of the tasks was varied between experiments, and attention was always allocated to the first task-that is, the first task was prioritized. The priming task was the second (nonprioritized) task in Experiment 1 and the first (prioritized) task in Experiment 2. In both experiments, "novel" prime stimuli associated with semantic processing were essentially ineffective. However, there was intact priming by another type of prime stimuli associated with response priming. Experiment 3 showed that all these prime stimuli can reveal significant priming effects during a task-switching paradigm in which both tasks were performed consecutively. We conclude that dual-task specific interference processes (e.g., the simultaneous coordination of multiple stimulus-response rules) selectively impair priming that is assumed to rely on semantic processing.

  15. Birth after human chorionic gonadotropin-primed oocyte in vitro maturation and fertilization with testicular sperm in a normo-ovulatory patient.

    PubMed

    González-Ortega, Claudia; Piña-Aguilar, Raul Eduardo; Cancino-Villareal, Patricia; Gutiérrez-Gutiérrez, Antonio Martin

    2016-01-01

    In this report, we present a case of in vitro maturation (IVM) with surgical retrieved testicular sperm in a normo-ovulatory female. Human chorionic gonadotropin-primed IVM, testicular biopsy for sperm retrieval and intracytoplasmic sperm injection with fresh sperm were performed. Fourteen cumulus-oocyte complexes were obtained in germinal vesicle or metaphase I stage, eight oocytes reached metaphase II, seven presumptive zygotes were obtained, and three cleavage stages embryos in day 2 were transferred producing a singleton pregnancy. A single healthy newborn was obtained. Our results suggest that IVM may be an alternative for in vitro fertilization in normo-ovulatory women even if surgical retrieval of sperm is needed. Further research is required to depict contributing factors to the success of IVM in indications different from polycystic ovaries syndrome and the role of male gamete.

  16. Priming Intelligent Behavior: An Elusive Phenomenon

    PubMed Central

    Shanks, David R.; Newell, Ben R.; Lee, Eun Hee; Balakrishnan, Divya; Ekelund, Lisa; Cenac, Zarus; Kavvadia, Fragkiski; Moore, Christopher

    2013-01-01

    Can behavior be unconsciously primed via the activation of attitudes, stereotypes, or other concepts? A number of studies have suggested that such priming effects can occur, and a prominent illustration is the claim that individuals' accuracy in answering general knowledge questions can be influenced by activating intelligence-related concepts such as professor or soccer hooligan. In 9 experiments with 475 participants we employed the procedures used in these studies, as well as a number of variants of those procedures, in an attempt to obtain this intelligence priming effect. None of the experiments obtained the effect, although financial incentives did boost performance. A Bayesian analysis reveals considerable evidential support for the null hypothesis. The results conform to the pattern typically obtained in word priming experiments in which priming is very narrow in its generalization and unconscious (subliminal) influences, if they occur at all, are extremely short-lived. We encourage others to explore the circumstances in which this phenomenon might be obtained. PMID:23637732

  17. Adrenomedullin increases the short-circuit current in the mouse seminal vesicle: actions on chloride secretion.

    PubMed

    Liao, S B; Cheung, K H; O, W S; Tang, Fai

    2014-08-01

    Adrenomedullin (ADM) may regulate seminal vesicle fluid secretion, and this may affect sperm quality. In this study, we investigated the effect of ADM on chloride secretion in the mouse seminal vesicle. The presence of ADM in mouse seminal vesicle was confirmed using immunostaining, and the molecular species was determined using gel filtration chromatography coupled with enzyme-linked assay for ADM. The effects of ADM on chloride secretion were studied by short-circuit current technique in a whole-mount preparation of mouse seminal vesicle in an Ussing chamber. The effects of specific ADM and calcitonin gene-related peptide (CGRP) receptor antagonists were investigated. Whether the ADM effect depended on the cAMP- and/or calcium-activated chloride channel was also studied using specific chloride channel blockers. The results showed that ADM was present in seminal vesicle epithelial cells. The major molecular species was precursor in the mouse seminal vesicle. ADM increased short-circuit current through the calcium-activated chloride channel in mouse seminal vesicle, and CGRP receptor was involved. We conclude that ADM may regulate chloride and fluid secretion from the seminal vesicle, which may affect the composition of the seminal plasma bathing the sperm and, hence, fertility. © 2014 by the Society for the Study of Reproduction, Inc.

  18. The 24th Mersenne Prime

    PubMed Central

    Tuckerman, Bryant

    1971-01-01

    The 24th Mersenne prime Mp = 2p - 1, and currently the largest known prime, is 219937 - 1. Primality was shown by the Lucas-Lehmer test on an IBM 360/91 computer. The 24th even perfect number is (219937 - 1)·219936. PMID:16591945

  19. A homogeneous and "off-on" fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes.

    PubMed

    Miao, Yang-Bao; Ren, Hong-Xia; Gan, Ning; Zhou, You; Cao, Yuting; Li, Tianhua; Chen, Yinji

    2016-07-27

    In this work, a novel homogeneous and signal "off-on" aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in "off" state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the "off" signal of SSB/L-QD tracer into "on" state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Selective Sorting of Cargo Proteins into Bacterial Membrane Vesicles*

    PubMed Central

    Haurat, M. Florencia; Aduse-Opoku, Joseph; Rangarajan, Minnie; Dorobantu, Loredana; Gray, Murray R.; Curtis, Michael A.; Feldman, Mario F.

    2011-01-01

    In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions. PMID:21056982