Science.gov

Sample records for primed vesicle state

  1. Synaptobrevin N-terminally bound to syntaxin–SNAP-25 defines the primed vesicle state in regulated exocytosis

    PubMed Central

    Walter, Alexander M.; Wiederhold, Katrin; Bruns, Dieter; Fasshauer, Dirk

    2010-01-01

    Rapid neurotransmitter release depends on the ability to arrest the SNAP receptor (SNARE)–dependent exocytosis pathway at an intermediate “cocked” state, from which fusion can be triggered by Ca2+. It is not clear whether this state includes assembly of synaptobrevin (the vesicle membrane SNARE) to the syntaxin–SNAP-25 (target membrane SNAREs) acceptor complex or whether the reaction is arrested upstream of that step. In this study, by a combination of in vitro biophysical measurements and time-resolved exocytosis measurements in adrenal chromaffin cells, we find that mutations of the N-terminal interaction layers of the SNARE bundle inhibit assembly in vitro and vesicle priming in vivo without detectable changes in triggering speed or fusion pore properties. In contrast, mutations in the last C-terminal layer decrease triggering speed and fusion pore duration. Between the two domains, we identify a region exquisitely sensitive to mutation, possibly constituting a switch. Our data are consistent with a model in which the N terminus of the SNARE complex assembles during vesicle priming, followed by Ca2+-triggered C-terminal assembly and membrane fusion. PMID:20142423

  2. Variable priming of a docked synaptic vesicle

    PubMed Central

    Jung, Jae Hoon; Szule, Joseph A.; Marshall, Robert M.; McMahan, Uel J.

    2016-01-01

    The priming of a docked synaptic vesicle determines the probability of its membrane (VM) fusing with the presynaptic membrane (PM) when a nerve impulse arrives. To gain insight into the nature of priming, we searched by electron tomography for structural relationships correlated with fusion probability at active zones of axon terminals at frog neuromuscular junctions. For terminals fixed at rest, the contact area between the VM of docked vesicles and PM varied >10-fold with a normal distribution. There was no merging of the membranes. For terminals fixed during repetitive evoked synaptic transmission, the normal distribution of contact areas was shifted to the left, due in part to a decreased number of large contact areas, and there was a subpopulation of large contact areas where the membranes were hemifused, an intermediate preceding complete fusion. Thus, fusion probability of a docked vesicle is related to the extent of its VM–PM contact area. For terminals fixed 1 h after activity, the distribution of contact areas recovered to that at rest, indicating the extent of a VM–PM contact area is dynamic and in equilibrium. The extent of VM–PM contact areas in resting terminals correlated with eccentricity in vesicle shape caused by force toward the PM and with shortness of active zone material macromolecules linking vesicles to PM components, some thought to include Ca2+ channels. We propose that priming is a variable continuum of events imposing variable fusion probability on each vesicle and is regulated by force-generating shortening of active zone material macromolecules in dynamic equilibrium. PMID:26858418

  3. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion.

    PubMed

    Kabachinski, Greg; Kielar-Grevstad, D Michelle; Zhang, Xingmin; James, Declan J; Martin, Thomas F J

    2016-02-15

    The Ca(2+)-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro-scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2-dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  4. Resident CAPS on dense-core vesicles docks and primes vesicles for fusion

    PubMed Central

    Kabachinski, Greg; Kielar-Grevstad, D. Michelle; Zhang, Xingmin; James, Declan J.; Martin, Thomas F. J.

    2016-01-01

    The Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells requires a priming step during which SNARE protein complexes assemble. CAPS (aka CADPS) is one of several factors required for vesicle priming; however, the localization and dynamics of CAPS at sites of exocytosis in live neuroendocrine cells has not been determined. We imaged CAPS before, during, and after single-vesicle fusion events in PC12 cells by TIRF micro­scopy. In addition to being a resident on cytoplasmic dense-core vesicles, CAPS was present in clusters of approximately nine molecules near the plasma membrane that corresponded to docked/tethered vesicles. CAPS accompanied vesicles to the plasma membrane and was present at all vesicle exocytic events. The knockdown of CAPS by shRNA eliminated the VAMP-2–dependent docking and evoked exocytosis of fusion-competent vesicles. A CAPS(ΔC135) protein that does not localize to vesicles failed to rescue vesicle docking and evoked exocytosis in CAPS-depleted cells, showing that CAPS residence on vesicles is essential. Our results indicate that dense-core vesicles carry CAPS to sites of exocytosis, where CAPS promotes vesicle docking and fusion competence, probably by initiating SNARE complex assembly. PMID:26700319

  5. SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium-triggered fusion

    PubMed Central

    Bharat, Tanmay A M; Malsam, Jörg; Hagen, Wim J H; Scheutzow, Andrea; Söllner, Thomas H; Briggs, John A G

    2014-01-01

    Synaptic vesicles fuse with the plasma membrane in response to Ca2+ influx, thereby releasing neurotransmitters into the synaptic cleft. The protein machinery that mediates this process, consisting of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and regulatory proteins, is well known, but the mechanisms by which these proteins prime synaptic membranes for fusion are debated. In this study, we applied large-scale, automated cryo-electron tomography to image an in vitro system that reconstitutes synaptic fusion. Our findings suggest that upon docking and priming of vesicles for fast Ca2+-triggered fusion, SNARE proteins act in concert with regulatory proteins to induce a local protrusion in the plasma membrane, directed towards the primed vesicle. The SNAREs and regulatory proteins thereby stabilize the membrane in a high-energy state from which the activation energy for fusion is profoundly reduced, allowing synchronous and instantaneous fusion upon release of the complexin clamp. PMID:24493260

  6. A Chemical Controller of SNARE-Driven Membrane Fusion That Primes Vesicles for Ca(2+)-Triggered Millisecond Exocytosis.

    PubMed

    Heo, Paul; Yang, Yoosoo; Han, Kyu Young; Kong, Byoungjae; Shin, Jong-Hyeok; Jung, Younghoon; Jeong, Cherlhyun; Shin, Jaeil; Shin, Yeon-Kyun; Ha, Taekjip; Kweon, Dae-Hyuk

    2016-04-01

    Membrane fusion is mediated by the SNARE complex which is formed through a zippering process. Here, we developed a chemical controller for the progress of membrane fusion. A hemifusion state was arrested by a polyphenol myricetin which binds to the SNARE complex. The arrest of membrane fusion was rescued by an enzyme laccase that removes myricetin from the SNARE complex. The rescued hemifusion state was metastable and long-lived with a decay constant of 39 min. This membrane fusion controller was applied to delineate how Ca(2+) stimulates fusion-pore formation in a millisecond time scale. We found, using a single-vesicle fusion assay, that such myricetin-primed vesicles with synaptotagmin 1 respond synchronously to physiological concentrations of Ca(2+). When 10 μM Ca(2+) was added to the hemifused vesicles, the majority of vesicles rapidly advanced to fusion pores with a time constant of 16.2 ms. Thus, the results demonstrate that a minimal exocytotic membrane fusion machinery composed of SNAREs and synaptotagmin 1 is capable of driving membrane fusion in a millisecond time scale when a proper vesicle priming is established. The chemical controller of SNARE-driven membrane fusion should serve as a versatile tool for investigating the differential roles of various synaptic proteins in discrete fusion steps. PMID:26987363

  7. Synaptobrevin 1 mediates vesicle priming and evoked release in a subpopulation of hippocampal neurons.

    PubMed

    Zimmermann, Johannes; Trimbuch, Thorsten; Rosenmund, Christian

    2014-09-15

    The core machinery of synaptic vesicle fusion consists of three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, the two t-SNAREs at the plasma membrane (SNAP-25, Syntaxin 1) and the vesicle-bound v-SNARE synaptobrevin 2 (VAMP2). Formation of the trans-oriented four-α-helix bundle between these SNAREs brings vesicle and plasma membrane in close proximity and prepares the vesicle for fusion. The t-SNAREs are thought to be necessary for vesicle fusion. Whether the v-SNAREs are required for fusion is still unclear, as substantial vesicle priming and spontaneous release activity remain in mammalian mass-cultured synaptobrevin/cellubrevin-deficient neurons. Using the autaptic culture system from synaptobrevin 2 knockout neurons of mouse hippocampus, we found that the majority of cells were devoid of any evoked or spontaneous release and had no measurable readily releasable pool. A small subpopulation of neurons, however, displayed release, and their release activity correlated with the presence and amount of v-SNARE synaptobrevin 1 expressed. Comparison of synaptobrevin 1 and 2 in rescue experiments demonstrates that synaptobrevin 1 can substitute for the other v-SNARE, but with a lower efficiency in neurotransmitter release probability. Release activity in synaptobrevin 2-deficient mass-cultured neurons was massively reduced by a knockdown of synaptobrevin 1, demonstrating that synaptobrevin 1 is responsible for the remaining release activity. These data support the hypothesis that both t- and v-SNAREs are absolutely required for vesicle priming and evoked release and that differential expression of SNARE paralogs can contribute to differential synaptic coding in the brain. PMID:24944211

  8. Syntaxin Opening by the MUN Domain Underlies the Function of Munc13 in Synaptic Vesicle Priming

    PubMed Central

    Yang, Xiaoyu; Wang, Shen; Sheng, Yi; Zhang, Mingshu; Zou, Wenjuan; Wu, Lijie; Kang, Lijun; Rizo, Josep; Zhang, Rongguang; Xu, Tao; Ma, Cong

    2016-01-01

    UNC-13-Munc13s play a central function in synaptic vesicle priming through their MUN domains. However, it is unclear whether this function arises from the ability of the MUN domain to mediate the transition from the Munc18-1–closed syntaxin-1 complex to the SNARE complex in vitro. The crystal structure of rat Munc13-1 MUN domain now reveals an elongated, arch-shaped architecture formed by α-helical bundles, with a highly conserved hydrophobic pocket in the middle. Mutation of two residues (NF) in this pocket abolishes the stimulation caused by the Munc13-1 MUN domain on SNARE complex assembly and on SNARE-dependent proteoliposome fusion in vitro. Moreover, the same mutation in UNC-13 abrogates synaptic vesicle priming in C. elegans neuromuscular junctions. These results strongly support the notion that orchestration of syntaxin-1 opening and SNARE complex assembly underlies the central role of UNC-13-Munc13s in synaptic vesicle priming. PMID:26030875

  9. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells

    PubMed Central

    Ashery, Uri; Varoqueaux, Frederique; Voets, Thomas; Betz, Andrea; Thakur, Pratima; Koch, Henriette; Neher, Erwin; Brose, Nils; Rettig, Jens

    2000-01-01

    In chromaffin cells the number of large dense-core vesicles (LDCVs) which can be released by brief, intense stimuli represents only a small fraction of the ‘morphologically docked’ vesicles at the plasma membrane. Recently, it was shown that Munc13-1 is essential for a post-docking step of synaptic vesicle fusion. To investigate the role of Munc13-1 in LDCV exocytosis, we overexpressed Munc13-1 in chromaffin cells and stimulated secretion by flash photolysis of caged calcium. Both components of the exocytotic burst, which represent the fusion of release-competent vesicles, were increased by a factor of three. The sustained component, which represents vesicle maturation and subsequent fusion, was increased by the same factor. The response to a second flash, however, was greatly reduced, indicating a depletion of release-competent vesicles. Since there was no apparent change in the number of docked vesicles, we conclude that Munc13-1 acts as a priming factor by accelerating the rate constant of vesicle transfer from a pool of docked, but unprimed vesicles to a pool of release-competent, primed vesicles. PMID:10899113

  10. UNC-31/CAPS docks and primes dense core vesicles in C. elegans neurons.

    PubMed

    Lin, Xian-Guang; Ming, Min; Chen, Mao-Rong; Niu, Wei-Pin; Zhang, Yong-Deng; Liu, Bei; Jiu, Ya-Ming; Yu, Jun-Wei; Xu, Tao; Wu, Zheng-Xing

    2010-07-01

    UNC-31 or its mammalian homologue, Ca(2+)-dependent activator protein for secretion (CAPS), is indispensable for exocytosis of dense core vesicle (DCV) and synaptic vesicle (SV). From N- to the C-terminus, UNC-31 contains putative functional domains, including dynactin 1 binding domain (DBD), C2, PH, (M)UNC-13 homology domain (MHD) and DCV binding domain (DCVBD), the last four we examined in this study. We employed UNC-31 null mutant C. elegans worms to examine whether UNC-31 functions could be rescued by ectopic expression of full length UNC-31 vs each of these four domain-deleted mutants. Full length UNC-31 cDNA rescued the phenotypes of C. elegans null mutants in response to Ca(2+)-elevation in ALA neurons. Surprisingly, MHD deletion also rescued UNC-31 exocytotic function in part because the relatively high Ca(2+) level (pre-flash Ca(2+) was 450 nM) used in the capacitance study could bypass the MHD defect. Nonetheless, the three other domain-truncation cDNAs had almost no rescue on Ca(2+) evoked secretion. Importantly, this genetic null mutant rescue strategy enabled physiological studies at levels of whole organism to single cells, such as locomotion assay, pharmacological study of neurotransmission at neuromuscular junction, in vivo neuropeptide release measurement and analysis of vesicular docking. Our results suggest that each of these UNC-31 domains support distinct sequential molecular actions of UNC-31 in vesicular exocytosis, including steps in vesicle tethering and docking that bridge vesicle with plasma membrane, and subsequently priming vesicle by initiating the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex. PMID:20515653

  11. Vesicle Geometries Enabled by Dynamically Trapped States.

    PubMed

    Su, Jiaye; Yao, Zhenwei; de la Cruz, Monica Olvera

    2016-02-23

    Understanding and controlling vesicle shapes is a fundamental challenge in biophysics and materials design. In this paper, we design dynamic protocols for enlarging the shape space of both fluid and crystalline vesicles beyond the equilibrium zone. By removing water from within the vesicle at different rates, we numerically produced a series of dynamically trapped stable vesicle shapes for both fluid and crystalline vesicles in a highly controllable fashion. In crystalline vesicles that are continuously dehydrated, simulations show the initial appearance of small flat areas over the surface of the vesicles that ultimately merge to form fewer flat faces. In this way, the vesicles transform from a fullerene-like shape into various faceted polyhedrons. We perform analytical elasticity analysis to show that these salient features are attributable to the crystalline nature of the vesicle. The potential to use dynamic protocols, such as those used in this study, to engineer vesicle shape transformations is helpful for exploiting the richness of vesicle geometries for desired applications. PMID:26795199

  12. Modulation of Neurotransmission by GPCRs Is Dependent upon the Microarchitecture of the Primed Vesicle Complex

    PubMed Central

    Hamid, Edaeni; Church, Emily; Wells, Christopher A.; Zurawski, Zack; Hamm, Heidi E.

    2014-01-01

    Gi/o-protein-coupled receptors (GPCRs) ubiquitously inhibit neurotransmission, principally via Gβγ, which acts via a number of possible effectors. GPCR effector specificity has traditionally been attributed to Gα, based on Gα's preferential effector targeting in vitro compared with Gβγ's promiscuous targeting of various effectors. In synapses, however, Gβγ clearly targets unique effectors in a receptor-dependent way to modulate synaptic transmission. It remains unknown whether Gβγ specificity in vivo is due to specific Gβγ isoform-receptor associations or to spatial separation of distinct Gβγ pathways through macromolecular interactions. We thus sought to determine how Gβγ signaling pathways within axons remain distinct from one another. In rat hippocampal CA1 axons, GABAB receptors (GABABRs) inhibit presynaptic Ca2+ entry, and we have now demonstrated that 5-HT1B receptors (5-HT1BRs) liberate Gβγ to interact with SNARE complex C terminals with no effect on Ca2+ entry. Both GABABRs and 5-HT1BRs inhibit Ca2+-evoked neurotransmitter release, but 5-HT1BRs have no effect on Sr2+-evoked release. Sr2+, unlike Ca2+, does not cause synaptotagmin to compete with Gβγ binding to SNARE complexes. 5-HT1BRs also fail to inhibit release following cleavage of the C terminus of the SNARE complex protein SNAP-25 with botulinum A toxin. Thus, GABABRs and 5-HT1BRs both localize to presynaptic terminals, but target distinct effectors. We demonstrate that disruption of SNARE complexes and vesicle priming with botulinum C toxin eliminates this selectivity, allowing 5-HT1BR inhibition of Ca2+ entry. We conclude that receptor-effector specificity requires a microarchitecture provided by the SNARE complex during vesicle priming. PMID:24381287

  13. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth.

    PubMed

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  14. Munc13-1-mediated vesicle priming contributes to secretory amyloid precursor protein processing.

    PubMed

    Rossner, Steffen; Fuchsbrunner, Katrin; Lange-Dohna, Christine; Hartlage-Rübsamen, Maike; Bigl, Volker; Betz, Andrea; Reim, Kerstin; Brose, Nils

    2004-07-01

    The amyloid precursor protein (APP) gives rise toc beta-amyloid peptides, which are the main constituents of senile plaques in brains of Alzheimer's disease patients. Non-amyloidogenic processing of the APP can be stimulated by phorbol esters (PEs) and by intracellular diacylglycerol (DAG) generation. This led to the hypothesis that classical and novel protein kinase Cs (PKCs), which are activated by DAG/PEs, regulate APP processing. However, in addition to PKCs, there are other DAG/PE receptors present in neurons that may participate in the modulation of APP processing. Munc13-1, a presynaptic protein with an essential role in synaptic vesicle priming, represents such an alternative target of the DAG second messenger pathway. Using Munc13-1 knock-out mice and knock-in mice expressing a Munc13-1(H567K) variant deficient in DAG/PE binding, we determined the relative contributions of PKCs and Munc13-1 to PE-stimulated secretory APP processing. We establish that, in addition to PKC, Munc13-1 significantly contributes to the regulation of secretory APP metabolism. PMID:15123597

  15. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth

    PubMed Central

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  16. Vesicles

    MedlinePlus

    ... pox Contact dermatitis (may be caused by poison ivy) Herpes simplex (cold sores, genital herpes ) Herpes zoster ( ... for certain conditions that cause vesicles, including poison ivy and cold sores.

  17. Chlorophyll a triplet-state ESR in frozen phosphatidylcholine vesicles

    SciTech Connect

    Hiromitsu, I.; Kevan, L.

    1988-05-19

    Photoexcited chlorophyll a (Chla) triplet state in rapidly frozen egg phosphatidylcholine (EPC) vesicles is investigated at 77 K by electron spin resonance (ESR) spectroscopy using light intensity modulation. The electron spin polarization (ESP) intensity is stronger for 0.2 mM Chla than for 1.0 mM Chla. The absolute values of the zero field splitting parameter, D, are 283 (+/-1) x 10/sup -4/ and 276 (+/-2) x 10/sup -4/ cm/sup -1/, and the average depopulation rates of the triplet state are 0.671 +/- 0.052 and 1.054 +/- 0.036 ms/sup -1/ for 0.2 mM Chla and 1.0 mM Chla, respectively. This difference can be consistently attributed to faster triplet-state migration between adjacent Chla's at the higher 1.0 mM Chla concentration. A characteristic migration time of 2.6 ms is obtained. The ESP pattern of the Chla triplet state in the frozen EPC vesicles resembles that in polycrystals more than that in glasses. This suggests that the local environment around Chla in the vesicles is more structured than in glasses.

  18. Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos

    NASA Astrophysics Data System (ADS)

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  19. Pseudomonas aeruginosa Outer Membrane Vesicles Triggered by Human Mucosal Fluid and Lysozyme Can Prime Host Tissue Surfaces for Bacterial Adhesion

    PubMed Central

    Metruccio, Matteo M. E.; Evans, David J.; Gabriel, Manal M.; Kadurugamuwa, Jagath L.; Fleiszig, Suzanne M. J.

    2016-01-01

    Pseudomonas aeruginosa is a leading cause of human morbidity and mortality that often targets epithelial surfaces. Host immunocompromise, or the presence of indwelling medical devices, including contact lenses, can predispose to infection. While medical devices are known to accumulate bacterial biofilms, it is not well understood why resistant epithelial surfaces become susceptible to P. aeruginosa. Many bacteria, including P. aeruginosa, release outer membrane vesicles (OMVs) in response to stress that can fuse with host cells to alter their function. Here, we tested the hypothesis that mucosal fluid can trigger OMV release to compromise an epithelial barrier. This was tested using tear fluid and corneal epithelial cells in vitro and in vivo. After 1 h both human tear fluid, and the tear component lysozyme, greatly enhanced OMV release from P. aeruginosa strain PAO1 compared to phosphate buffered saline (PBS) controls (∼100-fold). Transmission electron microscopy (TEM) and SDS-PAGE showed tear fluid and lysozyme-induced OMVs were similar in size and protein composition, but differed from biofilm-harvested OMVs, the latter smaller with fewer proteins. Lysozyme-induced OMVs were cytotoxic to human corneal epithelial cells in vitro and murine corneal epithelium in vivo. OMV exposure in vivo enhanced Ly6G/C expression at the corneal surface, suggesting myeloid cell recruitment, and primed the cornea for bacterial adhesion (∼4-fold, P < 0.01). Sonication disrupted OMVs retained cytotoxic activity, but did not promote adhesion, suggesting the latter required OMV-mediated events beyond cell killing. These data suggest that mucosal fluid induced P. aeruginosa OMVs could contribute to loss of epithelial barrier function during medical device-related infections. PMID:27375592

  20. Spin State As a Probe of Vesicle Self-Assembly.

    PubMed

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk. PMID:26859700

  1. Solid-state NMR evidence for inequivalent GvpA subunits in gas vesicles

    PubMed Central

    Sivertsen, Astrid C.; Bayro, Marvin J.; Belenky, Marina; Griffin, Robert G.

    2010-01-01

    SUMMARY Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue protein GvpA, arranged in an ordered array. Solid-state NMR spectra of intact, collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae show duplication of certain GvpA resonances, indicating that specific sites experience at least two different local environments. Interpretation of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting features of the primary, secondary, tertiary and quaternary structures of the gas vesicle protein. In particular, the asymmetric dimer can explain how the hydrogen bonds in the β–sheet portion of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and electrostatic side-chain interactions among highly conserved residues and creating a large hydrophobic surface suitable for preventing water condensation inside the vesicle. PMID:19232353

  2. Triplet states of oxygen vacancy defects in α-quartz: Center \\bf{\\text{E}^{\\prime\\prime}_{9}}

    NASA Astrophysics Data System (ADS)

    Mashkovtsev, R. I.; Pan, Y.

    2014-08-01

    The paramagnetic E^{\\prime\\prime}_{9} center in triplet state occurring in electron-irradiated, synthetic α-quartz has been investigated by using electron paramagnetic resonance (EPR) spectroscopy. The primary spin Hamiltonian parameter matrices g, D and A (hyperfine interactions for five 29Si nuclei) have now been determined. The principal values and principal directions of D and A matrices allow us to suggest the structural model for this stable triplet defect. The E^{\\prime\\prime}_{9} center involves the two unpaired electrons located in the orbitals of two silicon atoms next to one oxygen vacancy each. Firm correlations between the spin Hamiltonian matrix principal axes and crystallographic directions have been attained.

  3. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

    PubMed

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles. PMID:25314533

  4. Role of lipopolysaccharide in the induction of type I interferon-dependent cross-priming and IL-10 production in mice by meningococcal outer membrane vesicles.

    PubMed

    Durand, Vanessa; Mackenzie, Joanne; de Leon, Joel; Mesa, Circe; Quesniaux, Valérie; Montoya, Maria; Le Bon, Agnes; Wong, Simon Y C

    2009-03-18

    We investigated the contribution of lipopolysaccharide (LPS) to adjuvant properties of native outer membrane vesicles (NOMV), a vaccine candidate for meningococcal B disease. NOMV induce the maturation of and cytokine production by murine bone marrow-derived dendritic cells through both toll-like receptors (TLR) 2 and 4 which are mostly dependent on the signalling adaptor MyD88. NOMV are also able to induce B cell proliferation in splenocytes from LPS-hyporesponsive mice. However, induction of IL-10 and type I interferon-dependent, antigen-specific and IFN(gamma)-secreting CD8(+) cytotoxic T lymphocyte responses in vivo by NOMV requires LPS. The importance of LPS in the induction of IL-10 and functional cross-priming has implications for NOMV-based vaccine and adjuvant development. PMID:19368771

  5. Seed priming: state of the art and new perspectives.

    PubMed

    Paparella, S; Araújo, S S; Rossi, G; Wijayasinghe, M; Carbonera, D; Balestrazzi, Alma

    2015-08-01

    Priming applied to commercial seed lots is widely used by seed technologists to enhance seed vigour in terms of germination potential and increased stress tolerance. Priming can be also valuable to seed bank operators who need improved protocols of ex situ conservation of germplasm collections (crop and native species). Depending on plant species, seed morphology and physiology, different priming treatments can be applied, all of them triggering the so-called 'pre-germinative metabolism'. This physiological process takes place during early seed imbibition and includes the seed repair response (activation of DNA repair pathways and antioxidant mechanisms), essential to preserve genome integrity, ensuring proper germination and seedling development. The review provides an overview of priming technology, describing the range of physical-chemical and biological treatments currently available. Optimised priming protocols can be designed using the 'hydrotime concept' analysis which provides the theoretical bases for assessing the relationship between water potential and germination rate. Despite the efforts so far reported to further improve seed priming, novel ideas and cutting-edge investigations need to be brought into this technological sector of agri-seed industry. Multidisciplinary translational research combining digital, bioinformatic and molecular tools will significantly contribute to expand the range of priming applications to other relevant commercial sectors, e.g. the native seed market. PMID:25812837

  6. Adhesion energy can regulate vesicle fusion and stabilize partially fused states

    PubMed Central

    Long, Rong; Hui, Chung-Yuen; Jagota, Anand; Bykhovskaia, Maria

    2012-01-01

    Release of neurotransmitters from nerve terminals occurs by fusion of synaptic vesicles with the plasma membrane, and this process is highly regulated. Although major molecular components that control docking and fusion of vesicles to the synaptic membrane have been identified, the detailed mechanics of this process is not yet understood. We have developed a mathematical model that predicts how adhesion forces imposed by docking and fusion molecular machinery would affect the fusion process. We have computed the membrane stress that is produced by adhesion-driven vesicle bending and find that it is compressive. Further, our computations of the membrane curvature predict that strong adhesion can create a metastable state with a partially opened pore that would correspond to the ‘kiss and run’ release mode. Our model predicts that the larger the vesicle size, the more likely the metastable state with a transiently opened pore. These results contribute to understanding the mechanics of the fusion process, including possible clamping of the fusion by increasing molecular adhesion, and a balance between ‘kiss and run’ and full collapse fusion modes. PMID:22258550

  7. Theoretical study of the A prime 5Sigma(+)g and C double prime 5Pi u states of N2 - Implications for the N2 afterglow

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Schwenke, David W.

    1988-01-01

    Theoretical spectroscopic constants are reported for the A prime 5Sigma(+)g and C double prime 5Pi u states of N2 based on CASSCF/MRCI calculations using large ANO Gaussian basis sets. The calculated A prime Sigma(+)g potential differs qualitatively from previous calculations in that the inner well is significantly deeper (De = 3450/cm). This deeper well provides considerable support for the suggestion of Berkowitz et al. (1956) that A prime 5Sigma(+)g is the primary precursor state involved in the yellow Lewis-Rayleigh afterglow of N2.

  8. Seeing emotions in the eyes – inverse priming effects induced by eyes expressing mental states

    PubMed Central

    Wagenbreth, Caroline; Rieger, Julia; Heinze, Hans-Jochen; Zaehle, Tino

    2014-01-01

    Objective: Automatic emotional processing of faces and facial expressions gain more and more of relevance in terms of social communication. Among a variety of different primes, targets and tasks, whole face images and facial expressions have been used to affectively prime emotional responses. This study investigates whether emotional information provided solely in eye regions that display mental states can also trigger affective priming. Methods: Sixteen subjects answered a lexical decision task (LDT) coupled with an affective priming paradigm. Emotion-associated eye regions were extracted from photographs of faces and acted as primes, whereas targets were either words or pseudo-words. Participants had to decide whether the targets were real German words or generated pseudo-words. Primes and targets belonged to the emotional categories “fear,” “disgust,” “happiness,” and “neutral.” Results: A general valence effect for positive words was observed: responses in the LDT were faster for target words of the emotional category happiness when compared to other categories. Importantly, pictures of emotional eye regions preceding the target words affected their subsequent classification. While we show a classical priming effect for neutral target words – with shorter RT for congruent compared to incongruent prime-target pairs- , we observed an inverse priming effect for fearful and happy target words – with shorter RT for incongruent compared to congruent prime-target pairs. These inverse priming effects were driven exclusively by specific prime-target pairs. Conclusion: Reduced facial emotional information is sufficient to induce automatic implicit emotional processing. The emotional-associated eye regions were processed with respect to their emotional valence and affected the performance on the LDT. PMID:25278925

  9. Vesicle Pools: Lessons from Adrenal Chromaffin Cells

    PubMed Central

    Stevens, David R.; Schirra, Claudia; Becherer, Ute; Rettig, Jens

    2011-01-01

    The adrenal chromaffin cell serves as a model system to study fast Ca2+-dependent exocytosis. Membrane capacitance measurements in combination with Ca2+ uncaging offers a temporal resolution in the millisecond range and reveals that catecholamine release occurs in three distinct phases. Release of a readily releasable (RRP) and a slowly releasable (SRP) pool are followed by sustained release, due to maturation, and release of vesicles which were not release-ready at the start of the stimulus. Trains of depolarizations, a more physiological stimulus, induce release from a small immediately releasable pool of vesicles residing adjacent to calcium channels, as well as from the RRP. The SRP is poorly activated by depolarization. A sequential model, in which non-releasable docked vesicles are primed to a slowly releasable state, and then further mature to the readily releasable state, has been proposed. The docked state, dependent on membrane proximity, requires SNAP-25, synaptotagmin, and syntaxin. The ablation or modification of SNAP-25 and syntaxin, components of the SNARE complex, as well as of synaptotagmin, the calcium sensor, and modulators such complexins and Snapin alter the properties and/or magnitudes of different phases of release, and in particular can ablate the RRP. These results indicate that the composition of the SNARE complex and its interaction with modulatory molecules drives priming and provides a molecular basis for different pools of releasable vesicles. PMID:21423410

  10. Translation-priming effects on tip-of-the-tongue states

    PubMed Central

    Gollan, Tamar H.; Ferreira, Victor S.; Cera, Cynthia; Flett, Susanna

    2013-01-01

    Bilinguals experience more tip-of-the-tongue (TOT) states than monolinguals, but it is not known if this is caused in part by access of representations from both of bilinguals’ languages, or dual-language activation. In two translation priming experiments, bilinguals were given three Spanish primes and produced either semantically (Experiment 1) or phonologically related Spanish words (Experiment 2) to each. They then named a picture in English. On critical trials, one of the primes was the Spanish translation of the English picture name. Translation primes significantly increased TOTs regardless of task, and also speeded correct retrievals but only with the semantic task. In both experiments translation-primed TOTs were significantly more likely to resolve spontaneously. These results illustrate an effect of non-dominant language activation on dominant-language retrieval, as well as imply that TOTs can arise during (not after) lexical retrieval, at a level of processing where translation equivalent lexical representations normally interact (possibly competing for selection, or mutually activating each other, or both depending on the locus of retrieval failure). PMID:24644375

  11. Synaptotagmin-7 Is Essential for Ca2+-Triggered Delayed Asynchronous Release But Not for Ca2+-Dependent Vesicle Priming in Retinal Ribbon Synapses

    PubMed Central

    Bacaj, Taulant

    2015-01-01

    Most synapses release neurotransmitters in two phases: (1) a fast synchronous phase lasting a few milliseconds; and (2) a delayed “asynchronous” phase lasting hundreds of milliseconds. Ca2+ triggers fast synchronous neurotransmitter release by binding to synaptotagmin-1, synaptotagmin-2, or synaptotagmin-9, but how Ca2+ triggers delayed asynchronous release has long remained enigmatic. Recent results suggested that consistent with the Ca2+-sensor function of synaptotagmin-7 in neuroendocrine exocytosis, synaptotagmin-7 also functions as a Ca2+ sensor for synaptic vesicle exocytosis but operates during delayed asynchronous release. Puzzlingly, a subsequent study postulated that synaptotagmin-7 is not a Ca2+ sensor for release but mediates Ca2+-dependent vesicle repriming after intense stimulation. To address these issues, we here analyzed synaptic transmission at rod bipolar neuron–AII amacrine cell synapses in acute mouse retina slices as a model system. Using paired recordings, we show that knock-out of synaptotagmin-7 selectively impairs delayed asynchronous release but not fast synchronous release. Delayed asynchronous release was blocked in wild-type synapses by intracellular addition of high concentrations of the slow Ca2+-chelator EGTA, but EGTA had no effect in synaptotagmin-7 knock-out neurons because delayed asynchronous release was already impaired. Moreover, direct measurements of vesicle repriming failed to uncover an effect of the synaptotagmin-7 knock-out on vesicle repriming. Our data demonstrate that synaptotagmin-7 is selectively essential for Ca2+-dependent delayed asynchronous release in retinal rod bipolar cell synapses, that its function can be blocked by simply introducing a slow Ca2+ buffer into the cells, and that synaptotagmin-7 is not required for normal vesicle repriming. SIGNIFICANCE STATEMENT How Ca2+ triggers delayed asynchronous release has long remained enigmatic. Synaptotagmin-7 has been implicated recently as Ca2+ sensor in

  12. Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state

    PubMed Central

    Strobl, Florian G; Seitz, Florian; Westerhausen, Christoph; Reller, Armin; Torrano, Adriano A; Bräuchle, Christoph

    2014-01-01

    Summary The uptake of nanoparticles into cells often involves their engulfment by the plasma membrane and a fission of the latter. Understanding the physical mechanisms underlying these uptake processes may be achieved by the investigation of simple model systems that can be compared to theoretical models. Here, we present experiments on a massive uptake of silica nanoparticles by giant unilamellar lipid vesicles (GUVs). We find that this uptake process depends on the size of the particles as well as on the thermodynamic state of the lipid membrane. Our findings are discussed in the light of several theoretical models and indicate that these models have to be extended in order to capture the interaction between nanomaterials and biological membranes correctly. PMID:25671142

  13. Prime Knowledge about Primes

    ERIC Educational Resources Information Center

    Eisenberg, Theodore

    2007-01-01

    Several proofs demonstrating that there are infinitely many primes, different types of primes, tests of primality, pseudo primes, prime number generators and open questions about primes are discussed in Section 1. Some of these notions are elaborated upon in Section 2, with discussions of the Riemann zeta function and how algorithmic complexity…

  14. The Cumulative Effects of Indiana PRIME TIME: A State Sponsored Reduced Class Size Program, on Basic Skills Achievement.

    ERIC Educational Resources Information Center

    Malloy, Leanne; Gilman, David

    The purpose of this paper was to analyze the initial results of statewide implementation of the PRIME TIME program in Indiana. PRIME TIME is a state-wide program to reduce class size in the primary grades. Mean scores from 65,911 third graders who had completed the Indiana Competency Test in the spring of 1987 after completing 3 years of the…

  15. Information on State versus Local Administration of CETA Prime Sponsors in Michigan. Report to the Chairman, Committee on Education and Labor, House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. Div. of Human Resources.

    State administration of the Comprehensive Employment and Training Act (CETA) Balance of State (BOS) programs was compared with administration of CETA programs by local (regular) prime sponsors in Michigan to gain insight on the potential impact of increased state control. BOS prime sponsors spent less than regular prime sponsors for administration…

  16. Graph states of prime-power dimension from generalized CNOT quantum circuit

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhou, D. L.

    2016-06-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four.

  17. Graph states of prime-power dimension from generalized CNOT quantum circuit.

    PubMed

    Chen, Lin; Zhou, D L

    2016-01-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four. PMID:27272401

  18. Graph states of prime-power dimension from generalized CNOT quantum circuit

    PubMed Central

    Chen, Lin; Zhou, D. L.

    2016-01-01

    We construct multipartite graph states whose dimension is the power of a prime number. This is realized by the finite field, as well as the generalized controlled-NOT quantum circuit acting on two qudits. We propose the standard form of graph states up to local unitary transformations and particle permutations. The form greatly simplifies the classification of graph states as we illustrate up to five qudits. We also show that some graph states are multipartite maximally entangled states in the sense that any bipartition of the system produces a bipartite maximally entangled state. We further prove that 4-partite maximally entangled states exist when the dimension is an odd number at least three or a multiple of four. PMID:27272401

  19. What's the use of being happy? Mood states, useful objects, and repetition priming effects.

    PubMed

    Goetz, Mark C; Goetz, Paul W; Robinson, Michael D

    2007-08-01

    Two experiments involving 99 undergraduate participants sought to examine the influence of mood states on encoding speed within lexical decision and pronunciation tasks. Mood states were measured naturalistically in Experiment 1 and manipulated in Experiment 2. Stimuli consisted of nouns representing useful (e.g., food) and nonuseful (e.g., lint) objects. Mood states had no implications for initial encoding speed. However, when the same words were presented a 2nd time (i.e., repeated), happy individuals displayed a tendency to encode useful words faster than nonuseful ones. Thus, mood states influenced repetition priming on the basis of stimulus valence. The authors propose that happiness sensitizes individuals to useful or rewarding objects, which in turn creates a stronger memory trace for such stimuli in the future. PMID:17683223

  20. Mechanisms of deactivation of the low-lying electronic states of 2,2 prime -bipyridine

    SciTech Connect

    Castellucci, E.; Angeloni, L. ); Marconi, G.; Venuti, E. ); Baraldi, I. )

    1990-03-08

    The photophysical properties of 2,2{prime}-bipyridine have been investigated in different solvents by means of lifetime measurements on the picosecond scale, quantum yield temperature dependence, and CS-INDO CI calculations. Both experimental and theoretical results indicate that in inert solvents the very low fluorescence quantum yield of this molecule is due to a very effective intersystem crossing to a local triplet state. The picture emerging from these data helps to gain insight into the elusive photophysical behavior of this compound.

  1. Gas vesicles.

    PubMed Central

    Walsby, A E

    1994-01-01

    The gas vesicle is a hollow structure made of protein. It usually has the form of a cylindrical tube closed by conical end caps. Gas vesicles occur in five phyla of the Bacteria and two groups of the Archaea, but they are mostly restricted to planktonic microorganisms, in which they provide buoyancy. By regulating their relative gas vesicle content aquatic microbes are able to perform vertical migrations. In slowly growing organisms such movements are made more efficiently than by swimming with flagella. The gas vesicle is impermeable to liquid water, but it is highly permeable to gases and is normally filled with air. It is a rigid structure of low compressibility, but it collapses flat under a certain critical pressure and buoyancy is then lost. Gas vesicles in different organisms vary in width, from 45 to > 200 nm; in accordance with engineering principles the narrower ones are stronger (have higher critical pressures) than wide ones, but they contain less gas space per wall volume and are therefore less efficient at providing buoyancy. A survey of gas-vacuolate cyanobacteria reveals that there has been natural selection for gas vesicles of the maximum width permitted by the pressure encountered in the natural environment, which is mainly determined by cell turgor pressure and water depth. Gas vesicle width is genetically determined, perhaps through the amino acid sequence of one of the constituent proteins. Up to 14 genes have been implicated in gas vesicle production, but so far the products of only two have been shown to be present in the gas vesicle: GvpA makes the ribs that form the structure, and GvpC binds to the outside of the ribs and stiffens the structure against collapse. The evolution of the gas vesicle is discussed in relation to the homologies of these proteins. Images PMID:8177173

  2. Ground- and excited-state tautomerism in 2-(3{prime}-hydroxy-2{prime}-pyridyl)benzimidazole

    SciTech Connect

    Prieto, F.R.; Rodriguez, M.C.R.; Gonzalez, M.M.; Fernandez, M.A.R.

    1994-09-01

    Ground-state HPyBI is determined to have keto-enol equilibrium in water, and the enol form predominates in nonaqueous solutions. The keto form is the only excited form in all the solvents considered. Ultrafast intramolecular proton transfer creates the enol form from the keto form. 47 refs., 6 figs., 3 tabs.

  3. Helical vesicles, segmented semivesicles, and noncircular bilayer sheets from solution-state self-assembly of ABC miktoarm star terpolymers.

    PubMed

    Kong, Weixin; Li, Baohui; Jin, Qinghua; Ding, Datong; Shi, An-Chang

    2009-06-24

    Multicompartment micelles, especially nanostructured vesicles, offer tremendous potential as delivery vehicles of therapeutic agents and nanoreactors. Solution-state self-assembly of miktoarm star terpolymers provides a versatile and powerful route to obtain multicompartment micelles. Here we report simulations of solution-state self-assembly of ABC star terpolymers composed of a solvophilic A arm and two solvophobic B and C arms. A variety of multicompartment micelles are predicted from the simulations. Phase diagrams for typical star terpolymers are constructed. It is discovered that the overall micelle morphology is largely controlled by the volume fraction of the solvophilic A arms, whereas the internal compartmented and/or segregated structures depend on the ratio between the volume fractions of the two solvophobic arms. The polymer-solvent and polymer-polymer interactions can be used to tune the effective volume fraction of the A-arm and, thereby, induce morphological transitions. For terpolymers with equal or nearly equal length of B and C arms, several previously unknown structures, including vesicles with novel lateral structures (helices or stacked donuts), segmented semivesicles, and elliptic or triangular bilayer sheets, are discovered. When the lengths of B and C arms are not equal, novel micelles such as multicompartment disks and onions are observed. PMID:19476352

  4. Synaptic vesicle fusion

    PubMed Central

    Rizo, Josep; Rosenmund, Christian

    2008-01-01

    The core of the neurotransmitter release machinery is formed by SNARE complexes, which bring the vesicle and plasma membranes together and are key for fusion, and by Munc18-1, which controls SNARE-complex formation and may also have a direct role in fusion. In addition, SNARE complex assembly is likely orchestrated by Munc13s and RIMs, active-zone proteins that function in vesicle priming and diverse forms of presynaptic plasticity. Synaptotagmin-1 mediates triggering of release by Ca2+, probably through interactions with SNAREs and both membranes, as well as through a tight interplay with complexins. Elucidation of the release mechanism will require a full understanding of the network of interactions among all these proteins and the membranes. PMID:18618940

  5. State-to-state rates for the D + H2(v = 1, j = 1) yield HD(v-prime, j-prime) + H reaction - Predictions and measurements

    NASA Technical Reports Server (NTRS)

    Neuhauser, Daniel; Judson, Richard S.; Kouri, Donald J.; Adelman, David E.; Shafer, Neil E.; Kliner, Dahv A. V.; Zare, Richard N.

    1992-01-01

    A fully quantal wavepacket approach to reactive scattering in which the best available H3 potential energy surface was used enabled a comparison with experimentally determined rates for the D + H2(v = 1, j = 1) yield HD(v-prime = 0, 1, 2; j-prime) + H reaction at significantly higher total energies (1.4 to 2.25 electron volts) than previously possible. The theoretical results are obtained over a sufficient range of conditions that a detailed simulation of the experiment was possible, thus making this a definitive comparison of experiment and theory. Good to excellent agreement is found for the vibrational branching ratios and for the rotational distributions within each product vibrational level. However, the calculated rotational distributions are slightly hotter than the experimentally measured ones.

  6. Excited states of M(II,d sup 6 )-4 prime -Phenylterpyridine complexes: Electron localization

    SciTech Connect

    Amouyal, E.; Mouallem-Bahout, M. ); Calzaferri, G. )

    1991-10-03

    The authors spectroscopic and photophysical data of para-substituted phenylterpyridine (ptpy) Ru(II) complexes and molecular orbital studies of the Fe(II), Ru(II), and Os(II) compounds (M(R-ptpy){sub 2}){sup 2+}, R=H, CH{sub 3}, OH, OCH{sub 3}, and Cl. The visible charge-transfer absorption of the (Ru(R-ptpy){sub 2}){sup 2+} is almost twice as intense as observed for the corresponding 2,2{prime}-bipyridine (bpy) complex (Ru(bpy){sub 3}){sup 2+}, and it is red shifted by about 50 nm. The luminescence in solution and in membranes (Nafion, cellophane) is very weak at room temperature, and the luminescence decay time is on the order of a few nanoseconds. In a glass at 77K, however, the luminescence quantum yield is 0.4 and the decay time 13 {mu}s. Excited-state absorption spectra measured at room temperature by laser flash spectroscopy support the interpretation that the first excited state is of the MLCT type. The similarity of the excited-state absorptions to those of the ligand radical anions strengthens the idea that the excited electron is localized on a single ligand. The low luminescence quantum yield at room temperature is though to be due to low-energy intramolecular vibrations of the nonrigid complex and not to the coupling with d states. Lowering the temperature results in freezing these intramolecular movements and hence in significantly increasing the luminescence quantum yield. The molecular orbital studies indicate that it is reasonable to describe the MLCT state as ((L)Ru{sup III}(L{sm bullet}{sup {minus}})){sup 2+} because the perpendicular conformation of the two ligands causes all {pi} orbitals to be accidentally 2-fold degenerate and therefore a small asymmetric distortion is sufficient to favor the localized situation.

  7. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis

    PubMed Central

    Kumar, Atul; Aguirre, Jacob D; Condos, Tara EC; Martinez-Torres, R Julio; Chaugule, Viduth K; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Mercier, Pascal; Knebel, Axel; Spratt, Donald E; Barber, Kathryn R; Shaw, Gary S; Walden, Helen

    2015-01-01

    The PARK2 gene is mutated in 50% of autosomal recessive juvenile parkinsonism (ARJP) cases. It encodes parkin, an E3 ubiquitin ligase of the RBR family. Parkin exists in an autoinhibited state that is activated by phosphorylation of its N-terminal ubiquitin-like (Ubl) domain and binding of phosphoubiquitin. We describe the 1.8 Å crystal structure of human parkin in its fully inhibited state and identify the key interfaces to maintain parkin inhibition. We identify the phosphoubiquitin-binding interface, provide a model for the phosphoubiquitin–parkin complex and show how phosphorylation of the Ubl domain primes parkin for optimal phosphoubiquitin binding. Furthermore, we demonstrate that the addition of phosphoubiquitin leads to displacement of the Ubl domain through loss of structure, unveiling a ubiquitin-binding site used by the E2∼Ub conjugate, thus leading to active parkin. We find the role of the Ubl domain is to prevent parkin activity in the absence of the phosphorylation signals, and propose a model for parkin inhibition, optimization for phosphoubiquitin recruitment, release of inhibition by the Ubl domain and engagement with an E2∼Ub conjugate. Taken together, this model provides a mechanistic framework for activating parkin. PMID:26254304

  8. Rapid Detection of an ABT-737-Sensitive Primed for Death State in Cells Using Microplate-Based Respirometry

    PubMed Central

    Clerc, Pascaline; Carey, Gregory B.; Mehrabian, Zara; Wei, Michael; Hwang, Hyehyun; Girnun, Geoffrey D.; Chen, Hegang; Martin, Stuart S.; Polster, Brian M.

    2012-01-01

    Cells that exhibit an absolute dependence on the anti-apoptotic BCL-2 protein for survival are termed “primed for death” and are killed by the BCL-2 antagonist ABT-737. Many cancers exhibit a primed phenotype, including some that are resistant to conventional chemotherapy due to high BCL-2 expression. We show here that 1) stable BCL-2 overexpression alone can induce a primed for death state and 2) that an ABT-737-induced loss of functional cytochrome c from the electron transport chain causes a reduction in maximal respiration that is readily detectable by microplate-based respirometry. Stable BCL-2 overexpression sensitized non-tumorigenic MCF10A mammary epithelial cells to ABT-737-induced caspase-dependent apoptosis. Mitochondria within permeabilized BCL-2 overexpressing cells were selectively vulnerable to ABT-737-induced cytochrome c release compared to those from control-transfected cells, consistent with a primed state. ABT-737 treatment caused a dose-dependent impairment of maximal O2 consumption in MCF10A BCL-2 overexpressing cells but not in control-transfected cells or in immortalized mouse embryonic fibroblasts lacking both BAX and BAK. This impairment was rescued by delivering exogenous cytochrome c to mitochondria via saponin-mediated plasma membrane permeabilization. An ABT-737-induced reduction in maximal O2 consumption was also detectable in SP53, JeKo-1, and WEHI-231 B-cell lymphoma cell lines, with sensitivity correlating with BCL-2:MCL-1 ratio and with susceptibility (SP53 and JeKo-1) or resistance (WEHI-231) to ABT-737-induced apoptosis. Multiplexing respirometry assays to ELISA-based determination of cytochrome c redistribution confirmed that respiratory inhibition was associated with cytochrome c release. In summary, cell-based respiration assays were able to rapidly identify a primed for death state in cells with either artificially overexpressed or high endogenous BCL-2. Rapid detection of a primed for death state in individual cancers

  9. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

    PubMed

    Wang, Shan Shan H; Held, Richard G; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S

    2016-08-17

    In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483

  10. Single-Cell Gene Expression Profiles Define Self-Renewing, Pluripotent, and Lineage Primed States of Human Pluripotent Stem Cells

    PubMed Central

    Hough, Shelley R.; Thornton, Matthew; Mason, Elizabeth; Mar, Jessica C.; Wells, Christine A.; Pera, Martin F.

    2014-01-01

    Summary Pluripotent stem cells display significant heterogeneity in gene expression, but whether this diversity is an inherent feature of the pluripotent state remains unknown. Single-cell gene expression analysis in cell subsets defined by surface antigen expression revealed that human embryonic stem cell cultures exist as a continuum of cell states, even under defined conditions that drive self-renewal. The majority of the population expressed canonical pluripotency transcription factors and could differentiate into derivatives of all three germ layers. A minority subpopulation of cells displayed high self-renewal capacity, consistently high transcripts for all pluripotency-related genes studied, and no lineage priming. This subpopulation was characterized by its expression of a particular set of intercellular signaling molecules whose genes shared common regulatory features. Our data support a model of an inherently metastable self-renewing population that gives rise to a continuum of intermediate pluripotent states, which ultimately become primed for lineage specification. PMID:24936473

  11. Word encoding during sleep is suggested by correlations between word-evoked up-states and post-sleep semantic priming

    PubMed Central

    Ruch, Simon; Koenig, Thomas; Mathis, Johannes; Roth, Corinne; Henke, Katharina

    2014-01-01

    To test whether humans can encode words during sleep we played everyday words to men while they were napping and assessed priming from sleep-played words following waking. Words were presented during non-rapid eye movement (NREM) sleep. Priming was assessed using a semantic and a perceptual priming test. These tests measured differences in the processing of words that had been or had not been played during sleep. Synonyms to sleep-played words were the targets in the semantic priming test that tapped the meaning of sleep-played words. All men responded to sleep-played words by producing up-states in their electroencephalogram. Up-states are NREM sleep-specific phases of briefly increased neuronal excitability. The word-evoked up-states might have promoted word processing during sleep. Yet, the mean performance in the priming tests administered following sleep was at chance level, which suggests that participants as a group failed to show priming following sleep. However, performance in the two priming tests was positively correlated to each other and to the magnitude of the word-evoked up-states. Hence, the larger a participant's word-evoked up-states, the larger his perceptual and semantic priming. Those participants who scored high on all variables must have encoded words during sleep. We conclude that some humans are able to encode words during sleep, but more research is needed to pin down the factors that modulate this ability. PMID:25452740

  12. CAPS1 stabilizes the state of readily releasable synaptic vesicles to fusion competence at CA3–CA1 synapses in adult hippocampus

    PubMed Central

    Shinoda, Yo; Ishii, Chiaki; Fukazawa, Yugo; Sadakata, Tetsushi; Ishii, Yuki; Sano, Yoshitake; Iwasato, Takuji; Itohara, Shigeyoshi; Furuichi, Teiichi

    2016-01-01

    Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3–CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses. PMID:27545744

  13. Double resonance spectroscopy of the D {}^1 \\Pi _u^+ and B^{\\prime \\prime }\\barB^1\\Sigma ^+_u states near the third dissociation threshold of H2

    NASA Astrophysics Data System (ADS)

    Ekey, R. C.; Cordova, A. E.; Duan, W.; Chartrand, A. M.; McCormack, E. F.

    2013-12-01

    Double-resonance laser spectroscopy via the E,F {}^1 \\Sigma _g^+, v^{\\prime }=6, J^{\\prime } state was used to probe the energy region below the third dissociation limit of molecular hydrogen. Resonantly enhanced multi-photon ionization spectra were recorded by detecting ion production as a function of energy using a time-of-flight mass spectrometer. Energies and line widths for the v = 14-17 levels of the D{}^1 \\Pi _u^+ state of H2 are reported and compared to experimental data obtained by using VUV synchrotron light excitation (Dickenson et al 2010 J. Chem. Phys. 133 144317) and fully ab initio non-adiabatic calculations of D {}^1 \\Pi _u^+ state energies and line widths (Glass-Maujean et al 2012 Phys. Rev. A 86 052507). Several high vibrational levels of the B^{\\prime \\prime }\\bar{B}^1\\Sigma ^+_u state were also observed in this region. Term energies and rotational constants for the v = 67-69 vibrational levels are reported and compared to highly accurate ro-vibrational energy level predictions from fully ab initio non-adiabatic calculations of the first six {}^1 \\Sigma _u^+ levels of H2 (Wolniewicz et al 2006 J. Mol. Spectrosc. 238 118). While additional observed transitions can be assigned to other states, several unassigned features in the spectra highlight the need for a fully integrated theoretical treatment of dissociation and ionization to understand the complex pattern of highly vibrationally excited states expected in this region.

  14. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    PubMed Central

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias; Huson, Vincent; Mamer, Lauren; Kalogreades, Lawrence; ter Veer, Mirelle; Ruiter, Marvin; Brose, Nils; Rosenmund, Christian

    2015-01-01

    The energy required to fuse synaptic vesicles with the plasma membrane (‘activation energy’) is considered a major determinant in synaptic efficacy. From reaction rate theory, we predict that a class of modulations exists, which utilize linear modulation of the energy barrier for fusion to achieve supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced by hypertonic solutions. We show that complexinI/II deficiency or phorbol ester stimulation indeed affects responses to hypertonic solution in a supralinear manner. An additive vs multiplicative relationship between activation energy and fusion rate provides a novel explanation for previously observed non-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release. DOI: http://dx.doi.org/10.7554/eLife.05531.001 PMID:25871846

  15. The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide

    NASA Technical Reports Server (NTRS)

    O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.

    1992-01-01

    Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.

  16. The transition from naïve to primed nociceptive state: A novel wind-up protocol in mice.

    PubMed

    Ziv, Nadav Y; Tal, Michael; Shavit, Yehuda

    2016-01-01

    Wind-up (WU) is a progressive, frequency-dependent facilitation of spinal cord neurons in response to repetitive nociceptive stimulation of constant intensity. We identified a new WU-associated phenomenon in naïve mice (not exposed to noxious stimulation immediately prior to WU stimulation), which were subjected to a novel experimental protocol composed of three consecutive trains of WU stimulation. The 1st train produced a typical linear 'wind-up' curve as expected following a repeating series of stimuli; in addition, this 1st train sensitized ('primed') the nociceptive system so that the responses to two subsequent trains (inter-train interval of 10 min) were significantly amplified compared with the response to the 1st train. We named this augmented response potentiation-of-windup, or "PoW". The PoW phenomenon appears to be centrally mediated, as the augmented response was suppressed by administration of an NMDA receptor antagonist (MK-801) and by cutting the spinal cord. Furthermore, the PoW protocol is accompanied by enhanced pain behavior. The 'priming' effect of the 1st train could be mimicked by exposure to natural noxious stimuli prior to the PoW protocol. Presumably, the PoW phenomenon has not been previously reported due to a procedural reason: typically, WU protocols have been executed in 'primed' rather than naïve animals, i.e., animals exposed to nociceptive stimulation prior to the actual WU recording. Our findings indicate that the PoW paradigm can distinguish between 'naïve' and 'primed' states, suggesting its use as a tool for the assessment of central sensitization. PMID:26439312

  17. Modeling of decomposition activity and priming effect in soil using the versatile index of microbial physiological state

    NASA Astrophysics Data System (ADS)

    Blagodatskiy, Sergey

    2015-04-01

    The implementation of microbial biomass in soil organic matter (SOM) models is still unresolved issue. The approaches using explicit description of microbial biomass (decomposer) interaction with SOM usually cannot be easily verified by means of experimental estimating of total microbial biomass dynamics. Standard experimental methods, such as fumigation extraction or direct microscopic count, does not represent microbial activity (Blagodatskaya and Kuzyakov, 2013), which is essential for the control of decomposition rate. More advanced approaches, explicitly simulating intracellular metabolic activity (Resat et al., 2012) and e.g. production and turnover of extracellular enzymes (Lawrence et al., 2009) are prohibitively complex for the field and larger scales, which are most often under demand for SOM modelling. One possible parsimonious solution is an application of index of microbial physiological state (r), which describes the adaptive variation of the cell composition and metabolic activity by one variable (Panikov, 1995). This variable (r) can reflect the microbial response to the availability of carbon and nitrogen and shift of microbial biomass between active and dormant state (Blagodatsky and Richter, 1998), but also can be used for the description of the effect of external factors, such as temperature and moisture, on microbial activity. This approach is extremely useful for the description of priming effect (Blagodatsky et al., 2010) and the influence of substrate availability and external factors on the size and dynamics of priming. Distinguishing of these two types of driving forces for priming is crucial for modelling of SOM dynamics and steady-state stocks of different SOM pools. I will present the analysis of model response on combination of limiting factors presented as functions controlling the change of microbial physiological state and size of priming effect. Alternatively, the direct effect of the same factors on decomposition rate and priming

  18. Photoexcited states of biruthenium(II) compounds bridged by 2,2 prime -bis(2-pyridyl)bibenzimidazole or 1,2-bis(2-(2-pyridyl)benzimidazolyl)ethane

    SciTech Connect

    Ohno, Takeshi; Nozaki, Koichi ); Haga, Masaaki )

    1992-02-19

    Charge-transfer (CT) excited states of RuL{sub 2}(L{prime}-L{prime}){sup 2+} and RuL{sub 2}(L{prime}-L{prime}){sup 4+} have been studied by means of emission and transient absorption (TA) spectroscopy at 77-300 K. The bridging ligand (L{prime}-L{prime}) is either 2,2{prime}-bis(2-pyridyl)benzimidazole (bpbimH{sub 2}) or 1,2-bis(2-(2-pyridyl)benzimidazolyl)ethane (dpbime) and L is 2,2{prime}-bipyridine (bpy), 4,4{prime}-dimethyl-2,2{prime}-bipyridine (dmbpy), or 1,10-phenanthroline (phen). Transient absorption (TA) spectra of the ruthenium(II) compounds subjected to laser excitation, whose molar extinction coefficients were determined, are deconvoluted to {pi}-{pi}* bands of L and L{prime}-L{prime} coordinating to Ru(III), L (or L{prime}-L{prime})-to-Ru(III) CT bands, and a {pi}-{pi}* band of (L{prime}-L{prime}){sup {center dot}-} (or L{sup {center dot}-}) by comparison with the absorption spectra of the oxidized compounds (RuL{sub 2}(L{prime}-L{prime}){sup 3+}). The degree of electron population on the ligand decreases in the order bpbimH{sub 2} > bpy {approximately} phen > dpbime > dmbpy in the excited CT states, while there is no discernible difference in the reduction potential between bpbimH{sub 2} (or dpbime) and bpy coordinating to Ru(II). The excitation efficiency of the metal sites in (Ru(bpy){sub 2}){sub 2}(dpbime){sup 4+} is lower than 50% when the laser power was large enough to excite more than 80% of the mononuclear compounds. The low excitation efficiency of the former is ascribed to rapid intramolecular annihilation of the excited states.

  19. Medium-resolution studies of extreme ultraviolet emission from N2 by electron impact - Vibrational perturbations and cross sections of the c4-prime 1Sigma(+)u and b-prime 1Sigma(+)u states

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; James, Geoffrey K.; Franklin, Brian O.; Shemansky, Donald E.

    1989-01-01

    In a crossed-beam experiment the electron-impact-induced fluorescence spectrum of N2 in the extreme ultraviolet is studied at a spectral resolution of up to 0.03 nm. The optically thin experiment obtained the highest-resolution electron-impact emission spectrum of the Rydberg and valence states of N2. The spectral measurements provide the emission cross sections of each of the vibrational transitions of the Carroll-Yoshino and the Birge-Hopfield-II band systems. Laboratory vibrational-excitation cross sections arising from the mutual perturbation of the c4-prime 1Sigma(+)u and b-prime 1Sigma(+)u states by homogeneous configuration interactions are measured from 10 to 400 eV, and a modified Born approximation analytic model is given for them. The analysis leads to accurate band-system oscillator strengths. The relative emission and excitation cross sections each of the vibrational levels are compared. In addition, low-resolution measurements of the cross section of the atomic dissociation fragments (NI, NII, NIII) from 40 to 102 nm are made, and medium-resolution measurements are made of the emission cross section of the c4 1Pi(u), c5-prime 1Sigma(+)u, c5 1Pi(u), and c6-prime 1Sigma(+)u to X 1Sigma(+)g (0,0) transitions.

  20. Analysis of the Source Physics Experiment SPE4 Prime Using State-Of Parallel Numerical Tools.

    NASA Astrophysics Data System (ADS)

    Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.

    2015-12-01

    This work describes a methodology used for large scale modeling of wave propagation from underground chemical explosions conducted at the Nevada National Security Site (NNSS) fractured granitic rock. We show that the discrete natures of rock masses as well as the spatial variability of the fabric of rock properties are very important to understand ground motions induced by underground explosions. In order to build a credible conceptual model of the subsurface we integrated the geological, geomechanical and geophysical characterizations conducted during recent test at the NNSS as well as historical data from the characterization during the underground nuclear test conducted at the NNSS. Because detailed site characterization is limited, expensive and, in some instances, impossible we have numerically investigated the effects of the characterization gaps on the overall response of the system. We performed several computational studies to identify the key important geologic features specific to fractured media mainly the joints characterized at the NNSS. We have also explored common key features to both geological environments such as saturation and topography and assess which characteristics affect the most the ground motion in the near-field and in the far-field. Stochastic representation of these features based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode. Simulations were used to guide site characterization efforts in order to provide the essential data to the modeling community. We validate our computational results by comparing the measured and computed ground motion at various ranges for the recently executed SPE4 prime experiment. We have also conducted a comparative study between SPE4 prime and previous experiments SPE1 and SPE3 to assess similarities and differences and draw conclusions on designing SPE5.

  1. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  2. Priming states of mind can affect disclosure of threatening self-information: Effects of self-affirmation, mortality salience, and attachment orientations.

    PubMed

    Davis, Deborah; Soref, Assaf; Villalobos, J Guillermo; Mikulincer, Mario

    2016-08-01

    Interviewers often face respondents reluctant to disclose sensitive, embarrassing or potentially damaging information. We explored effects of priming 5 states of mind on willingness to disclose: including 2 expected to facilitate disclosure (self-affirmation, attachment security), and 3 expected to inhibit disclosure (self-disaffirmation, attachment insecurity, mortality salience). Israeli Jewish participants completed a survey including a manipulation of 1 of these states of mind, followed by questions concerning hostile thoughts and behaviors toward the Israeli Arab outgroup, past minor criminal behaviors, and socially undesirable traits and behaviors. Self-affirmation led to more disclosures of all undesirable behaviors than neutral priming, whereas self-disaffirmation led to less disclosures. Mortality salience led to fewer disclosures of socially undesirable and criminal behaviors compared to neutral priming, but more disclosures of hostile thoughts and behaviors toward Israeli Arabs. Security priming facilitated disclosure of hostile attitudes toward Israeli Arabs. However, neither security nor insecurity priming had any other significant effects. (PsycINFO Database Record PMID:26914858

  3. Theoretical description of the 2A/double prime/ and 2A/prime/ states of the peroxyformyl radical. [for air pollution and Mars atmospheric studies

    NASA Technical Reports Server (NTRS)

    Winter, N. W.; Goddard, W. A., III; Bender, C. F.

    1975-01-01

    Simple orbital ideas are used to describe the lowest two states of the peroxyformyl radical, and ab initio Hartree-Fock calculations in these states are reported. It is found that both states may be formed exothermically by association of O2 and HCO in their ground states; however, the excited state may decompose readily to OH and CO2. The possible role of such processes in oxidation of aldelydes is discussed.

  4. Characterization of the X(tilde)1A-prime state of isocyanic acid

    NASA Astrophysics Data System (ADS)

    East, Allan L. L.; Johnson, Christopher S.; Allen, Wesley D.

    1993-01-01

    Eight ab initio analyses are carried out to investigate the characteristics of the ground and the excited electronic states of isocyanic acid. The particular issues include the barrier to linearity, the HN-CO and H-NCO fragmentation energies, heats of formation of HNCO and related isomers, the anharmonic force field, fundamental vibrational frequencies, the equilibrium molecular structure of isocyanic acid, the rovibrational spectrum of DNCO, and the vibration-rotation interaction.

  5. Engineered Asymmetric Synthetic Vesicles

    NASA Astrophysics Data System (ADS)

    Lu, Li; Chiarot, Paul

    2013-11-01

    Synthetic vesicles are small, fluid-filled spheres that are enclosed by a bilayer of lipid molecules. They can be used as models for investigating membrane biology and as delivery vehicles for pharmaceuticals. In practice, it is difficult to simultaneously control membrane asymmetry, unilamellarity, vesicle size, vesicle-to-vesicle uniformity, and luminal content. Membrane asymmetry, where each leaflet of the bilayer is composed of different lipids, is of particular importance as it is a feature of most natural membranes. In this study, we leverage microfluidic technology to build asymmetric vesicles at high-throughput. We use the precise flow control offered by microfluidic devices to make highly uniform emulsions, with controlled internal content, that serve as templates to build the synthetic vesicles. Flow focusing, dielectrophoretic steering, and interfacial lipid self-assembly are critical procedures performed on-chip to produce the vesicles. Fluorescent and confocal microscopy are used to evaluate the vesicle characteristics.

  6. Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.).

    PubMed

    Martínez-Aguilar, Keren; Ramírez-Carrasco, Gabriela; Hernández-Chávez, José Luis; Barraza, Aarón; Alvarez-Venegas, Raúl

    2016-01-01

    To survive in adverse conditions, plants have evolved complex mechanisms that "prime" their defense system to respond and adapt to stresses. Their competence to respond to such stresses fundamentally depends on its capacity to modulate the transcriptome rapidly and specifically. Thus, chromatin dynamics is a mechanism linked to transcriptional regulation and enhanced defense in plants. For example, in Arabidopsis, priming of the SA-dependent defense pathway is linked to histone lysine methylation. Such modifications could create a memory of the primary infection that is associated with an amplified gene response upon exposure to a second stress-stimulus. In addition, the priming status of a plant for induced resistance can be inherited to its offspring. However, analyses on the molecular mechanisms of generational and transgenerational priming in the common bean (Phaseolus vulagris L.), an economically important crop, are absent. Here, we provide evidence that resistance to P. syringae pv. phaseolicola infection was induced in the common bean with the synthetic priming activators BABA and INA. Resistance was assessed by evaluating symptom appearance, pathogen accumulation, changes in gene expression of defense genes, as well as changes in the H3K4me3 and H3K36me3 marks at the promoter-exon regions of defense-associated genes. We conclude that defense priming in the common bean occurred in response to BABA and INA and that these synthetic activators primed distinct genes for enhanced disease resistance. We hope that an understanding of the molecular changes leading to defense priming and pathogen resistance will provide valuable knowledge for producing disease-resistant crop varieties by exposing parental plants to priming activators, as well as to the development of novel plant protection chemicals that stimulate the plant's inherent disease resistance mechanisms. PMID:27242854

  7. Probing Rotational Viscosity in Synaptic Vesicles

    PubMed Central

    Zeigler, Maxwell B.; Allen, Peter B.; Chiu, Daniel T.

    2011-01-01

    The synaptic vesicle (SV) is a central organelle in neurotransmission, and previous studies have suggested that SV protein 2 (SV2) may be responsible for forming a gel-like matrix within the vesicle. Here we measured the steady-state rotational anisotropy of the fluorescent dye, Oregon Green, within individual SVs. By also measuring the fluorescence lifetime of Oregon Green in SVs, we determined the mean rotational viscosity to be 16.49 ± 0.12 cP for wild-type (WT) empty mice vesicles (i.e., with no neurotransmitters), 11.21 ± 0.12 cP for empty vesicles from SV2 knock-out mice, and 11.40 ± 0.65 cP for WT mice vesicles loaded with the neurotransmitter glutamate (Glu). This measurement shows that SV2 is an important determinant of viscosity within the vesicle lumen, and that the viscosity decreases when the vesicles are filled with Glu. The viscosities of both empty SV2 knock-out vesicles and Glu-loaded WT vesicles were significantly different from that of empty WT SVs (p < 0.05). This measurement represents the smallest enclosed volume in which rotational viscosity has been measured thus far. PMID:21641331

  8. Radiative decays of the psi prime to all-photon final states

    SciTech Connect

    Lee, R.A.

    1985-06-01

    Results of studies of selected radiative decays of the psi' to charmonium and non-charmonium states which decay into photons are presented. These studies were performed using a sample of 1.8 x 10/sup 6/ produced psi''s collected by the Crystal Ball detector at the SPEAR electron-positron storage ring. The branching ratios of the chi/sub 0/, chi/sub 2/, and eta'/sub c/ to two photons have been measured to be (4.5 +- 2.2 +- 2.0) x 10/sup -4/, (9.5 +- 2.9 +- 4.5) x 10/sup -4/ (first errors statistical, second systematic), and <1 x 10/sup -2/ (90% C.L.). The signal from the decay chain psi' ..-->.. ..gamma..chi/sub 0/, chi/sub 0/ ..-->.. ..pi../sup 0/..pi../sup 0/ has been observed with essentially no background. Using the observed line shape of the radiative photon in this reaction, the full width of the psi/sub 0/ has been found to be 8.8 +- 1.3 +- 1.5 MeV/c/sup 2/. In addition, the branching ratios of the chi/sub 0/ and chi/sub 2/ to ..pi../sup 0/..pi../sup 0/ have been measured to be (3.5 +- 0.3 +- 1.2) x 10/sup -3/ and (1.2 +- 0.2 +- 0.4) x 10/sup -3/; the branching ratios of the chi/sub 0/ and chi/sub 2/ to eta eta have been measured to be (2.8 +- 0.9 +- 1.3) x 10/sup -3/ and (8.4 +- 4.2 +- 4.0) x 10/sup -4/. The decays of the psi' to four non-charmonium states have been investigated. The branching ratios and upper limits of these decays have been normalized to the branching ratios of the corresponding decays from the J/psi which have been measured using a sample of 2.2 x 10/sup 6/ produced J/psi's collected by the Crystal Ball detector. The ratios of the psi' branching ratios to the J/psi branching ratios for the final states ..gamma..eta, ..gamma..eta', ..gamma..theta, and ..gamma..f have been measured to be <1.8%, <2.6%, <10 to 15%, and 9 +- 3%. These results are compared with the theoretical expectations of lowest-order quantum chromodynamics potential models. Substantial disagreement is found between theory and experiment.

  9. Granulosa cell-oocyte interactions: the phosphorylation of specific proteins in mouse oocytes at the germinal vesicle stage is dependent upon the differentiative state of companion somatic cells

    SciTech Connect

    Cecconi, S.; Tatone, C.; Buccione, R.; Mangia, F.; Colonna, R. )

    1991-05-01

    The role of granulosa cells in the regulation of mouse ovarian oocyte metabolism was investigated. Fully grown antral oocytes, isolated from surrounding cumulus cells, were cultured on monolayers of preantral granulosa cells in the presence of dbcAMP to prevent the resumption of meiosis. Under these conditions metabolic cooperativity was established between the two cell types as early as 1 hr after seeding. Moreover, cocultured oocytes phosphorylated two polypeptides of 74 and 21 kDa which are normally phosphorylated in follicle-enclosed growing oocytes but not in cumulus cell-enclosed fully grown oocytes at the germinal vesicle stage. When cocultured oocytes were allowed to resume meiosis, the 74 and 21 kDa proteins were synthesized but no longer phosphorylated even though intercellular coupling between the two cell types was maintained during radiolabeling. It appears therefore: (a) that the different protein kinase activity of growing and fully grown germinal vesicle-stage mouse oocytes is related to the differentiative state of granulosa cells, and (b) that the regulation of oocyte protein phosphorylation activity by granulosa cells is dependent on the meiotic stage of the oocyte.

  10. Morphological docking of secretory vesicles

    PubMed Central

    2010-01-01

    Calcium-dependent secretion of neurotransmitters and hormones is essential for brain function and neuroendocrine-signaling. Prior to exocytosis, neurotransmitter-containing vesicles dock to the target membrane. In electron micrographs of neurons and neuroendocrine cells, like chromaffin cells many synaptic vesicles (SVs) and large dense-core vesicles (LDCVs) are docked. For many years the molecular identity of the morphologically docked state was unknown. Recently, we resolved the minimal docking machinery in adrenal medullary chromaffin cells using embryonic mouse model systems together with electron-microscopic analyses and also found that docking is controlled by the sub-membrane filamentous (F-)actin. Currently it is unclear if the same docking machinery operates in synapses. Here, I will review our docking assay that led to the identification of the LDCV docking machinery in chromaffin cells and also discuss whether identical docking proteins are required for SV docking in synapses. PMID:20577884

  11. High salt primes a specific activation state of macrophages, M(Na).

    PubMed

    Zhang, Wu-Chang; Zheng, Xiao-Jun; Du, Lin-Juan; Sun, Jian-Yong; Shen, Zhu-Xia; Shi, Chaoji; Sun, Shuyang; Zhang, Zhiyuan; Chen, Xiao-Qing; Qin, Mu; Liu, Xu; Tao, Jun; Jia, Lijun; Fan, Heng-Yu; Zhou, Bin; Yu, Ying; Ying, Hao; Hui, Lijian; Liu, Xiaolong; Yi, Xianghua; Liu, Xiaojing; Zhang, Lanjing; Duan, Sheng-Zhong

    2015-08-01

    High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na). PMID:26206316

  12. Prime Time.

    ERIC Educational Resources Information Center

    Piele, Donald T.

    1982-01-01

    The design of a computer program to efficiently generate prime numbers is discussed. Programs for many different brands of home computers are listed, with suggestions of ways the programs can be speeded up. It is noted everyone seems to have a favorite program, but that every program can be improved. (MP)

  13. Use of BABA and INA As Activators of a Primed State in the Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Martínez-Aguilar, Keren; Ramírez-Carrasco, Gabriela; Hernández-Chávez, José Luis; Barraza, Aarón; Alvarez-Venegas, Raúl

    2016-01-01

    To survive in adverse conditions, plants have evolved complex mechanisms that “prime” their defense system to respond and adapt to stresses. Their competence to respond to such stresses fundamentally depends on its capacity to modulate the transcriptome rapidly and specifically. Thus, chromatin dynamics is a mechanism linked to transcriptional regulation and enhanced defense in plants. For example, in Arabidopsis, priming of the SA-dependent defense pathway is linked to histone lysine methylation. Such modifications could create a memory of the primary infection that is associated with an amplified gene response upon exposure to a second stress-stimulus. In addition, the priming status of a plant for induced resistance can be inherited to its offspring. However, analyses on the molecular mechanisms of generational and transgenerational priming in the common bean (Phaseolus vulagris L.), an economically important crop, are absent. Here, we provide evidence that resistance to P. syringae pv. phaseolicola infection was induced in the common bean with the synthetic priming activators BABA and INA. Resistance was assessed by evaluating symptom appearance, pathogen accumulation, changes in gene expression of defense genes, as well as changes in the H3K4me3 and H3K36me3 marks at the promoter-exon regions of defense-associated genes. We conclude that defense priming in the common bean occurred in response to BABA and INA and that these synthetic activators primed distinct genes for enhanced disease resistance. We hope that an understanding of the molecular changes leading to defense priming and pathogen resistance will provide valuable knowledge for producing disease-resistant crop varieties by exposing parental plants to priming activators, as well as to the development of novel plant protection chemicals that stimulate the plant's inherent disease resistance mechanisms. PMID:27242854

  14. The Affective Regulation of Cognitive Priming

    PubMed Central

    Storbeck, Justin; Clore, Gerald L.

    2008-01-01

    Semantic and affective priming are classic effects observed in cognitive and social psychology, respectively. We discovered that affect regulates such priming effects. In Experiment 1, positive and negative moods were induced prior to one of three priming tasks; evaluation, categorization, or lexical decision. As predicted, positive affect led to both affective priming (evaluation task) and semantic priming (category and lexical decision tasks). However, negative affect inhibited such effects. In Experiment 2, participants in their natural affective state completed the same priming tasks as in Experiment 1. As expected, affective priming (evaluation task) and category priming (categorization and lexical decision tasks) were observed in such resting affective states. Hence, we conclude that negative affect inhibits semantic and affective priming. These results support recent theoretical models, which suggest that positive affect promotes associations among strong and weak concepts, and that negative affect impairs such associations (Kuhl, 2000; Clore & Storbeck, 2006). PMID:18410195

  15. An ab initio calculation of the zero-field splitting parameters of the 3A-double prime state of formaldehyde

    NASA Technical Reports Server (NTRS)

    Davidson, E. R.; Ellenbogen, J. C.; Langhoff, S. R.

    1980-01-01

    The spin dipole-dipole and spin-orbit contributions to the zero-field splitting of the 3A-double prime state of formaldehyde have been evaluated at the excited state experimental geometry. Ab initio CI wave functions were generated from a Dunning double zeta plus polarization bases set using 3A-double prime rhf orbitals. Twelve states of each symmetry were used to evaluate the second-order spin-orbit effect. The resulting values of D and E were 0.19 and 0.03 kayser with the principal magnetic axes rotated 36 deg from the CO bond. The values of alpha and beta relative to the inertial axes were calculated to be 0.03 and 0.01 kayser compared to the experimental values of 0.05 plus or minus 0.01 and 0.02 plus or minus 0.02 kayser.

  16. Preeclampsia and Extracellular Vesicles.

    PubMed

    Gilani, Sarwat I; Weissgerber, Tracey L; Garovic, Vesna D; Jayachandran, Muthuvel

    2016-09-01

    Preeclampsia is a hypertensive pregnancy disorder characterized by development of hypertension and proteinuria after 20 weeks of gestation that remains a leading cause of maternal and neonatal morbidity and mortality. While preeclampsia is believed to result from complex interactions between maternal and placental factors, the proximate pathophysiology of this syndrome remains elusive. Cell-to-cell communication is a critical signaling mechanism for feto-placental development in normal pregnancies. One mechanism of cellular communication relates to activated cell-derived sealed membrane vesicles called extracellular vesicles (EVs). The concentrations and contents of EVs in biological fluids depend upon their cells of origin and the stimuli which trigger their production. Research on EVs in preeclampsia has focused on EVs derived from the maternal vasculature (endothelium, vascular smooth muscle) and blood (erythrocytes, leukocytes, and platelets), as well as placental syncytiotrophoblasts. Changes in the concentrations and contents of these EVs may contribute to the pathophysiology of preeclampsia by accentuating the pro-inflammatory and pro-coagulatory states of pregnancy. This review focuses on possible interactions among placental- and maternal-derived EVs and their contents in the initiation and progression of the pathogenesis of preeclampsia. Understanding the contributions of EVs in the pathogenesis of preeclampsia may facilitate their use as diagnostic and prognostic biomarkers. PMID:27590522

  17. The State's Prime Numbers

    ERIC Educational Resources Information Center

    Colorado Department of Education, 2005

    2005-01-01

    This standards review is the first in a series of annual reviews of the Colorado Model Content Standards. Its purpose is to identify student performance over time on measures of exiting mathematics standards, identify ways to affirm and strengthen standards and more clearly articulate the practices used by Colorado schools to promote student…

  18. High- and Low-Mobility Stages in the Synaptic Vesicle Cycle

    PubMed Central

    Kamin, Dirk; Lauterbach, Marcel A.; Westphal, Volker; Keller, Jan; Schönle, Andreas; Hell, Stefan W.; Rizzoli, Silvio O.

    2010-01-01

    Abstract Synaptic vesicles need to be mobile to reach their release sites during synaptic activity. We investigated vesicle mobility throughout the synaptic vesicle cycle using both conventional and subdiffraction-resolution stimulated emission depletion fluorescence microscopy. Vesicle tracking revealed that recently endocytosed synaptic vesicles are highly mobile for a substantial time period after endocytosis. They later undergo a maturation process and integrate into vesicle clusters where they exhibit little mobility. Despite the differences in mobility, both recently endocytosed and mature vesicles are exchanged between synapses. Electrical stimulation does not seem to affect the mobility of the two types of vesicles. After exocytosis, the vesicle material is mobile in the plasma membrane, although the movement appears to be somewhat limited. Increasing the proportion of fused vesicles (by stimulating exocytosis while simultaneously blocking endocytosis) leads to substantially higher mobility. We conclude that both high- and low-mobility states are characteristic of synaptic vesicle movement. PMID:20643088

  19. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  20. On the Computing Potential of Intracellular Vesicles

    PubMed Central

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal ‘circuitry’ and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a ‘vesicle modification’ of the archetypal CBC ‘billiard ball model’ of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle ‘programming’ in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  1. On the Computing Potential of Intracellular Vesicles.

    PubMed

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing. PMID:26431435

  2. Imaging Exocytosis of Single Synaptic Vesicles at a Fast CNS Presynaptic Terminal.

    PubMed

    Midorikawa, Mitsuharu; Sakaba, Takeshi

    2015-11-01

    Synaptic vesicles are tethered to the active zone where they are docked/primed so that they can fuse rapidly upon Ca(2+) influx. To directly study these steps at a CNS presynaptic terminal, we used total internal reflection fluorescence (TIRF) microscopy at the live isolated calyx of Held terminal and measured the movements of single synaptic vesicle just beneath the plasma membrane. Only a subset of vesicles within the TIRF field underwent exocytosis. Following exocytosis, new vesicles (newcomers) approached the membrane and refilled the release sites slowly with a time constant of several seconds. Uniform elevation of the intracellular Ca(2+) using flash photolysis elicited an exocytotic burst followed by the sustained component, representing release of the readily releasable vesicles and vesicle replenishment, respectively. Surprisingly, newcomers were not released within a second of high Ca(2+). Instead, already-tethered vesicles became release-ready and mediated the replenishment. Our results reveal an important feature of conventional synapses. PMID:26539890

  3. The Pharmacology of Nociceptor Priming

    PubMed Central

    Kandasamy, Ram

    2015-01-01

    Nociceptors and neurons in the central nervous system (CNS) that receive nociceptive input show remarkable plasticity in response to injury. This plasticity is thought to underlie the development of chronic pain states. Hence, further understanding of the molecular mechanisms driving and maintaining this plasticity has the potential to lead to novel therapeutic approaches for the treatment of chronic pain states. An important concept in pain plasticity is the presence and persistence of “hyperalgesic priming.” This priming arises from an initial injury and results in a remarkable susceptibility to normally subthreshold noxious inputs causing a prolonged pain state in primed animals. Here we describe our current understanding of how this priming is manifested through changes in signaling in the primary nociceptor as well as through memory like alterations at CNS synapses. Moreover, we discuss how commonly utilized analgesics, such as opioids, enhance priming therefore potentially contributing to the development of persistent pain states. Finally we highlight where these priming models draw parallels to common human chronic pain conditions. Collectively, these advances in our understanding of pain plasticity reveal a variety of targets for therapeutic intervention with the potential to reverse rather than palliate chronic pain states. PMID:25846612

  4. Temporal separation of vesicle release from vesicle fusion during exocytosis.

    PubMed

    Troyer, Kevin P; Wightman, R Mark

    2002-08-01

    During exocytosis, vesicles in secretory cells fuse with the cellular membrane and release their contents in a Ca2+-dependent process. Release occurs initially through a fusion pore, and its rate is limited by the dissociation of the matrix-associated contents. To determine whether this dissociation is promoted by osmotic forces, we have examined the effects of elevated osmotic pressure on release and extrusion from vesicles at mast and chromaffin cells. The identity of the molecules released and the time course of extrusion were measured with fast scan cyclic voltammetry at carbon fiber microelectrodes. In external solutions of high osmolarity, release events following entry of divalent ions (Ba2+ or Ca2+) were less frequent. However, the vesicles appeared to be fused to the membrane without extruding their contents, since the maximal observed concentrations of events were less than 7% of those evoked in isotonic media. Such an isolated, intermediate fusion state, which we term "kiss-and-hold," was confirmed by immunohistochemistry at chromaffin cells. Transient exposure of cells in the kiss and hold state to isotonic solutions evoked massive release. These results demonstrate that an osmotic gradient across the fusion pore is an important driving force for exocytotic extrusion of granule contents from secretory cells following fusion pore formation. PMID:12034731

  5. Electromagnetic decays of radially excited mesons {pi}{sup 0 Prime }, {rho}{sup 0 Prime }, {omega}{sup 0 Prime }, and production of {pi}{sup 0 Prime} at lepton colliders

    SciTech Connect

    Arbuzov, A. B. Kuraev, E. A.; Volkov, M. K.

    2011-05-15

    Radiative decays {pi}{sup 0}({pi}{sup 0 Prime }) {yields} {gamma} + {gamma}, {pi}{sup 0 Prime} {yields} {rho}{sup 0}({omega}) + {gamma}, {rho}{sup 0 Prime }({omega} Prime ) {yields} {pi}{sup 0} + {gamma}, {rho}{sup 0 Prime }({omega} Prime ) {yields} {pi}{sup 0 Prime} + {gamma}, and some processes of {pi}{sup 0 Prime} production at lepton colliders are considered in the framework of the nonlocal SU(2) Multiplication-Sign SU(2) Nambu-Jona-Lasinio model. Mixing of the radially excited and the ground meson states is taken into account. Numerical results for the decay and production processes are presented.

  6. Vesicle trafficking and cell surface membrane patchiness.

    PubMed

    Tang, Q; Edidin, M

    2001-07-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  7. Dynamics of a compound vesicle: numerical simulations

    NASA Astrophysics Data System (ADS)

    Veerapaneni, Shravan; Young, Yuan-Nan; Vlahovska, Petia; Blawzdziewicz, Jerzy

    2010-11-01

    Vesicles (self-enclosing lipid membranes) in simple linear flows are known to exhibit rich dynamics such as tank-treading, tumbling, trembling (swinging), and vacillating breathing. Recently, vesicles have been used as a multi-functional platform for drug-delivery. In this work, the dynamics of simplified models for such compound vesicles is investigated numerically using a state-of-the-art boundary-integral code that has been validated with high accuracy and efficiency. Results show that for a vesicle enclosing a rigid particle in a simple shear flow, transition from tank-treading to tumbling is possible even in the absence of viscosity mismatch in the interior and exterior fluids. We will discuss the shape transformations, multiple particle interactions and the flow properties. Comparison with results from analytical modeling gives insights to the underlying physics for such novel dynamics.

  8. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody

    SciTech Connect

    Hirano, Kazumi; Van Kuppevelt, Toin H.; Nishihara, Shoko

    2013-01-18

    Highlights: ► Fas transcript increases during the transition from the naïve to the primed state. ► 3OST-5 transcript, the HS4C3 epitope synthesis gene, increases during the transition. ► Fas signaling regulates the transition from the naïve to the primed state. ► HS4C3-binding epitope regulates the transition from the naïve to the primed state. ► Fas signaling is regulated by the HS4C3 epitope during the transition. -- Abstract: The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called “primed state” compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope

  9. Problems with Primes

    ERIC Educational Resources Information Center

    Melrose, Tim; Scott, Paul

    2005-01-01

    This article discusses prime numbers, defined as integers greater than 1 that are divisible only by only themselves and the number 1. A positive integer greater than 1 that is not a prime is called composite. The number 1 itself is considered neither prime nor composite. As the name suggests, prime numbers are one of the most basic but important…

  10. Learning about Primes

    ERIC Educational Resources Information Center

    McEachran, Alec

    2008-01-01

    In this article, the author relates his unhappy experience in learning about prime numbers at secondary school. To introduce primes, a teacher first told students a definition of a prime number, then students were taught how to find prime numbers. Students defined and listed them and at some later point were tested on their memory of both the…

  11. Electrohydrodynamics Of Multicomponent Vesicles

    NASA Astrophysics Data System (ADS)

    Gera, Prerna; Salac, David

    2015-11-01

    The addition of cholesterol into a lipid membrane induces the formation of distinct domains. These domains try to minimize the overall energy of the system by coalescence and migration. The application of electric fields will induce flow of these membrane domains and influence the rate at which they coarsen. In this work the electrohydrodynamics of multicomponent vesicles is numerically modelled. The method uses a Cahn-Hilliard-Cook model of the lipid domains restricted to a deforming three-dimensional vesicle and will be briefly discussed. Sample results will be presented and compared to experimental observations. This work supported by NSF Grant #1253739.

  12. A Flt3 and Ras-dependent Pathway Primes B Cell Development by Inducing A State of IL7-responsiveness

    PubMed Central

    Li, Lin-Xi; Goetz, Christine A.; Katerndahl, Casey D.S.; Sakaguchi, Nobuo; Farrar, Michael A.

    2009-01-01

    Ras plays an important role in B cell development. However, the stage at which Ras governs B cell development remains unclear. Moreover, the upstream receptors and downstream effectors of Ras that govern B cell differentiation remain undefined. Using mice that express a dominant negative form of Ras, we demonstrate that Ras-mediated signaling plays a critical role in the development of common lymphoid progenitors (CLP). This developmental block parallels that found in flt3−/− mice, suggesting that Flt3 is an important upstream activator of Ras in early B cell progenitors. Ras inhibition impaired proliferation of CLP and pre-pro-B cells but not pro-B cells. Rather, Ras promotes STAT5-dependent pro-B cell differentiation by enhancing IL7Rα levels and suppressing socs2 and socs3 expression. Our results suggest a model in which Flt3/Ras-dependent signals play a critical role in B cell development by priming early B cell progenitors for subsequent STAT5-dependent B cell differentiation. PMID:20065110

  13. Measurement of extracellular vesicles as biomarkers of consequences or cause complications of pathological states, and prognosis of both evolution and therapeutic safety/efficacy.

    PubMed

    Amiral, Jean; Seghatchian, Jerard

    2016-08-01

    Utility of EVs, as biomarkers of cause or consequence of various pathological complications, and prognosis of blood components' therapy in terms of safety/efficacy and their potential associated hazards, primed by EVs involvements in pro-inflammatory, immunomodulatory and activations of both pro/anti-coagulatory and others associated pathways, as well as various cellular cross talks, are highlighted as the fundamental. Today EVs are becoming the "buzz" words of the current diagnosis, development and research [DDR] strategies, with the aim of ensuring safer therapeutic approaches in the current clinical practices, also incorporating their potential in long term cost effectiveness in health care systems. The main focus of this manuscript is to review the current opinions in some fundamental areas of EVs involvements in health and diseases. Firstly, our goal is highlighting what are EVs/MVs/MPs and how are they generated in physiology, pathology or blood products; classification and significance of EVs generated in vivo; followed by consequences and physiological/pathological induced effects of EVs generation in vivo. Secondly, specific cell origin EVs and association with malignancy; focus on EVs carrying TF and annexin V as a protective protein for harmful effects of EVs, and associations with LA; and incidence of anti-annexin V antibodies are also discussed. Thirdly, utility of EVs is presented: as diagnostic tools of disease markers; prognosis and follow-up of clinical states; evaluation of therapy efficacy; quality and risk assessment of blood products; followed by the laboratory tools for exploring, characterizing and measuring EVs, and/or their associated activity, using our own experiences of capture based assays. Finally, in perspective, the upcoming low volume sampling, fast, reliable and reproducibility and friendly use laboratory tools and the standardization of measurement methods are highlighted with the beneficial effects that we are witnessing in both

  14. Motor Priming in Neurorehabilitation

    PubMed Central

    Stoykov, Mary Ellen; Madhavan, Sangeetha

    2014-01-01

    Priming is a type of implicit learning wherein a stimulus prompts a change in behavior. Priming has been long studied in the field of psychology. More recently, rehabilitation researchers have studied motor priming as a possible way to facilitate motor learning. For example, priming of the motor cortex is associated with changes in neuroplasticity that are associated with improvements in motor performance. Of the numerous motor priming paradigms under investigation, only a few are practical for the current clinical environment, and the optimal priming modalities for specific clinical presentations are not known. Accordingly, developing an understanding of the various types of motor priming paradigms and their underlying neural mechanisms is an important step for therapists in neurorehabilitation. Most importantly, an understanding of the methods and their underlying mechanisms is essential for optimizing rehabilitation outcomes. The future of neurorehabilitation is likely to include these priming methods, which are delivered prior to or in conjunction with primary neurorehabilitation therapies. In this Special Interest article we discuss those priming paradigms that are supported by the greatest amount of evidence including: (i) stimulation-based priming, (ii) motor imagery and action observation, (iii) sensory priming, (iv) movement-based priming, and (v) pharmacological priming. PMID:25415551

  15. The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome.

    PubMed

    Frank, Matthew G; Weber, Michael D; Fonken, Laura K; Hershman, Sarah A; Watkins, Linda R; Maier, Steven F

    2016-07-01

    The alarmin high mobility group box-1 (HMGB1) has been implicated as a key factor mediating neuroinflammatory processes. Recent findings suggest that the redox state of HMGB1 is a critical molecular feature of HMGB1 such that the reduced form (fr-HMGB1) is chemotactic, while the disulfide form (ds-HMGB1) is pro-inflammatory. The present study examined the neuroinflammatory effects of these molecular forms as well as the ability of these forms to prime the neuroinflammatory and microglial response to an immune challenge. To examine the neuroinflammatory effects of these molecular forms in vivo, animals were administered intra-cisterna magna (ICM) a single dose of fr-HMGB1 (10μg), ds-HMGB1 (10μg) or vehicle and basal pro-inflammatory effects were measured 2 and 24h post-injection in hippocampus. Results of this initial experiment demonstrated that ds-HMGB1 increased hippocampal pro-inflammatory mediators at 2h (NF-κBIα mRNA, NLRP3 mRNA and IL-1β protein) and 24h (NF-κBIα mRNA, TNFα mRNA, and NLRP3 protein) after injection. fr-HMGB1 had no effect on these mediators. These neuroinflammatory effects of ds-HMGB1 suggested that ds-HMGB1 may function to prime the neuroinflammatory response to a subsequent immune challenge. To assess the neuroinflammatory priming effects of these molecular forms, animals were administered ICM a single dose of fr-HMGB1 (10μg), ds-HMGB1 (10μg) or vehicle and 24h after injection, animals were challenged with LPS (10μg/kg IP) or vehicle. Neuroinflammatory mediators and the sickness response (3, 8 and 24h after injection) were measured 2h after immune challenge. We found that ds-HMGB1 potentiated the neuroinflammatory (NF-κBIα mRNA, TNFα mRNA, IL-1β mRNA, IL-6 mRNA, NLRP3 mRNA and IL-1β protein) and sickness response (reduced social exploration) to LPS challenge. fr-HMGB1 failed to potentiate the neuroinflammatory response to LPS. To examine whether these molecular forms of HMGB1 directly induce neuroinflammatory effects in

  16. Elasticity of vesicles affects hairless mouse skin structure and permeability.

    PubMed

    van den Bergh, B A; Bouwstra, J A; Junginger, H E; Wertz, P W

    1999-12-01

    One of the possibilities for increasing the penetration rate of drugs through the skin is the use of vesicular systems. Currently, special attention is paid to the elastic properties of liquid-state vesicles, which are supposed to have superior properties compared to gel-state vesicles with respect to skin interactions. In this study, the effects of vesicles on hairless mouse skin, both in vivo and in vitro, were studied in relation to the composition of vesicles. The interactions of elastic vesicles containing the single chain surfactant octaoxyethylene laurate-ester (PEG-8-L) and sucrose laurate-ester (L-595) with hairless mouse skin were studied, in vivo, after non-occlusive application for 1, 3 and 6 h. The skin ultrastructure was examined by ruthenium tetroxide electron microscopy (TEM) and histology. The extent, to which vesicle constituents penetrated into the stratum corneum, was quantified by thin layer chromatography (TLC). The interactions of the elastic vesicles containing PEG-8-L and L-595 surfactants were compared with those observed after treatment with rigid vesicles containing the surfactant sucrose stearate-ester (Wasag-7). Furthermore, skin permeability experiments were carried out to investigate the effect of treatment with PEG-8-L micelles, elastic vesicles (containing PEG-8-L and L-595 surfactants) or rigid Wasag-7 vesicles on the 3H(2)O transport through hairless mouse skin, in vitro, after non-occlusive application. Treatment of hairless mouse skin with the elastic vesicles affected the ultrastructure of the stratum corneum: distinct regions with lamellar stacks derived from the vesicles were observed in intercellular spaces of the stratum corneum. These stacks disrupted the organization of skin bilayers leading to an increased skin permeability, whereas no changes in the ultrastructure of the underlying viable epidermis were observed. Treatment with rigid Wasag-7 vesicles did not affect the skin ultrastructure or skin permeability. TLC

  17. Repetition Priming in Music

    ERIC Educational Resources Information Center

    Hutchins, Sean; Palmer, Caroline

    2008-01-01

    The authors explore priming effects of pitch repetition in music in 3 experiments. Musically untrained participants heard a short melody and sang the last pitch of the melody as quickly as possible. Each experiment manipulated (a) whether or not the tone to be sung (target) was heard earlier in the melody (primed) and (b) the prime-target distance…

  18. How pure are your vesicles?

    PubMed

    Webber, Jason; Clayton, Aled

    2013-01-01

    We propose a straightforward method to estimate the purity of vesicle preparations by comparing the ratio of nano-vesicle counts to protein concentration, using tools such as the increasingly available NanoSight platform and a colorimetric protein assay such as the BCA-assay. Such an approach is simple enough to apply to every vesicle preparation within a given laboratory, assisting researchers as a routine quality control step. Also, the approach may aid in comparing/standardising vesicle purity across diverse studies, and may be of particular importance in evaluating vesicular biomarkers. We herein propose some criteria to aid in the definition of pure vesicles. PMID:24009896

  19. Repetition priming in music.

    PubMed

    Hutchins, Sean; Palmer, Caroline

    2008-06-01

    The authors explore priming effects of pitch repetition in music in 3 experiments. Musically untrained participants heard a short melody and sang the last pitch of the melody as quickly as possible. Each experiment manipulated (a) whether or not the tone to be sung (target) was heard earlier in the melody (primed) and (b) the prime-target distance (measured in events). Experiment 1 used variable-length melodies, whereas Experiments 2 and 3 used fixed-length melodies. Experiment 3 changed the timbre of the target tone. In all experiments, fast-responding participants produced repeated tones faster than nonrepeated tones, and this repetition benefit decreased as prime-target distances increased. All participants produced expected tonic endings faster than less expected nontonic endings. Repetition and tonal priming effects are compared with harmonic priming effects in music and with repetition priming effects in language. PMID:18505332

  20. Poking vesicles in silico

    NASA Astrophysics Data System (ADS)

    Barlow, Ben; Bertrand, Martin; Joos, Bela

    2014-03-01

    The Atomic Force Microscope (AFM) is used to poke cells and study their mechanical properties. Using Coarse-Grained Molecular Dynamics simulations, we study the deformation and relaxation of lipid bilayer vesicles, when poked with a constant force. The relaxation time, equilibrium area expansion, and surface tension of the vesicle membrane are studied over a range of applied forces. The relaxation time exhibits a strong force-dependence. Our force-compression curves show a strong similarity with results from a recent experiment by Schafer et al. (Langmuir, 2013). They used an AFM to ``poke'' adherent giant liposomes with constant nanonewton forces and observed the resulting deformation with a Laser Scanning Confocal Microscope. Results of such experiments, whether on vesicles or cells, are often interpreted in terms of dashpots and springs. This simple approach used to describe the response of a whole cell --complete with cytoskeleton, organelles etc.-- can be problematic when trying to measure the contribution of a single cell component. Our modeling is a first step in a ``bottom-up'' approach where we investigate the viscoelastic properties of an in silico cell prototype with constituents added step by step. Supported by NSERC (Canada).

  1. Clinical Resting-state fMRI in the Preoperative Setting: Are We Ready for Prime Time?

    PubMed

    Lee, Megan H; Miller-Thomas, Michelle M; Benzinger, Tammie L; Marcus, Daniel S; Hacker, Carl D; Leuthardt, Eric C; Shimony, Joshua S

    2016-02-01

    The purpose of this manuscript is to provide an introduction to resting-state functional magnetic resonance imaging (RS-fMRI) and to review the current application of this new and powerful technique in the preoperative setting using our institute's extensive experience. RS-fMRI has provided important insights into brain physiology and is an increasingly important tool in the clinical setting. As opposed to task-based functional MRI wherein the subject performs a task while being scanned, RS-fMRI evaluates low-frequency fluctuations in the blood oxygen level dependent (BOLD) signal while the subject is at rest. Multiple resting state networks (RSNs) have been identified, including the somatosensory, language, and visual networks, which are of primary importance for presurgical planning. Over the past 4 years, we have performed over 300 RS-fMRI examinations in the clinical setting and these have been used to localize eloquent somatosensory and language cortices before brain tumor resection. RS-fMRI is particularly useful in this setting for patients who are unable to cooperate with the task-based paradigm, such as young children or those who are sedated, paretic, or aphasic.Although RS-fMRI is still investigational, our experience indicates that this method is ready for clinical application in the presurgical setting. PMID:26848556

  2. Priming effects on the perceived grouping of ambiguous dot patterns.

    PubMed

    Kurylo, Daniel D; Bukhari, Farhan

    2015-09-01

    For ambiguous stimuli, complex dynamics guide processes of perceptual grouping. Previous studies have suggested two opposing effects on grouping that are produced by the preliminary stimulus state: one that enhances grouping towards the existing structure, and another that opposes this structure. To examine effects of the preliminary state on grouping directly, measurements were made of perceived grouping of dot patterns that followed a visual prime. Three stimuli were presented in sequence: prime, target, and mask. Targets were composed of an evenly spaced dot grid in which grouping was established by similarity in luminance. Subjects indicated the dominant perceived grouping. The prime either corresponded to or opposed the prevailing organization of the target. Contrary to the hypothesis, solid-line primes biased grouping away from the structure of the prime, even when the prevailing organization of dot patterns strongly favored the primes' structure. This effect occurred, although to a lesser extent, when primes did not occupy the same location of targets, but were presented in a marginal area surrounding the grid. Priming effects did not occur for primes constructed of dot patterns. Effects found here may be attributed to a forward masking effect by primes, which more effectively disrupts grouping of patterns matched to the prime. Effects may also be attributed to a type of pattern contrast, in which a grouped pattern dissimilar to primes gains salience. For the pattern contrast model, the partial activation of multiple grouped configurations is compared to the pattern of the solid-line primes. PMID:25281427

  3. A Well-Defined Readily Releasable Pool with Fixed Capacity for Storing Vesicles at Calyx of Held

    PubMed Central

    Mahfooz, Kashif; Singh, Mahendra; Renden, Robert; Wesseling, John F.

    2016-01-01

    The readily releasable pool (RRP) of vesicles is a core concept in studies of presynaptic function. However, operating principles lack consensus definition and the utility for quantitative analysis has been questioned. Here we confirm that RRPs at calyces of Held from 14 to 21 day old mice have a fixed capacity for storing vesicles that is not modulated by Ca2+. Discrepancies with previous studies are explained by a dynamic flow-through pool, established during heavy use, containing vesicles that are released with low probability despite being immediately releasable. Quantitative analysis ruled out a posteriori explanations for the vesicles with low release probability, such as Ca2+-channel inactivation, and established unexpected boundary conditions for remaining alternatives. Vesicles in the flow-through pool could be incompletely primed, in which case the full sequence of priming steps downstream of recruitment to the RRP would have an average unitary rate of at least 9/s during heavy use. Alternatively, vesicles with low and high release probability could be recruited to distinct types of release sites; in this case the timing of recruitment would be similar at the two types, and the downstream transition from recruited to fully primed would be much faster. In either case, further analysis showed that activity accelerates the upstream step where vesicles are initially recruited to the RRP. Overall, our results show that the RRP can be well defined in the mathematical sense, and support the concept that the defining mechanism is a stable group of autonomous release sites. PMID:27035349

  4. A Well-Defined Readily Releasable Pool with Fixed Capacity for Storing Vesicles at Calyx of Held.

    PubMed

    Mahfooz, Kashif; Singh, Mahendra; Renden, Robert; Wesseling, John F

    2016-04-01

    The readily releasable pool (RRP) of vesicles is a core concept in studies of presynaptic function. However, operating principles lack consensus definition and the utility for quantitative analysis has been questioned. Here we confirm that RRPs at calyces of Held from 14 to 21 day old mice have a fixed capacity for storing vesicles that is not modulated by Ca2+. Discrepancies with previous studies are explained by a dynamic flow-through pool, established during heavy use, containing vesicles that are released with low probability despite being immediately releasable. Quantitative analysis ruled out a posteriori explanations for the vesicles with low release probability, such as Ca2+-channel inactivation, and established unexpected boundary conditions for remaining alternatives. Vesicles in the flow-through pool could be incompletely primed, in which case the full sequence of priming steps downstream of recruitment to the RRP would have an average unitary rate of at least 9/s during heavy use. Alternatively, vesicles with low and high release probability could be recruited to distinct types of release sites; in this case the timing of recruitment would be similar at the two types, and the downstream transition from recruited to fully primed would be much faster. In either case, further analysis showed that activity accelerates the upstream step where vesicles are initially recruited to the RRP. Overall, our results show that the RRP can be well defined in the mathematical sense, and support the concept that the defining mechanism is a stable group of autonomous release sites. PMID:27035349

  5. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    PubMed

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-01

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. PMID:27444383

  6. An ERP investigation of orthographic priming with superset primes.

    PubMed

    Ktori, Maria; Midgley, Katherine; Holcomb, Phillip J; Grainger, Jonathan

    2015-01-12

    Prime stimuli formed by inserting unrelated letters in a given target word (called "superset" primes) provide a means to modify the relative positions of the letters shared by prime and target. Here we examined the time-course of superset priming effects in an ERP study using the sandwich-priming paradigm. We compared the effects of superset primes formed by the insertion of unrelated letters (e.g., maurkdet-MARKET), or by the insertion of hyphens (e.g., ma-rk-et-MARKET), with identity priming (e.g., market-MARKET), all measured relative to unrelated control primes. Behavioral data revealed significantly greater priming in the hyphen-insert condition compared with the letter-insert condition. In the ERP signal, letter-insert priming emerged later than hyphen-insert priming and produced a reversed priming effect in the N400 time-window compared with the more typical N400 priming effects seen for both hyphen-insert priming and identity priming. The different pattern of priming effects seen for letter-insert primes and hyphen-insert primes suggests that compared with identity priming, letter superset priming reflects the joint influence of: (1) a disruption in letter position information, and (2) an inhibitory influence of mismatching letters. PMID:25451126

  7. PRIME Lab Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    Hillegonds, D. J.; Mueller, K. A.; Ma, X.; Lipschutz, M. E.

    1996-03-01

    The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is one of three NSF national facilities for accelerator mass spectrometry (AMS), and is the only one capable of determining six cosmogenic radionuclides: 10Be, 14C, 26Al, 36Cl, 41Ca, and 129I. This abstract describes the current status of the radiocarbon analysis program at PRIME Lab.

  8. Building Numbers from Primes

    ERIC Educational Resources Information Center

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  9. Discovery: Prime Numbers

    ERIC Educational Resources Information Center

    de Mestre, Neville

    2008-01-01

    Prime numbers are important as the building blocks for the set of all natural numbers, because prime factorisation is an important and useful property of all natural numbers. Students can discover them by using the method known as the Sieve of Eratosthenes, named after the Greek geographer and astronomer who lived from c. 276-194 BC. Eratosthenes…

  10. Priming Gestures with Sounds

    PubMed Central

    Lemaitre, Guillaume; Heller, Laurie M.; Navolio, Nicole; Zúñiga-Peñaranda, Nicolas

    2015-01-01

    We report a series of experiments about a little-studied type of compatibility effect between a stimulus and a response: the priming of manual gestures via sounds associated with these gestures. The goal was to investigate the plasticity of the gesture-sound associations mediating this type of priming. Five experiments used a primed choice-reaction task. Participants were cued by a stimulus to perform response gestures that produced response sounds; those sounds were also used as primes before the response cues. We compared arbitrary associations between gestures and sounds (key lifts and pure tones) created during the experiment (i.e. no pre-existing knowledge) with ecological associations corresponding to the structure of the world (tapping gestures and sounds, scraping gestures and sounds) learned through the entire life of the participant (thus existing prior to the experiment). Two results were found. First, the priming effect exists for ecological as well as arbitrary associations between gestures and sounds. Second, the priming effect is greatly reduced for ecologically existing associations and is eliminated for arbitrary associations when the response gesture stops producing the associated sounds. These results provide evidence that auditory-motor priming is mainly created by rapid learning of the association between sounds and the gestures that produce them. Auditory-motor priming is therefore mediated by short-term associations between gestures and sounds that can be readily reconfigured regardless of prior knowledge. PMID:26544884

  11. Priming Ability Emotional Intelligence

    ERIC Educational Resources Information Center

    Schutte, Nicola S.; Malouff, John M.

    2012-01-01

    Two studies examined whether priming self-schemas relating to successful emotional competency results in better emotional intelligence performance. In the first study participants were randomly assigned to a successful emotional competency self-schema prime condition or a control condition and then completed an ability measure of emotional…

  12. Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis

    PubMed Central

    Man, Kwun Nok M; Imig, Cordelia; Walter, Alexander M; Pinheiro, Paulo S; Stevens, David R; Rettig, Jens; Sørensen, Jakob B; Cooper, Benjamin H; Brose, Nils; Wojcik, Sonja M

    2015-01-01

    It is currently unknown whether the molecular steps of large dense-core vesicle (LDCV) docking and priming are identical to the corresponding reactions in synaptic vesicle (SV) exocytosis. Munc13s are essential for SV docking and priming, and we systematically analyzed their role in LDCV exocytosis using chromaffin cells lacking individual isoforms. We show that particularly Munc13-2 plays a fundamental role in LDCV exocytosis, but in contrast to synapses lacking Munc13s, the corresponding chromaffin cells do not exhibit a vesicle docking defect. We further demonstrate that ubMunc13-2 and Munc13-1 confer Ca2+-dependent LDCV priming with similar affinities, but distinct kinetics. Using a mathematical model, we identify an early LDCV priming step that is strongly dependent upon Munc13s. Our data demonstrate that the molecular steps of SV and LDCV priming are very similar while SV and LDCV docking mechanisms are distinct. DOI: http://dx.doi.org/10.7554/eLife.10635.001 PMID:26575293

  13. Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations

    PubMed Central

    Santana, Steven M.; Antonyak, Marc A.; Cerione, Richard A.

    2015-01-01

    Extracellular shed vesicles, including exosomes and microvesicles, are disseminated throughout the body and represent an important conduit of cell communication. Cancer-cell-derived microvesicles have potential as a cancer biomarker as they help shape the tumor microenvironment to promote the growth of the primary tumor and prime the metastatic niche. It is likely that, in cancer cell cultures, the two constituent extracellular shed vesicle subpopulations, observed in dynamic light scattering, represent an exosome population and a cancer-cell-specific microvesicle population and that extracellular shed vesicle size provides information about provenance and cargo. We have designed and implemented a novel microfluidic technology that separates microvesicles, as a function of diameter, from heterogeneous populations of cancer-cell-derived extracellular shed vesicles. We measured cargo carried by the microvesicle subpopulation processed through this microfluidic platform. Such analyses could enable future investigations to more accurately and reliably determine provenance, functional activity, and mechanisms of transformation in cancer. PMID:25342569

  14. Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations.

    PubMed

    Santana, Steven M; Antonyak, Marc A; Cerione, Richard A; Kirby, Brian J

    2014-12-01

    Extracellular shed vesicles, including exosomes and microvesicles, are disseminated throughout the body and represent an important conduit of cell communication. Cancer-cell-derived microvesicles have potential as a cancer biomarker as they help shape the tumor microenvironment to promote the growth of the primary tumor and prime the metastatic niche. It is likely that, in cancer cell cultures, the two constituent extracellular shed vesicle subpopulations, observed in dynamic light scattering, represent an exosome population and a cancer-cell-specific microvesicle population and that extracellular shed vesicle size provides information about provenance and cargo. We have designed and implemented a novel microfluidic technology that separates microvesicles, as a function of diameter, from heterogeneous populations of cancer-cell-derived extracellular shed vesicles. We measured cargo carried by the microvesicle subpopulation processed through this microfluidic platform. Such analyses could enable future investigations to more accurately and reliably determine provenance, functional activity, and mechanisms of transformation in cancer. PMID:25342569

  15. Nanotube-Enabled Vesicle-Vesicle Communication: A Computational Model.

    PubMed

    Zhang, Liuyang; Wang, Xianqiao

    2015-07-01

    Cell-to-cell communications via the tunneling nanotubes or gap junction channels are vital for the development and maintenance of multicellular organisms. Instead of these intrinsic communication pathways, how to design artificial communication channels between cells remains a challenging but interesting problem. Here, we perform dissipative particle dynamics (DPD) simulations to analyze the interaction between rotational nanotubes (RNTs) and vesicles so as to provide a novel design mechanism for cell-to-cell communication. Simulation results have demonstrated that the RNTs are capable of generating local disturbance and promote vesicle translocation toward the RNTs. Through ligand pattern designing on the RNTs, we can find a suitable nanotube candidate with a specific ligand coating pattern for forming the RNT-vesicle network. The results also show that a RNT can act as a bridged channel between vesicles, which facilitates substance transfer. Our findings provide useful guidelines for the molecular design of patterned RNTs for creating a synthetic channel between cells. PMID:26266730

  16. Conscious contributions to subliminal priming.

    PubMed

    Jaśkowski, Piotr

    2008-03-01

    Choice reaction times to visual stimuli (targets) may be influenced by preceding subliminal stimuli (primes). Some authors reported a straight priming effect i.e., responses were faster when primes and targets called for the same response than when they called for different responses. Others found the reversed pattern of results. Eimer and Schlaghecken [Eimer, M. & Schlaghecken, F. (2002). Links between conscious awareness and response inhibition: evidence from masked priming. Psychonomic Bulletin &Review, 9, 514-520.] showed recently that straight priming occurs whenever a prime is not efficiently masked thereby the information provided by the prime is accessible for consciousness. In the present study, a hypothesis is tested that straight priming is due to mediation of consciousness. To test this hypothesis, prime validity was manipulated. We showed that even when no mask was used so that participants could fully and consciously perceive the prime and participants were informed that primes were mostly invalid, for the short prime-target ISI interval (100 ms) straight priming occurred. The priming was inverse when the ISI was 800 ms. This indicates that participants were able to use the information provided by the prime to prepare the response opposite to that cued by the prime but only if the time between the prime and the target was long enough. PMID:17126565

  17. Largest known twin primes and Sophie Germain primes

    NASA Astrophysics Data System (ADS)

    Indlekofer, Karl-Heinz; Járai, Antal

    The numbers 242206083* 2^38880+-1 are twin primes. The number p=2375063906985* 2^19380-1 is a Sophie Germain prime, i.e. p and 2p+1 are both primes. For p=4610194180515* 2^ 5056-1, the numbers p, p+2 and 2p+1 are all primes.

  18. Phospholipase Cη2 Activation Redirects Vesicle Trafficking by Regulating F-actin*

    PubMed Central

    Yamaga, Masaki; Kielar-Grevstad, D. Michelle; Martin, Thomas F. J.

    2015-01-01

    PI(4,5)P2 localizes to sites of dense core vesicle exocytosis in neuroendocrine cells and is required for Ca2+-triggered vesicle exocytosis, but the impact of local PI(4,5)P2 hydrolysis on exocytosis is poorly understood. Previously, we reported that Ca2+-dependent activation of phospholipase Cη2 (PLCη2) catalyzes PI(4,5)P2 hydrolysis, which affected vesicle exocytosis by regulating the activities of the lipid-dependent priming factors CAPS (also known as CADPS) and ubiquitous Munc13-2 in PC12 cells. Here we describe an additional role for PLCη2 in vesicle exocytosis as a Ca2+-dependent regulator of the actin cytoskeleton. Depolarization of neuroendocrine PC12 cells with 56 or 95 mm KCl buffers increased peak Ca2+ levels to ∼400 or ∼800 nm, respectively, but elicited similar numbers of vesicle exocytic events. However, 56 mm K+ preferentially elicited the exocytosis of plasma membrane-resident vesicles, whereas 95 mm K+ preferentially elicited the exocytosis of cytoplasmic vesicles arriving during stimulation. Depolarization with 95 mm K+ but not with 56 mm K+ activated PLCη2 to catalyze PI(4,5)P2 hydrolysis. The decrease in PI(4,5)P2 promoted F-actin disassembly, which increased exocytosis of newly arriving vesicles. Consistent with its role as a Ca2+-dependent regulator of the cortical actin cytoskeleton, PLCη2 localized with F-actin filaments. The results highlight the importance of PI(4,5)P2 for coordinating cytoskeletal dynamics with vesicle exocytosis and reveal a new role for PLCη2 as a Ca2+-dependent regulator of F-actin dynamics and vesicle trafficking. PMID:26432644

  19. How important is a prime's gestalt for subliminal priming?

    PubMed

    Jaśkowski, Piotr; Slósarek, Maciej

    2007-06-01

    Masked stimuli (primes) can affect the preparation of a motor response to subsequently presented target stimuli. Under some conditions, reactions to the main stimulus can be facilitated (straight priming) or inhibited (inverse priming) when preceded by a compatible prime (calling for the same response). In the majority of studies in which inverse priming was demonstrated arrows pointing left or right were used as prime and targets. There is, however, evidence that arrows are special overlearned stimuli which are processed in a favorable way. Here we report three experiments designated to test whether the "arrowness" of primes/targets is a sufficient condition for inverse priming. The results clearly show that although inverse priming appeared when non-arrow shapes were used, the magnitude of the priming effect was larger with arrows. The possible reasons for this effect are discussed. PMID:16919477

  20. Benzaldehyde-functionalized Polymer Vesicles

    PubMed Central

    Sun, Guorong; Fang, Huafeng; Cheng, Chong; Lu, Peng; Zhang, Ke; Walker, Amy V.; Taylor, John-Stephen A.; Wooley, Karen L.

    2009-01-01

    Polymer vesicles with diameters of ca. 100-600 nm and bearing benzaldehyde functionalities within the vesicular walls were constructed through self assembly of an amphiphilic block copolymer PEO45-b-PVBA26 in water. The reactivity of the benzaldehyde functionalities was verified by crosslinking the polymersomes, and also by a one-pot crosslinking and functionalization approach to further render the vesicles fluorescent, each via reductive amination. In vitro studies found these labelled nanostructures to undergo cell association. PMID:19309173

  1. Microcomputer-Assisted Discoveries: Primes.

    ERIC Educational Resources Information Center

    Kimberling, Clark

    1983-01-01

    Four computer programs (Applesoft Basic) on prime numbers are described, including programs for factoring a positive integer as a product of primes, listing all divisors of a given A, and for exploring primes representable as prescribed sums/differences involving squares, cubes, Fibonnaci numbers, or other primes. Program listings are included.…

  2. Synaptic Vesicle Pools: An Update

    PubMed Central

    Denker, Annette; Rizzoli, Silvio O.

    2010-01-01

    During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or “pools”. We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are “fixed”. Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool. PMID:21423521

  3. Synaptic vesicle pools: an update.

    PubMed

    Denker, Annette; Rizzoli, Silvio O

    2010-01-01

    During the last few decades synaptic vesicles have been assigned to a variety of functional and morphological classes or "pools". We have argued in the past (Rizzoli and Betz, 2005) that synaptic activity in several preparations is accounted for by the function of three vesicle pools: the readily releasable pool (docked at active zones and ready to go upon stimulation), the recycling pool (scattered throughout the nerve terminals and recycling upon moderate stimulation), and finally the reserve pool (occupying most of the vesicle clusters and only recycling upon strong stimulation). We discuss here the advancements in the vesicle pool field which took place in the ensuing years, focusing on the behavior of different pools under both strong stimulation and physiological activity. Several new findings have enhanced the three-pool model, with, for example, the disparity between recycling and reserve vesicles being underlined by the observation that the former are mobile, while the latter are "fixed". Finally, a number of altogether new concepts have also evolved such as the current controversy on the identity of the spontaneously recycling vesicle pool. PMID:21423521

  4. Adaptive and maladaptive mechanisms of cellular priming.

    PubMed Central

    Meldrum, D R; Cleveland, J C; Moore, E E; Partrick, D A; Banerjee, A; Harken, A H

    1997-01-01

    OBJECTIVE: The mechanisms of cellular priming resulting in both adaptive and maladaptive responses to subsequent injury and strategies for manipulating this priming to constructive therapeutic advantage are explored. BACKGROUND DATA: A cell is prepared or educated by an initial insult (priming stimulus). Investigations in both laboratory animals and humans indicate that cells, organs, and perhaps even whole patients respond differently to a proximal second insult ("second hit") by virtue of this prior environmental history. The opportunity to achieve the primed state appears to be conserved across almost all cell types. The initial stimulus transmits a message to the cellular machinery that influences the cell's response to a subsequent challenge. This response may result in an exaggerated inflammatory response in the case of the neutrophil (an often maladaptive process) or an improved tolerance to injury by the myocyte (adaptive response). Our global hypothesis is that cellular priming is a conserved, receptor-dependent process that invokes common intracellular targets across multiple cell types. We further postulate that these targets create a language based on the transient phosphorylation and dephosphorylation of intracellular enzymes that is therapeutically accessible. CONCLUSIONS: Priming is a conserved, receptor-dependent process transduced by means of intracellular targets across multiple cell types. The potential therapeutic strategies outlined involve the receptor-mediated manipulation of cellular events. These events are transmitted through an intracellular language that instructs the cell regarding its behavior in response to subsequent stimulation. Understanding these intracellular events represents a realistic goal of priming and preconditioning biology and will likely lead to clinical control of the primed state. PMID:9389392

  5. Construction of monomers and chains assembled by 3d/4f metals and 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine

    SciTech Connect

    Yang, Juan; Hu, Rui-Xiang; Zhang, Man-Bo

    2012-12-15

    A series of transition metal and lanthanide complexes of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine (HL, 1), namely [M(L){sub 2}]{center_dot}5H{sub 2}O (M=Ni, 2; Co, 3), [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O (4) and [Ln(L){sub 3}]{sub n} (Ln=Nd, 5; Gd, 6; Er, 7) were hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Isomorphic compounds 2 and 3 are mononuclear molecules with two ligand chelating to the metal centers via tridentate terpyridyl, while compound 4 adopts 1D chain-like structure, in which five-coordinate zinc centers are surrounded by three ligands. Compounds 5-7 also display 1D chain-like structure, but the nine-coordinate lanthanide centers bonded by four ligands. Luminescent property indicates that compound 4 exhibits photoluminescence in the solid state at room temperature. - Graphical abstract: Six complexes of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine were synthesized via assembly with transition metal and lanthanide ions, respectively. Among them, [Ni(L){sub 2}]{center_dot}5H{sub 2}O and [Co(L){sub 2}]{center_dot}5H{sub 2}O are monomers, while [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O and [Ln(L){sub 3}]{sub n} display chain-like structures. Highlights: Black-Right-Pointing-Pointer Compounds of 4 Prime -(4-carboxyphenyl)-2,2 Prime :6 Prime ,2 Double-Prime -terpyridine were synthesized. Black-Right-Pointing-Pointer [Ni(L){sub 2}]{center_dot}5H{sub 2}O and [Co(L){sub 2}]{center_dot}5H{sub 2}O are monomers. Black-Right-Pointing-Pointer [Zn(L){sub 2}]{sub n}{center_dot}0.5nH{sub 2}O and [Ln(L){sub 3}]{sub n} display chain-like structures.

  6. Actin- and Myosin-Dependent Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis.

    PubMed

    Miki, Takafumi; Malagon, Gerardo; Pulido, Camila; Llano, Isabel; Neher, Erwin; Marty, Alain

    2016-08-17

    Variance analysis of postsynaptic current amplitudes suggests the presence of distinct docking sites (also called release sites) where vesicles pause before exocytosis. Docked vesicles participate in the readily releasable pool (RRP), but the relation between docking site number and RRP size remains unclear. It is also unclear whether all vesicles of the RRP are equally release competent, and what cellular mechanisms underlie RRP renewal. We address here these questions at single glutamatergic synapses, counting released vesicles using deconvolution. We find a remarkably low variance of cumulative vesicle counts during action potential trains. This, combined with Monte Carlo simulations, indicates that vesicles transit through two successive states before exocytosis, so that the RRP is up to 2-fold higher than the docking site number. The transition to the second state has a very rapid rate constant, and is specifically inhibited by latrunculin B and blebbistatin, suggesting the involvement of actin and myosin. PMID:27537485

  7. Asymmetric Vesicle Instability in Extensional Flow

    NASA Astrophysics Data System (ADS)

    Spann, Andrew; Zhao, Hong; Shaqfeh, Eric

    2012-11-01

    Previous researchers have chronicled the breakup of drops in an extensional flow as they stretch into a dumbbell shape with a long thin neck. Motivated by recent experimental observations, we study an apparently similar problem with vesicles, which are deformable but incompressible membranes that conserve area and volume. First, we simulate vesicles in an unbounded uniaxial extensional flow which are given general radial perturbations from an initially stable symmetric equilibrium state. For sufficiently low reduced volume (< 0.74 at matched inner/outer viscosity) there exists a capillary number at which an asymmetric perturbation mode will grow, resulting in the formation of an asymmetric dumbbell shape with a thin connecting cylindrical bridge analogous to the shapes associated with drop breakup. Our simulations help elucidate a mechanism for this instability based on a competition between internal pressure differentials in the vesicle resulting from the membrane bending force and ambient flow. We compare and contrast this transition to the ``standard'' drop breakup transition. Funded by NSF GRFP and Stanford Graduate Fellowship.

  8. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle

    PubMed Central

    Südhof, Thomas C.

    2013-01-01

    During an action potential, Ca2+ entering a presynaptic terminal triggers synaptic vesicle exocytosis and neurotransmitter release in less than a millisecond. How does Ca2+ stimulate release so rapidly and precisely? Work over the last decades revealed that Ca2+-binding to synaptotagmin triggers release by stimulating synaptotagmin-binding to a core machinery composed of SNARE and SM proteins that mediates membrane fusion during exocytosis. Complexin adaptor proteins assist synaptotagmin by activating and clamping this core fusion machinery. Synaptic vesicles containing synaptotagmin are positioned at the active zone, the site of vesicle fusion, by a protein complex containing RIM proteins. RIM proteins simultaneously activate docking and priming of synaptic vesicles and recruit Ca2+-channels to active zones, thereby connecting in a single complex primed synaptic vesicles to Ca2+-channels. This architecture allows direct flow of Ca2+-ions from Ca2+-channels to synaptotagmin, which then triggers fusion, thus mediating tight millisecond coupling of an action potential to neurotransmitter release. PMID:24183019

  9. Overall energy conversion efficiency of a photosynthetic vesicle

    PubMed Central

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. DOI: http://dx.doi.org/10.7554/eLife.09541.001 PMID:27564854

  10. Overall energy conversion efficiency of a photosynthetic vesicle.

    PubMed

    Sener, Melih; Strumpfer, Johan; Singharoy, Abhishek; Hunter, C Neil; Schulten, Klaus

    2016-01-01

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytb⁢c1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%-5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. PMID:27564854

  11. Clathrin regenerates synaptic vesicles from endosomes

    PubMed Central

    Watanabe, Shigeki; Trimbuch, Thorsten; Camacho-Pérez, Marcial; Rost, Benjamin R.; Brokowski, Bettina; Söhl-Kielczynski, Berit; Felies, Annegret; Davis, M. Wayne; Rosenmund, Christian; Jorgensen, Erik M.

    2014-01-01

    Summary Ultrafast endocytosis can retrieve a single large endocytic vesicle as fast as 50-100 ms after synaptic vesicle fusion. However, the fate of the large endocytic vesicles is not known. Here we demonstrate that these vesicles transition to a synaptic endosome about one second after stimulation. The endosome is resolved into coated vesicles after 3 seconds, which in turn become small-diameter synaptic vesicles 5-6 seconds after stimulation. We disrupted clathrin function using RNAi and found that clathrin is not required for ultrafast endocytosis but is required to generate synaptic vesicles from the endosome. Ultrafast endocytosis fails when actin polymerization is disrupted, or when neurons are stimulated at room temperature instead of physiological temperature. In the absence of ultrafast endocytosis, synaptic vesicles are retrieved directly from the plasma membrane by clathrin-mediated endocytosis. These results explain in large part discrepancies among published experiments concerning the role of clathrin in synaptic vesicle endocytosis. PMID:25296249

  12. Extracellular vesicles during Herpes Simplex Virus type 1 infection: an inquire.

    PubMed

    Kalamvoki, Maria; Deschamps, Thibaut

    2016-01-01

    Extracellular vesicles are defined as a heterogeneous group of vesicles that are released by prokaryotic to higher eukaryotic cells and by plant cells in an evolutionary conserved manner. The significance of these vesicles lies in their capacity to transfer selected cargo composed of proteins, lipids and nucleic acids to both recipient and parent cells and to influence various physiological and pathological functions. Microorganisms such as parasites, fungi and protozoa and even single cell organisms such as bacteria generate extracellular vesicles. In addition, several viruses have evolved strategies to hijack the extracellular vesicles for egress or to alter the surrounding environment. The thesis of this article is that: a) during HSV-1 infection vesicles are delivered from infected to uninfected cells that influence the infection; b) the cargo of these vesicles consists of viral and host transcripts (mRNAs, miRNAs and non-coding RNAs) and proteins including innate immune components, such as STING; and c) the viral vesicles carry the tetraspanins CD9, CD63 and CD81, which are considered as markers of exosomes. Therefore, we assume that the STING-carrying vesicles, produced during HSV-1 infection, are reminiscent to exosomes. The presumed functions of the exosomes released from HSV-1 infected cells include priming the recipient cells and accelerating antiviral responses to control the dissemination of the virus. This may be one strategy used by the virus to prevent the elimination by the host and establish persistent infection. In conclusion, the modification of the cargo of exosomes appears to be part of the strategy that HSV-1 has evolved to establish lifelong persistent infections into the human body to ensure successful dissemination between individuals. PMID:27048572

  13. Ellipsoidal Relaxation of Deformed Vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao

    2015-09-01

    Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  14. Synthesis, structure, and reactivity of 1,2-(1{prime},1{prime},2{prime},2{prime}-tetramethyldisilane-1{prime},2{prime})carborane

    SciTech Connect

    Rege, F.M. de; Kassebaum, J.D.; Scott, B.L.; Abney, K.D.; Balaich, G.J.

    1999-02-08

    The novel strained compound 1,2-(1{prime},1{prime},2{prime},2{prime}-tetramethyldisilane-1{prime},2{prime})carborane (1) was synthesized by the reaction of 1,2-dilithiocarborane and dichlorotetramethyldisilane. Compound 1 was characterized by solution methods and its structure determined by single-crystal X-ray diffraction. In contrast to its organic analogue o-(disilanyl)-phenylene, the reaction of 1 with ethanol leads to cleavage of a Si-C bond rather than a Si-Si bond. Similarly to other cyclic disilanes, exposure of a solution of 1 to oxygen leads to the insertion of an oxygen atom into the Si-Si bond. The structure of the oxygen inserted product was also determined by X-ray crystallography. The general chemistry and attempts at polymerizing 1 are briefly discussed.

  15. Some "Prime" Comparisons.

    ERIC Educational Resources Information Center

    Brown, Stephen I.

    Topics that deal with prime numbers are presented with the intent of allowing the student to re-create the excitement of the original investigation. Suitable for advanced high school students as an introduction to number theory at the college level or as a text for courses in teacher education, the book covers the following topics: (1) the number…

  16. "Fell" Primes "Fall", but Does "Bell" Prime "Ball"? Masked Priming with Irregularly-Inflected Primes

    ERIC Educational Resources Information Center

    Crepaldi, Davide; Rastle, Kathleen; Coltheart, Max; Nickels, Lyndsey

    2010-01-01

    Recent masked priming experiments have brought to light a morphological level of analysis that is exclusively based on the orthographic appearance of words, so that it breaks down corner into corn- and -er, as well as dealer into deal- and -er (Rastle, Davis, & New, 2004). Being insensitive to semantic factors, this morpho-orthographic…

  17. Prime Retrieval of Motor Responses in Negative Priming

    ERIC Educational Resources Information Center

    Mayr, Susanne; Buchner, Axel; Dentale, Sandra

    2009-01-01

    Three auditory identification experiments were designed to specify the prime-response retrieval model of negative priming (S. Mayr & A. Buchner, 2006), which assumes that the prime response is retrieved in ignored repetition trials and interferes with probe responding. In Experiment 1, shortly before (in Experiment 1A) or after (in Experiment 1B)…

  18. Functional Nanoscale Imaging of Synaptic Vesicle Cycling with Superfast Fixation.

    PubMed

    Schikorski, Thomas

    2016-01-01

    Functional imaging is the measurement of structural changes during an ongoing physiological process over time. In many cases, functional imaging has been implemented by tracking a fluorescent signal in live imaging sessions. Electron microscopy, however, excludes live imaging which has hampered functional imaging approaches on the ultrastructural level. This barrier was broken with the introduction of superfast fixation. Superfast fixation is capable of stopping and fixing membrane traffic at sufficient speed to capture a physiological process at a distinct functional state. Applying superfast fixation at sequential time points allows tracking of membrane traffic in a step-by-step fashion.This technique has been applied to track labeled endocytic vesicles at central synapses as they pass through the synaptic vesicle cycle. At synapses, neurotransmitter is released from synaptic vesicles (SVs) via fast activity-dependent exocytosis. Exocytosis is coupled to fast endocytosis that retrieves SVs components from the plasma membrane shortly after release. Fluorescent FM dyes that bind to the outer leaflet of the plasma membrane enter the endocytic vesicle during membrane retrieval and remain trapped in endocytic vesicles have been widely used to study SV exo-endocytic cycling in live imaging sessions. FM dyes can also be photoconverted into an electron-dense diaminobenzidine polymer which allows the investigation of SV cycling in the electron microscope. The combination of FM labeling with superfast fixation made it possible to track the fine structure of endocytic vesicles at 1 s intervals. Because this combination is not specialized to SV cycling, many other cellular processes can be studied. Furthermore, the technique is easy to set up and cost effective.This chapter describes activity-dependent FM dye labeling of SVs in cultured hippocampal neurons, superfast microwave-assisted fixation, photoconversion of the fluorescent endocytic vesicles, and the analysis of

  19. Priming Ditransitive Structures in Comprehension

    ERIC Educational Resources Information Center

    Arai, Manabu; van Gompel, Roger P. G.; Scheepers, Cristoph

    2007-01-01

    Many studies have shown evidence for syntactic priming during language production (e.g., Bock, 1986). It is often assumed that comprehension and production share similar mechanisms and that priming also occurs during comprehension (e.g., Pickering & Garrod, 2004). Research investigating priming during comprehension (e.g., Branigan et al., 2005 and…

  20. Rhizosphere priming: a nutrient perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizospher...

  1. Masked Repetition Priming Using Magnetoencephalography

    ERIC Educational Resources Information Center

    Monahan, Philip J.; Fiorentino, Robert; Poeppel, David

    2008-01-01

    Masked priming is used in psycholinguistic studies to assess questions about lexical access and representation. We present two masked priming experiments using MEG. If the MEG signal elicited by words reflects specific aspects of lexical retrieval, then one expects to identify specific neural correlates of retrieval that are sensitive to priming.…

  2. Ellipsoidal relaxation of electrodeformed vesicles

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Lin, Hao; Lira, Rafael; Dimova, Rumiana; Riske, Karin

    2015-11-01

    Electrodeformation has been extensively applied to investigate the mechanical behavior of vesicles and cells. While the deformation process often exhibits complex behavior and reveals interesting physics, the relaxation process post-pulsation is equally intriguing yet less frequently studied. In this work theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented, which reveal the simplicity and universal aspects of this process. The Helfrich formula, which is derived only for equilibrated shapes, is shown to be applicable to dynamic situations such as in relaxation. A closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a timescale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the ``entropic'' and the ``constant-tension'' regime. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data/model analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.

  3. Physicochemical characterization and cytotoxic studies of nonionic surfactant vesicles using sucrose esters as oral delivery systems.

    PubMed

    Valdés, Karina; Morilla, María José; Romero, Eder; Chávez, Jorge

    2014-05-01

    Several nanotechnological solutions for mucosal immunization have been proposed, such as nanoparticles, liposomes, solid lipidic particles, micelles, and surfactant vesicles. In recent years, surfactant vesicles have gained increasing scientific attention as an alternative potential drug delivery system to the conventional liposome. This type of vesicle known as niosomes or nonionic surfactant vesicles (NSVs) has a structure and properties similar to those of liposomes. Both of them can transport hydrophilic drugs by encapsulation in the aqueous inner pool or hydrophobic drugs by intercalation into hydrophobic domains. The aim of this study was to prepare and characterize vesicles formed by sucrose esters as protective systems of bioactive molecules for oral administration. Vesicles were prepared using two commercial products formed by mixtures of mono and diesters S-570 and S-770, respectively. Determined parameters were size and zeta potential; the stability of formulations was tested in presence of increasing concentrations of a surfactant, and at several pH values observed in the gastrointestinal tract. Solubilization experiences showed an initial decrease in size for vesicles of both ester mixtures, samples showed detergent resistance at higher Triton X-100 concentrations. Vesicles showed stability at pH 5-7.4 up to 90 min; however, both formulations showed colloidal instability at pH=2, which corresponds to the isoelectric point of these vesicles. To evaluate the cytotoxicity of both vesicle formulations and separately each pure ester, Caco-2 cells were used. Cytotoxic evaluation indicated that both types of vesicles and free sucrose distearate were safe for Caco-2 viability; however, free sucrose monostearate was toxic for the cells. As a conclusion of these preliminary studies, it can be stated that vesicles formed with mixtures of sucrose esters showed a size in the range of 200 nm maintaining their size when exposed to the action of a surfactant, but

  4. Ultrasound-responsive ultrathin multiblock copolyamide vesicles.

    PubMed

    Huang, Lei; Yu, Chunyang; Huang, Tong; Xu, Shuting; Bai, Yongping; Zhou, Yongfeng

    2016-03-01

    This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation. PMID:26878351

  5. Aggregation, lipid exchange, and metastable phases of dimyristoylphosphatidylethanolamine vesicles.

    PubMed

    Pryor, C; Bridge, M; Loew, L M

    1985-04-23

    A new fluorescent lipid analogue, bimanephosphatidylcholine, has been synthesized for use in lipid bilayers. This probe is well suited as an energy-transfer donor with N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine as the acceptor. Dimyristoylphosphatidylethanolamine vesicles are prepared by sonication at pH 9 and characterized by electron microscopy and other methods. Resonance energy transfer between separately labeled donor and acceptor vesicles is monitored during HCl-induced aggregation to determine the kinetics of lipid randomization. Light scattering is also monitored to measure the kinetics of aggregation. The light scattering shows a marked reversal with NaOH while the energy transfer does not, indicating lipid exchange during a reversibly aggregated state; the extent of energy transfer suggests that only lipids in the outer monolayers exchange. The gel to liquid-crystalline phase transition temperature in HCl-treated vesicles is found to be 47 degrees C with diphenylhexatriene. The initial sonicated dispersion does not show a sharp phase transition. In vesicles labeled with both donor and acceptor probes, a small, irreversible increase in energy transfer is obtained upon lowering and then restoring the pH. These results suggest a metastable phase in the sonicated vesicles containing a randomized distribution of lipid and probes within the bilayers; the thermodynamically favored phase, whose formation is triggered by the pH shock, contains domains within which the probe lipids are more highly concentrated. PMID:3995010

  6. Congruent numbers with many prime factors

    PubMed Central

    Tian, Ye

    2012-01-01

    Mohammed Ben Alhocain, in an Arab manuscript of the 10th century, stated that the principal object of the theory of rational right triangles is to find a square that when increased or diminished by a certain number, m becomes a square [Dickson LE (1971) History of the Theory of Numbers (Chelsea, New York), Vol 2, Chap 16]. In modern language, this object is to find a rational point of infinite order on the elliptic curve . Heegner constructed such rational points in the case that m are primes congruent to 5,7 modulo 8 or twice primes congruent to 3 modulo 8 [Monsky P (1990) Math Z 204:45–68]. We extend Heegner's result to integers m with many prime divisors and give a sketch in this report. The full details of all the proofs will be given in ref. 1 [Tian Y (2012) Congruent Numbers and Heegner Points, arXiv:1210.8231]. PMID:23213259

  7. Stronger suboptimal than optimal affective priming?

    PubMed

    Rotteveel, M; de Groot, P; Geutskens, A; Phaf, R H

    2001-12-01

    The finding of stronger affective priming in less conscious (suboptimal) conditions than in fully conscious (optimal) conditions (S. T. Murphy & R. B. Zajonc, 1993) is theoretically important because it contradicts notions that emotions are primarily reflected by conscious states. In 2 experiments, this pattern of results was obtained. Happy and angry faces were presented both optimally and suboptimally and were masked by unknown ideographs. In Experiment 1, instructions for the conscious and less conscious affective priming conditions were matched, and affective ratings of ideographs were determined. In Experiment 2, a more implicit affective measure (facial electromyography of musculus zygomaticus major and musculus corrugator supercilii) served as the dependent variable. Stronger suboptimal than optimal affective priming was found in both experiments. It is concluded that stronger suboptimal than optimal processing is characteristic for affective processing and that it can also be found when instructions are matched and when a more implicit measure is assessed. PMID:12901397

  8. Extracellular Vesicles as Biomarkers of Systemic Lupus Erythematosus

    PubMed Central

    Perez-Hernandez, Javier; Cortes, Raquel

    2015-01-01

    Systemic lupus erythematosus is an autoimmune disease that predominantly affects women and typically manifests in multiple organs. The damage caused by this disorder is characterized by a chronic inflammatory state. Extracellular vesicles (EVs), including microvesicles (also known as microparticles), apoptotic bodies, and exosomes, are recognized vehicles of intercellular communication, carrying autoantigens, cytokines, and surface receptors. Therefore, the evidence of EVs and their cargo as biomarkers of autoimmune disease is rapidly expanding. This review will focus on biogenesis of extracellular vesicles, their pathophysiological roles, and their potential as biomarkers and therapeutics in inflammatory disease, especially in systemic lupus erythematosus. PMID:26435565

  9. Generation of large prime numbers from a sequence of previous prime numbers

    NASA Astrophysics Data System (ADS)

    Samir, Brahim Belhaouari; Rezk, Youssef A. Y.

    2012-09-01

    A prime number is co-prime with all the primes as well. This paper utilizes this fact by generating larger prime numbers based on a set of smaller prime numbers. The prime numbers are ordered and each two consecutive primes are coupled to generate their co-prime number formula extending this process larger prime sequence is established. Will the process help us produce larger prime numbers faster and more efficiently? This paper investigates the described process.

  10. Heterologous prime-boost vaccination.

    PubMed

    Lu, Shan

    2009-06-01

    An effective vaccine usually requires more than one time immunization in the form of prime-boost. Traditionally the same vaccines are given multiple times as homologous boosts. New findings suggested that prime-boost can be done with different types of vaccines containing the same antigens. In many cases such heterologous prime-boost can be more immunogenic than homologous prime-boost. Heterologous prime-boost represents a new way of immunization and will stimulate better understanding on the immunological basis of vaccines. PMID:19500964

  11. From self-assembled vesicles to protocells.

    PubMed

    Chen, Irene A; Walde, Peter

    2010-07-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication. PMID:20519344

  12. From Self-Assembled Vesicles to Protocells

    PubMed Central

    Chen, Irene A.; Walde, Peter

    2010-01-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication. PMID:20519344

  13. FUSION-COMPETENT STATE INDUCED BY A C-TERMINAL HIV-1 FUSION PEPTIDE IN CHOLESTEROL-RICH MEMBRANES

    PubMed Central

    Apellániz, Beatriz; Nieva, José L.

    2015-01-01

    The replicative cycle of the Human Immunodeficiency Virus type-1 begins after fusion of the viral and target-cell membranes. The envelope glycoprotein gp41 transmembrane subunit contains conserved hydrophobic domains that engage and perturb the merging lipid bilayers. In this work, we have characterized the fusion-committed state generated in vesicles by CpreTM, a synthetic peptide derived from the sequence connecting the membrane-proximal external region (MPER) and the transmembrane domain (TMD) of gp41. Pre-loading cholesterol-rich vesicles with CpreTM rendered them competent for subsequent lipid-mixing with fluorescently-labeled target vesicles. Highlighting the physiological relevance of the lasting fusion-competent state, the broadly neutralizing antibody 4E10 bound to the CpreTM-primed vesicles and inhibited lipid-mixing. Heterotypic fusion assays disclosed dependence on the lipid composition of the vesicles that acted either as virus or cell membrane surrogates. Lipid-mixing exhibited above all a critical dependence on the cholesterol content in those experiments. We infer that the fusion-competent state described herein resembles bona-fide perturbations generated by the pre-hairpin MPER-TMD connection within the viral membrane. PMID:25617671

  14. Impaired production priming and intact identification priming in Alzheimer's disease.

    PubMed

    Fleischman, D A; Monti, L A; Dwornik, L M; Moro, T T; Bennett, D A; Gabrieli, J D

    2001-11-01

    This study examined the distinction between identification and production processes in repetition priming for 16 patients with Alzheimer's disease (AD) and 16 healthy old control participants (NC). Words were read in three study phases. In three test phases, participants (1) reread studied words, along with unstudied words, in a word-naming task (identification priming); (2) completed 3-letter stems of studied and unstudied words into words in a word-stem completion task (production priming); and (3) answered yes or no to having read studied and unstudied words in a recognition task (explicit memory). Explicit memory and word-stem completion priming were impaired in the AD group compared to the NC group. After correcting for baseline slowing, word-naming priming magnitude did not differ between the groups. The results suggest that the distinction between production and identification processes has promise for explaining the pattern of preservation and failure of repetition priming in AD. PMID:11771621

  15. Vesicle Motion during Sustained Exocytosis in Chromaffin Cells: Numerical Model Based on Amperometric Measurements

    PubMed Central

    Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E.

    2015-01-01

    Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that

  16. Hydrothermal syntheses, crystal structures and luminescence properties of zinc(II) and cadmium(II) coordination polymers based on bifunctional 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid

    SciTech Connect

    Li, Na; Guo, Hui-Lin; Hu, Huai-Ming; Song, Juan; Xu, Bing; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2013-02-15

    Five new coordination polymers, [Zn{sub 2}(ctpy){sub 2}Cl{sub 2}]{sub n} (1), [Zn{sub 2}(ctpy){sub 2}(ox)(H{sub 2}O){sub 2}]{sub n} (2), [Zn{sub 2}(ctpy)(3-btc)(H{sub 2}O)]{sub n}{center_dot}0.5nH{sub 2}O (3), [Cd(ctpy){sub 2}(H{sub 2}O)]{sub n} (4), [Cd{sub 4}(ctpy){sub 2}(2-btc){sub 2}(H{sub 2}O){sub 2}]{sub n}{center_dot}2nH{sub 2}O (5), (Hctpy=3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid, H{sub 2}ox=oxalic acid, H{sub 3}(3-btc)=1,3,5-benzenetricarboxylic acid, H{sub 3}(2-btc)=1,2,4-benzenetricarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single-crystal X-ray diffraction. Compounds 1-2 are a one-dimensional chain with weak interactions to form 3D supramolecular structures. Compound 3 is a 4-nodal 3D topology framework comprised of binuclear zinc units and (ctpy){sup -} anions. Compound 4 shows two dimensional net. Compound 5 is a (4,5,6)-connected framework with {l_brace}4{sup 4}{center_dot}6{sup 2}{r_brace}{l_brace}4{sup 6}{center_dot}6{sup 4}{r_brace}{sub 2}{l_brace}4{sup 9}{center_dot}6{sup 6}{r_brace} topology. In addition, the thermal stabilities and photoluminescence properties of 1-5 were also studied in the solid state. - Graphical abstract: Five new Zn/Cd compounds with 3,2 Prime :6 Prime ,3 Prime Prime -terpyridine-4 Prime -carboxylic acid were prepared. The photoluminescence and thermal stabilities properties of 1-5 were investigated in the solid state. Highlights: Black-Right-Pointing-Pointer Five new zinc/cadmium metal-organic frameworks have been hydrothermal synthesized. Black-Right-Pointing-Pointer The structural variation is attributed to the diverse metal ions and auxiliary ligand. Black-Right-Pointing-Pointer Compounds 1-5 exhibit 1D ring chain, 2D layer and 3D open-framework, respectively. Black-Right-Pointing-Pointer These compounds exhibit strong solid state luminescence emission at room temperature.

  17. 30 CFR 947.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 947.823 Section 947.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE WASHINGTON § 947.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  18. 30 CFR 922.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 922.823 Section 922.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE MICHIGAN § 922.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  19. 30 CFR 903.823 - Special performance standards-Operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 903.823 Section 903.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE ARIZONA § 903.823 Special performance standards—Operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, applies to...

  20. 30 CFR 905.823 - Special performance standards-Operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 905.823 Section 905.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE CALIFORNIA § 905.823 Special performance standards—Operations on prime farmland. Part 832 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  1. 30 CFR 905.823 - Special performance standards-Operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 905.823 Section 905.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE CALIFORNIA § 905.823 Special performance standards—Operations on prime farmland. Part 832 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  2. 30 CFR 937.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 937.823 Section 937.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE OREGON § 937.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  3. 30 CFR 941.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 941.823 Section 941.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE SOUTH DAKOTA § 941.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall...

  4. 30 CFR 921.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 921.823 Section 921.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE MASSACHUSETTS § 921.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall...

  5. 30 CFR 933.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 933.823 Section 933.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE NORTH CAROLINA § 933.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall...

  6. 30 CFR 942.823 - Special performance standards-Operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 942.823 Section 942.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE TENNESSEE § 942.823 Special performance standards—Operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  7. 30 CFR 922.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 922.823 Section 922.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE MICHIGAN § 922.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  8. 30 CFR 942.823 - Special performance standards-Operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 942.823 Section 942.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE TENNESSEE § 942.823 Special performance standards—Operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  9. 30 CFR 947.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 947.823 Section 947.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE WASHINGTON § 947.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  10. 30 CFR 941.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 941.823 Section 941.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE SOUTH DAKOTA § 941.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall...

  11. 30 CFR 939.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 939.823 Section 939.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE RHODE ISLAND § 939.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall...

  12. 30 CFR 910.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 910.823 Section 910.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE GEORGIA § 910.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  13. 30 CFR 937.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 937.823 Section 937.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE OREGON § 937.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  14. 30 CFR 903.823 - Special performance standards-Operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 903.823 Section 903.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE ARIZONA § 903.823 Special performance standards—Operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, applies to...

  15. 30 CFR 910.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 910.823 Section 910.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE GEORGIA § 910.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall apply to...

  16. 30 CFR 939.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 939.823 Section 939.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE RHODE ISLAND § 939.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall...

  17. 30 CFR 921.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... prime farmland. 921.823 Section 921.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE MASSACHUSETTS § 921.823 Special performance standards—operations on prime farmland. Part 823 of this chapter, Special Permanent Program Performance Standards—Operations on Prime Farmland, shall...

  18. Spontaneous vesicle recycling in the synaptic bouton

    PubMed Central

    Truckenbrodt, Sven; Rizzoli, Silvio O.

    2014-01-01

    The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs) rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs) responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover. PMID:25538561

  19. Prime time sexual harrassment.

    PubMed

    Grauerholz, E; King, A

    1997-04-01

    This study explores the explicit and implicit messages of sexual harassment that viewers receive when viewing prime-time television in the US. A content analysis of 48 hours of prime-time television reveals that sexual harassment on television is both highly visible and invisible. Sexual harassment is rendered visible simply by its prominence in these programs. Incidents involving quid-pro-quo harassment and environmental harassment occur with regularity on television. Furthermore, about 84% of the shows studied contained at least one incident of sexual harassment; yet these acts of sexual harassment remained largely invisible because none of the behaviors were labeled as sexual harassment. These incidents are presented in humorous ways, and victims are generally unharmed and very effective at ending the harassment. Although such programs may actually reflect the reality of many women's lives in terms of prevalence of sexual harassment, they perpetuate several myths about sexual harassment, such as that sexual harassment is not serious and that victims should be able to handle the situations themselves. PMID:12294811

  20. Past tense route priming.

    PubMed

    Cohen-Shikora, Emily R; Balota, David A

    2013-03-01

    The present research examined whether lexical (whole word) or more rule-based (morphological constituent) processes can be locally biased by experimental list context in past tense verb inflection. In Experiment 1, younger and older adults completed a past tense inflection task in which list context was manipulated across blocks containing regular past tense verbs (e.g. REACH-REACHED) or irregular past tense verbs (TEACH-TAUGHT). Critical targets, consisting of half regular and half irregular verbs, were embedded within blocks and participants' inflection response latency and accuracy were assessed. The results yielded a cross-over interaction in response latencies for both young and older adults. In the regular context there was a robust regularity effect: regular target verbs were conjugated faster than irregular target verbs. In contrast, in the irregular context, irregular target verbs were conjugated faster than regular target verbs. Experiment 2 used the same targets but in the context of either standard nonwords or nonwords ending in "-ED" to test the possibility of a phonological basis for the effect. The effect of context was eliminated. The results support the notion that distinct processes in past tense verb production can be locally biased by list context and, as shown in Experiment 2, this route priming effect was not due to phonological priming. PMID:23291293

  1. Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles

    PubMed Central

    Burré, Jacqueline; Malenka, Robert C.; Liu, Xinran; Südhof, Thomas C.

    2015-01-01

    In forebrain neurons, Ca2+ triggers exocytosis of readily releasable vesicles by binding to synaptotagmin-1 and -7, thereby inducing fast and slow vesicle exocytosis, respectively. Loss-of-function of synaptotagmin-1 or -7 selectively impairs the fast and slow phase of release, respectively, but does not change the size of the readily-releasable pool (RRP) of vesicles as measured by stimulation of release with hypertonic sucrose, or alter the rate of vesicle priming into the RRP. Here we show, however, that simultaneous loss-of-function of both synaptotagmin-1 and -7 dramatically decreased the capacity of the RRP, again without altering the rate of vesicle priming into the RRP. Either synaptotagmin-1 or -7 was sufficient to rescue the RRP size in neurons lacking both synaptotagmin-1 and -7. Although maintenance of RRP size was Ca2+-independent, mutations in Ca2+-binding sequences of synaptotagmin-1 or synaptotagmin-7—which are contained in flexible top-loop sequences of their C2 domains—blocked the ability of these synaptotagmins to maintain the RRP size. Both synaptotagmins bound to SNARE complexes; SNARE complex binding was reduced by the top-loop mutations that impaired RRP maintenance. Thus, synaptotagmin-1 and -7 perform redundant functions in maintaining the capacity of the RRP in addition to nonredundant functions in the Ca2+ triggering of different phases of release. PMID:26437117

  2. Extracellular vesicles including exosomes are mediators of signal transduction: Are they protective or pathogenic?

    PubMed Central

    Gangoda, Lahiru; Boukouris, Stephanie; Liem, Michael; Kalra, Hina; Mathivanan, Suresh

    2015-01-01

    Extracellular vesicles are signaling organelles that are released by many cell types and is highly conserved in both prokaryotes and eukaryotes. Based on the mechanism of biogenesis, these membranous vesicles can be classified as exosomes, shedding microvesicles and apoptotic blebs. It is becoming clearer that these extracellular vesicles mediate signal transduction in both autocrine and paracrine fashion by the transfer of proteins and RNA. Whilst the role of extracellular vesicles including exosomes in pathogenesis is well established, very little is known about their function in normal physiological conditions. Recent evidences allude that extracellular vesicles can mediate both protective and pathogenic effects depending on the precise state. In this review, we discuss the involvement of extracellular vesicle as mediators of signal transduction in neurodegenerative diseases and cancer. In addition, the role of extracellular vesicles in mediating Wnt and PI3K signaling pathways is also discussed. Additional findings on the involvement of extracellular vesicles in homeostasis and disease progression will promote a better biological understanding, advance future therapeutic and diagnostic applications. PMID:25307053

  3. Vesicles as tools for the modulation of skin permeability.

    PubMed

    Dubey, Vaibhav; Mishra, Dinesh; Nahar, Manoj; Jain, Narendra K

    2007-11-01

    Human skin is a remarkably efficient barrier designed to keep our insides in and the outside out. The modulation of this efficient barrier's properties, including its permeability to chemicals, drugs and biologically active agents is the prime target for various dermal, transdermal, drug, antigen and gene delivery approaches. Therefore, several methods have been attempted to enhance the permeation rate of biologically active agents, temporarily and locally. One of the approaches is the application of drug-laden vesicular formulations. This review presents various mechanisms involved in increasing drug transport across the skin via different vesicular approaches, such as liposomes, elastic vesicles and ethosomes, along with compiling the research work conducted in this field. PMID:17970662

  4. Kinetic and equilibrium studies of porphyrin interactions with unilamellar lipidic vesicles.

    PubMed

    Kuzelová, K; Brault, D

    1994-08-16

    The interaction of deuteroporphyrin with dimyristoylphosphatidylcholine unilamellar vesicles of various sizes (ranging from 38 to 222 nm) has been studied using a stopped flow with fluorescence detection. Beside the kinetics of porphyrin incorporation into vesicles, the transfer of porphyrin from vesicles to human serum albumin has been investigated both experimentally and theoretically. The effects of both vesicle and albumin concentrations indicate that the transfer proceeds through the aqueous phase. It is governed by the rate of incorporation of porphyrin into the outer vesicle hemileaflet (kon), by the exit to the bulk aqueous medium (koff), and by the association (kas) and dissociation (kdis) constants relative to albumin. In both systems studied, a slower transbilayer flip-flop accounts for the biphasic character of the kinetics. This model is strongly supported by the effects of vesicle size, temperature, and cholesterol. The dependence of kon on the vesicle size indicates that the incorporation is diffusion controlled. The constant koff is found to be closely coupled to the phase state of the bilayer. The transbilayer flip-flop rate constant is approximately the same in both directions (approximately 0.4 s-1 at 32 degrees C and pH 7.4). It is strongly affected by the presence of cholesterol in vesicles and by the temperature, with a sharp enhancement around the phase transition. With the exception of very small vesicles obtained by sonication, no influence of the vesicle size on the flip-flop rate was observed. An accelerating effect of tetrahydrofuran, used to improve the solubility of porphyrin, has been noted. Steady-state measurements and kinetics results were in excellent agreement. The interest of systems involving albumin as a scavenger to extract important rate constants, is emphasized. PMID:8068619

  5. Transposed-Letter Priming Effects with Masked Subset Primes: A Re-Examination of the "Relative Position Priming Constraint"

    ERIC Educational Resources Information Center

    Stinchcombe, Eric J.; Lupker, Stephen J.; Davis, Colin J.

    2012-01-01

    Three experiments are reported investigating the role of letter order in orthographic subset priming (e.g., "grdn"-GARDEN) using both the conventional masked priming technique as well as the sandwich priming technique in a lexical decision task. In all three experiments, subset primes produced priming with the effect being considerably larger when…

  6. A Study of Relative-Position Priming with Superset Primes

    ERIC Educational Resources Information Center

    Van Assche, Eva; Grainger, Jonathan

    2006-01-01

    Four lexical decision experiments are reported that use the masked priming paradigm to study the role of letter position information in orthographic processing. In Experiments 1 and 2, superset primes, formed by repetition of 1 or 2 letters of the target (e.g., jusstice-JUSTICE) or by insertion of 1 or 2 unrelated letters (e.g., juastice-JUSTICE),…

  7. Ultrasound-responsive ultrathin multiblock copolyamide vesicles

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Yu, Chunyang; Huang, Tong; Xu, Shuting; Bai, Yongping; Zhou, Yongfeng

    2016-02-01

    This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation.This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation. Electronic supplementary information (ESI) available: Details of experiments and characterization, and FT-IR, TEM, DPD, FL and micro-DSC results. See DOI: 10.1039/c5nr08596a

  8. Deformation of vesicles flowing through capillaries

    NASA Astrophysics Data System (ADS)

    Vitkova, V.; Mader, M.; Podgorski, T.

    2004-11-01

    The flow of giant lipid vesicles through cylindrical capillaries is experimentally investigated. Vesicles are deflated with reduced volumes between 0.8 and 1, corresponding to prolate spheroidal equilibrium shapes. Both interior and exterior fluids are sugar solutions with viscosities close to 10-3 Pa s. Vesicles are aspirated into a capillary tube with a diameter close to the vesicle size and a constant flow rate is imposed. Significant deformation of the membrane occurs and increases when the velocity, confinement or deflation of the vesicle are increased. The mobility of vesicles, defined as the ratio of their velocity to the average velocity of the fluid is a decreasing function of confinement. Our experimental system provides a controllable and flexible tool to investigate deformability effects responsible for crucial aspects of blood rheology in capillaries.

  9. Optogenetic Acidification of Synaptic Vesicles and Lysosomes

    PubMed Central

    Grauel, M. Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J.; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2016-01-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes. PMID:26551543

  10. Gas Vesicle Nanoparticles for Antigen Display

    PubMed Central

    DasSarma, Shiladitya; DasSarma, Priya

    2015-01-01

    Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications. PMID:26350601

  11. Gas Vesicle Nanoparticles for Antigen Display.

    PubMed

    DasSarma, Shiladitya; DasSarma, Priya

    2015-01-01

    Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs). GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications. PMID:26350601

  12. Priming a new identity: self-monitoring moderates the effects of nonself primes on self-judgments and behavior.

    PubMed

    DeMarree, Kenneth G; Wheeler, S Christian; Petty, Richard E

    2005-11-01

    When a construct is primed, people often act in construct-consistent ways. Several accounts for this effect have been offered, including ideomotor theory and a social functional perspective. The authors tested an additional perspective, the Active-Self account, whereby primes can temporarily alter self-perceptions. In Study 1, non-African American participants reported feeling more aggressive on an implicit measure following an African American prime. In Study 2, participants reported feeling luckier on an implicit measure following a number 7 (vs. 13) prime. In both studies, these effects were obtained only for low self-monitors, who are more likely to change self-conceptions in response to diagnostic self-information and to use their internal states in guiding behavior. Study 3 showed that low self-monitors also show larger behavioral effects of primes. PMID:16351360

  13. 5[prime] to 3[prime] nucleic acid synthesis using 3[prime]-photoremovable protecting group

    DOEpatents

    Pirrung, M.C.; Shuey, S.W.; Bradley, J.C.

    1999-06-01

    The present invention relates, in general, to a method of synthesizing a nucleic acid, and, in particular, to a method of effecting 5[prime] to 3[prime] nucleic acid synthesis. The method can be used to prepare arrays of oligomers bound to a support via their 5[prime] end. The invention also relates to a method of effecting mutation analysis using such arrays. The invention further relates to compounds and compositions suitable for use in such methods.

  14. Reversed Priming Effects May Be Driven by Misperception Rather than Subliminal Processing

    PubMed Central

    Sand, Anders

    2016-01-01

    A new paradigm for investigating whether a cognitive process is independent of perception was recently suggested. In the paradigm, primes are shown at an intermediate signal strength that leads to trial-to-trial and inter-individual variability in prime perception. Here, I used this paradigm and an objective measure of perception to assess the influence of prime identification responses on Stroop priming. I found that sensory states producing correct and incorrect prime identification responses were also associated with qualitatively different priming effects. Incorrect prime identification responses were associated with reversed priming effects but in contrast to previous studies, I interpret this to result from the (mis-)perception of primes rather than from a subliminal process. Furthermore, the intermediate signal strength also produced inter-individual variability in prime perception that strongly influenced priming effects: only participants who on average perceived the primes were Stroop primed. I discuss how this new paradigm, with a wide range of d′ values, is more appropriate when regression analysis on inter-individual identification performance is used to investigate perception-dependent processing. The results of this study, in line with previous results, suggest that drawing conclusions about subliminal processes based on data averaged over individuals may be unwarranted. PMID:26925016

  15. Reversed Priming Effects May Be Driven by Misperception Rather than Subliminal Processing.

    PubMed

    Sand, Anders

    2016-01-01

    A new paradigm for investigating whether a cognitive process is independent of perception was recently suggested. In the paradigm, primes are shown at an intermediate signal strength that leads to trial-to-trial and inter-individual variability in prime perception. Here, I used this paradigm and an objective measure of perception to assess the influence of prime identification responses on Stroop priming. I found that sensory states producing correct and incorrect prime identification responses were also associated with qualitatively different priming effects. Incorrect prime identification responses were associated with reversed priming effects but in contrast to previous studies, I interpret this to result from the (mis-)perception of primes rather than from a subliminal process. Furthermore, the intermediate signal strength also produced inter-individual variability in prime perception that strongly influenced priming effects: only participants who on average perceived the primes were Stroop primed. I discuss how this new paradigm, with a wide range of d' values, is more appropriate when regression analysis on inter-individual identification performance is used to investigate perception-dependent processing. The results of this study, in line with previous results, suggest that drawing conclusions about subliminal processes based on data averaged over individuals may be unwarranted. PMID:26925016

  16. Exodus: Prime Mover

    NASA Technical Reports Server (NTRS)

    Bauer, Nikkol; Conwell, Pete; Johnson, Matt; Shields, Wendy; Thornton, Tim; Tokarz, Rob; Mcmanus, Rich

    1992-01-01

    The Exodus Prime Mover is an overnight package delivery aircraft designed to serve the Northern Hemisphere of Aeroworld. The preliminary design goals originated from the desire to produce a large profit. The two main driving forces throughout the design process were first to reduce the construction man-hours by simplifying the aircraft design, thereby decreasing the total production cost of the aircraft. The second influential factor affecting the design was minimizing the fuel cost during cruise. The lowest fuel consumption occurs at a cruise velocity of 30 ft/s. Overall, it was necessary to balance the economic benefits with the performance characteristics in order to create a profitable product that meets all specified requirements and objectives.

  17. Trafficking of astrocytic vesicles in hippocampal slices

    SciTech Connect

    Potokar, Maja; Kreft, Marko; Celica Biomedical Center, Technology Park 24, 1000 Ljubljana ; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert; Celica Biomedical Center, Technology Park 24, 1000 Ljubljana

    2009-12-25

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  18. Endosomal vesicles as vehicles for viral genomes

    PubMed Central

    Nour, Adel M.; Modis, Yorgo

    2014-01-01

    The endocytic pathway is the principal cell entry pathway for large cargo and pathogens. Among the wide variety of specialized lipid structures within endosomes, the intraluminal vesicles formed in early endosomes and transferred to late endosomal compartments are emerging as critical effectors of viral infection and immune recognition. Various viruses deliver their genomes into these intraluminal vesicles, which serve as vehicles to transport the genome to the nuclear periphery for replication. When secreted as exosomes, intraluminal vesicles containing viral genomes can infect permissive cells, or activate immune responses in myeloid cells. We therefore propose that endosomal intraluminal vesicles and exosomes are key effectors of viral pathogenesis. PMID:24746011

  19. Autonomous movement of a chemically powered vesicle

    NASA Astrophysics Data System (ADS)

    Gupta, Shivam; Sreeja, K. K.; Thakur, Snigdha

    2015-10-01

    We investigate the diffusio-phoretic motion of a deformable vesicle. A vesicle is built from the linked catalytic and noncatalytic vertices that consumes fuel in the environment and utilize the resulting self-generated concentration gradient to exhibit propulsive motion. Under nonequilibrium conditions it is found that the self-propulsion velocity of the vesicle depends on its shape, which in turn is controlled by the bending rigidity of the membrane and solvent density around it. The self-propulsion velocity of the vesicle for different shapes has been calculated and the factors which affect the velocity are identified.

  20. Vesicles

    MedlinePlus

    ... poison ivy) Herpes simplex (cold sores, genital herpes ) Herpes zoster (shingles) Impetigo Fungal infections Burns Home Care It is ... disease on the soles Herpes simplex - close-up Herpes zoster (shingles) - close-up of lesion Poison ivy on ...

  1. Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking

    PubMed Central

    Xu, Jing; Jung, Jae Hoon; Marshall, Robert M.; McMahan, Uel J.

    2013-01-01

    Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly’s chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for

  2. Investigating Home Primes and Their Families

    ERIC Educational Resources Information Center

    Herman, Marlena; Schiffman, Jay

    2014-01-01

    The process of prime factor splicing to generate home primes raises opportunity for conjecture and exploration. The notion of "home primes" is relatively new in the chronicle of mathematics. Heleen (1996-97) first described a procedure called "prime factor splicing" (PFS). The exploration of home primes is interesting and…

  3. Priming Macho Attitudes and Emotions.

    ERIC Educational Resources Information Center

    Beaver, Erik D.; And Others

    1992-01-01

    Investigated the effects of reading one of four priming stimuli stories (control, consenting sex, rape, or family) on males' evaluations of, and emotional reactions to, two videotaped date-rape scenarios. Results supported the concepts of a macho personality and revealed interactive effects for both the rape and family prime. (RJM)

  4. Immediate Priming and Cognitive Aftereffects

    ERIC Educational Resources Information Center

    Huber, David E.

    2008-01-01

    Three forced-choice perceptual word identification experiments tested the claim that transitions from positive to negative priming as a function of increasing prime duration are due to cognitive aftereffects. These aftereffects are similar in nature to perceptual aftereffects that produce a negative image due to overexposure and habituation to a…

  5. Rhizosphere priming: a nutrient perspective

    PubMed Central

    Dijkstra, Feike A.; Carrillo, Yolima; Pendall, Elise; Morgan, Jack A.

    2013-01-01

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N) through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P) limited. Under P limitation, rhizodeposition may be used for mobilization of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils. PMID:23908649

  6. Representing Numbers: Prime and Irrational

    ERIC Educational Resources Information Center

    Zazkis, Rina

    2005-01-01

    This article draws an analogy between prime and irrational numbers with respect to how these numbers are defined and how they are perceived by learners. Excerpts are presented from two research studies: a study on understanding prime numbers by pre-service elementary school teachers and a study on understanding irrational numbers by pre-service…

  7. Individual Vesicle Fusion Events Mediated by Lipid-Anchored DNA

    PubMed Central

    van Lengerich, Bettina; Rawle, Robert J.; Bendix, Poul Martin; Boxer, Steven G.

    2013-01-01

    Membrane fusion consists of a complex rearrangement of lipids and proteins that results in the merger of two lipid bilayers. We have developed a model system that employs synthetic DNA-lipid conjugates as a surrogate for the membrane proteins involved in the biological fusion reaction. We previously showed that complementary DNA-lipids, inserted into small unilamellar vesicles, can mediate membrane fusion in bulk. Here, we use a model membrane architecture developed in our lab to directly observe single-vesicle fusion events using fluorescence microscopy. In this system, a planar tethered membrane patch serves as the target membrane for incoming vesicles. This allows us to quantify the kinetics and characteristics of individual fusion events from the perspective of the lipids or the DNA-lipids involved in the process. We find that the fusion pathways are heterogeneous, with an arrested hemi-fusion state predominating, and we quantitate the outcome and rate of fusion events to construct a mechanistic model of DNA-mediated vesicle fusion. The waiting times between docking and fusion are distributed exponentially, suggesting that fusion occurs in a single step. Our analysis indicates that when two lipid bilayers are brought into close proximity, fusion occurs spontaneously, with little or no dependence on the number of DNA hybrids formed. PMID:23870262

  8. Cholesterol transfer between lipid vesicles. Effect of phospholipids and gangliosides.

    PubMed Central

    Thomas, P D; Poznansky, M J

    1988-01-01

    The effect of lipid composition on the rate of cholesterol movement between cellular membranes is investigated using lipid vesicles. The separation of donor and acceptor vesicles required for rate measurement is achieved by differential centrifugation so that the lipid effect can be quantified in the absence of a charged lipid generally used for ion-exchange-based separation. The rate of cholesterol transfer from small unilamellar vesicles (SUVs) containing 50 mol% cholesterol to a common large unilamellar vesicle (LUV) acceptor containing 20 mol% cholesterol decreases with increasing mol% of sphingomyelin in the SUVs, while phosphatidylethanolamine and phosphatidylserine have no appreciable effect at physiologically relevant levels. There is a large decrease in rate when phosphatidylethanolamine constitutes 50 mol% of donor phospholipids. Interestingly, gangliosides which have the same hydrocarbon moiety as sphingomyelin exert an opposite effect. The effect of spingomyelin seems to be mediated by its ability to decrease the fluidity of the lipid matrix, while that of gangliosides may arise from a weakening of phosphatidylcholine-cholesterol interactions or from a more favourable (less polar) microenvironment for the desorption of cholesterol provided by the head-group interactions involving sugar residues. If the effect of asymmetric transbilayer distribution of lipids is taken into consideration, the observed composition-dependent rate changes could partly account for the large difference in the rates of cholesterol desorption from the inner and outer layers of plasma membrane. Such rate differences may be responsible for an unequal steady-state distribution of cholesterol among various cellular membranes and lipoproteins. PMID:3390160

  9. Chaotic Nonlinear Prime Number Function

    NASA Astrophysics Data System (ADS)

    Mateos, Luis A.

    2011-06-01

    Dynamical systems in nature, such as heartbeat patterns, DNA sequence pattern, prime number distribution, etc., exhibit nonlinear (chaotic) space-time fluctuations and exact quantification of the fluctuation pattern for predictability purposes has not yet been achieved [1]. In this paper a chaotic-nonlinear prime number function P(s) is developed, from which prime numbers are generated and decoded while composite numbers are encoded over time following the Euler product methodology, which works on sequences progressively culled from multiples of the preceding primes. By relating this P(s) to a virtually closed 2D number line manifold, it is possible to represent the evolving in time of nonlinear (chaotic) systems to a final value where the system becomes stable, becomes linear. This nonlinear prime number function is proposed as a chaotic model system able to describe chaotic systems.

  10. Targeting novel chemical and constitutive primed metabolites against Plectosphaerella cucumerina.

    PubMed

    Gamir, Jordi; Pastor, Victoria; Kaever, Alexander; Cerezo, Miguel; Flors, Victor

    2014-04-01

    Priming is a physiological state for protection of plants against a broad range of pathogens, and is achieved through stimulation of the plant immune system. Various stimuli, such as beneficial microbes and chemical induction, activate defense priming. In the present study, we demonstrate that impairment of the high-affinity nitrate transporter 2.1 (encoded by NRT2.1) enables Arabidopsis to respond more quickly and strongly to Plectosphaerella cucumerina attack, leading to enhanced resistance. The Arabidopsis thaliana mutant lin1 (affected in NRT2.1) is a priming mutant that displays constitutive resistance to this necrotroph, with no associated developmental or growth costs. Chemically induced priming by β-aminobutyric acid treatment, the constitutive priming mutant ocp3 and the constitutive priming present in the lin1 mutant result in a common metabolic profile within the same plant-pathogen interactions. The defense priming significantly affects sugar metabolism, cell-wall remodeling and shikimic acid derivatives levels, and results in specific changes in the amino acid profile and three specific branches of Trp metabolism, particularly accumulation of indole acetic acid, indole-3-carboxaldehyde and camalexin, but not the indolic glucosinolates. Metabolomic analysis facilitated identification of three metabolites in the priming fingerprint: galacturonic acid, indole-3-carboxylic acid and hypoxanthine. Treatment of plants with the latter two metabolites by soil drenching induced resistance against P. cucumerina, demonstrating that these compounds are key components of defense priming against this necrotrophic fungus. Here we demonstrate that indole-3-carboxylic acid induces resistance by promoting papillae deposition and H2 O2 production, and that this is independent of PR1, VSP2 and PDF1.2 priming. PMID:24506441

  11. Proteomics of extracellular vesicles: Exosomes and ectosomes.

    PubMed

    Choi, Dong-Sic; Kim, Dae-Kyum; Kim, Yoon-Keun; Gho, Yong Song

    2015-01-01

    Almost all bacteria, archaea, and eukaryotic cells shed extracellular vesicles either constitutively or in a regulated manner. These nanosized membrane vesicles are spherical, bilayered proteolipids that harbor specific subsets of proteins, DNAs, RNAs, and lipids. Recent research has facilitated conceptual advancements in this emerging field that indicate that extracellular vesicles act as intercellular communicasomes by transferring signals to their target cell via surface ligands and delivering receptors and functional molecules. Recent progress in mass spectrometry-based proteomic analyses of mammalian extracellular vesicles derived from diverse cell types and body fluids has resulted in the identification of several thousand vesicular proteins that provide us with essential clues to the molecular mechanisms involved in vesicle cargo sorting and biogenesis. Furthermore, cell-type- or disease-specific vesicular proteins help us to understand the pathophysiological functions of extracellular vesicles and contribute to the discovery of diagnostic and therapeutic target proteins. This review focuses on the high-throughput mass spectrometry-based proteomic analyses of mammalian extracellular vesicles (i.e., exosomes and ectosomes), EVpedia (a free web-based integrated database of high-throughput data for systematic analyses of extracellular vesicles; http://evpedia.info), and the intravesicular protein-protein interaction network analyses of mammalian extracellular vesicles. The goal of this article is to encourage further studies to construct a comprehensive proteome database for extracellular vesicles that will help us to not only decode the biogenesis and cargo-sorting mechanisms during vesicle formation but also elucidate the pathophysiological roles of these complex extracellular organelles. PMID:24421117

  12. Phase transition in a stochastic prime-number generator.

    PubMed

    Luque, Bartolo; Lacasa, Lucas; Miramontes, Octavio

    2007-07-01

    We introduce a stochastic algorithm that acts as a prime-number generator. The dynamics of this algorithm gives rise to a continuous phase transition, which separates a phase where the algorithm is able to reduce a whole set of integers into primes and a phase where the system reaches a frozen state with low prime density. We present both numerical simulations and an analytical approach in terms of an annealed approximation, by means of which the data are collapsed. A critical slowing-down phenomenon is also outlined. PMID:17677398

  13. Rheological properties of a vesicle suspension.

    PubMed

    Guedda, M; Benlahsen, M; Misbah, C

    2014-11-01

    The rheological behavior of a dilute suspension of vesicles in linear shear flow at a finite concentration is analytically examined. In the quasispherical limit, two coupled nonlinear equations that describe the vesicle orientation in the flow and its shape evolution were derived [Phys. Rev. Lett. 96, 028104 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.028104] and serve here as a starting point. Of special interest is to provide, for the first time, an exact analytical prediction of the time-dependent effective viscosity η_{eff} and normal stress differences N_{1} and N_{2}. Our results shed light on the effect of the viscosity ratio λ (defined as the inner over the outer fluid viscosities) as the main controlling parameter. It is shown that η_{eff},N_{1}, and N_{2} either tend to a steady state or describe a periodic time-dependent rheological response, previously reported numerically and experimentally. In particular, the shear viscosity minimum and the cusp singularities of η_{eff},N_{1}, and N_{2} at the tumbling threshold are brought to light. We also report on rheology properties for an arbitrary linear flow. We were able to obtain a constitutive law in a closed form relating the stress tensor to the strain rate tensor. It is found that the resulting constitutive markedly contrasts with classical laws known for other complex fluids, such as emulsions, capsule suspensions, and dilute polymer solutions (Oldroyd B model). We highlight the main differences between our law and classical laws. PMID:25493791

  14. Synaptic vesicle distribution by conveyor belt.

    PubMed

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-01

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. PMID:22385955

  15. Molecular underpinnings of synaptic vesicle pool heterogeneity.

    PubMed

    Crawford, Devon C; Kavalali, Ege T

    2015-04-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling. PMID:25620674

  16. Dynamical simulations of vesicle growth and division

    NASA Astrophysics Data System (ADS)

    Ruiz-Herrero, Teresa; Mahadevan, L.

    2015-03-01

    Prebiotic cells constitute a beautiful and intriguing example of self-replicating vesicles. How these cells managed to grow and divide without sophisticated machinery is still an open question. The properties of these primitive vesicles can shed light on the ways modern cells have evolved by exploiting those characteristics to develop their replication mechanisms. The equilibrium configurations of elastic shells are well understood, however the dynamical behavior during growth still lacks of a deep theoretical understanding. To study vesicle growth from a general perspective, we have developed a minimal generic model where vesicles are represented by a 2D spring network and characterized by a minimum set of magnitudes: growth rate, permeability, bending stiffness, viscosity and temperature. We have performed hybrid molecuar dynamic simulations as a function of a reduced set of dimensionless parameters. Three main outcomes were observed: vesicles that grow without division, vesicles that divide symmetrically, and vesicles that act as generators of daughter vesicles. The type of outcome depends on the system parameters and specifically on its dynamics via two timescales. Furthermore, we found sets of parameters where the system shows size homeostasis. TRH was supported by Ramon Areces Foundation.

  17. Feruloyl Dioleoyglycerol Antioxidant Capacity in Phospholipid Vesicles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulic acid and its esters are known to be effective antioxidants. Feruloyl dioleoylglycerol was assessed for its ability to serve as an antioxidant in model membrane phospholipid vesicles. The molecule was incorporated into single-lamellar vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine at ...

  18. Transport of Ions through Vesicle Bilayers

    PubMed

    Kaiser; Hoffmann

    1996-12-01

    Stopped flow measurements to determine the permeability of vesicles are presented. The kinetics of the reaction between FeSCN2+ and F- ions is used to monitor the permeability of vesicles. Samples with vesicles that have been equilibrated with the iron complex are mixed with F- solutions. The reaction is followed by UV/VIS absorption. The influence of temperature and surfactant concentration on the membrane permeability of large unilamellar phospholipid vesicles was studied. A dramatic increase of the permeability of the LUVs is observed when 30 to 40 mol% of the surfactant OP-10 (main component of Triton X-100) is added to the lipid. It is assumed that the increased permeability is due to the stabilization of transient defects in the bilayers of the vesicles as shown previously by other groups. Furthermore, a strong binding of the iron (III) thiocyanate complex to the phospholipid is observed by UV/VIS spectroscopy and zeta-potential measurements. Additional experiments with vesicles from a fluorocarbon surfactant show a much higher permeability than the phospholipid system. Models for the diffusion of either the iron (III) complex or the fluoride ions through the vesicles bilayer are discussed for LUV as well as for vesicles from a fluorocarbon surfactant. The results indicate that the rate-determining step is the diffusion of the iron complex through the membrane. PMID:8954634

  19. Functional Advantages of Porphyromonas gingivalis Vesicles

    PubMed Central

    Ho, Meng-Hsuan; Chen, Chin-Ho; Goodwin, J. Shawn; Wang, Bing-Yan; Xie, Hua

    2015-01-01

    Porphyromonas gingivalis is a keystone pathogen of periodontitis. Outer membrane vesicles (OMVs) have been considered as both offense and defense components of this bacterium. Previous studies indicated that like their originating cells, P. gingivalis vesicles, are able to invade oral epithelial cells and gingival fibroblasts, in order to promote aggregation of some specific oral bacteria and to induce host immune responses. In the present study, we investigated the invasive efficiency of P. gingivalis OMVs and compared results with that of the originating cells. Results revealed that 70–90% of human primary oral epithelial cells, gingival fibroblasts, and human umbilical vein endothelial cells carried vesicles from P. gingivalis 33277 after being exposed to the vesicles for 1 h, while 20–50% of the host cells had internalized P. gingivalis cells. We also detected vesicle-associated DNA and RNA and a vesicle-mediated horizontal gene transfer in P. gingivalis strains, which represents a novel mechanism for gene transfer between P. gingivalis strains. Moreover, purified vesicles of P. gingivalis appear to have a negative impact on biofilm formation and the maintenance of Streptococcus gordonii. Our results suggest that vesicles are likely the best offence weapon of P. gingivalis for bacterial survival in the oral cavity and for induction of periodontitis. PMID:25897780

  20. Molecular Underpinnings of Synaptic Vesicle Pool Heterogeneity

    PubMed Central

    Crawford, Devon C.; Kavalali, Ege T.

    2015-01-01

    Neuronal communication relies on chemical synaptic transmission for information transfer and processing. Chemical neurotransmission is initiated by synaptic vesicle fusion with the presynaptic active zone resulting in release of neurotransmitters. Classical models have assumed that all synaptic vesicles within a synapse have the same potential to fuse under different functional contexts. In this model, functional differences among synaptic vesicle populations are ascribed to their spatial distribution in the synapse with respect to the active zone. Emerging evidence suggests, however, that synaptic vesicles are not a homogenous population of organelles, and they possess intrinsic molecular differences and differential interaction partners. Recent studies have reported a diverse array of synaptic molecules that selectively regulate synaptic vesicles' ability to fuse synchronously and asynchronously in response to action potentials or spontaneously irrespective of action potentials. Here we discuss these molecular mediators of vesicle pool heterogeneity that are found on the synaptic vesicle membrane, on the presynaptic plasma membrane, or within the cytosol and consider some of the functional consequences of this diversity. This emerging molecular framework presents novel avenues to probe synaptic function and uncover how synaptic vesicle pools impact neuronal signaling. PMID:25620674

  1. Nanoplasmonic ruler to measure lipid vesicle deformation.

    PubMed

    Jackman, Joshua A; Špačková, Barbora; Linardy, Eric; Kim, Min Chul; Yoon, Bo Kyeong; Homola, Jiří; Cho, Nam-Joon

    2016-01-01

    A nanoplasmonic ruler method is presented in order to measure the deformation of adsorbed, nm-scale lipid vesicles on solid supports. It is demonstrated that single adsorbed vesicles undergo greater deformation on silicon oxide over titanium oxide, offering direct experimental evidence to support membrane tension-based theoretical models of supported lipid bilayer formation. PMID:26466086

  2. Small Angle Neutron-Scattering Studies of the Core Structure of Intact Neurosecretory Vesicles.

    NASA Astrophysics Data System (ADS)

    Krueger, Susan Takacs

    Small angle neutron scattering (SANS) was used to study the state of the dense cores within intact neurosecretory vesicles. These vesicles transport the neurophysin proteins, along with their associated hormones, oxytocin or vasopressin, from the posterior pituitary gland to the bloodstream, where the entire vesicle contents are released. Knowledge of the vesicle core structure is important in developing an understanding of this release mechanism. Since the core constituents exist in a dense state at concentrations which cannot be reproduced (in solution) in the laboratory, a new method was developed to determine the core structure from SANS experiments performed on intact neurosecretory vesicles. These studies were complemented by biochemical assays performed to determine the role, if any, played by phospholipids in the interactions between the core constituents. H_2O/D_2 O ratio in the solvent can be adjusted, using the method of contrast variation, such that the scattering due to the vesicle membranes is minimized, thus emphasizing the scattering originating from the cores. The applicability of this method for examining the interior of biological vesicles was tested by performing an initial study on human red blood cells, which are similar in structure to other biological vesicles. Changes in intermolecular hemoglobin interactions, occurring when the ionic strength of the solvent was varied or when the cells were deoxygenated, were examined. The results agreed with those expected for dense protein solutions, indicating that the method developed was suitable for the study of hemoglobin within the cells. Similar SANS studies were then performed on intact neurosecretory vesicles. The experimental results were inconsistent with model calculations which assumed that the cores consisted of small, densely-packed particles or large, globular aggregates. Although a unique model could not be determined, the data suggest that the core constituents form long aggregates of

  3. Mechanisms of subliminal response priming

    PubMed Central

    Kiesel, Andrea; Kunde, Wilfried; Hoffmann, Joachim

    2008-01-01

    Subliminal response priming has been considered to operate on several stages, e.g. perceptual, central or motor stages might be affected. While primes’ impact on target perception has been clearly demonstrated, semantic response priming recently has been thrown into doubt (e.g. Klinger, Burton, & Pitts, 2000). Finally, LRP studies have revealed that subliminal primes evoke motor processes. Yet, the premises for such prime-evoked motor activation are not settled. A transfer of priming to stimuli that have never been presented as targets appears particularly interesting because it suggests a level of processing that goes beyond a reactivation of previously acquired S-R links. Yet, such transfer has not always withstood empirical testing. To account for these contradictory results, we proposed a two-process model (Kunde, Kiesel, & Hoffmann, 2003): First, participants build up expectations regarding imperative stimuli for the required responses according to experience and/or instructions. Second, stimuli that match these “action triggers” directly activate the corresponding motor responses irrespective of their conscious identification. In line with these assumptions, recent studies revealed that non-target primes induce priming when they fit the current task intentions and when they are expected in the experimental setting. PMID:20517516

  4. Membrane tensiometer for heavy giant vesicles

    NASA Astrophysics Data System (ADS)

    Puech, P.-H.; Brochard-Wyart, F.

    2004-10-01

    One key parameter of giant-vesicles adhesion is their membrane tension, σ. A theoretically simple but delicate way to impose (and measure) it is to use micropipette manipulation techniques. But usually, the vesicles are free and their tension is unknown, until an adhesion patch grows. σ can be deduced from the detailed profile of the membrane close to the substrate, but this method is limited to very low tensions. We present here a rather simple way to estimate the membrane tension of heavy vesicles, which sediment close to a surface, by observing by RIM the size of the flat region of the vesicle. As an application, we follow the slow flattening of vesicles, when the surrounding sugar solution is evaporating, and their light-induced tensioning.

  5. [Transvesical Removal of Seminal Vesicle Cystadenoma].

    PubMed

    Takayasu, Kenta; Harada, Jiro; Kawa, Gen; Ota, Syuichi; Sakurai, Takanori

    2015-07-01

    Primary tumors of the seminal vesicles are extremely rare. There have been 25 reports of this tumor from overseas and most cases are cystadenoma. We report a case of seminal vesicle cystadenoma in a 70-year-old man who presented with lower abdominal pain and urinary frequency. A digital rectal examination detected a projecting and hard mass in the right side of the prostate. Magnetic resonance imaging (MRI) showed a 15 cm multiple cystic mass continuous with the right seminal vesicle. A transrectal needle biopsy revealed benign tissue. The tumor was resected using an open transvesical approach that enabled full exposure of the seminal vesicle without damaging the nerves and blood supply of the bladder. Pathology was consistent with a benign seminal vesicle cystadenoma. We describe the natural history, pathology,and surgical approach in this case. PMID:26278217

  6. New links between vesicle coats and Rab-mediated vesicle targeting

    PubMed Central

    Angers, Cortney G.; Merz, Alexey J.

    2011-01-01

    Vesicle trafficking is a highly regulated process that transports proteins and other cargoes through eukaryotic cells while maintaining cellular organization and compartmental identity. In order for cargo to reach the correct destination, each step of trafficking must impart specificity. During vesicle formation, this is achieved by coat proteins, which selectively incorporate cargo into the nascent vesicle. Classically, vesicle coats are thought to dissociate shortly after budding. However, recent studies suggest that coat proteins can remain on the vesicle en route to their destination, imparting targeting specificity by physically and functionally interacting with Rab-regulated tethering systems. This review focuses on how interactions among Rab GTPases, tethering factors, SNARE proteins, and vesicle coats contribute to vesicle targeting, fusion, and coat dynamics. PMID:20643221

  7. Space Place Prime

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Austin J.; Novati, Alexander; Fisher, Diane K.; Leon, Nancy J.; Netting, Ruth

    2013-01-01

    Space Place Prime is public engagement and education software for use on iPad. It targets a multi-generational audience with news, images, videos, and educational articles from the Space Place Web site and other NASA sources. New content is downloaded daily (or whenever the user accesses the app) via the wireless connection. In addition to the Space Place Web site, several NASA RSS feeds are tapped to provide new content. Content is retained for the previous several days, or some number of editions of each feed. All content is controlled on the server side, so features about the latest news, or changes to any content, can be made without updating the app in the Apple Store. It gathers many popular NASA features into one app. The interface is a boundless, slidable- in-any-direction grid of images, unique for each feature, and iconized as image, video, or article. A tap opens the feature. An alternate list mode presents menus of images, videos, and articles separately. Favorites can be tagged for permanent archive. Face - book, Twitter, and e-mail connections make any feature shareable.

  8. Prime focus instrument of prime focus spectrograph for Subaru telescope

    NASA Astrophysics Data System (ADS)

    Wang, Shiang-Yu; Braun, David F.; Schwochert, Mark A.; Huang, Pin-Jie; Kimura, Masahiko; Chen, Hsin-Yo; Reiley, Daniel J.; Mao, Peter; Fisher, Charles D.; Tamura, Naoyuki; Chang, Yin-Chang; Hu, Yen-Sang; Ling, Hung-Hsu; Wen, Chih-Yi; Chou, Richard C.-Y.; Takato, Naruhisa; Sugai, Hajime; Ohyama, Youichi; Karoji, Hiroshi; Shimono, Atsushi; Ueda, Akitoshi

    2014-07-01

    The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph design for the prime focus of the 8.2m Subaru telescope. PFS will cover 1.3 degree diameter field with 2394 fibers to complement the imaging capability of Hyper SuprimeCam (HSC). The prime focus unit of PFS called Prime Focus Instrument (PFI) provides the interface with the top structure of Subaru telescope and also accommodates the optical bench in which Cobra fiber positioners are located. In addition, the acquisition and guiding (AG) cameras, the optical fiber positioner system, the cable wrapper, the fiducial fibers, illuminator, and viewer, the field element, and the telemetry system are located inside the PFI. The mechanical structure of the PFI was designed with special care such that its deflections sufficiently match those of the HSC's Wide Field Corrector (WFC) so the fibers will stay on targets over the course of the observations within the required accuracy.

  9. Stable Kinesin and Dynein Assemblies Drive the Axonal Transport of Mammalian Prion Protein Vesicles

    PubMed Central

    Encalada, Sandra E.; Szpankowski, Lukasz; Xia, Chun-hong; Goldstein, Lawrence S. B.

    2012-01-01

    SUMMARY Kinesin and dynein are opposite-polarity microtubule motors that drive the tightly regulated transport of a variety of cargoes. Both motors can bind to cargo but their overall composition on axonal vesicles and whether this composition directly modulates transport activity, is unknown. Here we characterize the intracellular transport and steady state motor subunit composition of mammalian prion protein (PrPC) vesicles. We identify Kinesin-1 and cytoplasmic dynein as major PrPC vesicle motor complexes, and show that their activities are tightly coupled. Regulation of normal retrograde transport by Kinesin-1 is independent of dynein-vesicle attachment, and requires the vesicle association of a complete Kinesin-1 heavy and light chain holoenzyme. Furthermore, motor subunits remain stably associated with stationary as well as with moving vesicles. Our data suggest a coordination model where PrPC vesicles maintain a stable population of associated motors whose activity is modulated by regulatory factors instead of by structural changes to motor-cargo associations. PMID:21335237

  10. Priming healthy eating. You can't prime all the people all of the time☆

    PubMed Central

    Forwood, Suzanna E.; Ahern, Amy L.; Hollands, Gareth J.; Ng, Yin-Lam; Marteau, Theresa M.

    2015-01-01

    Objective In the context of a food purchasing environment filled with advertising and promotions, and an increased desire from policy makers to guide individuals toward choosing healthier foods, this study tests whether priming methods that use healthy food adverts to increase preference for healthier food generalize to a representative population. MethodsIn two studies (Study 1 n = 143; Study 2 n = 764), participants were randomly allocated to a prime condition, where they viewed fruit and vegetable advertisements, or a control condition, with no advertisements. A subsequent forced choice task assessed preference between fruits and other sweet snacks. Additional measures included current hunger and thirst, dietary restraint, age, gender, education and self-reported weight and height. ResultsIn Study 1, hunger reduced preferences for fruits (OR (95% CI) = 0.38 (0.26–0.56), p < 0.0001), an effect countered by the prime (OR (95% CI) = 2.29 (1.33–3.96), p = 0.003). In Study 2, the effect of the prime did not generalize to a representative population. More educated participants, as used in Study 1, chose more fruit when hungry and primed (OR (95% CI) = 1.42 (1.13–1.79), p = 0.003), while less educated participants' fruit choice was unaffected by hunger or the prime. ConclusionThis study provides preliminary evidence that the effects of adverts on healthy eating choices depend on key individual traits (education level) and states (hunger), do not generalize to a broader population and have the potential to increase health inequalities arising from food choice. PMID:25636234

  11. Question 7: new aspects of interactions among vesicles.

    PubMed

    Stano, Pasquale

    2007-10-01

    In this short article I discuss the relevance of two aspects of vesicle reactivity that are germane to understand the role of compartments in the origin of early cells. Studies of vesicle self-reproduction indicate that simple vesicles can grow and divide, maintaining inside most of their content and giving rise to a simple autopoietic system. New aspects of vesicle reactivity are also introduced, such as selection and competition processes within vesicle populations, emphasizing the concepts of vesicle diversity, inter-vesicles and vesicles-environment interactions, intended as synthetic analogs of primitive 'ecological' processes. PMID:17610045

  12. A photophysical model for diphenylhexatriene fluorescence decay in solvents and in phospholipid vesicles.

    PubMed Central

    Parasassi, T; De Stasio, G; Rusch, R M; Gratton, E

    1991-01-01

    The fluorescence decay of 1,6-diphenyl-1,3,5-hexatriene (DPH) in pure solvents and in phospholipid vesicles has been measured using frequency domain fluorometry. Data analysis uses a model with two energetically close excited states. The model explains the high quantum yield and the double exponential decay of DPH observed in some pure solvents and in phospholipid vesicles. This model assumes that after excitation to a first excited state, there is a rapid interconversion to a lower excited state and that most of the emission occurs from this state. The interconversion rates between the two excited states determine the average lifetime. For DPH in solvents, we find that the interconversion rates are solvent and temperature dependent. For DPH in phospholipid vesicles, we find that the back reaction rate from excited state 2 to excited state 1 (R12) is what determines the fluorescence properties. The phospholipid phase transition affects only this back reaction rate. The model was analyzed globally for a range of solvents, temperatures and vesicle composition. Of the six parameters of the model, only two, the interconversion rates between the two excited states, varied in all different samples examined. For DPH in phospholipid vesicles, there is an additional feature of the model, which is related to the apparent distribution of the rate R12. Significantly better fits were obtained using a continuous lorentzian distribution of interconversion rates. The resulting lifetime distribution was asymmetric and showed a definite narrowing above the phase transition. Images FIGURE 6 PMID:2009361

  13. Cholesterol and synaptic vesicle exocytosis

    PubMed Central

    Fratangeli, Alessandra

    2010-01-01

    Lipids may affect synaptic function in at least two ways: by acting as ligands for effector proteins [e.g., phosphatidylinositol (4,5) bisphosphate, diacylglycerol-mediated signaling] or by modifying the physicochemical properties and molecular organization of synaptic membranes. One that acts in the latter manner is cholesterol, an essential structural component of plasma membranes that is largely enriched in the membranes of synapses and synaptic vesicles, in which it may be involved in lipid-lipid and protein-lipid interactions. Cholesterol is an important constituent of the “membrane rafts” that may play a role in recruiting and organizing the specific proteins of the exocytic pathways. Furthermore, many synaptic proteins bind directly to cholesterol. The regulation of cholesterol and lipid levels may therefore influence the specific interactions and activity of synaptic proteins, and have a strong impact on synaptic functions. PMID:20798824

  14. Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering

    PubMed Central

    Fernández-Busnadiego, Rubén; Asano, Shoh; Oprisoreanu, Ana-Maria; Sakata, Eri; Doengi, Michael; Kochovski, Zdravko; Zürner, Magdalena; Stein, Valentin; Schoch, Susanne; Baumeister, Wolfgang

    2013-01-01

    Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a prominent candidate, given its central role in AZ organization. In this paper, we analyzed presynaptic architecture of RIM1α knockout (KO) mice by cryo–electron tomography. In stark contrast to previous work on dehydrated, chemically fixed samples, our data show significant alterations in vesicle distribution and AZ tethering that could provide a structural basis for the functional deficits of RIM1α KO synapses. Proteasome inhibition reversed these structural defects, suggesting a functional recovery confirmed by electrophysiological recordings. Altogether, our results not only point to the ubiquitin–proteasome system as an important regulator of presynaptic architecture and function but also show that the tethering machinery plays a critical role in exocytosis, converging into a structural model of synaptic vesicle priming by RIM1α. PMID:23712261

  15. Development and characterization of nanopore system for nano-vesicle analysis

    NASA Astrophysics Data System (ADS)

    Goyal, Gaurav

    Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations < 50 mM. When using low electrolyte strength, surface effects become predominant and resulted in unconventional current signatures in our experiments. It prompted us to explore the effects of different experimental parameters using Multiphysics simulations, in order to optimize our system

  16. Prime Diagnosticity in Short-Term Repetition Priming: Is Primed Evidence Discounted, Even when It Reliably Indicates the Correct Answer?

    ERIC Educational Resources Information Center

    Weidemann, Christoph T.; Huber, David E.; Shiffrin, Richard M.

    2008-01-01

    The authors conducted 4 repetition priming experiments that manipulated prime duration and prime diagnosticity in a visual forced-choice perceptual identification task. The strength and direction of prime diagnosticity produced marked effects on identification accuracy, but those effects were resistant to subsequent changes of diagnosticity.…

  17. Extracellular vesicles as emerging intercellular communicasomes

    PubMed Central

    Yoon, Yae Jin; Kim, Oh Youn; Gho, Yong Song

    2014-01-01

    All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions. [BMB Reports 2014; 47(10): 531-539] PMID:25104400

  18. Polymeric Microgels as Potential Drug Delivery Vesicles

    NASA Astrophysics Data System (ADS)

    McDonough, Ryan; Streletzky, Kiril; Bayachou, Mekki; Peiris, Pubudu

    2010-03-01

    The temperature dependent volume phase change of cross-linked amphiphilic molecules (microgels) suggests their use as drug delivery vesicles. Drug particles aggregate in the slightly hydrophobic microgel interior. They are stored in equilibrium until the critical temperature (Tv) is reached where the volume phase change limits available space, thus expelling the drugs. This loading property of hydroxypropylcellulose (HPC) microgels was tested using amperometric analytical techniques. Small molecules inside microgels do not approach the electrode surface, which decreases current signal. A room temperature (Troom) flow amperometric measurement comparing microgel/paracetamol solution with control paracetamol samples yielded about 20 percent concentration reduction in the microgel sample. Results from the steady-state electrochemical experiment confirm the 20 percent concentration drop in the microgel sample compared to the control sample at Troom. Using the steady-state experiment with a cyclic temperature ramp from Troom to beyond Tv showed that the paracetamol concentration change between the temperature extremes was greater for the microgels than for the controls. An evolving aspect of the study is the characterization of microgel shrinkage from in situ, temperature controlled liquid AFM images as compared to previously completed DLS characterization of the same microgel sample.

  19. Response Priming with More or Less Biological Movements as Primes.

    PubMed

    Eckert, David; Bermeitinger, Christina

    2016-07-01

    Response priming in general is a suitable tool in cognitive psychology to investigate motor preactivations. Typically, compatibility effects reflect faster reactions in cases in which prime and target suggest the same response (i.e., compatible trials) compared with cases in which prime and target suggest opposite responses (i.e., incompatible trials). With moving dots that were horizontally aligned, Bermeitinger (2013) found a stable pattern of results: with short SOAs, faster responses in compatible trials were found; with longer SOAs up to 250 ms, faster responses in incompatible trials were found. It is unclear whether these results are specific to the special motion used therein or whether it generalizes to other motions. We therefore used other motions realized by arrangements of dots. In four experiments, we tested point-light displays (biological coherent walkers vs. less biological scrambled/split displays) as primes. In two experiments, eye gaze motions realized by moving dots representing irises and pupils (i.e., biological) versus the same motion either without surrounding face information or integrated in an abstract line drawing (i.e., less biological) were used. We found overall large positive compatibility effects with biological motion primes and also positive-but smaller-compatibility effects with less biological motion primes. Most important, also with very long SOAs (up to 1320 ms), we did not find evidence for negative compatibility effects. Thus, the pattern of positive-followed-by-negative-compatibility effects found in Bermeitinger (2013) seems to be specific to the materials used therein, whereas response priming in general seems an applicable tool to study motion perception. PMID:27150613

  20. Interaction of Cryptococcus neoformans Extracellular Vesicles with the Cell Wall

    PubMed Central

    Wolf, Julie M.; Espadas-Moreno, Javier; Luque-Garcia, Jose L.

    2014-01-01

    Cryptococcus neoformans produces extracellular vesicles containing a variety of cargo, including virulence factors. To become extracellular, these vesicles not only must be released from the plasma membrane but also must pass through the dense matrix of the cell wall. The greatest unknown in the area of fungal vesicles is the mechanism by which these vesicles are released to the extracellular space given the presence of the fungal cell wall. Here we used electron microscopy techniques to image the interactions of vesicles with the cell wall. Our goal was to define the ultrastructural morphology of the process to gain insights into the mechanisms involved. We describe single and multiple vesicle-leaving events, which we hypothesized were due to plasma membrane and multivesicular body vesicle origins, respectively. We further utilized melanized cells to “trap” vesicles and visualize those passing through the cell wall. Vesicle size differed depending on whether vesicles left the cytoplasm in single versus multiple release events. Furthermore, we analyzed different vesicle populations for vesicle dimensions and protein composition. Proteomic analysis tripled the number of proteins known to be associated with vesicles. Despite separation of vesicles into batches differing in size, we did not identify major differences in protein composition. In summary, our results indicate that vesicles are generated by more than one mechanism, that vesicles exit the cell by traversing the cell wall, and that vesicle populations exist as a continuum with regard to size and protein composition. PMID:24906412

  1. Subliminal primes for global or local processing influence judgments of vehicular traffic.

    PubMed

    Hüttermann, Stefanie; Bock, Otmar; Memmert, Daniel

    2014-10-01

    Previous studies on semantic priming show that briefly presented words can unconsciously manipulate subjects' mental states, behaviors, and attitudes. Here we evaluated whether semantic primes can also manipulate the breadth of subjects' visual attention. We primed participants with briefly presented words that indicate either broadness or narrowness; each prime was followed by either a large or a small picture of a street intersection with vehicles, and participants had to indicate in which order the vehicles were legally allowed to pass the intersection. Participants responded to large pictures faster when primed with words denoting broadness, and to small pictures faster when primed with words denoting narrowness. From this we concluded that semantic priming can be effectively applied to manipulate the breadth of attention, which could be exploited in real-world scenarios. PMID:25286131

  2. Time-dependent quantum wave packet study of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction on a new ab initio potential energy surface for the ground electronic state (1{sup 2}A Prime )

    SciTech Connect

    Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng; Xu Wenwu

    2013-05-07

    A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.

  3. A phase of liposomes with entangled tubular vesicles

    SciTech Connect

    Chiruvolu, S.; Naranjo, E.; Warriner, H.E.; Idziak, S.H.J.; Raedler, J.O.; Zasadzinski, J.A.; Safinya, C.R.; Plano, R.J.

    1994-11-18

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled L{sub tv}, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the L{sub tv} phase coexists with the well-known L{sub 4} phase of spherical vesicles and a bulk L{sub {alpha}} phase. However, the defining characteristic of the L{sub tv} phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure. 26 refs., 5 figs.

  4. A Phase of Liposomes with Entangled Tubular Vesicles

    NASA Astrophysics Data System (ADS)

    Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.

    1994-11-01

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.

  5. Illuminating the physiology of extracellular vesicles.

    PubMed

    Choi, Hongyoon; Lee, Dong Soo

    2016-01-01

    Extracellular vesicles play a crucial role in intercellular communication by transmitting biological materials from donor cells to recipient cells. They have pathophysiologic roles in cancer metastasis, neurodegenerative diseases, and inflammation. Extracellular vesicles also show promise as emerging therapeutics, with understanding of their physiology including targeting, distribution, and clearance therefore becoming an important issue. Here, we review recent advances in methods for tracking and imaging extracellular vesicles in vivo and critically discuss their systemic distribution, targeting, and kinetics based on up-to-date evidence in the literature. PMID:27084088

  6. Test Sequence Priming in Recognition Memory

    ERIC Educational Resources Information Center

    Johns, Elizabeth E.; Mewhort, D. J. K.

    2009-01-01

    The authors examined priming within the test sequence in 3 recognition memory experiments. A probe primed its successor whenever both probes shared a feature with the same studied item ("interjacent priming"), indicating that the study item like the probe is central to the decision. Interjacent priming occurred even when the 2 probes did not…

  7. Congruent numbers with many prime factors.

    PubMed

    Tian, Ye

    2012-12-26

    Mohammed Ben Alhocain, in an Arab manuscript of the 10th century, stated that the principal object of the theory of rational right triangles is to find a square that when increased or diminished by a certain number, m becomes a square [Dickson LE (1971) History of the Theory of Numbers (Chelsea, New York), Vol 2, Chap 16]. In modern language, this object is to find a rational point of infinite order on the elliptic curve my2 = x3 - x. Heegner constructed such rational points in the case that m are primes congruent to 5,7 modulo 8 or twice primes congruent to 3 modulo 8 [Monsky P (1990) Math Z 204:45-68]. We extend Heegner's result to integers m with many prime divisors and give a sketch in this report. The full details of all the proofs will be given in ref. 1 [Tian Y (2012) Congruent Numbers and Heegner Points, arXiv:1210.8231]. PMID:23213259

  8. Lipid Bilayer Vesicle extrusion through nanopores: a coarse grained molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bertrand, Martin; Joos, Bela

    2011-03-01

    We conducted Coarse-Grained Molecular Dynamics simulations of the pressure extrusion of vesicles in nanopores that confirm and help explain prior experimental observations (Patty, P. and Frisken, B., Biophys. J., 85, 2003). We demonstrate that, to a first approximation, the final size of extruded vesicles can be obtained by considering an invariable inner vesicle volume enclosed by a finitely extensible lipid bilayer. Using our data, we also describe in details the mechanics of vesicle rupture in a nanopore when pushed by various pressure gradients. This is made possible by tracking local variations of the stress in the lipid membrane via changes in surface area using a triangulation algorithm. The simulations are executed using state of the art GPU accelerated software. Our findings could potentially be useful in the design of liposome based drug delivery systems and in getting a better understanding of how the cell nucleus and the cell as a whole react in similar conditions. Work supported by NSERC and FQRNT.

  9. Direct Measurement of Pore Dynamics and Leakage Induced by a Model Antimicrobial Peptide in Single Vesicles and Cells.

    PubMed

    Burton, Matthew G; Huang, Qi M; Hossain, Mohammed A; Wade, John D; Palombo, Enzo A; Gee, Michelle L; Clayton, Andrew H A

    2016-06-28

    Antimicrobial peptides are promising therapeutic alternatives to counter growing antimicrobial resistance. Their precise mechanism of action remains elusive, however, particularly with respect to live bacterial cells. We investigated the interaction of a fluorescent melittin analogue with single giant unilamellar vesicles, giant multilamellar vesicles, and bilamellar Gram-negative Escherichia coli (E. coli) bacteria. Time-lapse fluorescence lifetime imaging microscopy was employed to determine the population distribution of the fluorescent melittin analogue between pore state and membrane surface state, and simultaneously measure the leakage of entrapped fluorescent species from the vesicle (or bacterium) interior. In giant unilamellar vesicles, leakage from vesicle interior was correlated with an increase in level of pore states, consistent with a stable pore formation mechanism. In giant multilamellar vesicles, vesicle leakage occurred more gradually and did not appear to correlate with increased pore states. Instead pore levels remained at a low steady-state level, which is more in line with coupled equilibria. Finally, in single bacterial cells, significant increases in pore levels were observed over time, which were correlated with only partial loss of cytosolic contents. These observations suggested that pore formation, as opposed to complete dissolution of membrane, was responsible for the leakage of contents in these systems, and that the bacterial membrane has an adaptive capacity that resists peptide attack. We interpret the three distinct pore dynamics regimes in the context of the increasing physical and biological complexity of the membranes. PMID:27281288

  10. Serotonin levels influence patterns of repetition priming.

    PubMed

    Burgund, E Darcy; Marsolek, Chad J; Luciana, Monica

    2003-01-01

    Repetition priming in a word-stem completion task was examined in a group of control subjects and in a group of experimental subjects under conditions of acute tryptophan depletion (T-) and tryptophan augmentation (T+). Experimental subjects ingested amino acid compounds that depleted or loaded the body with tryptophan, and word-stem completion priming performance was measured. Results indicate differential effects of T- and T+ manipulations on word-stem completion priming. In the control group, both specific-visual and amodal priming were observed. Conversely, in the T+ condition, specific-visual priming, but no amodal priming, was observed, whereas in the T- condition, amodal priming, but no specific-visual priming, was observed. The authors conclude that serotonin (5-hydroxytryptamine) plays a critical role in repetition priming by helping to modulate which neural systems contribute to priming effects. PMID:12597085

  11. Priming mortality salience: supraliminal, subliminal and "double-death" priming techniques.

    PubMed

    Mahoney, Melissa B; Saunders, Benjamin A; Cain, Nicole M

    2014-01-01

    The study examined whether successively presented subliminal and supraliminal morality salience primes ("double death" prime) would have a stronger influence on death thought accessibility than subliminal or supraliminal primes alone. A between-subjects 2 (subliminal prime/control) × 2 (supraliminal prime/control) design was used. The supraliminal prime prompted participants to answer questions about death. For the subliminal prime, the word death was presented outside of awareness. Both priming techniques differed significantly from a control in ability to elicit mortality salience. There was an interactive influence of both primes. Implications for unconscious neutral networks relating to death are discussed. PMID:24592974

  12. The Intervenor Effect in Masked Priming: How Does Masked Priming Survive across an Intervening Word?

    ERIC Educational Resources Information Center

    Forster, Kenneth I.

    2009-01-01

    Four masked priming experiments are reported investigating the effect of inserting an unrelated word between the masked prime and the target. When the intervening word is visible, identity priming is reduced to the level of one-letter-different form priming, but form priming is largely unaffected. However, when the intervening word is itself…

  13. On the Control of Single-Prime Negative Priming: The Effects of Practice and Time Course

    ERIC Educational Resources Information Center

    Chao, Hsuan-Fu

    2009-01-01

    Single-prime negative priming refers to the phenomenon wherein repetition of a prime as the probe target results in delayed response. Sometimes this effect has been found to be contingent on participants' unawareness of the primes, and sometimes it has not. Further, sometimes this effect has been found to be eliminated when the prime could predict…

  14. Repeated Masked Category Primes Interfere With Related Exemplars: New Evidence for Negative Semantic Priming

    ERIC Educational Resources Information Center

    Wentura, Dirk; Frings, Christian

    2005-01-01

    In 4 experiments, the authors found evidence for negatively signed masked semantic priming effects (with category names as primes and exemplars as targets) using a new technique of presenting the masked primes. By rapidly interchanging prime and mask during the stimulus onset asynchrony, they increased the total prime exposure to a level…

  15. Generation of a transmembrane electric potential during respiration by Azotobacter vinelandii membrand vesicles.

    PubMed

    Bhattacharyya, P; Shapiro, S A; Barnes, E M

    1977-02-01

    Membrane vesicles isolated from Azotobacter vinelandii strain O by lysis of spheroplasts in potassium of sodium phosphate buffer develop a transmembrane electric potential during respiration. The magnitude of this potential was determined by three independent methods: (i) fluorescence of 3,3'-dipropylthiodicarbocyanine and 3,3'-dihexyloxacarbocyanine; (ii) uptake of 86Rb+ in the presence of valinomycin; and (iii) uptake of [3H]triphenylmethyl phosphonium. In method (i), the relative fluorescence of these cyanine dyes in the presence of intact cells or derived vesicles is quenched during oxication of electron donors. A linear relationship between this quenching and a potassium diffusion potential was employed to calibrate the probe response. In method (ii), the steady-state concentration ratio of rubidium across the vesicle membrane during oxidation of L-malate was converted to potential by the Nernst equation. In method (iii), the steady-state concentration ratio of this lipophilic cation was likewise converted to a potential. With the exception of 3,3'-dihexyloxacarbocyanine fluorescence, these methods gave good agreement for the potential developed during L-malate oxidation by membrane vesicles. A value of 75 to 80 mV (inside negative) was obtained for vesicles prepared in potassium phosphate, and 104 mV (inside negative) was obtained for vesicles prepared in sodium phosphate. Electrogenic expulsion of hydrogen ion was observed during L-malate oxidation, and the amount of proton exodus was greater in potassium rather than the sodium-containing vesicles. This indicates the presence of a sodium-proton antiport mechanism. In addition, D-glucose uptake was observed during development of a potassium diffusion potential that was artificially imposed across the vesicle membrane. These observations suggest the presence of a glucose-proton symport mechanism in accordance with the principles of Mitchell. PMID:838687

  16. Early dynamics of the semantic priming shift

    PubMed Central

    Lavigne, Frédéric; Chanquoy, Lucile; Dumercy, Laurent; Vitu, Françoise

    2013-01-01

    Semantic processing of sequences of words requires the cognitive system to keep several word meanings simultaneously activated in working memory with limited capacity. The real- time updating of the sequence of word meanings relies on dynamic changes in the associates to the words that are activated. Protocols involving two sequential primes report a semantic priming shift from larger priming of associates to the first prime to larger priming of associates to the second prime, in a range of long SOAs (stimulus-onset asynchronies) between the second prime and the target. However, the possibility for an early semantic priming shift is still to be tested, and its dynamics as a function of association strength remain unknown. Three multiple priming experiments are proposed that cross-manipulate association strength between each of two successive primes and a target, for different values of short SOAs and prime durations. Results show an early priming shift ranging from priming of associates to the first prime only to priming of strong associates to the first prime and all of the associates to the second prime. We investigated the neural basis of the early priming shift by using a network model of spike frequency adaptive cortical neurons (e.g., Deco & Rolls, 2005), able to code different association strengths between the primes and the target. The cortical network model provides a description of the early dynamics of the priming shift in terms of pro-active and retro-active interferences within populations of excitatory neurons regulated by fast and unselective inhibitory feedback. PMID:23717346

  17. Kinetics of particle wrapping by a vesicle

    NASA Astrophysics Data System (ADS)

    Mirigian, Stephen; Muthukumar, Murugappan

    2013-07-01

    We present theoretical results on kinetics for the passive wrapping of a single, rigid particle by a flexible membrane. Using a simple geometric ansatz for the shape of the membrane/particle complex we first compute free energy profiles as a function of the particle size, attraction strength between the particle and vesicle, and material properties of the vesicle—bending stiffness and stretching modulus. The free energy profiles thus computed are taken as input to a stochastic model of the wrapping process, described by a Fokker-Planck equation. We compute average uptake rates of the particle into the vesicle. We find that the rate of particle uptake falls to zero outside of a thermodynamically allowed range of particle sizes. Within the thermodynamically allowed range of particle size, the rate of uptake is variable and we compute the optimal particle size and maximal uptake rate as a function of the attraction strength, the vesicle size, and vesicle material properties.

  18. Stability of Spherical Vesicles in Electric Fields

    PubMed Central

    2010-01-01

    The stability of spherical vesicles in alternating (ac) electric fields is studied theoretically for asymmetric conductivity conditions across their membranes. The vesicle deformation is obtained from a balance between the curvature elastic energies and the work done by the Maxwell stresses. The present theory describes and clarifies the mechanisms for the four types of morphological transitions observed experimentally on vesicles exposed to ac fields in the frequency range from 500 to 2 × 107 Hz. The displacement currents across the membranes redirect the electric fields toward the membrane normal to accumulate electric charges by the Maxwell−Wagner mechanism. These accumulated electric charges provide the underlying molecular mechanism for the morphological transitions of vesicles as observed on the micrometer scale. PMID:20575588

  19. Transformation of oil droplets into giant vesicles.

    PubMed

    Sheng, Li; Kurihara, Kensuke

    2016-06-14

    We propose a protocell model in which compartments are constructed via a new process involving the formation of robust vesicles using an autocatalytic, self-reproducing oil droplet system as a 'scaffold'. PMID:27152371

  20. Regulation of Immune Responses by Extracellular Vesicles

    PubMed Central

    Robbins, Paul D.; Morelli, Adrian E.

    2015-01-01

    Extracellular vesicles (EVs) including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release EVs that then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is postulated that EVs have important roles in intercellular communication, both locally and systemically, by transferring their contents, including protein, lipids and RNAs, between cells. EVs are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, EV-based therapeutics are being developed and tested clinically for treatment of inflammatory and autoimmune diseases and cancer. Given the tremendous therapeutic potential of EVs this review focuses on the role of EVs in modulating immune responses and the therapeutic applications. PMID:24566916

  1. Extracellular vesicles in parasitic diseases

    PubMed Central

    Marcilla, Antonio; Martin-Jaular, Lorena; Trelis, Maria; de Menezes-Neto, Armando; Osuna, Antonio; Bernal, Dolores; Fernandez-Becerra, Carmen; Almeida, Igor C.; del Portillo, Hernando A.

    2014-01-01

    Parasitic diseases affect billions of people and are considered a major public health issue. Close to 400 species are estimated to parasitize humans, of which around 90 are responsible for great clinical burden and mortality rates. Unfortunately, they are largely neglected as they are mainly endemic to poor regions. Of relevance to this review, there is accumulating evidence of the release of extracellular vesicles (EVs) in parasitic diseases, acting both in parasite–parasite inter-communication as well as in parasite–host interactions. EVs participate in the dissemination of the pathogen and play a role in the regulation of the host immune systems. Production of EVs from parasites or parasitized cells has been described for a number of parasitic infections. In this review, we provide the most relevant findings of the involvement of EVs in intercellular communication, modulation of immune responses, involvement in pathology, and their potential as new diagnostic tools and therapeutic agents in some of the major human parasitic pathogens. PMID:25536932

  2. New mechanisms of vesicles migration.

    PubMed

    Aursulesei, Viviana; Vasincu, Decebal; Timofte, Daniel; Vrajitoriu, Lucia; Gatu, Irina; Iacob, Dan D; Ghizdovat, Vlad; Buzea, Calin; Agop, Maricel

    2016-07-01

    In multicellular organisms, both health and disease are defined by means of communication patterns involving the component cells. Despite the intricate networks of soluble mediators, cells are also programed to exchange complex messages pre-assembled as multimolecular cargo of membranous structures known as extracellular vesicles (EVs). Several biogenetic pathways produce EVs with different properties able to orchestrate neighboring cell reactions or to establish an environment ripe for spreading tumor cells. Such an effect is in fact an extension of similar physiological roles played by exosomes in guiding cell migration under nontumoral tissue remodeling and organogenesis. We start with a biological thought experiment equivalent to Bénard's experiment, involving a fluid layer of EVs adherent to an extracellular matrix, in a haptotactic gradient, then, we build and present the first Lorenz model for EVs migration. Using Galerkin's method of reducing a system of partial differential equations to a system of ordinary differential equations, a biological Lorenz system is developed. Such a physical frame distributing individual molecular or exosomal type cell-guiding cues in the extracellular matrix space could serve as a guide for tissue neoformation of the budding pattern in nontumoral or tumoral instances. PMID:27045674

  3. A possible route to prebiotic vesicle reproduction.

    PubMed

    Luisi, Pier Luigi; Rasi, Pasquale Stano Silvia; Mavelli, Fabio

    2004-01-01

    Spherical bounded structures such as those formed by surfactant aggregates (mostly micelles and vesicles), with an inside that is chemically and physically different from the outside medium, can be seen as primitive cell models. As such, they are fundamental structures for the theory of autopoiesis as originally formulated by Varela and Maturana. In particular, since self-reproduction is a very important feature of minimal cellular life, the study of self-reproduction of micelles and vesicles represents a quite challenging bio-mimetic approach. Our laboratory has put much effort in recent years into implementing self-reproduction of vesicles as models for self-reproduction of cellular bounded structures, and this article is a further contribution in this direction. In particular, we deal with the so-called matrix effect of vesicles, related to the fact that when fresh surfactant is added to an aqueous solution containing preformed vesicles of a very narrow size distribution, the newly formed vesicles (instead of being polydisperse, as is usually the case) have dimensions very close to those of the preformed ones. In practice, this corresponds to a mechanism of reproduction of vesicles of the same size. In this article, the matrix effect is re-elaborated in the perspective of the origin of life, and in particular in terms of the prebiotic mechanisms that might permit the growth and reproduction of vesicles. The data are analyzed by dynamic light scattering with a new program that permits the calculation of the number-weighted size distribution. It is shown that, on adding a stoichiometric amount of oleate micelles to preformed oleate vesicles extruded at 50 and 100 nm, the final distribution contains about twice the initial number of particles, centered around 50 and 100 nm. The same holds when oleate is added to preformed phospholipid liposomes. By contrast, when the same amount of oleate is added to an aqueous solution (as a control experiment), a very broad

  4. Spontaneous unilamellar polymer vesicles in aqueous solution.

    PubMed

    Kim, Tae-Hwan; Song, Chaeyeon; Han, Young-Soo; Jang, Jong-Dae; Choi, Myung Chul

    2014-01-21

    A unilamellar polymeric vesicle is a self-assembled structure of a block copolymer that forms a spherical single bilayer structure with a hydrophobic interlayer and a hydrophilic surface. Due to their enhanced colloidal stability and mechanical property, controllable surface functionality, or tunable membrane thickness, polymeric vesicles are useful in nano and bio-science, providing potential applications as nanosized carriers for catalysts, drugs, and enzymes. For fabrication of a unilamellar vesicle, however, preparative procedures with a few steps are inherently required. Herein, without complicated preparative procedures, we report spontaneous unilamellar polymeric vesicles with nanometer sizes (<100 nm), which are prepared by simply mixing a triblock copolymer, Pluronic P85 (PEO26PPO40PEO26), and an organic derivative, 5-methyl salicylic acid (5mS), in aqueous solution. Depending on the 5mS concentration and the temperature, the P85-5mS mixtures presented various self-assembled nanostructures such as spherical and cylindrical micelles or vesicles, which were characterized by small angle neutron scattering and cryo-TEM, resulting in a phase diagram drawn as a function of temperature and the 5mS concentration. Interestingly the critical temperature for the micelle-to-vesicle phase transition was easily controlled by varying the 5mS concentration, i.e. it was decreased with increasing the 5mS concentration. PMID:24652418

  5. Elastic energy of polyhedral bilayer vesicles

    PubMed Central

    Haselwandter, Christoph A.; Phillips, Rob

    2011-01-01

    In recent experiments the spontaneous formation of hollow bilayer vesicles with polyhedral symmetry has been observed. On the basis of the experimental phenomenology it was suggested that the mechanism for the formation of bilayer polyhedra is minimization of elastic bending energy. Motivated by these experiments, we study the elastic bending energy of polyhedral bilayer vesicles. In agreement with experiments, and provided that excess amphiphiles exhibiting spontaneous curvature are present in sufficient quantity, we find that polyhedral bilayer vesicles can indeed be energetically favorable compared to spherical bilayer vesicles. Consistent with experimental observations we also find that the bending energy associated with the vertices of bilayer polyhedra can be locally reduced through the formation of pores. However, the stabilization of polyhedral bilayer vesicles over spherical bilayer vesicles relies crucially on molecular segregation of excess amphiphiles along the ridges rather than the vertices of bilayer polyhedra. Furthermore, our analysis implies that, contrary to what has been suggested on the basis of experiments, the icosahedron does not minimize elastic bending energy among arbitrary polyhedral shapes and sizes. Instead, we find that, for large polyhedron sizes, the snub dodecahedron and the snub cube both have lower total bending energies than the icosahedron. PMID:21797397

  6. Phase-Field Modeling of Lipid Vesicles With Pores

    NASA Astrophysics Data System (ADS)

    Seifi, Saman; Salac, David

    2013-11-01

    The formation and annihilation of pores in a lipid vesicle membrane is critical to a number of biotechnologies, such as drug delivery. Previous models of vesicle behavior have ignored the influence of topological changes in the vesicle membrane. Here the entire Helfrich model of a vesicle membrane is considered. Topological changes in the vesicle membrane, such as the formation of a pore, are captured through the use of an embedded phase-field model. The numerical method and sample results will be presented.

  7. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles

    PubMed Central

    Liu, Shu; Hossinger, André; Hofmann, Julia P.; Denner, Philip

    2016-01-01

    ABSTRACT Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. PMID:27406566

  8. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  9. Nanoplasmonics of prime number arrays.

    PubMed

    Forestiere, Carlo; Walsh, Gary F; Miano, Giovanni; Dal Negro, Luca

    2009-12-21

    In this paper, we investigate the plasmonic near-field localization and the far-field scattering properties of non-periodic arrays of Ag nanoparticles generated by prime number sequences in two spatial dimensions. In particular, we demonstrate that the engineering of plasmonic arrays with large spectral flatness and particle density is necessary to achieve a high density of electromagnetic hot spots over a broader frequency range and a larger area compared to strongly coupled periodic and quasi-periodic structures. Finally, we study the far-field scattering properties of prime number arrays illuminated by plane waves and we discuss their angular scattering properties. The study of prime number arrays of metal nanoparticles provides a novel strategy to achieve broadband enhancement and localization of plasmonic fields for the engineering of nanoscale nano-antenna arrays and active plasmonic structures. PMID:20052140

  10. Priming in Systemic Plant Immunity

    SciTech Connect

    Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin; Glazebrook, Jane; Greenberg, Jean T.

    2009-01-01

    Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.

  11. Structural Priming: A Critical Review

    PubMed Central

    Pickering, Martin J.; Ferreira, Victor S.

    2009-01-01

    Repetition is a central phenomenon of behavior, and researchers make extensive use of it to illuminate psychological functioning. In the language sciences, a ubiquitous form of such repetition is structural priming, a tendency to repeat or better process a current sentence because of its structural similarity to a previously experienced (“prime”) sentence (Bock, 1986). The recent explosion of research in structural priming has made it the dominant means of investigating the processes involved in the production (and increasingly, comprehension) of complex expressions such as sentences. This review considers its implications for the representation of syntax and the mechanisms of production, comprehension, and their relationship. It then addresses the potential functions of structural priming, before turning to its implications for first language acquisition, bilingualism, and aphasia We close with theoretical and empirical recommendations for future investigations. PMID:18444704

  12. Transfer of oleic acid between albumin and phospholipid vesicles

    SciTech Connect

    Hamilton, J.A.; Cistola, D.P.

    1986-01-01

    The net transfer of oleic acid between egg phosphatidylcholine unilamellar vesicles and bovine serum albumin has been monitored by TC NMR spectroscopy and 90% isotopically substituted (1- TC)oleic acid. The carboxyl chemical shifts of oleic acid bound to albumin were different from those for oleic acid in phospholipid vesicles. Therefore, in mixtures of donor particles, the equilibrium distribution of oleic acid was determined from chemical shift and peak intensity data without separation of donor and acceptor particles. In a system containing equal masses of albumin and phospholipid and a stoichiometry of 4-5 mol of oleic acid per mol of albumin, the oleic acid distribution was pH dependent, with greater than or equal to80% of the oleic acid associated with albumin at pH 7.4; association was greater than or equal to90% at pH 8.0. Decreasing the pH below 7.4 markedly decreased the proportion of fatty acid bound to albumin. The distribution was reversible with pH and was independent of whether vesicles or albumin acted as a donor. These data suggest that pH may strongly influence the partitioning of fatty acid between cellular membranes and albumin. The TC NMR method is also advantageous because it provides information about the structural environments of oleic acid bound to albumin or phospholipid, the ionization state of oleic acid in each environment, and the structural integrity of the vesicles. In addition, minimum and maximum limits for the exchange rates of oleic acid among different environments were obtained from the NMR data.

  13. Transmembrane flux and receptor desensitization measured with membrane vesicles. Homogeneity of vesicles investigated by computer simulation.

    PubMed Central

    Cash, D J; Langer, R M; Subbarao, K; Bradbury, J R

    1988-01-01

    The use of membrane vesicles to make quantitative studies of transmembrane transport and exchange processes involves an assumption of homogeneity of the membrane vesicles. In studies of 86Rb+ exchange mediated by acetylcholine receptor from the electric organ of Electrophorus electricus and of 36Cl- exchange mediated by GABA receptor from rat brain, measurements of ion exchange and receptor desensitization precisely followed first order kinetics in support of this assumption. In other measurements a biphasic decay of receptor activity was seen. To elucidate the molecular properties of receptors from such measurements it is important to appreciate what the requirements of vesicle monodispersity are for meaningful results and what the effect of vesicle heterogeneity would be. The experiments were simulated with single vesicle populations with variable defined size distributions as well as with mixtures of different populations of vesicles. The properties of the receptors and their density in the membrane could be varied. Different receptors could be present on the same or different membrane vesicles. The simulated measurements were not very sensitive to size dispersity. A very broad size distribution of a single vesicle population was necessary to give rise to detectable deviations from first order kinetics or errors in the determined kinetic constants. Errors could become significant with mixtures of different vesicle populations, where the dispersity in initial ion exchange rate constant, proportional to the receptor concentration per internal volume, became large. In this case the apparent rate of receptor desensitization would diverge in opposite directions from the input value when measured by two different methods, suggesting an experimental test for such kinetic heterogeneity. A biphasic decrease of receptor activity could not be attributed to vesicle heterogeneity and must be due to desensitization processes with different rates. Significant errors would not

  14. Single cell dissection of early kidney development: multilineage priming.

    PubMed

    Brunskill, Eric W; Park, Joo-Seop; Chung, Eunah; Chen, Feng; Magella, Bliss; Potter, S Steven

    2014-08-01

    We used a single cell RNA-seq strategy to create an atlas of gene expression patterns in the developing kidney. At several stages of kidney development, histologically uniform populations of cells give rise to multiple distinct lineages. We performed single cell RNA-seq analysis of total mouse kidneys at E11.5 and E12.5, as well as the renal vesicles at P4. We define an early stage of progenitor cell induction driven primarily by gene repression. Surprising stochastic expression of marker genes associated with differentiated cell types was observed in E11.5 progenitors. We provide a global view of the polarized gene expression already present in the renal vesicle, the first epithelial precursor of the nephron. We show that Hox gene read-through transcripts can be spliced to produce intergenic homeobox swaps. We also identify a surprising number of genes with partially degraded noncoding RNA. Perhaps most interesting, at early developmental times single cells often expressed genes related to several developmental pathways. This provides powerful evidence that initial organogenesis involves a process of multilineage priming. This is followed by a combination of gene repression, which turns off the genes associated with most possible lineages, and the activation of increasing numbers of genes driving the chosen developmental direction. PMID:25053437

  15. Single cell dissection of early kidney development: multilineage priming

    PubMed Central

    Brunskill, Eric W.; Park, Joo-Seop; Chung, Eunah; Chen, Feng; Magella, Bliss; Potter, S. Steven

    2014-01-01

    We used a single cell RNA-seq strategy to create an atlas of gene expression patterns in the developing kidney. At several stages of kidney development, histologically uniform populations of cells give rise to multiple distinct lineages. We performed single cell RNA-seq analysis of total mouse kidneys at E11.5 and E12.5, as well as the renal vesicles at P4. We define an early stage of progenitor cell induction driven primarily by gene repression. Surprising stochastic expression of marker genes associated with differentiated cell types was observed in E11.5 progenitors. We provide a global view of the polarized gene expression already present in the renal vesicle, the first epithelial precursor of the nephron. We show that Hox gene read-through transcripts can be spliced to produce intergenic homeobox swaps. We also identify a surprising number of genes with partially degraded noncoding RNA. Perhaps most interesting, at early developmental times single cells often expressed genes related to several developmental pathways. This provides powerful evidence that initial organogenesis involves a process of multilineage priming. This is followed by a combination of gene repression, which turns off the genes associated with most possible lineages, and the activation of increasing numbers of genes driving the chosen developmental direction. PMID:25053437

  16. Oligomerizations of deoxyadenosine bis-phosphates and of their 3-prime-5-prime, 3-prime-3-prime, and 5-prime-5-prime dimers - Effects of a pyrophosphate-linked, poly(T) analog

    NASA Technical Reports Server (NTRS)

    Visscher, J.; Bakker, C. G.; Schwartz, Alan W.

    1990-01-01

    The effect of a 3-prime-5-prime pyrophosphate-linked oligomer of pTp on oligomerizations of pdAp and of its 3-prime-5-prime, 3-prime-3-prime, and 5-prime-5-prime dimers was investigated, using HPLC to separate the reaction mixtures; peak detection was by absorbance monitoring at 254 nm. It was expected that the dimers would form stable complexes with the template, with the degree of stability depending upon the internal linkage of each dimer. It was found that, although the isomers differ substantially in their oligomerization behavior in the absence of template, the analog-template catalyzes the oligomerization to about the same extent in all three cases.

  17. Synaptic vesicles are “primed” for fast clathrin-mediated endocytosis at the ribbon synapse

    PubMed Central

    Pelassa, Ilaria; Zhao, CongJian; Pasche, Mathias; Odermatt, Benjamin; Lagnado, Leon

    2014-01-01

    Retrieval of synaptic vesicles can occur 1–10 s after fusion, but the role of clathrin during this process has been unclear because the classical mode of clathrin-mediated endocytosis (CME) is an order of magnitude slower, as during retrieval of surface receptors. Classical CME is thought to be rate-limited by the recruitment of clathrin, which raises the question: how is clathrin recruited during synaptic vesicle recycling? To investigate this question we applied total internal reflection fluorescence microscopy (TIRFM) to the synaptic terminal of retinal bipolar cells expressing fluorescent constructs of clathrin light-chain A. Upon calcium influx we observed a fast accumulation of clathrin within 100 ms at the periphery of the active zone. The subsequent loss of clathrin from these regions reflected endocytosis because the application of a potent clathrin inhibitor Pitstop2 dramatically slowed down this phase by ~3 fold. These results indicate that clathrin-dependent retrieval of synaptic vesicles is unusually fast, most probably because of a “priming” step involving a state of association of clathrin with the docked vesicle and with the endosomes and cisternae surrounding the ribbons. Fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) showed that the majority of clathrin is moving with the same kinetics as synaptic vesicle proteins. Together, these results indicate that the fast endocytic mechanism operating to retrieve synaptic vesicles differs substantially from the classical mode of CME operating via formation of a coated pit. PMID:25520613

  18. Rapid determination of internal volumes of membrane vesicles with electron spin resonance-stopped flow technique.

    PubMed

    Anzai, K; Higashi, K; Kirino, Y

    1988-01-13

    We have developed an electron spin resonance (ESR)-stopped flow technique and employed it for the simple and rapid determination of internal volumes of biomembrane vesicles and liposomes. A vesicle suspension containing a neutral and membrane-permeable spin label, 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (TEMPONE), was mixed in the stopped-flow apparatus with an isotonic solution of relatively impermeable line broadening agents, potassium tris(oxalato)chromate(III) or potassium ferricyanide, and an ESR spectrum was recorded. From the relative intensity of the sharp triplet signal due to TEMPONE in the aqueous space within vesicles, the determination of the internal aqueous volume was straightforward. Using this technique, it is possible to measure intravesicular volumes in 0.1 s. The internal volume of sonicated phospholipid vesicles was approximately 0.3 microliter/mg lipid. The light fraction of sarcoplasmic reticulum membrane vesicles isolated from rabbit skeletal muscle was estimated to have an internal volume of 2.2-2.6 microliter/mg protein in its resting state. Activation of Ca2+ pumps in the membrane upon addition of ATP and Ca2+ ions decreased the internal volume by about 10%. This finding supports the hypothesis that the Ca2+ pump is electrogenic and that the efflux of potassium ions compensates for the influx of positive charges. The present technique is widely applicable to the simple and rapid determination of the internal volumes of membrane vesicles. PMID:2825810

  19. Multi-core vesicle nanoparticles based on vesicle fusion for delivery of chemotherapic drugs.

    PubMed

    Yuk, Soon Hong; Oh, Keun Sang; Koo, Heebeom; Jeon, Hyesung; Kim, Kwangmeyung; Kwon, Ick Chan

    2011-11-01

    The Pluronic nanoparticles (NPs) composed of Pluronic (F-68) and liquid polyethylene glycol (PEG, molecular wt: 400) containing docetaxel (DTX) were stabilized with the vesicle fusion. When DTX-loaded Pluronic NPs were mixed with vesicles in the aqueous medium, DTX-loaded Pluronic NPs were incorporated into vesicles to form multi-core vesicle NPs. The morphology and size distribution of multi-core vesicle NPs were observed using FE-SEM, cryo-TEM and a particle size analyzer. To apply multi-core vesicle NPs as a delivery system for DTX, a model anti-cancer drug, the release pattern of DTX was observed and the tumor growth was monitored by injecting the DTX-loaded multi-core vesicle NPs into the tail veins of tumor-bearing mice. We also evaluated the time-dependent excretion profile, in vivo biodistribution, circulation time, and tumor targeting capability of multi-core vesicle NPs using a non-invasive live animal imaging technology. PMID:21784512

  20. Priming and Habituation for Faces: Individual Differences and Inversion Effects

    ERIC Educational Resources Information Center

    Rieth, Cory A.; Huber, David E.

    2010-01-01

    Immediate repetition priming for faces was examined across a range of prime durations in a threshold identification task. Similar to word repetition priming results, short duration face primes produced positive priming whereas long duration face primes eliminated or reversed this effect. A habituation model of such priming effects predicted that…

  1. On Techniques of Prime Factorization

    ERIC Educational Resources Information Center

    Cohen, David B.

    1977-01-01

    This article gives two methods of resolving natural numbers into prime factors. Depending upon the number that is being resolved, one method may be better to use than the other. However, it is difficult to tell beforehand which is the better method to employ. Examples are given. (Author/MA)

  2. Apollo 13 prime crew portrait

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Apollo 13 prime crew portrait. From left to right are Astronauts James A. Lovell, Thomas K. Mattingly, and Fred W. Haise in their space suits. On the table in front of them are (l-r) a model of a sextant, the Apollo 13 insignia, and a model of an astrolabe. The sextant and astrolabe are two ancient forms of navigation.

  3. Prime Suspect, Second Row Center

    ERIC Educational Resources Information Center

    Laird, Ellen A.

    2011-01-01

    His father had been hacked to death in his own bed with an ax the previous November. His mother was similarly brutalized and left for dead with her husband but survived. On the last Monday of that August, after several months and many investigative twists, turns, and fumbles, there sat the son--the prime suspect--in Ellen Laird's literature class,…

  4. The Search for Prime Numbers.

    ERIC Educational Resources Information Center

    Pomerance, Carl

    1982-01-01

    Until recently the testing of a 100-digit number to determine whether it is prime or composite could have taken a century. However, in the past two years a method has been developed enabling a computer to determine the primality of an arbitrary number in about 40 seconds of running time. (Author/JN)

  5. Spirit's Prime-Mission Traverse

    NASA Technical Reports Server (NTRS)

    2004-01-01

    A traverse map for NASA's Mars Exploration Rover Spirit traces the path Spirit drove during its prime mission of 90 sols. The base image for this map was taken seconds before landing by Spirit's downward-looking descent image motion estimation system camera.

  6. Structural Priming: A Critical Review

    ERIC Educational Resources Information Center

    Pickering, Martin J.; Ferreira, Victor S.

    2008-01-01

    Repetition is a central phenomenon of behavior, and researchers have made extensive use of it to illuminate psychological functioning. In the language sciences, a ubiquitous form of such repetition is "structural priming," a tendency to repeat or better process a current sentence because of its structural similarity to a previously experienced…

  7. Getting to know the extracellular vesicle glycome.

    PubMed

    Gerlach, Jared Q; Griffin, Matthew D

    2016-04-22

    Extracellular vesicles (EVs) are a diverse population of complex biological particles with diameters ranging from approximately 20 to 1000 nm. Tremendous interest in EVs has been generated following a number of recent, high-profile reports describing their potential utility in diagnostic, prognostic, drug delivery, and therapeutic roles. Subpopulations, such as exosomes, are now known to directly participate in cell-cell communication and direct material transfer. Glycomics, the 'omic' portion of the glycobiology field, has only begun to catalog the surface oligosaccharide and polysaccharide structures and also the carbohydrate-binding proteins found on and inside EVs. The EV glycome undoubtedly contains vital clues essential to better understanding the function, biogenesis, release and transfer of vesicles, however getting at this information is technically challenging and made even more so because of the small physical size of the vesicles and the typically minute yield from physiological-scale biological samples. Vesicle micro-heterogeneity which may be related to specific vesicle origins and functions presents a further challenge. A number of primary studies carried out over the past decade have turned up specific and valuable clues regarding the composition and roles of glycan structures and also glycan binding proteins involved EV biogenesis and transfer. This review explores some of the major EV glycobiological research carried out to date and discusses the potential implications of these findings across the life sciences. PMID:26888195

  8. Haloarchaea and the formation of gas vesicles.

    PubMed

    Pfeifer, Felicitas

    2015-01-01

    Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes. PMID:25648404

  9. Activation of calcineurin by phosphotidylserine containing vesicles

    SciTech Connect

    Politino, M.; King, M.M.

    1986-05-01

    Calcineurin (CaN) is a Ca/sup 2 +/- and calmodulin-regulated phosphatase. Recent findings suggested an association of CaN with biological membranes and prompted the present investigation into the interactions of the phosphatase with phospholipids in vitro. In the absence of calmodulin, sonicated preparations of phosphatidylserine (PS) provided a five-fold activation of the Ni- and Mn-supported activities of CaN towards (/sup 32/P) histone Hl; activation in the presence of calmodulin was much less pronounced. Half-maximal activation in the absence of calmodulin required approximately 0.1 mg/ml of PS. Activation of CaN was also observed with mixed vesicles of phosphatidylcholine (PC) containing 20% PS but not with PC alone, or with phosphatidylethanolamine (PE). Molecular sieve chromatography on Ultrogel AcA 34 provided further evidence that CaN associates with phospholipid vesicles composed of PS, or PC containing 20% PS, but not with vesicles of PC or PE. Complete association with medium sized vesicles of PS and PC/PS required Ca/sup 2 +/ ions; in the absence of the metal ion at least 60% of the enzyme failed to interact with the lipids while the remainder preferentially migrated with larger vesicles. These results suggest a role for Ca/sup 2 +/ in regulating CaN's interaction with phospholipids.

  10. Haloarchaea and the Formation of Gas Vesicles

    PubMed Central

    Pfeifer, Felicitas

    2015-01-01

    Halophilic Archaea (Haloarchaea) thrive in salterns containing sodium chloride concentrations up to saturation. Many Haloarchaea possess genes encoding gas vesicles, but only a few species, such as Halobacterium salinarum and Haloferax mediterranei, produce these gas-filled, proteinaceous nanocompartments. Gas vesicles increase the buoyancy of cells and enable them to migrate vertically in the water body to regions with optimal conditions. Their synthesis depends on environmental factors, such as light, oxygen supply, temperature and salt concentration. Fourteen gas vesicle protein (gvp) genes are involved in their formation, and regulation of gvp gene expression occurs at the level of transcription, including the two regulatory proteins, GvpD and GvpE, but also at the level of translation. The gas vesicle wall is solely formed of proteins with the two major components, GvpA and GvpC, and seven additional accessory proteins are also involved. Except for GvpI and GvpH, all of these are required to form the gas permeable wall. The applications of gas vesicles include their use as an antigen presenter for viral or pathogen proteins, but also as a stable ultrasonic reporter for biomedical purposes. PMID:25648404

  11. Synaptic vesicle recycling: steps and principles

    PubMed Central

    Rizzoli, Silvio O

    2014-01-01

    Synaptic vesicle recycling is one of the best-studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole. While it is generally possible to point out how synaptic reactions take place, it is not always easy to understand what triggers or controls them. Also, it is often difficult to understand how the availability of the reaction partners is controlled: how the reaction partners manage to find each other in the right place, at the right time. I present here an overview of synaptic vesicle recycling, discussing the mechanisms that trigger different reactions, and those that ensure the availability of reaction partners. A central argument is that synaptic vesicles bind soluble cofactor proteins, with low affinity, and thus control their availability in the synapse, forming a buffer for cofactor proteins. The availability of cofactor proteins, in turn, regulates the different synaptic reactions. Similar mechanisms, in which one of the reaction partners buffers another, may apply to many other processes, from the biogenesis to the degradation of the synaptic vesicle. PMID:24596248

  12. Integrated light-scattering spectroscopy, a sensitive probe for peptide-vesicle binding: application to the membrane-bound colicin E1 channel peptide.

    PubMed Central

    Strawbridge, K. B.; Palmer, L. R.; Merrill, A. R.; Hallett, F. R.

    1995-01-01

    Integrated light-scattering (ILS) spectroscopy was used to monitor the binding of the colicin E1 channel peptide to POPC:POPG large unilamellar vesicles (LUV; 60:40, mol:mol) at acidic pH (3.5). Binding conditions were chosen such that nearly all of the channel peptide was bound to the vesicles with little free peptide remaining in solution. The increase in vesicle size upon the insertion of the channel peptide was measured by performing a discrete inversion technique on data obtained from an ILS spectrometer. Vesicle size number distributions were determined for five different systems having peptide/vesicle ratios of approximately 0, 77, 154, 206, and 257. The experiment was repeated four times (twice at two different vesicle concentrations) to determine reproducibility. The relative changes in vesicle radius upon peptide binding to the membrane vesicles was remarkably reproducible even though these changes represented only a few nanometers. A comparison of vesicle size number distributions in the absence of bound peptide was made between ILS and dynamic light scattering (DLS) data and showed similar results. However, DLS was incapable of detecting the small changes due to peptide-induced vesicle swelling. The membrane-bound volume of the colicin E1 channel peptide was approximately 177 +/- 22 nm3. These data indicate that in the absence of a membrane potential (closed channel state) the colicin E1 channel peptide inserts into the membrane resulting in a significant displacement of the lipid bilayer as evidenced from the dose-dependent increase in the vesicle radius. These results indicate that ILS spectroscopy is a sensitive sizing technique that is capable of detecting relatively small changes in membrane vesicles and may have a wide application in the determination of peptide binding to membrane vesicles. Images FIGURE 2 PMID:7711234

  13. SYNAPTIC VESICLE PROTEIN TRAFFICKING AT THE GLUTAMATE SYNAPSE

    PubMed Central

    Santos, Magda S.; Li, Haiyan; Voglmaier, Susan M.

    2009-01-01

    Expression of the integral and associated proteins of synaptic vesicles is subject to regulation over time, by region, and in response to activity. The process by which changes in protein levels and isoforms result in different properties of neurotransmitter release involves protein trafficking to the synaptic vesicle. How newly synthesized proteins are incorporated into synaptic vesicles at the presynaptic bouton is poorly understood. During synaptogenesis, synaptic vesicle proteins sort through the secretory pathway and are transported down the axon in precursor vesicles that undergo maturation to form synaptic vesicles. Changes in protein content of synaptic vesicles could involve the formation of new vesicles that either mix with the previous complement of vesicles or replace them, presumably by their degradation or inactivation. Alternatively, new proteins could individually incorporate into existing synaptic vesicles, changing their functional properties. Glutamatergic vesicles likely express many of the same integral membrane proteins and share certain common mechanisms of biogenesis, recycling, and degradation with other synaptic vesicles. However, glutamatergic vesicles are defined by their ability to package glutamate for release, a property conferred by the expression of a vesicular glutamate transporter (VGLUT). VGLUTs are subject to regional, developmental, and activity-dependent changes in expression. In addition, VGLUT isoforms differ in their trafficking, which may target them to different pathways during biogenesis or after recycling, which may in turn sort them to different vesicle pools. Emerging data indicate that differences in the association of VGLUTs and other synaptic vesicle proteins with endocytic adaptors may influence their trafficking. These observations indicate that independent regulation of synaptic vesicle protein trafficking has the potential to influence synaptic vesicle protein composition, the maintenance of synaptic vesicle

  14. Analysis of Extracellular Vesicles in the Tumor Microenvironment.

    PubMed

    Al-Nedawi, Khalid; Read, Jolene

    2016-01-01

    Extracellular vesicles (ECV) are membrane compartments shed from all types of cells in various physiological and pathological states. In recent years, ECV have gained an increasing interest from the scientific community for their role as an intercellular communicator that plays important roles in modifying the tumor microenvironment. Multiple techniques have been established to collect ECV from conditioned media of cell culture or physiological fluids. The gold standard methodology is differential centrifugation. Although alternative techniques exist to collect ECV, these techniques have not proven suitable as a substitution for the ultracentrifugation procedure. PMID:27581023

  15. Dynamics of fibers growing inside soft vesicles

    NASA Astrophysics Data System (ADS)

    Marenduzzo, D.; Orlandini, E.

    2007-11-01

    We present 3D stochastic dynamic simulations of the growth of a semiflexible polymer inside a soft vesicle. We find that very stiff fibers stall soon and lock the membrane into a strongly deformed prolate shape. Fibers of intermediate stiffness buckle and form a toroidal configuration which distorts the membrane into an oblate shape. Finally, more flexible polymers form massive spool-like condensates with ordered domains, while the vesicle inflates isotropically. We discuss our results with respect to observations on cell shape in sickle red blood cells, developing erythrocytes, and genome packing inside bacteriophages. We quantify how the force felt by the fiber tip, and the vesicle aspect ratio, change during growth, and we discuss possible "synthetic biology" experiments to validate our results.

  16. Directed vesicle transport by diffusio-osmosis

    NASA Astrophysics Data System (ADS)

    Michler, D.; Shahidzadeh, N.; Sprik, R.; Bonn, D.

    2015-04-01

    We present a study on surfactant vesicles that spontaneously move towards an oil droplet that is deposited on a glass substrate. Tracer particles in the surfactant solution show that the motion is not self-propelled: the vesicles are entrained by a macroscopic hydrodynamic flow. Measurements of the flow velocity suggest that the flow is of diffusio-osmotic nature. The surfactant is observed to move into the oil phase which creates a gradient in ion concentration in the vicinity of the droplet. As the diffusion coefficients of the surfactant's co- and counter-ions differ, a charge separation takes place and an electric field arises. This electric field then generates a hydrodynamic flow along the charged glass substrate in which the vesicles are entrained.

  17. Computational algorithms for vesicle electrohydrodyna- mics

    NASA Astrophysics Data System (ADS)

    Veerapaneni, Shravan

    2015-11-01

    In this talk, we discuss a new integral equation method for simulating the electrohydrodynamics of a suspension of vesicles. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of each vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations. We will present new results on the suspension rheology, two-body interactions and pattern formation. This is joint work with Bowei Wu. This work was sponsored by NSF under grants DMS-1224656 and DMS-1418964.

  18. Functions and importance of mycobacterial extracellular vesicles.

    PubMed

    Rodriguez, G Marcela; Prados-Rosales, Rafael

    2016-05-01

    The release of cellular factors by means of extracellular vesicles (EVs) is conserved in archaea, bacteria, and eukaryotes. EVs are released by growing bacteria as part of their interaction with their environment and, for pathogenic bacteria, constitute an important component of their interactions with the host. While EVs released by gram-negative bacteria have been extensively studied, the vesicles released by thick cell wall microorganisms like mycobacteria were recognized only recently and are less well understood. Nonetheless, studies of mycobacterial EVs have already suggested roles in pathogenesis, opening exciting new avenues of research aimed at understanding their biogenesis and potential use in antitubercular strategies. In this minireview, we discuss the discovery of mycobacterial vesicles, the current understanding of their nature, content, regulation, and possible functions, as well as their potential therapeutic applications. PMID:27020292

  19. 30 CFR 912.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prime farmland. 912.823 Section 912.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.823 Special performance standards—operations on prime farmland. Part 823 of...

  20. 30 CFR 912.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... prime farmland. 912.823 Section 912.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.823 Special performance standards—operations on prime farmland. Part 823 of...

  1. 30 CFR 912.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... prime farmland. 912.823 Section 912.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.823 Special performance standards—operations on prime farmland. Part 823 of...

  2. 30 CFR 912.823 - Special performance standards-operations on prime farmland.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... prime farmland. 912.823 Section 912.823 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE IDAHO § 912.823 Special performance standards—operations on prime farmland. Part 823 of...

  3. Ciliary Extracellular Vesicles: Txt Msg Organelles.

    PubMed

    Wang, Juan; Barr, Maureen M

    2016-04-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and Caenorhabditis elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. Caenorhabditis elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport-dependent manner. Caenorhabditis elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions. Until the 21st century, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  4. Ciliary extracellular vesicles: Txt msg orgnlls

    PubMed Central

    Wang, Juan; Barr, Maureen M.

    2016-01-01

    Cilia are sensory organelles that protrude from cell surfaces to monitor the surrounding environment. In addition to its role as sensory receiver, the cilium also releases extracellular vesicles (EVs). The release of sub-micron sized EVs is a conserved form of intercellular communication used by all three kingdoms of life. These extracellular organelles play important roles in both short and long range signaling between donor and target cells and may coordinate systemic responses within an organism in normal and diseased states. EV shedding from ciliated cells and EV-cilia interactions are evolutionarily conserved phenomena, yet remarkably little is known about the relationship between the cilia and EVs and the fundamental biology of EVs. Studies in the model organisms Chlamydomonas and C. elegans have begun to shed light on ciliary EVs. Chlamydomonas EVs are shed from tips of flagella and are bioactive. C. elegans EVs are shed and released by ciliated sensory neurons in an intraflagellar transport (IFT)-dependent manner. C. elegans EVs play a role in modulating animal-to-animal communication, and this EV bioactivity is dependent on EV cargo content. Some ciliary pathologies, or ciliopathies, are associated with abnormal EV shedding or with abnormal cilia-EV interactions, suggest the cilium may be an important organelle as an EV donor or as an EV target. Until the past few decades, both cilia and EVs were ignored as vestigial or cellular junk. As research interest in these two organelles continues to gain momentum, we envision a new field of cell biology emerging. Here, we propose that the cilium is a dedicated organelle for EV biogenesis and EV reception. We will also discuss possible mechanisms by which EVs exert bioactivity and explain how what is learned in model organisms regarding EV biogenesis and function may provide insight to human ciliopathies. PMID:26983828

  5. Affective Priming with Associatively Acquired Valence

    ERIC Educational Resources Information Center

    Aguado, Luis; Pierna, Manuel; Saugar, Cristina

    2005-01-01

    Three experiments explored the effect of affectively congruent or incongruent primes on evaluation responses to positive or negative valenced targets (the "affective priming" effect). Experiment 1 replicated the basic affective priming effect with Spanish nouns: reaction time for evaluative responses (pleasant/unpleasant) were slower on…

  6. Affective Priming with Auditory Speech Stimuli

    ERIC Educational Resources Information Center

    Degner, Juliane

    2011-01-01

    Four experiments explored the applicability of auditory stimulus presentation in affective priming tasks. In Experiment 1, it was found that standard affective priming effects occur when prime and target words are presented simultaneously via headphones similar to a dichotic listening procedure. In Experiment 2, stimulus onset asynchrony (SOA) was…

  7. Structural Priming and Second Language Learning

    ERIC Educational Resources Information Center

    Shin, Jeong-Ah; Christianson, Kiel

    2012-01-01

    Structural priming (or syntactic priming) is a speaker's tendency to reuse the same structural pattern as one that was previously encountered (Bock, 1986). This study investigated (a) whether the implicit learning processes involved in long-lag structural priming lead to differential second language (L2) improvement in producing two structural…

  8. Priming Lexical Stress in Reading Italian Aloud

    ERIC Educational Resources Information Center

    Sulpizio, Simone; Job, Remo; Burani, Cristina

    2012-01-01

    Two experiments using a lexical priming paradigm investigated how stress information is processed in reading Italian words. In both experiments, prime and target words either shared the stress pattern or they had different stress patterns. We expected that lexical activation of the prime would favour the assignment of congruent stress to the…

  9. Structure of a micropipette-aspirated vesicle determined from the bending-energy model

    NASA Astrophysics Data System (ADS)

    Chen, Jeff Z. Y.

    2012-10-01

    The structure of the system consisting of an aspirating pipette and an aspirated vesicle is investigated with fixed total vesicle volume, total vesicle surface area, and aspirated volume fraction, based on the bending-energy model. Through an energetic consideration, the usage of an aspirated volume fraction can be converted to the aspirating pressure for the determination of a phase diagram; the procedure identifies a first-order transition, between a weakly aspirated state and the strongly aspirated state, as the pressure increases. The physical properties of the system are obtained from minimization of the bending energy by an implementation of the simulated annealing Monte Carlo procedure, which searches for a minimum in a multivariable space. An analysis of the hysteresis effects indicates that the experimentally observed aspirating and releasing critical pressures are related to the location of the spinodal points.

  10. Toroidal membrane vesicles in spherical confinement.

    PubMed

    Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael

    2015-09-01

    We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically. PMID:26465512

  11. Aquaporins in Urinary Extracellular Vesicles (Exosomes)

    PubMed Central

    Oshikawa, Sayaka; Sonoda, Hiroko; Ikeda, Masahiro

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper’s group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application. PMID:27322253

  12. Forty Years of Clathrin-coated Vesicles.

    PubMed

    Robinson, Margaret S

    2015-12-01

    The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved. PMID:26403691

  13. Aquaporins in Urinary Extracellular Vesicles (Exosomes).

    PubMed

    Oshikawa, Sayaka; Sonoda, Hiroko; Ikeda, Masahiro

    2016-01-01

    Since the successful characterization of urinary extracellular vesicles (uEVs) by Knepper's group in 2004, these vesicles have been a focus of intense basic and translational research worldwide, with the aim of developing novel biomarkers and therapeutics for renal disease. Along with these studies, there is growing evidence that aquaporins (AQPs), water channel proteins, in uEVs have the potential to be diagnostically useful. In this review, we highlight current knowledge of AQPs in uEVs from their discovery to clinical application. PMID:27322253

  14. Competition Effects in Phonological Priming: The Role of Mismatch Position between Primes and Targets

    ERIC Educational Resources Information Center

    Dufour, Sophie; Peereman, Ronald

    2009-01-01

    In three experiments, we examined lexical competition effects using the phonological priming paradigm in a shadowing task. Experiments 1A and 1B showed that an inhibitory priming effect occurred when the primes mismatched the targets on the last phoneme (/bagar/-/bagaj/). In contrast, a facilitatory priming effect was observed when the primes…

  15. The Impact of Emotional Priming on MMPI-2 Scale Scores

    ERIC Educational Resources Information Center

    Lee, Tayla T. C.; Forbey, Johnathan D.; Ritchey, Kristin A.

    2011-01-01

    The current study investigated potential emotional priming effects on Minnesota Multiphasic Personality Inventory-2 (MMPI-2) scale scores. Participants included 98 college students who completed a personal narrative intended to induce temporary mood states, the MMPI-2, and a mood rating inventory. Results of the mood manipulation indicated that…

  16. Prime Minister Pierre Trudeau and Cruise Missile Testing.

    ERIC Educational Resources Information Center

    Bennett, Paul W.

    1986-01-01

    Based on the 1983 controversy over cruise missile testing by the United States over Canadian air space, this article provides the text of an open letter to the people and an interview by Prime Minister Trudeau. Parenthetical comments inserted by the author point out contradiction contained in the two documents. (JDH)

  17. Structural intermediates during α-synuclein fibrillogenesis on phospholipid vesicles

    PubMed Central

    Comellas, Gemma; Lemkau, Luisel R.; Zhou, Donghua H.; George, Julia M.

    2012-01-01

    α-Synuclein (AS) fibrils are the main protein component of Lewy Bodies, the pathological hallmark of Parkinson’s disease and other related disorders. AS forms helices that bind phospholipid membranes with high affinity, but no atomic level data for AS aggregation in the presence of lipids is yet available. Here, we present direct evidence of a conversion from α-helical conformation to β-sheet fibrils in the presence of anionic phospholipid vesicles and direct conversion to β-sheet fibrils in their absence. We have trapped intermediate states throughout the fibril formation pathways to examine the structural changes using solid-state NMR spectroscopy and electron microscopy. The comparison between mature AS fibrils formed in aqueous buffer and those derived in the presence of anionic phospholipids demonstrates no major changes in the overall fibril fold. However, a site-specific comparison of these fibrillar states demonstrates major perturbations in the N-terminal domain with a partial disruption of the long β-strand located in the 40’s and small perturbations in residues located in the “non-β amyloid component” (NAC) domain. Combining all these results, we propose a model for AS fibrillogenesis in the presence of phospholipid vesicles. PMID:22352310

  18. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer.

    PubMed

    Torrano, Veronica; Royo, Felix; Peinado, Héctor; Loizaga-Iriarte, Ana; Unda, Miguel; Falcón-Perez, Juan M; Carracedo, Arkaitz

    2016-08-01

    Normal and tumor cells shed vesicles to the environment. Within the large family of extracellular vesicles, exosomes and microvesicles have attracted much attention in the recent years. Their interest ranges from mediators of cancer progression, inflammation, immune regulation and metastatic niche regulation, to non-invasive biomarkers of disease. In this respect, the procedures to purify and analyze extracellular vesicles have quickly evolved and represent a source of variability for data integration in the field. In this review, we provide an updated view of the potential of exosomes and microvesicles as biomarkers and the available technologies for their isolation. PMID:27366992

  19. Priming motivation through unattended speech.

    PubMed

    Radel, Rémi; Sarrazin, Philippe; Jehu, Marie; Pelletier, Luc

    2013-12-01

    This study examines whether motivation can be primed through unattended speech. Study 1 used a dichotic-listening paradigm and repeated strength measures. In comparison to the baseline condition, in which the unattended channel was only composed by neutral words, the presence of words related to high (low) intensity of motivation led participants to exert more (less) strength when squeezing a hand dynamometer. In a second study, a barely audible conversation was played while participants' attention was mobilized on a demanding task. Participants who were exposed to a conversation depicting intrinsic motivation performed better and persevered longer in a subsequent word-fragment completion task than those exposed to the same conversation made unintelligible. These findings suggest that motivation can be primed without attention. PMID:23432056

  20. Maglev ready for prime time.

    SciTech Connect

    Rote, D. M.; Johnson, L. R.; Energy Systems

    2003-01-01

    Putting Maglev on Track' (Issues, Spring 1990) observed that growing airline traffic and associated delays were already significant and predicted that they would worsen. The article argued that a 300-mile-per-hour (mph) magnetic levitation (maglev) system integrated into airport and airline operations could be a part of the solution. Maglev was not ready for prime time in 1990, but it is now.

  1. Plant Heat Adaptation: priming in response to heat stress

    PubMed Central

    Bäurle, Isabel

    2016-01-01

    Abiotic stress is a major threat to crop yield stability. Plants can be primed by heat stress, which enables them to subsequently survive temperatures that are lethal to a plant in the naïve state. This is a rapid response that has been known for many years and that is highly conserved across kingdoms. Interestingly, recent studies in Arabidopsis and rice show that this thermo-priming lasts for several days at normal growth temperatures and that it is an active process that is genetically separable from the priming itself. This is referred to as maintenance of acquired thermotolerance or heat stress memory. Such a memory conceivably has adaptive advantages under natural conditions, where heat stress often is chronic or recurring. In this review, I will focus on recent advances in the mechanistic understanding of heat stress memory. PMID:27134736

  2. Vacuum Fluctuations, Cosmogenesis and Prime Number Gaps

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2002-10-01

    Starting from E.Tryon (1973), idea of cosmogenesis through quantum tunnelling "from nothing" became popular. Both complimentary streams of it, inflationary models (Guth, Linde) and quantum parallelism (Everett, Deutsch), require some starting point as, e.g., concretisation of Leibnitz Principle (Omnibus ex nihil decendis sufficit unum). This leads to propositional conjecture (axiom?) that (meta)physical "Platonic Pressure" of infinitude of numbers and Cantor "alephs" becomes an engine for self-generation of physical universe directly out of mathematics: inexhaustibility of Number Theory (NT) drives cosmogenesis. While physics in other quantum branches of inflating universe (Megaverse) can be (arbitrary) different from ours, NT is not (it is unique, absolute, immutable and infinitely resourceful). Energy-time uncertainty principle (UP) allows indefinite lifetime provided we start from total zero energy. Analogue of UP in NT is theorem by H.Maier (1981) stating the existence of arbitrary long trails of isolated primes such that each next gap is arbitrary greater than average gap (logN). On physical level these arbitrary large deviations from Prime Number Theorem translate into permissiveness of (arbitrary) large quantum fluctuations.

  3. Associative priming in perceptual identification: effects of prime-processing requirements.

    PubMed

    Burt, J S; Walker, M B; Humphreys, M S; Tehan, G

    1993-01-01

    Three experiments assessed the effects of prime-processing instructions on associative priming in word identification and episodic memory for primes. In Experiment 1, groups instructed to read the prime silently or generate silently an associate of the prime showed a larger accuracy benefit for related over unrelated targets than did a group that decided whether an asterisk was to the right or left of the prime. The asterisk-search group showed a weaker repetition effect on a subsequent identification test of primes, indicating that the weaker priming in this group was a result of poorer perceptual processing. On a cued-recall test for primes, the generate group was superior to the other groups. In Experiment 2, we found that with weak prime-target associations, priming was comparable for read and generate groups and stronger than estimated for a guessing strategy, on the basis of single predictions made from each prime by an additional group. In Experiment 3, we demonstrated that the read and generate instructions produced similar mispriming and inhibitory effects. The results suggest that the depths of prime-processing manipulations do not have parallel effects on priming and episodic memory, and that associative priming in word identification, as in other tasks, may involve an expectancy process. PMID:8433643

  4. Priming arithmetic facts in amnesic patients.

    PubMed

    Delazer, M; Ewen, P; Benke, T

    1997-05-01

    In this study, amnesic patients showed significant repetition priming effects in arithmetic fact retrieval tasks. The results indicate that repetition priming effects in arithmetic depend not on explicit recognition, but on the activation of specific long-term representations of arithmetic facts. Processing dissociations between easy and difficult items suggest that the priming effects results from the stage of fact retrieval and not from peripheral activation. This claim is also supported by encoding and naming tasks, which showed only slight priming effects as compared to the priming found in calculation tasks. Significant priming was found for identical (5 x 6 and 5 x 6) and complement problems (5 x 6 and 6 x 5), the latter showing a smaller magnitude of priming. PMID:9153025

  5. Hyperviscosity and hypofunction of the seminal vesicles.

    PubMed

    Gonzales, G F; Kortebani, G; Mazzolli, A B

    1993-01-01

    The study was designed to determine whether hyperviscosity of the semen sample is related to dysfunction of the male accessory glands. It was carried out on men who consecutively attended an infertility clinic between June 1989 and June 1991, and the men were grouped according to viscosity of semen samples (normal viscosity or higher viscosity). Semen samples from 229 infertility patients were studied. From these, 155 had normal viscosity and 74 showed hyperviscosity. The effect of hyperviscosity of semen samples on seminal quality and the function of the prostate was evaluated by acid phosphatase measurement, and the seminal vesicles by measurement of corrected fructose. Sperm motility (grades II-III), sperm vitality, and corrected fructose were significantly reduced in samples with high viscosity (p < .05). A high prevalence of hyperviscosity in semen samples was associated with only hypofunction of the seminal vesicles. In fact, 36.5% of subjects with hyperviscosity showed reduced levels of corrected fructose. The same association with hyperviscosity was not observed when only hypofunction of the prostate was present, or when hypofunction of both prostate and seminal vesicles was present (P:NS). Further analysis showed that high viscosity is observed mainly when corrected seminal fructose levels were below 1.5 mg/mL x 10(6) spz/mL. It would appear that hyperviscosity affects sperm motility and is associated with hypofunction of the seminal vesicles. PMID:8420506

  6. Preparation of vesicles entrapped lycopene extract.

    PubMed

    Luxsuwong, Dhitaree; Indranupakorn, Ratana; Wongtrakul, Paveena

    2014-01-01

    Lycopene, a lipophilic carotenoid, has been known as an effective antioxidant in supporting the cutaneous defensive system. However, it is unstable when exposed to light and water. In this study, lycopene was isolated from tomatoes and a vesicular delivery system was developed to entrap and stabilize the lycopene in the aqueous system. A simple process, maceration in ethyl acetate, was used to extract lycopene from the tomatoes. The extract was then chromatographed on the Sephadex LH20 column using acetone as a solvent system to yield 995 μg of lycopene per gram of dried tomato weight. The vesicular delivery system was prepared from a combination of ascorbic acid-6-palmitate (AP), cholesterol and dicetyl phosphate using a thin film hydration method. The formulation was composed of AP, cholesterol and dicetyl phosphate at a 44:44:12 molar ratio and with 2.12 μmol/ml of the isolated lycopene. Both blank vesicles and lycopene loaded vesicles were kept for a period of 3 months at 4±2°C and at the room temperature (28±2°C) to evaluate the effect of the encapsulation on the characteristic of the vesicles and on the antioxidant activity of the encapsulated lycopene. The result implied that lycopene could be stabilized in the vesicles and its scavenging activity against DPPH free radicals was superior to that of the free lycopene solution. PMID:24829133

  7. Compartmentalization and Transport in Synthetic Vesicles.

    PubMed

    Schmitt, Christine; Lippert, Anna H; Bonakdar, Navid; Sandoghdar, Vahid; Voll, Lars M

    2016-01-01

    Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins. PMID:26973834

  8. Compartmentalization and Transport in Synthetic Vesicles

    PubMed Central

    Schmitt, Christine; Lippert, Anna H.; Bonakdar, Navid; Sandoghdar, Vahid; Voll, Lars M.

    2016-01-01

    Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins. PMID:26973834

  9. Interaction of basic compounds with coated vesicles.

    PubMed

    Di Cerbo, A; Nandi, P K; Edelhoch, H

    1984-12-01

    The effect of poly- and dibasic amines, including chloroquine and quinacrine, on the dissociation of coated vesicles at pH 7.4 in 0.01 M 2-(N-morpholino)ethanesulfonic acid has been evaluated by light scattering and sucrose gradient centrifugation. The degree of inhibition of dissociation by the polybases is proportional to the number of amine groups in each compound. However, very little difference in effectiveness was found in a series of dibasic compounds, NH2(CH2)2-5NH2. Chloroquine and quinacrine contain dibasic aliphatic chains as well as aromatic ring systems. These two antimalarials are more effective in inhibiting dissociation of coated vesicles than the dibasic aliphatic amines. The ring systems therefore appear to be contributing, independently, to the free energy of stabilization of the coat structure of coated vesicles. It is suggested that the interaction of poly- or dibasic compounds with clathrin or coated vesicles could influence the turnover of ligands in receptor-mediated endocytosis. PMID:6151855

  10. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    PubMed

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. PMID:26912364

  11. Flat and sigmoidally curved contact zones in vesicle-vesicle adhesion.

    PubMed

    Ziherl, P; Svetina, S

    2007-01-16

    Using the membrane-bending elasticity theory and a simple effective model of adhesion, we study the morphology of lipid vesicle doublets. In the weak adhesion regime, we find flat-contact axisymmetric doublets, whereas at large adhesion strengths, the vesicle aggregates are nonaxisymmetric and characterized by a sigmoidally curved, S-shaped contact zone with a single invagination and a complementary evagination on each vesicle. The sigmoid-contact doublets agree very well with the experimentally observed shapes of erythrocyte aggregates. Our results show that in identical vesicles with large to moderate surface-to-volume ratio, the sigmoid-contact shape is the only bound morphology. We also discuss the role of sigmoid contacts in the formation of multicellular aggregates such as erythrocyte rouleaux. PMID:17215358

  12. Subliminal affective priming in clinical depression and comorbid anxiety: a longitudinal investigation.

    PubMed

    Dannlowski, Udo; Kersting, Anette; Lalee-Mentzel, Judith; Donges, Uta-Susan; Arolt, Volker; Suslow, Thomas

    2006-06-30

    In the present study, the sequential affective priming paradigm developed by Fazio et al. [Fazio, R.H., Sanbonmatsu, D.M., Powell, M.C., Kardes, F.R., 1986. On the automatic activation of attitudes. Journal of Personality and Social Psychology 50, 229-238.] was applied for the first time to investigate automatic cognitive bias in depressed patients. Unipolar depressed patients (n=22) were tested on admission and after about 7 weeks of inpatient psychotherapy. Half of the patients (n=11) were suffering from a comorbid anxiety disorder. Twenty-two healthy subjects served as controls. Affectively polarized prime words were presented subliminally followed by positive or negative target words, which had to be evaluated. Subjects' affective state was assessed by self-report measures. In the course of psychotherapy, patients recovered significantly. Study groups exhibited qualitatively different affective priming effects: In non-comorbid depressed patients, no affective priming was found. Instead, a highly significant main effect of prime valence emerged, indicating a Stroop-like interference of negative prime words at time 1. This negative bias was associated with depression level at time 1 and could not be found after recovery. Affective priming was observed in controls and comorbid patients, but in opposite directions. Direction and strength of affective priming was directly associated with anxiety level at both times. The affective priming paradigm provides evidence for differential group effects regarding unconscious emotional information processing. PMID:16725208

  13. Comparison of Prime Movers Suitable for USMC Expeditionary Power Sources

    SciTech Connect

    Theiss, T.J.

    2000-04-18

    This report documents the results of the ORNL investigation into prime movers that would be desirable for the construction of a power system suitable for the United States Marine Corps (USMC) expeditionary forces under Operational Maneuvers From The Sea (OMFTS) doctrine. Discrete power levels of {approx}1, 5, 15, and 30 kW are considered. The only requirement is that the prime mover consumes diesel fuel. A brief description is given for the prime movers to describe their basic scientific foundations and relative advantages and disadvantages. A list of key attributes developed by ORNL has been weighted by the USMC to indicate the level of importance. A total of 14 different prime movers were scored by ORNL personnel in four size ranges (1,5, 15, & 30 kW) for their relative strength in each attribute area. The resulting weighted analysis was used to indicate which prime movers are likely to be suitable for USMC needs. No single engine or prime mover emerged as the clear-cut favorite but several engines scored as well or better than the diesel engine. At the higher load levels (15 & 30 kW), the results indicate that the open Brayton (gas turbine) is a relatively mature technology and likely a suitable choice to meet USMC needs. At the lower power levels, the situation is more difficult and the market alone is not likely to provide an optimum solution in the time frame desired (2010). Several prime movers should be considered for future developments and may be satisfactory; specifically, the Atkinson cycle, the open Brayton cycle (gas turbine), the 2-stroke diesel. The rotary diesel and the solid oxide fuel cell should be backup candidates. Of all these prime movers, the Atkinson cycle may well be the most suitable for this application but is an immature technology. Additional demonstrations of this engine will be conducted at ORNL. If this analysis is positive, then the performance of a generator set using this engine, the open Brayton and the 2-stroke diesel should

  14. What determines the direction of subliminal priming

    PubMed Central

    Jaśkowski, Piotr; Verleger, Rolf

    2008-01-01

    Masked stimuli (primes) can affect the preparation of a motor response to subsequently presented target stimuli. Reactions to the target can be facilitated (straight priming) or inhibited (inverse priming) when preceded by a compatible prime (calling for the same response) and also when preceded by an incompatible prime. Several hypotheses are currently under debate. These are the self-inhibition (SI) hypothesis, the object-updating (OU) hypothesis, and mask-triggered inhibition (MTI) hypothesis. All assume that the initial activation of the motor response is elicited by the prime according to its identity. This activation inevitably leads to straight priming in some cases and the mechanisms involved are undisputed. The hypotheses differ, however, as to why inverse priming occurs. The self-inhibition (SI) hypothesis assumes that the motor activation elicited by a prime is automatically followed by an inhibition phase, leading to inverse priming if three conditions are fulfilled: perceptual evidence for the prime has to be sufficiently strong, it has to be immediately removed by the mask, and the delay between the prime and target has to be long enough for inhibition to become effective. The object-updating (OU) hypothesis assumes that inverse priming is triggered by the mask, provided that it contains features calling for the alternative response (i.e. the one contrasting with the response induced by the prime). The MTI hypothesis assumes that the inhibitory phase is triggered by each successive stimulus which does not support the perceptual hypothesis provided by the prime. Based mostly on our own experiments, we argue that (1) attempts to manipulate the three factors required by the SI hypothesis imply changes of other variables and that (2) indeed, other variables seem to affect priming: prime-mask perceptual interaction and temporal position of the mask. These observations are in favor of the MTI hypothesis. A limiting factor for all three hypotheses is that

  15. What determines the direction of subliminal priming.

    PubMed

    Jaśkowski, Piotr; Verleger, Rolf

    2007-01-01

    Masked stimuli (primes) can affect the preparation of a motor response to subsequently presented target stimuli. Reactions to the target can be facilitated (straight priming) or inhibited (inverse priming) when preceded by a compatible prime (calling for the same response) and also when preceded by an incompatible prime. Several hypotheses are currently under debate. These are the self-inhibition (SI) hypothesis, the object-updating (OU) hypothesis, and mask-triggered inhibition (MTI) hypothesis. All assume that the initial activation of the motor response is elicited by the prime according to its identity. This activation inevitably leads to straight priming in some cases and the mechanisms involved are undisputed. The hypotheses differ, however, as to why inverse priming occurs. The self-inhibition (SI) hypothesis assumes that the motor activation elicited by a prime is automatically followed by an inhibition phase, leading to inverse priming if three conditions are fulfilled: perceptual evidence for the prime has to be sufficiently strong, it has to be immediately removed by the mask, and the delay between the prime and target has to be long enough for inhibition to become effective. The object-updating (OU) hypothesis assumes that inverse priming is triggered by the mask, provided that it contains features calling for the alternative response (i.e. the one contrasting with the response induced by the prime). The MTI hypothesis assumes that the inhibitory phase is triggered by each successive stimulus which does not support the perceptual hypothesis provided by the prime. Based mostly on our own experiments, we argue that (1) attempts to manipulate the three factors required by the SI hypothesis imply changes of other variables and that (2) indeed, other variables seem to affect priming: prime-mask perceptual interaction and temporal position of the mask. These observations are in favor of the MTI hypothesis. A limiting factor for all three hypotheses is that

  16. Location Matters: Synaptotagmin Helps Place Vesicles Near Calcium Channels

    PubMed Central

    McNeil, Benjamin D.; Wu, Ling-Gang

    2016-01-01

    Positioning releasable vesicles near voltage-gated calcium channels may ensure transmitter release upon calcium influx. Disruption of vesicle positioning may underlie short-term synaptic depression. However, how this positioning is achieved is unclear. In this issue of Neuron, Young and Neher find that synaptotagmin 2 helps to align readily releasable vesicles near calcium channels at nerve terminals. PMID:19709623

  17. Self-Assembly of Bilayer Vesicles Made of Saturated Long Chain Fatty Acids.

    PubMed

    Douliez, Jean-Paul; Houssou, Bérénice Houinsou; Fameau, A-Laure; Navailles, Laurence; Nallet, Frédéric; Grélard, Axelle; Dufourc, Erick J; Gaillard, Cédric

    2016-01-19

    Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers. PMID:26700689

  18. Isolation of Functional Golgi-derived Vesicles with a Possible Role in Retrograde Transport

    PubMed Central

    Love, Harold D.; Lin, Chung-Chih; Short, Craig S.; Ostermann, Joachim

    1998-01-01

    Secretory proteins enter the Golgi apparatus when transport vesicles fuse with the cis-side and exit in transport vesicles budding from the trans-side. Resident Golgi enzymes that have been transported in the cis-to-trans direction with the secretory flow must be recycled constantly by retrograde transport in the opposite direction. In this study, we describe the functional characterization of Golgi-derived transport vesicles that were isolated from tissue culture cells. We found that under the steady-state conditions of a living cell, a fraction of resident Golgi enzymes was found in vesicles that could be separated from cisternal membranes. These vesicles appeared to be depleted of secretory cargo. They were capable of binding to and fusion with isolated Golgi membranes, and after fusion their enzymatic contents most efficiently processed cargo that had just entered the Golgi apparatus. Those results indicate a possible role for these structures in recycling of Golgi enzymes in the Golgi stack. PMID:9456315

  19. Formation of polyhedral vesicles and polygonal membrane tubes induced by banana-shaped proteins

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2015-12-01

    The shape transformations of fluid membranes induced by curved protein rods are studied using meshless membrane simulations. The rod assembly at low rod density induces a flat membrane tube and oblate vesicle. It is found that the polyhedral shapes are stabilized at high rod densities. The discrete shape transition between triangular and buckled discoidal tubes is obtained and their curvature energies are analyzed by a simple geometric model. For vesicles, triangular hosohedron and elliptic-disk shapes are formed in equilibrium, whereas tetrahedral and triangular prism shapes are obtained as metastable states.

  20. Formation of polyhedral vesicles and polygonal membrane tubes induced by banana-shaped proteins.

    PubMed

    Noguchi, Hiroshi

    2015-12-28

    The shape transformations of fluid membranes induced by curved protein rods are studied using meshless membrane simulations. The rod assembly at low rod density induces a flat membrane tube and oblate vesicle. It is found that the polyhedral shapes are stabilized at high rod densities. The discrete shape transition between triangular and buckled discoidal tubes is obtained and their curvature energies are analyzed by a simple geometric model. For vesicles, triangular hosohedron and elliptic-disk shapes are formed in equilibrium, whereas tetrahedral and triangular prism shapes are obtained as metastable states. PMID:26723594

  1. Interfacial Recognition of Acetylcholine by an Amphiphilic p-Sulfonatocalix[8]arene Derivative Incorporated into Dimyristoyl Phosphatidylcholine Vesicles

    PubMed Central

    Jin, Takashi; Fujii, Fumihiko; Ooi, Yasuhiro

    2008-01-01

    Dodecyl ether derivatives 1-3 of p-sulfonatocalix[n]arene were incorporated into dimyristoyl phosphatidylcholine (DMPC) vesicles, and their binding abilities for acetylcholine (ACh) were examined by using steady-state fluorescence/fluorescence anisotropy and fluorescence correlation spectroscopy (FCS). For the detection of ACh binding to the DMPC vesicles containing 5 mol % of 1-3, competitive fluorophore displacement experiments were performed, where rhodamine 6G (Rh6G) was used as a fluorescent guest. The addition of Rh6G to the DMPC vesicles containing 3 resulted in a decrease in the fluorescence intensity of Rh6G with an increase of its fluorescence anisotropy, indicating that Rh6G binds to the DMPC-3 vesicles. In the case of DMPC-1 and DMPC-2 vesicles, significant changes in the fluorescence spectra of Rh6G were not observed. When ACh was added to the DMPC-3 vesicles in the presence of Rh6G ([3]/[Rh6G]=100), the fluorescence intensity of Rh6G increased with a decrease in its fluorescence anisotropy. From the analysis of fluorescence titration data, the association constants were determined to be 7.1×105 M-1 for Rh6G-3 complex and 1.1×102 M-1 for ACh-3 complex at the DMPC-3 vesicles. To get a direct evidence for the binding of Rh6G and its displacement by ACh at the DMPC-3 vesicles, diffusion times of the Rh6G were measured by using FCS. Binding selectivity of the DMPC-3 vesicles for ACh, choline, GABA, l-aspartic acid,l-glutamic acid, l-arginine, l-lysine, l-histamine and ammonium chloride was also evaluated using FCS.

  2. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials.

    PubMed

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-01-01

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell-burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition--resulting from a well-coordinated sequence of mechanochemical events--suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment. PMID:25318069

  3. Munc18-1 domain-1 controls vesicle docking and secretion by interacting with syntaxin-1 and chaperoning it to the plasma membrane

    PubMed Central

    Han, Gayoung A.; Malintan, Nancy T.; Saw, Ner Mu Nar; Li, Lijun; Han, Liping; Meunier, Frederic A.; Collins, Brett M.; Sugita, Shuzo

    2011-01-01

    Munc18-1 plays pleiotropic roles in neurosecretion by acting as 1) a molecular chaperone of syntaxin-1, 2) a mediator of dense-core vesicle docking, and 3) a priming factor for soluble N-ethylmaleimide–sensitive factor attachment protein receptor–mediated membrane fusion. However, how these functions are executed and whether they are correlated remains unclear. Here we analyzed the role of the domain-1 cleft of Munc18-1 by measuring the abilities of various mutants (D34N, D34N/M38V, K46E, E59K, K46E/E59K, K63E, and E66A) to bind and chaperone syntaxin-1 and to restore the docking and secretion of dense-core vesicles in Munc18-1/-2 double-knockdown cells. We identified striking correlations between the abilities of these mutants to bind and chaperone syntaxin-1 with their ability to restore vesicle docking and secretion. These results suggest that the domain-1 cleft of Munc18-1 is essential for binding to syntaxin-1 and thereby critical for its chaperoning, docking, and secretory functions. Our results demonstrate that the effect of the alleged priming mutants (E59K, D34N/M38V) on exocytosis can largely be explained by their reduced syntaxin-1–chaperoning functions. Finally, our data suggest that the intracellular expression and distribution of syntaxin-1 determines the level of dense-core vesicle docking. PMID:21900502

  4. Microbial stress priming: a meta-analysis.

    PubMed

    Andrade-Linares, Diana R; Lehmann, Anika; Rillig, Matthias C

    2016-04-01

    Microbes have to cope with complex and dynamic environments, making it likely that anticipatory responses provide fitness benefits. Mild, previous stressors can prepare microbes (stress priming) to further and potentially damaging stressors (triggering). We here quantitatively summarize the findings from over 250 trials of 34 studies including bacteria and fungi, demonstrating that priming to stress has a beneficial impact on microbial survival. In fact, survival of primed microbes was about 10-fold higher compared with that in non-primed microbes. Categorical moderators related to microbial taxonomy and the kind of stress applied as priming or as triggering revealed significant differences of priming effect size among 14 different microbial species, 6 stress categories and stressor combination. We found that priming by osmotic, physiological and temperature stress had the highest positive effect sizes on microbial response. Cross-protection was evident for physiological, temperature and pH stresses. Microbes are better prepared against triggering by oxidative, temperature and osmotic stress. Our finding of an overall positive mean effect of priming regardless of the microbial system and particular stressor provides unprecedentedly strong evidence of the broad ecological significance of microbial stress priming. These results further suggest that stress priming may be an important factor in shaping microbial communities. PMID:26768991

  5. The temporal dynamics of visual object priming

    PubMed Central

    Ko, Philip C.; Duda, Bryant; Hussey, Erin P.; Mason, Emily J.; Ally, Brandon A.

    2014-01-01

    Priming reflects an important means of learning that is mediated by implicit memory. Importantly, priming occurs for previously viewed objects (item-specific priming) and their category relatives (category-wide priming). Two distinct neural mechanisms are known to mediate priming, including the sharpening of a neural object representation and the retrieval of stimulus-response mappings. Here, we investigated whether the relationship between these neural mechanisms could help explain why item-specific priming generates faster responses than category-wide priming. Participants studied pictures of everyday objects, and then performed a difficult picture identification task while we recorded event-related potentials (ERP). The identification task gradually revealed random line segments of previously viewed items (Studied), category exemplars of previously viewed items (Exemplar), and items that were not previously viewed (Unstudied). Studied items were identified sooner than Unstudied items, showing evidence of item-specific priming, and importantly Exemplar items were also identified sooner than Unstudied items, showing evidence of category-wide priming. Early activity showed sustained neural suppression of parietal activity for both types of priming. However, these neural suppression effects may have stemmed from distinct processes because while category-wide neural suppression was correlated with priming behavior, item-specific neural suppression was not. Late activity, examined with response-locked ERPs, showed additional processes related to item-specific priming including neural suppression in occipital areas and parietal activity that was correlated with behavior. Together, we conclude that item-specific and category-wide priming are mediated by separate, parallel neural mechanisms in the context of the current paradigm. Temporal differences in behavior are determined by the timecourses of these distinct processes. PMID:25164991

  6. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis.

    PubMed

    Erne, Petra M; van Bezouwen, Laura S; Štacko, Peter; van Dijken, Derk Jan; Chen, Jiawen; Stuart, Marc C A; Boekema, Egbert J; Feringa, Ben L

    2015-12-01

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based flexible bilayers. When a hyperosmotic gradient is applied to these vesicle-capped nanotubes, the closed system loses water and the more flexible vesicle bilayer is pulled inwards. This leads to inclusion of vesicles inside the nanotubes without affecting the tube structure, showing controlled reorganization of the self-assembled multicomponent system upon a simple osmotic stimulus. PMID:26503858

  7. Probing the interior of synaptic vesicles with internalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Gadd, Jennifer C.; Budzinski, Kristi L.; Chan, Yang-Hsiang; Ye, Fangmao; Chiu, Daniel T.

    2012-03-01

    Synaptic vesicles are subcellular organelles that are found in the synaptic bouton and are responsible for the propagation of signals between neurons. Synaptic vesicles undergo endo- and exocytosis with the neuronal membrane to load and release neurotransmitters. Here we discuss how we utilize this property to load nanoparticles as a means of probing the interior of synaptic vesicles. To probe the intravesicular region of synaptic vesicles, we have developed a highly sensitive pH-sensing polymer dot. We feel the robust nature of the pH-sensing polymer dot will provide insight into the dynamics of proton loading into synaptic vesicles.

  8. Diophantine equations in the primes

    NASA Astrophysics Data System (ADS)

    Cook, Brian; Magyar, Ákos

    2014-12-01

    Let $\\mathfrak{p}=(\\mathfrak{p}_1,...,\\mathfrak{p}_r)$ be a system of $r$ polynomials with integer coefficients of degree $d$ in $n$ variables $\\mathbf{x}=(x_1,...,x_n)$. For a given $r$-tuple of integers, say $\\mathbf{s}$, a general local to global type statement is shown via classical Hardy-Littlewood type methods which provides sufficient conditions for the solubility of $\\mathfrak{p}(\\mathbf{x})=\\mathbf{s}$ under the condition that each of the $x_i$'s is prime.

  9. Centaur G Prime modal test

    NASA Technical Reports Server (NTRS)

    Trubert, Marc; Cutler, Art; Miller, Robert; Page, Don; Engelhardt, Charles

    1987-01-01

    The Centaur G Prime modal test resulted in sets of modes (frequencies, mode shapes and damping) with an accuracy similiar to or better than that normally obtained from the modal testing of linear structures with no backlash and small damping. In other words, performing the test at high level greatly minimized the backlash effect and provided a valid, simple linearization of the trunnion friction problem for the Centaur in the Shuttle Cargo Bay. All the most important modes (target modes) were measured and provided the data base for updating the finite element model for the pre-flight verification loads analysis.

  10. Anaerobiosis inhibits gas vesicle formation in halophilic Archaea.

    PubMed

    Hechler, Torsten; Pfeifer, Felicitas

    2009-01-01

    The effect of anaerobiosis on the gas vesicle formation was investigated in three Halobacterium salinarum strains, Haloferax mediterranei and in Haloferax volcanii transformants. All these strains significantly reduced gas vesicle formation or lacked these structures under anoxic conditions. When grown by arginine fermentation, Hbt. salinarum PHH4 lacked gas vesicles, whereas Hbt. salinarum PHH1 and NRC-1 contained 5-20 small gas vesicles arranged in two to three aggregates per cell instead of the 30-80 gas vesicles present under oxic conditions. The enlargement presumably stopped due to a depletion of Gvp proteins. Also Hfx. mediterranei and Hfx. volcanii transformants lacked gas vesicles under anoxic growth and yielded a 10-fold reduced gvp transcription. Even the gas vesicle-overproducing DeltaD transformants did not form gas vesicles under anoxic conditions, demonstrating that the repressing protein GvpD was not involved. The presence of large amounts of GvpA implied that the assembly of the gas vesicles was inhibited. When Hbt. salinarum PHH1 and NRC-1 were grown with dimethyl sulphoxide or trimethylamine N-oxid under anoxic conditions the number but not the size of gas vesicles was reduced. This was in contrast to the previously reported overproduction of gas vesicles in NRC-1 that turned out to depend on the citrate-containing medium used for growth. PMID:19007418

  11. Isolation of calcifiable vesicles from human atherosclerotic aortas.

    PubMed

    Hsu, H H; Camacho, N P

    1999-04-01

    Advanced mineralization can cause brittleness of aortic walls with decreased elasticity thereby causing the wall to rupture. Although the precise mechanisms of dystrophic calcification remain unknown, morphological evidence reveals the presence of mineral-associated vesicles in the lesions and defective bioprosthetic valves. In an attempt to demonstrate the calcifiability of the vesicles, small segments of human atherosclerotic aortas with calcified lesions were removed at autopsy and then digested in a crude collagenase solution to release vesicles. A differential centrifugation was then used to isolate calcifiable vesicles, which was precipitated at 300,000 x g for 20 min. An exposure of the vesicles to a calcifying medium containing physiologic levels of Ca2+, Pi, and 1 mM ATP caused Ca deposition in a vesicle protein-concentration dependent manner. The calcifiability of the vesicles was further demonstrated by electron microscopy. Fourier transform spectroscopic analysis of the deposited mineral revealed the presence of a hydroxyapatite phase, closely resembling the native form of mineral in atherosclerotic plaques. In addition, calcifiable vesicles were enriched in ATP-hydrolyzing enzymes including Mg2+ or Ca2+-ATPase and NTP pyrophosphohydrolase that may be involved in normal and pathological calcification. Triton X-100 at 0.01% abolished 80% of both ATPase activity and ATP-initiated calcification. A comparison of vesicles isolated from non-atherosclerotic and atherosclerotic aortas indicated that atherosclerotic vesicles tended to have higher calcifiability. These observations suggest that the calcifiable vesicles play a part in dystrophic calcification of aortas in atherosclerosis. PMID:10217364

  12. 76 FR 26751 - Prime Hook National Wildlife Refuge, Sussex County, DE; Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... the planting of genetically modified organisms until the refuge completed compatibility determinations... 17, 2005 (70 FR 60365) stating we intended to prepare a CCP and EA for Prime Hook NWR. We held...

  13. Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    PubMed Central

    Rey, Stephanie A.; Smith, Catherine A.; Fowler, Milena W.; Crawford, Freya; Burden, Jemima J.; Staras, Kevin

    2015-01-01

    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution. PMID:26292808

  14. Migration of phospholipid vesicles in response to OH(-) stimuli.

    PubMed

    Kodama, Atsuji; Sakuma, Yuka; Imai, Masayuki; Oya, Yutaka; Kawakatsu, Toshihiro; Puff, Nicolas; Angelova, Miglena I

    2016-03-21

    We demonstrate migration of phospholipid vesicles in response to a pH gradient. Upon simple micro-injection of a NaOH solution, the vesicles linearly moved to the tip of the micro-pipette and the migration velocity was proportional to the gradient of OH(-) concentration. Vesicle migration was characteristic of OH(-) ions and no migration was observed for monovalent salts or nonionic sucrose solutions. The migration of vesicles is quantitatively described by the surface tension gradient model where the hydrolysis of the phospholipids by NaOH solution decreases the surface tension of the vesicle. The vesicles move toward a direction where the surface energy decreases. Thus the chemical modification of lipids produces a mechanical force to drive vesicles. PMID:26883729

  15. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing.

    PubMed

    Kalra, Hina; Drummen, Gregor P C; Mathivanan, Suresh

    2016-01-01

    Intercellular communication was long thought to be regulated exclusively through direct contact between cells or via release of soluble molecules that transmit the signal by binding to a suitable receptor on the target cell, and/or via uptake into that cell. With the discovery of small secreted vesicular structures that contain complex cargo, both in their lumen and the lipid membrane that surrounds them, a new frontier of signal transduction was discovered. These "extracellular vesicles" (EV) were initially thought to be garbage bags through which the cell ejected its waste. Whilst this is a major function of one type of EV, i.e., apoptotic bodies, many EVs have intricate functions in intercellular communication and compound exchange; although their physiological roles are still ill-defined. Additionally, it is now becoming increasingly clear that EVs mediate disease progression and therefore studying EVs has ignited significant interests among researchers from various fields of life sciences. Consequently, the research effort into the pathogenic roles of EVs is significantly higher even though their protective roles are not well established. The "Focus on extracellular vesicles" series of reviews highlights the current state of the art regarding various topics in EV research, whilst this review serves as an introductory overview of EVs, their biogenesis and molecular composition. PMID:26861301

  16. Urinary extracellular vesicles as source of biomarkers in kidney diseases.

    PubMed

    Gámez-Valero, Ana; Lozano-Ramos, Sara Inés; Bancu, Ioana; Lauzurica-Valdemoros, Ricardo; Borràs, Francesc E

    2015-01-01

    Most cells physiologically release vesicles as way of intercellular communication. The so-called Extracellular Vesicles (EVs) include exosomes, ectosomes, and apoptotic bodies, which basically differ in their composition and subcellular origin. Specifically, EVs found in urine reflect the state of the urinary system, from podocytes to renal-tubular cells, thus making them an excellent source of samples for the study of kidney physiology and pathology. Several groups have focused on defining biomarkers of kidney-related disorders, from graft rejection to metabolic syndromes. So far, the lack of a standard protocol for EVs isolation precludes the possibility of a proper comparison among the different biomarkers proposed in the literature, stressing the need for validation of these biomarkers not only in larger cohorts of patients but also considering the different methods for EVs isolation. In this review, we aim to gather the current knowledge about EVs-related biomarkers in kidney diseases, with a special emphasis in the methods used to date for EVs enrichment, and discussing the need for more specific protocols of EV isolation in clinical practice. PMID:25688242

  17. Priming effects in marine sediments

    NASA Astrophysics Data System (ADS)

    Gontikaki, Evina; Thornton, Barry; Witte, Ursula

    2013-04-01

    Continental margin sediments (<2000 m) cover merely 15 % of the ocean's seafloor but are responsible for more than 70 % of the global benthic mineralization. Understanding when these systems act as a source or sink of carbon (C) is thus of primary importance if we are to produce reliable global C budgets and predict the effects of future perturbations on the global C cycle. The chemical nature of organic matter (OM) is thought to be one of the major controls on the degradation/preservation balance in sediments; labile and refractory OM pools degrade at different rates but not independently. Priming effects (PE), i.e. changes in the decomposition of refractory organic matter following inputs of labile OM, have the potential to alter the C budget in sediments but have been largely ignored by marine scientists. Climate-driven changes in primary production, and land erosion and run-off are likely to change the quantity and composition of organic matter inputs in marine ecosystems and influence the magnitude and direction of PEs in seawater and sediments. Here, we attempt to evaluate the importance of priming effects on C cycling in marine sediments by use of labelled substrates of different quantity and quality in stable isotope tracer experiments and argue that PEs need to be incorporated in global change models.

  18. Can Faces Prime a Language?

    PubMed

    Woumans, Evy; Martin, Clara D; Vanden Bulcke, Charlotte; Van Assche, Eva; Costa, Albert; Hartsuiker, Robert J; Duyck, Wouter

    2015-09-01

    Bilinguals have two languages that are activated in parallel. During speech production, one of these languages must be selected on the basis of some cue. The present study investigated whether the face of an interlocutor can serve as such a cue. Spanish-Catalan and Dutch-French bilinguals were first familiarized with certain faces, each of which was associated with only one language, during simulated Skype conversations. Afterward, these participants performed a language production task in which they generated words associated with the words produced by familiar and unfamiliar faces displayed on-screen. When responding to familiar faces, participants produced words faster if the faces were speaking the same language as in the previous Skype simulation than if the same faces were speaking a different language. Furthermore, this language priming effect disappeared when it became clear that the interlocutors were actually bilingual. These findings suggest that faces can prime a language, but their cuing effect disappears when it turns out that they are unreliable as language cues. PMID:26209531

  19. On Anti-Elite Prime Numbers

    NASA Astrophysics Data System (ADS)

    M"Uller, Tom

    2007-09-01

    An odd prime number p is called anti-elite if only finitely many Fermat numbers are quadratic non-residues to p. This concept is the exact opposite to that of elite prime numbers. We study some fundamental properties of anti-elites and show that there are infinitely many of them. A computational search among all the numbers up to 100 billion yielded 84 anti-elite primes.

  20. All Elite Primes Up to 250 Billion

    NASA Astrophysics Data System (ADS)

    Chaumont, Alain; Müller, Tom

    2006-08-01

    A prime number p is called elite if only finitely many Fermat numbers 2^(2^n)+1 are quadratic residues of p. Previously only the interval up to 10^9 was systematically searched for elite primes and 16 such primes were found. We extended this research up to 2.5*10^11 and found five further elites, among which 1,151,139,841 is the smallest and 171,727,482,881 the largest.

  1. Docking of Secretory Vesicles Is Syntaxin Dependent

    PubMed Central

    de Wit, Heidi; Cornelisse, L. Niels; Toonen, Ruud F.G.; Verhage, Matthijs

    2006-01-01

    Secretory vesicles dock at the plasma membrane before they undergo fusion. Molecular docking mechanisms are poorly defined but believed to be independent of SNARE proteins. Here, we challenged this hypothesis by acute deletion of the target SNARE, syntaxin, in vertebrate neurons and neuroendocrine cells. Deletion resulted in fusion arrest in both systems. No docking defects were observed in synapses, in line with previous observations. However, a drastic reduction in morphologically docked secretory vesicles was observed in chromaffin cells. Syntaxin-deficient chromaffin cells showed a small reduction in total and plasma membrane staining for the docking factor Munc18-1, which appears insufficient to explain the drastic reduction in docking. The sub-membrane cortical actin network was unaffected by syntaxin deletion. These observations expose a docking role for syntaxin in the neuroendocrine system. Additional layers of regulation may have evolved to make syntaxin redundant for docking in highly specialized systems like synaptic active zones. PMID:17205130

  2. Micromanaging of tumor metastasis by extracellular vesicles.

    PubMed

    Tominaga, Naoomi; Katsuda, Takeshi; Ochiya, Takahiro

    2015-04-01

    Extracellular vesicles (EVs) are nanometer-sized membranous vesicles that are released by a variety of cell types into the extracellular space. In the past two decades, EVs have emerged as novel mediators of cancer biology. Many reports have demonstrated the contribution of EVs to cancer metastasis. Metastasis is a multistep process that is responsible for the majority of deaths in cancer patients. This process includes proliferation, angiogenesis, immune modulation, extravasation, intravasation, and colonization. EVs from cancer cells impact these steps through modulation of the host immune system, angiogenesis, and pre-/pro-metastatic niche formation. In this review, we summarize the function of EVs in cancer metastasis. In addition, we also discuss the hurdles to be overcome for further developing this research field. PMID:25746922

  3. Alternative methods for characterization of extracellular vesicles.

    PubMed

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Tigges, John; Toxavidis, Vasilis; Ericsson, Maria; Distel, Robert J; Ivanov, Alexander R; Skog, Johan; Kuo, Winston Patrick

    2012-01-01

    Extracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize ECVs. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some ECVs-specific evidence. Characterization of ECVs has also recently seen many advances with the use of Nanoparticle Tracking Analysis, flow cytometry, cryo-electron microscopy instruments, and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face. PMID:22973237

  4. Facile synthesis of multilayered polysaccharidic vesicles.

    PubMed

    Kwag, Dong Sup; Oh, Kyung Taek; Lee, Eun Seong

    2014-08-10

    In this study, we developed facile synthesis method of multilayered polysaccharidic vesicles (hereafter termed 'mPSVs') using polysaccharides such as starch, hyaluronate (HA), and glycol chitosan (GC) via simple chemistry and using enzymatic reactions among polysaccharides. The enzymatic degradation of the HA shell by hyaluronidase (HYAL) enzyme contributed to accelerate the release of protein/peptide from the mPSVs. The mPSVs containing folate ligand and apoptotic cell death-inducing D-(KLAKLAK)2 peptide were effectively accumulated in in vivo KB tumor cells, primarily owing to passive tumor penetration via the enhanced permeability and retention (EPR) effect and active targeting via specific binding to folate receptors expressed on KB tumor cells. These mPSVs resulted in a significant increase in the in vivo tumor inhibition. This vesicle system is expected to exhibit great potential as an advanced platform technology for biomedical applications involving small molecular drugs with protein/gene targets. PMID:24878178

  5. Alternative Methods for Characterization of Extracellular Vesicles

    PubMed Central

    Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Tigges, John; Toxavidis, Vasilis; Ericsson, Maria; Distel, Robert J.; Ivanov, Alexander R.; Skog, Johan; Kuo, Winston Patrick

    2012-01-01

    Extracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell–cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids. A major limitation in this emerging new field is the availability/awareness of techniques to isolate and properly characterize ECVs. The lack of gold standards makes comparing different studies very difficult and may potentially hinder some ECVs-specific evidence. Characterization of ECVs has also recently seen many advances with the use of Nanoparticle Tracking Analysis, flow cytometry, cryo-electron microscopy instruments, and proteomic technologies. In this review, we discuss the latest developments in translational technologies involving characterization methods including the facts in their support and the challenges they face. PMID:22973237

  6. The impact of dissociation on perceptual priming and intrusions after listening to auditory narratives.

    PubMed

    Dorahy, Martin J; Peck, Rowan K; Huntjens, Rafaele J C

    2016-01-01

    This study investigates the causal role of dissociation in intrusive memory development and possible underlying aberrant memory processes (e.g., increased perceptual priming). Using an audio-only adaption of the trauma film paradigm, we divided 60 participants into 3 conditions and presented them with different visual tasks-mirror staring, dot staring, or neutral images. The former 2 conditions were hypothesized to induce dissociation. Postaudio, a number of factors were assessed, including state dissociation, perceptual priming and conceptual priming, as well as intrusions over 3 days. Participants in the dissociation conditions displayed an increase in perceptual priming compared to those in the control condition and reported more distressing intrusions. No differences were found in conceptual priming and the overall number of intrusions between conditions. Findings contribute to the growing knowledge on the impact of dissociation and cognitive processing in the etiology of posttraumatic stress disorder intrusions. PMID:26727461

  7. Synapsin Isoforms and Synaptic Vesicle Trafficking

    PubMed Central

    Song, Sang-Ho; Augustine, George J.

    2015-01-01

    Synapsins were the first presynaptic proteins identified and have served as the flagship of the presynaptic protein field. Here we review recent studies demonstrating that different members of the synapsin family play different roles at presynaptic terminals employing different types of synaptic vesicles. The structural underpinnings for these functions are just beginning to be understood and should provide a focus for future efforts. PMID:26627875

  8. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    PubMed Central

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  9. Complex architecture of primes and natural numbers.

    PubMed

    García-Pérez, Guillermo; Serrano, M Ángeles; Boguñá, Marián

    2014-08-01

    Natural numbers can be divided in two nonoverlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blocks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramér's conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramér's version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers. PMID:25215780

  10. eta. prime -. eta. -. pi. sup 0 mixing

    SciTech Connect

    Bagchi, B. ); Lahiri, A. ); Niyogi, S. )

    1990-05-01

    We have examined the saturation of anomalous Ward identities by the low-lying pseudoscalars {pi}{sup 0}, {eta}, and {eta}{prime} to determine the sizes of {eta}{prime}-{eta}, {pi}{sup 0}-{eta}, and {pi}{sup 0}-{eta}{prime} mixing angles. The {eta}{prime}-{eta} mixing angle turns out to be about {minus}20{degree} which is consistent with the recent findings. Our estimate for the {pi}{sup 0}-{eta} mixing angle shows that it could be bigger than the older value obtained from the {rho}-{omega} mixing, baryon mass splittings, and kaon mass difference.

  11. Phasic affective modulation of semantic priming.

    PubMed

    Topolinski, Sascha; Deutsch, Roland

    2013-03-01

    The present research demonstrates that very brief variations in affect, being around 1 s in length and changing from trial to trial independently from semantic relatedness of primes and targets, modulate the amount of semantic priming. Implementing consonant and dissonant chords (Experiments 1 and 5), naturalistic sounds (Experiment 2), and visual facial primes (Experiment 3) in an (in)direct semantic priming paradigm, as well as brief facial feedback in a summative priming paradigm (Experiment 4), yielded increased priming effects under brief positive compared to negative affect. Furthermore, this modulation took place on the level of semantic spreading rather than on strategic mechanisms (Experiment 5). Alternative explanations such as distraction, motivation, arousal, and cognitive tuning could be ruled out. This phasic affective modulation constitutes a mechanism overlooked thus far that may contaminate priming effects in all priming paradigms that involve affective stimuli. Furthermore, this mechanism provides a novel explanation for the observation that priming effects are usually larger for positive than for negative stimuli. Finally, it has important implications for linguistic research, by suggesting that association norms may be biased for affective words. PMID:22732031

  12. Complex architecture of primes and natural numbers

    NASA Astrophysics Data System (ADS)

    García-Pérez, Guillermo; Serrano, M. Ángeles; Boguñá, Marián

    2014-08-01

    Natural numbers can be divided in two nonoverlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blocks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramér's conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramér's version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers.

  13. Cholesterol reduction impairs exocytosis of synaptic vesicles.

    PubMed

    Linetti, Anna; Fratangeli, Alessandra; Taverna, Elena; Valnegri, Pamela; Francolini, Maura; Cappello, Valentina; Matteoli, Michela; Passafaro, Maria; Rosa, Patrizia

    2010-02-15

    Cholesterol and sphingolipids are abundant in neuronal membranes, where they help the organisation of the membrane microdomains involved in major roles such as axonal and dendritic growth, and synapse and spine stability. The aim of this study was to analyse their roles in presynaptic physiology. We first confirmed the presence of proteins of the exocytic machinery (SNARES and Ca(v)2.1 channels) in the lipid microdomains of cultured neurons, and then incubated the neurons with fumonisin B (an inhibitor of sphingolipid synthesis), or with mevastatin or zaragozic acid (two compounds that affect the synthesis of cholesterol by inhibiting HMG-CoA reductase or squalene synthase). The results demonstrate that fumonisin B and zaragozic acid efficiently decrease sphingolipid and cholesterol levels without greatly affecting the viability of neurons or the expression of synaptic proteins. Electron microscopy showed that the morphology and number of synaptic vesicles in the presynaptic boutons of cholesterol-depleted neurons were similar to those observed in control neurons. Zaragozic acid (but not fumonisin B) treatment impaired synaptic vesicle uptake of the lipophilic dye FM1-43 and an antibody directed against the luminal epitope of synaptotagmin-1, effects that depended on the reduction in cholesterol because they were reversed by cholesterol reloading. The time-lapse confocal imaging of neurons transfected with ecliptic SynaptopHluorin showed that cholesterol depletion affects the post-depolarisation increase in fluorescence intensity. Taken together, these findings show that reduced cholesterol levels impair synaptic vesicle exocytosis in cultured neurons. PMID:20103534

  14. ATP: The crucial component of secretory vesicles.

    PubMed

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission. PMID:27342860

  15. Routes and mechanisms of extracellular vesicle uptake

    PubMed Central

    Mulcahy, Laura Ann; Pink, Ryan Charles; Carter, David Raul Francisco

    2014-01-01

    Extracellular vesicles (EVs) are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells. PMID:25143819

  16. Astrocytic vesicles and gliotransmitters: Slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture.

    PubMed

    Zorec, R; Verkhratsky, A; Rodríguez, J J; Parpura, V

    2016-05-26

    Neurotransmitters released at synapses activate neighboring astrocytes, which in turn, modulate neuronal activity by the release of diverse neuroactive substances that include classical neurotransmitters such as glutamate, GABA or ATP. Neuroactive substances are released from astrocytes through several distinct molecular mechanisms, for example, by diffusion through membrane channels, by translocation via plasmalemmal transporters or by vesicular exocytosis. Vesicular release regulated by a stimulus-mediated increase in cytosolic calcium involves soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor (SNARE)-dependent merger of the vesicle membrane with the plasmalemma. Up to 25 molecules of synaptobrevin 2 (Sb2), a SNARE complex protein, reside at a single astroglial vesicle; an individual neuronal, i.e. synaptic, vesicle contains ∼70 Sb2 molecules. It is proposed that this paucity of Sb2 molecules in astrocytic vesicles may determine the slow secretion. In the present essay we shall overview multiple aspects of vesicular architecture and types of vesicles based on their cargo and dynamics in astroglial cells. PMID:25727638

  17. Binary-component micelle and vesicle: Free energy and asymmetric distributions of amphiphiles between vesicle monolayers

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Yi; Xiang, Xun

    2013-03-01

    The real-space two-dimensional self-consistent field theory (SCFT) is employed to study the free energies of micelles and vesicles constituted by binary amphiphilic diblock copolymer AB in homopolymer A. With an increasing volume fraction of copolymer AB, there are morphological transitions from circle micelles to oblate circle-like micelles, to a compound structure with inverted micelles in the inner center and micelles outer layer, and to vesicles. Special attention is paid to the role of the copolymer AB in controlling the free energies of the micelles and vesicles by examining the effect of the length ratio of A/B with the fixed whole chain length of the AB copolymer, the length effect of A or B block with the corresponding fixed length of B or A block, for one component of copolymer, and the effect of different amphiphile compositions for a binary-component copolymer system. The quantity η is provided to describe the asymmetric density distribution of amphiphiles between the inner and outer monolayers of vesicles, and to quantify the relative asymmetric extent of the density distribution between two species of copolymers in binary component vesicles.

  18. Electroformation of Giant Unilamellar Vesicles: Investigating Vesicle Fusion versus Bulge Merging.

    PubMed

    Micheletto, Yasmine Miguel Serafini; Marques, Carlos M; Silveira, Nádya Pesce da; Schroder, André P

    2016-08-16

    Partially ordered stacks of phospholipid bilayers on a flat substrate can be obtained by the evaporation of a spread droplet of phospholipid-in-chloroform solution. When exposed to an aqueous buffer, numerous micrometric buds populate the bilayers, grow in size over minutes, and eventually detach, forming the so-called liposomes or vesicles. While observation of vesicle growth from a hydrated lipid film under an optical microscope suggests numerous events of vesicle fusion, there is little experimental evidence for discriminating between merging of connected buds, i.e., a shape transformation that does not imply bilayer fusion and real membrane fusion. Here, we use electroformation to grow giant unilamellar vesicles (GUVs) from a stack of lipids in a buffer containing either (i) nanometric liposomes or (ii) previously prepared GUVs. By combining different fluorescent labels of the lipids in the substrate and in the solution, and by performing a fluorescence analysis of the resulting GUVs, we clearly demonstrate that merging of bulges is the essential pathway for vesicle growth in electroformation. PMID:27409245

  19. Use of fluorescence-activated vesicle sorting for isolation of Naked2-associated, basolaterally targeted exocytic vesicles for proteomics analysis.

    PubMed

    Cao, Zheng; Li, Cunxi; Higginbotham, James N; Franklin, Jeffrey L; Tabb, David L; Graves-Deal, Ramona; Hill, Salisha; Cheek, Kristin; Jerome, W Gray; Lapierre, Lynne A; Goldenring, James R; Ham, Amy-Joan L; Coffey, Robert J

    2008-09-01

    By interacting with the cytoplasmic tail of a Golgi-processed form of transforming growth factor-alpha (TGFalpha), Naked2 coats TGFalpha-containing exocytic vesicles and directs them to the basolateral corner of polarized epithelial cells where the vesicles dock and fuse in a Naked2 myristoylation-dependent manner. These TGFalpha-containing Naked2-associated vesicles are not directed to the subapical Sec6/8 exocyst complex as has been reported for other basolateral cargo, and thus they appear to represent a distinct set of basolaterally targeted vesicles. To identify constituents of these vesicles, we exploited our finding that myristoylation-deficient Naked2 G2A vesicles are unable to fuse at the plasma membrane. Isolation of a population of myristoylation-deficient, green fluorescent protein-tagged G2A Naked2-associated vesicles was achieved by biochemical enrichment followed by flow cytometric fluorescence-activated vesicle sorting. The protein content of these plasma membrane de-enriched, flow-sorted fluorescent G2A Naked2 vesicles was determined by LC/LC-MS/MS analysis. Three independent isolations were performed, and 389 proteins were found in all three sets of G2A Naked2 vesicles. Rab10 and myosin IIA were identified as core machinery, and Na(+)/K(+)-ATPase alpha1 was identified as an additional cargo within these vesicles. As an initial validation step, we confirmed their presence and that of three additional proteins tested (annexin A1, annexin A2, and IQGAP1) in wild-type Naked2 vesicles. To our knowledge, this is the first large scale protein characterization of a population of basolaterally targeted exocytic vesicles and supports the use of fluorescence-activated vesicle sorting as a useful tool for isolation of cellular organelles for comprehensive proteomics analysis. PMID:18504258

  20. Transformation priming helps to disambiguate sudden changes of sensory inputs.

    PubMed

    Pastukhov, Alexander; Vivian-Griffiths, Solveiga; Braun, Jochen

    2015-11-01

    Retinal input is riddled with abrupt transients due to self-motion, changes in illumination, object-motion, etc. Our visual system must correctly interpret each of these changes to keep visual perception consistent and sensitive. This poses an enormous challenge, as many transients are highly ambiguous in that they are consistent with many alternative physical transformations. Here we investigated inter-trial effects in three situations with sudden and ambiguous transients, each presenting two alternative appearances (rotation-reversing structure-from-motion, polarity-reversing shape-from-shading, and streaming-bouncing object collisions). In every situation, we observed priming of transformations as the outcome perceived in earlier trials tended to repeat in subsequent trials and this repetition was contingent on perceptual experience. The observed priming was specific to transformations and did not originate in priming of perceptual states preceding a transient. Moreover, transformation priming was independent of attention and specific to low level stimulus attributes. In summary, we show how "transformation priors" and experience-driven updating of such priors helps to disambiguate sudden changes of sensory inputs. We discuss how dynamic transformation priors can be instantiated as "transition energies" in an "energy landscape" model of the visual perception. PMID:26416529

  1. A pseudo zeta function and the distribution of primes.

    PubMed

    Chernoff, P R

    2000-07-01

    The Riemann zeta function is given by: [equation, see published text]. Zeta(s) may be analytically continued to the entire s-plane, except for a simple pole at s = 0. Of great interest are the complex zeros of zeta(s). The Riemann hypothesis states that the complex zeros all have real part 1/2. According to the prime number theorem, pn approximately n logn, where pn is the nth prime. Suppose that pn were exactly nlogn. In other words, in the Euler product above, replace the nth prime by nlogn. In this way, we define a pseudo zeta function C(s) for Re s > 1. One can show that C(s) may be analytically continued at least into the half-plane Re s > 0 except for an isolated singularity (presumably a simple pole) at s = 0. It may be shown that the pseudo zeta function C(s) has no complex zeros whatsoever. This means that the complex zeros of the zeta function are associated with the irregularity of the distribution of the primes. PMID:10884402

  2. Abnormal Synaptic Vesicle Biogenesis in Drosophila Synaptogyrin Mutants

    PubMed Central

    Stevens, Robin J.; Akbergenova, Yulia; Jorquera, Ramon A.; Littleton, J. Troy

    2012-01-01

    Sustained neuronal communication relies on the coordinated activity of multiple proteins that regulate synaptic vesicle biogenesis and cycling within the presynaptic terminal. Synaptogyrin and synaptophysin are conserved MARVEL domain-containing transmembrane proteins that are among the most abundant synaptic vesicle constituents, although their role in the synaptic vesicle cycle has remained elusive. To further investigate the function of these proteins, we generated and characterized a synaptogyrin (gyr) null mutant in Drosophila, whose genome encodes a single synaptogyrin isoform and lacks a synaptophysin homolog. We demonstrate that Drosophila synaptogyrin plays a modulatory role in synaptic vesicle biogenesis at larval neuromuscular junctions. Drosophila lacking synaptogyrin are viable and fertile and have no overt deficits in motor function. However, ultrastructural analysis of gyr larvae revealed increased synaptic vesicle diameter and enhanced variability in the size of synaptic vesicles. In addition, the resolution of endocytic cisternae into synaptic vesicles in response to strong stimulation is defective in gyr mutants. Electrophysiological analysis demonstrated an increase in quantal size and a concomitant decrease in quantal content, suggesting functional consequences for transmission caused by the loss of synaptogyrin. Furthermore, high-frequency stimulation resulted in increased facilitation and a delay in recovery from synaptic depression, indicating that synaptic vesicle exo-endocytosis is abnormally regulated during intense stimulation conditions. These results suggest that synaptogyrin modulates the synaptic vesicle exo-endocytic cycle and is required for the proper biogenesis of synaptic vesicles at nerve terminals. PMID:23238721

  3. Imaging of Brain Tumors With Paramagnetic Vesicles Targeted to Phosphatidylserine

    PubMed Central

    Winter, Patrick M.; Pearce, John; Chu, Zhengtao; McPherson, Christopher M.; Takigiku, Ray; Lee, Jing-Huei; Qi, Xiaoyang

    2014-01-01

    Purpose To investigate paramagnetic saposin C and dioleylphosphatidylserine (SapC-DOPS) vesicles as a targeted contrast agent for imaging phosphatidylserine (PS) expressed by glioblastoma multiforme (GBM) tumors. Materials and Methods Gd-DTPA-BSA/SapC-DOPS vesicles were formulated, and the vesicle diameter and relaxivity were measured. Targeting of Gd-DTPA-BSA/ SapC-DOPS vesicles to tumor cells in vitro and in vivo was compared with nontargeted paramagnetic vesicles (lacking SapC). Mice with GBM brain tumors were imaged at 3, 10, 20, and 24 h postinjection to measure the relaxation rate (R1) in the tumor and the normal brain. Results The mean diameter of vesicles was 175 nm, and the relaxivity at 7 Tesla was 3.32 (s*mM)−1 relative to the gadolinium concentration. Gd-DTPA-BSA/SapC-DOPS vesicles targeted cultured cancer cells, leading to an increased R1 and gadolinium level in the cells. In vivo, Gd-DTPA-BSA/SapC-DOPS vesicles produced a 9% increase in the R1 of GBM brain tumors in mice 10 h postinjection, but only minimal changes (1.2% increase) in the normal brain. Nontargeted paramagnetic vesicles yielded minimal change in the tumor R1 at 10 h postinjection (1.3%). Conclusion These experiments demonstrate that Gd-DTPA-BSA/SapC-DOPS vesicles can selectively target implanted brain tumors in vivo, providing noninvasive mapping of the cancer biomarker PS. PMID:24797437

  4. Controlled deformation of vesicles by flexible structured media

    PubMed Central

    Zhang, Rui; Zhou, Ye; Martínez-González, José A.; Hernández-Ortiz, Juan P.; Abbott, Nicholas L.; de Pablo, Juan J.

    2016-01-01

    Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau–de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy. PMID:27532056

  5. Controlled deformation of vesicles by flexible structured media.

    PubMed

    Zhang, Rui; Zhou, Ye; Martínez-González, José A; Hernández-Ortiz, Juan P; Abbott, Nicholas L; de Pablo, Juan J

    2016-08-01

    Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau-de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy. PMID:27532056

  6. Formation and structural characteristics of thermosensitive multiblock copolymer vesicles.

    PubMed

    Ma, Shiying; Xiao, Mengying; Wang, Rong

    2013-12-23

    The spontaneous vesicle formation of ABABA-type amphiphilic multiblock copolymers bearing thermosensitive hydrophilic A-block in a selective solvent is studied using dissipative particle dynamics (DPD) approach. The formation process of vesicle through nucleation and growth pathway is observed by varying the temperature. The simulation results show that spherical micelle takes shape at high temperature. As temperature decreases, vesicles with small aqueous cavity appear and the cavity expands as well as the membrane thickness decreases with the temperature further decreasing. This finding is in agreement with the experimental observation. Furthermore, by continuously varying the temperature and the length of the hydrophobic block, a phase diagram is constructed, which can indicate the thermodynamically stable region for vesicles. The morphological phase diagram shows that vesicles can form in a larger parameter scope. The relationship between the hydrophilic and hydrophobic block length versus the aqueous cavity size and vesicle size are revealed. Simulation results demonstrate that the copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in A-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. PMID:24304193

  7. A Vesicle Superpool Spans Multiple Presynaptic Terminals in Hippocampal Neurons

    PubMed Central

    Staras, Kevin; Branco, Tiago; Burden, Jemima J.; Pozo, Karine; Darcy, Kevin; Marra, Vincenzo; Ratnayaka, Arjuna; Goda, Yukiko

    2010-01-01

    Summary Synapse-specific vesicle pools have been widely characterized at central terminals. Here, we demonstrate a vesicle pool that is not confined to a synapse but spans multiple terminals. Using fluorescence imaging, correlative electron microscopy, and modeling of vesicle dynamics, we show that some recycling pool vesicles at synapses form part of a larger vesicle “superpool.” The vesicles within this superpool are highly mobile and are rapidly exchanged between terminals (turnover: ∼4% of total pool/min), significantly changing vesicular composition at synapses over time. In acute hippocampal slices we show that the mobile vesicle pool is also a feature of native brain tissue. We also demonstrate that superpool vesicles are available to synapses during stimulation, providing an extension of the classical recycling pool. Experiments using focal BDNF application suggest the involvement of a local TrkB-receptor-dependent mechanism for synapse-specific regulation of presynaptic vesicle pools through control of vesicle release and capture to or from the extrasynaptic pool. PMID:20399727

  8. Tight coupling between positive and reversed priming in the masked prime paradigm

    PubMed Central

    Boy, Frederic; Sumner, Petroc

    2011-01-01

    When associations between certain visual stimuli and particular actions are learnt, those stimuli become capable of automatically and unconsciously activating their associated action plans. Such sensorimotor priming is assumed to be fundamental for efficient responses, and can be reliably measured in masked prime studies even when the primes are not consciously perceived. However, when the delay between prime and target is increased, reversed priming effects are often found instead (the negative compatibility effect, NCE). The main accounts of the NCE assume that it too is a sensorimotor phenomenon, predicting that it should occur only when the initial positive priming phase also occurs. Alternatively, reversed priming may reflect a perceptual process entirely independent from positive motor priming (which is simply evident at a different temporal delay), in which case no dependency is expected between the NCE and positive priming. We tested these predictions while new sensorimotor associations were learnt, and when learnt associations were suddenly reversed. We found a remarkable symmetry between positive and reversed priming during all such learning phases, supporting the idea that reversed priming represents a sensorimotor process that is contingent on, and automatically follows, the positive priming phase. We discuss also whether the NCE mechanism is subject to a trigger threshold. PMID:20695707

  9. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress.

    PubMed

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants. PMID:27516766

  10. Unconscious congruency priming from unpracticed words is modulated by prime-target semantic relatedness.

    PubMed

    Ortells, Juan J; Marí-Beffa, Paloma; Plaza-Ayllón, Vanesa

    2013-03-01

    Participants performed a 2-choice categorization task on visible word targets that were preceded by novel (unpracticed) prime words. The prime words were presented for 33 ms and followed either immediately (Experiments 1-3) or after a variable delay (Experiments 1 and 4) by a pattern mask. Both subjective and objective measures of prime visibility were used in all experiments. On 80% of the trials the primes and targets belonged to different categories (incongruent trials), whereas in the remaining 20% (congruent trials) they could be either strong or weak semantically related category members. Positive congruency effects (reaction times faster on congruent than on incongruent trials) were consistently found, but only when the mask immediately followed the primes, and participants reported being unaware of the identity of the primes. Primes followed by a delayed mask (such that participants reported being aware of their identity) produced either nonreliable facilitation or reliable reversed priming (strategic), depending on whether the prime-target stimulus onset asynchrony was either short (200 ms; Experiments 1 and 4) or long (1,000 ms; Experiment 4). Facilitatory priming with immediate mask was found strong (a) even for participants who performed at chance in prime visibility tests; and (b) for high but not for weakly semantically related category coordinates, irrespective of category size (animals, body parts). These findings provide evidence that unconscious congruency priming by unpracticed words from large stimulus sets critically depends on associative strength and/or semantic similarity between category coexemplars. PMID:22686850

  11. The Effect of Prime Duration in Masked Orthographic Priming Depends on Neighborhood Distribution

    ERIC Educational Resources Information Center

    Robert, Christelle; Mathey, Stephanie

    2012-01-01

    A lexical decision task was used with a masked priming procedure to investigate whether and to what extent neighborhood distribution influences the effect of prime duration in masked orthographic priming. French word targets had two higher frequency neighbors that were either distributed over two letter positions (e.g., "LOBE/robe-loge") or…

  12. Tight Coupling between Positive and Reversed Priming in the Masked Prime Paradigm

    ERIC Educational Resources Information Center

    Boy, Frederic; Sumner, Petroc

    2010-01-01

    When associations between certain visual stimuli and particular actions are learned, those stimuli become capable of automatically and unconsciously activating their associated action plans. Such sensorimotor priming is assumed to be fundamental for efficient responses, and can be reliably measured in masked prime studies even when the primes are…

  13. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress

    PubMed Central

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A.; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A.; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants. PMID:27516766

  14. Unconscious Congruency Priming from Unpracticed Words Is Modulated by Prime-Target Semantic Relatedness

    ERIC Educational Resources Information Center

    Ortells, Juan J.; Mari-Beffa, Paloma; Plaza-Ayllon, Vanesa

    2013-01-01

    Participants performed a 2-choice categorization task on visible word targets that were preceded by novel (unpracticed) prime words. The prime words were presented for 33 ms and followed either immediately (Experiments 1-3) or after a variable delay (Experiments 1 and 4) by a pattern mask. Both subjective and objective measures of prime visibility…

  15. A Paradox of Syntactic Priming: Why Response Tendencies Show Priming for Passives, and Response Latencies Show Priming for Actives

    PubMed Central

    Segaert, Katrien; Menenti, Laura; Weber, Kirsten; Hagoort, Peter

    2011-01-01

    Speakers tend to repeat syntactic structures across sentences, a phenomenon called syntactic priming. Although it has been suggested that repeating syntactic structures should result in speeded responses, previous research has focused on effects in response tendencies. We investigated syntactic priming effects simultaneously in response tendencies and response latencies for active and passive transitive sentences in a picture description task. In Experiment 1, there were priming effects in response tendencies for passives and in response latencies for actives. However, when participants' pre-existing preference for actives was altered in Experiment 2, syntactic priming occurred for both actives and passives in response tendencies as well as in response latencies. This is the first investigation of the effects of structure frequency on both response tendencies and latencies in syntactic priming. We discuss the implications of these data for current theories of syntactic processing. PMID:22022352

  16. Reconstruction of a kinetic model of the chromatophore vesicles from Rhodobacter sphaeroides.

    PubMed

    Geyer, Tihamér; Helms, Volkhard

    2006-08-01

    We present a molecular model of a chromatophore vesicle from Rhodobacter sphaeroides. These vesicles are ideal benchmark systems for molecular and systemic simulations, because they have been well studied, they are small, and they are naturally separated from their cellular environment. To set up a photosynthetic chain working under steady-state conditions, we compiled from the experimental literature the specific activities and geometries that have been determined for their constituents. This data then allowed defining the stoichiometries for all membrane proteins. This article contains the kinetic part of the reconstructed model, while the spatial reconstruction is presented in a companion article. By considering the transport properties of the Cytochrome c(2) and ubiquinone pools, we show that their size and oxidation states allow for an efficient buffering of the statistical fluctuations that arise from the small size of the vesicles. Stoichiometric and kinetic considerations indicate that a typical chromatophore vesicle of Rb. sphaeroides with a diameter of 45 nm should contain approximately five bc(1) monomers. PMID:16714340

  17. Algorithmic and Experimental Computation of Higher-Order Safe Primes

    NASA Astrophysics Data System (ADS)

    Díaz, R. Durán; Masqué, J. Muñoz

    2008-09-01

    This paper deals with a class of special primes called safe primes. In the regular definition, an odd prime p is safe if, at least, one of (p±1)/2 is prime. Safe primes have been recommended as factors of RSA moduli. In this paper, the concept of safe primes is extended to higher-order safe primes, and an explicit formula to compute the density of this class of primes in the set of the integers is supplied. Finally, explicit conditions are provided permitting the algorithmic computation of safe primes of arbitrary order. Some experimental results are provided as well.

  18. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles

    PubMed Central

    Zhang, Bin; Yeo, Ronne Wee Yeh; Tan, Kok Hian; Lim, Sai Kiang

    2016-01-01

    The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs) could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials. PMID:26861305

  19. Focus on Extracellular Vesicles: Therapeutic Potential of Stem Cell-Derived Extracellular Vesicles.

    PubMed

    Zhang, Bin; Yeo, Ronne Wee Yeh; Tan, Kok Hian; Lim, Sai Kiang

    2016-01-01

    The intense research focus on stem and progenitor cells could be attributed to their differentiation potential to generate new cells to replace diseased or lost cells in many highly intractable degenerative diseases, such as Alzheimer disease, multiple sclerosis, and heart diseases. However, experimental and clinical studies have increasingly attributed the therapeutic efficacy of these cells to their secretion. While stem and progenitor cells secreted many therapeutic molecules, none of these molecules singly or in combination could recapitulate the functional effects of stem cell transplantations. Recently, it was reported that extracellular vesicles (EVs) could recapitulate the therapeutic effects of stem cell transplantation. Based on the observations reported thus far, the prevailing hypothesis is that stem cell EVs exert their therapeutic effects by transferring biologically active molecules such as proteins, lipids, mRNA, and microRNA from the stem cells to injured or diseased cells. In this respect, stem cell EVs are similar to EVs from other cell types. They are both primarily vehicles for intercellular communication. Therefore, the differentiating factor is likely due to the composition of their cargo. The cargo of EVs from different cell types are known to include a common set of proteins and also proteins that reflect the cell source of the EVs and the physiological or pathological state of the cell source. Hence, elucidation of the stem cell EV cargo would provide an insight into the multiple physiological or biochemical changes necessary to affect the many reported stem cell-based therapeutic outcomes in a variety of experimental models and clinical trials. PMID:26861305

  20. Inverse Target- and Cue-Priming Effects of Masked Stimuli

    ERIC Educational Resources Information Center

    Mattler, Uwe

    2007-01-01

    The processing of a visual target that follows a briefly presented prime stimulus can be facilitated if prime and target stimuli are similar. In contrast to these positive priming effects, inverse priming effects (or negative compatibility effects) have been found when a mask follows prime stimuli before the target stimulus is presented: Responses…

  1. Amount of Priming in the Difference of Mental Transformation

    ERIC Educational Resources Information Center

    Kanamori, Nobuhiro; Yagi, Akihiro

    2005-01-01

    We examined in detail effects of priming in 2 mental rotation strategies: spinning (rotating in a picture plane) and flipping (rotating in depth around a horizontal axis) by using a priming paradigm of Kanamori and Yagi (2002). The priming paradigm included prime and probe tasks within 1 trial. In the prime task, 16 participants were asked to…

  2. Pure Mediated Priming: A Retrospective Semantic Matching Model

    ERIC Educational Resources Information Center

    Jones, Lara L.

    2010-01-01

    Mediated priming refers to the activation of a target (e.g., "stripes") by a prime (e.g., "lion") that is related indirectly via a connecting mediator (e.g., tiger). In previous mediated priming studies (e.g., McNamara & Altarriba, 1988), the mediator was associatively related to the prime. In contrast, pure mediated priming (e.g., "spoon" [right…

  3. Focus on Extracellular Vesicles: Development of Extracellular Vesicle-Based Therapeutic Systems

    PubMed Central

    Ohno, Shin-ichiro; Drummen, Gregor P. C.; Kuroda, Masahiko

    2016-01-01

    Many types of cells release phospholipid membrane vesicles thought to play key roles in cell-cell communication, antigen presentation, and the spread of infectious agents. Extracellular vesicles (EVs) carry various proteins, messenger RNAs (mRNAs), and microRNAs (miRNAs), like a “message in a bottle” to cells in remote locations. The encapsulated molecules are protected from multiple types of degradative enzymes in body fluids, making EVs ideal for delivering drugs. This review presents an overview of the potential roles of EVs as natural drugs and novel drug-delivery systems. PMID:26861303

  4. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles.

    PubMed

    Fonseca, P; Vardaki, I; Occhionero, A; Panaretakis, T

    2016-01-01

    Extracellular vesicles have gained tremendous attention in the recent years as a novel mechanism of cell to cell communication. There are several types of extracellular vesicles, including exosomes, microvesicles, exosome, like vesicles, apoptotic bodies that differ mainly in the mechanism of biogenesis and secretion. The most well studied type of extracellular vesicles are the exosomes which are endosome-derived vesicles with a diameter of 50-150nm and enriched in ESCRT proteins including Alix, TSG101, Hsp70, and tetraspanins. It is now well established that exosomes promote tumor growth, alter the tumor microenvironment, facilitate the dissemination of cancer cells in an organotropic manner, modulate immune responses, and mediate resistance to therapy. Exosomes have also been recently implicated in an emerging hallmark of cancer, the cancer cell metabolism. The metabolic state of the cell defines, to a certain extent, both the rate of secretion and the molecular content of tumor-derived exosomes. Furthermore, exosomes have been shown to possess intrinsic metabolic activity since they can synthesize ATP by glycolysis. It follows that exosomes carry a number of metabolic enzymes and metabolites, including lactate, PGE, LDH isoforms, pyruvate, and monocarboxylate transporters. Last but not the least, exosomes are implicated in fatty acid synthesis and cholesterol metabolism and are thought to be crucial for the transcellular metabolism procedure. Uptake of exosomes is thought to alter the intracellular metabolic state of the cell. In summary, we describe the state of the art on the role of metabolism in the secretion, uptake, and the biological effects of exosomes in the metabolism of recipient cells. PMID:27572129

  5. 30 CFR 716.7 - Prime farmland.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Prime farmland. 716.7 Section 716.7 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.7 Prime farmland. (a) Applicability. (1) Permittees of surface coal mining and...

  6. Priming Addition Facts with Semantic Relations

    ERIC Educational Resources Information Center

    Bassok, Miriam; Pedigo, Samuel F.; Oskarsson, An T.

    2008-01-01

    Results from 2 relational-priming experiments suggest the existence of an automatic analogical coordination between semantic and arithmetic relations. Word pairs denoting object sets served as primes in a task that elicits "obligatory" activation of addition facts (5 + 3 activates 8; J. LeFevre, J. Bisanz, & L. Mrkonjic, 1988). Semantic relations…

  7. Perceptual learning can reverse subliminal priming effects.

    PubMed

    Przekoracka-Krawczyk, Anna; Jaśkowski, Piotr

    2007-05-01

    Masked primes presented prior to a target can result in inverse priming (i.e., benefits on trials in which the prime and the target are mapped onto opposite responses). In five experiments, time-of-task effects on subliminal priming of motor responses were investigated. First, we replicated Klapp and Hinkley's (2002) finding that the priming effect is initially straight (i.e., it benefits congruent trials, in which the prime and targets are mapped onto the same response) or absent, and only later reverses (i.e., faster responses in incongruent than in congruent trials). We show that the presentation of the mask plays a crucial role in this reversal and that the reversal occurs later if the mask pattern is very complex. We suggest that perceptual learning improves the recognition of task-relevant features. Once recognized, these features can trigger the preparation of the alternative response and/or inhibit the prime-activated response. These findings support an active role of the mask in priming. PMID:17727109

  8. Can False Memories Prime Problem Solutions?

    ERIC Educational Resources Information Center

    Howe, Mark L.; Garner, Sarah R.; Dewhurst, Stephen A.; Ball, Linden J.

    2010-01-01

    Previous research has suggested that false memories can prime performance on related implicit and explicit memory tasks. The present research examined whether false memories can also be used to prime higher order cognitive processes, namely, insight-based problem solving. Participants were asked to solve a number of compound remote associate task…

  9. Priming by the variability of visual information

    PubMed Central

    Michael, Elizabeth; de Gardelle, Vincent; Summerfield, Christopher

    2014-01-01

    According to recent theories, perception relies on summary representations that encode statistical information about the sensory environment. Here, we used perceptual priming to characterize the representations that mediate categorization of a complex visual array. Observers judged the average shape or color of a target visual array that was preceded by an irrelevant prime array. Manipulating the variability of task-relevant and task-irrelevant feature information in the prime and target orthogonally, we found that observers were faster to respond when the variability of feature information in the prime and target arrays matched. Critically, this effect occurred irrespective of whether the element-by-element features in the prime and target array overlapped or not, and was even present when prime and target features were drawn from opposing categories. This “priming by variance” phenomenon occurred with prime–target intervals as short as 100 ms. Further experiments showed that this effect did not depend on resource allocation, and occurred even when prime and target did not share the same spatial location. These results suggest that human observers adapt to the variability of visual information, and provide evidence for the existence of a low-level mechanism by which the range or dispersion of visual information is rapidly extracted. This information may in turn help to set the gain of neuronal processing during perceptual choice. PMID:24821803

  10. Does Verb Bias Modulate Syntactic Priming?

    ERIC Educational Resources Information Center

    Bernolet, Sarah; Hartsuiker, Robert J.

    2010-01-01

    In a corpus analysis of spontaneous speech Jaeger and Snider (2007) found that the strength of structural priming is correlated with verb alternation bias. This finding is consistent with an implicit learning account of syntactic priming: because the implicit learning model implemented by Chang (2002), Chang, Dell, and Bock (2006), and Chang,…

  11. A prime number approach to biological sequencing.

    PubMed

    Greer, W; Barrett, A N; Sowden, J M

    1985-03-01

    Computational sequencing of nucleic acid and amino acid sequences is placing increasing demands on computer resources. The use of prime numbers is explored as a convenient means of improving program speed and reducing storage requirements. It is concluded that the application of the prime number approach leads to significant increases in speed and some reduction in storage requirements. PMID:3840126

  12. Morphological Priming Effects on Children's Spelling

    ERIC Educational Resources Information Center

    Rosa, Joao Manuel; Nunes, Terezinha

    2008-01-01

    Previous research has suggested that children in the early grades of primary school do not have much awareness of morphemes. In this study, a priming paradigm was used to try to detect early signs of morphological representation of stems through a spelling task presented to Portuguese children (N = 805; age range 6-9 years). Primes shared the stem…

  13. Phasic Affective Modulation of Semantic Priming

    ERIC Educational Resources Information Center

    Topolinski, Sascha; Deutsch, Roland

    2013-01-01

    The present research demonstrates that very brief variations in affect, being around 1 s in length and changing from trial to trial independently from semantic relatedness of primes and targets, modulate the amount of semantic priming. Implementing consonant and dissonant chords (Experiments 1 and 5), naturalistic sounds (Experiment 2), and visual…

  14. 30 CFR 716.7 - Prime farmland.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Prime farmland. 716.7 Section 716.7 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.7 Prime farmland. (a) Applicability. (1) Permittees of surface coal mining and...

  15. 30 CFR 716.7 - Prime farmland.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Prime farmland. 716.7 Section 716.7 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR INITIAL PROGRAM REGULATIONS SPECIAL PERFORMANCE STANDARDS § 716.7 Prime farmland. (a) Applicability. (1) Permittees of surface coal mining and...

  16. Morphological Priming Survives a Language Switch

    ERIC Educational Resources Information Center

    Verdonschot, Rinus G.; Middelburg, Renee; Lensink, Saskia E.; Schiller, Niels O.

    2012-01-01

    In a long-lag morphological priming experiment, Dutch (L1)-English (L2) bilinguals were asked to name pictures and read aloud words. A design using non-switch blocks, consisting solely of Dutch stimuli, and switch-blocks, consisting of Dutch primes and targets with intervening English trials, was administered. Target picture naming was facilitated…

  17. 7 CFR 29.2290 - Premature primings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Premature primings. 29.2290 Section 29.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... 21) § 29.2290 Premature primings. Ground leaves harvested before reaching complete growth...

  18. 7 CFR 29.2290 - Premature primings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Premature primings. 29.2290 Section 29.2290 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... 21) § 29.2290 Premature primings. Ground leaves harvested before reaching complete growth...

  19. Syntactic Priming in American Sign Language

    PubMed Central

    Hall, Matthew L.; Ferreira, Victor S.; Mayberry, Rachel I.

    2015-01-01

    Psycholinguistic studies of sign language processing provide valuable opportunities to assess whether language phenomena, which are primarily studied in spoken language, are fundamentally shaped by peripheral biology. For example, we know that when given a choice between two syntactically permissible ways to express the same proposition, speakers tend to choose structures that were recently used, a phenomenon known as syntactic priming. Here, we report two experiments testing syntactic priming of a noun phrase construction in American Sign Language (ASL). Experiment 1 shows that second language (L2) signers with normal hearing exhibit syntactic priming in ASL and that priming is stronger when the head noun is repeated between prime and target (the lexical boost effect). Experiment 2 shows that syntactic priming is equally strong among deaf native L1 signers, deaf late L1 learners, and hearing L2 signers. Experiment 2 also tested for, but did not find evidence of, phonological or semantic boosts to syntactic priming in ASL. These results show that despite the profound differences between spoken and signed languages in terms of how they are produced and perceived, the psychological representation of sentence structure (as assessed by syntactic priming) operates similarly in sign and speech. PMID:25786230

  20. A Generalization of the Prime Number Theorem

    ERIC Educational Resources Information Center

    Bruckman, Paul S.

    2008-01-01

    In this article, the author begins with the prime number theorem (PNT), and then develops this into a more general theorem, of which many well-known number theoretic results are special cases, including PNT. He arrives at an asymptotic relation that allows the replacement of certain discrete sums involving primes into corresponding differentiable…

  1. Negative Priming in Free Recall Reconsidered

    ERIC Educational Resources Information Center

    Hanczakowski, Maciej; Beaman, C. Philip; Jones, Dylan M.

    2016-01-01

    Negative priming in free recall is the finding of impaired memory performance when previously ignored auditory distracters become targets of encoding and retrieval. This negative priming has been attributed to an aftereffect of deploying inhibitory mechanisms that serve to suppress auditory distraction and minimize interference with learning and…

  2. Understanding Primes: The Role of Representation

    ERIC Educational Resources Information Center

    Zazkis, Rina; Liljedahl, Peter

    2004-01-01

    In this article we investigate how preservice elementary school (K-7) teachers understand the concept of prime numbers. We describe participants' understanding of primes and attempt to detect factors that influence their understanding. Representation of number properties serves as a lens for the analysis of participants' responses. We suggest that…

  3. Characterization of Yeast Extracellular Vesicles: Evidence for the Participation of Different Pathways of Cellular Traffic in Vesicle Biogenesis

    PubMed Central

    Joffe, Luna S.; Guimarães, Allan J.; Sobreira, Tiago J. P.; Nosanchuk, Joshua D.; Cordero, Radames J. B.; Frases, Susana; Casadevall, Arturo; Almeida, Igor C.; Nimrichter, Leonardo; Rodrigues, Marcio L.

    2010-01-01

    Background Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100–300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance Our results suggest that both conventional and unconventional pathways of secretion are required for

  4. One version of direct response priming requires automatization of the relevant associations but not awareness of the prime.

    PubMed

    Klapp, Stuart T

    2015-07-01

    Priming is the influence of one event on performance during a second event. One type of priming is known as semantic priming because it biases interpretation of the subsequent stimulus. Another type, direct response priming, biases responding directly without semantic mediation. Research reviewed in this article indicates that two versions of the second type, direct response priming, can be distinguished. One version, explicit priming, requires awareness of the prime. The other version, associative response priming, occurs even if the prime is masked and not phenomenally visible. This version, which is attributed to associations relating specific sensory events to movements of particular muscles, is enabled only if the association has previously been automatized by brief practice in which the to-be-primed response is made to the stimulus that subsequently appears as the prime. Associative response priming can be explained by a simple stimulus-response interpretation; other varieties of priming are more theoretically challenging. PMID:25167776

  5. Priming analogical reasoning with false memories.

    PubMed

    Howe, Mark L; Garner, Sarah R; Threadgold, Emma; Ball, Linden J

    2015-08-01

    Like true memories, false memories are capable of priming answers to insight-based problems. Recent research has attempted to extend this paradigm to more advanced problem-solving tasks, including those involving verbal analogical reasoning. However, these experiments are constrained inasmuch as problem solutions could be generated via spreading activation mechanisms (much like false memories themselves) rather than using complex reasoning processes. In three experiments we examined false memory priming of complex analogical reasoning tasks in the absence of simple semantic associations. In Experiment 1, we demonstrated the robustness of false memory priming in analogical reasoning when backward associative strength among the problem terms was eliminated. In Experiments 2a and 2b, we extended these findings by demonstrating priming on newly created homonym analogies that can only be solved by inhibiting semantic associations within the analogy. Overall, the findings of the present experiments provide evidence that the efficacy of false memory priming extends to complex analogical reasoning problems. PMID:25784574

  6. Large vesicles record pathways of degassing at basalic volcanoes

    SciTech Connect

    Polacci, M.; Baker, D.R.; Bai, L.; Mancini, L.

    2008-10-08

    Volcanic degassing is directly linked to magma dynamics and controls the style of eruptive activity. To better understand how gas is transported within basaltic magma we perform a 3D investigation of vesicles preserved in scoria from the 2005 activity at Stromboli volcano (Italy). We find that clasts are characterized by the ubiquitous occurrence of one to a few large vesicles, exhibiting mostly irregular, tortuous, channel-like textures, orders of magnitude greater in volume than all the other vesicles in the sample. We compare observations on natural samples with results from numerical simulations and experimental investigations of vesicle size distributions and demonstrate that this type of vesicle invariably forms in magmas with vesicularities > 0.30 (and possibly > 0.10). We suggest that large vesicles represent pathways used by gas to flow non-explosively to the surface and that they indicate the development of an efficient system that sustains persistent degassing in basaltic systems.

  7. Human Mammospheres Secrete Hormone-Regulated Active Extracellular Vesicles

    PubMed Central

    Rodriguez-Suarez, Eva; Gil, David; Royo, Felix; Elortza, Felix; Falcon-Perez, Juan M.; Vivanco, Maria dM.

    2014-01-01

    Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression. PMID:24404144

  8. Negatively cooperative binding of melittin to neutral phospholipid vesicles

    NASA Astrophysics Data System (ADS)

    Torrens, Francisco; Castellano, Gloria; Campos, Agustín; Abad, Concepción

    2007-05-01

    The association of basic amphipathic peptides to neutral phospholipid membranes is investigated in terms of binding and partition models. The binding of native and modified melittin to egg-yolk phosphatidylcholine vesicles is studied by steady-state fluorescence spectroscopy. The effect of the ionic strength shows an enhancement of the association as the ionic strength increases. After correction for electrostatic effects by the Gouy-Chapman theory, the melittin binding isotherms could be described by a partition model. In terms of conventional binding mechanisms, which do not take into account electrostatic effects, this would correspond to a negative cooperativity. A plausible way in which the interaction occurs is proposed, based on the calculated Hill coefficient.

  9. The role of extracellular vesicles in placental vascular complications.

    PubMed

    Aharon, Anat

    2015-02-01

    Extracellular membrane vesicles (EVs) also termed microvesicles (MVs) are secreted from different cells, are present in the blood circulation under normal physiological conditions, and their levels increase in a wide range of disease states. EVs contain proteins, growth and apoptotic factors, DNA fragments, microRNAs as well as messenger RNAs (mRNAs); therefore, they may function as regulators in cell-cell communication and mediators of cell signaling during multiple biological processes. The current review focuses on the role of EVs in healthy pregnancy and gestational vascular complications and discusses the involvement of EVs in gene regulation, placental hemostasis and cell function that overall reflect the placental-maternal crosstalk. PMID:25903528

  10. Individual Differences in Working Memory Capacity Modulates Semantic Negative Priming from Single Prime Words

    PubMed Central

    Ortells, Juan J.; Noguera, Carmen; Álvarez, Dolores; Carmona, Encarna; Houghton, George

    2016-01-01

    The present study investigated whether semantic negative priming from single prime words depends on the availability of cognitive control resources. Participants with high vs. low working memory capacity (as assessed by their performance in complex span and attentional control tasks) were instructed to either attend to or ignore a briefly presented single prime word that was followed by either a semantically related or unrelated target word on which participants made a lexical decision. Individual differences in working memory capacity (WMC) mainly affected the processing of the ignored primes, but not the processing of the attended primes: While the latter produced reliable positive semantic priming for both high- and low-WMC participants, the former gave rise to reliable semantic negative priming only for high WMC participants, with low WMC participants showing the opposite positive priming effect. The present results extend previous findings in demonstrating that (a) single negative priming can reliably generalize to semantic associates of the prime words, and (b) a differential availability of cognitive control resources can reliably modulate the negative priming effect at a semantic level of representation. PMID:27621716

  11. Individual Differences in Working Memory Capacity Modulates Semantic Negative Priming from Single Prime Words.

    PubMed

    Ortells, Juan J; Noguera, Carmen; Álvarez, Dolores; Carmona, Encarna; Houghton, George

    2016-01-01

    The present study investigated whether semantic negative priming from single prime words depends on the availability of cognitive control resources. Participants with high vs. low working memory capacity (as assessed by their performance in complex span and attentional control tasks) were instructed to either attend to or ignore a briefly presented single prime word that was followed by either a semantically related or unrelated target word on which participants made a lexical decision. Individual differences in working memory capacity (WMC) mainly affected the processing of the ignored primes, but not the processing of the attended primes: While the latter produced reliable positive semantic priming for both high- and low-WMC participants, the former gave rise to reliable semantic negative priming only for high WMC participants, with low WMC participants showing the opposite positive priming effect. The present results extend previous findings in demonstrating that (a) single negative priming can reliably generalize to semantic associates of the prime words, and (b) a differential availability of cognitive control resources can reliably modulate the negative priming effect at a semantic level of representation. PMID:27621716

  12. Tension-induced pore formation and leakage in adhering vesicles

    NASA Astrophysics Data System (ADS)

    Lenz, P.; Johnson, J. M.; Chan, Y.-H. M.; Boxer, S. G.

    2006-08-01

    The influence of inclusion-induced tension on pore formation is studied theoretically and experimentally. It is shown that fluorescently labeled lipids can enhance pore formation and induce leakage of adhering vesicles. These effects are more pronounced for smaller vesicles. The theoretical predictions are confirmed by experimental two-color fluorescent data. Finally, the influence of the pore formation dynamics on rupture processes of vesicles is analyzed yielding a new picture of the transition to bilayer disks.

  13. Masked priming by misspellings: Word frequency moderates the effects of SOA and prime-target similarity.

    PubMed

    Burt, Jennifer S

    2016-02-01

    University students made lexical decisions to eight- or nine-letter words preceded by masked primes that were the target, an unrelated word, or a typical misspelling of the target. At a stimulus onset asynchrony (SOA) of 47 ms, primes that were misspellings of the target produced a priming benefit for low-, medium-, and high-frequency words, even when the misspelled primes were changed to differ phonologically from their targets. At a longer SOA of 80 ms, misspelled primes facilitated lexical decisions only to medium- and low-frequency targets, and a phonological change attenuated the benefit for medium-frequency targets. The results indicate that orthographic similarity can be preserved over changes in letter position and word length, and that the priming effect of misspelled words at the shorter SOA is orthographically based. Orthographic-priming effects depend on the quality of the orthographic learning of the target word. PMID:26530310

  14. Reading a standing wave: figure-ground-alternation masking of primes in evaluative priming.

    PubMed

    Bermeitinger, Christina; Kuhlmann, Michael; Wentura, Dirk

    2012-09-01

    We propose a new masking technique for masking word stimuli. Drawing on the phenomena of metacontrast and paracontrast, we alternately presented two prime displays of the same word with the background color in one display matching the font color in the other display and vice versa. The sequence of twenty alterations (spanning approx. 267 ms) was sandwich-masked by structure masks. Using this masking technique, we conducted evaluative priming experiments with positive and negative target and prime words. Significant priming effects were found - for primes and targets drawn from the same as well as from different word sets. Priming effects were independent of prime discrimination performance in direct tests and they were still significant after the sample was restricted to those participants who showed random responding in the direct test. PMID:22521264

  15. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy

    PubMed Central

    Yamawaki, Ruth; Thind, Khushdev

    2016-01-01

    Temporal lobe epilepsy is a common and challenging clinical problem, and its pathophysiological mechanisms remain unclear. One possibility is insufficient inhibition in the hippocampal formation where seizures tend to initiate. Normally, hippocampal basket cells provide strong and reliable synaptic inhibition at principal cell somata. In a rat model of temporal lobe epilepsy, basket cell-to-granule cell (BC→GC) synaptic transmission is more likely to fail, but the underlying cause is unknown. At some synapses, probability of release correlates with bouton size, active zone area, and number of docked vesicles. The present study tested the hypothesis that impaired GABAergic transmission at BC→GC synapses is attributable to ultrastructural changes. Boutons making axosomatic symmetric synapses in the granule cell layer were reconstructed from serial electron micrographs. BC→GC boutons were predicted to be smaller in volume, have fewer and smaller active zones, and contain fewer vesicles, including fewer docked vesicles. Results revealed the opposite. Compared with controls, epileptic pilocarpine-treated rats displayed boutons with over twice the average volume, active zone area, total vesicles, and docked vesicles and with more vesicles closer to active zones. Larger active zones in epileptic rats are consistent with previous reports of larger amplitude miniature IPSCs and larger BC→GC quantal size. Results of this study indicate that transmission failures at BC→GC synapses in epileptic pilocarpine-treated rats are not attributable to smaller boutons or fewer docked vesicles. Instead, processes following vesicle docking, including priming, Ca2+ entry, or Ca2+ coupling with exocytosis, might be responsible. SIGNIFICANCE STATEMENT One in 26 people develops epilepsy, and temporal lobe epilepsy is a common form. Up to one-third of patients are resistant to currently available treatments. This study tested a potential underlying mechanism for previously reported

  16. The development of gamma-gamma-prime lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Ebert, L. J.

    1985-01-01

    The kinetics of the formation and subsequent development of the directional coarsening of the gamma-prime precipitate in model Ni-Al-Mo-Ta superalloy single crystals are examined during tensile creep under various stress levels at 982 and 1038 C. Special attention is given to the gamma and gamma-prime relation to creep time and strain in order to trace the changing gamma-gamma-prime morphology. Directional coarsening of gamma-prime is found to begin during primary creep and its rate is shown to increase with an increase in temperature or stress level. The length of gamma-prime thickness increased linearly with time up to a plateau reached after the onset of steady state creep. The raft thickness, equal to the gamma-prime size, remained constant at this initial value up through the onset of the tertiary creep. The interlaminar spacing indicates the stability of directionally coarsened structure.

  17. Sugar uptake by intestinal basolateral membrane vesicles.

    PubMed

    Wright, E M; van Os, C H; Mircheff, A K

    1980-03-27

    A high yield of membrane vesicles was prepared from the basolateral surface of rat intestinal cells using an N2 cavitation bomb and density gradient centrifugation. The membranes were enriched 10-fold and were free of significatn contamination by brush border membranes and mitochondria. The rate of D-E114C]glucose and L-E13H]glucose uptake into the vesicle was measured using a rapid filtration technique. D-Glucose equilibrated within the vesicles with a half-time 1/25th that for L-glucose. The stereospecific uptake exhibited saturation kinetics with a Km of approx. 44 mM and a V of approx. 110 nmol . mg-1 min-1 at 10 degrees C. The activation energy for the process was 14 kcal . mol-1 below 15 degrees C and it approached 3 kcal . mol-1 above 22 degrees C. Carrier-mediated uptake was eliminated in the presence of 1 mM HgCl2 and 0.5 mM phloretin. The rate of transport was unaffected by the absence or presence of sodium concentration gradients. Competition studies demonstrated that all sugars with the D-glucose pyranose ring chair conformation shared the transport system, and that, with the possible exception of the -OH group at carbon No. 1, there were no specific requirements for an equatorial -OH group at any position in the pyranose ring. In the case of alpha-methyl-D-glucoside its inability to share the D-glucose transport system may be due to steric hindrance posed by the -OCH3 group rather than by a specific requirement for a free hydroxyl group at the position in the ring. It is concluded that sugars are transported across the basolateral membrane of the intestinal epithelium by a facilitated diffusion system reminiscent of that in human red blood cells. PMID:6245688

  18. Association of Endophilin B1 with Cytoplasmic Vesicles.

    PubMed

    Li, Jinhui; Barylko, Barbara; Eichorst, John P; Mueller, Joachim D; Albanesi, Joseph P; Chen, Yan

    2016-08-01

    Endophilins are SH3- and BAR domain-containing proteins implicated in membrane remodeling and vesicle formation. Endophilins A1 and A2 promote the budding of endocytic vesicles from the plasma membrane, whereas endophilin B1 has been implicated in vesicle budding from intracellular organelles, including the trans-Golgi network and late endosomes. We previously reported that endophilins A1 and A2 exist almost exclusively as soluble dimers in the cytosol. Here, we present results of fluorescence fluctuation spectroscopy analyses indicating that, in contrast, the majority of endophilin B1 is present in multiple copies on small, highly mobile cytoplasmic vesicles. Formation of these vesicles was enhanced by overexpression of wild-type dynamin 2, but suppressed by expression of a catalytically inactive dynamin 2 mutant. Using dual-color heterospecies partition analysis, we identified the epidermal growth factor receptor on endophilin B1 vesicles. Moreover, a proportion of endophilin B1 vesicles also contained caveolin, whereas clathrin was almost undetectable on those vesicles. These results raise the possibility that endophilin B1 participates in dynamin 2-dependent formation of a population of transport vesicles distinct from those generated by A-type endophilins. PMID:27508440

  19. Induced movements of giant vesicles by millimeter wave radiation.

    PubMed

    Albini, Martina; Dinarelli, Simone; Pennella, Francesco; Romeo, Stefania; Zampetti, Emiliano; Girasole, Marco; Morbiducci, Umberto; Massa, Rita; Ramundo-Orlando, Alfonsina

    2014-07-01

    Our previous study of interaction between low intensity radiation at 53.37GHz and cell-size system - such as giant vesicles - indicated that a vectorial movement of vesicles was induced. This effect among others, i.e. elongation, induced diffusion of fluorescent dye di-8-ANEPPS, and increased attractions between vesicles was attributed to the action of the field on charged and dipolar residues located at the membrane-water interface. In an attempt to improve the understanding on how millimeter wave radiation (MMW) can induce this movement we report here a real time evaluation of changes induced on the movement of giant vesicles. Direct optical observations of vesicles subjected to irradiation enabled the monitoring in real time of the response of vesicles. Changes of the direction of vesicle movement are demonstrated, which occur only during irradiation with a "switch on" of the effect. This MMW-induced effect was observed at a larger extent on giant vesicles prepared with negatively charged phospholipids. The monitoring of induced-by-irradiation temperature variation and numerical dosimetry indicate that the observed effects in vesicle movement cannot be attributed to local heating. PMID:24704354

  20. Lipid Bilayer Vesicle Dynamics in AC Electric Fields

    NASA Astrophysics Data System (ADS)

    McConnell, Lane; Vlahovska, Petia; Miksis, Michael

    2014-11-01

    Vesicles are closed, fluid-filled lipid bilayers which are mechanically similar to biological cells and which undergo shape transitions in the presence of electric fields. Here we model the vesicle membrane as an infinitely thin, capacitive, area-incompressible interface with the surrounding fluids acting as charge-advecting leaky dielectrics. We then implement the boundary integral method to numerically investigate the dynamics of a vesicle in various AC electric field profiles. Our numerical results are then compared with recent small deformation theory and experimental data. We also note our observation of a new theoretical vesicle behavior that has yet to be observed experimentally.

  1. Aminosilane/oleic acid vesicles as model membranes of protocells.

    PubMed

    Douliez, Jean-Paul; Zhendre, Vanessa; Grélard, Axelle; Dufourc, Erick J

    2014-12-16

    Oleic acid vesicles represent good models of membrane protocells that could have existed in prebiotic times. Here, we report the formation, growth polymorphism, and dynamics of oleic acid spherical vesicles (1-10 μm), stable elongated vesicles (>50 μm length; 1-3 μm diameter), and chains of vesicles (pearl necklaces, >50 μm length; 1-3 μm diameter) in the presence of aminopropyl triethoxysilane and guanidine hydrochloride. These vesicles exhibit a remarkable behavior with temperature: spherical vesicles only are observed when keeping the sample at 4 °C for 2 h, and self-aggregated spherical vesicles occur upon freezing/unfreezing (-20/20 °C) samples. Rather homogeneous elongated vesicles are reformed upon heating samples at 80 °C. The phenomenon is reversible through cycles of freezing/heating or cooling/heating of the same sample. Deuterium NMR evidences a chain packing rigidity similar to that of phospholipid bilayers in cellular biomembranes. We expect these bilayered vesicles to be surrounded by a layer of aminosilane oligomers, offering a variant model for membrane protocells. PMID:25420203

  2. From vesicles to protocells: the roles of amphiphilic molecules.

    PubMed

    Sakuma, Yuka; Imai, Masayuki

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256

  3. Enhanced stabilization of vesicles by compressed CO2.

    PubMed

    Li, Wei; Zhang, Jianling; Cheng, Siqing; Han, Buxing; Zhang, Chaoxing; Feng, Xiaoying; Zhao, Yueju

    2009-01-01

    In this work, we studied the effect of compressed CO2 on the stability of vesicles formed in a dodecyltrimethylammonium bromide (DTAB)/sodium dodecyl sulfate (SDS) mixed surfactant system by combination of phase behavior and turbidity study, and UV-vis and fluorescence techniques. It was discovered that compressed CO2 could enhance the stability of vesicles significantly. This new and effective method to stabilize vesicles has some unique advantages over conventional methods. For example, the size and stability of the vesicles can be easily controlled by CO2 pressure; the method is greener because CO2 is a green reagent and it can be released completely after depressurization, which simplifies postseparation processes in applications. The main reason for CO2 to stabilize the vesicles is that CO2 molecules can insert into the hydrophobic bilayer region to enhance the rigidity of the vesicle film and reduce the size of the vesicles, which is different from that of conventional cosolvents (e.g., alcohols) used to stabilize vesicles. On the basis of this discovery, we developed a method to prepare hollow silica spheres using tetraethoxysilane as the precursor and CO2-stabilized vesicles as the template, in which CO2 acts as both the stabilizer of the vesicular template and the catalyst for the hydrolysis reaction of the precursor, and other cosolvents and catalysts are not required. Besides, the size of the silica hollow spheres prepared can be controlled by the pressure of CO2. PMID:19049396

  4. Floating Escherichia coli by expressing cyanobacterial gas vesicle genes

    NASA Astrophysics Data System (ADS)

    Wang, Tianhe; Kang, Li; Li, Jiaheng; Wu, Wenjie; Zhang, Peiran; Gong, Minghao; Lai, Weihong; Zhang, Chunyan; Chang, Lei; Peng, Yong; Yang, Zhongzhou; Li, Lian; Bao, Yingying; Xu, Haowen; Zhang, Xiaohua; Sui, Zhenghong; Yang, Guanpin; Wang, Xianghong

    2015-02-01

    Gas vesicles are hollow, air-filled polyprotein structures that provide the buoyancy to cells. They are found in a variety of prokaryotes. In this study, we isolated a partial gas vesicle protein gene cluster containing gvpA and gvpC20Ψ from Planktothrix rubescens, and inserted it into an expression vector and expressed it in E. coli. The gas vesicle was developed in bacterial cells, which made bacterial cells to float on medium surface. We also amplified gvpA and gvpC20Ψ separately and synthesized an artificial operon by fusing these two genes with the standardized gene expression controlling elements of E. coli. The artificial operon was expressed in E. coli, forming gas vesicles and floating bacteria cells. Our findings verified that the whole set of genes and the overall structure of gas vesicle gene cluster are not necessary for developing gas vesicles in bacteria cells. Two genes, gvpA and gvpC20Ψ, of the gas vesicle gene cluster are sufficient for synthesizing an artificial operon that can develop gas vesicles in bacteria cells. Our findings provided a wide range of applications including easing the harvest of cultured microalgae and bacteria, as well as enriching and remediating aquatic pollutants by constructing gas vesicles in their cells.

  5. Coated vesicles: a diversity of form and function.

    PubMed

    Schmid, S L; Damke, H

    1995-11-01

    In every well-characterized example, the small transport vesicles that mediate membrane trafficking between intracellular organelles are encased in a protein coat. In general, the coat proteins assemble from cytosolic pools onto the membrane and play a critical role in vesicle formation. Recent reviews have emphasized the clear similarities in the mechanisms that drive vesicle budding at distinct cellular locations. Here we focus on the diversity of solutions to an apparently related biological task. These mechanistic differences are likely to be physiologically important determinants of the diversity in form, and function of coated transport vesicles. PMID:7589986

  6. From Vesicles to Protocells: The Roles of Amphiphilic Molecules

    PubMed Central

    Sakuma, Yuka; Imai, Masayuki

    2015-01-01

    It is very challenging to construct protocells from molecular assemblies. An important step in this challenge is the achievement of vesicle dynamics that are relevant to cellular functions, such as membrane trafficking and self-reproduction, using amphiphilic molecules. Soft matter physics will play an important role in the development of vesicles that have these functions. Here, we show that simple binary phospholipid vesicles have the potential to reproduce the relevant functions of adhesion, pore formation and self-reproduction of vesicles, by coupling the lipid geometries (spontaneous curvatures) and the phase separation. This achievement will elucidate the pathway from molecular assembly to cellular life. PMID:25738256

  7. Fluctuation Dynamics of Block Copolymer Vesicles

    SciTech Connect

    Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.

    2010-07-13

    X-ray photon correlation spectroscopy was used to characterize the wave-vector- and temperature-dependent dynamics of spontaneous thermal fluctuations in a vesicle (L4) phase that occurs in a blend of a symmetric poly(styrene-ethylene/butylene-styrene) triblock copolymer with a polystyrene homopolymer. Measurements of the intermediate scattering function reveal stretched-exponential behavior versus time, with a stretching exponent slightly larger than 2/3. The corresponding relaxation rates show an approximate q{sup 3} dependence versus wave vector. Overall, the experimental measurements are well described by theories that treat the dynamics of independent membrane plaquettes.

  8. Role of extracellular vesicles in autoimmune diseases.

    PubMed

    Turpin, Delphine; Truchetet, Marie-Elise; Faustin, Benjamin; Augusto, Jean-François; Contin-Bordes, Cécile; Brisson, Alain; Blanco, Patrick; Duffau, Pierre

    2016-02-01

    Extracellular vesicles (EVs) consist of exosomes released upon fusion of multivesicular bodies with the cell plasma membrane and microparticles shed directly from the cell membrane of many cell types. EVs can mediate cell-cell communication and are involved in many processes including inflammation, immune signaling, angiogenesis, stress response, senescence, proliferation, and cell differentiation. Accumulating evidence reveals that EVs act in the establishment, maintenance and modulation of autoimmune processes among several others involved in cancer and cardiovascular complications. EVs could also present biomedical applications, as disease biomarkers and therapeutic targets or agents for drug delivery. PMID:26554931

  9. Extracellular vesicles: Emerging targets for cancer therapy

    PubMed Central

    Vader, Pieter; Breakefield, Xandra O.; Wood, Matthew J.A.

    2014-01-01

    Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, are released by almost all cell types, including tumour cells. Through transfer of their molecular contents, EVs are capable of altering the function of recipient cells. Increasing evidence suggests a key role for EV-mediated intercellular communication in a variety of cellular processes involved in tumour development and progression, including immune suppression, angiogenesis and metastasis. Aspects of EV biogenesis or function are therefore increasingly being considered as targets for anti-cancer therapy. Here, we summarize the current knowledge on the contributions of EVs to cancer pathogenesis and discuss novel therapeutic strategies to target EVs to prevent tumour growth and spread. PMID:24703619

  10. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell (PAEC) plasma membrane vesicles

    SciTech Connect

    Bhat, G.B.; Block, E.R. )

    1990-02-26

    Alterations in the physical state and composition of membrane lipids have been shown to interfere with a number of critical cellular and membrane functions including transmembrane transport. The authors have reported that hypoxia has profound effects upon the physical state and lipid composition of the PAEC plasma membrane bilayer and have suggested that this is responsible for increased serotonin uptake by these cells. In order to determine whether hypoxia has a direct effect on the plasma membrane transport of serotonin, they measured serotonin transport activity (1) in plasma membrane vesicles isolated from normoxic (20% O{sub 2}-5% CO{sub 2}) and hypoxic (0% O{sub 2}-5% CO{sub 2}) PAEC and (2) in PAEC plasma membrane vesicles that were exposed directly to normoxia or hypoxia. A 24-h exposure of PAEC to hypoxia resulted in a 40% increase in specific serotonin transport by plasma membrane vesicles derived from these cells. When plasma membrane vesicles were isolated and then directly exposed to normoxia or hypoxia for 1 h at 37C, a 31% increase in specific 5-HT transport was observed in hypoxic vesicles. Hypoxia did not alter the Km of serotonin transport (normoxia = 3.47 {mu}M versus hypoxia = 3.76 {mu}M) but markedly increased the maximal rate of transport (V{sup max}) (normoxia = 202.4 pmol/min/mg protein versus hypoxia = 317.9 pmol/min/mg protein). These results indicate that hypoxia increases serotonin transport in PAEC by a direct effect on the plasma membrane leading to an increase in the effective number of transporter molecules without alteration in transporter affinity for serotonin.

  11. Searching for Contracting Patterns over Time: Do Prime Contractor and Subcontractor Relations Follow Similar Patterns for Professional Services Provision?

    ERIC Educational Resources Information Center

    Ponomariov, Branco; Kingsley, Gordon; Boardman, Craig

    2011-01-01

    This paper compares over a 12-year period (1) patterns of contracting between a state transportation agency and its prime contractors providing engineering design services with (2) patterns between these prime contractors and their subcontractors. We find evidence of different contracting patterns at each level that emerge over time and coexist in…

  12. Intermediate structures in the cholate-phosphatidylcholine vesicle-micelle transition

    PubMed Central

    Walter, Anne; Vinson, Phillip K.; Kaplun, Alon; Talmon, Yeshayahu

    1991-01-01

    The vesicle-micelle transition of egg phosphatidylcholine (PC) and sodium cholate was described by comparing cryo-transmission electron microscopic (cryo-TEM) images of the structures formed to the associated turbidity changes. These experiments were designed to identify the morphology of the intermediates between vesicles and small spheroidal mixed micelles. With increasing cholate concentration, the vesicular structures changed size and more multilamellar vesicles were seen. Between the apparent upper and lower phase boundaries, three structures were observed: open vesicles, large bilayer sheets (twenty to several hundred nanometers in diameter), and long (150-300 nm) flexible cylindrical micelles. The cylindrical micelles evolved from the edges of the bilayer sheets. At higher relative cholate concentration, the phase boundary was sharply defined by optical clarification of the egg PC-cholate mixtures. Cryo-TEM revealed only small spheroidal mixed micelles at this transition. These results provide the first direct evidence of the structural pathway or of molecular intermediates between a lamellar and a micellar state. Understanding these specific intermediates and the transitions between them is essential to developing reconstitution protocols and properly analyzing either activity or structural data obtained from cholate-dispersed membrane proteins. ImagesFIGURE 2FIGURE 3FIGURE 4FIGURE 5 PMID:19431813

  13. Subfractionation, characterization and in-depth proteomic analysis of glomerular membrane vesicles in human urine

    PubMed Central

    Hogan, Marie C.; Johnson, Kenneth L.; Zenka, Roman M.; Charlesworth, M. Cristine; Madden, Benjamin J.; Mahoney, Doug W.; Oberg, Ann L.; Huang, Bing Q.; Nesbitt, Lisa L.; Bakeberg, Jason L.; Bergen, H. Robert; Ward, Christopher J.

    2014-01-01

    Urinary exosome-like vesicles (ELVs) are a heterogenous mixture (diameter 40–200nm) containing vesicles shed from all segments of the nephron including glomerular podocytes. Contamination with Tamm Horsfall protein (THP) oligomers has hampered their isolation and proteomic analysis. Here we improved ELV isolation protocols employing density centrifugation to remove THP and albumin, and isolated a glomerular membranous vesicle (GMV) enriched subfraction from 7 individuals identifying 1830 proteins and in 3 patients with glomerular disease identifying 5657 unique proteins. The GMV fraction was composed of podocin/podocalyxin positive irregularly shaped membranous vesicles and podocin/podocalyxin negative classical exosomes. Ingenuity pathway analysis identified integrin, actin cytoskeleton and RhoGDI signaling in the top three canonical represented signaling pathways and 19 other proteins associated with inherited glomerular diseases. The GMVs are of podocyte origin and the density gradient technique allowed isolation in a reproducible manner. We show many nephrotic syndrome proteins, proteases and complement proteins involved in glomerular disease are in GMVs and some were shed in the disease state (nephrin, TRPC6 and INF2 and PLA2R). We calculated sample sizes required to identify new glomerular disease biomarkers, expand the ELV proteome and provide a reference proteome in a database that may prove useful in the search for biomarkers of glomerular disease. PMID:24196483

  14. Priming effects in a subtropical forest soil

    NASA Astrophysics Data System (ADS)

    Li, Qianru; Sun, Yue; Xu, Xingliang

    2015-04-01

    Priming effects can accelerate decomposition of soil organic carbon (SOC) and thus have great potential to change SOC dynamics. Although temperature and addition of fresh substrates could affect the intensity and direction of priming, it remains unclear how their interactions affect priming. Therefore we conducted an incubation experiment using a subtropical forest soil. We incubated the soil for 10 days at two temperatures: 15oC and 25oC, with four treatments: CK (only adding water), G (13C-glucose addition), NT (13C-glucose and nitrate additions) and AM (13C-glucose and ammonium additions). The results showed that glucose addition significantly accelerated the decomposition of SOC in both temperatures, indicates that positive priming occurs in this subtropical soil. While negative priming was observed in soils with simultaneous additions of glucose and nitrogen addition, especially at 25oC. The effect of temperature on PE was not significant. This indicates that mining of nitrogen is a major mechanism responsible for priming in this subtropical soil and there is no strong interaction between temperature and substrate additions to induce priming.

  15. Nonconscious and conscious color priming in schizophrenia.

    PubMed

    Jahshan, Carol; Wynn, Jonathan K; Breitmeyer, Bruno G; Green, Michael F

    2012-10-01

    Deficits in visual processing are well established in schizophrenia. However, there is conflicting evidence about whether these deficits start before the formation of percepts because visual processing studies in schizophrenia have typically examined the processing of consciously registered stimuli. In this study, we used nonconscious color priming to evaluate the very early visual processing stages in schizophrenia. Nonconscious and conscious color priming was assessed in 148 schizophrenia patients and 54 healthy control subjects. In both conditions, subjects identified the color of a ring preceded by a disk (prime) in the same color (congruent) or a different color (incongruent). The ring rendered the disk invisible in the nonconscious condition (SOA of 62.5 ms) or did not mask the disk (SOA of 200 ms) in the conscious condition. Schizophrenia patients exhibited a color priming effect (longer reaction times in the incongruent vs. congruent trials) that was similar to healthy controls in both the nonconscious and conscious priming conditions. Healthy controls had a significantly larger priming effect in the nonconscious vs. conscious condition, but patients did not show a significant difference in priming effects between the two conditions. Our results indicate that schizophrenia patients do not have deficits at the nonconscious, pre-perceptual stages of visual processing, suggesting that the feed forward sweep of information processing (from retina to V1) might be intact in schizophrenia. These results imply that the well-documented visual processing deficits in this illness likely occur at later, percept-dependent stages of processing. PMID:22785333

  16. Re-naming D Double Prime

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    1999-01-01

    "Knowledge about the dynamics of the D double prime region is a key to unlock some fundamental mysteries of the Earth heat engine which governs a wide range of global geophysical processes from tectonics to geodynamo." This benign sentence makes complete sense to many geophysicists. But for many others, it makes sense all except the odd nomenclature "D double prime". One knows about the crust, upper and lower mantle, outer and inner core, but where is the D double prime region? What meaning does it try to convey? Where is D prime region, or D, or A, B, C regions for that matter, and are there higher-order primes? How does such an odd name come about anyway? D double prime, or more "simply" D", is a generic designation given to the thin shell, about 200 km thick, of the lowermost mantle just above the core-mantle boundary inside the Earth. Incidentally, whether D" is "simpler" than "D double prime" depends on whether you are pronouncing it or writing/typing it; and D" can be confusing to readers in distinguishing quotation marks (such as in the above sentences) and second derivatives, and to word processors in spelling check and indexing.

  17. Fluorescence branching ratios in nitric oxide - Emission from the A2 Sigma(+) (v prime = 1)

    NASA Technical Reports Server (NTRS)

    Mcgee, T. J.; Burris, J., Jr.; Barnes, J.

    1985-01-01

    The most complete set of branching ratios from the v-prime = 1 level of the A-state in NO measured to data is reported. The assumption that virtually all of the emitted radiation has been sampled is used to extract Franck-Condon factors from the v-prime = 1 manifold. A comparison with previously published results indicates that, except for the (1,0) band, there is reasonably good agreement.

  18. Cherry Pit Primes Brad Pitt

    PubMed Central

    Burke, Deborah M.; Locantore, Jill Kester; Austin, Ayda A.; Chae, Bryan

    2008-01-01

    This study investigated why proper names are difficult to retrieve, especially for older adults. On intermixed trials, young and older adults produced a word for a definition or a proper name for a picture of a famous person. Prior production of a homophone (e.g., pit) as the response on a definition trial increased correct naming and reduced tip-of-the-tongue experiences for a proper name (e.g., Pitt) on a picture-naming trial. Among participants with no awareness of the homophone manipulation, older but not young adults showed these homophone priming effects. With a procedure that reduced awareness effects (Experiment 2), prior production of a homophone improved correct naming only for older adults, but speeded naming latency for both age groups. We suggest that representations of proper names are susceptible to weak connections that cause deficits in the transmission of excitation, impairing retrieval especially in older adults. We conclude that homophone production strengthens phonological connections, increasing the transmission of excitation. PMID:15016287

  19. Phonological and Orthographic Overlap Effects in Fast and Masked Priming

    PubMed Central

    Frisson, Steven; Bélanger, Nathalie N.; Rayner, Keith

    2014-01-01

    We investigated how orthographic and phonological information is activated during reading, using a fast priming task, and during single word recognition, using masked priming. Specifically, different types of overlap between prime and target were contrasted: high orthographic and high phonological overlap (track-crack), high orthographic and low phonological overlap (bear-gear), or low orthographic and high phonological overlap (fruit-chute). In addition, we examined whether (orthographic) beginning overlap (swoop-swoon) yielded the same priming pattern as end (rhyme) overlap (track-crack). Prime durations were 32 and 50ms in the fast priming version, and 50ms in the masked priming version, and mode of presentation (prime and target in lower case) was identical. The fast priming experiment showed facilitatory priming effects when both orthography and phonology overlapped, with no apparent differences between beginning and end overlap pairs. Facilitation was also found when prime and target only overlapped orthographically. In contrast, the masked priming experiment showed inhibition for both types of end overlap pairs (with and without phonological overlap), and no difference for begin overlap items. When prime and target only shared principally phonological information, facilitation was only found with a long prime duration in the fast priming experiment, while no differences were found in the masked priming version. These contrasting results suggest that fast priming and masked priming do not necessarily tap into the same type of processing. PMID:24365065

  20. Phonological and orthographic overlap effects in fast and masked priming.

    PubMed

    Frisson, Steven; Bélanger, Nathalie N; Rayner, Keith

    2014-01-01

    We investigated how orthographic and phonological information is activated during reading, using a fast priming task, and during single-word recognition, using masked priming. Specifically, different types of overlap between prime and target were contrasted: high orthographic and high phonological overlap (track-crack), high orthographic and low phonological overlap (bear-gear), or low orthographic and high phonological overlap (fruit-chute). In addition, we examined whether (orthographic) beginning overlap (swoop-swoon) yielded the same priming pattern as end (rhyme) overlap (track-crack). Prime durations were 32 and 50 ms in the fast priming version and 50 ms in the masked priming version, and mode of presentation (prime and target in lower case) was identical. The fast priming experiment showed facilitatory priming effects when both orthography and phonology overlapped, with no apparent differences between beginning and end overlap pairs. Facilitation was also found when prime and target only overlapped orthographically. In contrast, the masked priming experiment showed inhibition for both types of end overlap pairs (with and without phonological overlap) and no difference for begin overlap items. When prime and target only shared principally phonological information, facilitation was only found with a long prime duration in the fast priming experiment, while no differences were found in the masked priming version. These contrasting results suggest that fast priming and masked priming do not necessarily tap into the same type of processing. PMID:24365065

  1. Bacterial Outer Membrane Vesicles and Vaccine Applications

    PubMed Central

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A.; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. PMID:24715891

  2. Bacterial outer membrane vesicles and vaccine applications.

    PubMed

    Acevedo, Reinaldo; Fernández, Sonsire; Zayas, Caridad; Acosta, Armando; Sarmiento, Maria Elena; Ferro, Valerie A; Rosenqvist, Einar; Campa, Concepcion; Cardoso, Daniel; Garcia, Luis; Perez, Jose Luis

    2014-01-01

    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW), and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM), and BCG (dOMVBCG). The immunogenicity of the OMV has been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice has shown their protective potential. dOMVB has been evaluated with non-neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin, and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. PMID:24715891

  3. PTEN functions by recruitment to cytoplasmic vesicles.

    PubMed

    Naguib, Adam; Bencze, Gyula; Cho, Hyejin; Zheng, Wu; Tocilj, Ante; Elkayam, Elad; Faehnle, Christopher R; Jaber, Nadia; Pratt, Christopher P; Chen, Muhan; Zong, Wei-Xing; Marks, Michael S; Joshua-Tor, Leemor; Pappin, Darryl J; Trotman, Lloyd C

    2015-04-16

    PTEN is proposed to function at the plasma membrane, where receptor tyrosine kinases are activated. However, the majority of PTEN is located throughout the cytoplasm. Here, we show that cytoplasmic PTEN is distributed along microtubules, tethered to vesicles via phosphatidylinositol 3-phosphate (PI(3)P), the signature lipid of endosomes. We demonstrate that the non-catalytic C2 domain of PTEN specifically binds PI(3)P through the CBR3 loop. Mutations render this loop incapable of PI(3)P binding and abrogate PTEN-mediated inhibition of PI 3-kinase/AKT signaling. This loss of function is rescued by fusion of the loop mutant PTEN to FYVE, the canonical PI(3)P binding domain, demonstrating the functional importance of targeting PTEN to endosomal membranes. Beyond revealing an upstream activation mechanism of PTEN, our data introduce the concept of PI 3-kinase signal activation on the vast plasma membrane that is contrasted by PTEN-mediated signal termination on the small, discrete surfaces of internalized vesicles. PMID:25866245

  4. Heparin affinity purification of extracellular vesicles

    PubMed Central

    Balaj, Leonora; Atai, Nadia A.; Chen, Weilin; Mu, Dakai; Tannous, Bakhos A.; Breakefield, Xandra O.; Skog, Johan; Maguire, Casey A.

    2015-01-01

    Extracellular vesicles (EVs) are lipid membrane vesicles released by cells. They carry active biomolecules including DNA, RNA, and protein which can be transferred to recipient cells. Isolation and purification of EVs from culture cell media and biofluids is still a major challenge. The most widely used isolation method is ultracentrifugation (UC) which requires expensive equipment and only partially purifies EVs. Previously we have shown that heparin blocks EV uptake in cells, supporting a direct EV-heparin interaction. Here we show that EVs can be purified from cell culture media and human plasma using ultrafiltration (UF) followed by heparin-affinity beads. UF/heparin-purified EVs from cell culture displayed the EV marker Alix, contained a diverse RNA profile, had lower levels of protein contamination, and were functional at binding to and uptake into cells. RNA yield was similar for EVs isolated by UC. We were able to detect mRNAs in plasma samples with comparable levels to UC samples. In conclusion, we have discovered a simple, scalable, and effective method to purify EVs taking advantage of their heparin affinity. PMID:25988257

  5. Tetraspanins in Extracellular Vesicle Formation and Function

    PubMed Central

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted. PMID:25278937

  6. Role of Extracellular Vesicles in Hematological Malignancies

    PubMed Central

    Raimondo, Stefania; Corrado, Chiara; Raimondi, Lavinia; De Leo, Giacomo; Alessandro, Riccardo

    2015-01-01

    In recent years the role of tumor microenvironment in the progression of hematological malignancies has been widely recognized. Recent studies have focused on how cancer cells communicate within the microenvironment. Among several factors (cytokines, growth factors, and ECM molecules), a key role has been attributed to extracellular vesicles (EV), released from different cell types. EV (microvesicles and exosomes) may affect stroma remodeling, host cell functions, and tumor angiogenesis by inducing gene expression modulation in target cells, thus promoting cancer progression and metastasis. Microvesicles and exosomes can be recovered from the blood and other body fluids of cancer patients and contain and deliver genetic and proteomic contents that reflect the cell of origin, thus constituting a source of new predictive biomarkers involved in cancer development and serving as possible targets for therapies. Moreover, due to their specific cell-tropism and bioavailability, EV can be considered natural vehicles suitable for drug delivery. Here we will discuss the recent advances in the field of EV as actors in hematological cancer progression, pointing out the role of these vesicles in the tumor-host interplay and in their use as biomarkers for hematological malignancies. PMID:26583135

  7. Tetraspanins in extracellular vesicle formation and function.

    PubMed

    Andreu, Zoraida; Yáñez-Mó, María

    2014-01-01

    Extracellular vesicles (EVs) represent a novel mechanism of intercellular communication as vehicles for intercellular transfer of functional membrane and cytosolic proteins, lipids, and RNAs. Microvesicles, ectosomes, shedding vesicles, microparticles, and exosomes are the most common terms to refer to the different kinds of EVs based on their origin, composition, size, and density. Exosomes have an endosomal origin and are released by many different cell types, participating in different physiological and/or pathological processes. Depending on their origin, they can alter the fate of recipient cells according to the information transferred. In the last two decades, EVs have become the focus of many studies because of their putative use as non-invasive biomarkers and their potential in bioengineering and clinical applications. In order to exploit this ability of EVs many aspects of their biology should be deciphered. Here, we review the mechanisms involved in EV biogenesis, assembly, recruitment of selected proteins, and genetic material as well as the uptake mechanisms by target cells in an effort to understand EV functions and their utility in clinical applications. In these contexts, the role of proteins from the tetraspanin superfamily, which are among the most abundant membrane proteins of EVs, will be highlighted. PMID:25278937

  8. Bolaamphiphiles Promote Phospholipid Translocation Across Vesicle Membranes

    PubMed Central

    Forbes, Christopher C.; DiVittorio, Kristy M.; Smith, Bradley D.

    2008-01-01

    A series of membrane-spanning bolaamphiphiles (molecules with two hydrophilic end-groups connected by a hydrophobic linker) were prepared by a modular synthetic method and evaluated for their abilities to affect the dynamics of a surrounding bilayer membrane. The goal was to determine if the bolaamphiphiles promote the translocation of phospholipids across vesicle membranes. The bolaamphiphiles were incorporated at low levels (up to 5 mol%) in vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Inward translocation assays were performed using fluorescent, NBD-labeled phospholipid probes with phosphocholine (PC) or phosphoglycerol (PG) head-groups. The membrane-spanning bolaamphiphiles promote the translocation of both phospholipid probes in the order PG > PC, while shorter bolaamphiphiles (structures that must adopt a U-shape and keep both end-groups in the same leaflet of the membrane), and regular amphiphiles with one hydrophilic end-group, are inactive. These results are an exception to the rule-of-thumb that membrane-spanning bolaamphiphiles are inherently membrane stabilizing molecules that inhibit all types of membrane transport. PMID:16834395

  9. Coated vesicles contain a phosphatidylinositol kinase.

    PubMed

    Campbell, C R; Fishman, J B; Fine, R E

    1985-09-15

    When coated vesicles (CVs) are incubated with [gamma-32P]ATP, radioactivity is rapidly incorporated into a compound identified by thin layer chromatography as phosphatidylinositol 4-phosphate. This activity has been identified in CVs isolated from bovine brain as well as from rat liver and chick embryo skeletal muscle. Phosphatidylinositol (PI) kinase is not separated from CVs during agarose electrophoresis, which produces CVs of greater than 95% purity, indicating that the activity present does not derive from contamination. The specific activity of these highly purified CVs was demonstrated to be approximately twice that of synaptic plasma membranes, further ruling out contamination from this source. The PI kinase remains associated with the vesicle upon removal of clathrin and its associated proteins and is solubilized by nonionic detergents, suggesting it is an integral membrane protein. We have been unable to demonstrate the formation of significant amounts of phosphatidylinositol 4,5-bisphosphate in any of our CV preparations. In the presence of exogenous PI, activity is stimulated, with maximal phosphorylation occurring at 0.1 mM. The enzyme appears to be maximally stimulated by 200 mM MgCl2 and 1 mM ATP and is most active at pH 7.25. Calculations indicate that, under optimal conditions, approximately 25 molecules of PIP are produced per CV within 60 s, suggesting that these structures may play an important role in cellular PI metabolism. PMID:2863269

  10. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains

    PubMed Central

    Held, Richard G; Liu, Changliang; Kaeser, Pascal S

    2016-01-01

    In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming. DOI: http://dx.doi.org/10.7554/eLife.14862.001 PMID:27253063

  11. Virulence and Immunomodulatory Roles of Bacterial Outer Membrane Vesicles

    PubMed Central

    Ellis, Terri N.; Kuehn, Meta J.

    2010-01-01

    Summary: Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens. PMID:20197500

  12. Epigenetic Control of Defense Signaling and Priming in Plants

    PubMed Central

    Espinas, Nino A.; Saze, Hidetoshi; Saijo, Yusuke

    2016-01-01

    Immune recognition of pathogen-associated molecular patterns or effectors leads to defense activation at the pathogen challenged sites. This is followed by systemic defense activation at distant non-challenged sites, termed systemic acquired resistance (SAR). These inducible defenses are accompanied by extensive transcriptional reprogramming of defense-related genes. SAR is associated with priming, in which a subset of these genes is kept at a poised state to facilitate subsequent transcriptional regulation. Transgenerational inheritance of defense-related priming in plants indicates the stability of such primed states. Recent studies have revealed the importance and dynamic engagement of epigenetic mechanisms, such as DNA methylation and histone modifications that are closely linked to chromatin reconfiguration, in plant adaptation to different biotic stresses. Herein we review current knowledge regarding the biological significance and underlying mechanisms of epigenetic control for immune responses in plants. We also argue for the importance of host transposable elements as critical regulators of interactions in the evolutionary “arms race” between plants and pathogens. PMID:27563304

  13. [Recall of the prime minister for the assessment of mental status].

    PubMed

    Diesfeldt, H F

    2003-08-01

    A number of cognitive screening tests assess knowledge of the head of state or current prime minister. It is supposed that correct recall is a valid indicator of cognitive functioning. A consecutive sample of 259 visitors of a psychogeriatric day care center were rated for knowledge of the prime minister's name. Recall of his name was not dependent on level of education. The mean score on an independent screening test was significantly higher for those who knew the prime minister's name than for those who failed to answer the question. More men than women correctly answered the question, regardless of education level, living arrangements (living with someone versus being single and living alone), age and cognitive score. Using item response theory and Mokken scale analysis it was found that a short screening test containing the prime minister item constituted a scale of medium scalability (Loevinger's scalability coefficient H:0.50). Scores on the screening test correlated significantly with two independent measures of episodic and semantic memory. Deletion or addition of the prime minister item did not influence the degree of association between screening test and memory test scores. It is advisable to ask for the name of the prime minister in screening for cognitive impairment. Passing or failing the prime minister item correlates with intact or impaired retrieval of current information. PMID:14524143

  14. Transfer of processing in repetition priming: some inappropriate findings.

    PubMed

    Brown, A S; Neblett, D R; Jones, T C; Mitchell, D B

    1991-05-01

    Transfer effects in repetition priming were found with both picture and word naming, but varied with the type of prime list. Unmixed lists of word or picture primes produced equivalent intra-modal and cross-modal repetition priming in both picture-naming (Experiment 1) and word-naming (Experiment 5) tasks. However, mixing word and picture primes resulted in greater intra-modal than cross-modal priming for both picture-naming (Experiment 2) and word-naming (Experiment 6) tasks. This mixed-list difference between intra-modal and cross-modal priming was reduced by blocking prime types at input (Experiment 3). These findings suggest that differences in priming as a function of prime stimulus format should be cautiously interpreted when mixed prime lists are used. PMID:1829475

  15. Vesicle Stability and Dynamics: An Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Del Bianco, Cristina; Torino, Domenica; Mansy, Sheref S.

    2014-01-01

    A laboratory exercise is described that helps students learn about lipid self-assembly by making vesicles under different solution conditions. Concepts covering the chemical properties of different lipids, the dynamics of lipids, and vesicle stability are explored. Further, the described protocol is easy and cheap to implement. One to two…

  16. Schwannoma, a rare tumor of the seminal vesicle

    PubMed Central

    Carrasquinho, Eduardo; Ferreira, Marco; Afonso, Ana; Ferrito, Fernando

    2011-01-01

    We present a rare case of a schwannoma of the seminal vesicle that occurred in a 43-year-old male with symptoms of the lower urinary tract. Ultrasonography and magnetic resonance imaging documented a solid mass in the patient's left seminal vesicle. A transvesical approach with a transtrigonal midline incision was successfully performed. The microscopic aspect was compatible with schwannoma. PMID:24578861

  17. Aqueous dispersions of DMPG in low salt contain leaky vesicles.

    PubMed

    Barroso, Rafael P; Perez, Katia Regina; Cuccovia, Iolanda M; Teresa Lamy, M

    2012-02-01

    Aqueous dispersions of dimyristoyl phosphatidylglycerol (DMPG), at low ionic strength, display uncommon thermal behavior. Models for such behavior need to assign a form to the lipid aggregate. Although most studies accept the presence of lipid vesicles in the lipid gel and fluid phases, this is still controversial. With electron spin resonance (ESR) spectra of spin labels incorporated into DMPG aggregates, quantification of [(14)C]sucrose entrapped by the aggregates, and viscosity measurements, we demonstrate the existence of leaky vesicles in dispersions of DMPG at low ionic strength, in both gel and fluid phases of the lipid. As a control system, the ubiquitous lipid dimyristoyl phosphatidylcholine (DMPC) was used. For DMPG in the gel phase, spin labeling only indicated the presence of lipid bilayers, strongly suggesting that DMPG molecules are organized as vesicles and not micelles or bilayer fragments (bicelles), as the latter has a non-bilayer structure at the edges. Quantification of [(14)C]sucrose entrapping by DMPG aggregates revealed the presence of highly leaky vesicles. Due to the short hydrocarbon chains ((14)C atoms), DMPC vesicles were also found to be partially permeable to sucrose, but not as much as DMPG vesicles. Viscosity measurements, with the calculation of the intrinsic viscosity of the lipid aggregate, showed that DMPG vesicles are rather similar in the gel and fluid phases, and quite different from aggregates observed along the gel-fluid transition. Taken together, our data strongly supports that DMPG forms leaky vesicles at both gel and fluid phases. PMID:22209922

  18. Slow Sedimentation and Deformability of Charged Lipid Vesicles

    PubMed Central

    Rey Suárez, Iván; Leidy, Chad; Téllez, Gabriel; Gay, Guillaume; Gonzalez-Mancera, Andres

    2013-01-01

    The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity. PMID:23874582

  19. Selective breakup of lipid vesicles under acoustic microstreaming flow

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Garbin, Valeria

    2014-11-01

    The dynamics of lipid vesicles under small deformation in simple shear flow is well characterized: complex behaviors such as tumbling, breathing, and tank-treading are observed depending on the viscosity contrast between inner and outer fluid, vesicle excess area, membrane viscosity, and bending modulus. In contrast, phenomena upon large deformation are still poorly understood, in particular vesicle breakup. Simple shear flow geometries do not allow to reach the large stresses necessary to cause vesicle breakup. We use the acoustic microstreaming flow generated by an oscillating microbubble to study the large deformation and breakup of giant unilamellar vesicles. The deformation is governed by a capillary number based on the membrane elasticity K : Ca = ηγ˙a / K where η is the viscosity of the outer fluid, a the vesicle radius, and γ˙ the shear rate. We explore the effect of the mechanical properties of the membrane, and demonstrated selective breakup of vesicles based on the difference in membrane elasticity. The results reveal the influence of membrane mechanical properties in shear-induced vesicle breakup and the possibility to control in a quantitative way the selectivity of the process, with potential applications in biomedical technologies. The authors acknowledge funding from EU/FP7 Grant Number 618333.

  20. Formation and structural properties of multi-block copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Ma, Shiying

    2014-03-01

    Due to the unique structure, vesicles have attracted considerable attention for their potential applications, such as gene and drug delivery, microcapsules, nanoreactors, cell membrane mimetic, synthetic organelles, etc. By using dissipative particle dynamics, we studied the self-assembly of amphiphilic multi-block copolymer. The phase diagram was constructed by varying the interaction parameters and the composition of the block copolymers. The results show that the vesicles are stable in a large region which is different from the diblock copolymer or triblock copolymer. The structural properties of vesicles can be controlled by varying the interaction parameters and the length of the hydrophobic block. The relationship between the hydrophilic and hydrophobic block length vs the aqueous cavity size and vesicle size are revealed. The copolymers with shorter hydrophobic blocks length or the higher hydrophilicity are more likely to form vesicles with larger aqueous cavity size and vesicle size as well as thinner wall thickness. However, the increase in hydrophobic-block length results to form vesicles with smaller aqueous cavity size and larger vesicle size. Acknowledgments. This work has been supported by NNSFC (No. 21074053) and NBRPC (No. 2010CB923303).

  1. Microscopic evaluation of vesicles shed by erythrocytes at elevated temperatures.

    PubMed

    Moore, Timothy; Sorokulova, Iryna; Pustovyy, Oleg; Globa, Ludmila; Pascoe, David; Rudisill, Mary; Vodyanoy, Vitaly

    2013-11-01

    The images of human erythrocytes and vesicles were analyzed by a light microscopy system with spatial resolution of better than 90 nm. The samples were observed in an aqueous environment and required no freezing, dehydration, staining, shadowing, marking, or any other manipulation. Temperature elevation resulted in significant concentration increase of structurally transformed erythrocytes (echinocytes) and vesicles in the blood. The process of vesicle separation from spiculated erythrocytes was video recorded in real time. At a temperature of 37°C, mean vesicle concentrations and diameters were found to be 1.50 ± 0.35 × 10(6) vesicles per microliter and 0.365 ± 0.065 μm, respectively. The vesicle concentration increased approximately threefold as the temperature increased from 37 to 40°C. It was estimated that 80% of all vesicles found in the blood are smaller than 0.4 μm. Accurate account of vesicle numbers and dimensions suggest that 86% of the lost erythrocyte material is lost not by vesiculation but by another, as yet, unknown mechanism. PMID:23964014

  2. Polydiacetylene vesicles as a novel drug sustained-release system.

    PubMed

    Guo, Caixin; Liu, Shaoqin; Dai, Zhifei; Jiang, Chang; Li, Wenyuan

    2010-03-01

    Aiming at the enhancement of the physicochemical stability as well as the sustained-release property of conventional liposomes, a novel polymerized vesicular carrier, 10,12-pentacosadiynoic acid (PCDA) vesicles, loaded with paclitaxel as a model hydrophobic drug has been successfully constituted by incorporation of a polymerizable diacetylene into the lipid bilayer vesicles. The polymerized vesicles have been characterized in terms of particle size distribution and zeta-potential. Altering their lipid composition causes the zeta-potential to change from -3+/-1mV to more than -25mV, with a concomitant change in particle size distribution from 29+/-4nm to 149+/-18nm. Dynamic light scattering (DLS) showed that the stability of polymerized vesicles against Triton X-100 was improved greatly compared with the conventional liposomes. In vitro drug release studies show that PCDA-incorporating vesicles reduce the paclitaxel release over the conventional phospholipids vesicles. 69+/-6% paclitaxel is released within 24h from the conventional vesicles, but the insertion of 50% and 75% molar ratio of PCDA changes the amount to 57+/-1% and 32+/-4%, respectively. Our results demonstrate that such novel polymerized vesicles have very good prospect as an anticancer drug carrier. PMID:19896808

  3. Russian Prime Minister Calls the Station Crew

    NASA Video Gallery

    Russian Prime Minister Vladimir Putin called the International Space Station from the Russian Mission Control Center in Korolev, Russia, on Jan. 11, 2011. Putin also offered his condolences to ISS ...

  4. OVATION Prime Model and "Aurorasaurus" Auroral Observations

    NASA Video Gallery

    This video shows the auroral oval, as modeled using OVATION Prime (2013), along with citizen science reports collected by the Aurorasaurus project for the St. Patrick’s Day storm over March 17-19, ...

  5. Riemann equation for prime number diffusion

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Liang, Yingjie

    2015-05-01

    This study makes the first attempt to propose the Riemann diffusion equation to describe in a manner of partial differential equation and interpret in physics of diffusion the classical Riemann method for prime number distribution. The analytical solution of this equation is the well-known Riemann representation. The diffusion coefficient is dependent on natural number, a kind of position-dependent diffusivity diffusion. We find that the diffusion coefficient of the Riemann diffusion equation is nearly a straight line having a slope 0.99734 in the double-logarithmic axis. Consequently, an approximate solution of the Riemann diffusion equation is obtained, which agrees well with the Riemann representation in predicting the prime number distribution. Moreover, we interpret the scale-free property of prime number distribution via a power law function with 1.0169 the scale-free exponent in respect to logarithmic transform of the natural number, and then the fractal characteristic of prime number distribution is disclosed.

  6. NASA and OPTIMUS PRIME Team Up

    NASA Video Gallery

    NASA and OPTIMUS PRIME have teamed up to educate! Kids everywhere created videos showing how NASA technology is truly more than meets the eye, and now you can vote on your favorite! Visit http://ip...

  7. Negative priming in free recall reconsidered.

    PubMed

    Hanczakowski, Maciej; Beaman, C Philip; Jones, Dylan M

    2016-05-01

    Negative priming in free recall is the finding of impaired memory performance when previously ignored auditory distracters become targets of encoding and retrieval. This negative priming has been attributed to an aftereffect of deploying inhibitory mechanisms that serve to suppress auditory distraction and minimize interference with learning and retrieval of task-relevant information. In 6 experiments, we tested the inhibitory account of the effect of negative priming in free recall against alternative accounts. We found that ignoring auditory distracters is neither sufficient nor necessary to produce the effect of negative priming in free recall. Instead, the effect is more readily accounted for by a buildup of proactive interference occurring whenever 2 successively presented lists of words are drawn from the same semantic category. (PsycINFO Database Record PMID:26595066

  8. Cannabis use, schizotypy, and negative priming.

    PubMed

    Albertella, Lucy; Le Pelley, Mike E; Copeland, Jan

    2015-08-30

    The present study examined the effects of frequency of cannabis use, schizotypy, and age on cognitive control, as measured using a location-based negative priming task in a sample of 124 Australians aged 15-24 who had ever used cannabis. This study found that the schizotypy dimension of Impulsive Nonconformity had a significant effect on negative priming such that participants with higher scores on this dimension showed reduced negative priming. Also, higher levels of psychological distress were associated with greater negative priming. Finally, there was a significant age by cannabis use interaction indicating that younger, frequent users of cannabis may be more susceptible to its effects on cognitive control and perhaps at greater risk of developing a disorder on the psychosis dimension. PMID:26154815

  9. Metal ion, light, and redox responsive interaction of vesicles by a supramolecular switch.

    PubMed

    Samanta, Avik; Ravoo, Bart Jan

    2014-04-22

    Chemical, photochemical and electrical stimuli are versatile possibilities to exert external control on self-assembled materials. Here, a trifunctional molecule that switches between an "adhesive" and a "non-adhesive" state in response to metal ions, or light, or oxidation is presented. To this end, an azobenzene-ferrocene conjugate with a flexible N,N'-bis(3-aminopropyl)ethylenediamine spacer was designed as a multistimuli-responsive guest molecule that can form inclusion complexes with β-cyclodextrin. In the absence of any stimulus the guest molecule induces reversible aggregation of host vesicles composed of amphiphilic β-cyclodextrin due to the formation of intervesicular inclusion complexes. In this case, the guest molecule operates as a noncovalent cross-linker for the host vesicles. In response to any of three external stimuli (metal ions, UV irradiation, or oxidation), the conformation of the guest molecule changes and its affinity for the host vesicles is strongly reduced, which results in the dissociation of intervesicular complexes. Upon elimination or reversal of the stimuli (sequestration of metal ion, visible irradiation, or reduction) the affinity of the guest molecules for the host vesicles is restored. The reversible cross-linking and aggregation of the cyclodextrin vesicles in dilute aqueous solution was confirmed by isothermal titration calorimetry (ITC), optical density measurements at 600 nm (OD600 ), dynamic light scattering (DLS), ζ-potential measurements and cyclic voltammetry (CV). To the best of our knowledge, a dynamic supramolecular system based on a molecular switch that responds orthogonally to three different stimuli is unprecedented. PMID:24643990

  10. Amygdala priming results in conditioned place avoidance.

    PubMed

    Thielen, Shelley K; Shekhar, Anantha

    2002-03-01

    Priming involves daily stimulation of the basolateral nucleus of the amygdala (BLA) for 5 days using a dose of the GABA(A) receptor antagonist, bicuculline methiodide (BMI), that is subthreshold to generate anxiogenic-like responses. The coordinated physiological and behavioral response of the primed rat is similar to the symptoms of human panic disorder and has been used as a model to study panic attacks. If the priming procedure is indeed similar to human panic disorder, then the context in which priming occurs should become associated with aversive conditioning and avoidance as seen in secondary agoraphobia following panic attacks in humans. Therefore, the purpose of this study was to further characterize the behavioral response of priming using the conditioned place avoidance (CPA) task that utilizes distinct tactile cues of a grid floor (Grid+) or hole floor (Grid-). Male Wistar rats (275-300 g) were implanted bilaterally with guide cannulae positioned 1 mm above the BLA. Grid+ animals were placed in the conditioning chamber containing grid floors immediately after a 6-pmol (in 250 nl) BMI injection into the BLA and on hole floors following a sham (250 nl vehicle) injection. Grid animals were placed in the chamber containing hole floors after the BMI injection and on grid floors following the sham injection. Animals were placed in the chamber for 20 min following each injection and injections were separated by 4 h. After 5 days of this treatment, the animals were primed. Two days later, during avoidance testing, each animal was placed in the chamber containing both floors for 30 min. Priming with daily 6-pmol BMI injections into the BLA results in CPA or an aversion to the floor paired with the BMI injection. These results suggest that priming may result in phobic-like responses, similar to the avoidance behavior exhibited by panic disorder patients. PMID:11830174

  11. Interaction between silicon dioxide and dipalmitoylphosphatidylcholine (DPPC) vesicles

    SciTech Connect

    Mohd, Hur Munawar Kabir; Ahmad, Ainee Fatimah; Radiman, Shahidan; Mohamed, Faizal; Rosli, Nur Ratasha Alia Md; Ayob, Muhammad Taqiyuddin Mawardi; Rahman, Irman Abdul

    2014-09-03

    Many of the cellular process depend on the ability of the membrane to separate areas while allowing exchange and tightly regulated transport of material within and across the membrane to occur, which is the driving principle behind cell communication. The complexity of biological membranes has motivated the development of a wide variety of simpler model systems whose size, geometry and composition can be tailored with precision. This study was conducted to investigate the interactions between silica nanoparticles and Dipalmitoylphosphatidylcholine (DPPC) vesicles. The size range of DPPC vesicles formed was from 50 to 150 nm. Concentration of silica added to the vesicles was varied from 0.25 to 1.5 mg/ml. The change in vesicle size distribution, localization and positioning of silica nanoparticles in vesicles was studied via transmission electron microscopy (TEM) and differential scanning calorimetry (DSC)

  12. Interaction of a potyviral VPg with anionic phospholipid vesicles

    SciTech Connect

    Rantalainen, Kimmo I.; Christensen, Peter A.; Hafren, Anders; Otzen, Daniel E.; Kalkkinen, Nisse; Maekinen, Kristiina

    2009-12-05

    The viral genome-linked protein (VPg) of Potato virus A (PVA) is a multifunctional protein that belongs to a class of intrinsically disordered proteins. Typically, this type of protein gains a more stable structure upon interactions or posttranslational modifications. In a membrane lipid strip overlay binding assay, PVA VPg was found to bind phosphatidylserine (PS), but not phosphatidylcholine (PC). According to circular dichroism spectroscopy, the secondary structure of PVA VPg was stabilized upon interactions with PS and phosphatidylglycerol (PG), but not with PC vesicles. It is possible that this stabilization favored the formation of alpha-helical structures. Limited tryptic digestion showed that the interaction with anionic vesicles protected certain, otherwise accessible, trypsin cleavage sites. An electron microscopy study revealed that interaction with VPg substantially increased the vesicle diameter and caused the formation of pore or plaque-like electron dense spots on the vesicle surface, which gradually led to disruption of the vesicles.

  13. ELECTRICALLY ADDRESSABLE VESICLES – TOOLS FOR DIELECTROPHORESIS METROLOGY

    PubMed Central

    Desai, Salil P.; Vahey, Michael D.; Voldman, Joel

    2009-01-01

    Dielectrophoresis (DEP) has emerged as an important tool for the manipulation of bioparticles ranging from the submicron to the tens of microns in size. Here we show the use of phospholipid vesicle electroformation techniques to develop a new class of test particles with specifically engineered electrical properties to enable identifiable dielectrophoretic responses in microfabricated systems. These electrically addressable vesicles (EAVs) enable the creation of electrically distinct populations of test particles for DEP. EAVs offer control of both their inner aqueous core and outer membrane properties; by encapsulating solutions of different electrolyte strength inside the vesicle and by incorporating functionalized phospholipids containing PEG brushes attached to their hydrophilic head group in the vesicle membrane, we demonstrate control of the vesicles’ electrical polarizabilities. This combined with the ability to encode information about the properties of the vesicle in its fluorescence signature, form the first steps toward the development of EAV populations as metrology tools for any DEP-based microsystem. PMID:19227986

  14. Human placental coated vesicles contain receptor-bound transferrin.

    PubMed Central

    Booth, A G; Wilson, M J

    1981-01-01

    Human placental coated vesicles have been purified by a method involving sucrose-density-gradient centrifugation and treatment with wheat-germ agglutinin. These preparations were free of contamination by placental microvillus fragments. Crossed immunoelectrophoresis demonstrated that the coated vesicles contained a single serum protein, which was identified as transferrin. This transferrin was only observed after the vesicles were treated with a non-ionic detergent, and its behaviour during crossed hydrophobic-interaction immunoelectrophoresis suggested that a large proportion of it was receptor-bound. No other serum proteins, including immunoglobulin G, could be detected in these preparations. Receptor-bound transferrin was the only antigen common to placental coated vesicles and microvilli, implying that other plasma-membrane proteins are excluded from the region of membrane involved in coated-vesicle formation. Images PLATE 2 PLATE 1 Fig. 1. Fig. 2. Fig. 3. PMID:6272755

  15. Redox-Reactive Membrane Vesicles produced by Shewanella

    SciTech Connect

    Gorby, Yuri A.; McLean, Jeffrey S.; Korenevsky, Anton A.; Rosso, Kevin M.; El-Naggar, Mohamed Y.; Beveridge, Terrance J.

    2008-06-01

    Dissimilatory iron reducing bacteria produce and release membrane vesicles with diameters ranging from 50 to 250 nm. The vesicles, which arise from the outer membrane of these Gram-negative bacteria, lack DNA but contain proteins that catalyze the reduction of ferric iron and other multivalent heavy metals and radionuclides. This enzymatic process results in the formation of nano-size biogenic mineral assemblages that resemble nanofossils. Under low-shear conditions, membrane vesicles are commonly tethered to intact cells by electrically conductive filaments known as bacterial nanowires. The functional role of membrane vesicles and associated nanowires is not known, but the potential for mineralized vesicles that morphologically resemble nanofossils to serve as paleontological indicators of early life on earth and as biosignatures of like on other planets is recognized.

  16. Translocation of an Incompressible Vesicle through a Pore.

    PubMed

    Shojaei, Hamid R; Muthukumar, Murugappan

    2016-07-01

    We have derived the free energy landscape for the translocation of a single vesicle through a narrow pore by accounting for bending and stretching of the vesicle, and the deformation of the vesicle by the pore. Emergence of a free energy barrier for translocation is a general result, and the magnitude of the barrier is calculated in terms of the various material parameters. The extent of the reduction in the barrier by the presence of an external constant force is calculated. Using the Fokker-Planck formalism, we have calculated the average translocation time corresponding to the various free energy landscapes representing different parameter sets. The dependencies of the average translocation time on the strength of the external force, vesicle size, bending and stretching moduli of the vesicle, and radius and length of the pore are derived, and the computed results are discussed. PMID:27089012

  17. Extracellular vesicles as new pharmacological targets to treat atherosclerosis.

    PubMed

    Yin, Min; Loyer, Xavier; Boulanger, Chantal M

    2015-09-15

    Extracellular vesicles released by most cell types, include apoptotic bodies (ABs), microvesicles (MVs) and exosomes. They play a crucial role in physiology and pathology, contributing to "cell-to-cell" communication by modifying the phenotype and the function of target cells. Thus, extracellular vesicles participate in the key processes of atherosclerosis from endothelial dysfunction, vascular wall inflammation to vascular remodeling. The purpose of this review is to summarize recent findings on extracellular vesicle formation, structure, release and clearance. We focus on the deleterious and beneficial effects of extracellular vesicles in the development of atherosclerosis. The potential role of extracellular vesicles as biomarkers and pharmacological targets, their innate therapeutic capacity, or their use for novel drug delivery devices in atherosclerotic cardiovascular diseases will also be discussed. PMID:26142082

  18. Two Rab2 interactors regulate dense-core vesicle maturation.

    PubMed

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M

    2014-04-01

    Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  19. Translocation of an Incompressible Vesicle through a Pore

    PubMed Central

    Shojaei, Hamid R.; Muthukumar, Murugappan

    2016-01-01

    We have derived the free energy landscape for the translocation of a single vesicle through a narrow pore by accounting for bending and stretching of the vesicle, and the deformation of the vesicle by the pore. Emergence of a free energy barrier for translocation is a general result, and the magnitude of the barrier is calculated in terms of the various material parameters. The extent of the reduction in the barrier by the presence of an external constant force is calculated. Using the Fokker–Planck formalism, we have calculated the average translocation time corresponding to the various free energy landscapes representing different parameter sets. The dependencies of the average translocation time on the strength of the external force, vesicle size, bending and stretching moduli of the vesicle, and radius and length of the pore are derived, and the computed results are discussed. PMID:27089012

  20. Ectosomes and exosomes: shedding the confusion between extracellular vesicles.

    PubMed

    Cocucci, Emanuele; Meldolesi, Jacopo

    2015-06-01

    Long- and short-distance communication can take multiple forms. Among them are exosomes and ectosomes, extracellular vesicles (EVs) released from the cell to deliver signals to target cells. While most of our understanding of how these vesicles are assembled and work comes from mechanistic studies performed on exosomes, recent studies have begun to shift their focus to ectosomes. Unlike exosomes, which are released on the exocytosis of multivesicular bodies (MVBs), ectosomes are ubiquitous vesicles assembled at and released from the plasma membrane. Here we review the similarities and differences between these two classes of vesicle, suggesting that, despite their considerable differences, the functions of ectosomes may be largely analogous to those of exosomes. Both vesicles appear to be promising targets in the diagnosis and therapy of diseases, especially cancer. PMID:25683921