Science.gov

Sample records for prion protein complexed

  1. Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications

    NASA Astrophysics Data System (ADS)

    Manno, D.; Filippo, E.; Fiore, R.; Serra, A.; Urso, E.; Rizzello, A.; Maffia, M.

    2010-04-01

    Surface-enhanced Raman spectroscopy (SERS) allows a new insight into the analysis of cell physiology. In this work, the difficulty of producing suitable substrates that, besides permitting the amplification of the Raman signal, do not interact with the biological material causing alteration, has been overcome by a combined method of hydrothermal green synthesis and thermal annealing. The SERS analysis of the cell membrane has been performed with special attention to the cellular prion protein PrPC. In addition, SERS has also been used to reveal the prion protein-Cu(II) interaction in four different cell models (B104, SH-SY5Y, GN11, HeLa), expressing PrPC at different levels. A significant implication of the current work consists of the intriguing possibility of revealing and quantifying prion protein expression in complex biological samples by a cheap SERS-based method, replacing the expensive and time-consuming immuno-assay systems commonly employed.

  2. Prions and prion-like proteins.

    PubMed

    Fraser, Paul E

    2014-07-18

    Prions are self-replicating protein aggregates and are the primary causative factor in a number of neurological diseases in mammals. The prion protein (PrP) undergoes a conformational transformation leading to aggregation into an infectious cellular pathogen. Prion-like protein spreading and transmission of aggregates between cells have also been demonstrated for other proteins associated with Alzheimer disease and Parkinson disease. This protein-only phenomenon may therefore have broader implications in neurodegenerative disorders. The minireviews in this thematic series highlight the recent advances in prion biology and the roles these unique proteins play in disease. PMID:24860092

  3. Prions and Prion-like Proteins

    PubMed Central

    Fraser, Paul E.

    2014-01-01

    Prions are self-replicating protein aggregates and are the primary causative factor in a number of neurological diseases in mammals. The prion protein (PrP) undergoes a conformational transformation leading to aggregation into an infectious cellular pathogen. Prion-like protein spreading and transmission of aggregates between cells have also been demonstrated for other proteins associated with Alzheimer disease and Parkinson disease. This protein-only phenomenon may therefore have broader implications in neurodegenerative disorders. The minireviews in this thematic series highlight the recent advances in prion biology and the roles these unique proteins play in disease. PMID:24860092

  4. Porcine prion protein amyloid

    PubMed Central

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  5. Prion proteins leading to neurodegeneration.

    PubMed

    La Mendola, D; Mendola, D L; Pietropaolo, A; Pappalardo, G; Zannoni, C; Rizzarelli, E

    2008-12-01

    Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform PrP(Sc). PrP(C) is a cell surface glycoprotein expressed mainly in the central nervous system and despite numerous efforts to elucidate its physiological role, the exact biological function remains unknown. Many lines of evidences indicate that prion is a copper binding protein and thus involved in the copper metabolism. Prion protein is not expressed only in mammals but also in other species such as birds, reptiles and fishes. However, it is noteworthy to point out that prion diseases are only observed in mammals while they seem to be spared to other species. The chicken prion protein (chPrP C) shares about 30% of identity in its primary sequence with mammal PrP C. Both types of proteins have an N-terminal domain endowed with tandem amino acid repeats (PHNPGY in the avian protein, PHGGGWQ in mammals), followed by a highly conserved hydrophobic core. Furthermore, NMR studies have highlighted a similar globular domain containing three alpha-helices, one short 3(10)-helix and a short antiparallel beta-sheet. Despite this structural similarity, it should be noted that the normal isoform of mammalian PrP C is totally degraded by proteinase K, while avian PrP C is not, thereby producing N-terminal domain peptide fragments stable to further proteolysis. Notably, the hexarepeat domain is considered essential for protein endocytosis, and it is supposed to be the analogous copper-binding octarepeat region of mammalian prion proteins. The number of copper binding sites, the affinity and the coordination environment of metal ions are still matter of discussion for both mammal and avian proteins. In this review, we summarize the similarities and the differences between mammalian and avian prion proteins, as revealed by studies carried out on the entire protein and related peptide fragments, using a range of

  6. Prion protein scrapie and the normal cellular prion protein.

    PubMed

    Atkinson, Caroline J; Zhang, Kai; Munn, Alan L; Wiegmans, Adrian; Wei, Ming Q

    2016-01-01

    Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrP(C)) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed. PMID:26645475

  7. Interaction between a recombinant prion protein and organo-mineral complexes as evidenced by CPMAS 13C-NMR

    NASA Astrophysics Data System (ADS)

    Russo, F.; Scotti, R.; Gianfreda, L.; Conte, P.; Rao, M. A.

    2009-04-01

    Prion proteins (PrP) are the main responsible for Transmissible Spongiform Encephalopathies (TSE). The TSE etiological agent is a misfolded form of the normal cellular prion protein. The amyloidal aggregates accumulated in the brain of infected animals and mainly composed of PrPSc exhibit resistance to protease attack and many conventional inactivating procedures. The prion protein diseases cause an environmental issue because the environment and in particular the soil compartment can be contaminated and then become a potential reservoir and diffuser of TSEs infectivity as a consequence of (i) accidental dispersion from storage plants of meat and bone meal, (ii) incorporation of contaminated material in fertilizers, (iii) possible natural contamination of pasture soils by grazing herds, and (v) burial of carcasses. The environmental problem can be even more relevant because very low amounts of PrPSc are able to propagate the disease. Several studies evidenced that infectious prion protein remains active in soils for years. Contaminated soils result, thus, a possible critical route of TSE transmission in wild animals. Soil can also protect prion protein toward degradation processes due to the presence of humic substances and inorganic components such as clays. Mineral and organic colloids and the more common association between clay minerals and humic substances can contribute to the adsorption/entrapment of molecules and macromolecules. The polymerization of organic monomeric humic precursors occurring in soil in the presence of oxidative enzymes or manganese and iron oxides, is considered one of the most important processes contributing to the formation of humic substances. The process is very fast and produces a population of polymeric products of different molecular structures, sizes, shapes and complexity. Other molecules and possibly biomacromolecules such as proteins may be involved. The aim of the present work was to study by CPMAS 13C-NMR the interactions

  8. Quantum dots and prion proteins

    PubMed Central

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrPSc), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrPSc detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels. PMID:24055838

  9. Treatment of Prion Disease with Heterologous Prion Proteins

    PubMed Central

    Skinner, Pamela J.; Kim, Hyeon O.; Bryant, Damani; Kinzel, Nikilyn J.; Reilly, Cavan; Priola, Suzette A.; Ward, Anne E.; Goodman, Patricia A.; Olson, Katherine; Seelig, Davis M.

    2015-01-01

    Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep are fatal neurodegenerative diseases for which there is no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPsc or PrPres). Both in vitro (cell culture and cell free conversion assays) and in vivo (animal) studies have demonstrated the strong dependence of this conversion process on protein sequence homology between the initial prion inoculum and the host’s own cellular prion protein. The presence of non-homologous (heterologous) proteins is often inhibitory to this conversion process. We hypothesize that the presence of heterologous prion proteins from one species might therefore constitute an effective treatment for prion disease in another species. To test this hypothesis, we infected mice intracerebrally with murine adapted RML-Chandler scrapie and treated them with heterologous prion protein (purified bacterially expressed recombinant hamster prion protein) or vehicle alone. Treated animals demonstrated reduced disease associated pathology, decreased accumulation of protease-resistant disease-associated prion protein, with delayed onset of clinical symptoms and motor deficits. This was concomitant with significantly increased survival times relative to mock-treated animals. These results provide proof of principle that recombinant hamster prion proteins can effectively and safely inhibit prion disease in mice, and suggest that hamster or other non-human prion proteins may be a viable treatment for prion diseases in humans. PMID:26134409

  10. Prions: Beyond a Single Protein.

    PubMed

    Das, Alvin S; Zou, Wen-Quan

    2016-07-01

    Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a "prion." Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins-not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease. PMID:27226089

  11. Prion Protein Interaction with Soil Humic Substances: Environmental Implications

    PubMed Central

    Giachin, Gabriele; Narkiewicz, Joanna; Scaini, Denis; Ngoc, Ai Tran; Margon, Alja; Sequi, Paolo; Leita, Liviana; Legname, Giuseppe

    2014-01-01

    Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants. PMID:24937266

  12. Electron crystallography of the scrapie prion protein complexed with heavy metals

    PubMed Central

    Wille, Holger; Govaerts, Cédric; Borovinskiy, Alexander; Latawiec, Diane; Downing, Kenneth H.; Cohen, Fred E.; Prusiner, Stanley B.

    2012-01-01

    The insolubility of the disease-causing isoform of the prion protein (PrPSc) has prevented studies of its three-dimensional structure at atomic resolution. Electron crystallography of two-dimensional crystals of N-terminally truncated PrPSc (PrP 27–30) and a miniprion (PrPSc106) provided the first insights at intermediate resolution on the molecular architecture of the prion. Here, we report on the structure of PrP 27–30 and PrPSc106 negatively stained with heavy metals. The interactions of the heavy metals with the crystal lattice were governed by tertiary and quaternary structural elements of the protein as well as the charge and size of the heavy metal salts. Staining with molybdate anions revealed three prominent densities near the center of the trimer that forms the unit cell, coinciding with the location of the β-helix that was proposed for the structure of PrPSc. Differential staining also confirmed the location of the internal deletion of PrPSc106 at or near these densities. PMID:17935686

  13. The prion protein binds thiamine.

    PubMed

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction. PMID:21848803

  14. Prions: The Chemistry of Infectious Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prion is pathological protein that causes a set of rare fatal neurological diseases called transmissible spongiform encephalopathies (TSE). TSE diseases occur in humans, sheep, goats, deer, elk, mink, cows and other mammals. A prion and the normal cellular prion protein (PrPC) have the same primar...

  15. Prion Diseases: From Protein to Cell Pathology

    PubMed Central

    Kovacs, Gabor G.; Budka, Herbert

    2008-01-01

    Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative conditions in humans and animals that originate spontaneously, genetically or by infection. Conformational change of the normal (cellular) form of prion protein (PrPc) to a pathological, disease-associated form (PrPTSE) is considered central to pathogenesis and formation of the infectious agent or prion. Neuronal damage is central to clinical manifestation of prion diseases but poorly understood. In this review, we analyze the major pathogenetic pathways that lead to tissue pathology in different forms of disease. Neuropathogenesis of prion diseases evolves in complex ways on several front lines, most but not all of which exist also in other neurodegenerative as well as infectious diseases. Whereas intracellular accumulation of PrP forms might significantly impair cell function and lead to cytopathology, mere extracellular deposition of PrPTSE is questionable as a direct cytotoxic factor. Tissue damage may result from several parallel, interacting, or subsequent pathways. Future studies should clarify the trigger(s) and sequence of these processes and whether, and which, one is dominating or decisive. PMID:18245809

  16. The ribosome-associated complex antagonizes prion formation in yeast

    PubMed Central

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    Abstract The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI+] prion – an alternative conformer of Sup35 protein – and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome. PMID:25739058

  17. Copper binding in the prion protein.

    PubMed

    Millhauser, Glenn L

    2004-02-01

    A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt-Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for Cu(2+). The structural features of the Cu(2+) binding sites have now been characterized and are providing important clues about the normal function of the prion protein and perhaps how metals or loss of protein function play a role in disease. The link between prion protein and copper may provide insight into the general, and recently appreciated, role of metals in neurodegenerative disease. PMID:14967054

  18. Potential approaches for heterologous prion protein treatment of prion diseases

    PubMed Central

    Seelig, Davis M.; Goodman, Patricia A.; Skinner, Pamela J.

    2016-01-01

    ABSTRACT Prion diseases, or transmissible spongiform encephalopathies (TSEs) are progressive, fatal neurodegenerative diseases with no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPres). The efficiency of this conversion is predicated upon a number of factors, most notably a strong homology between cellular PrPC and PrPres. In our recently published study, we infected mice with the RML-Chandler strain of scrapie and treated them with heterologous hamster prion proteins. This treatment was seen to reduce clinical signs of prion disease, to delay the onset of clinical symptoms and to prolong survival. In this current article we discuss potential mechanisms of action of treatment with heterologous prion proteins. We also discuss potential extensions of these studies using a heterologous rabbit PrP-based treatment strategy or a peptide based strategy, and improvement of treatment delivery including a lentiviral-based system. PMID:26636482

  19. Complex folding and misfolding effects of deer-specific amino acid substitutions in the β2-α2 loop of murine prion protein

    PubMed Central

    Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.

    2015-01-01

    The β2–α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2–α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2–α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region. PMID:26490404

  20. Complex folding and misfolding effects of deer-specific amino acid substitutions in the β2-α2 loop of murine prion protein

    NASA Astrophysics Data System (ADS)

    Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.

    2015-10-01

    The β2-α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.

  1. Insights into prion protein function from atomistic simulations.

    PubMed

    Hodak, Miroslav; Bernholc, Jerzy

    2010-01-01

    Computer simulations are a powerful tool for studies of biological systems. They have often been used to study prion protein (PrP), a protein responsible for neurodegenerative diseases, which include "mad cow disease" in cattle and Creutzfeldt-Jacob disease in humans. An important aspect of the prion protein is its interaction with copper ion, which is thought to be relevant for PrP's yet undetermined function and also potentially play a role in prion diseases. for studies of copper attachment to the prion protein, computer simulations have often been used to complement experimental data and to obtain binding structures of Cu-PrP complexes. This paper summarizes the results of recent ab initio calculations of copper-prion protein interactions focusing on the recently discovered concentration-dependent binding modes in the octarepeat region of this protein. In addition to determining the binding structures, computer simulations were also used to make predictions about PrP's function and the role of copper in prion diseases. The results demonstrate the predictive power and applicability of ab initio simulations for studies of metal-biomolecular complexes. PMID:20118658

  2. Controlling the prion propensity of glutamine/asparagine-rich proteins

    PubMed Central

    Paul, Kacy R; Ross, Eric D

    2015-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve. PMID:26555096

  3. [Protein structure: Folding and prions].

    PubMed

    Rey-Gayo, Antonio; Calbo Torrecilla, Francisco

    2002-04-01

    Transmissible spongiform encephalopathies have become a subject of prime social concern in recent years because of its relation to "mad cow disease" and their potential for transmission to humans. Among the most important scientific aspects of these diseases are the peculiar characteristics of the agent involved in their transmission. In this article we briefly describe the outstanding features of prions, the most widely accepted hypothesis for these diseases. We focus on the molecular characteristics of this protein, coded in the genome of the affected host, and describe the conformational alterations in the protein's tertiary structure that have been blamed for its pathologic activity. Our aim is to summarize the state-of-the-art knowledge on prions, the hypotheses proposed to explain mechanisms of disease transmission without agents containing genetic material, and some specific peculiarities of this new infectious agent. The links between this knowledge and possible therapeutic strategies to overcome the disease justify, once again, close interaction among chemistry, molecular biology, and medicine. PMID:11996702

  4. Prions

    PubMed Central

    Colby, David W.; Prusiner, Stanley B.

    2011-01-01

    The discovery of infectious proteins, denoted prions, was unexpected. After much debate over the chemical basis of heredity, resolution of this issue began with the discovery that DNA, not protein, from pneumococcus was capable of genetically transforming bacteria (Avery et al. 1944). Four decades later, the discovery that a protein could mimic viral and bacterial pathogens with respect to the transmission of some nervous system diseases (Prusiner 1982) met with great resistance. Overwhelming evidence now shows that Creutzfeldt–Jakob disease (CJD) and related disorders are caused by prions. The prion diseases are characterized by neurodegeneration and lethality. In mammals, prions reproduce by recruiting the normal, cellular isoform of the prion protein (PrPC) and stimulating its conversion into the disease-causing isoform (PrPSc). PrPC and PrPSc have distinct conformations: PrPC is rich in α-helical content and has little β-sheet structure, whereas PrPSc has less α-helical content and is rich in β-sheet structure (Pan et al. 1993). The conformational conversion of PrPC to PrPSc is the fundamental event underlying prion diseases. In this article, we provide an introduction to prions and the diseases they cause. PMID:21421910

  5. Production of cattle lacking prion protein.

    PubMed

    Richt, Jürgen A; Kasinathan, Poothappillai; Hamir, Amir N; Castilla, Joaquin; Sathiyaseelan, Thillai; Vargas, Francisco; Sathiyaseelan, Janaki; Wu, Hua; Matsushita, Hiroaki; Koster, Julie; Kato, Shinichiro; Ishida, Isao; Soto, Claudio; Robl, James M; Kuroiwa, Yoshimi

    2007-01-01

    Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins. PMID:17195841

  6. Production of cattle lacking prion protein

    PubMed Central

    Richt, Jürgen A; Kasinathan, Poothappillai; Hamir, Amir N; Castilla, Joaquin; Sathiyaseelan, Thillai; Vargas, Francisco; Sathiyaseelan, Janaki; Wu, Hua; Matsushita, Hiroaki; Koster, Julie; Kato, Shinichiro; Ishida, Isao; Soto, Claudio; Robl, James M; Kuroiwa, Yoshimi

    2010-01-01

    Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrPC, such as PrPBSE in bovine spongiform encephalopathy (BSE) in cattle and PrPCJD in Creutzfeldt-Jakob disease (CJD) in humans1. Disruption of PrPC expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities2–5. However, the impact of ablating PrPC function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrPC-deficient cattle produced by a sequential gene-targeting system6. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification7. PrPC-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins. PMID:17195841

  7. Prions

    PubMed Central

    Prusiner, Stanley B.

    1998-01-01

    Prions are unprecedented infectious pathogens that cause a group of invariably fatal neurodegenerative diseases by an entirely novel mechanism. Prion diseases may present as genetic, infectious, or sporadic disorders, all of which involve modification of the prion protein (PrP). Bovine spongiform encephalopathy (BSE), scrapie of sheep, and Creutzfeldt–Jakob disease (CJD) of humans are among the most notable prion diseases. Prions are transmissible particles that are devoid of nucleic acid and seem to be composed exclusively of a modified protein (PrPSc). The normal, cellular PrP (PrPC) is converted into PrPSc through a posttranslational process during which it acquires a high β-sheet content. The species of a particular prion is encoded by the sequence of the chromosomal PrP gene of the mammals in which it last replicated. In contrast to pathogens carrying a nucleic acid genome, prions appear to encipher strain-specific properties in the tertiary structure of PrPSc. Transgenetic studies argue that PrPSc acts as a template upon which PrPC is refolded into a nascent PrPSc molecule through a process facilitated by another protein. Miniprions generated in transgenic mice expressing PrP, in which nearly half of the residues were deleted, exhibit unique biological properties and should facilitate structural studies of PrPSc. While knowledge about prions has profound implications for studies of the structural plasticity of proteins, investigations of prion diseases suggest that new strategies for the prevention and treatment of these disorders may also find application in the more common degenerative diseases. PMID:9811807

  8. Luminidependens (LD) is an Arabidopsis protein with prion behavior.

    PubMed

    Chakrabortee, Sohini; Kayatekin, Can; Newby, Greg A; Mendillo, Marc L; Lancaster, Alex; Lindquist, Susan

    2016-05-24

    Prion proteins provide a unique mode of biochemical memory through self-perpetuating changes in protein conformation and function. They have been studied in fungi and mammals, but not yet identified in plants. Using a computational model, we identified candidate prion domains (PrDs) in nearly 500 plant proteins. Plant flowering is of particular interest with respect to biological memory, because its regulation involves remembering and integrating previously experienced environmental conditions. We investigated the prion-forming capacity of three prion candidates involved in flowering using a yeast model, where prion attributes are well defined and readily tested. In yeast, prions heritably change protein functions by templating monomers into higher-order assemblies. For most yeast prions, the capacity to convert into a prion resides in a distinct prion domain. Thus, new prion-forming domains can be identified by functional complementation of a known prion domain. The prion-like domains (PrDs) of all three of the tested proteins formed higher-order oligomers. Uniquely, the Luminidependens PrD (LDPrD) fully replaced the prion-domain functions of a well-characterized yeast prion, Sup35. Our results suggest that prion-like conformational switches are evolutionarily conserved and might function in a wide variety of normal biological processes. PMID:27114519

  9. Prion search and cellular prion protein expression in stranded dolphins.

    PubMed

    Di Guardo, G; Cocumelli, C; Meoli, R; Barbaro, K; Terracciano, G; Di Francesco, C E; Mazzariol, S; Eleni, C

    2012-01-01

    The recent description of a prion disease (PD) case in a free-ranging bottlenose dolphin (Tursiops truncatus) prompted us to carry out an extensive search for the disease-associated isoform (PrPSc) of the cellular prion protein (PrPC) in the brain and in a range of lymphoid tissues from 23 striped dolphins (Stenella coeruleoalba), 5 bottlenose dolphins and 2 Risso s dolphins (Grampus griseus) found stranded between 2007 and 2012 along the Italian coastline. Three striped dolphins and one bottlenose dolphin showed microscopic lesions of encephalitis, with no evidence of spongiform brain lesions being detected in any of the 30 free-ranging cetaceans investigated herein. Nevertheless, we could still observe a prominent PrPC immunoreactivity in the brain as well as in lymphoid tissues from these dolphins. Although immunohistochemical and Western blot investigations yielded negative results for PrPSc deposition in all tissues from the dolphins under study, the reported occurrence of a spontaneous PD case in a wild dolphin is an intriguing issue and a matter of concern for both prion biology and intra/inter-species transmissibility, as well as for cetacean conservation medicine. PMID:23034277

  10. Host Determinants of Prion Strain Diversity Independent of Prion Protein Genotype

    PubMed Central

    Crowell, Jenna; Hughson, Andrew; Caughey, Byron

    2015-01-01

    ABSTRACT Phenotypic diversity in prion diseases can be specified by prion strains in which biological traits are propagated through an epigenetic mechanism mediated by distinct PrPSc conformations. We investigated the role of host-dependent factors on phenotypic diversity of chronic wasting disease (CWD) in different host species that express the same prion protein gene (Prnp). Two CWD strains that have distinct biological, biochemical, and pathological features were identified in transgenic mice that express the Syrian golden hamster (SGH) Prnp. The CKY strain of CWD had a shorter incubation period than the WST strain of CWD, but after transmission to SGH, the incubation period of CKY CWD was ∼150 days longer than WST CWD. Limited proteinase K digestion revealed strain-specific PrPSc polypeptide patterns that were maintained in both hosts, but the solubility and conformational stability of PrPSc differed for the CWD strains in a host-dependent manner. WST CWD produced PrPSc amyloid plaques in the brain of the SGH that were partially insoluble and stable at a high concentration of protein denaturant. However, in transgenic mice, PrPSc from WST CWD did not assemble into plaques, was highly soluble, and had low conformational stability. Similar studies using the HY and DY strains of transmissible mink encephalopathy resulted in minor differences in prion biological and PrPSc properties between transgenic mice and SGH. These findings indicate that host-specific pathways that are independent of Prnp can alter the PrPSc conformation of certain prion strains, leading to changes in the biophysical properties of PrPSc, neuropathology, and clinical prion disease. IMPORTANCE Prions are misfolded pathogenic proteins that cause neurodegeneration in humans and animals. Transmissible prion diseases exhibit a spectrum of disease phenotypes and the basis of this diversity is encoded in the structure of the pathogenic prion protein and propagated by an epigenetic mechanism. In

  11. Yeast prions: Paramutation at the protein level?

    PubMed

    Tuite, Mick F

    2015-08-01

    Prions are proteins that have the potential to refold into a novel conformation that templates the conversion of like molecules to the altered infectious form. In the yeast Saccharomyces cerevisiae, trans-generational epigenetic inheritance can be mediated by a number of structurally and functionally diverse prions. Prionogenesis can confer both loss-of-function and gain-of-function properties to the prion protein and this in turn can have a major impact on host phenotype, short-term adaptation and evolution of new traits. Prionogenesis shares a number of properties in common with paramutation and can be considered as a mitotically and meiotically heritable change in protein conformation induced by trans-interactions between homologous proteins. PMID:26386407

  12. Sonication Induced Intermediate in Prion Protein Conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vivo conversion of prion protein (PrPC) to its abnormal pathogenic isoform (PrPSc) is associated with conformational transition of alpha-helices and unstructured regions to beta-sheets. Protein misfolding cyclic amplification (PMCA) is thought to mimics this conversion in vitro. PMCA involves son...

  13. The Prion Protein Modulates A-type K+ Currents Mediated by Kv4.2 Complexes through Dipeptidyl Aminopeptidase-like Protein 6*

    PubMed Central

    Mercer, Robert C. C.; Ma, Li; Watts, Joel C.; Strome, Robert; Wohlgemuth, Serene; Yang, Jing; Cashman, Neil R.; Coulthart, Michael B.; Schmitt-Ulms, Gerold; Jhamandas, Jack H.; Westaway, David

    2013-01-01

    Widely expressed in the adult central nervous system, the cellular prion protein (PrPC) is implicated in a variety of processes, including neuronal excitability. Dipeptidyl aminopeptidase-like protein 6 (DPP6) was first identified as a PrPC interactor using in vivo formaldehyde cross-linking of wild type (WT) mouse brain. This finding was confirmed in three cell lines and, because DPP6 directs the functional assembly of K+ channels, we assessed the impact of WT and mutant PrPC upon Kv4.2-based cell surface macromolecular complexes. Whereas a Gerstmann-Sträussler-Scheinker disease version of PrP with eight extra octarepeats was a loss of function both for complex formation and for modulation of Kv4.2 channels, WT PrPC, in a DPP6-dependent manner, modulated Kv4.2 channel properties, causing an increase in peak amplitude, a rightward shift of the voltage-dependent steady-state inactivation curve, a slower inactivation, and a faster recovery from steady-state inactivation. Thus, the net impact of wt PrPC was one of enhancement, which plays a critical role in the down-regulation of neuronal membrane excitability and is associated with a decreased susceptibility to seizures. Insofar as previous work has established a requirement for WT PrPC in the Aβ-dependent modulation of excitability in cholinergic basal forebrain neurons, our findings implicate PrPC regulation of Kv4.2 channels as a mechanism contributing to the effects of oligomeric Aβ upon neuronal excitability and viability. PMID:24225951

  14. Lipopolysaccharide induced conversion of recombinant prion protein

    PubMed Central

    Saleem, Fozia; Bjorndahl, Trent C; Ladner, Carol L; Perez-Pineiro, Rolando; Ametaj, Burim N; Wishart, David S

    2014-01-01

    The conformational conversion of the cellular prion protein (PrPC) to the β-rich infectious isoform PrPSc is considered a critical and central feature in prion pathology. Although PrPSc is the critical component of the infectious agent, as proposed in the “protein-only” prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrPC to proteinase K resistant PrPSc. A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrPC conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrPC to PrPSc, we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in β sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90–232). PMID:24819168

  15. Role of Prion Protein Aggregation in Neurotoxicity

    PubMed Central

    Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2012-01-01

    In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death. PMID:22942726

  16. Prions and protein-folding diseases.

    PubMed

    Norrby, E

    2011-07-01

    Prions represent a group of proteins with a unique capacity to fold into different conformations. One isoform is rich in beta-pleated sheets and can aggregate into amyloid that may be pathogenic. This abnormal form propagates itself by imposing its confirmation on the homologous normal host cell protein. Pathogenic prions have been shown to cause lethal neurodegenerative diseases in humans and animals. These diseases are sometimes infectious and hence referred to as transmissible spongiform encephalopathies. In the present review, the remarkable evolution of the heterodox prion concept is summarized. The origin of this phenomenon is based on information transfer between homologous proteins, without the involvement of nucleic acid-encoded mechanisms. Historically, kuru and Creutzfeldt-Jakob disease (CJD) were the first infectious prion diseases to be identified in man. It was their relationship to scrapie in sheep and experimental rodents that allowed an unravelling of the particular molecular mechanism that underlie the disease process. Transmission between humans has been documented to have occurred in particular contexts, including ritual cannibalism, iatrogenic transmission because of pituitary gland-derived growth hormone or the use in neurosurgical procedures of dura mater from cadavers, and the temporary use of a prion-contaminated protein-rich feed for cows. The latter caused a major outbreak of bovine spongiform encephalopathy, which spread to man by human consumption of contaminated meat, causing approximately 200 cases of variant CJD. All these epidemics now appear to be over because of measures taken to curtail further spread of prions. Recent studies have shown that the mechanism of protein aggregation may apply to a wider range of diseases in and possibly also outside the brain, some of which are relatively common such as Alzheimer's and Parkinson's diseases. Furthermore, it has become apparent that the phenomenon of prion aggregation may have a wider

  17. The NatA Acetyltransferase Couples Sup35 Prion Complexes to the [PSI+] Phenotype

    PubMed Central

    Pezza, John A.; Langseth, Sara X.; Raupp Yamamoto, Rochele; Doris, Stephen M.; Ulin, Samuel P.; Salomon, Arthur R.

    2009-01-01

    Protein-only (prion) epigenetic elements confer unique phenotypes by adopting alternate conformations that specify new traits. Given the conformational flexibility of prion proteins, protein-only inheritance requires efficient self-replication of the underlying conformation. To explore the cellular regulation of conformational self-replication and its phenotypic effects, we analyzed genetic interactions between [PSI+], a prion form of the S. cerevisiae Sup35 protein (Sup35[PSI+]), and the three Nα-acetyltransferases, NatA, NatB, and NatC, which collectively modify ∼50% of yeast proteins. Although prion propagation proceeds normally in the absence of NatB or NatC, the [PSI+] phenotype is reversed in strains lacking NatA. Despite this change in phenotype, [PSI+] NatA mutants continue to propagate heritable Sup35[PSI+]. This uncoupling of protein state and phenotype does not arise through a decrease in the number or activity of prion templates (propagons) or through an increase in soluble Sup35. Rather, NatA null strains are specifically impaired in establishing the translation termination defect that normally accompanies Sup35 incorporation into prion complexes. The NatA effect cannot be explained by the modification of known components of the [PSI+] prion cycle including Sup35; thus, novel acetylated cellular factors must act to establish and maintain the tight link between Sup35[PSI+] complexes and their phenotypic effects. PMID:19073888

  18. Monitoring prion protein stability by NMR.

    PubMed

    Julien, Olivier; Graether, Steffen P; Sykes, Brian D

    2009-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurological diseases that affect both humans and animals. At the end of the 20th century, bovine spongiform encephalopathy (BSE), better known as mad cow disease, was shown to be transmissible to humans. This resulted in considerable concern for public health and a number of questions for scientists. The first question answered was the possible source of the disease, which appears to be the prion protein (PrP). There are two major forms of this protein: the native, noninfectious form (PrP(C)), and the misfolded infectious form (PrP(Sc)). PrP(C) is mainly alpha-helical in structure, whereas PrP(Sc) aggregates into an assembly of beta-sheets, forming amyloid fibrils. Since the first solution structure of the noninfectious form of the mouse prion protein, about 30 structures of the globular portion of PrP(C) have been characterized from different organisms. However, only a few minor differences are observed when comparing one PrP(C) structure to another. The key to understanding prion formation may then be not in the structure of PrP(C), but in the mechanism underlying PrP(C) unfolding and then conversion into a misfolded fibril state. To identify the possible region(s) of PrP(C) responsible for initiating the conversion into the amyloid fibril formation, nuclear magnetic resonance (NMR) was applied to characterize the stability and structure of PrP(C) and intermediate states during the conversion from PrP(C) to PrP(Sc). Subsequently urea was used to induce unfolding, and data analysis revealed region-specific structural stabilities that may bring insights into the mechanisms underlying conversion of protein into an infectious prion. PMID:19697241

  19. Complex proteinopathy with accumulations of prion protein, hyperphosphorylated tau, α-synuclein and ubiquitin in experimental bovine spongiform encephalopathy of monkeys

    PubMed Central

    Cervenak, Juraj; Bu, Ming; Miller, Lindsay; Asher, David M.

    2014-01-01

    Proteins aggregate in several slowly progressive neurodegenerative diseases called ‘proteinopathies’. Studies with cell cultures and transgenic mice overexpressing mutated proteins suggested that aggregates of one protein induced misfolding and aggregation of other proteins as well – a possible common mechanism for some neurodegenerative diseases. However, most proteinopathies are ‘sporadic’, without gene mutation or overexpression. Thus, proteinopathies in WT animals genetically close to humans might be informative. Squirrel monkeys infected with the classical bovine spongiform encephalopathy agent developed an encephalopathy resembling variant Creutzfeldt–Jakob disease with accumulations not only of abnormal prion protein (PrPTSE), but also three other proteins: hyperphosphorylated tau (p-tau), α-synuclein and ubiquitin; β-amyloid protein (Aβ) did not accumulate. Severity of brain lesions correlated with spongiform degeneration. No amyloid was detected. These results suggested that PrPTSE enhanced formation of p-tau and aggregation of α-synuclein and ubiquitin, but not Aβ, providing a new experimental model for neurodegenerative diseases associated with complex proteinopathies. PMID:24769839

  20. Estimating Prion Adsorption Capacity of Soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS)

    PubMed Central

    Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043

  1. Oligomers of Amyloid β Prevent Physiological Activation of the Cellular Prion Protein-Metabotropic Glutamate Receptor 5 Complex by Glutamate in Alzheimer Disease.

    PubMed

    Haas, Laura T; Strittmatter, Stephen M

    2016-08-12

    The dysfunction and loss of synapses in Alzheimer disease are central to dementia symptoms. We have recently demonstrated that pathological Amyloid β oligomer (Aβo) regulates the association between intracellular protein mediators and the synaptic receptor complex composed of cellular prion protein (PrP(C)) and metabotropic glutamate receptor 5 (mGluR5). Here we sought to determine whether Aβo alters the physiological signaling of the PrP(C)-mGluR5 complex upon glutamate activation. We provide evidence that acute exposure to Aβo as well as chronic expression of familial Alzheimer disease mutant transgenes in model mice prevents protein-protein interaction changes of the complex induced by the glutamate analog 3,5-dihydroxyphenylglycine. We further show that 3,5-dihydroxyphenylglycine triggers the phosphorylation and activation of protein-tyrosine kinase 2-β (PTK2B, also referred to as Pyk2) and of calcium/calmodulin-dependent protein kinase II in wild-type brain slices but not in Alzheimer disease transgenic brain slices or wild-type slices incubated with Aβo. This study further distinguishes two separate Aβo-dependent signaling cascades, one dependent on extracellular Ca(2+) and Fyn kinase activation and the other dependent on the release of Ca(2+) from intracellular stores. Thus, Aβo triggers multiple distinct PrP(C)-mGluR5-dependent events implicated in neurodegeneration and dementia. We propose that targeting the PrP(C)-mGluR5 complex will reverse aberrant Aβo-triggered states of the complex to allow physiological fluctuations of glutamate signaling. PMID:27325698

  2. Knocked-out and still walking: prion protein-deficient cattle are resistant to prion disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Transmissible spongiform encephalopathies (TSEs) or prion diseases are caused by the propagation of a misfolded form (PrP**d) of the normal cellular prion protein, PrP**c. Disruption of PrP**c expression in the mouse results in resistance to PrP-propagation and disease. However, the impa...

  3. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils.

    PubMed

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L P; Tattum, M Howard; Panico, Silvia; Clare, Daniel K; Collinge, John; Saibil, Helen R; Wadsworth, Jonathan D F

    2016-05-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. PMID:27249641

  4. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils

    PubMed Central

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L. P.; Tattum, M. Howard; Panico, Silvia; Clare, Daniel K.; Collinge, John; Saibil, Helen R.

    2016-01-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. PMID:27249641

  5. Application of protein misfolding cyclic amplification to detection of prions in anaerobic digestate.

    PubMed

    Gilroyed, Brandon H; Braithwaite, Shannon L; Price, Luke M; Reuter, Tim; Czub, Stefanie; Graham, Catherine; Balachandran, Arumuga; McAllister, Tim A; Belosevic, Miodrag; Neumann, Norman F

    2015-11-01

    The exceptional physio-chemical resistance of prions to established decontamination procedures poses a challenge to assessing the suitability of applied inactivation methods. Prion detection is limited by the sensitivity level of Western blotting or by the cost and time factors of bioassays. In addition, prion detection assays can be limited by either the unique or complex nature of matrices associated with environmental samples. To investigate anaerobic digestion (AD) as a practical and economical approach for potential conversion of specified risk materials (SRM) into value added products (i.e., renewable energy), challenges associated with detection of prions in a complex matrix need to be overcome to determine potential inactivation. Protein misfolding cyclic amplification (PMCA) assay, with subsequent Western blot visualization, was used to detect prions within the AD matrix. Anaerobic digestate initially inhibited the PMCA reaction and/or Western blot detection. However, at concentrations of ≤1% of anaerobic digestate, 263K scrapie prions could be amplified and semi-quantitatively detected. Infectious 263K prions were also proven to be bioavailable in the presence of high concentrations of digestate (10-90%). Development of the PMCA application to digestate provides extremely valuable insight into the potential degradation and/or fate of prions in complex biological matrices without requiring expensive and time-consuming bioassays. PMID:26272376

  6. [Functions of prion protein PrPc].

    PubMed

    Cazaubon, Sylvie; Viegas, Pedro; Couraud, Pierre-Olivier

    2007-01-01

    It is now well established that both normal and pathological (or scrapie) isoforms of prion protein, PrPc and PrPsc respectively, are involved in the development and progression of various forms of neurodegenerative diseases, including scrapie in sheep, bovine spongiform encephalopathy (or "mad cow disease") and Creutzfeldt-Jakob disease in human, collectively known as prion diseases. The protein PrPc is highly expressed in the central nervous system in neurons and glial cells, and also present in non-brain cells, such as immune cells or epithelial and endothelial cells. Identification of the physiological functions of PrPc in these different cell types thus appears crucial for understanding the progression of prion diseases. Recent studies highlighted several major roles for PrPc that may be considered in two major domains : (1) cell survival (protection against oxidative stress and apoptosis) and (2) cell adhesion. In association with cell adhesion, distinct functions of PrPc were observed, depending on cell types : neuronal differentiation, epithelial and endothelial barrier integrity, transendothelial migration of monocytes, T cell activation. These observations suggest that PrPc functions may be particularly relevant to cellular stress, as well as inflammatory or infectious situations. PMID:17875293

  7. α-Cleavage of cellular prion protein

    PubMed Central

    Liang, Jingjing; Kong, Qingzhong

    2012-01-01

    The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer. PMID:23052041

  8. Structural Studies of Truncated Forms of the Prion Protein PrP

    PubMed Central

    Wan, William; Wille, Holger; Stöhr, Jan; Kendall, Amy; Bian, Wen; McDonald, Michele; Tiggelaar, Sarah; Watts, Joel C.; Prusiner, Stanley B.; Stubbs, Gerald

    2015-01-01

    Prions are proteins that adopt self-propagating aberrant folds. The self-propagating properties of prions are a direct consequence of their distinct structures, making the understanding of these structures and their biophysical interactions fundamental to understanding prions and their related diseases. The insolubility and inherent disorder of prions have made their structures difficult to study, particularly in the case of the infectious form of the mammalian prion protein PrP. Many investigators have therefore preferred to work with peptide fragments of PrP, suggesting that these peptides might serve as structural and functional models for biologically active prions. We have used x-ray fiber diffraction to compare a series of different-sized fragments of PrP, to determine the structural commonalities among the fragments and the biologically active, self-propagating prions. Although all of the peptides studied adopted amyloid conformations, only the larger fragments demonstrated a degree of structural complexity approaching that of PrP. Even these larger fragments did not adopt the prion structure itself with detailed fidelity, and in some cases their structures were radically different from that of pathogenic PrPSc. PMID:25809267

  9. Prion protein and metal interaction: physiological and pathological implications.

    PubMed

    Singh, Neena; Das, Dola; Singh, Ajay; Mohan, Maradumane L

    2010-01-01

    Metal induced free radicals are important mediators of neurotoxicity in several neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Similar evidence is now emerging for prion diseases, a group of neurodegenerative disorders of humans and animals. The main pathogenic agent in all prion disorders is PrP-scrapie (PrP(Sc)), a beta-sheet rich isoform of a normal cell surface glycoprotein known as the prion protein (PrP(C)). Deposits of PrP(Sc) in the brain parenchyma are believed to induce neurotoxicity through poorly understood mechanisms. Recent reports suggest that imbalance of brain metal homeostasis is a significant cause of PrP(Sc)-associated neurotoxicity, though the underlying mechanisms are difficult to explain based on existing information. Proposed hypotheses include a functional role for PrP(C) in metal metabolism, and loss of this function due to aggregation to the disease associated PrP(Sc) form as the cause of brain metal imbalance. Other views suggest gain of toxic function by PrP(Sc) due to sequestration of PrP(C)-associated metals within the aggregates, resulting in the generation of redox-active PrP(Sc) complexes. The physiological implications of some PrP(C)-metal interactions are known, while others are still unclear. The pathological implications of PrP(C)-metal interaction include metal-induced oxidative damage, and in some instances conversion of PrP(C) to a PrP(Sc)-like form. Despite its significance, only limited information is available on PrP-metal interaction and its implications on prion disease pathogenesis. In this review, we summarize the physiological significance and pathological implications of PrP-metal interaction on prion disease pathogenesis. PMID:19767653

  10. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    USGS Publications Warehouse

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  11. A systematic investigation of production of synthetic prions from recombinant prion protein.

    PubMed

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. PMID:26631378

  12. A naturally occurring variant of the human prion protein completely prevents prion disease.

    PubMed

    Asante, Emmanuel A; Smidak, Michelle; Grimshaw, Andrew; Houghton, Richard; Tomlinson, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Richard-Londt, Angela; Linehan, Jacqueline M; Brandner, Sebastian; Alpers, Michael; Whitfield, Jerome; Mead, Simon; Wadsworth, Jonathan D F; Collinge, John

    2015-06-25

    Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (G→V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation. PMID:26061765

  13. A naturally occurring variant of the human prion protein completely prevents prion disease

    PubMed Central

    Asante, Emmanuel A.; Smidak, Michelle; Grimshaw, Andrew; Houghton, Richard; Tomlinson, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Richard-Londt, Angela; Linehan, Jacqueline M.; Brandner, Sebastian; Alpers, Michael; Whitfield, Jerome; Mead, Simon; Wadsworth, Jonathan D.F.; Collinge, John

    2015-01-01

    Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP) 1. A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru, an acquired prion disease epidemic of the Fore population in Papua New Guinea, and appeared to provide strong protection against disease in the heterozygous state2. We have now investigated the protective role of this variant and its interaction with the common worldwide M129V PrP polymorphism; V127 was seen exclusively on a M129 PRNP allele. Here we demonstrate that transgenic mice expressing both variant and wild type human PrP are completely resistant to both kuru and classical CJD prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to BSE prions to which the Fore were not exposed. Remarkably however, mice expressing only PrP V127 were completely resistant to all prion strains demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed this single amino acid substitution (G→V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild type PrP indicates that not only is PrP V127 completely refractory to prion conversion, but acts as a potent dose-dependent inhibitor of wild type prion propagation. PMID:26061765

  14. A systematic investigation of production of synthetic prions from recombinant prion protein

    PubMed Central

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K.; Edgeworth, Julie A.; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M.; Brandner, Sebastian; Hosszu, Laszlo L. P.; Tattum, M. Howard; Jat, Parmjit; Clarke, Anthony R.; Klöhn, Peter C.; Wadsworth, Jonathan D. F.; Jackson, Graham S.; Collinge, John

    2015-01-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. PMID:26631378

  15. Prion protein induced signaling cascades in monocytes

    SciTech Connect

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Vassallo, Neville; Herms, Jochen; Kretzschmar, Hans A. . E-mail: Hans.Kretzschmar@med.uni-muenchen.de

    2006-02-03

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP{sup C}), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP{sup C} fusion proteins synthesized with a human Fc-tag. PrP{sup C} fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK{sub 1,2} and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP{sup C} in monocytes and macrophages.

  16. Attachment of Pathogenic Prion Protein to Model Oxide Surfaces

    PubMed Central

    Jacobson, Kurt H.; Kuech, Thomas R.; Pedersen, Joel A.

    2014-01-01

    Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The N-terminal portion of the protein appeared to facilitate attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions preferentially associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides). PMID:23611152

  17. Normal modes of prion proteins: from native to infectious particle.

    PubMed

    Samson, Abraham O; Levitt, Michael

    2011-03-29

    Prion proteins (PrP) are the infectious agent in transmissible spongiform encephalopathies (i.e., mad cow disease). To be infectious, prion proteins must undergo a conformational change involving a decrease in α-helical content along with an increase in β-strand content. This conformational change was evaluated by means of elastic normal modes. Elastic normal modes show a diminution of two α-helices by one and two residues, as well as an extension of two β-strands by three residues each, which could instigate the conformational change. The conformational change occurs in a region that is compatible with immunological studies, and it is observed more frequently in mutant prions that are prone to conversion than in wild-type prions because of differences in their starting structures, which are amplified through normal modes. These findings are valuable for our comprehension of the conversion mechanism associated with the conformational change in prion proteins. PMID:21338080

  18. Normal Modes of Prion Proteins: From Native to Infectious particle◊

    PubMed Central

    Samson, Abraham O.; Levitt, Michael

    2011-01-01

    Prion proteins (PrP) are the infectious agent in transmissible spongiform encephalopathies (i.e. mad cow disease). To be infectious, prion proteins must undergo a conformational change involving a decrease of α-helical content along with an increase of β-strand structure. This conformational change was evaluated by means of elastic normal modes. Elastic normal modes show a diminution of two α-helices by one and two residues, as well as an extension of two β-strands by three residues each which could instigate the conformational change. The conformational change occurs in a region that is compatible with immunological studies, and it is observed more frequently in mutant prions which are prone to conversion, than in WT prions due to differences in their starting structures, which are amplified through normal modes. These findings are valuable for our comprehension of the conversion mechanism associated with the conformational change of prion proteins. PMID:21338080

  19. Protein Misfolding in Prion and Prion-Like Diseases: Reconsidering a Required Role for Protein Loss-of-Function.

    PubMed

    Leighton, Patricia L A; Allison, W Ted

    2016-07-01

    Prion disease research has contributed much toward understanding other neurodegenerative diseases, including recent demonstrations that Alzheimer's disease (AD) and other neurodegenerative diseases are prion-like. Prion-like diseases involve the spread of degeneration between individuals and/or among cells or tissues via template directed misfolding, wherein misfolded protein conformers propagate disease by causing normal proteins to misfold. Here we use the premise that AD, amyotrophic lateral sclerosis, Huntington's disease, and other similar diseases are prion-like and ask: Can we apply knowledge gained from studies of these prion-like diseases to resolve debates about classical prion diseases? We focus on controversies about what role(s) protein loss-of-function might have in prion diseases because this has therapeutic implications, including for AD. We examine which loss-of-function events are recognizable in prion-like diseases by considering the normal functions of the proteins before their misfolding and aggregation. We then delineate scenarios wherein gain-of-function and/or loss-of-function would be necessary or sufficient for neurodegeneration. We consider roles of PrPC loss-of-function in prion diseases and in AD, and conclude that the conventional wisdom that prion diseases are 'toxic gain-of-function diseases' has limitations. While prion diseases certainly have required gain-of-function components, we propose that disease phenotypes are predominantly caused by deficits in the normal physiology of PrPC and its interaction partners as PrPC converts to PrPSc. In this model, gain-of-function serves mainly to spread disease, and loss-of-function directly mediates neuron dysfunction. We propose experiments and predictions to assess our conclusion. Further study on the normal physiological roles of these key proteins is warranted. PMID:27392869

  20. Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked

    PubMed Central

    Sandberg, Malin K.; Al-Doujaily, Huda; Sharps, Bernadette; De Oliveira, Michael Wiggins; Schmidt, Christian; Richard-Londt, Angela; Lyall, Sarah; Linehan, Jacqueline M.; Brandner, Sebastian; Wadsworth, Jonathan D. F.; Clarke, Anthony R.; Collinge, John

    2014-01-01

    Prions are lethal infectious agents thought to consist of multi-chain forms (PrPSc) of misfolded cellular prion protein (PrPC). Prion propagation proceeds in two distinct mechanistic phases: an exponential phase 1, which rapidly reaches a fixed level of infectivity irrespective of PrPC expression level, and a plateau (phase 2), which continues until clinical onset with duration inversely proportional to PrPC expression level. We hypothesized that neurotoxicity relates to distinct neurotoxic species produced following a pathway switch when prion levels saturate. Here we show a linear increase of proteinase K-sensitive PrP isoforms distinct from classical PrPSc at a rate proportional to PrPC concentration, commencing at the phase transition and rising until clinical onset. The unaltered level of total PrP during phase 1, when prion infectivity increases a million-fold, indicates that prions comprise a small minority of total PrP. This is consistent with PrPC concentration not being rate limiting to exponential prion propagation and neurotoxicity relating to critical concentrations of alternate PrP isoforms whose production is PrPC concentration dependent. PMID:25005024

  1. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions

    PubMed Central

    Nyström, Sofie; Hammarström, Per

    2015-01-01

    Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers. PMID:25960067

  2. The structural stability of wild-type horse prion protein.

    PubMed

    Zhang, Jiapu

    2011-10-01

    Prion diseases (e.g. Creutzfeldt-Jakob disease (CJD), variant CJD (vCJD), Gerstmann-Straussler-Scheinker syndrome (GSS), Fatal Familial Insomnia (FFI) and Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (BSE or 'mad-cow' disease) and chronic wasting disease (CWD) in cattles) are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches or medications to treat all these prion diseases. Rabbits, dogs, and horses are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species. Recently, the β2-α2 loop has been reported to contribute to their protein structural stabilities. The author has found that rabbit prion protein has a strong salt bridge ASP177-ARG163 (like a taut bow string) keeping this loop linked. This paper confirms that this salt bridge also contributes to the structural stability of horse prion protein. Thus, the region of β2-α2 loop might be a potential drug target region. Besides this very important salt bridge, other four important salt bridges GLU196-ARG156-HIS187, ARG156-ASP202 and GLU211-HIS177 are also found to greatly contribute to the structural stability of horse prion protein. Rich databases of salt bridges, hydrogen bonds and hydrophobic contacts for horse prion protein can be found in this paper. PMID:21875155

  3. Feedback control of prion formation and propagation by the ribosome-associated chaperone complex

    PubMed Central

    Kiktev, Denis A.; Melomed, Mikhail M.; Lu, Caroline D.; Newnam, Gary P.; Chernoff, Yury O.

    2015-01-01

    Summary Cross-beta fibrous protein aggregates (amyloids and amyloid-based prions) are found in mammals (including humans) and fungi (including yeast), and are associated with both diseases and heritable traits. The Hsp104/70/40 chaperone machinery controls propagation of yeast prions. The Hsp70 chaperones Ssa and Ssb show opposite effects on [PSI+], a prion form of the translation termination factor Sup35 (eRF3). Ssb is bound to translating ribosomes via ribosome-associated complex (RAC), composed of Hsp40-Zuo1 and Hsp70-Ssz1. Here we demonstrate that RAC disruption increases de novo prion formation in a manner similar to Ssb depletion, but interferes with prion propagation in a manner similar to Ssb overproduction. Release of Ssb into the cytosol in RAC-deficient cells antagonizes binding of Ssa to amyloids. Thus, propagation of an amyloid formed due to lack of ribosome-associated Ssb can be counteracted by cytosolic Ssb, generating a feedback regulatory circuit. Release of Ssb from ribosomes is also observed in wild type cells during growth in poor synthetic medium. Ssb is, in a significant part, responsible for the prion destabilization in these conditions, underlining the physiological relevance of the Ssb-based regulatory circuit. PMID:25649498

  4. Unique Properties of the Rabbit Prion Protein Oligomer

    PubMed Central

    Yu, Ziyao; Huang, Pei; Yu, Yuanhui; Zheng, Zhen; Huang, Zicheng; Guo, Chenyun; Lin, Donghai

    2016-01-01

    Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders infecting both humans and animals. Recent works have demonstrated that the soluble prion protein oligomer (PrPO), the intermediate of the conformational transformation from the host-derived cellular form (PrPC) to the disease-associated Scrapie form (PrPSc), exerts the major neurotoxicity in vitro and in vivo. Rabbits show strong resistance to TSEs, the underlying mechanism is unclear to date. It is expected that the relative TSEs-resistance of rabbits is closely associated with the unique properties of rabbit prion protein oligomer which remain to be addressed in detail. In the present work, we prepared rabbit prion protein oligomer (recRaPrPO) and human prion protein oligomer (recHuPrPO) under varied conditions, analyzed the effects of pH, NaCl concentration and incubation temperature on the oligomerization, and compared the properties of recRaPrPO and recHuPrPO. We found that several factors facilitated the formation of prion protein oligomers, including low pH, high NaCl concentration, high incubation temperature and low conformational stability of monomeric prion protein. RecRaPrPO was formed more slowly than recHuPrPO at physiological-like conditions (< 57°C, < 150 mM NaCl). Furthermore, recRaPrPO possessed higher susceptibility to proteinase K and lower cytotoxicity in vitro than recHuPrPO. These unique properties of recRaPrPO might substantially contribute to the TSEs-resistance of rabbits. Our work sheds light on the oligomerization of prion proteins and is of benefit to mechanistic understanding of TSEs-resistance of rabbits. PMID:27529173

  5. Unique Properties of the Rabbit Prion Protein Oligomer.

    PubMed

    Yu, Ziyao; Huang, Pei; Yu, Yuanhui; Zheng, Zhen; Huang, Zicheng; Guo, Chenyun; Lin, Donghai

    2016-01-01

    Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders infecting both humans and animals. Recent works have demonstrated that the soluble prion protein oligomer (PrPO), the intermediate of the conformational transformation from the host-derived cellular form (PrPC) to the disease-associated Scrapie form (PrPSc), exerts the major neurotoxicity in vitro and in vivo. Rabbits show strong resistance to TSEs, the underlying mechanism is unclear to date. It is expected that the relative TSEs-resistance of rabbits is closely associated with the unique properties of rabbit prion protein oligomer which remain to be addressed in detail. In the present work, we prepared rabbit prion protein oligomer (recRaPrPO) and human prion protein oligomer (recHuPrPO) under varied conditions, analyzed the effects of pH, NaCl concentration and incubation temperature on the oligomerization, and compared the properties of recRaPrPO and recHuPrPO. We found that several factors facilitated the formation of prion protein oligomers, including low pH, high NaCl concentration, high incubation temperature and low conformational stability of monomeric prion protein. RecRaPrPO was formed more slowly than recHuPrPO at physiological-like conditions (< 57°C, < 150 mM NaCl). Furthermore, recRaPrPO possessed higher susceptibility to proteinase K and lower cytotoxicity in vitro than recHuPrPO. These unique properties of recRaPrPO might substantially contribute to the TSEs-resistance of rabbits. Our work sheds light on the oligomerization of prion proteins and is of benefit to mechanistic understanding of TSEs-resistance of rabbits. PMID:27529173

  6. Peroxymonosulfate Rapidly Inactivates the Disease-Associated Prion Protein.

    PubMed

    Chesney, Alexandra R; Booth, Clarissa J; Lietz, Christopher B; Li, Lingjun; Pedersen, Joel A

    2016-07-01

    Prions, the etiological agents in transmissible spongiform encephalopathies, exhibit remarkable resistance to most methods of inactivation that are effective against conventional pathogens. Prions are composed of pathogenic conformers of the prion protein (PrP(TSE)). Some prion diseases are transmitted, in part, through environmental routes. The recalcitrance of prions to inactivation may lead to a persistent reservoir of infectivity that contributes to the environmental maintenance of epizootics. At present, few methods exist to remediate prion-contaminated land surfaces. Here we conducted a proof-of-principle study to examine the ability of peroxymonosulfate to degrade PrP(TSE). We find that peroxymonosulfate rapidly degrades PrP(TSE) from two species. Transition-metal-catalyzed decomposition of peroxymonosulfate to produce sulfate radicals appears to enhance degradation. We further demonstrate that exposure to peroxymonosulfate significantly reduced PrP(C) to PrP(TSE) converting ability as measured by protein misfolding cyclic amplification, used as a proxy for infectivity. Liquid chromatography-tandem mass spectrometry revealed that exposure to peroxymonosulfate results in oxidative modifications to methionine and tryptophan residues. This study indicates that peroxymonosulfate may hold promise for decontamination of prion-contaminated surfaces. PMID:27247993

  7. Protease-resistant prions selectively decrease Shadoo protein.

    PubMed

    Watts, Joel C; Stöhr, Jan; Bhardwaj, Sumita; Wille, Holger; Oehler, Abby; Dearmond, Stephen J; Giles, Kurt; Prusiner, Stanley B

    2011-11-01

    The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease. PMID:22163178

  8. Prions and Protein Assemblies that Convey Biological Information in Health and Disease.

    PubMed

    Sanders, David W; Kaufman, Sarah K; Holmes, Brandon B; Diamond, Marc I

    2016-02-01

    Prions derived from the prion protein (PrP) were first characterized as infectious agents that transmit pathology between individuals. However, the majority of cases of neurodegeneration caused by PrP prions occur sporadically. Proteins that self-assemble as cross-beta sheet amyloids are a defining pathological feature of infectious prion disorders and all major age-associated neurodegenerative diseases. In fact, multiple non-infectious proteins exhibit properties of template-driven self-assembly that are strikingly similar to PrP. Evidence suggests that like PrP, many proteins form aggregates that propagate between cells and convert cognate monomer into ordered assemblies. We now recognize that numerous proteins assemble into macromolecular complexes as part of normal physiology, some of which are self-amplifying. This review highlights similarities among infectious and non-infectious neurodegenerative diseases associated with prions, emphasizing the normal and pathogenic roles of higher-order protein assemblies. We propose that studies of the structural and cellular biology of pathological versus physiological aggregates will be mutually informative. PMID:26844828

  9. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease.

    PubMed

    Haas, Laura T; Salazar, Santiago V; Kostylev, Mikhail A; Um, Ji Won; Kaufman, Adam C; Strittmatter, Stephen M

    2016-02-01

    Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  10. Sequence-dependent Prion Protein Misfolding and Neurotoxicity*

    PubMed Central

    Fernandez-Funez, Pedro; Zhang, Yan; Casas-Tinto, Sergio; Xiao, Xiangzhu; Zou, Wen-Quan; Rincon-Limas, Diego E.

    2010-01-01

    Prion diseases are neurodegenerative disorders caused by misfolding of the normal prion protein (PrP) into a pathogenic “scrapie” conformation. To better understand the cellular and molecular mechanisms that govern the conformational changes (conversion) of PrP, we compared the dynamics of PrP from mammals susceptible (hamster and mouse) and resistant (rabbit) to prion diseases in transgenic flies. We recently showed that hamster PrP induces spongiform degeneration and accumulates into highly aggregated, scrapie-like conformers in transgenic flies. We show now that rabbit PrP does not induce spongiform degeneration and does not convert into scrapie-like conformers. Surprisingly, mouse PrP induces weak neurodegeneration and accumulates small amounts of scrapie-like conformers. Thus, the expression of three highly conserved mammalian prion proteins in transgenic flies uncovered prominent differences in their conformational dynamics. How these properties are encoded in the amino acid sequence remains to be elucidated. PMID:20817727

  11. The "Jekyll and Hyde" Actions of Nucleic Acids on the Prion-like Aggregation of Proteins.

    PubMed

    Silva, Jerson L; Cordeiro, Yraima

    2016-07-22

    Protein misfolding results in devastating degenerative diseases and cancer. Among the culprits involved in these illnesses are prions and prion-like proteins, which can propagate by converting normal proteins to the wrong conformation. For spongiform encephalopathies, a real prion can be transmitted among individuals. In other disorders, the bona fide prion characteristics are still under investigation. Besides inducing misfolding of native proteins, prions bind nucleic acids and other polyanions. Here, we discuss how nucleic acid binding might influence protein misfolding for both disease-related and benign, functional prions and why the line between bad and good amyloids might be more subtle than previously thought. PMID:27288413

  12. Altered behavioral aspects of aged mice lacking the cellular prion protein.

    PubMed

    Massimino, Maria Lina; Redaelli, Marco; Bertoli, Alessandro; Sorgato, Maria Catia; Mucignat-Caretta, Carla

    2013-07-01

    The biological function of the prion protein, which is intimately involved in the onset of prion diseases, remains unclear. To understand whether the prion protein could play a role in animal behavior, a battery of tests was applied to young and aged mice that express, or not, the prion protein. In contrast to the similar results obtained in all young animals, we found that aged mice lacking the prion protein reacted to new and stressful environments differently than their wild-type counterparts. This may suggest that, upon aging, the absence of the prion protein results in altered neural processing at the basis of adaptation to new situations. PMID:23770331

  13. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  14. Persistence of Pathogenic Prion Protein during Simulated Wastewater Treatment Processes

    PubMed Central

    Hinckley, Glen T.; Johnson, Christopher J.; Jacobson, Kurt H.; Bartholomay, Christian; McMahon, Katherine D.; McKenzie, Debbie; Aiken, Judd M.; Pedersen, Joel A.

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrPTSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment. Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 10-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most of the agent would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. PMID:18754377

  15. Bovine spongiform encephalopathy induces misfolding of alleged prion-resistant species cellular prion protein without altering its pathobiological features.

    PubMed

    Vidal, Enric; Fernández-Borges, Natalia; Pintado, Belén; Ordóñez, Montserrat; Márquez, Mercedes; Fondevila, Dolors; Torres, Juan María; Pumarola, Martí; Castilla, Joaquín

    2013-05-01

    Bovine spongiform encephalopathy (BSE) prions were responsible for an unforeseen epizootic in cattle which had a vast social, economic, and public health impact. This was primarily because BSE prions were found to be transmissible to humans. Other species were also susceptible to BSE either by natural infection (e.g., felids, caprids) or in experimental settings (e.g., sheep, mice). However, certain species closely related to humans, such as canids and leporids, were apparently resistant to BSE. In vitro prion amplification techniques (saPMCA) were used to successfully misfold the cellular prion protein (PrP(c)) of these allegedly resistant species into a BSE-type prion protein. The biochemical and biological properties of the new prions generated in vitro after seeding rabbit and dog brain homogenates with classical BSE were studied. Pathobiological features of the resultant prion strains were determined after their inoculation into transgenic mice expressing bovine and human PrP(C). Strain characteristics of the in vitro-adapted rabbit and dog BSE agent remained invariable with respect to the original cattle BSE prion, suggesting that the naturally low susceptibility of rabbits and dogs to prion infections should not alter their zoonotic potential if these animals became infected with BSE. This study provides a sound basis for risk assessment regarding prion diseases in purportedly resistant species. PMID:23637170

  16. Infectious Prion Protein Alters Manganese Transport and Neurotoxicity in a Cell Culture Model of Prion Disease

    PubMed Central

    Martin, Dustin P.; Anantharam, Vellareddy; Jin, Huajun; Witte, Travis; Houk, Robert; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2011-01-01

    Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrPC). Although the exact function of PrPC has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrPC protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC50 = 428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases. PMID:21871919

  17. Manganese Upregulates Cellular Prion Protein and Contributes to Altered Stabilization and Proteolysis: Relevance to Role of Metals in Pathogenesis of Prion Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases are fatal neurodegenerative diseases resulting from misfolding of normal cellular prion (PrP**C) into an abnormal form of scrapie prion (PrP**Sc). The cellular mechanisms underlying the misfolding of PrP**C are not well understood. Since cellular prion proteins harbor divalent metal b...

  18. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio

    PubMed Central

    Katorcha, Elizaveta; Makarava, Natallia; Savtchenko, Regina; Baskakov, Ilia V.

    2015-01-01

    Prion or PrPSc is a proteinaceous infectious agent that consists of a misfolded and aggregated form of a sialoglycoprotein called prion protein or PrPC. PrPC has two sialylated N-linked carbohydrates. In PrPSc, the glycans are directed outward, with the terminal sialic acid residues creating a negative charge on the surface of prion particles. The current study proposes a new hypothesis that electrostatic repulsion between sialic residues creates structural constraints that control prion replication and PrPSc glycoform ratio. In support of this hypothesis, here we show that diglycosylated PrPC molecules that have more sialic groups per molecule than monoglycosylated PrPC were preferentially excluded from conversion. However, when partially desialylated PrPC was used as a substrate, recruitment of three glycoforms into PrPSc was found to be proportional to their respective populations in the substrate. In addition, hypersialylated molecules were also excluded from conversion in the strains with the strongest structural constraints, a strategy that helped reduce electrostatic repulsion. Moreover, as predicted by the hypothesis, partial desialylation of PrPC significantly increased the replication rate. This study illustrates that sialylation of N-linked glycans creates a prion replication barrier that controls replication rate and glycoform ratios and has broad implications. PMID:26576925

  19. Strain-dependent profile of misfolded prion protein aggregates.

    PubMed

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V; Soto, Claudio

    2016-01-01

    Prions are composed of the misfolded prion protein (PrP(Sc)) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrP(Sc) aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrP(Sc) aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrP(Sc) aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrP(Sc) aggregates and the incubation periods for the strains studied. The relative presence of PrP(Sc) in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrP(Sc) aggregates in prion-induced neurodegeneration. PMID:26877167

  20. Strain-dependent profile of misfolded prion protein aggregates

    PubMed Central

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V.; Soto, Claudio

    2016-01-01

    Prions are composed of the misfolded prion protein (PrPSc) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrPSc aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrPSc aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrPSc aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrPSc aggregates and the incubation periods for the strains studied. The relative presence of PrPSc in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrPSc aggregates in prion-induced neurodegeneration. PMID:26877167

  1. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  2. Efficacy and Mechanism of a Glycoside Compound Inhibiting Abnormal Prion Protein Formation in Prion-Infected Cells: Implications of Interferon and Phosphodiesterase 4D-Interacting Protein

    PubMed Central

    Nishizawa, Keiko; Oguma, Ayumi; Kawata, Maki; Sakasegawa, Yuji; Teruya, Kenta

    2014-01-01

    ABSTRACT A new type of antiprion compound, Gly-9, was found to inhibit abnormal prion protein formation in prion-infected neuroblastoma cells, in a prion strain-independent manner, when the cells were treated for more than 1 day. It reduced the intracellular prion protein level and significantly modified mRNA expression levels of genes of two types: interferon-stimulated genes were downregulated after more than 2 days of treatment, and the phosphodiesterase 4D-interacting protein gene, a gene involved in microtubule growth, was upregulated after more than 1 day of treatment. A supplement of interferon given to the cells partly restored the abnormal prion protein level but did not alter the normal prion protein level. This interferon action was independent of the Janus activated kinase-signal transducer and activator of transcription signaling pathway. Therefore, the changes in interferon-stimulated genes might be a secondary effect of Gly-9 treatment. However, gene knockdown of phosphodiesterase 4D-interacting protein restored or increased both the abnormal prion protein level and the normal prion protein level, without transcriptional alteration of the prion protein gene. It also altered the localization of abnormal prion protein accumulation in the cells, indicating that phosphodiesterase 4D-interacting protein might affect prion protein levels by altering the trafficking of prion protein-containing structures. Interferon and phosphodiesterase 4D-interacting protein had no direct mutual link, demonstrating that they regulate abnormal prion protein levels independently. Although the in vivo efficacy of Gly-9 was limited, the findings for Gly-9 provide insights into the regulation of abnormal prion protein in cells and suggest new targets for antiprion compounds. IMPORTANCE This report describes our study of the efficacy and potential mechanism underlying the antiprion action of a new antiprion compound with a glycoside structure in prion-infected cells, as well as

  3. What Makes a Protein Sequence a Prion?

    PubMed Central

    Sabate, Raimon; Rousseau, Frederic; Schymkowitz, Joost; Ventura, Salvador

    2015-01-01

    Typical amyloid diseases such as Alzheimer's and Parkinson's were thought to exclusively result from de novo aggregation, but recently it was shown that amyloids formed in one cell can cross-seed aggregation in other cells, following a prion-like mechanism. Despite the large experimental effort devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the primary sequence. In many cases, prion structural conversion is driven by the presence of relatively large glutamine/asparagine (Q/N) enriched segments. Several studies suggest that it is the amino acid composition of these regions rather than their specific sequence that accounts for their priogenicity. However, our analysis indicates that it is instead the presence and potency of specific short amyloid-prone sequences that occur within intrinsically disordered Q/N-rich regions that determine their prion behaviour, modulated by the structural and compositional context. This provides a basis for the accurate identification and evaluation of prion candidate sequences in proteomes in the context of a unified framework for amyloid formation and prion propagation. PMID:25569335

  4. Prion Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases comprise a set of rare fatal neurological diseases found in humans and other mammals. A prion is a protein capable of converting a normal cellular protein (PrPC) into a prion and thereby propagating an infection. A prion and PrPC differ solely in their conformation. There are differen...

  5. Yeast prion architecture explains how proteins can be genes

    NASA Astrophysics Data System (ADS)

    Wickner, Reed

    2013-03-01

    Prions (infectious proteins) transmit information without an accompanying DNA or RNA. Most yeast prions are self-propagating amyloids that inactivate a normally functional protein. A single protein can become any of several prion variants, with different manifestations due to different amyloid structures. We showed that the yeast prion amyloids of Ure2p, Sup35p and Rnq1p are folded in-register parallel beta sheets using solid state NMR dipolar recoupling experiments, mass-per-filament-length measurements, and filament diameter measurements. The extent of beta sheet structure, measured by chemical shifts in solid-state NMR and acquired protease-resistance on amyloid formation, combined with the measured filament diameters, imply that the beta sheets must be folded along the long axis of the filament. We speculate that prion variants of a single protein sequence differ in the location of these folds. Favorable interactions between identical side chains must hold these structures in-register. The same interactions must guide an unstructured monomer joining the end of a filament to assume the same conformation as molecules already in the filament, with the turns at the same locations. In this way, a protein can template its own conformation, in analogy to the ability of a DNA molecule to template its sequence by specific base-pairing. Bldg. 8, Room 225, NIH, 8 Center Drive MSC 0830, Bethesda, MD 20892-0830, wickner@helix.nih.gov, 301-496-3452

  6. All quiet on the neuronal front: NMDA receptor inhibition by prion protein.

    PubMed

    Steele, Andrew D

    2008-06-01

    The normal function of the prion protein (PrP)--the causative agent of mad cow or prion disease--has long remained out of reach. Deciphering PrP's function may help to unravel the complex chain of events triggered by PrP misfolding during prion disease. In this issue of the JCB, an exciting paper (Khosravani, H., Y. Zhang, S. Tsutsui, S. Hameed, C. Altier, J. Hamid, L. Chen, M. Villemaire, Z. Ali, F.R. Jirik, and G.W. Zamponi. 2008. J. Cell Biol. 181:551-565) connects diverse observations regarding PrP into a coherent framework whereby PrP dampens the activity of an N-methyl-D-aspartate (NMDA) receptor (NMDAR) subtype and reduces excitotoxic lesions. The findings of this study suggest that understanding the normal function of proteins associated with neurodegenerative disease may elucidate the molecular pathogenesis. PMID:18504309

  7. All quiet on the neuronal front: NMDA receptor inhibition by prion protein.

    PubMed

    Steele, Andrew D

    2008-05-01

    The normal function of the prion protein (PrP)-the causative agent of mad cow or prion disease-has long remained out of reach. Deciphering PrP's function may help to unravel the complex chain of events triggered by PrP misfolding during prion disease. In this issue of the JCB, an exciting paper (Khosravani, H., Y. Zhang, S. Tsutsui, S. Hameed, C. Altier, J. Hamid, L. Chen, M. Villemaire, Z. Ali, F.R. Jirik, and G.W. Zamponi. 2008. J. Cell Biol. 181:551-565) connects diverse observations regarding PrP into a coherent framework whereby PrP dampens the activity of an N-methyl-d-aspartate (NMDA) receptor (NMDAR) subtype and reduces excitotoxic lesions. The findings of this study suggest that understanding the normal function of proteins associated with neurodegenerative disease may elucidate the molecular pathogenesis. PMID:18443224

  8. Prion Protein Accumulation in Lipid Rafts of Mouse Aging Brain

    PubMed Central

    Agostini, Federica; Dotti, Carlos G.; Pérez-Cañamás, Azucena; Ledesma, Maria Dolores; Benetti, Federico; Legname, Giuseppe

    2013-01-01

    The cellular form of the prion protein (PrPC) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrPC. In old mice, this change favors PrPC accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrPC translocation into detergent-resistant membranes (DRMs), we looked at PrPC compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrPC in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases. PMID:24040215

  9. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  10. PRIONS: PATHOLOGICAL PROTEINS AT THE INTERFACE OF OIL AND WATER.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prion is an infectious isoform (PrPSc) of a normal cellular protein (PrPC). PrPC is a globular protein composed of approximately 209 amino acids, depending on species. It has three post-translational modifications (PTM): a disulfide linkage, two large sugar antennae, and a glycosyl phosphatidylino...

  11. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  12. Amino acid sequence of the Amur tiger prion protein.

    PubMed

    Wu, Changde; Pang, Wanyong; Zhao, Deming

    2006-10-01

    Prion diseases are fatal neurodegenerative disorders in human and animal associated with conformational conversion of a cellular prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)). Various data indicate that the polymorphisms within the open reading frame (ORF) of PrP are associated with the susceptibility and control the species barrier in prion diseases. In the present study, partial Prnp from 25 Amur tigers (tPrnp) were cloned and screened for polymorphisms. Four single nucleotide polymorphisms (T423C, A501G, C511A, A610G) were found; the C511A and A610G nucleotide substitutions resulted in the amino acid changes Lysine171Glutamine and Alanine204Threoine, respectively. The tPrnp amino acid sequence is similar to house cat (Felis catus ) and sheep, but differs significantly from other two cat Prnp sequences that were previously deposited in GenBank. PMID:16780982

  13. PRIONS: PATHOLOGICAL PROTEINS AT THE INTERFACE OF OIL AND WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are infectious proteins that cause of a set of rare fatal neurological diseases referred to as transmissible spongiform encephalopathies (TSEs). TSE diseases occur in humans, sheep, goats, deer, elk, mink, cows and other mammals. This presentation will include an historical review of the scie...

  14. Glycosylation differences between the normal and pathogenic prion protein isoforms

    PubMed Central

    Rudd, Pauline M.; Endo, Tama; Colominas, Cristina; Groth, Darlene; Wheeler, Susan F.; Harvey, David J.; Wormald, Mark R.; Serban, Hana; Prusiner, Stanley B.; Kobata, Akira; Dwek, Raymond A.

    1999-01-01

    Prion protein consists of an ensemble of glycosylated variants or glycoforms. The enzymes that direct oligosaccharide processing, and hence control the glycan profile for any given glycoprotein, are often exquisitely sensitive to other events taking place within the cell in which the glycoprotein is expressed. Alterations in the populations of sugars attached to proteins can reflect changes caused, for example, by developmental processes or by disease. Here we report that normal (PrPC) and pathogenic (PrPSc) prion proteins (PrP) from Syrian hamsters contain the same set of at least 52 bi-, tri-, and tetraantennary N-linked oligosaccharides, although the relative proportions of individual glycans differ. This conservation of structure suggests that the conversion of PrPC into PrPSc is not confined to a subset of PrPs that contain specific sugars. Compared with PrPC, PrPSc contains decreased levels of glycans with bisecting GlcNAc residues and increased levels of tri- and tetraantennary sugars. This change is consistent with a decrease in the activity of N-acetylglucosaminyltransferase III (GnTIII) toward PrPC in cells where PrPSc is formed and argues that, in at least some cells forming PrPSc, the glycosylation machinery has been perturbed. The reduction in GnTIII activity is intriguing both with respect to the pathogenesis of the prion disease and the replication pathway for prions. PMID:10557270

  15. Yeast prions are useful for studying protein chaperones and protein quality control

    PubMed Central

    Masison, Daniel C; Reidy, Michael

    2015-01-01

    Abstract Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions. PMID:26110609

  16. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein.

    PubMed

    da Luz, Marcio Henrique Mello; Glezer, Isaias; Xavier, Andre Machado; da Silva, Marcelo Alberti Paiva; Pino, Jessica Monteiro Volejnik; Zamith, Thiago Panaro; Vieira, Taynara Fernanda; Antonio, Bruno Brito; Antunes, Hanna Karen Moreira; Martins, Vilma Regina; Lee, Kil Sun

    2016-07-01

    Cellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable. Therefore in this study, we investigated the effects of PrP(C) on the TH expression during the differentiation of N2a cells with dibutyryl-cAMP, a well-known cAMP analog that activates TH transcription. Upon differentiation, TH was induced with concomitant reduction of PrP(C) at protein level, but not at mRNA level. shRNA-mediated PrP(C) reduction increased the basal level of TH at both mRNA and protein levels without dibutyryl-cAMP treatment. This phenotype was reversed by re-expression of PrP(C). PrP(C) knockdown also potentiated the effect of dibutyryl-cAMP on TH expression. Our findings suggest that PrP(C) has suppressive effects on TH expression. As a consequence, altered PrP(C) functions may affect the regulation of dopamine metabolism and related neurological disorders. PMID:26975317

  17. Monoacylated Cellular Prion Protein Modifies Cell Membranes, Inhibits Cell Signaling, and Reduces Prion Formation*

    PubMed Central

    Bate, Clive; Williams, Alun

    2011-01-01

    Prion diseases occur following the conversion of the cellular prion protein (PrPC) into a disease related, protease-resistant isoform (PrPSc). In these studies, a cell painting technique was used to introduce PrPC to prion-infected neuronal cell lines (ScGT1, ScN2a, or SMB cells). The addition of PrPC resulted in increased PrPSc formation that was preceded by an increase in the cholesterol content of cell membranes and increased activation of cytoplasmic phospholipase A2 (cPLA2). In contrast, although PrPC lacking one of the two acyl chains from its glycosylphosphatidylinositol (GPI) anchor (PrPC-G-lyso-PI) bound readily to cells, it did not alter the amount of cholesterol in cell membranes, was not found within detergent-resistant membranes (lipid rafts), and did not activate cPLA2. It remained within cells for longer than PrPC with a conventional GPI anchor and was not converted to PrPSc. Moreover, the addition of high amounts of PrPC-G-lyso-PI displaced cPLA2 from PrPSc-containing lipid rafts, reduced the activation of cPLA2, and reduced PrPSc formation in all three cell lines. In addition, ScGT1 cells treated with PrPC-G-lyso-PI did not transmit infection following intracerebral injection to mice. We propose that that the chemical composition of the GPI anchor attached to PrPC modified the local membrane microenvironments that control cell signaling, the fate of PrPC, and hence PrPSc formation. In addition, our observations raise the possibility that pharmacological modification of GPI anchors might constitute a novel therapeutic approach to prion diseases. PMID:21212283

  18. Kinetics of Ozone Inactivation of Infectious Prion Protein

    PubMed Central

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Mitchell, Gordon; Belosevic, Miodrag

    2013-01-01

    The kinetics of ozone inactivation of infectious prion protein (PrPSc, scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrPSc was quantified by determining the in vitro destruction of PrPSc templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrPSc was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater. PMID:23416994

  19. Prion protein degradation by lichens of the genus Cladonia

    USGS Publications Warehouse

    Bennett, James P.; Rodriguez, Cynthia M.; Johnson, Christopher J.

    2012-01-01

    It has recently been discovered that lichens contain a serine protease capable of degrading the pathogenic prion protein, the etiological agent of prion diseases such as sheep scrapie and cervid chronic wasting disease. Limited methods are available to degrade or inactivate prion disease agents, especially in the environment, and lichens or their serine protease could prove important for management of these diseases. Scant information is available regarding the presence or absence of the protease responsible for degrading prion protein (PrP) in lichen species and, in this study, we tested the hypothesis that PrP degradation activity in lichens is phylogenetically-based by testing 44 species of Cladonia lichens, a genus for which a significant portion of the phylogeny is well established. We categorized PrP degradation activity among the 44 species (high, moderate, low or none) and found that activity in Cladonia species did not correspond with phylogenetic position of the species. Degradation of PrP did correspond, however, with three classical taxonomic characters within the genus: species with brown apothecia, no usnic acid, and the presence of a cortex. Of the 44 species studied, 18 (41%) had either high or moderate PrP degradation activity, suggesting the protease may be frequent in this genus of lichens.

  20. The cellular prion protein and its role in Alzheimer disease

    PubMed Central

    Irujo, A; Cuadrado-Tejedor, M; Paternain, B; Moleres, FJ; Ferrer, V

    2009-01-01

    The cellular prion protein (PrPC) is a membrane-bound glycoprotein especially abundant in the central nervous system (CNS). The scrapie prion protein (PrPSc, also termed prions) is responsible of transmissible spongiform encephalopathies (TSE), a group of neurodegenerative diseases which affect humans and other mammal species, although the presence of PrPC is needed for the establishment and further evolution of prions. The present work compares the expression and localization of PrPC between healthy human brains and those suffering from Alzheimer disease (AD). In both situations we have observed a rostrocaudal decrease in the amount of PrPC within the CNS, both by immunoblotting and immunohistochemistry techniques. PrPC is higher expressed in our control brains than in AD cases. There was a neuronal loss and astogliosis in our AD cases. There was a tendency of a lesser expression of PrPC in AD cases than in healthy ones. And in AD cases, the intensity of the expression of the unglycosylated band is higher than the di- and monoglycosylated bands. With regards to amyloid plaques, those present in AD cases were positively labeled for PrPC, a result which is further supported by the presence of PrPC in the amyloid plaques of a transgenic line of mice mimicking AD. The work was done according to Helsinki Declaration of 1975, and approved by the Ethics Committee of the Faculty of Medicine of the University of Navarre. PMID:19556894

  1. Role of the prion protein family in the gonads

    PubMed Central

    Allais-Bonnet, Aurélie; Pailhoux, Eric

    2014-01-01

    The prion-gene family comprises four members named PRNP (PRPc), PRND (Doppel), PRNT (PRT), and SPRN (Shadoo). According to species, PRND is located 16–52 kb downstream from the PRNP locus, whereas SPRN is located on another chromosome. The fourth prion-family gene, PRNT, belongs to the same genomic cluster as PRNP and PRND in humans and bovidae. PRNT and PRND possibly resulted from a duplication event of PRND and PRNP, respectively, that occurred early during eutherian species divergence. Although most of the studies concerning the prion-family has been done on PRPc and its involvement in transmissible neurodegenerative disorders, different works report some potential roles of these proteins in the reproductive function of both sexes. Among them, a clear role of PRND, that encodes for the Doppel protein, in male fertility has been demonstrated through gene targeting studies in mice. In other species, Doppel seems to play a role in testis and ovary development but its cellular localization is variable according to the gonadal developmental stage and to the mammalian species considered. For the other three genes, their roles in reproductive function appear ill-defined and/or controversial. The present review aimed to synthesize all the available data on these prion-family members and their relations with reproductive processes, mainly in the gonad of both sexes. PMID:25364761

  2. Quaternary Structure of Pathological Prion Protein as a Determining Factor of Strain-Specific Prion Replication Dynamics

    PubMed Central

    Chapuis, Jérôme; Sibille, Pierre; Herzog, Laetitia; Reine, Fabienne; Jaumain, Emilie; Laude, Hubert; Rezaei, Human; Béringue, Vincent

    2013-01-01

    Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrPSc, an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). Stable variations in PrPSc conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrPSc quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrPSc quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrPSc. To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrPSc tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrPSc aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrPSc quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has

  3. Structural domains and main-chain flexibility in prion proteins.

    PubMed

    Blinov, N; Berjanskii, M; Wishart, D S; Stepanova, M

    2009-02-24

    In this study we describe a novel approach to define structural domains and to characterize the local flexibility in both human and chicken prion proteins. The approach we use is based on a comprehensive theory of collective dynamics in proteins that was recently developed. This method determines the essential collective coordinates, which can be found from molecular dynamics trajectories via principal component analysis. Under this particular framework, we are able to identify the domains where atoms move coherently while at the same time to determine the local main-chain flexibility for each residue. We have verified this approach by comparing our results for the predicted dynamic domain systems with the computed main-chain flexibility profiles and the NMR-derived random coil indexes for human and chicken prion proteins. The three sets of data show excellent agreement. Additionally, we demonstrate that the dynamic domains calculated in this fashion provide a highly sensitive measure of protein collective structure and dynamics. Furthermore, such an analysis is capable of revealing structural and dynamic properties of proteins that are inaccessible to the conventional assessment of secondary structure. Using the collective dynamic simulation approach described here along with a high-temperature simulations of unfolding of human prion protein, we have explored whether locations of relatively low stability could be identified where the unfolding process could potentially be facilitated. According to our analysis, the locations of relatively low stability may be associated with the beta-sheet formed by strands S1 and S2 and the adjacent loops, whereas helix HC appears to be a relatively stable part of the protein. We suggest that this kind of structural analysis may provide a useful background for a more quantitative assessment of potential routes of spontaneous misfolding in prion proteins. PMID:19178154

  4. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    PubMed Central

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D’Angelo, Paola; Legname, Giuseppe

    2015-01-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation. PMID:26482532

  5. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    NASA Astrophysics Data System (ADS)

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D'Angelo, Paola; Legname, Giuseppe

    2015-10-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation.

  6. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    PubMed

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD. PMID:22331873

  7. Superoxide dismutase activity of Cu-bound prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2009-03-01

    Misfolding of the prion protein, PrP, has been linked to a group of neurodegenerative diseases, including the mad cow disease in cattle and the Creutzfeldt-Jakob disease in humans. The normal function of PrP is still unknown, but it was found that the PrP can efficiently bind Cu(II) ions. Early experiments suggested that Cu-PrP complex possesses significant superoxide dismutase (SOD) activity, but later experiments failed to confirm it and at present this issue remains unresolved. Using a recently developed hybrid DFT/DFT method, which combines Kohn-Sham DFT for the solute and its first solvation shells with orbital-free DFT for the remainder of the solvent, we have investigated SOD activity of PrP. The PrP is capable of incorporating Cu(II) ions in several binding modes and our calculations find that each mode has a different SOD activity. The highest activity found is comparable to those of well-known SOD proteins, suggesting that the conflicting experimental results may be due to different bindings of Cu(II) in those experiments.

  8. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores

    PubMed Central

    Zambrano, Rafael; Conchillo-Sole, Oscar; Iglesias, Valentin; Illa, Ricard; Rousseau, Frederic; Schymkowitz, Joost; Sabate, Raimon; Daura, Xavier; Ventura, Salvador

    2015-01-01

    Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/. PMID:25977297

  9. Differential Toxicity of Antibodies to the Prion Protein

    PubMed Central

    Hornemann, Simone; Herrmann, Uli S.; Arand, Michael; Hawke, Simon; Aguzzi, Adriano

    2016-01-01

    Antibodies against the prion protein PrPC can antagonize prion replication and neuroinvasion, and therefore hold promise as possible therapeutics against prion diseases. However, the safety profile of such antibodies is controversial. It was originally reported that the monoclonal antibody D13 exhibits strong target-related toxicity, yet a subsequent study contradicted these findings. We have reported that several antibodies against certain epitopes of PrPC, including antibody POM1, are profoundly neurotoxic, yet antibody ICSM18, with an epitope that overlaps with POM1, was reported to be innocuous when injected into mouse brains. In order to clarify this confusing situation, we assessed the neurotoxicity of antibodies D13 and ICSM18 with dose-escalation studies using diffusion-weighted magnetic resonance imaging and various histological techniques. We report that both D13 and ICSM18 induce rapid, dose-dependent, on-target neurotoxicity. We conclude that antibodies directed to this region may not be suitable as therapeutics. No such toxicity was found when antibodies against the flexible tail of PrPC were administered. Any attempt at immunotherapy or immunoprophylaxis of prion diseases should account for these potential untoward effects. PMID:26821311

  10. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma.

    PubMed

    Daus, Martin L

    2016-01-01

    In 1982, the term "prions" (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being "heretical" but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the "protein-only hypothesis" expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed. PMID:26742083

  11. Identification of a Protein that Purifies with the Scrapie Prion

    NASA Astrophysics Data System (ADS)

    Bolton, David C.; McKinley, Michael P.; Prusiner, Stanley B.

    1982-12-01

    Purification of prions from scrapie-infected hamster brain yielded a protein that was not found in a similar fraction from uninfected brain. The protein migrated with an apparent molecular size of 27,000 to 30,000 daltons in sodium dodecyl sulfate polyacrylamide gels. The resistance of this protein to digestion by proteinase K distinguished it from proteins of similar molecular weight found in normal hamster brain. Initial results suggest that the amount of this protein correlates with the titer of the agent.

  12. Prion Diseases

    MedlinePlus

    ... and sometimes polymerize in neurodegenerative disorders. Credit: NIAID Biology & Genetics Scientists are examining how abnormal prion protein ... the abnormal form. Read more about prion diseases biology and genetics Therapeutic Approaches Although there are no ...

  13. The Role of Functional Prion-Like Proteins in the Persistence of Memory.

    PubMed

    Si, Kausik; Kandel, Eric R

    2016-01-01

    Prions are a self-templating amyloidogenic state of normal cellular proteins, such as prion protein (PrP). They have been identified as the pathogenic agents, contributing to a number of diseases of the nervous system. However, the discovery that the neuronal RNA-binding protein, cytoplasmic polyadenylation element-binding protein (CPEB), has a prion-like state that is involved in the stabilization of memory raised the possibility that prion-like proteins can serve normal physiological functions in the nervous system. Here, we review recent experimental evidence of prion-like properties of neuronal CPEB in various organisms and propose a model of how the prion-like state may stabilize memory. PMID:27037416

  14. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  15. Copper and the Prion Protein: Methods, Structures, Function, and Disease

    NASA Astrophysics Data System (ADS)

    Millhauser, Glenn L.

    2007-05-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrPC in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrPC, with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrPC function, and emerging connections between copper and prion disease.

  16. Copper and the prion protein: methods, structures, function, and disease.

    PubMed

    Millhauser, Glenn L

    2007-01-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrP(C) to PrP(Sc). Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrP(C) in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrP(C), with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrP(C) function, and emerging connections between copper and prion disease. PMID:17076634

  17. Seeking for binding determinants of the prion protein to human plasminogen

    NASA Astrophysics Data System (ADS)

    Menziani, M. C.; de Benedetti, P. G.; Langella, E.; Barone, V.

    Plasminogen (Pg), a pro-protease implicated in neuronal excitotoxicity, has recently been identified as binding to prion protein (PrP) from several species. Although the precise effect of the binding of PrP to plasminogen in the course of prion-caused diseases has not yet been demonstrated, the implications of this important finding for diagnostic applications are straightforward. In this paper we have investigated the possible modes of interaction of PrP with plasminogen, by means of molecular modelling and computational simulation techniques. To this goal, we first exploited the information available for the mK2Pg/VEK-30 complex in order to identify the PrP residues which satisfy the specific electronic and geometric requirements needed to interact with the kringle lysine binding site, we compared the relevant mK2Pg/VEK-30 and mK2Pg/PrP interactions obtained from the simulated protein-protein complexes and we assessed the docking hypothesis utilized for the mK2Pg/PrP complex by simulating the interaction of PrP with the multi-kringle angiostatin, a more realistic model of the physiological target. The results obtained will be instrumental for planning experiments tailored to clarify the role of the plasminogen activator system in prion-related diseases and, eventually, for mimicking dominant binding determinants through structure-based drug design.

  18. Targeting prion-like protein doppel selectively suppresses tumor angiogenesis

    PubMed Central

    Al-Hilal, Taslim A.; Chung, Seung Woo; Choi, Jeong Uk; Kim, Seong Who; Kim, Sang Yoon; Ahsan, Fakhrul; Kim, In-San

    2016-01-01

    Controlled and site-specific regulation of growth factor signaling remains a major challenge for current antiangiogenic therapies, as these antiangiogenic agents target normal vasculature as well tumor vasculature. In this article, we identified the prion-like protein doppel as a potential therapeutic target for tumor angiogenesis. We investigated the interactions between doppel and VEGFR2 and evaluated whether blocking the doppel/VEGFR2 axis suppresses the process of angiogenesis. We discovered that tumor endothelial cells (TECs), but not normal ECs, express doppel; tumors from patients and mouse xenografts expressed doppel in their vasculatures. Induced doppel overexpression in ECs enhanced vascularization, whereas doppel constitutively colocalized and complexed with VEGFR2 in TECs. Doppel inhibition depleted VEGFR2 from the cell membrane, subsequently inducing the internalization and degradation of VEGFR2 and thereby attenuating VEGFR2 signaling. We also synthesized an orally active glycosaminoglycan (LHbisD4) that specifically binds with doppel. We determined that LHbisD4 concentrates over the tumor site and that genetic loss of doppel in TECs decreases LHbisD4 binding and targeting both in vitro and in vivo. Moreover, LHbisD4 eliminated VEGFR2 from the cell membrane, prevented VEGF binding in TECs, and suppressed tumor growth. Together, our results demonstrate that blocking doppel can control VEGF signaling in TECs and selectively inhibit tumor angiogenesis. PMID:26950422

  19. Uptake and dynamics of infectious prion protein in the intestine.

    PubMed

    Ano, Yasuhisa; Sakudo, Akikazu; Nakayama, Hiroyuki; Onodera, Takashi

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) are characterized by the accumulation of a protease-resistant abnormal isoform of the prion protein (PrPSc), which is converted from the cellular isoform of the prion protein (PrPC). In the oral transmission of prion protein, PrPSc can invade a host body through the intestinal tract. There is only limited information available on how the infectious agent passes through one or several biological barriers before it can finally reach the brain. After oral administration, PrPSc withstands the digestive process and may be incorporated by microfold (M) cells or villous columnar epithelial cells in the intestine. After entry into the intestinal epithelium, PrPSc accumulates and is amplified in follicular dendritic cells (FDCs) within Peyer's patches and other isolated lymphoid follicles possibly by an interaction with dendritic cells or macrophages. Following accumulation in gut-associated lymphoid tissues, PrPSc is thought to move to the enteric nervous systems (ENS) by an interaction with FDCs or dendritic cells. As a result of neuroinvasion into the ENS, PrPSc spreads to the central nervous system. In addition, an epidemiological study suggested that most bovine spongiform encephalopathy cases had been exposed to the agent in the first 6 months of life. Developments of the intestinal defense and immune system may be involved in the susceptibility to infection. PMID:19275737

  20. Molecular modeling of the conformational dynamics of the cellular prion protein

    NASA Astrophysics Data System (ADS)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  1. Copper–zinc cross-modulation in prion protein binding

    PubMed Central

    Stellato, Francesco; Minicozzi, Velia; Millhauser, Glenn L.; Pascucci, Marco; Proux, Olivier; Rossi, Giancarlo C.; Spevacek, Ann

    2016-01-01

    In this paper we report a systematic XAS study of a set of samples in which Cu(II) was progressively added to complexes in which Zn(II) was bound to the tetra-octarepeat portion of the prion protein. This work extends previous EPR and XAS analysis in which, in contrast, the effect of adding Zn(II) to Cu(II)–tetra-octarepeat complexes was investigated. Detailed structural analysis of the XAS spectra taken at both the Cu and Zn K-edge when the two metals are present at different relative concentrations revealed that Zn(II) and Cu(II) ions compete for binding to the tetra-octarepeat peptide by cross-regulating their relative binding modes. We show that the specific metal–peptide coordination mode depends not only, as expected, on the relative metal concentrations, but also on whether Zn(II) or Cu(II) was first bound to the peptide. In particular, it seems that the Zn(II) binding mode in the absence of Cu(II) is able to promote the formation of small peptide clusters in which triplets of tetra-octarepeats are bridged by pairs of Zn ions. When Cu(II) is added, it starts competing with Zn(II) for binding, disrupting the existing peptide cluster arrangement, despite the fact that Cu(II) is unable to completely displace Zn(II). These results may have a bearing on our understanding of peptide-aggregation processes and, with the delicate cross-regulation balancing we have revealed, seem to suggest the existence of an interesting, finely tuned interplay among metal ions affecting protein binding, capable of providing a mechanism for regulation of metal concentration in cells. PMID:25395329

  2. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

    PubMed Central

    Massignan, Tania; Cimini, Sara; Stincardini, Claudia; Cerovic, Milica; Vanni, Ilaria; Elezgarai, Saioa R.; Moreno, Jorge; Stravalaci, Matteo; Negro, Alessandro; Sangiovanni, Valeria; Restelli, Elena; Riccardi, Geraldina; Gobbi, Marco; Castilla, Joaquín; Borsello, Tiziana; Nonno, Romolo; Biasini, Emiliano

    2016-01-01

    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity. PMID:26976106

  3. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma

    PubMed Central

    Daus, Martin L.

    2016-01-01

    In 1982, the term “prions” (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being “heretical” but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the “protein-only hypothesis” expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed. PMID:26742083

  4. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains.

    PubMed

    Orrú, Christina D; Groveman, Bradley R; Raymond, Lynne D; Hughson, Andrew G; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-06-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. PMID:26086786

  5. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains

    PubMed Central

    Raymond, Lynne D.; Hughson, Andrew G.; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-01-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far – a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. PMID:26086786

  6. Molecular dynamics studies on the structural stability of wild-type dog prion protein.

    PubMed

    Zhang, Jiapu; Liu, David D W

    2011-06-01

    Prion diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches to treat all these prion diseases. In 2008, canine mammals including dogs (canis familials) were the first time academically reported to be resistant to prion diseases (Vaccine 26: 2601-2614 (2008)). Thus, it is very worth studying the molecular structures of dog prion protein to obtain insights into the immunity of dogs to prion diseases. This paper studies the molecular structural dynamics of wild-type dog prion protein. The comparison analyses with rabbit prion protein show that the dog prion protein has stable molecular structures whether under neutral or low pH environments. We also find that the salt bridges such as D177-R163 contribute to the structural stability of wild-type rabbit prion protein under neutral pH environment. PMID:21469747

  7. Rapid cell-surface prion protein conversion revealed using a novel cell system

    PubMed Central

    Goold, R.; Rabbanian, S.; Sutton, L.; Andre, R.; Arora, P.; Moonga, J.; Clarke, A.R.; Schiavo, G.; Jat, P.; Collinge, J.; Tabrizi, S.J.

    2011-01-01

    Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrPC). Here we develop a unique cell system in which epitope-tagged PrPC is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrPC, when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrPSc). Using this epitope-tagged PrPSc, we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion. PMID:21505437

  8. In Vitro and In Vivo Neurotoxicity of Prion Protein Oligomers

    PubMed Central

    Simoneau, Steve; Rezaei, Human; Salès, Nicole; Kaiser-Schulz, Gunnar; Lefebvre-Roque, Maxime; Vidal, Catherine; Fournier, Jean-Guy; Comte, Julien; Wopfner, Franziska; Grosclaude, Jeanne; Schätzl, Hermann; Lasmézas, Corinne Ida

    2007-01-01

    The mechanisms underlying prion-linked neurodegeneration remain to be elucidated, despite several recent advances in this field. Herein, we show that soluble, low molecular weight oligomers of the full-length prion protein (PrP), which possess characteristics of PrP to PrPsc conversion intermediates such as partial protease resistance, are neurotoxic in vitro on primary cultures of neurons and in vivo after subcortical stereotaxic injection. Monomeric PrP was not toxic. Insoluble, fibrillar forms of PrP exhibited no toxicity in vitro and were less toxic than their oligomeric counterparts in vivo. The toxicity was independent of PrP expression in the neurons both in vitro and in vivo for the PrP oligomers and in vivo for the PrP fibrils. Rescue experiments with antibodies showed that the exposure of the hydrophobic stretch of PrP at the oligomeric surface was necessary for toxicity. This study identifies toxic PrP species in vivo. It shows that PrP-induced neurodegeneration shares common mechanisms with other brain amyloidoses like Alzheimer disease and opens new avenues for neuroprotective intervention strategies of prion diseases targeting PrP oligomers. PMID:17784787

  9. [Unfolding chaperone as a prion protein relating molecule].

    PubMed

    Hachiya, Naomi S; Sakasegawa, Yuji; Kaneko, Kiyotoshi

    2003-11-01

    Prion protein exists in two different isoforms, a normal cellular isoform (PrPc) and an abnormal infectious isoform (PrPSc), the latter is a causative agent of prion disease such as mad cow disease and Creutzfeldt-Jakob disease. Amino acid sequences of PrPc and PrPSc are identical, but their conformations are rather different; PrPc rich in non beta-sheet vs. PrPSc rich in beta-sheet isoform. Since the two isoforms have quite different conformation, this host factor might be a molecular chaperone, which enables to override an energy barrier between PrPc and PrPSc. To examine the protein unfolding activities against collectively folded structure exist or not, we constructed an assay system and purified a novel molecular chaperone. Unfolding, from S. cerevisiae. Unfolding consists of oligomeric ring-like structure with the central cavity and has an ATP-dependent protein Unfoldingg activity with broad specificity in vitro, of which targets included PrP in beta-sheet form, alpha-synuclein, and A beta protein. We have also found that mouse neuroblastoma N2a cells contained the activity. Treatment of this factor with an ATP-hydrolyzing enzyme, apyrase, caused the decrease in its protein Unfoldingg activity. It was suggested that the purified protein probably formed homo-oligomer consisting of 4-5 subunits and its activity was ATP-dependent. PMID:15152473

  10. Generation of monoclonal antibodies against human prion proteins in PrP0/0 mice.

    PubMed Central

    Krasemann, S.; Groschup, M. H.; Harmeyer, S.; Hunsmann, G.; Bodemer, W.

    1996-01-01

    BACKGROUND: Prion diseases belong to a group of neurodegenerative disorders affecting humans and animals. The human diseases include kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). The pathogenic mechanisms of the prion diseases are not yet understood. Monoclonal antibodies provide valuable tools in the diagnosis, as well as in the basic research, of several diseases; however, monospecific antisera or monoclonal antibodies (mAbs) against human prion proteins were, until now, not available. MATERIALS AND METHODS: We have developed an immunization protocol based on nucleic acid injection into nontolerant PrP0/0 mice. DNA or RNA coding for different human prion proteins including the mutated sequences associated with CJD, GSS, and FFI were injected into muscle tissue. Mice were primarily inoculated with DNA plasmids encoding the prion protein (PRNP) gene and boosted either with DNA, RNA, or recombinant Semliki Forest Virus particles expressing PRNP. Hybridomas were then prepared. RESULTS: Different mAbs against human prion proteins were obtained, and their binding behavior was analyzed by peptide enzyme-linked immunosorbent assay, Western blot, immunofluorescence, and immunoprecipitation. Their cross-reactivity with prion protein from other species was also determined. Our mAbs are directed against four different linear epitopes and may also recognize discontinuous regions of the native prion protein. CONCLUSIONS: These antibodies should allow us to address questions concerning the nature of the prion protein as well as the initiation and progression of prion diseases. Moreover, these mAbs can now be used for the diagnosis of prion diseases of humans and animals. Images FIG. 2 FIG. 3 PMID:8972487

  11. Species barrier in prion diseases: a kinetic interpretation based on the conformational adaptation of the prion protein.

    PubMed Central

    Kellershohn, N; Laurent, M

    1998-01-01

    Prion diseases are thought to result from the conformational change of the normal cellular prion protein to a pathogenic protease-resistant isoform. However, brain extracts not containing the protease-resistant isoform of the prion protein can be infectious following interspecies transmission. The 'protein-only' hypothesis of pathogenesis is extended to provide possible explanations which could be interpreted in terms of a different infectious agent. It is proposed that normal cellular protein (PrPC) may be transformed into a form (PrP*) that is conformationally distinct from the host-specific abnormal isoform (PrPSc). In infection from a heterologous donor, the dimeric forms of heterologous PrPSc, which may catalyse the formation of host PrP* from PrPC, host PrP* and host PrPSc are all considered to be capable of catalysing, to some extent, the conversion of PrPC into PrPSc. However, depending on the species involved, PrP* may, or may not, be pathogenic, and may, or may not, be sensitive to proteolysis. It is shown, by numerical integration of the differential rate equations derived from this model, that a strain may be stabilized after two or three passages through a different species and that transmission might occur in the absence of detectable protease-resistant prion protein. The natural transmission of scrapie to cattle is discussed in relation to the model. PMID:9729459

  12. Cellular Prion Protein Promotes Brucella Infection into Macrophages

    PubMed Central

    Watarai, Masahisa; Kim, Suk; Erdenebaatar, Janchivdorj; Makino, Sou-ichi; Horiuchi, Motohiro; Shirahata, Toshikazu; Sakaguchi, Suehiro; Katamine, Shigeru

    2003-01-01

    The products of the Brucella abortus virB gene locus, which are highly similar to conjugative DNA transfer system, enable the bacterium to replicate within macrophage vacuoles. The replicative phagosome is thought to be established by the interaction of a substrate of the VirB complex with macrophages, although the substrate and its host cellular target have not yet been identified. We report here that Hsp60, a member of the GroEL family of chaperonins, of B. abortus is capable of interacting directly or indirectly with cellular prion protein (PrPC) on host cells. Aggregation of PrPC tail-like formation was observed during bacterial swimming internalization into macrophages and PrPC was selectively incorporated into macropinosomes containing B. abortus. Hsp60 reacted strongly with serum from human brucellosis patients and was exposed on the bacterial surface via a VirB complex–associated process. Under in vitro and in vivo conditions, Hsp60 of B. abortus bound to PrPC. Hsp60 of B. abortus, expressed on the surface of Lactococcus lactis, promoted the aggregation of PrPC but not PrPC tail formation on macrophages. The PrPC deficiency prevented swimming internalization and intracellular replication of B. abortus, with the result that phagosomes bearing the bacteria were targeted into the endocytic network. These results indicate that signal transduction induced by the interaction between bacterial Hsp60 and PrPC on macrophages contributes to the establishment of B. abortus infection. PMID:12847134

  13. Fate of prions in soil: trapped conformation of full-length ovine prion protein induced by adsorption on clays.

    PubMed

    Revault, M; Quiquampoix, H; Baron, M H; Noinville, S

    2005-08-01

    Studying the mechanism of retention of ovine prion protein in soils will tackle the environmental aspect of potential dissemination of scrapie infectious agent. We consider the surface-induced conformational changes that the recombinant ovine prion protein (ovPrP) may undergo under different pH conditions when interacting with soil minerals of highly adsorptive capacities such as montmorillonite. The conformational states of the full-length ovine prion protein adsorbed on the electronegative clay surface are compared to its solvated state in deuterated buffer in the pD range 3.5-9, using FTIR spectroscopy. The in vitro pH-induced conversion of the alpha-helical monomer of ovPrP into oligomers of beta-like structure prone to self-aggregation does not occur when the protein is adsorbed on the clay surface. The conformation of the trapped ovPrP molecules on montmorillonite is pH-independent and looks like that of the ovPrP solvated state at pD higher than 7, suggesting the major role of Arg and Lys residues in the electrostatic origin of adsorption. The uneven distribution of positively and negatively charged residues of the ovPrP protein would promote a favored orientation of the protein towards the clay, so that not only the basic residues embedded in the N-terminal flexible part but also external basic residues in the globular part of the protein might participate to the attractive interaction. From these results, it appears unlikely that the interaction of normal prions (PrP(C)) with soil clay surfaces could induce a change of conformation leading to the pathogenic form of prions (PrP(Sc)). PMID:15950385

  14. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    NASA Astrophysics Data System (ADS)

    De Santis, E.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2016-02-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed.

  15. Fatal Transmissible Amyloid Encephalopathy: A New Type of Prion Disease Associated with Lack of Prion Protein Membrane Anchoring

    PubMed Central

    Chesebro, Bruce; Race, Brent; Meade-White, Kimberly; LaCasse, Rachel; Race, Richard; Klingeborn, Mikael; Striebel, James; Dorward, David; McGovern, Gillian; Jeffrey, Martin

    2010-01-01

    Prion diseases are fatal neurodegenerative diseases of humans and animals characterized by gray matter spongiosis and accumulation of aggregated, misfolded, protease-resistant prion protein (PrPres). PrPres can be deposited in brain in an amyloid-form and/or non-amyloid form, and is derived from host-encoded protease-sensitive PrP (PrPsen), a protein normally anchored to the plasma membrane by glycosylphosphatidylinositol (GPI). Previously, using heterozygous transgenic mice expressing only anchorless PrP, we found that PrP anchoring to the cell membrane was required for typical clinical scrapie. However, in the present experiments, using homozygous transgenic mice expressing two-fold more anchorless PrP, scrapie infection induced a new fatal disease with unique clinical signs and altered neuropathology, compared to non-transgenic mice expressing only anchored PrP. Brain tissue of transgenic mice had high amounts of infectivity, and histopathology showed dense amyloid PrPres plaque deposits without gray matter spongiosis. In contrast, infected non-transgenic mice had diffuse non-amyloid PrPres deposits with significant gray matter spongiosis. Brain graft studies suggested that anchored PrPsen expression was required for gray matter spongiosis during prion infection. Furthermore, electron and light microscopic studies in infected transgenic mice demonstrated several pathogenic processes not seen in typical prion disease, including cerebral amyloid angiopathy and ultrastructural alterations in perivascular neuropil. These findings were similar to certain human familial prion diseases as well as to non-prion human neurodegenerative diseases, such as Alzheimer's disease. PMID:20221436

  16. Recombinant Prion Protein Refolded with Lipid and RNA Has the Biochemical Hallmarks of a Prion but Lacks In Vivo Infectivity

    PubMed Central

    Timmes, Andrew G.; Moore, Roger A.; Fischer, Elizabeth R.; Priola, Suzette A.

    2013-01-01

    During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res. PMID:23936256

  17. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    SciTech Connect

    Nieznanski, Krzysztof . E-mail: k.nieznanski@nencki.gov.pl; Podlubnaya, Zoya A.; Nieznanska, Hanna

    2006-10-13

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of {approx}50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers.

  18. The genetics of prion diseases.

    PubMed

    Mastrianni, James A

    2010-04-01

    Prion diseases are a rare group of fatal neurodegenerative disorders of humans and animals that manifest primarily as progressive dementia and ataxia. Unique to these diseases is the prion, a misfolded isoform of the prion protein that can transmit disease from cell to cell or host to host by associating with, and transforming, normal prion protein into the misfolded isoform (the pathogenic scrapie-inducing form). Although the majority of cases occur on a sporadic basis, and rarely result from exposure to prions, such as mad cow disease, 10-15% are attributable to the presence of an autosomal dominant mutation of the prion protein gene (PRNP). Single base pair changes, or the insertion of one or more multiples of a 24 base pair repeat segment, make up the known sequence alterations of PRNP associated with genetic prion disease. The common polymorphic codon 129 of PRNP also plays an important and complex role in risk and phenotype of sporadic and genetic prion disease. This review will focus on the clinical and histopathologic features of the genetic prion diseases. Selected mutations will be highlighted as a way to illustrate general phenotype-genotype correlations. PMID:20216075

  19. The Rich Electrochemistry and Redox Reactions of the Copper Sites in the Cellular Prion Protein

    PubMed Central

    Zhou, Feimeng; Millhauser, Glenn L.

    2012-01-01

    This paper reviews recent electrochemical studies of the copper complexes of prion protein (PrP) and its related peptides, and correlates their redox behavior to chemical and biologically relevant reactions. Particular emphasis is placed on the difference in redox properties between copper in the octarepeat (OR) and the non-OR domains of PrP, as well as differences between the high and low copper occupancy states in the OR domain. Several discrepancies in literature concerning these differences are discussed and reconciled. The PrP copper complexes, in comparison to copper complexes of other amyloidogenic proteins/peptides, display a more diverse and richer redox chemistry. The specific protocols and caveats that need to be considered in studying the electrochemistry and redox reactions of copper complexes of PrP, PrP-derived peptides, and other related amyloidogenic proteins are summarized. PMID:23144499

  20. Molecular dynamics studies on the buffalo prion protein.

    PubMed

    Zhang, Jiapu; Wang, Feng; Chatterjee, Subhojyoti

    2016-01-01

    It was reported that buffalo is a low susceptibility species resisting to transmissible spongiform encephalopathies (TSEs) (same as rabbits, horses, and dogs). TSEs, also called prion diseases, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of species (except for rabbits, dogs, horses, and buffalo), manifesting as scrapie in sheep and goats; bovine spongiform encephalopathy (BSE or "mad-cow" disease) in cattle; chronic wasting disease in deer and elk; and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and Kulu in humans etc. In molecular structures, these neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)), predominantly with α-helices, into insoluble abnormally folded infectious prions (PrP(Sc)), rich in β-sheets. In this article, we studied the molecular structure and structural dynamics of buffalo PrP(C) (BufPrP(C)), in order to understand the reason why buffalo is resistant to prion diseases. We first did molecular modeling of a homology structure constructed by one mutation at residue 143 from the NMR structure of bovine and cattle PrP(124-227); immediately we found that for BufPrP(C)(124-227), there are five hydrogen bonds (HBs) at Asn143, but at this position, bovine/cattle do not have such HBs. Same as that of rabbits, dogs, or horses, our molecular dynamics studies also revealed there is a strong salt bridge (SB) ASP178-ARG164 (O-N) keeping the β2-α2 loop linked in buffalo. We also found there is a very strong HB SER170-TYR218 linking this loop with the C-terminal end of α-helix H3. Other information, such as (i) there is a very strong SB HIS187-ARG156 (N-O) linking α-helices H2 and H1 (if mutation H187R is made at position 187, then the hydrophobic core of PrP(C) will be exposed (L.H. Zhong (2010). Exposure of hydrophobic core in human prion protein pathogenic mutant H187R. Journal of

  1. Curcumin Reduces Amyloid Fibrillation of Prion Protein and Decreases Reactive Oxidative Stress

    PubMed Central

    Lin, Chi-Fen; Yu, Kun-Hua; Jheng, Cheng-Ping; Chung, Raymond; Lee, Cheng-I

    2013-01-01

    Misfolding and aggregation into amyloids of the prion protein (PrP) is responsible for the development of fatal transmissible neurodegenerative diseases. Various studies on curcumin demonstrate promise for the prevention of Alzheimer’s disease and inhibition of PrPres accumulation. To evaluate the effect of curcumin on amyloid fibrillation of prion protein, we first investigated the effect of curcumin on mouse prion protein (mPrP) in a cell-free system. Curcumin reduced the prion fibril formation significantly. Furthermore, we monitored the change in apoptosis and reactive oxygen species (ROS) level upon curcumin treatment in mouse neuroblastoma cells (N2a). Curcumin effectively rescues the cells from apoptosis and decreases the ROS level caused by subsequent co-incubation with prion amyloid fibrils. The assays in cell-free mPrP and in N2a cells of this work verified the promising effect of curcumin on the prevention of transmissible neurodegenerative diseases. PMID:25437204

  2. Genetic variation of the prion protein gene (PRNP) in alpaca (Vicugna pacos)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmissible spongiform encephalopathies (TSE) are caused by accumulation of a misfolded form of the prion protein (PrP). The normal cellular isoform of PrP is produced by the prion gene (PRNP) and is highly expressed in the central nervous system. Currently, there is an absence of information rega...

  3. Non-amyloid and amyloid prion protein deposits in prion-infected mice differ in blockage of interstitial brain fluid

    PubMed Central

    Rangel, Alejandra; Race, Brent; Striebel, James; Chesebro, Bruce

    2012-01-01

    Aims Prion diseases are characterized by brain deposits of misfolded aggregated protease-resistant prion protein (PrP), termed PrPres. In humans and animals, PrPres is found as either disorganized non-amyloid aggregates or organized amyloid fibrils. Both PrPres forms are found in extracellular spaces of the brain. Thus, both might block drainage of brain interstitial fluid (ISF). The present experiments studied whether ISF blockage occurred during amyloid and/or non-amyloid prion diseases. Methods Various-sized fluorescein-labeled ISF tracers were stereotactically inoculated into the striatum of adult mice. At times from 5 min to 77 hours, uninfected and scrapie-infected mice were compared. C57BL/10 mice expressing wild-type anchored PrP, which develop non-amyloid PrPres similar to humans with sporadic CJD, were compared with Tg44+/+ mice expressing anchorless PrP, which develop amyloid PrPres similar to certain human familial prion diseases. Results In C57BL/10 mice, extensive non-amyloid PrPres aggregate deposition was not associated with abnormal clearance kinetics of tracers. In contrast, scrapie-infected Tg44+/+ mice showed blockage of tracer clearance and co-localization of tracer with perivascular PrPres amyloid. Conclusions Since tracer localization and clearance was normal in infected C57BL/10 mice, ISF blockage was not an important pathogenic mechanism in this model. Therefore, ISF blockage is unlikely to be a problem in non-amyloid human prion diseases such as sporadic CJD. In contrast, partial ISF blockage appeared to be a possible pathogenic mechanism in Tg44+/+ mice. Thus this mechanism might also influence human amyloid prion diseases where expression of anchorless or mutated PrP results in perivascular amyloid PrPres deposition and cerebral amyloid angiopathy (CAA). PMID:22998478

  4. Computational analysis of candidate prion-like proteins in bacteria and their role

    PubMed Central

    Iglesias, Valentin; de Groot, Natalia S.; Ventura, Salvador

    2015-01-01

    Prion proteins were initially associated with diseases such as Creutzfeldt Jakob and transmissible spongiform encephalopathies. However, deeper research revealed them as versatile tools, exploited by the cells to execute fascinating functions, acting as epigenetic elements or building membrane free compartments in eukaryotes. One of the most intriguing properties of prion proteins is their ability to propagate a conformational assembly, even across species. In this context, it has been observed that bacterial amyloids can trigger the formation of protein aggregates by interacting with host proteins. As our life is closely linked to bacteria, either through a parasitic or symbiotic relationship, prion-like proteins produced by bacterial cells might play a role in this association. Bioinformatics is helping us to understand the factors that determine conformational conversion and infectivity in prion-like proteins. We have used PrionScan to detect prion domains in 839 different bacteria proteomes, detecting 2200 putative prions in these organisms. We studied this set of proteins in order to try to understand their functional role and structural properties. Our results suggest that these bacterial polypeptides are associated to peripheral rearrangement, macromolecular assembly, cell adaptability, and invasion. Overall, these data could reveal new threats and therapeutic targets associated to infectious diseases. PMID:26528269

  5. Selective expression of prion protein in peripheral tissues of the adult mouse.

    PubMed

    Ford, M J; Burton, L J; Morris, R J; Hall, S M

    2002-01-01

    The level of expression of normal cellular prion protein, PrP(c) (cellular prion protein), controls both the rate and the route of neuroinvasive infection, from peripheral entry portal to the CNS. Paradoxically, an overview of the distribution of PrP(c) within tissues outside the CNS is lacking. We have used novel antibodies that recognise cellular prion protein in glutaraldehyde-fixed tissue (in order to optimise immunohistochemical labelling of this conformationally labile protein), in combination with in situ hybridisation, to examine the expression of PrP(c) in peripheral tissues of the adult mouse. We found that although prion protein is expressed in many tissues, it is expressed at high levels only in discrete subpopulations of cells. Prominent amongst these are elements of the "hardwired neuroimmune network" that integrate the body's immune defence and neuroendocrine systems under CNS control. These prion protein-expressing elements include small diameter afferent nerves in the skin and the lamina propria of the aerodigestive tract, sympathetic ganglia and nerves, antigen presenting and processing cells (both follicular and non-follicular dendritic cells) and sub-populations of lymphocytes particularly in skin, gut- and bronchus-associated lymphoid tissues. Prion protein is also expressed in the parasympathetic and enteric nervous systems, in the dispersed neuroendocrine system, and in peripheral nervous system axons and their associated Schwann cells. This selective expression of cellular prion protein provides a variety of alternative routes for the propagation and transport of prion infection entering from peripheral sites, either naturally (via the aerodigestive tract or abraded skin) or experimentally (by intraperitoneal injection) to the brain. Key regulatory cells that express prion protein, and in particular enteroendocrine cells in the mucosal wall of the gut, and dendritic cells that convey pathogens from epithelial layers to secondary lymphoid

  6. Copper-dependent co-internalization of the prion protein and glypican-1.

    PubMed

    Cheng, Fang; Lindqvist, Josefin; Haigh, Cathryn L; Brown, David R; Mani, Katrin

    2006-09-01

    Heparan sulfate chains have been found to be associated with amyloid deposits in a number of diseases including transmissible spongiform encephalopathies. Diverse lines of evidence have linked proteoglycans and their glycosaminoglycan chains, and especially heparan sulfate, to the metabolism of the prion protein isoforms. Glypicans are a family of glycosylphosphatidylinositol-anchored, heparan sulfate-containing, cell-associated proteoglycans. Cysteines in glypican-1 can become nitrosylated by endogenously produced nitric oxide. When glypican-1 is exposed to a reducing agent, such as ascorbate, nitric oxide is released and autocatalyses deaminative cleavage of heparan sulfate chains. These processes take place while glypican-1 recycles via a non-classical, caveolin-associated pathway. We have previously demonstrated that prion protein provides the Cu2+ ions required to nitrosylate thiol groups in the core protein of glypican-1. By using confocal immunofluorescence microscopy and immunomagnetic techniques, we now show that copper induces co-internalization of prion protein and glypican-1 from the cell surface to perinuclear compartments. We find that prion protein is controlling both the internalization of glypican-1 and its nitric oxide-dependent autoprocessing. Silencing glypican-1 expression has no effect on copper-stimulated prion protein endocytosis, but in cells expressing a prion protein construct lacking the copper binding domain internalization of glypican-1 is much reduced and autoprocessing is abrogated. We also demonstrate that heparan sulfate chains of glypican-1 are poorly degraded in prion null fibroblasts. The addition of either Cu2+ ions, nitric oxide donors, ascorbate or ectopic expression of prion protein restores heparan sulfate degradation. These results indicate that the interaction between glypican-1 and Cu2+-loaded prion protein is required both for co-internalization and glypican-1 self-pruning. PMID:16923158

  7. Generation of prions in vitro and the protein-only hypothesis

    PubMed Central

    Diaz-Espinoza, Rodrigo

    2010-01-01

    Prions are self-propagating proteinaceous infectious agents capable of transmitting disease in the absence of nucleic acids. The nature of the infectious agent in prion diseases has been at the center of passionate debate for the past 30 years. However, recent reports on the in vitro generation of prions have settled all doubts that the misfolded prion protein (PrPSc) is the key component in propagating infectivity. However, we still do not understand completely the mechanism of prion replication and whether or not other cellular factors besides PrPSc are required for infectivity. In this article, we discuss these recent reports under the context of the protein-only hypothesis and their implications. PMID:20448454

  8. Combined EXAFS and DFT Structure Calculations Provide Structural Insights into the 1:1 Multi-Histidine Complexes of CuII, CuI and ZnII with the Tandem Octarepeats of the Mammalian Prion Protein

    PubMed Central

    Pushie, M. Jake; Nienaber, Kurt H.; McDonald, Alex; Millhauser, Glenn L.; George, Graham N.

    2014-01-01

    The metal coordinating properties of the prion protein (PrP) have been the subject of intense focus and debate since the first reports of copper interaction with PrP just before the turn of the century. The picture of metal coordination to PrP has been improved and refined over the past decade, and yet the structural details of the various metal coordination modes have not been fully elucidated in some cases. Herein we employ X-ray absorption near edge spectroscopy as well as extended X-ray absorption fine structure (EXAFS) spectroscopy to structurally characterize the dominant 1:1 coordination modes for CuII, CuI and ZnII with an N-terminal fragment of PrP. The PrP fragment constitutes four tandem repeats representative of the mammalian octarepeat domain, designated OR4, which is also the most studied PrP fragment for metal interactions, making our findings applicable to a large body of previous work. Density functional theory (DFT) calculations provide additional structural and thermodynamic data, and candidate structures are used to inform EXAFS data analysis. The optimized geometries from DFT calculations are used to identify potential coordination complexes for multi-histidine coordination of CuII, CuI and ZnII in an aqueous medium, modeled using 4-methylimidazole to represent the histidine side chain. Through a combination of in silico coordination chemistry as well as rigorous EXAFS curve fitting, using full multiple scattering on candidate structures from DFT calculations, we have characterized the predominant coordination modes for the 1:1 complexes of CuII, CuI and ZnII with the OR4 peptide at pH 7.4 at atomic resolution, which are best represented as a square planar [CuII(His)4]2+, digonal [CuI(His)2]+ and tetrahedral [ZnII(His)3(OH2)]2+, respectively. PMID:25042361

  9. Temporal resolution of misfolded prion protein transport, accumulation, glial activation, and neuronal death in the retinas of mice inoculated with scrapie: relevance to biomarkers of prion disease progression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there is a lack of pathologic landmarks to describe the progression of prion disease in vivo. The goal of this work was to determine the temporal relationship between the transport of misfolded prion protein from the brain to the retina, the accumulation of PrPSc in the retina, the respon...

  10. To develop with or without the prion protein

    PubMed Central

    Halliez, Sophie; Passet, Bruno; Martin-Lannerée, Séverine; Hernandez-Rapp, Julia; Laude, Hubert; Mouillet-Richard, Sophie; Vilotte, Jean-Luc; Béringue, Vincent

    2014-01-01

    The deletion of the cellular form of the prion protein (PrPC) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrPC quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegenerative diseases such as prion and Alzheimer's diseases. In zebrafish embryos, depletion of PrP ortholog leads to a severe loss-of-function phenotype. This raises the question of a potential role of PrPC in the development of all vertebrates. This view is further supported by the early expression of the PrPC encoding gene (Prnp) in many tissues of the mouse embryo, the transient disruption of a broad number of cellular pathways in early Prnp−/− mouse embryos, and a growing body of evidence for PrPC involvement in the regulation of cell proliferation and differentiation in various types of mammalian stem cells and progenitors. Finally, several studies in both zebrafish embryos and in mammalian cells and tissues in formation support a role for PrPC in cell adhesion, extra-cellular matrix interactions and cytoskeleton. In this review, we summarize and compare the different models used to decipher PrPC functions at early developmental stages during embryo- and organo-genesis and discuss their relevance. PMID:25364763

  11. Characterization of Conformation-dependent Prion Protein Epitopes*

    PubMed Central

    Kang, Hae-Eun; Weng, Chu Chun; Saijo, Eri; Saylor, Vicki; Bian, Jifeng; Kim, Sehun; Ramos, Laylaa; Angers, Rachel; Langenfeld, Katie; Khaychuk, Vadim; Calvi, Carla; Bartz, Jason; Hunter, Nora; Telling, Glenn C.

    2012-01-01

    Whereas prion replication involves structural rearrangement of cellular prion protein (PrPC), the existence of conformational epitopes remains speculative and controversial, and PrP transformation is monitored by immunoblot detection of PrP(27–30), a protease-resistant counterpart of the pathogenic scrapie form (PrPSc) of PrP. We now describe the involvement of specific amino acids in conformational determinants of novel monoclonal antibodies (mAbs) raised against randomly chimeric PrP. Epitope recognition of two mAbs depended on polymorphisms controlling disease susceptibility. Detection by one, referred to as PRC5, required alanine and asparagine at discontinuous mouse PrP residues 132 and 158, which acquire proximity when residues 126–218 form a structured globular domain. The discontinuous epitope of glycosylation-dependent mAb PRC7 also mapped within this domain at residues 154 and 185. In accordance with their conformational dependence, tertiary structure perturbations compromised recognition by PRC5, PRC7, as well as previously characterized mAbs whose epitopes also reside in the globular domain, whereas conformation-independent epitopes proximal or distal to this region were refractory to such destabilizing treatments. Our studies also address the paradox of how conformational epitopes remain functional following denaturing treatments and indicate that cellular PrP and PrP(27–30) both renature to a common structure that reconstitutes the globular domain. PMID:22948149

  12. Transport of the Pathogenic Prion Protein through Landfill Materials

    PubMed Central

    Jacobson, Kurt H.; Lee, Seunghak; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrPTSE) is the major, if not sole, component of the infectious agent. Recent TSE outbreaks in domesticated and wild animal populations has created the need for safe and effective disposal of large quantities of potentially infected materials. Here, we report the results of a study to evaluate the potential for transport of PrPTSE derived from carcasses and associated wastes in a municipal solid waste (MSW) landfill. Column experiments were conducted to evaluate PrPTSE transport in quartz sand, two fine-textured burial soils currently used in landfill practice, a green waste residual material (a potential burial material), and fresh and aged MSW. PrPTSE was retained by quartz sand and the fine-textured burial soils, with no detectable PrPTSE eluted over more than 40 pore volumes. In contrast, PrPTSE was more mobile in MSW and green waste residual. Transport parameters were estimated from the experimental data and used to model PrPTSE migration in a MSW landfill. To the extent that the PrPTSE used mimics that released from decomposing carcasses, burial of CWD-infected materials at MSW landfills could provide secure containment of PrPTSE provided reasonable burial strategies (e.g., encasement in soil) are used. PMID:19368208

  13. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  14. Follicular dendritic cell-specific prion protein (PrP) expression alone is sufficient to sustain prion infection in the spleen.

    PubMed

    McCulloch, Laura; Brown, Karen L; Bradford, Barry M; Hopkins, John; Bailey, Mick; Rajewsky, Klaus; Manson, Jean C; Mabbott, Neil A

    2011-12-01

    Prion diseases are characterised by the accumulation of PrP(Sc), an abnormally folded isoform of the cellular prion protein (PrP(C)), in affected tissues. Following peripheral exposure high levels of prion-specific PrP(Sc) accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrP(C) is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrP(C) expression was specifically "switched on" or "off" only on FDC. We show that PrP(C)-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrP(C)-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrP(C) expression on FDC. PMID:22144895

  15. Prion Diseases

    PubMed Central

    Geschwind, Michael D.

    2016-01-01

    Purpose of Review This article presents an update on the clinical aspects of human prion disease, including the wide spectrum of their presentations. Recent Findings Prion diseases, a group of disorders caused by abnormally shaped proteins called prions, occur in sporadic (Jakob-Creutzfeldt disease), genetic (genetic Jakob-Creutzfeldt disease, Gerstmann-Sträussler-Scheinker syndrome, and fatal familial insomnia), and acquired (kuru, variant Jakob-Creutzfeldt disease, and iatrogenic Jakob-Creutzfeldt disease) forms. This article presents updated information on the clinical features and diagnostic methods for human prion diseases. New antemortem potential diagnostic tests based on amplifying prions in order to detect them are showing very high specificity. Understanding of the diversity of possible presentations of human prion diseases continues to evolve, with some genetic forms progressing slowly over decades, beginning with dysautonomia and neuropathy and progressing to a frontal-executive dementia with pathology of combined prionopathy and tauopathy. Unfortunately, to date, all human prion disease clinical trials have failed to show survival benefit. A very rare polymorphism in the prion protein gene recently has been identified that appears to protect against prion disease; this finding, in addition to providing greater understanding of the prionlike mechanisms of neurodegenerative disorders, might lead to potential treatments. Summary Sporadic Jakob-Creutzfeldt disease is the most common form of human prion disease. Genetic prion diseases, resulting from mutations in the prion-related protein gene (PRNP), are classified based on the mutation, clinical phenotype, and neuropathologic features and can be difficult to diagnose because of their varied presentations. Perhaps most relevant to this Continuum issue on neuroinfectious diseases, acquired prion diseases are caused by accidental transmission to humans, but fortunately, they are the least common form and

  16. Identification of a prion protein epitope modulating transmission of bovine spongiform encephalopathy prions to transgenic mice

    PubMed Central

    Scott, Michael R.; Safar, Jiri; Telling, Glenn; Nguyen, Oanh; Groth, Darlene; Torchia, Marilyn; Koehler, Ruth; Tremblay, Patrick; Walther, Dirk; Cohen, Fred E.; DeArmond, Stephen J.; Prusiner, Stanley B.

    1997-01-01

    There is considerable concern that bovine prions from cattle with bovine spongiform encephalopathy (BSE) may have been passed to humans (Hu), resulting in a new form of Creutzfeldt–Jakob disease (CJD). We report here the transmission of bovine (Bo) prions to transgenic (Tg) mice expressing BoPrP; one Tg line exhibited incubation times of ≈200 days. Like most cattle with BSE, vacuolation and astrocytic gliosis were confined in the brainstems of these Tg mice. Unexpectedly, mice expressing a chimeric Bo/Mo PrP transgene were resistant to BSE prions whereas mice expressing Hu or Hu/Mo PrP transgenes were susceptible to Hu prions. A comparison of differences in Mo, Bo, and Hu residues within the C terminus of PrP defines an epitope that modulates conversion of PrPC into PrPSc and, as such, controls prion transmission across species. Development of susceptible Tg(BoPrP) mice provides a means of measuring bovine prions that may prove critical in minimizing future human exposure. PMID:9405603

  17. Prion Protein—Antibody Complexes Characterized by Chromatography-Coupled Small-Angle X-Ray Scattering

    PubMed Central

    Carter, Lester; Kim, Seung Joong; Schneidman-Duhovny, Dina; Stöhr, Jan; Poncet-Montange, Guillaume; Weiss, Thomas M.; Tsuruta, Hiro; Prusiner, Stanley B.; Sali, Andrej

    2015-01-01

    Aberrant self-assembly, induced by structural misfolding of the prion proteins, leads to a number of neurodegenerative disorders. In particular, misfolding of the mostly α-helical cellular prion protein (PrPC) into a β-sheet-rich disease-causing isoform (PrPSc) is the key molecular event in the formation of PrPSc aggregates. The molecular mechanisms underlying the PrPC-to-PrPSc conversion and subsequent aggregation remain to be elucidated. However, in persistently prion-infected cell-culture models, it was shown that treatment with monoclonal antibodies against defined regions of the prion protein (PrP) led to the clearing of PrPSc in cultured cells. To gain more insight into this process, we characterized PrP-antibody complexes in solution using a fast protein liquid chromatography coupled with small-angle x-ray scattering (FPLC-SAXS) procedure. High-quality SAXS data were collected for full-length recombinant mouse PrP [denoted recPrP(23–230)] and N-terminally truncated recPrP(89–230), as well as their complexes with each of two Fab fragments (HuM-P and HuM-R1), which recognize N- and C-terminal epitopes of PrP, respectively. In-line measurements by fast protein liquid chromatography coupled with SAXS minimized data artifacts caused by a non-monodispersed sample, allowing structural analysis of PrP alone and in complex with Fab antibodies. The resulting structural models suggest two mechanisms for how these Fabs may prevent the conversion of PrPC into PrPSc. PMID:26287631

  18. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein.

    PubMed

    Massignan, Tania; Cimini, Sara; Stincardini, Claudia; Cerovic, Milica; Vanni, Ilaria; Elezgarai, Saioa R; Moreno, Jorge; Stravalaci, Matteo; Negro, Alessandro; Sangiovanni, Valeria; Restelli, Elena; Riccardi, Geraldina; Gobbi, Marco; Castilla, Joaquín; Borsello, Tiziana; Nonno, Romolo; Biasini, Emiliano

    2016-01-01

    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrP(Sc) is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrP(C) may provide an opportunity to overcome these problems. PrP(C) ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrP(C), and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrP(C)-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrP(C)-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrP(C) may produce a dual effect of blocking prion replication and inhibiting PrP(C)-mediated toxicity. PMID:26976106

  19. New Insights into Metal Interactions with the Prion Protein

    PubMed Central

    McDonald, Alex; Pushie, M. Jake; Millhauser, Glenn L.; George, Graham N.

    2013-01-01

    Copper coordination to the prion protein (PrP) has garnered considerable interest for almost 20 years, due in part to the possibility that this interaction may be part of the normal function of PrP. The most characterized form of copper binding to PrP has been Cu2+ interaction with the conserved tandem repeats in the N-terminal domain of PrP, termed the octarepeats, with many studies focusing on single and multiple repeats of PHGGGWGQ. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used in several previous instances to characterize the solution structure of Cu2+ binding into the peptide backbone in the HGGG portion of the octarepeats. All previous EXAFS studies, however, have benefitted from crystallographic structure information for [CuII (Ac-HGGGW-NH2)–2H], but have not conclusively demonstrated that the complex EXAFS spectrum represents the same coordination environment for Cu2+ bound to the peptide backbone. Density functional structure calculations as well as full multiple scattering EXAFS curve fitting analysis are brought to bear on the predominant coordination mode for Cu2+ with the Ac-PHGGGWGQ-NH2 peptide at physiological pH, under high Cu2+ occupancy conditions. In addition to the structure calculations, which provide a thermodynamic link to structural information, methods are also presented for extensive deconvolution of the EXAFS spectrum. We demonstrate how the EXAFS data can be analyzed to extract the maximum structural information and arrive at a structural model that is significantly improved over previous EXAFS characterizations. The EXAFS spectrum for the chemically reduced form of copper binding to the Ac-PHGGGWGQ-NH2 peptide is presented, which is best modeled as a linear 2-coordinate species with a single His imidazole ligand and a water molecule. The extent of in situ photoreduction of the copper center during standard data collection is also presented and EXAFS curve fitting of the photoreduced species reveals an

  20. Highly Infectious Prions Generated by a Single Round of Microplate-Based Protein Misfolding Cyclic Amplification

    PubMed Central

    Moudjou, Mohammed; Sibille, Pierre; Fichet, Guillaume; Reine, Fabienne; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Laferrière, Florent; Richard, Charles-Adrien; Laude, Hubert; Andréoletti, Olivier; Rezaei, Human; Béringue, Vincent

    2013-01-01

    ABSTRACT Measurements of the presence of prions in biological tissues or fluids rely more and more on cell-free assays. Although protein misfolding cyclic amplification (PMCA) has emerged as a valuable, sensitive tool, it is currently hampered by its lack of robustness and rapidity for high-throughput purposes. Here, we made a number of improvements making it possible to amplify the maximum levels of scrapie prions in a single 48-h round and in a microplate format. The amplification rates and the infectious titer of the PMCA-formed prions appeared similar to those derived from the in vivo laboratory bioassays. This enhanced technique also amplified efficiently prions from different species, including those responsible for human variant Creutzfeldt-Jakob disease. This new format should help in developing ultrasensitive, high-throughput prion assays for cognitive, diagnostic, and therapeutic applications. PMID:24381300

  1. Structural and Dynamic Properties of the Human Prion Protein

    PubMed Central

    Chen, Wei; van der Kamp, Marc W.; Daggett, Valerie

    2014-01-01

    Prion diseases involve the conformational conversion of the cellular prion protein (PrPC) to its misfolded pathogenic form (PrPSc). To better understand the structural mechanism of this conversion, we performed extensive all-atom, explicit-solvent molecular-dynamics simulations for three structures of the wild-type human PrP (huPrP) at different pH values and temperatures. Residue 129 is polymorphic, being either Met or Val. Two of the three structures have Met in position 129 and the other has Val. Lowering the pH or raising the temperature induced large conformational changes of the C-terminal globular domain and increased exposure of its hydrophobic core. In some simulations, HA and its preceding S1-HA loop underwent large displacements. The C-terminus of HB was unstable and sometimes partially unfolded. Two hydrophobic residues, Phe-198 and Met-134, frequently became exposed to solvent. These conformational changes became more dramatic at lower pH or higher temperature. Furthermore, Tyr-169 and the S2-HB loop, or the X-loop, were different in the starting structures but converged to common conformations in the simulations for the Met-129, but not the Val-129, protein. α-Strands and β-strands formed in the initially unstructured N-terminus. α-Strand propensity in the N-terminus was different between the Met-129 and Val129 proteins, but β-strand propensity was similar. This study reveals detailed structural and dynamic properties of huPrP, providing insight into the mechanism of the conversion of PrPC to PrPSc. PMID:24606939

  2. A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins.

    PubMed

    Zhang, Jiapu; Wang, Feng

    2014-01-01

    Prion diseases which are serious neurodegenerative diseases that affect humans and animals occur in various of species. Unlike many other neurodegenerative diseases affected by amyloid, prion diseases can be highly infectious. Prion diseases occur in many species. In humans, prion diseases include the fatal human neurodegenerative diseases such as Creutzfeldt-Jakob Disease (CJD), Fatal Familial Insomnia (FFI), Gerstmann-Strussler-Scheinker syndrome (GSS) and Kuru etc. In animals, prion diseases are related to the bovine spongiform encephalopathy (BSE or 'mad-cow' disease) in cattle, the chronic wasting disease (CWD) found in deer and elk, and scrapie seen in sheep and goats, etc. More seriously, the fact that transmission of the prion diseases across the species barrier to other species such as humans has caused a major public health concern worldwide. For example, the BSE in Europe, the CWD in North America, and variant CJDs (vCJDs) in young people of UK. Fortunately, it is discovered that the hydrophobic region of prion proteins (PrP) controls the formation of diseased prions (PrP(Sc)), which provide some clues in control of such diseases. This article provides a detailed survey of recent studies with respect to the PrP hydrophobic region of human PrP(110-136) using molecular dynamics studies. PMID:25373387

  3. Immunologically induced, complement-dependent up-regulation of the prion protein in the mouse spleen: follicular dendritic cells versus capsule and trabeculae.

    PubMed

    Lötscher, Marius; Recher, Mike; Hunziker, Lukas; Klein, Michael A

    2003-06-15

    The expression of the prion protein (PrP) in the follicular dendritic cell network of germinal centers in the spleen is critical for the splenic propagation of the causative agent of prion diseases. However, a physiological role of the prion protein in the periphery remains elusive. To investigate the role and function of PrP expression in the lymphoid system we treated naive mice i.v. with preformed immune complexes or vesicular stomatitis virus. Immunohistochemistry and Western blot analysis of the spleen revealed that 8 days after immunization, immune complexes and vesicular stomatitis virus had both induced a strong increase of PrP expression in the follicular dendritic cell network. Remarkably, this up-regulation did not occur in mice that lack an early factor of the complement cascade, C1q, a component which has been shown previously to facilitate early prion pathogenesis. In addition to the variable PrP level in the germinal centers, we detected steady and abundant PrP expression in the splenic capsule and trabeculae, which are structural elements that have not been associated before with PrP localization. The abundant trabeculo-capsular PrP expression was also evident in spleens of Rag-1-deficient mice, which have been shown before to be incapable of prion expansion. We conclude that trabeculocapsular PrP is not sufficient for splenic prion propagation. Furthermore, our observations may provide important clues for a physiological function of the prion protein and allow a new view on the role of complement and PrP in peripheral prion pathogenesis. PMID:12794132

  4. The Cellular Prion Protein: A Player in Immunological Quiescence

    PubMed Central

    Bakkebø, Maren K.; Mouillet-Richard, Sophie; Espenes, Arild; Goldmann, Wilfred; Tatzelt, Jörg; Tranulis, Michael A.

    2015-01-01

    Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrPC) remains elusive. Here, we present a novel concept suggesting that PrPC contributes to immunological quiescence in addition to cell protection. PrPC is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrPC serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrPC physiology in view of this concept. PMID:26388873

  5. Cell-surface prion protein interacts with glycosaminoglycans.

    PubMed Central

    Pan, Tao; Wong, Boon-Seng; Liu, Tong; Li, Ruliang; Petersen, Robert B; Sy, Man-Sun

    2002-01-01

    We used ELISA and flow cytometry to study the binding of prion protein PrP to glycosaminoglycans (GAGs). We found that recombinant human PrP (rPrP) binds GAGs including chondroitin sulphate A, chondroitin sulphate B, hyaluronic acid, and heparin. rPrP binding to GAGs occurs via the N-terminus, a region known to bind divalent cations. Additionally, rPrP binding to GAGs is enhanced in the presence of Cu2+ and Zn2+, but not Ca2+ and Mn2+. rPrP binds heparin strongest, and the binding is inhibited by certain heparin analogues, including heparin disaccharide and sulphate-containing monosaccharides, but not by acetylated heparin. Full-length normal cellular prion protein (PrPC), but not N-terminally truncated PrPC species, from human brain bind GAGs in a similar Cu2+/Zn2+-enhanced fashion. We found that GAGs specifically bind to a synthetic peptide corresponding to amino acid residues 23-35 in the N-terminus of rPrP. We further demonstrated that while both wild-type PrPC and an octapeptide-repeat-deleted mutant PrP produced by transfected cells bound heparin at the cell surface, the PrP N-terminal deletion mutant and non-transfectant control failed to bind heparin. Binding of heparin to wild-type PrPC on the cell surface results in a reduction of the level of cell-surface PrPC. These results provide strong evidence that PrPC is a surface receptor for GAGs. PMID:12186633

  6. Prion protein detection in serum using micromechanical resonator arrays.

    PubMed

    Varshney, Madhukar; Waggoner, Philip S; Montagna, Richard A; Craighead, Harold G

    2009-12-15

    Prion proteins that have transformed from their normal cellular counterparts (PrP(c)) into infectious form (PrP(res)) are responsible for causing progressive neurodegenerative diseases in numerous species, such as bovine spongiform encephalopathy (BSE) in cattle (also known as mad cow disease), scrapie in sheep, and Creutzfeldt-Jakob disease (CJD) in humans. Due to a possible link between BSE and CJD it is highly desirable to develop non-invasive and ante mortem tests for the detection of prion proteins in bovine samples. Such ante mortem tests of all cows prior to slaughter will help to prevent the introduction of PrP(res) into the human food supply. Furthermore, detection of PrP(res) in donated blood will also help to prevent the transmission of CJD among humans through blood transfusion. In this study, we have continued development of a micromechanical resonator array that is capable of detecting PrP(c) in bovine blood serum. The sensitivity of the resonators for the detection of PrP(c) is further enhanced by the use of secondary mass labels. A pair of antibodies is used in a sandwich immunoassay format to immobilize PrP(c) on the surface of resonators and attach nanoparticles as secondary mass labels to PrP(c). Secondary mass labeling is optimized in terms of incubation time to maximize the frequency shifts that correspond to the presence of PrP(c) on the surface of resonators. Our results show that a minimum of 200 pg mL(-1) of PrP(c) in blood serum can be detected using micromechanical resonator arrays. PMID:19836525

  7. Influence of prion strain on prion protein adsorption to soil in a competitive matrix.

    PubMed

    Saunders, Samuel E; Bartz, Jason C; Bartelt-Hunt, Shannon L

    2009-07-15

    It is likely that the soil environment serves as a stable reservoir of infectious chronic wasting disease (CWD) and scrapie prions, as well as a potential reservoir of bovine spongiform encephalopathy (BSE, or "mad cow" disease). Prion adsorption to soil may play an important role in prion mobility, proteolysis, and infectivity. Differences in PrP environmental fate are possible due to the strain- and species-dependent structure of PrP(Sc). Kinetic and isothermal studies of PrP adsorption to sand and two whole soils were conducted using HY and DY TME-infected hamster, uninfected hamster, and CWD-infected elk brain homogenates as competitive PrP sources. The role of the N-terminus in PrP adsorption was also investigated. We report strain and species differences in PrP adsorption to soil over time and as a function of aqueous concentration, indicating that the fate of prions in the environment may vary with the prion strain and species infected. Our data also provide evidence that the N-terminal region of PrP enhances adsorption to clay but may hinder adsorption to sand. PrP adsorption was maximal at an intermediate aqueous concentration, most likely due to the competitive brain homogenate matrix in which it enters the soil environment. PMID:19708348

  8. Evolutionary Implications of Metal Binding Features in Different Species’ Prion Protein: An Inorganic Point of View

    PubMed Central

    La Mendola, Diego; Rizzarelli, Enrico

    2014-01-01

    Prion disorders are a group of fatal neurodegenerative conditions of mammals. The key molecular event in the pathogenesis of such diseases is the conformational conversion of prion protein, PrPC, into a misfolded form rich in β-sheet structure, PrPSc, but the detailed mechanistic aspects of prion protein conversion remain enigmatic. There is uncertainty on the precise physiological function of PrPC in healthy individuals. Several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ mainly through a domain composed by four to five repeats of eight amino acids. In addition to mammals, PrP homologues have also been identified in birds, reptiles, amphibians and fish. The globular domain of protein is retained in the different species, suggesting that the protein carries out an essential common function. However, the comparison of amino acid sequences indicates that prion protein has evolved differently in each vertebrate class. The primary sequences are strongly conserved in each group, but these exhibit a low similarity with those of mammals. The N-terminal domain of different prions shows tandem amino acid repeats with an increasing amount of histidine residues going from amphibians to mammals. The difference in the sequence affects the number of copper binding sites, the affinity and the coordination environment of metal ions, suggesting that the involvement of prion in metal homeostasis may be a specific characteristic of mammalian prion protein. In this review, we describe the similarities and the differences in the metal binding of different species’ prion protein, as revealed by studies carried out on the entire protein and related peptide fragments. PMID:24970230

  9. Chimeric elk/mouse prion proteins in transgenic mice

    PubMed Central

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L.; DeArmond, Stephen J.

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions. PMID:23100369

  10. Attempts to restore scrapie prion infectivity after exposure to protein denaturants.

    PubMed Central

    Prusiner, S B; Groth, D; Serban, A; Stahl, N; Gabizon, R

    1993-01-01

    A wealth of experimental evidence argues that infectious prions are composed largely, if not entirely, of the scrapie isoform of the prion protein. We attempted to restore scrapie infectivity after exposure to protein denaturants including urea, chaotropic salts, and SDS. None of the procedures restored infectivity. Dialysis to remove slowly chaotropic ions and urea failed to restore scrapie infectivity. Attempts to create monomers of the scrapie isoform of the prion protein under nondenaturing conditions using a wide variety of detergents have been unsuccessful, to date, except for one report claiming that scrapie infectivity could be recovered from 12% polyacrylamide gels after SDS/PAGE [Brown, P., Liberski, P. P., Wolff, A. & Gajdusek, D. C. (1990) Proc. Natl. Acad. Sci. USA 87, 7240-7244]. We found that < 0.001% of the infectious prion titer could be recovered from the region of a polyacrylamide gel where the denatured proteinase K-resistant core of the scrapie isoform of the prion protein and other 30-kDa proteins migrate. We conclude that under the denaturing conditions used for SDS/PAGE, the scrapie isoform of the prion protein is denatured and little or no renaturation occurs upon injection of fractions eluted from gels into animals for bioassays. Images Fig. 2 PMID:8464892

  11. Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease

    SciTech Connect

    Apostol, Marcin I.; Sawaya, Michael R.; Cascio, Duilio; Eisenberg, David

    2010-09-23

    A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are 'steric zippers,' pairs of interacting {beta}-sheets. Both structures of these 'homozygous steric zippers' reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.

  12. Nitric oxide induces prion protein via MEK and p38 MAPK signaling.

    PubMed

    Wang, Vinchi; Chuang, Tzu-Chao; Hsu, Yaw-Don; Chou, Wei-Yuan; Kao, Ming-Ching

    2005-07-22

    The prion diseases or transmissible spongiform encephalopathy, such as human Creutzfeldt-Jakob disease (CJD) and so-called mad cow disease, are attributed to the causative agent, the scrapie variant of prion protein (PrP(Sc)) which causes fatal neurodegeneration. To investigate if stresses such as nitric oxide (NO) induced the cellular isoform of prion protein (PrP(C)), lipopolysaccharide, and sodium nitroprusside were used to treat N2a and NT2 cells, which resulted in elevated levels of the PRNP mRNA and prion protein. The signaling pathway for the NO-induced PrP(C) production involved guanylyl cyclase, MEK, and p38 MAPK as shown by the effect of specific pharmacological inhibitors ODQ, PD98059, and SB203580, respectively. Knowing the PrP induction by the biologically existing stimulus, this study provides useful information about the possible cellular mechanism and strategies for the treatment of CJD. PMID:15936714

  13. Prion Protein-Specific Antibodies-Development, Modes of Action and Therapeutics Application

    PubMed Central

    Rovis, Tihana Lenac; Legname, Giuseppe

    2014-01-01

    Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are lethal neurodegenerative disorders involving the misfolding of the host encoded cellular prion protein, PrPC. This physiological form of the protein is expressed throughout the body, and it reaches the highest levels in the central nervous system where the pathology occurs. The conversion into the pathogenic isoform denoted as prion or PrPSc is the key event in prion disorders. Prominent candidates for the treatment of prion diseases are antibodies and their derivatives. Anti-PrPC antibodies are able to clear PrPSc from cell culture of infected cells. Furthermore, application of anti-PrPC antibodies suppresses prion replication in experimental animal models. Major drawbacks of immunotherapy are immune tolerance, the risks of neurotoxic side effects, limited ability of compounds to cross the blood-brain barrier and their unfavorable pharmacokinetic. The focus of this review is to recapitulate the current understanding of the molecular mechanisms for antibody mediated anti-prion activity. Although relevant for designing immunotherapeutic tools, the characterization of key antibody parameters shaping the molecular mechanism of the PrPC to PrPSc conversion remains elusive. Moreover, this review illustrates the various attempts towards the development of anti-PrP antibody compounds and discusses therapeutic candidates that modulate PrP expression. PMID:25275428

  14. Role of proteolytic activation of protein kinase Cδ in the pathogenesis of prion disease

    PubMed Central

    Harischandra, Dilshan S; Kondru, Naveen; Martin, Dustin P; Kanthasamy, Arthi; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Anumantha G

    2014-01-01

    Prion diseases are infectious and inevitably fatal neurodegenerative diseases characterized by prion replication, widespread protein aggregation and spongiform degeneration of major brain regions controlling motor function. Oxidative stress has been implicated in prion-related neuronal degeneration, but the molecular mechanisms underlying prion-induced oxidative damage are not well understood. In this study, we evaluated the role of oxidative stress-sensitive, pro-apoptotic protein kinase Cδ (PKCδ) in prion-induced neuronal cell death using cerebellar organotypic slice cultures (COSC) and mouse models of prion diseases. We found a significant upregulation of PKCδ in RML scrapie-infected COSC, as evidenced by increased levels of both PKCδ protein and its mRNA. We also found an enhanced regulatory phosphorylation of PKCδ at its two regulatory sites, Thr505 in the activation loop and Tyr311 at the caspase-3 cleavage site. The prion infection also induced proteolytic activation of PKCδ in our COSC model. Immunohistochemical analysis of scrapie-infected COSC revealed loss of PKCδ positive Purkinje cells and enhanced astrocyte proliferation. Further examination of PKCδ signaling in the RML scrapie adopted in vivo mouse model showed increased proteolytic cleavage and Tyr 311 phosphorylation of the kinase. Notably, we observed a delayed onset of scrapie-induced motor symptoms in PKCδ knockout (PKCδ−/−) mice as compared with wild-type (PKCδ+/+) mice, further substantiating the role of PKCδ in prion disease. Collectively, these data suggest that PKCδ signaling likely plays a role in the neurodegenerative processes associated with prion diseases. PMID:24576946

  15. Rapid and Highly Sensitive Detection of Variant Creutzfeldt-Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies.

    PubMed

    Belondrade, Maxime; Nicot, Simon; Béringue, Vincent; Coste, Joliette; Lehmann, Sylvain; Bougard, Daisy

    2016-01-01

    The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10-8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions. PMID:26800081

  16. Rapid and Highly Sensitive Detection of Variant Creutzfeldt - Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies

    PubMed Central

    Belondrade, Maxime; Nicot, Simon; Béringue, Vincent; Coste, Joliette; Lehmann, Sylvain; Bougard, Daisy

    2016-01-01

    The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions. PMID:26800081

  17. Synthesis and trafficking of prion proteins in cultured cells.

    PubMed Central

    Taraboulos, A; Raeber, A J; Borchelt, D R; Serban, D; Prusiner, S B

    1992-01-01

    Scrapie prions are composed largely, if not entirely, of the scrapie prion protein (PrPSc) that is encoded by a chromosomal gene. Scrapie-infected mouse neuroblastoma (ScN2a) and hamster brain (ScHaB) cells synthesize PrPSc from the normal PrP isoform (PrPC) or a precursor through a posttranslational process. In pulse-chase radiolabeling experiments, we found that presence of brefeldin A (BFA) during both the pulse and the chase periods prevented the synthesis of PrPSc. Removal of BFA after the chase permitted synthesis of PrPSc to resume. BFA also blocked the export of nascent PrPC to the cell surface but did not alter the distribution of intracellular deposits of PrPSc. Under the same conditions, BFA caused the redistribution of the Golgi marker MG160 into the endoplasmic reticulum (ER). Using monensin as an inhibitor of mid-Golgi glycosylation, we determined that PrP traverses the mid-Golgi stack before acquiring protease resistance. About 1 h after the formation of PrPSc, its N-terminus was removed by a proteolytic process that was inhibited by ammonium chloride, chloroquine, and monensin, arguing that this is a lysosomal event. These results suggest that the ER is not competent for the synthesis of PrPSc and that the synthesis of PrPSc occurs during the transit of PrP between the mid-Golgi stack and lysosomes. Presumably, the endocytic pathway features in the synthesis of PrPSc. Images PMID:1356522

  18. Prion protein promotes kidney iron uptake via its ferrireductase activity.

    PubMed

    Haldar, Swati; Tripathi, Ajai; Qian, Juan; Beserra, Amber; Suda, Srinivas; McElwee, Matthew; Turner, Jerrold; Hopfer, Ulrich; Singh, Neena

    2015-02-27

    Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrP(C)) from its normal conformation to an aggregated, PrP-scrapie (PrP(Sc)) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrP(C) in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrP(C) is lacking. Kidney provides a relevant model for this evaluation because PrP(C) is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrP(C) promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of (59)Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP(-/-)) mouse kidney relative to PrP(+/+) controls. Selective in vivo radiolabeling of plasma NTBI with (59)Fe revealed similar results. Expression of exogenous PrP(C) in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of (59)Fe-NTBI and to a smaller extent (59)Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrP(Δ51-89)) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrP(C) to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrP(C) promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism. PMID:25572394

  19. Prion Protein Promotes Kidney Iron Uptake via Its Ferrireductase Activity*

    PubMed Central

    Haldar, Swati; Tripathi, Ajai; Qian, Juan; Beserra, Amber; Suda, Srinivas; McElwee, Matthew; Turner, Jerrold; Hopfer, Ulrich; Singh, Neena

    2015-01-01

    Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrPC) from its normal conformation to an aggregated, PrP-scrapie (PrPSc) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrPC in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrPC is lacking. Kidney provides a relevant model for this evaluation because PrPC is expressed in the kidney, and ∼370 μg of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrPC promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of 59Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP−/−) mouse kidney relative to PrP+/+ controls. Selective in vivo radiolabeling of plasma NTBI with 59Fe revealed similar results. Expression of exogenous PrPC in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of 59Fe-NTBI and to a smaller extent 59Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrPΔ51–89) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrPC to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrPC promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism. PMID:25572394

  20. A Structural Overview of the Vertebrate Prion Proteins

    PubMed Central

    Pastore, Annalisa

    2007-01-01

    Among the diseases caused by protein misfolding is the family associated with the prion protein (PrP). This is a small extracellular membrane-anchored molecule of yet unknown function. Understanding how PrP folds both into its cellular and pathological forms is thought to be crucial for explaining protein misfolding in general and the specific role of PrP in disease. Since the first structure determination, an increasing number of structural studies of PrP have become available, showing that the protein is formed by a flexible N-terminal region and a highly conserved globular C-terminal domain. We review here the current knowledge on PrP structure. We focus on vertebrate PrPs and analyse in detail the similarities and the differences among the coordinates of the C-terminal domain of PrP from different species, in search for understanding the mechanism of disease-causing mutations and the molecular bases of species barrier. PMID:19164911

  1. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics.

    PubMed

    Mead, Simon; Stumpf, Michael P H; Whitfield, Jerome; Beck, Jonathan A; Poulter, Mark; Campbell, Tracy; Uphill, James B; Goldstein, David; Alpers, Michael; Fisher, Elizabeth M C; Collinge, John

    2003-04-25

    Kuru is an acquired prion disease largely restricted to the Fore linguistic group of the Papua New Guinea Highlands, which was transmitted during endocannibalistic feasts. Heterozygosity for a common polymorphism in the human prion protein gene (PRNP) confers relative resistance to prion diseases. Elderly survivors of the kuru epidemic, who had multiple exposures at mortuary feasts, are, in marked contrast to younger unexposed Fore, predominantly PRNP 129 heterozygotes. Kuru imposed strong balancing selection on the Fore, essentially eliminating PRNP 129 homozygotes. Worldwide PRNP haplotype diversity and coding allele frequencies suggest that strong balancing selection at this locus occurred during the evolution of modern humans. PMID:12690204

  2. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-01

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation. PMID:27390876

  3. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1.

    PubMed

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    Prion diseases involve the conversion of the endogenous cellular prion protein, PrP(C), into a misfolded infectious isoform, PrP(Sc). Several functions have been attributed to PrP(C), and its role has also been investigated in the olfactory system. PrP(C) is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp(-/-) mice showed impaired behavior in olfactory tests. Given the high PrP(C) expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrP(C)-binding partners. Ten different putative PrP(C) ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrP(C) with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrP(C)-Stub1 interaction are under investigation. The PrP(C)-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrP(C) is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451

  4. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1

    PubMed Central

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    ABSTRACT Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp−/− mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451

  5. Allosteric function and dysfunction of the prion protein.

    PubMed

    Linden, Rafael; Cordeiro, Yraima; Lima, Luis Mauricio T R

    2012-04-01

    Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrP(C)), its conformational conversion, aggregation and precipitation. We recently proposed that PrP(C) serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrP(C), which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrP(C) and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrP(C), and that allosteric dysfunction of PrP(C) has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrP(C), as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases. PMID:21984610

  6. Unusual cerebral vascular prion protein amyloid distribution in scrapie-infected transgenic mice expressing anchorless prion protein

    PubMed Central

    2013-01-01

    Background In some prion diseases, misfolded aggregated protease-resistant prion protein (PrPres) is found in brain as amyloid, which can cause cerebral amyloid angiopathy. Small diffusible precursors of PrPres amyloid might flow with brain interstitial fluid (ISF), possibly accounting for the perivascular and intravascular distribution of PrPres amyloid. We previously reported that PrPres amyloid in scrapie-infected transgenic mice appeared to delay clearance of microinjected brain ISF tracer molecules. Results Here we studied distribution of PrPres amyloid on capillaries, arteries and veins to test whether vascular specificity of PrPres corresponded to distribution of ISF tracer molecules. To distinguish PrPres-positive arteries from veins and capillaries, scrapie-infected mouse brains were studied by immunodetection of alpha smooth muscle actin. ISF was studied using fluorescein-labeled ovalbumin microinjected into brain as a tracer. In infected preclinical or clinical mice, PrPres was found mostly on capillaries (73-78%). Lower levels were found on arteries (11-14%) and veins (11-13%). Compared to PrPres, ISF tracer was found at higher levels on capillaries (96-97%), and the remaining tracer was found at a skewed ratio of 4 to 1 on arteries and veins respectively. Conclusions PrPres association with blood vessels suggested that ISF flow might transport diffusible PrPres precursor molecules to perivascular sites. However, the different vascular specificity of PrPres and ISF tracer indicated that ISF flow did not alone control PrPres dissemination. Possibly blood vessel basement membrane (BM) components, such as glucosaminoglycans, might concentrate small PrPres aggregates and serve as scaffolds for PrP conversion on multiple vessel types. PMID:24252347

  7. Human tonsil-derived follicular dendritic-like cells are refractory to human prion infection in vitro and traffic disease-associated prion protein to lysosomes.

    PubMed

    Krejciova, Zuzana; De Sousa, Paul; Manson, Jean; Ironside, James W; Head, Mark W

    2014-01-01

    The molecular mechanisms involved in human cellular susceptibility to prion infection remain poorly defined. This is due, in part, to the absence of any well characterized and relevant cultured human cells susceptible to infection with human prions, such as those involved in Creutzfeldt-Jakob disease. In variant Creutzfeldt-Jakob disease, prion replication is thought to occur first in the lymphoreticular system and then spread into the brain. We have, therefore, examined the susceptibility of a human tonsil-derived follicular dendritic cell-like cell line (HK) to prion infection. HK cells were found to display a readily detectable, time-dependent increase in cell-associated abnormal prion protein (PrP(TSE)) when exposed to medium spiked with Creutzfeldt-Jakob disease brain homogenate, resulting in a coarse granular perinuclear PrP(TSE) staining pattern. Despite their high level of cellular prion protein expression, HK cells failed to support infection, as judged by longer term maintenance of PrP(TSE) accumulation. Colocalization studies revealed that exposure of HK cells to brain homogenate resulted in increased numbers of detectable lysosomes and that these structures immunostained intensely for PrP(TSE) after exposure to Creutzfeldt-Jakob disease brain homogenate. Our data suggest that human follicular dendritic-like cells and perhaps other human cell types are able to avoid prion infection by efficient lysosomal degradation of PrP(TSE). PMID:24183781

  8. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  9. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    SciTech Connect

    Magzoub, Mazin; Sandgren, Staffan; Lundberg, Pontus; Oglecka, Kamila; Lilja, Johanna; Wittrup, Anders; Goeran Eriksson, L.E.; Langel, Ulo; Belting, Mattias . E-mail: mattias.belting@med.lu.se; Graeslund, Astrid . E-mail: astrid@dbb.su.se

    2006-09-22

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases.

  10. Systemic Delivery of siRNA Down Regulates Brain Prion Protein and Ameliorates Neuropathology in Prion Disorder

    PubMed Central

    Resina, Sarah; Brillaud, Elsa; Casanova, Danielle; Vincent, Charles; Hamela, Claire; Poupeau, Sophie; Laffont, Mathieu; Gabelle, Audrey; Delaby, Constance; Belondrade, Maxime; Arnaud, Jacques-Damien; Alvarez, Maria-Teresa; Maurel, Jean-Claude; Maurel, Patrick; Crozet, Carole

    2014-01-01

    One of the main challenges for neurodegenerative disorders that are principally incurable is the development of new therapeutic strategies, which raises important medical, scientific and societal issues. Creutzfeldt-Jakob diseases are rare neurodegenerative fatal disorders which today remain incurable. The objective of this study was to evaluate the efficacy of the down-regulation of the prion protein (PrP) expression using siRNA delivered by, a water-in-oil microemulsion, as a therapeutic candidate in a preclinical study. After 12 days rectal mucosa administration of Aonys/PrP-siRNA in mice, we observed a decrease of about 28% of the brain PrPC level. The effect of Aonys/PrP-siRNA was then evaluated on prion infected mice. Several mice presented a delay in the incubation and survival time compared to the control groups and a significant impact was observed on astrocyte reaction and neuronal survival in the PrP-siRNA treated groups. These results suggest that a new therapeutic scheme based an innovative delivery system of PrP-siRNA can be envisioned in prion disorders. PMID:24551164

  11. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation.

    PubMed

    Winkler, Juliane; Tyedmers, Jens; Bukau, Bernd; Mogk, Axel

    2012-08-01

    Hsp100 and Hsp70 chaperones in bacteria, yeast, and plants cooperate to reactivate aggregated proteins. Disaggregation relies on Hsp70 function and on ATP-dependent threading of aggregated polypeptides through the pore of the Hsp100 AAA(+) hexamer. In yeast, both chaperones also promote propagation of prions by fibril fragmentation, but their functional interplay is controversial. Here, we demonstrate that Hsp70 chaperones were essential for species-specific targeting of their Hsp100 partner chaperones ClpB and Hsp104, respectively, to heat-induced protein aggregates in vivo. Hsp70 inactivation in yeast also abrogated Hsp104 targeting to almost all prions tested and reduced fibril mobility, which indicates that fibril fragmentation by Hsp104 requires Hsp70. The Sup35 prion was unique in allowing Hsp70-independent association of Hsp104 via its N-terminal domain, which, however, was nonproductive. Hsp104 overproduction even outcompeted Hsp70 for Sup35 prion binding, which explains why this condition prevented Sup35 fragmentation and caused prion curing. Our findings indicate a conserved mechanism of Hsp70-Hsp100 cooperation at the surface of protein aggregates and prion fibrils. PMID:22869599

  12. Combined copper/zinc attachment to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  13. Normal Cellular Prion Protein Protects against Manganese-induced Oxidative Stress and Apoptotic Cell Death

    PubMed Central

    Choi, Christopher J.; Anantharam, Vellareddy; Saetveit, Nathan J.; Houk, Robert. S.; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2012-01-01

    The normal prion protein is abundantly expressed in the CNS, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrPC -cells) and prion-knockout (PrPKO -cells). Exposure to Mn (10 μM-1 mM) for 24 hr produced a dose-dependent cytotoxic response in both PrPC -cells and PrPKO -cells. Interestingly, PrPC -cells (EC50 117.6μM) were more resistant to Mn-induced cytotoxicity, as compared to PrPKO -cells (EC50 59.9μM), suggesting a protective role for PrPC against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrPC -cells as compared to PrPKO -cells. Furthermore, Mn-induced mitochondrial depolarization and ROS generation were significantly attenuated in PrPC -cells as compared to PrPKO -cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrPC -cells and PrPKO -cells; however, Mn treatment caused greater depletion of GSH in PrPKO -cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and oxidative stress-inducer hydrogen peroxide (100μM) was significantly suppressed in PrPC -cells as compared to PrPKO -cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death. PMID:17483122

  14. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay.

    PubMed

    Johnson, Christopher J; Carlson, Christina M; Morawski, Aaron R; Manthei, Alyson; Cashman, Neil R

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitro prion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host's species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host's species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent. PMID:25867521

  15. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area

    PubMed Central

    Nichols, TA; Pulford, Bruce; Wyckoff, A Christy; Meyerett, Crystal; Michel, Brady; Gertig, Kevin; Hoover, Edward A; Jewell, Jean E; Telling, Glenn C

    2009-01-01

    Chronic wasting disease (CWD) is the only known transmissible spongiform encephalopathy affecting free-ranging wildlife. Although the exact mode of natural transmission remains unknown, substantial evidence suggests that prions can persist in the environment, implicating components thereof as potential prion reservoirs and transmission vehicles.1–4 CWD-positive animals may contribute to environmental prion load via decomposing carcasses and biological materials including saliva, blood, urine and feces.5–7 Sensitivity limitations of conventional assays hamper evaluation of environmental prion loads in soil and water. Here we show the ability of serial protein misfolding cyclic amplification (sPMCA) to amplify a 1.3 × 10−7 dilution of CWD-infected brain homogenate spiked into water samples, equivalent to approximately 5 × 107 protease resistant cervid prion protein (PrPCWD) monomers. We also detected PrPCWD in one of two environmental water samples from a CWD endemic area collected at a time of increased water runoff from melting winter snow pack, as well as in water samples obtained concurrently from the flocculation stage of water processing by the municipal water treatment facility. Bioassays indicated that the PrPCWD detected was below infectious levels. These data demonstrate detection of very low levels of PrPCWD in the environment by sPMCA and suggest persistence and accumulation of prions in the environment that may promote CWD transmission. PMID:19823039

  16. The prion protein family: a view from the placenta

    PubMed Central

    Makzhami, Samira; Passet, Bruno; Halliez, Sophie; Castille, Johan; Moazami-Goudarzi, Katayoun; Duchesne, Amandine; Vilotte, Marthe; Laude, Hubert; Mouillet-Richard, Sophie; Béringue, Vincent; Vaiman, Daniel; Vilotte, Jean-Luc

    2014-01-01

    Based on its developmental pattern of expression, early studies suggested the implication of the mammalian Prion protein PrP, a glycosylphosphatidylinositol-anchored ubiquitously expressed and evolutionary conserved glycoprotein encoded by the Prnp gene, in early embryogenesis. However, gene invalidation in several species did not result in obvious developmental abnormalities and it was only recently that it was associated in mice with intra-uterine growth retardation and placental dysfunction. A proposed explanation for this lack of easily detectable developmental-related phenotype is the existence in the genome of one or more gene (s) able to compensate for the absence of PrP. Indeed, two other members of the Prnp gene family have been recently described, Doppel and Shadoo, and the consequences of their invalidation alongside that of PrP tested in mice. No embryonic defect was observed in mice depleted for Doppel and PrP. Interestingly, the co-invalidation of PrP and Shadoo in two independent studies led to apparently conflicting observations, with no apparent consequences in one report and the observation of a developmental defect of the ectoplacental cone that leads to early embryonic lethality in the other. This short review aims at summarizing these recent, apparently conflicting data highlighting the related biological questions and associated implications in terms of animal and human health. PMID:25364742

  17. Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier.

    PubMed

    Sharma, Aditi; Bruce, Kathryn L; Chen, Buxin; Gyoneva, Stefka; Behrens, Sven H; Bommarius, Andreas S; Chernoff, Yury O

    2016-01-15

    Amyloid propagation requires high levels of sequence specificity so that only molecules with very high sequence identity can form cross-β-sheet structures of sufficient stringency for incorporation into the amyloid fibril. This sequence specificity presents a barrier to the transmission of prions between two species with divergent sequences, termed a species barrier. Here we study the relative effects of protein sequence, seed conformation, and environment on the species barrier strength and specificity for the yeast prion protein Sup35p from three closely related species of the Saccharomyces sensu stricto group; namely, Saccharomyces cerevisiae, Saccharomyces bayanus, and Saccharomyces paradoxus. Through in vivo plasmid shuffle experiments, we show that the major characteristics of the transmission barrier and conformational fidelity are determined by the protein sequence rather than by the cellular environment. In vitro data confirm that the kinetics and structural preferences of aggregation of the S. paradoxus and S. bayanus proteins are influenced by anions in accordance with their positions in the Hofmeister series, as observed previously for S. cerevisiae. However, the specificity of the species barrier is primarily affected by the sequence and the type of anion present during the formation of the initial seed, whereas anions present during the seeded aggregation process typically influence kinetics rather than the specificity of prion conversion. Therefore, our work shows that the protein sequence and the conformation variant (strain) of the prion seed are the primary determinants of cross-species prion specificity both in vivo and in vitro. PMID:26565023

  18. Use of molecular dynamics simulation to explore structural facets of human prion protein with pathogenic mutations.

    PubMed

    Borgohain, Gargi; Dan, Nirnoy; Paul, Sandip

    2016-06-01

    Prion diseases are caused by mutations at different positions of the prion protein. A large number of pathogenic mutations are reported in the literature. Two of such point mutations T193I and R148H located at two different helical strands (H2 and H1) of the prion protein associated with fCJD (familial Creutzfeld-Jacob disease) are studied. We have used classical molecular dynamics (MD) simulation technique to understand the conformational changes and dynamics of the protein under the effect of mutation and compared with the native prion protein. The results indicate that: both mutated forms are conformationally steadier than the native prion protein; although there are no major conformational transitions, R148H leads to decreased native β-sheet content, H1 helix becomes less fluctuating, two new turn regions appear and conversion of a 310 region to coil form takes place. Mutation T193I leads to a steady H1 helix, a decreased native β-sheet content and a new 310 region appears in H2 helix. Moreover, mutation R148H results in decreased conformational space with a highly compact and nonfluctuating form. PMID:27107654

  19. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  20. Human prion protein sequence elements impede cross-species chronic wasting disease transmission

    PubMed Central

    Kurt, Timothy D.; Jiang, Lin; Fernández-Borges, Natalia; Bett, Cyrus; Liu, Jun; Yang, Tom; Spraker, Terry R.; Castilla, Joaquín; Eisenberg, David; Kong, Qingzhong; Sigurdson, Christina J.

    2015-01-01

    Chronic wasting disease (CWD) is a fatal prion disease of North American deer and elk and poses an unclear risk for transmission to humans. Human exposure to CWD occurs through hunting activities and consumption of venison from prion-infected animals. Although the amino acid residues of the prion protein (PrP) that prevent or permit human CWD infection are unknown, NMR-based structural studies suggest that the β2-α2 loop (residues 165–175) may impact species barriers. Here we sought to define PrP sequence determinants that affect CWD transmission to humans. We engineered transgenic mice that express human PrP with four amino acid substitutions that result in expression of PrP with a β2-α2 loop (residues 165–175) that exactly matches that of elk PrP. Compared with transgenic mice expressing unaltered human PrP, mice expressing the human-elk chimeric PrP were highly susceptible to elk and deer CWD prions but were concurrently less susceptible to human Creutzfeldt-Jakob disease prions. A systematic in vitro survey of amino acid differences between humans and cervids identified two additional residues that impacted CWD conversion of human PrP. This work identifies amino acids that constitute a substantial structural barrier for CWD transmission to humans and helps illuminate the molecular requirements for cross-species prion transmission. PMID:25705888

  1. Accumulation and dissemination of prion protein in experimental sheep scrapie in the natural host

    PubMed Central

    Ryder, Stephen J; Dexter, Glenda E; Heasman, Lindsay; Warner, Richard; Moore, S Jo

    2009-01-01

    Background In order to study the sites of uptake and mechanisms of dissemination of scrapie prions in the natural host under controlled conditions, lambs aged 14 days and homozygous for the VRQ allele of the PrP gene were infected by the oral route. Infection occurred in all lambs with a remarkably short and highly consistent incubation period of approximately 6 months. Challenge of lambs at approximately eight months of age resulted in disease in all animals, but with more variable incubation periods averaging significantly longer than those challenged at 14 days. This model provides an excellent system in which to study the disease in the natural host by virtue of the relatively short incubation period and close resemblance to natural infection. Results Multiple sites of prion uptake were identified, of which the most important was the Peyer's patch of the distal ileum. Neuroinvasion was detected initially in the enteric nervous system prior to infection of the central nervous system. At end stage disease prion accumulation was widespread throughout the entire neuraxis, but vacuolar pathology was absent in most animals that developed disease at 6–7 months of age. Conclusion Initial spread of detectable PrP was consistent with drainage in afferent lymph to dependent lymph nodes. Subsequent accumulation of prions in lymphoid tissue not associated with the gut is consistent with haematogenous spread. In addition to macrophages and follicular dendritic cells, prion containing cells consistent with afferent lymph dendritic cells were identified and are suggested as a likely vehicle for carriage of prions from initial site of uptake to the lymphoreticular system, and as potential carriers of prion protein in blood. It is apparent that spongiform change, the characteristic lesion of scrapie and other prion diseases, is not responsible for the clinical signs in sheep, but may develop in an age dependent manner. PMID:19243608

  2. Redox behaviors of the neurotoxic portion in human prion protein, HuPrP(106-126)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Norifumi; Kuwata, Kazuo

    2010-09-01

    A peptide fragment of human prion protein, HuPrP(106-126), has been reported to mimic the pathological features underlying prion diseases. Although the actual neurotoxic mechanism of HuPrP(106-126) has not been elucidated, several hypotheses has been proposed based on the role for copper. In this study, to understand the toxic function of HuPrP(106-126) from a viewpoint of electrochemical competence, we investigated redox properties of copper ion complexes with four different binding motifs of a model of HuPrP(106-126) based on density functional theory calculations. We found that the HuPrP(106-126)-derived models exhibited diverse redox activities that depended on copper-binding conformations.

  3. Dividing roles of prion protein in staurosporine-mediated apoptosis.

    PubMed

    Zhang, Ying; Qin, Kefeng; Wang, Jianwei; Hung, Tao; Zhao, Richard Y

    2006-10-20

    Prion protein (PrPC) is a normal cellular glycoprotein that is expressed in almost all tissues including the central nervous system. Much attention has been focused on this protein because conversion of the normal PrPC to the diseased form (PrPSc) plays an essential role in transmissible spongiform encephalopathies such as mad cow disease and Creutzfeldt-Jakob disease. In spite of the extensive effort, the normal physiological function of PrPC remains elusive. Emerging evidence suggests that PrPC plays a protective role against cellular stresses including apoptosis induced by various pro-apoptotic agents such as Bax and staurosporine (STS), however, other reports showed overexpression of PrPC enhances STS-mediated apoptosis. In this study, we took a different approach by depleting endogenous PrPC using specific interfering RNA technique and compared the depleting and overproducing effects of PrPC on STS-induced apoptosis in neuro-2a (N2a) cells. We demonstrate here that down-regulation of PrPC sensitizes N2a cells to STS-induced cytotoxicity and apoptosis. The enhanced apoptosis induced by STS was shown by increased DNA fragmentation, immunoreactivity of Bax, and caspase-3 cleavage. We also showed that overproduction of PrPC had little or no effect on STS-mediated DNA fragmentation in N2a cells but it augments STS-mediated apoptosis in HEK293 cells, suggesting a cell line-specific effect. In addition, the inhibitory effect of PrPC on STS-mediated cellular stress appears to be modulated in part through induction of cell cycle G2 accumulation. Together, our data suggest that physiological level of endogenous PrPC plays a protective role against STS-mediated cellular stress. Loss of this protection could render cells more prone to cellular insults such as STS. PMID:16950206

  4. Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins.

    PubMed

    Zhang, Jiapu; Zhang, Yuanli

    2014-02-01

    Prion diseases, traditionally referred to as transmissible spongiform encephalopathies (TSEs), are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep and goats, bovine spongiform encephalopathy (BSE or mad-cow disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)), and the conversion of PrP(C) to PrP(Sc) is believed to involve conformational change from a predominantly α-helical protein to one rich in β-sheet structure. Such a conformational change may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show that they have a low susceptibility to be infected by PrP(Sc), but recently it was reported that rabbit prions can be generated through saPMCA (serial automated Protein Misfolding Cyclic Amplification) in vitro and the rabbit prion is infectious and transmissible. In this paper, we first do a detailed survey on the research advances of rabbit prion protein (RaPrP) and then we perform MD simulations on the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants. The survey shows to us that rabbits were not challenged directly in vivo with other known prion strains and the saPMCA result did not pass the test of the known BSE strain of cattle. Thus, we might still look rabbits as a prion resistant species. MD results indicate that the three α-helices of the wild-type are stable under the neutral pH environment (but under low pH environment the three α-helices have been unfolded into β-sheets), and the three α-helices of the mutants (I214V and S173N) are unfolded into rich β-sheet structures under

  5. Investigating the Spreading and Toxicity of Prion-like Proteins Using the Metazoan Model Organism C. elegans

    PubMed Central

    Nussbaum-Krammer, Carmen I.; Neto, Mário F.; Brielmann, Renée M.; Pedersen, Jesper S.; Morimoto, Richard I.

    2016-01-01

    Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans. PMID:25591151

  6. The physiological role of the normal cellular prion protein (PrPC).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The normal cellular prion protein (PrPC) is a highly conserved protein expressed by the prnp gene. It is an essential substrate for the propagation of transmissible spongiform encephalopathies (TSEs), but its natural function remains uncertain. Mice, genetically engineered to be devoid of the prnp...

  7. Resolution-enhanced native acidic gel electrophoresis: a method for resolving, sizing, and quantifying prion protein oligomers.

    PubMed

    Ladner, Carol L; Wishart, David S

    2012-07-01

    The formation of β-sheet-rich prion protein (PrP(β)) oligomers from native or cellular PrP(c) is thought to be a key step in the development of prion diseases. To assist in this characterization process we have developed a rapid and remarkably high resolution gel electrophoresis technique called RENAGE (resolution-enhanced native acidic gel electrophoresis) for separating, sizing, and quantifying oligomeric PrP(β) complexes. PrP(β) oligomers formed via either urea/salt or acid conversion can be resolved by RENAGE into a clear set of oligomeric bands differing by just one subunit. Calibration of the size of the PrP(β) oligomer bands was made possible with a cross-linked mouse PrP(90-232) ladder (1- to 11-mer) generated using ruthenium bipyridyl-based photoinduced cross-linking of unmodified proteins (PICUP). This PrP PICUP ladder allowed the size and abundance of PrP(β) oligomers formed from urea/salt and acid conversion to be determined. This distribution consists of 7-, 8-, 9-, 10-, and 11-mers, with the most abundant species being the 8-mer. The high-resolution separation afforded by RENAGE has allowed us to investigate distinctive size and population changes in PrP(β) oligomers formed under various conversion conditions, with various construct lengths, from various species or in the presence of anti-prion compounds. PMID:22490465

  8. Annealing prion protein amyloid fibrils at high temperature results in extension of a proteinase K-resistant core.

    PubMed

    Bocharova, Olga V; Makarava, Natallia; Breydo, Leonid; Anderson, Maighdlin; Salnikov, Vadim V; Baskakov, Ilia V

    2006-01-27

    Amyloids are highly ordered, rigid beta-sheet-rich structures that appear to have minimal dynamic flexibility in individual polypeptide chains. Here, we demonstrate that substantial conformational rearrangements occur within mature amyloid fibrils produced from full-length mammalian prion protein. The rearrangement results in a substantial extension of a proteinase K-resistant core and is accompanied by an increase in the beta-sheet-rich conformation. The conformational rearrangement was induced in the presence of low concentrations of Triton X-100 either by brief exposure to 80 degrees C or, with less efficacy, by prolonged incubation at 37 degrees C at pH 7.5 and is referred to here as "annealing." Upon annealing, amyloid fibrils acquired a proteinase K-resistant core identical to that found in bovine spongiform encephalopathy-specific scrapie-associated prion protein. Annealing was also observed when amyloid fibrils were exposed to high temperatures in the absence of detergent but in the presence of brain homogenate. These findings suggest that the amyloid fibrils exist in two conformationally distinct states that are separated by a high energy barrier and that yet unknown cellular cofactors may facilitate transition of the fibrils into thermodynamically more stable state. Our studies provide new insight into the complex behavior of prion polymerization and highlight the annealing process, a previously unknown step in the evolution of amyloid structures. PMID:16314415

  9. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease.

    PubMed

    King, Oliver D; Gitler, Aaron D; Shorter, James

    2012-06-26

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable 'prion domain' enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer's disease and Huntington's disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the prion

  10. Deer Prion Proteins Modulate the Emergence and Adaptation of Chronic Wasting Disease Strains

    PubMed Central

    Duque Velásquez, Camilo; Kim, Chiye; Herbst, Allen; Daude, Nathalie; Garza, Maria Carmen; Wille, Holger; Aiken, Judd

    2015-01-01

    ABSTRACT Transmission of chronic wasting disease (CWD) between cervids is influenced by the primary structure of the host cellular prion protein (PrPC). In white-tailed deer, PRNP alleles encode the polymorphisms Q95 G96 (wild type [wt]), Q95 S96 (referred to as the S96 allele), and H95 G96 (referred to as the H95 allele), which differentially impact CWD progression. We hypothesize that the transmission of CWD prions between deer expressing different allotypes of PrPC modifies the contagious agent affecting disease spread. To evaluate the transmission properties of CWD prions derived experimentally from deer of four PRNP genotypes (wt/wt, S96/wt, H95/wt, or H95/S96), transgenic (tg) mice expressing the wt allele (tg33) or S96 allele (tg60) were challenged with these prion agents. Passage of deer CWD prions into tg33 mice resulted in 100% attack rates, with the CWD H95/S96 prions having significantly longer incubation periods. The disease signs and neuropathological and protease-resistant prion protein (PrP-res) profiles in infected tg33 mice were similar between groups, indicating that a prion strain (Wisc-1) common to all CWD inocula was amplified. In contrast, tg60 mice developed prion disease only when inoculated with the H95/wt and H95/S96 CWD allotypes. Serial passage in tg60 mice resulted in adaptation of a novel CWD strain (H95+) with distinct biological properties. Transmission of first-passage tg60CWD-H95+ isolates into tg33 mice, however, elicited two prion disease presentations consistent with a mixture of strains associated with different PrP-res glycotypes. Our data indicate that H95-PRNP heterozygous deer accumulated two CWD strains whose emergence was dictated by the PrPC primary structure of the recipient host. These findings suggest that CWD transmission between cervids expressing distinct PrPC molecules results in the generation of novel CWD strains. IMPORTANCE CWD prions are contagious among wild and captive cervids in North America and in South

  11. A comparative molecular dynamics study on thermostability of human and chicken prion proteins

    SciTech Connect

    Ji, Hong-Fang; Zhang, Hong-Yu . E-mail: zhanghy@sdut.edu.cn

    2007-08-03

    To compare the thermostabilities of human and chicken normal cellular prion proteins (HuPrP{sup C} and CkPrP{sup C}), molecular dynamics (MD) simulations were performed for both proteins at an ensemble level (10 parallel simulations at 400 K and 5 parallel simulations at 300 K as a control). It is found that the thermostability of HuPrP{sup C} is comparable with that of CkPrP{sup C}, which implicates that the non-occurrence of prion diseases in non-mammals cannot be completely attributed to the thermodynamic properties of non-mammalian PrP{sup C}.

  12. Octarepeat changes of prion protein in Parkinson's disease.

    PubMed

    Wang, Vinchi; Chuang, Tzu-Chao; Soong, Bing-Wen; Shan, Din-E; Kao, Ming-Ching

    2009-01-01

    Polymorphism in prion protein (PrP) is related to different phenotypes of spongiform encephalopathies and some mental illnesses. The octarepeat region of PrP, encompassing the codon 51 through 91, is related to cellular anti-oxidation function and may play a role in genetic contribution of PrP polymorphism to neurodegeneration, such as Parkinson's disease (PD). We analyzed the genomic patterns of PrP gene from 528 subjects and found a predominance of Met/Met variant at codon 129 of PD subjects without significant difference (97.3%, and 96.5% in controls). But among PD subjects there were one with heterozygosity of silent nucleotide substitution (NS) on octarepeats (R1-2-3g-3-4/R1-2-2-3-4) and three with heterozygosity of single copy deletion (CD) on octarepeats (R1-2-3-4/R1-2-2-3-4). Consistent genomic DNA and cDNA sequences were found in a PD subject without any octarepeat changes and the one with NS, but R1-2-3g-3-4/R1-2-2-3-4 of cDNA pattern occurred in the one with genomic CD. This is the first report of the polymorphic PrP octarepeat change among those with parkinsonism. We proposed a hypothesis about an initial secondary hairpin structure of the template strand followed by the transcript "shift backward" due to the high homology of the sequences between R2 and R3 motifs while synthesizing RNA. This phenomenon may be a key step of neurodegeneration resulting from PrP polymorphism and require further studies. PMID:18455951

  13. Hematological shift in goat kids naturally devoid of prion protein

    PubMed Central

    Reiten, Malin R.; Bakkebø, Maren K.; Brun-Hansen, Hege; Lewandowska-Sabat, Anna M.; Olsaker, Ingrid; Tranulis, Michael A.; Espenes, Arild; Boysen, Preben

    2015-01-01

    The physiological role of the cellular prion protein (PrPC) is incompletely understood. The expression of PrPC in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrPC knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrPC. Here we report hematological and immunological analyses of homozygous goat kids lacking PrPC (PRNPTer/Ter) compared to heterozygous (PRNP+/Ter) and normal (PRNP+/+) kids. Levels of cell surface PrPC and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNPTer/Ter, intermediate in PRNP+/Ter and high in PRNP+/+ kids. The PRNPTer/Ter animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrPC has a role in bone marrow physiology and warrant further studies of PrPC in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrPC-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrPC. PMID:26217662

  14. PrionScan: an online database of predicted prion domains in complete proteomes

    PubMed Central

    2014-01-01

    Background Prions are a particular type of amyloids related to a large variety of important processes in cells, but also responsible for serious diseases in mammals and humans. The number of experimentally characterized prions is still low and corresponds to a handful of examples in microorganisms and mammals. Prion aggregation is mediated by specific protein domains with a remarkable compositional bias towards glutamine/asparagine and against charged residues and prolines. These compositional features have been used to predict new prion proteins in the genomes of different organisms. Despite these efforts, there are only a few available data sources containing prion predictions at a genomic scale. Description Here we present PrionScan, a new database of predicted prion-like domains in complete proteomes. We have previously developed a predictive methodology to identify and score prionogenic stretches in protein sequences. In the present work, we exploit this approach to scan all the protein sequences in public databases and compile a repository containing relevant information of proteins bearing prion-like domains. The database is updated regularly alongside UniprotKB and in its present version contains approximately 28000 predictions in proteins from different functional categories in more than 3200 organisms from all the taxonomic subdivisions. PrionScan can be used in two different ways: database query and analysis of protein sequences submitted by the users. In the first mode, simple queries allow to retrieve a detailed description of the properties of a defined protein. Queries can also be combined to generate more complex and specific searching patterns. In the second mode, users can submit and analyze their own sequences. Conclusions It is expected that this database would provide relevant insights on prion functions and regulation from a genome-wide perspective, allowing researches performing cross-species prion biology studies. Our database might also be

  15. Detecting and discriminating among pathogenic protein conformers(prions), using mass spectrometry-based and antibody-based approaches(Abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of fatal neurological diseases that includes scrapie and chronic wasting disease (CWD) are caused by a pathological protein referred to as a prion (PrPSc). A prion propagates an infection by converting a normal cellular protein (PrPC) into a prion. Unlike viral, bacterial, or fungal pathogens,...

  16. A prion-like protein from chicken brain copurifies with an acetylcholine receptor-inducing activity.

    PubMed Central

    Harris, D A; Falls, D L; Johnson, F A; Fischbach, G D

    1991-01-01

    The mammalian prion protein (PrPC) is a cellular protein of unknown function, an altered isoform of which (PrPSc) is a component of the infectious particle (prion) thought to be responsible for spongiform encephalopathies in humans and animals. We report here the isolation of a cDNA that encodes a chicken protein that is homologous to PrPC. This chicken prion-like protein (ch-PrLP) is identical to the mouse PrP at 33% of its amino acid positions, including an uninterrupted stretch of 24 identical residues, and it displays the same structural domains. In addition, ch-PrLP, like its mammalian counterpart, is attached to the cell surface by a glycosyl-phosphatidylinositol anchor. We find that ch-PrLP is the major protein in preparations of an acetylcholine receptor-inducing activity that has been purified greater than 10(6)-fold from brain on the basis of its ability to stimulate synthesis of nicotinic receptors by cultured myotubes. The ch-PrLP gene is expressed in the spinal cord and brain as early as embryonic day 6; and in the spinal cord, the protein appears to be concentrated in motor neurons. Our results therefore raise the possibility that prion proteins serve normally to regulate the chemoreceptor number at the neuromuscular junction and perhaps in the central nervous system as well. Images PMID:1715573

  17. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay

    USGS Publications Warehouse

    Johnson, Christopher J.; Carlson, Christina M.; Morawski, Aaron R.; Manthei, Alyson; Cashman, Neil R.

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitroprion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

  18. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    USGS Publications Warehouse

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  19. Mechanisms of triggering H1 helix in prion proteins unfolding revealed by molecular dynamic simulation

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Yuan; Lee, H. C.

    2006-03-01

    In template-assistance model, normal Prion protein (PrP^C), the pathogen to cause several prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrP^Sc) through a transient interaction with PrP^Sc. Furthermore, conventional studies showed S1-H1-S2 region in PrP^C to be the template of S1-S2 β-sheet in PrP^Sc, and Prion protein's conformational conversion may involve an unfolding of H1 and refolding into β-sheet. Here we prepare several mouse prion peptides that contain S1-H1-S2 region with specific different structures, which are corresponding to specific interactions, to investigate possible mechanisms to trigger H1 α-helix unfolding process via molecular dynamic simulation. Three properties, conformational transition, salt-bridge in H1, and hydrophobic solvent accessible surface (SAS) are analyzed. From these studies, we found the interaction that triggers H1 unfolding to be the one that causes dihedral angle at residue Asn^143 changes. Whereas interactions that cause S1 segment's conformational changes play a minor in this process. These studies offers an additional evidence for template-assistance model.

  20. Comparative analysis of essential collective dynamics and NMR-derived flexibility profiles in evolutionarily diverse prion proteins.

    PubMed

    Santo, Kolattukudy P; Berjanskii, Mark; Wishart, David S; Stepanova, Maria

    2011-01-01

    Collective motions on ns-μs time scales are known to have a major impact on protein folding, stability, binding and enzymatic efficiency. It is also believed that these motions may have an important role in the early stages of prion protein misfolding and prion disease. In an effort to accurately characterize these motions and their potential influence on the misfolding and prion disease transmissibility we have conducted a combined analysis of molecular dynamic simulations and NMR-derived flexibility measurements over a diverse range of prion proteins. Using a recently developed numerical formalism, we have analyzed the essential collective dynamics (ECD) for prion proteins from 8 different species including human, cow, elk, cat, hamster, chicken, turtle and frog. We also compared the numerical results with flexibility profiles generated by the random coil index (RCI) from NMR chemical shifts. Prion protein backbone flexibility derived from experimental NMR data and from theoretical computations show strong agreement with each other, demonstrating that it is possible to predict the observed RCI profiles employing the numerical ECD formalism. Interestingly, flexibility differences in the loop between second beta strand (S2) and the second alpha helix (HB) appear to distinguish prion proteins from species that are susceptible to prion disease and those that are resistant. Our results show that the different levels of flexibility in the S2-HB loop in various species are predictable via the ECD method, indicating that ECD may be used to identify disease resistant variants of prion proteins, as well as the influence of prion proteins mutations on disease susceptibility or misfolding propensity. PMID:21869604

  1. Structure Prediction of Protein Complexes

    NASA Astrophysics Data System (ADS)

    Pierce, Brian; Weng, Zhiping

    Protein-protein interactions are critical for biological function. They directly and indirectly influence the biological systems of which they are a part. Antibodies bind with antigens to detect and stop viruses and other infectious agents. Cell signaling is performed in many cases through the interactions between proteins. Many diseases involve protein-protein interactions on some level, including cancer and prion diseases.

  2. Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein.

    PubMed

    Wu, Emilia L; Qi, Yifei; Park, Soohyung; Mallajosyula, Sairam S; MacKerell, Alexander D; Klauda, Jeffery B; Im, Wonpil

    2015-11-17

    Prion diseases are fatal neurodegenerative disorders, which are characterized by the accumulation of misfolded prion protein (PrPSc) converted from a normal host cellular prion protein (PrPC). Experimental studies suggest that PrPC is enriched with α-helical structure, whereas PrPSc contains a high proportion of β-sheet. In this study, we report the impact of N-glycosylation and the membrane on the secondary structure stability utilizing extensive microsecond molecular dynamics simulations. Our results reveal that the HB (residues 173 to 194) C-terminal fragment undergoes conformational changes and helix unfolding in the absence of membrane environments because of the competition between protein backbone intramolecular and protein-water intermolecular hydrogen bonds as well as its intrinsic instability originated from the amino acid sequence. This initiation of the unfolding process of PrPC leads to a subsequent increase in the length of the HB-HC loop (residues 195 to 199) that may trigger larger rigid body motions or further unfolding around this region. Continuous interactions between prion protein and the membrane not only constrain the protein conformation but also decrease the solvent accessibility of the backbone atoms, thereby stabilizing the secondary structure, which is enhanced by N-glycosylation via additional interactions between the N-glycans and the membrane surface. PMID:26588568

  3. Disease-associated prion protein in neural and lymphoid tissues of mink (Mustela vison) inoculated with transmissible mink encephalopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmissible mink encephalopathy (TME) is a prion disorder of farmed raised mink. As with the other transmissible spongiform encephalopathies, the disorder is associated with accumulation of the misfolded prion protein in the brain and an invariably fatal outcome. TME outbreaks have been rare but...

  4. Divalent metals stabilize cellular prion proteins and alter the rate of proteinase-K dependent limited proteolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The key biochemical event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent ca...

  5. MANGANESE UPREGULATES CELLULAR PRION PROTEINS AND INHIBITS THE RATE OF PROTEINASE-K DEPENDENT LIMITED PROTEOLYSIS IN NEURONAL CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The key event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent cations such as copper to th...

  6. Clinical features in prion protein-deficient and wild-type cattle inoculated with transmissible mink encephalopathy (TME)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Transmissible spongiform encephalopathies (TSEs) or prion diseases are caused by the propagation of a misfolded form (PrP**d) of the normal cellular prion protein, PrP**c. Recently, we have reported the generation and characterization of PrP**C-deficient cattle (PrP-/-) produced by a seq...

  7. Mammalian prions

    PubMed Central

    Salamat, Muhammad Khalid; Munoz-Montesino, Carola; Moudjou, Mohammed; Rezaei, Human; Laude, Hubert; Béringue, Vincent; Dron, Michel

    2013-01-01

    Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region. PMID:23232499

  8. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types. PMID:27327609

  9. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles

    PubMed Central

    Hennig, Sven; Kong, Geraldine; Mannen, Taro; Sadowska, Agata; Kobelke, Simon; Blythe, Amanda; Knott, Gavin J.; Iyer, K. Swaminathan; Ho, Diwei; Newcombe, Estella A.; Hosoki, Kana; Goshima, Naoki; Kawaguchi, Tetsuya; Hatters, Danny; Trinkle-Mulcahy, Laura; Hirose, Tetsuro; Bond, Charles S.

    2015-01-01

    Prion-like domains (PLDs) are low complexity sequences found in RNA binding proteins associated with the neurodegenerative disorder amyotrophic lateral sclerosis. Recently, PLDs have been implicated in mediating gene regulation via liquid-phase transitions that drive ribonucleoprotein granule assembly. In this paper, we report many PLDs in proteins associated with paraspeckles, subnuclear bodies that form around long noncoding RNA. We mapped the interactome network of paraspeckle proteins, finding enrichment of PLDs. We show that one protein, RBM14, connects key paraspeckle subcomplexes via interactions mediated by its PLD. We further show that the RBM14 PLD, as well as the PLD of another essential paraspeckle protein, FUS, is required to rescue paraspeckle formation in cells in which their endogenous counterpart has been knocked down. Similar to FUS, the RBM14 PLD also forms hydrogels with amyloid-like properties. These results suggest a role for PLD-mediated liquid-phase transitions in paraspeckle formation, highlighting this nuclear body as an excellent model system for understanding the perturbation of such processes in neurodegeneration. PMID:26283796

  10. Presence of voltage-gated potassium channel complex antibody in a case of genetic prion disease.

    PubMed

    Jammoul, Adham; Lederman, Richard J; Tavee, Jinny; Li, Yuebing

    2014-01-01

    Voltage-gated potassium channel (VGKC) complex antibody-mediated encephalitis is a recently recognised entity which has been reported to mimic the clinical presentation of Creutzfeldt-Jakob disease (CJD). Testing for the presence of this neuronal surface autoantibody in patients presenting with subacute encephalopathy is therefore crucial as it may both revoke the bleak diagnosis of prion disease and allow institution of potentially life-saving immunotherapy. Tempering this optimistic view is the rare instance when a positive VGKC complex antibody titre occurs in a definite case of prion disease. We present a pathologically and genetically confirmed case of CJD with elevated serum VGKC complex antibody titres. This case highlights the importance of interpreting the result of a positive VGKC complex antibody with caution and in the context of the overall clinical manifestation. PMID:24903967

  11. Variant Creutzfeldt-Jakob Disease With Extremely Low Lymphoreticular Deposition of Prion Protein

    PubMed Central

    Mead, Simon; Wadsworth, Jonathan D. F.; Porter, Marie-Claire; Linehan, Jacqueline M.; Pietkiewicz, Wojciech; Jackson, Graham S.; Brandner, Sebastian; Collinge, John

    2014-01-01

    IMPORTANCE Human transmission of bovine spongiform encephalopathy causes the fatal neurodegenerative condition variant Creutzfeldt-Jakob disease (vCJD) and, based on recent human prevalence studies, significant subclinical prion infection of the UK population. To date, all clinical cases have been fatal, totaling 228 mostly young adults residing in the United Kingdom. OBSERVATIONS Here we describe the investigation and case history of a patient recently diagnosed as having vCJD in the United Kingdom. Although his presentation, imaging findings, cerebrospinal fluid investigation results, and clinical progression were typical of other cases, tonsillar biopsy and subsequent examination of multiple tissues at autopsy showed minimal deposition of disease-associated prion protein in peripheral lymphoreticular tissue. The result of a blood test for vCJD, the Direct Detection Assay for vCJD, was negative. CONCLUSIONS AND RELEVANCE These findings suggest that some patients with vCJD have very low peripheral prion colonization and therefore may not have detectable prion deposition in diagnostic tonsillar biopsy or markers of prion infection in blood. These results have implications for accurate interpretation of diagnostic tests and prevalence studies based on lymphoreticular tissue or blood. PMID:24445428

  12. Cellular prion protein (PrPC) and its role in stress responses

    PubMed Central

    Zeng, Liang; Zou, Wenquan; Wang, Gongxian

    2015-01-01

    Investigation of the physiological function of cellular prion protein (PrPC) has been developed by the generation of transgenic mice, however, the pathological mechanisms related to PrPC in prion diseases such as transmissible spongiform encephalopathies (TSEs) are still abstruse. Regardless of some differences, most studies describe the neuroprotective role of PrPC in environmental stresses. In this review, we will update the current knowledge on the responses of PrPC to various stresses, especially those correlated with cell signaling and neural degeneration, including ischemia, oxidative stress, inflammation and autophagy. PMID:26221369

  13. Prion Protein M129V Polymorphism Affects Retrieval-Related Brain Activity

    ERIC Educational Resources Information Center

    Buchmann, Andreas; Mondadori, Christian R. A.; Hanggi, Jurgen; Aerni, Amanda; Vrticka, Pascal; Luechinger, Roger; Boesiger, Peter; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas; Henke, Katharina

    2008-01-01

    The prion protein Met129Val polymorphism has recently been related to human long-term memory with carriers of either the 129[superscript MM] or the 129[superscript MV] genotype recalling 17% more words than 129[superscript VV] carriers at 24 h following learning. Here, we sampled genotype differences in retrieval-related brain activity at 30 min…

  14. Enhancement of phagocytotic activity by prion protein in PrP-deficient macrophage cells.

    PubMed

    Uraki, Ryuta; Sakudo, Akikazu; Ando, Saeko; Kitani, Hiroshi; Onodera, Takashi

    2010-10-01

    Macrophages, especially follicular dendritic cells, contribute to the pathogenesis of prion diseases by accumulating an abnormal isoform of prion protein (PrPSc), which is converted from the cellular isoform of prion protein (PrPC). As information on the function of PrPC in macrophages is limited, we have established a prion protein (PrP) gene (Prnp)-deficient macrophage cell line from the bone marrow of ZrchI Prnp-/- mice. These cells expressed macrophage specific proteins (F4/80 and MOMA-2) and displayed phagocytotic properties. The Prnp-/- macrophage cell line (MplZ) showed shorter pseudopodium extension and less phagocytotic activity than a Prnp+/+ macrophage cell line (MWF). In addition, the MplZ cells were more sensitive to serum deprivation than the MWF cells and underwent apoptotic cell death in these conditions. These findings suggest that PrPC enhances the incorporation of materials possibly including PrPSc and decreases the sensitivity of cells to oxidative stress, which may be induced by PrPSc accumulation. PMID:20818492

  15. IMMUNOHISTOCHEMICAL DETECTION AND DISTRIBUTION OF PRION PROTEIN IN A GOAT WITH NATURAL SCRAPIE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formalin-fixed, paraffin-embedded tissue sections from a 3-year-old female Angora goat suffering from clinical scrapie were immunostained using a monoclonal antibody (mAb, F99/97.6.1; IgG1) specific for a conserved epitope on the prion protein. Widespread and prominent deposition of the scrapie iso...

  16. Detection of the disease associated form of the prion protein in biological samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are neurodegenerative diseases that occur in a variety of mammals. In these diseases, a chromosomally encoded protein (PrP**c) undergoes a conformational change to the disease associated form (PrP**d), and PrP**d is capable inducing ...

  17. Immunohistochemical detection and distribution of prion protein in a goat with natural scrapie.

    PubMed

    Valdez, Reginald A; Rock, Matthew J; Anderson, Anne K; O'Rourke, Katherine I

    2003-03-01

    Formalin-fixed, paraffin-embedded tissue sections from a 3-year-old female Angora goat suffering from clinical scrapie were immunostained after hydrated autoclaving using a monoclonal antibody (mAb, F99/97.6.1; IgG1) specific for a conserved epitope on the prion protein. Widespread and prominent deposition of the scrapie isoform of the prion protein (PrPSc) was observed in the brain, brainstem, spinal cord, retina, postganglionic neurons associated with parasympathetic ganglia of myenteric and submucosal plexuses, Peyer's patches, peripheral lymph nodes, and pharyngeal and palatine tonsils. The goat was homozygous for PrP alleles encoding 5 octapeptide repeat sequences in the N-terminal region of the prion protein and isoleucine at codon 142, a genotype associated with high susceptibility and short incubation times in goats. The results of this study indicate that mAb F99/97.6.1 is useful for detection of PrPSc deposition, and this is a specific and reliable immunohistochemical adjunct to histopathology for diagnosis of natural caprine scrapie, although precise determination of the diagnostic sensitivity and specificity of the assay as a diagnostic test for scrapie in goats will require examination of a sufficiently large sample size. As with ovine scrapie, prion protein is widely distributed in the central and peripheral nervous systems, gastrointestinal tract, and lymphoid tissues in natural caprine scrapie. PMID:12661726

  18. Nanoscale insights into full-length prion protein aggregation on model lipid membranes.

    PubMed

    Pan, Yangang; Wang, Bin; Zhang, Tong; Zhang, Yanan; Wang, Hongda; Xu, Bingqian

    2016-06-30

    The aggregates of the full-length human recombinant prion protein (PrP) (23-231) on model membranes were investigated by combining the atomic force microscopy (AFM) measurements and theoretical calculations at pH 5.0, showing the great effect of PrP concentration on its supramolecular assemblies on the lipid bilayer. PMID:27284592

  19. Prion domain of yeast Ure2 protein adopts a completely disordered structure: a solid-support EPR study.

    PubMed

    Ngo, Sam; Chiang, Vicky; Ho, Elaine; Le, Linh; Guo, Zhefeng

    2012-01-01

    Amyloid fibril formation is associated with a range of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, and prion diseases. In yeast, amyloid underlies several non-Mendelian phenotypes referred to as yeast prions. Mechanism of amyloid formation is critical for a complete understanding of the yeast prion phenomenon and human amyloid-related diseases. Ure2 protein is the basis of yeast prion [URE3]. The Ure2p prion domain is largely disordered. Residual structures, if any, in the disordered region may play an important role in the aggregation process. Studies of Ure2p prion domain are complicated by its high aggregation propensity, which results in a mixture of monomer and aggregates in solution. Previously we have developed a solid-support electron paramagnetic resonance (EPR) approach to address this problem and have identified a structured state for the Alzheimer's amyloid-β monomer. Here we use solid-support EPR to study the structure of Ure2p prion domain. EPR spectra of Ure2p prion domain with spin labels at every fifth residue from position 10 to position 75 show similar residue mobility profile for denaturing and native buffers after accounting for the effect of solution viscosity. These results suggest that Ure2p prion domain adopts a completely disordered structure in the native buffer. A completely disordered Ure2p prion domain implies that the amyloid formation of Ure2p, and likely other Q/N-rich yeast prion proteins, is primarily driven by inter-molecular interactions. PMID:23077577

  20. Surface charge of polyoxometalates modulates polymerization of the scrapie prion protein

    PubMed Central

    Wille, Holger; Shanmugam, Maheswaran; Murugesu, Muralee; Ollesch, Julian; Stubbs, Gerald; Long, Jeffrey R.; Safar, Jiri G.; Prusiner, Stanley B.

    2009-01-01

    Prions are composed solely of an alternatively folded isoform of the prion protein (PrP), designated PrPSc. N-terminally truncated PrPSc, denoted PrP 27–30, retains infectivity and polymerizes into rods with the ultrastructural and tinctorial properties of amyloid. We report here that some polyoxometalates (POMs) favor polymerization of PrP 27-30 into prion rods, whereas other POMs promote assembly of the protein into 2D crystals. Antibodies reacting with epitopes in denatured PrP 27-30 also bound to 2D crystals treated with 3 M urea. These same antibodies did not bind to either native PrPSc or untreated 2D crystals. By using small, spherical POMs with Keggin-type structures, the central heteroatom was found to determine whether prion rods or 2D crystals were preferentially formed. An example of a Keggin-type POM with a phosphorous heteroatom is the phosphotungstate anion (PTA). Both PTA and a Keggin-type POM with a silicon heteratom have low-charge densities and favor formation of prion rods. In contrast, POMs with boron or hydrogen heteroatoms exhibiting higher negative charges encouraged 2D crystal formation. The 2D crystals of PrP 27-30 produced by selective precipitation with POMs were larger and more well ordered than those obtained by sucrose gradient centrifugation. Our findings argue that the negative charge of Keggin-type POMs determines the quaternary structure adopted by PrP 27-30. The mechanism by which POMs function in competing prion polymerization pathways—one favoring 2D crystals and the other, amyloid fibrils—remains to be established. PMID:19223590

  1. Loss of prion protein leads to age-dependent behavioral abnormalities and changes in cytoskeletal protein expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular prion protein (PrPC) is a multifunctional protein, whose exact physiological role remains elusive. Since previous studies indicated a neuroprotective function of PrPC, we investigated whether Prnp knockout mice(Prnp0/0)display age-dependent behavioral abnormalities. Matched sets of Prnp0/0 ...

  2. A bipolar functionality of Q/N-rich proteins: Lsm4 amyloid causes clearance of yeast prions

    PubMed Central

    Oishi, Keita; Kurahashi, Hiroshi; Pack, Chan-Gi; Sako, Yasushi; Nakamura, Yoshikazu

    2013-01-01

    Prions are epigenetic modifiers that cause partially loss-of-function phenotypes of the proteins in Saccharomyces cerevisiae. The molecular chaperone network that supports prion propagation in the cell has seen a great progress in the last decade. However, the cellular machinery to activate or deactivate the prion states remains an enigma, largely due to insufficient knowledge of prion-regulating factors. Here, we report that overexpression of a [PSI+]-inducible Q/N-rich protein, Lsm4, eliminates the three major prions [PSI+], [URE3], and [RNQ+]. Subcloning analysis revealed that the Q/N-rich region of Lsm4 is responsible for the prion loss. Lsm4 formed an amyloid in vivo, which seemed to play a crucial role in the prion elimination. Fluorescence correlation spectroscopy analysis revealed that in the course of the Lsm4-driven [PSI+] elimination, the [PSI+] aggregates undergo a size increase, which ultimately results in the formation of conspicuous foci in otherwise [psi−]-like mother cells. We also found that the antiprion activity is a general property of [PSI+]-inducible factors. These data provoked a novel “unified” model that explains both prion induction and elimination by a single scheme. PMID:23512891

  3. Development of techniques in magnetic resonance and structural studies of the prion protein

    SciTech Connect

    Bitter, Hans-Marcus L.

    2000-07-01

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging

  4. N-terminal domain of prion protein directs its oligomeric association.

    PubMed

    Trevitt, Clare R; Hosszu, Laszlo L P; Batchelor, Mark; Panico, Silvia; Terry, Cassandra; Nicoll, Andrew J; Risse, Emmanuel; Taylor, William A; Sandberg, Malin K; Al-Doujaily, Huda; Linehan, Jacqueline M; Saibil, Helen R; Scott, David J; Collinge, John; Waltho, Jonathan P; Clarke, Anthony R

    2014-09-12

    The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar β-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined β-sheet-rich oligomer, containing ∼12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP. The N-terminal region of prion protein (residues 23-90) is required for the formation of this distinct oligomer; a truncated form comprising residues 91-231 forms a broad distribution of aggregated species. No infectivity or toxicity was found using cell and animal model systems. This study demonstrates that examination of the full repertoire of conformers and assembly states that can be accessed by PrP under specific experimental conditions should ideally be done using the full-length protein. PMID:25074940

  5. Lack of Prion Accumulation in Lymphoid Tissues of Scrapie-affected Sheep with the AA136, QR171 Prion Protein Genotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Sheep scrapie is a transmissible spongiform encephalopathy which can be transmitted horizontally through the shedding of an infectious conformer (PrP**Sc) of the normal cellular prion protein (PrP**c). Genetics profoundly influence the susceptibility of sheep to scrapie. PrP**c amino-aci...

  6. A single amino acid (Asp159) from the dog prion protein suppresses the toxicity of the mouse prion protein in Drosophila.

    PubMed

    Sanchez-Garcia, J; Jensen, K; Zhang, Y; Rincon-Limas, D E; Fernandez-Funez, P

    2016-11-01

    Misfolding of the prion protein (PrP) is the key step in the transmission of spongiform pathologies in humans and several animals. Although PrP is highly conserved in mammals, a few changes in the sequence of endogenous PrP are proposed to confer protection to dogs, which were highly exposed to prion during the mad-cow epidemics. D159 is a unique amino acid found in PrP from dogs and other canines that was shown to alter surface charge, but its functional relevance has never been tested in vivo. Here, we show in transgenic Drosophila that introducing the N159D substitution on mouse PrP decreases its turnover. Additionally, mouse PrP-N159D demonstrates no toxicity and accumulates no pathogenic conformations, suggesting that a single D159 substitution is sufficient to prevent PrP conformational change and pathogenesis. Understanding the mechanisms mediating the protective activity of D159 is likely to lessen the burden of prion diseases in humans and domestic animals. PMID:27477054

  7. Identification of misfolded proteins in body fluids for the diagnosis of prion diseases.

    PubMed

    Properzi, Francesca; Pocchiari, Maurizio

    2013-01-01

    Transmissible spongiform encephalopathy (TSE) or prion diseases are fatal rare neurodegenerative disorders affecting man and animals and caused by a transmissible infectious agent. TSE diseases are characterized by spongiform brain lesions with neuronal loss and the abnormal deposition in the CNS, and to less extent in other tissues, of an insoluble and protease resistant form of the cellular prion protein (PrP(C)), named PrP(TSE). In man, TSE diseases affect usually people over 60 years of age with no evident disease-associated risk factors. In some cases, however, TSE diseases are unequivocally linked to infectious episodes related to the use of prion-contaminated medicines, medical devices, or meat products as in the variant Creutzfeldt-Jakob disease (CJD). Clinical signs occur months or years after infection, and during this silent period PrP(TSE), the only reliable marker of infection, is not easily measurable in blood or other accessible tissues or body fluids causing public health concerns. To overcome the limit of PrP(TSE) detection, several highly sensitive assays have been developed, but attempts to apply these techniques to blood of infected hosts have been unsuccessful or not yet validated. An update on the latest advances for the detection of misfolded prion protein in body fluids is provided. PMID:24027585

  8. Identification of Misfolded Proteins in Body Fluids for the Diagnosis of Prion Diseases

    PubMed Central

    Pocchiari, Maurizio

    2013-01-01

    Transmissible spongiform encephalopathy (TSE) or prion diseases are fatal rare neurodegenerative disorders affecting man and animals and caused by a transmissible infectious agent. TSE diseases are characterized by spongiform brain lesions with neuronal loss and the abnormal deposition in the CNS, and to less extent in other tissues, of an insoluble and protease resistant form of the cellular prion protein (PrPC), named PrPTSE. In man, TSE diseases affect usually people over 60 years of age with no evident disease-associated risk factors. In some cases, however, TSE diseases are unequivocally linked to infectious episodes related to the use of prion-contaminated medicines, medical devices, or meat products as in the variant Creutzfeldt-Jakob disease (CJD). Clinical signs occur months or years after infection, and during this silent period PrPTSE, the only reliable marker of infection, is not easily measurable in blood or other accessible tissues or body fluids causing public health concerns. To overcome the limit of PrPTSE detection, several highly sensitive assays have been developed, but attempts to apply these techniques to blood of infected hosts have been unsuccessful or not yet validated. An update on the latest advances for the detection of misfolded prion protein in body fluids is provided. PMID:24027585

  9. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification.

    PubMed

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-01-01

    Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans. PMID:27384922

  10. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification

    PubMed Central

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-01-01

    Prions are formed of misfolded assemblies (PrPSc) of the variably N-glycosylated cellular prion protein (PrPC). In infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains can be recognized, exhibiting defined PrPSc biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrPC glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrPC species of interest as substrate. Applying the technique to PrPC glycosylation mutants expressing cells revealed that neither PrPC nor PrPSc glycoform stoichiometry was instrumental to PrPSc formation and strainness perpetuation. Our study supports the view that strain properties, including PrPSc glycotype are enciphered within PrPSc structural backbone, not in the attached glycans. PMID:27384922