Science.gov

Sample records for prion protein sequence

  1. Amino acid sequence of the Amur tiger prion protein.

    PubMed

    Wu, Changde; Pang, Wanyong; Zhao, Deming

    2006-10-01

    Prion diseases are fatal neurodegenerative disorders in human and animal associated with conformational conversion of a cellular prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)). Various data indicate that the polymorphisms within the open reading frame (ORF) of PrP are associated with the susceptibility and control the species barrier in prion diseases. In the present study, partial Prnp from 25 Amur tigers (tPrnp) were cloned and screened for polymorphisms. Four single nucleotide polymorphisms (T423C, A501G, C511A, A610G) were found; the C511A and A610G nucleotide substitutions resulted in the amino acid changes Lysine171Glutamine and Alanine204Threoine, respectively. The tPrnp amino acid sequence is similar to house cat (Felis catus ) and sheep, but differs significantly from other two cat Prnp sequences that were previously deposited in GenBank. PMID:16780982

  2. In silico comparative analysis of DNA and amino acid sequences for prion protein gene.

    PubMed

    Kim, Y; Lee, J; Lee, C

    2008-01-01

    Genetic variability might contribute to species specificity of prion diseases in various organisms. In this study, structures of the prion protein gene (PRNP) and its amino acids were compared among species of which sequence data were available. Comparisons of PRNP DNA sequences among 12 species including human, chimpanzee, monkey, bovine, ovine, dog, mouse, rat, wallaby, opossum, chicken and zebrafish allowed us to identify candidate regulatory regions in intron 1 and 3'-untranslated region (UTR) in addition to the coding region. Highly conserved putative binding sites for transcription factors, such as heat shock factor 2 (HSF2) and myocite enhancer factor 2 (MEF2), were discovered in the intron 1. In 3'-UTR, the functional sequence (ATTAAA) for nucleus-specific polyadenylation was found in all the analysed species. The functional sequence (TTTTTAT) for maturation-specific polyadenylation was identically observed only in ovine, and one or two nucleotide mismatches in the other species. A comparison of the amino acid sequences in 53 species revealed a large sequence identity. Especially the octapeptide repeat region was observed in all the species but frog and zebrafish. Functional changes and susceptibility to prion diseases with various isoforms of prion protein could be caused by numeric variability and conformational changes discovered in the repeat sequences. PMID:18397498

  3. Human prion protein sequence elements impede cross-species chronic wasting disease transmission.

    PubMed

    Kurt, Timothy D; Jiang, Lin; Fernández-Borges, Natalia; Bett, Cyrus; Liu, Jun; Yang, Tom; Spraker, Terry R; Castilla, Joaquín; Eisenberg, David; Kong, Qingzhong; Sigurdson, Christina J

    2015-04-01

    Chronic wasting disease (CWD) is a fatal prion disease of North American deer and elk and poses an unclear risk for transmission to humans. Human exposure to CWD occurs through hunting activities and consumption of venison from prion-infected animals. Although the amino acid residues of the prion protein (PrP) that prevent or permit human CWD infection are unknown, NMR-based structural studies suggest that the ?2-?2 loop (residues 165-175) may impact species barriers. Here we sought to define PrP sequence determinants that affect CWD transmission to humans. We engineered transgenic mice that express human PrP with four amino acid substitutions that result in expression of PrP with a ?2-?2 loop (residues 165-175) that exactly matches that of elk PrP. Compared with transgenic mice expressing unaltered human PrP, mice expressing the human-elk chimeric PrP were highly susceptible to elk and deer CWD prions but were concurrently less susceptible to human Creutzfeldt-Jakob disease prions. A systematic in vitro survey of amino acid differences between humans and cervids identified two additional residues that impacted CWD conversion of human PrP. This work identifies amino acids that constitute a substantial structural barrier for CWD transmission to humans and helps illuminate the molecular requirements for cross-species prion transmission. PMID:25705888

  4. Human prion protein sequence elements impede cross-species chronic wasting disease transmission

    PubMed Central

    Kurt, Timothy D.; Jiang, Lin; Fernández-Borges, Natalia; Bett, Cyrus; Liu, Jun; Yang, Tom; Spraker, Terry R.; Castilla, Joaquín; Eisenberg, David; Kong, Qingzhong; Sigurdson, Christina J.

    2015-01-01

    Chronic wasting disease (CWD) is a fatal prion disease of North American deer and elk and poses an unclear risk for transmission to humans. Human exposure to CWD occurs through hunting activities and consumption of venison from prion-infected animals. Although the amino acid residues of the prion protein (PrP) that prevent or permit human CWD infection are unknown, NMR-based structural studies suggest that the ?2-?2 loop (residues 165–175) may impact species barriers. Here we sought to define PrP sequence determinants that affect CWD transmission to humans. We engineered transgenic mice that express human PrP with four amino acid substitutions that result in expression of PrP with a ?2-?2 loop (residues 165–175) that exactly matches that of elk PrP. Compared with transgenic mice expressing unaltered human PrP, mice expressing the human-elk chimeric PrP were highly susceptible to elk and deer CWD prions but were concurrently less susceptible to human Creutzfeldt-Jakob disease prions. A systematic in vitro survey of amino acid differences between humans and cervids identified two additional residues that impacted CWD conversion of human PrP. This work identifies amino acids that constitute a substantial structural barrier for CWD transmission to humans and helps illuminate the molecular requirements for cross-species prion transmission. PMID:25705888

  5. Quantum dots and prion proteins

    PubMed Central

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrPSc), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrPSc detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels. PMID:24055838

  6. Treatment of Prion Disease with Heterologous Prion Proteins.

    PubMed

    Skinner, Pamela J; Kim, Hyeon O; Bryant, Damani; Kinzel, Nikilyn J; Reilly, Cavan; Priola, Suzette A; Ward, Anne E; Goodman, Patricia A; Olson, Katherine; Seelig, Davis M

    2015-01-01

    Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep are fatal neurodegenerative diseases for which there is no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPsc or PrPres). Both in vitro (cell culture and cell free conversion assays) and in vivo (animal) studies have demonstrated the strong dependence of this conversion process on protein sequence homology between the initial prion inoculum and the host's own cellular prion protein. The presence of non-homologous (heterologous) proteins is often inhibitory to this conversion process. We hypothesize that the presence of heterologous prion proteins from one species might therefore constitute an effective treatment for prion disease in another species. To test this hypothesis, we infected mice intracerebrally with murine adapted RML-Chandler scrapie and treated them with heterologous prion protein (purified bacterially expressed recombinant hamster prion protein) or vehicle alone. Treated animals demonstrated reduced disease associated pathology, decreased accumulation of protease-resistant disease-associated prion protein, with delayed onset of clinical symptoms and motor deficits. This was concomitant with significantly increased survival times relative to mock-treated animals. These results provide proof of principle that recombinant hamster prion proteins can effectively and safely inhibit prion disease in mice, and suggest that hamster or other non-human prion proteins may be a viable treatment for prion diseases in humans. PMID:26134409

  7. Treatment of Prion Disease with Heterologous Prion Proteins

    PubMed Central

    Skinner, Pamela J.; Kim, Hyeon O.; Bryant, Damani; Kinzel, Nikilyn J.; Reilly, Cavan; Priola, Suzette A.; Ward, Anne E.; Goodman, Patricia A.; Olson, Katherine; Seelig, Davis M.

    2015-01-01

    Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep are fatal neurodegenerative diseases for which there is no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPsc or PrPres). Both in vitro (cell culture and cell free conversion assays) and in vivo (animal) studies have demonstrated the strong dependence of this conversion process on protein sequence homology between the initial prion inoculum and the host’s own cellular prion protein. The presence of non-homologous (heterologous) proteins is often inhibitory to this conversion process. We hypothesize that the presence of heterologous prion proteins from one species might therefore constitute an effective treatment for prion disease in another species. To test this hypothesis, we infected mice intracerebrally with murine adapted RML-Chandler scrapie and treated them with heterologous prion protein (purified bacterially expressed recombinant hamster prion protein) or vehicle alone. Treated animals demonstrated reduced disease associated pathology, decreased accumulation of protease-resistant disease-associated prion protein, with delayed onset of clinical symptoms and motor deficits. This was concomitant with significantly increased survival times relative to mock-treated animals. These results provide proof of principle that recombinant hamster prion proteins can effectively and safely inhibit prion disease in mice, and suggest that hamster or other non-human prion proteins may be a viable treatment for prion diseases in humans. PMID:26134409

  8. Prions and Prion-like Proteins

    PubMed Central

    Fraser, Paul E.

    2014-01-01

    Prions are self-replicating protein aggregates and are the primary causative factor in a number of neurological diseases in mammals. The prion protein (PrP) undergoes a conformational transformation leading to aggregation into an infectious cellular pathogen. Prion-like protein spreading and transmission of aggregates between cells have also been demonstrated for other proteins associated with Alzheimer disease and Parkinson disease. This protein-only phenomenon may therefore have broader implications in neurodegenerative disorders. The minireviews in this thematic series highlight the recent advances in prion biology and the roles these unique proteins play in disease. PMID:24860092

  9. Controlling the prion propensity of glutamine/asparagine-rich proteins.

    PubMed

    Paul, Kacy R; Ross, Eric D

    2015-09-01

    The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve. PMID:26555096

  10. Prions, protein homeostasis, and phenotypic diversity

    E-print Network

    Lindquist, Susan

    Prions are fascinating but often misunderstood protein aggregation phenomena. The traditional association of the mammalian prion protein with disease has overshadowed a potentially more interesting attribute of prions: ...

  11. A Systematic Survey Identifies Prions and Illuminates Sequence Features of Prionogenic Proteins

    E-print Network

    Kapila, Atul

    Prions are proteins that convert between structurally and functionally distinct states, one or more of which is transmissible. In yeast, this ability allows them to act as non-Mendelian elements of phenotypic inheritance. ...

  12. Amyloid Core Formed of Full-Length Recombinant Mouse Prion Protein Involves Sequence 127–143 but Not Sequence 107–126

    PubMed Central

    Chatterjee, Biswanath; Lee, Chung-Yu; Lin, Chen; Chen, Eric H.-L.; Huang, Chao-Li; Yang, Chien-Chih; Chen, Rita P.-Y.

    2013-01-01

    The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein (PrPC) into its disease-causing isoform, PrPSc. This conversion is associated with a marked change in secondary structure from predominantly ?-helical to a high ?-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP(23–230), we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP(107–143), mPrP(107–126), and mPrP(127–143). Our results showed that the amyloid fibrils formed from mPrP(107–143) and mPrP(127–143), but not those formed from mPrP(107–126), were able to seed the amyloidogenesis of mPrP(23–230), showing that the segment residing in sequence 127–143 was used to form the amyloid core in the fibrillization of mPrP(23–230). PMID:23844138

  13. Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing.

    PubMed

    Doolan, Kyle M; Colby, David W

    2015-01-30

    Prion diseases are caused by a structural rearrangement of the cellular prion protein, PrP(C), into a disease-associated conformation, PrP(Sc), which may be distinguished from one another using conformation-specific antibodies. We used mutational scanning by cell-surface display to screen 1341 PrP single point mutants for attenuated interaction with four anti-PrP antibodies, including several with conformational specificity. Single-molecule real-time gene sequencing was used to quantify enrichment of mutants, returning 26,000 high-quality full-length reads for each screened population on average. Relative enrichment of mutants correlated to the magnitude of the change in binding affinity. Mutations that diminished binding of the antibody ICSM18 represented the core of contact residues in the published crystal structure of its complex. A similarly located binding site was identified for D18, comprising discontinuous residues in helix 1 of PrP, brought into close proximity to one another only when the alpha helix is intact. The specificity of these antibodies for the normal form of PrP likely arises from loss of this conformational feature after conversion to the disease-associated form. Intriguingly, 6H4 binding was found to depend on interaction with the same residues, among others, suggesting that its ability to recognize both forms of PrP depends on a structural rearrangement of the antigen. The application of mutational scanning and deep sequencing provides residue-level resolution of positions in the protein-protein interaction interface that are critical for binding, as well as a quantitative measure of the impact of mutations on binding affinity. PMID:25451031

  14. Increased Infectivity of Anchorless Mouse Scrapie Prions in Transgenic Mice Overexpressing Human Prion Protein

    PubMed Central

    Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-01-01

    ABSTRACT Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. IMPORTANCE Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by mice expressing only anchorless PrP were more infectious than prions produced in mice expressing anchored PrP. Thus, the lack of the GPI anchor on prions reduced the effect of the mouse-human species barrier. Our results suggest that prion diseases that produce higher levels of anchorless PrP may pose an increased risk for cross-species infection. PMID:25810548

  15. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions

    PubMed Central

    Nyström, Sofie; Hammarström, Per

    2015-01-01

    Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from A?1-40, A?1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers. PMID:25960067

  16. Copper binding in the prion protein.

    PubMed

    Millhauser, Glenn L

    2004-02-01

    A conformational change of the prion protein is responsible for a class of neurodegenerative diseases called the transmissible spongiform encephalopathies that include mad cow disease and the human afflictions kuru and Creutzfeldt-Jakob disease. Despite the attention given to these diseases, the normal function of the prion protein in healthy tissue is unknown. Research over the past few years, however, demonstrates that the prion protein is a copper binding protein with high selectivity for Cu(2+). The structural features of the Cu(2+) binding sites have now been characterized and are providing important clues about the normal function of the prion protein and perhaps how metals or loss of protein function play a role in disease. The link between prion protein and copper may provide insight into the general, and recently appreciated, role of metals in neurodegenerative disease. PMID:14967054

  17. Epithelial and endothelial expression of the green fluorescent protein reporter gene under the control of bovine prion protein (PrP) gene regulatory sequences in transgenic mice

    NASA Astrophysics Data System (ADS)

    Lemaire-Vieille, Catherine; Schulze, Tobias; Podevin-Dimster, Valérie; Follet, Jérome; Bailly, Yannick; Blanquet-Grossard, Françoise; Decavel, Jean-Pierre; Heinen, Ernst; Cesbron, Jean-Yves

    2000-05-01

    The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5' untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.

  18. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores

    PubMed Central

    Zambrano, Rafael; Conchillo-Sole, Oscar; Iglesias, Valentin; Illa, Ricard; Rousseau, Frederic; Schymkowitz, Joost; Sabate, Raimon; Daura, Xavier; Ventura, Salvador

    2015-01-01

    Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/. PMID:25977297

  19. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.

    PubMed

    Zambrano, Rafael; Conchillo-Sole, Oscar; Iglesias, Valentin; Illa, Ricard; Rousseau, Frederic; Schymkowitz, Joost; Sabate, Raimon; Daura, Xavier; Ventura, Salvador

    2015-07-01

    Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/. PMID:25977297

  20. The Unexposed Secrets of Prion Protein Oligomers.

    PubMed

    Wang, Gailing; Wang, Mingcheng; Li, Chuanfeng

    2015-08-01

    According to the "protein-only" hypothesis, the misfolding and conversion of host-derived cellular prion protein (PrP(C)) into pathogenically misfolded PrP are believed to be the key procedure in the pathogenesis of prion diseases. Intermediate, soluble oligomeric prion protein (PrP) aggregates were considered a critical process for prion diseases. Several independent studies on PrP oligomers gained insights into oligomers' formation, biophysical and biochemical characteristics, structure conversion, and neurotoxicity. PrP oligomers are rich in ?-sheet structure and slightly resistant to proteinase K digestion. PrP oligomers exhibited more neurotoxicity and induced neuronal apoptosis in vivo and/or in vitro. In this review, we summarized recent studies regarding PrP oligomers and the relationship between misfolded PrP aggregates and neuronal death in the course of prion diseases. PMID:25823438

  1. Engineering the prion protein using chemical synthesis.

    PubMed

    Ball, H L; King, D S; Cohen, F E; Prusiner, S B; Baldwin, M A

    2001-11-01

    In recent years, the technology of solid-phase peptide synthesis (SPPS) has improved to the extent that chemical synthesis of small proteins may be a viable complementary strategy to recombinant expression. We have prepared several modified and wild-type prion protein (PrP) polypeptides, of up to 112 residues, that demonstrate the flexibility of a chemical approach to protein synthesis. The principal event in prion disease is the conformational change of the normal, alpha-helical cellular protein (PrPc) into a beta-sheet-rich pathogenic isoform (PrP(Sc)). The ability to form PrP(Sc) in transgenic mice is retained by a 106 residue 'mini-prion' (PrP106), with the deletions 23-88 and 141-176. Synthetic PrP106 (sPrP106) and a His-tagged analog (sPrP106HT) have been prepared successfully using a highly optimized Fmoc chemical methodology involving DCC/HOBt activation and an efficient capping procedure with N-(2-chlorobenzyloxycarbonyloxy) succinimide. A single reversed-phase purification step gave homogeneous protein, in excellent yield. With respect to its conformational and aggregational properties and its response to proteinase digestion, sPrP106 was indistinguishable from its recombinant analog (rPrP106). Certain sequences that proved to be more difficult to synthesize using the Fmoc approach, such as bovine (Bo) PrP(90-200), were successfully prepared using a combination of the highly activated coupling reagent HATU and t-Boc chemistry. To mimic the glycosylphosphatidyl inositol (GPI) anchor and target sPrP to cholesterol-rich domains on the cell surface, where the conversion of PrPc is believed to occur, a lipophilic group or biotin, was added to an orthogonally side-chain-protected Lys residue at the C-terminus of sPrP sequences. These groups enabled sPrP to be immobilized on either the cell surface or a streptavidin-coated ELISA plate, respectively, in an orientation analogous to that of membrane-bound, GPI-anchored PrPc. The chemical manipulation of such biologically relevant forms of PrP by the introduction of point mutations or groups that mimic post-translational modifications should enhance our understanding of the processes that cause prion diseases and may lead to the chemical synthesis of an infectious agent. PMID:11892845

  2. [Protein structure: Folding and prions].

    PubMed

    Rey-Gayo, Antonio; Calbo Torrecilla, Francisco

    2002-04-01

    Transmissible spongiform encephalopathies have become a subject of prime social concern in recent years because of its relation to "mad cow disease" and their potential for transmission to humans. Among the most important scientific aspects of these diseases are the peculiar characteristics of the agent involved in their transmission. In this article we briefly describe the outstanding features of prions, the most widely accepted hypothesis for these diseases. We focus on the molecular characteristics of this protein, coded in the genome of the affected host, and describe the conformational alterations in the protein's tertiary structure that have been blamed for its pathologic activity. Our aim is to summarize the state-of-the-art knowledge on prions, the hypotheses proposed to explain mechanisms of disease transmission without agents containing genetic material, and some specific peculiarities of this new infectious agent. The links between this knowledge and possible therapeutic strategies to overcome the disease justify, once again, close interaction among chemistry, molecular biology, and medicine. PMID:11996702

  3. Spontaneous Variants of the [RNQ+] Prion in Yeast Demonstrate the Extensive Conformational Diversity Possible with Prion Proteins

    PubMed Central

    Huang, Vincent J.; Stein, Kevin C.; True, Heather L.

    2013-01-01

    Prion strains (or variants) are structurally distinct amyloid conformations arising from a single polypeptide sequence. The existence of prion strains has been well documented in mammalian prion diseases. In many cases, prion strains manifest as variation in disease progression and pathology, and in some cases, these prion strains also show distinct biochemical properties. Yet, the underlying basis of prion propagation and the extent of conformational possibilities available to amyloidogenic proteins remain largely undefined. Prion proteins in yeast that are also capable of maintaining multiple self-propagating structures have provided much insight into prion biology. Here, we explore the vast structural diversity of the yeast prion [RNQ+] in Saccharomyces cerevisiae. We screened for the formation of [RNQ+] in vivo, allowing us to calculate the rate of spontaneous formation as ~2.96x10-6, and successfully isolate several different [RNQ+] variants. Through a comprehensive set of biochemical and biological analyses, we show that these prion variants are indeed novel. No individual property or set of properties, including aggregate stability and size, was sufficient to explain the physical basis and range of prion variants and their resulting cellular phenotypes. Furthermore, all of the [RNQ+] variants that we isolated were able to facilitate the de novo formation of the yeast prion [PSI+], an epigenetic determinant of translation termination. This supports the hypothesis that [RNQ+] acts as a functional amyloid in regulating the formation of [PSI+] to produce phenotypic diversity within a yeast population and promote adaptation. Collectively, this work shows the broad spectrum of available amyloid conformations, and thereby expands the foundation for studying the complex factors that interact to regulate the propagation of distinct aggregate structures. PMID:24205387

  4. Yeast prion architecture explains how proteins can be genes

    NASA Astrophysics Data System (ADS)

    Wickner, Reed

    2013-03-01

    Prions (infectious proteins) transmit information without an accompanying DNA or RNA. Most yeast prions are self-propagating amyloids that inactivate a normally functional protein. A single protein can become any of several prion variants, with different manifestations due to different amyloid structures. We showed that the yeast prion amyloids of Ure2p, Sup35p and Rnq1p are folded in-register parallel beta sheets using solid state NMR dipolar recoupling experiments, mass-per-filament-length measurements, and filament diameter measurements. The extent of beta sheet structure, measured by chemical shifts in solid-state NMR and acquired protease-resistance on amyloid formation, combined with the measured filament diameters, imply that the beta sheets must be folded along the long axis of the filament. We speculate that prion variants of a single protein sequence differ in the location of these folds. Favorable interactions between identical side chains must hold these structures in-register. The same interactions must guide an unstructured monomer joining the end of a filament to assume the same conformation as molecules already in the filament, with the turns at the same locations. In this way, a protein can template its own conformation, in analogy to the ability of a DNA molecule to template its sequence by specific base-pairing. Bldg. 8, Room 225, NIH, 8 Center Drive MSC 0830, Bethesda, MD 20892-0830, wickner@helix.nih.gov, 301-496-3452

  5. Prion protein in health and disease

    E-print Network

    Steele, Andrew D., Ph. D. Massachusetts Institute of Technology

    2008-01-01

    The prion protein (PrP) is a conserved glycoprotein tethered to cell membranes by a glycosylphosphatidylinositol anchor. In mammals, PrP is expressed in many tissues, most abundantly in brain, heart, and muscle. Importantly, ...

  6. Yeast prions: Paramutation at the protein level?

    PubMed

    Tuite, Mick F

    2015-08-01

    Prions are proteins that have the potential to refold into a novel conformation that templates the conversion of like molecules to the altered infectious form. In the yeast Saccharomyces cerevisiae, trans-generational epigenetic inheritance can be mediated by a number of structurally and functionally diverse prions. Prionogenesis can confer both loss-of-function and gain-of-function properties to the prion protein and this in turn can have a major impact on host phenotype, short-term adaptation and evolution of new traits. Prionogenesis shares a number of properties in common with paramutation and can be considered as a mitotically and meiotically heritable change in protein conformation induced by trans-interactions between homologous proteins. PMID:26386407

  7. Cellular Prion Protein: From Physiology to Pathology

    PubMed Central

    Yusa, Sei-ichi; Oliveira-Martins, José B.; Sugita-Konishi, Yoshiko; Kikuchi, Yutaka

    2012-01-01

    The human cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI) anchored membrane glycoprotein with two N-glycosylation sites at residues 181 and 197. This protein migrates in several bands by Western blot analysis (WB). Interestingly, PNGase F treatment of human brain homogenates prior to the WB, which is known to remove the N-glycosylations, unexpectedly gives rise to two dominant bands, which are now known as C-terminal (C1) and N-terminal (N1) fragments. This resembles the ?-amyloid precursor protein (APP) in Alzheimer disease (AD), which can be physiologically processed by ?-, ?-, and ?-secretases. The processing of APP has been extensively studied, while the identity of the cellular proteases involved in the proteolysis of PrPC and their possible role in prion biology has remained limited and controversial. Nevertheless, there is a strong correlation between the neurotoxicity caused by prion proteins and the blockade of their normal proteolysis. For example, expression of non-cleavable PrPC mutants in transgenic mice generates neurotoxicity, even in the absence of infectious prions, suggesting that PrPC proteolysis is physiologically and pathologically important. As many mouse models of prion diseases have recently been developed and the knowledge about the proteases responsible for the PrPC proteolysis is accumulating, we examine the historical experimental evidence and highlight recent studies that shed new light on this issue. PMID:23202518

  8. Lipopolysaccharide induced conversion of recombinant prion protein.

    PubMed

    Saleem, Fozia; Bjorndahl, Trent C; Ladner, Carol L; Perez-Pineiro, Rolando; Ametaj, Burim N; Wishart, David S

    2014-01-01

    The conformational conversion of the cellular prion protein (PrP(C)) to the ?-rich infectious isoform PrP(Sc) is considered a critical and central feature in prion pathology. Although PrP(Sc) is the critical component of the infectious agent, as proposed in the "protein-only" prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrP(C) to proteinase K resistant PrP(Sc). A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrP(C) conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrP(C) to PrP(Sc), we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in ? sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90-232). PMID:24819168

  9. Lipopolysaccharide induced conversion of recombinant prion protein

    PubMed Central

    Saleem, Fozia; Bjorndahl, Trent C; Ladner, Carol L; Perez-Pineiro, Rolando; Ametaj, Burim N; Wishart, David S

    2014-01-01

    The conformational conversion of the cellular prion protein (PrPC) to the ?-rich infectious isoform PrPSc is considered a critical and central feature in prion pathology. Although PrPSc is the critical component of the infectious agent, as proposed in the “protein-only” prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrPC to proteinase K resistant PrPSc. A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrPC conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrPC to PrPSc, we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in ? sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90–232). PMID:24819168

  10. Monitoring prion protein stability by NMR.

    PubMed

    Julien, Olivier; Graether, Steffen P; Sykes, Brian D

    2009-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurological diseases that affect both humans and animals. At the end of the 20th century, bovine spongiform encephalopathy (BSE), better known as mad cow disease, was shown to be transmissible to humans. This resulted in considerable concern for public health and a number of questions for scientists. The first question answered was the possible source of the disease, which appears to be the prion protein (PrP). There are two major forms of this protein: the native, noninfectious form (PrP(C)), and the misfolded infectious form (PrP(Sc)). PrP(C) is mainly alpha-helical in structure, whereas PrP(Sc) aggregates into an assembly of beta-sheets, forming amyloid fibrils. Since the first solution structure of the noninfectious form of the mouse prion protein, about 30 structures of the globular portion of PrP(C) have been characterized from different organisms. However, only a few minor differences are observed when comparing one PrP(C) structure to another. The key to understanding prion formation may then be not in the structure of PrP(C), but in the mechanism underlying PrP(C) unfolding and then conversion into a misfolded fibril state. To identify the possible region(s) of PrP(C) responsible for initiating the conversion into the amyloid fibril formation, nuclear magnetic resonance (NMR) was applied to characterize the stability and structure of PrP(C) and intermediate states during the conversion from PrP(C) to PrP(Sc). Subsequently urea was used to induce unfolding, and data analysis revealed region-specific structural stabilities that may bring insights into the mechanisms underlying conversion of protein into an infectious prion. PMID:19697241

  11. Glycidol degrades scrapie mouse prion protein.

    PubMed

    Yamamoto, M; Horiuchi, M; Ishiguro, N; Shinagawa, M; Matsuo, T; Kaneko, K

    2001-09-01

    Agents of transmissible spongiform encephalopathy (prion) are known to be extremely resistant to physicochemical inactivation procedures such as heat, radiation, chemical disinfectants such as detergents, alcohols, glutaraldehyde, formalin, and so on. Because of its remarkable resistance, it is difficult to inactivate prion. Chemical inactivation seems to be a practical method because it is applicable to large or fixed surfaces and complicated equipment. Here, three epoxides: beta-propiolactone, propylene oxide, and glycidol (GLD) were examined of their inactivation ability against scrapie-mouse prion protein (PrP(Sc)) under various conditions of chemical concentration, incubation time, and temperature. Among these chemicals, GLD worked most effectively and degraded PrP into small fragments. As a result of the bioassay, treatment with 3% GLD for 5 hr and 5% GLD for 2, 5 hr or 12 hr at room temperature prolonged the mean incubation time by 44, 30, 110 and 73 days, respectively. From dose-incubation time standard curve, the decrease in infectivity titers were estimated as 10(3) or more. Therefore, degradation of PrP(Sc) by GLD decreased the scrapie infectivity. It is also suggested that pH and salt concentrations influence the effect of GLD. Although further study is necessary to determine the optimal condition, GLD may be a potential prion disinfectant. PMID:11642287

  12. Molecular Dynamics Studies on the Buffalo Prion Protein

    E-print Network

    Zhang, Jiapu

    2015-01-01

    It was reported that buffalo is a low susceptibility species resisting to TSEs (Transmissible Spongiform Encephalopathies) (same as rabbits, horses and dogs). TSEs, also called prion diseases, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of species (in humans prion diseases are (v)CJDs, GSS, FFI, and kulu etc). It was reported that buffalo is a low susceptibility species resisting to prion diseases (as rabbits, dogs, horses). In molecular structures, these neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein, predominantly with alpha-helices, into insoluble abnormally folded infectious prions, rich in beta-sheets. This paper studies the molecular structure and structural dynamics of buffalo prion protein, in order to find out the reason why buffaloes are resistant to prion diseases. We first did molecular modeling a homology structure constructed by one mutation at residue 143 from the Nuclear Magnetic Resonanc...

  13. Prion protein interaction with soil humic substances: environmental implications.

    PubMed

    Giachin, Gabriele; Narkiewicz, Joanna; Scaini, Denis; Ngoc, Ai Tran; Margon, Alja; Sequi, Paolo; Leita, Liviana; Legname, Giuseppe

    2014-01-01

    Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants. PMID:24937266

  14. Knocked-out and still walking: prion protein-deficient cattle are resistant to prion disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Transmissible spongiform encephalopathies (TSEs) or prion diseases are caused by the propagation of a misfolded form (PrP**d) of the normal cellular prion protein, PrP**c. Disruption of PrP**c expression in the mouse results in resistance to PrP-propagation and disease. However, the impa...

  15. [Functions of prion protein PrPc].

    PubMed

    Cazaubon, Sylvie; Viegas, Pedro; Couraud, Pierre-Olivier

    2007-01-01

    It is now well established that both normal and pathological (or scrapie) isoforms of prion protein, PrPc and PrPsc respectively, are involved in the development and progression of various forms of neurodegenerative diseases, including scrapie in sheep, bovine spongiform encephalopathy (or "mad cow disease") and Creutzfeldt-Jakob disease in human, collectively known as prion diseases. The protein PrPc is highly expressed in the central nervous system in neurons and glial cells, and also present in non-brain cells, such as immune cells or epithelial and endothelial cells. Identification of the physiological functions of PrPc in these different cell types thus appears crucial for understanding the progression of prion diseases. Recent studies highlighted several major roles for PrPc that may be considered in two major domains : (1) cell survival (protection against oxidative stress and apoptosis) and (2) cell adhesion. In association with cell adhesion, distinct functions of PrPc were observed, depending on cell types : neuronal differentiation, epithelial and endothelial barrier integrity, transendothelial migration of monocytes, T cell activation. These observations suggest that PrPc functions may be particularly relevant to cellular stress, as well as inflammatory or infectious situations. PMID:17875293

  16. On the kinetics of infection by pathogenic prion protein molecules

    NASA Astrophysics Data System (ADS)

    Durup, Jean

    1997-03-01

    Literature data on the transmission of spongiform encephalopathies between mammal species point to the importance of methionine residuies in species barriers. This in turn favours the assumption of an oligomerization of identical metastable pathogenic prion protein molecules as the rate-determining step in those diseases. Published experimental data on the analogous case of yeast prion proteins closely agree with the proposed scheme.

  17. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    USGS Publications Warehouse

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  18. A naturally occurring variant of the human prion protein completely prevents prion disease

    PubMed Central

    Asante, Emmanuel A.; Smidak, Michelle; Grimshaw, Andrew; Houghton, Richard; Tomlinson, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Richard-Londt, Angela; Linehan, Jacqueline M.; Brandner, Sebastian; Alpers, Michael; Whitfield, Jerome; Mead, Simon; Wadsworth, Jonathan D.F.; Collinge, John

    2015-01-01

    Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP) 1. A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru, an acquired prion disease epidemic of the Fore population in Papua New Guinea, and appeared to provide strong protection against disease in the heterozygous state2. We have now investigated the protective role of this variant and its interaction with the common worldwide M129V PrP polymorphism; V127 was seen exclusively on a M129 PRNP allele. Here we demonstrate that transgenic mice expressing both variant and wild type human PrP are completely resistant to both kuru and classical CJD prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to BSE prions to which the Fore were not exposed. Remarkably however, mice expressing only PrP V127 were completely resistant to all prion strains demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed this single amino acid substitution (G?V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild type PrP indicates that not only is PrP V127 completely refractory to prion conversion, but acts as a potent dose-dependent inhibitor of wild type prion propagation. PMID:26061765

  19. A systematic investigation of production of synthetic prions from recombinant prion protein.

    PubMed

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. PMID:26631378

  20. A naturally occurring variant of the human prion protein completely prevents prion disease.

    PubMed

    Asante, Emmanuel A; Smidak, Michelle; Grimshaw, Andrew; Houghton, Richard; Tomlinson, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Richard-Londt, Angela; Linehan, Jacqueline M; Brandner, Sebastian; Alpers, Michael; Whitfield, Jerome; Mead, Simon; Wadsworth, Jonathan D F; Collinge, John

    2015-06-25

    Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (G?V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation. PMID:26061765

  1. Attachment of Pathogenic Prion Protein to Model Oxide Surfaces

    PubMed Central

    Jacobson, Kurt H.; Kuech, Thomas R.; Pedersen, Joel A.

    2014-01-01

    Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The N-terminal portion of the protein appeared to facilitate attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions preferentially associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides). PMID:23611152

  2. [Unfolding chaperone as a prion protein relating molecule].

    PubMed

    Hachiya, Naomi S; Sakasegawa, Yuji; Kaneko, Kiyotoshi

    2003-11-01

    Prion protein exists in two different isoforms, a normal cellular isoform (PrPc) and an abnormal infectious isoform (PrPSc), the latter is a causative agent of prion disease such as mad cow disease and Creutzfeldt-Jakob disease. Amino acid sequences of PrPc and PrPSc are identical, but their conformations are rather different; PrPc rich in non beta-sheet vs. PrPSc rich in beta-sheet isoform. Since the two isoforms have quite different conformation, this host factor might be a molecular chaperone, which enables to override an energy barrier between PrPc and PrPSc. To examine the protein unfolding activities against collectively folded structure exist or not, we constructed an assay system and purified a novel molecular chaperone. Unfolding, from S. cerevisiae. Unfolding consists of oligomeric ring-like structure with the central cavity and has an ATP-dependent protein Unfoldingg activity with broad specificity in vitro, of which targets included PrP in beta-sheet form, alpha-synuclein, and A beta protein. We have also found that mouse neuroblastoma N2a cells contained the activity. Treatment of this factor with an ATP-hydrolyzing enzyme, apyrase, caused the decrease in its protein Unfoldingg activity. It was suggested that the purified protein probably formed homo-oligomer consisting of 4-5 subunits and its activity was ATP-dependent. PMID:15152473

  3. Prion protein as a mediator of synaptic transmission

    PubMed Central

    Steinert, Joern R

    2015-01-01

    Neurodegenerative disorders are characterized by synaptic and neuronal dysfunction which precedes general neuronal loss and subsequent cognitive or behavioral anomalies. Although the exact early cellular signaling mechanisms involved in neurodegenerative diseases are largely unknown, a view is emerging that compromised synaptic function may underlie the initial steps in disease progression. Much recent research has been aimed at understanding these early underlying processes leading to dysfunctional synaptic signaling, as this knowledge could identify putative sites of interventions, which could potentially slow progression and delay onset of disease. We have recently reported that synaptic function in a Drosophila melanogaster model can be modulated by the presence of native mouse prion protein and this modulation is negatively affected by a mutation within the protein which is associated with the Gerstmann-Sträussler-Scheinker syndrome, a human form of prion disease. Indeed, wild-type prion protein facilitates synaptic release, whereas the mutated form induced diminished phenotypes. It is believed that together with the gain-of-function of neurotoxic misfolded prion signaling, the lack of prion protein contributes to the pathology in prion diseases. Therefore, our study investigated a potential endogenous role of prion protein in synaptic signaling, the lack of which could resemble a lack-of-function phenotype in prion disease. PMID:26478992

  4. Normal modes of prion proteins: from native to infectious particle.

    PubMed

    Samson, Abraham O; Levitt, Michael

    2011-03-29

    Prion proteins (PrP) are the infectious agent in transmissible spongiform encephalopathies (i.e., mad cow disease). To be infectious, prion proteins must undergo a conformational change involving a decrease in ?-helical content along with an increase in ?-strand content. This conformational change was evaluated by means of elastic normal modes. Elastic normal modes show a diminution of two ?-helices by one and two residues, as well as an extension of two ?-strands by three residues each, which could instigate the conformational change. The conformational change occurs in a region that is compatible with immunological studies, and it is observed more frequently in mutant prions that are prone to conversion than in wild-type prions because of differences in their starting structures, which are amplified through normal modes. These findings are valuable for our comprehension of the conversion mechanism associated with the conformational change in prion proteins. PMID:21338080

  5. Context Dependent Neuroprotective Properties of Prion Protein (Prp)

    E-print Network

    Steele, Andrew D.

    Although it has been known for more than twenty years that an aberrant conformation of the prion protein (PrP) is the causative agent in prion diseases, the role of PrP in normal biology is undetermined. Numerous studies ...

  6. Computational Studies of the Structural Stability of Rabbit Prion Protein Compared to Human and Mouse Prion Proteins

    E-print Network

    Zhang, Jiapu

    2011-01-01

    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. The neurodegenerative diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Str$\\ddot{a}$ussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle belong to prion diseases. By now there have not been some effective therapeutic approaches to treat all these prion diseases. Dogs, rabbits and horses were reported to be resistant to prion diseases. By the end of year 2010 all the NMR structures of dog, rabbit and horse prion proteins (X-ray for rabbits too) had been finished to release into protein data bank. Thus, at this moment it is very worth studying the NMR and X-ray molecular structures of horse, dog and rabbit prion proteins to obtain insights into their immunity prion diseases. The author found that dog and horse prion proteins have sta...

  7. Peptide sequences converting polyglutamine into a prion in yeast.

    PubMed

    Odani, Wataru; Urata, Kazuhiro; Okuda, Momoko; Okuma, Shunsuke; Koyama, Hiroko; Pack, Chan-Gi; Fujiwara, Kei; Nojima, Tatsuya; Kinjo, Masataka; Kawai-Noma, Shigeko; Taguchi, Hideki

    2015-02-01

    Amyloids are ordered protein aggregates composed of cross-? sheet structures. Amyloids include prions, defined as infectious proteins, which are responsible for mammalian transmissible spongiform encephalopathies, and fungal prions. Although the conventional view is that typical amyloids are associated with nontransmissible mammalian neurodegenerative diseases such as Alzheimer's disease, increasing evidence suggests that the boundary between transmissible and nontransmissible amyloids is ambiguous. To clarify the mechanism underlying the difference in transmissibility, we investigated the dynamics and the properties of polyglutamine (polyQ) amyloids in yeast cells, in which the polyQ aggregates are not transmissible but can be converted into transmissible amyloids. We found that polyQ had an increased tendency to form aggregates compared to the yeast prion Sup35. In addition, we screened dozens of peptides that converted the nontransmissible polyQ to transmissible aggregates when they flanked the polyQ stretch, and also investigated their cellular dynamics aiming to understand the mechanism of transmission. PMID:25406629

  8. The structural stability of wild-type horse prion protein.

    PubMed

    Zhang, Jiapu

    2011-10-01

    Prion diseases (e.g. Creutzfeldt-Jakob disease (CJD), variant CJD (vCJD), Gerstmann-Straussler-Scheinker syndrome (GSS), Fatal Familial Insomnia (FFI) and Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (BSE or 'mad-cow' disease) and chronic wasting disease (CWD) in cattles) are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches or medications to treat all these prion diseases. Rabbits, dogs, and horses are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species. Recently, the ?2-?2 loop has been reported to contribute to their protein structural stabilities. The author has found that rabbit prion protein has a strong salt bridge ASP177-ARG163 (like a taut bow string) keeping this loop linked. This paper confirms that this salt bridge also contributes to the structural stability of horse prion protein. Thus, the region of ?2-?2 loop might be a potential drug target region. Besides this very important salt bridge, other four important salt bridges GLU196-ARG156-HIS187, ARG156-ASP202 and GLU211-HIS177 are also found to greatly contribute to the structural stability of horse prion protein. Rich databases of salt bridges, hydrogen bonds and hydrophobic contacts for horse prion protein can be found in this paper. PMID:21875155

  9. Alternative Translation Initiation Generates Cytoplasmic Sheep Prion Protein*

    PubMed Central

    Lund, Christoffer; Olsen, Christel M.; Skogtvedt, Susan; Tveit, Heidi; Prydz, Kristian; Tranulis, Michael A.

    2009-01-01

    Cytoplasmic localization of the prion protein (PrP) has been observed in different species and cell types. We have investigated this poorly understood phenomenon by expressing fusion proteins of sheep prion protein and green fluorescent protein (GFPPrP) in N2a cells, with variable sequence context surrounding the start codon Met1. GFPPrP expressed with the wild-type sequence was transported normally through the secretory pathway to the cell surface with acquisition of N-glycan groups, but two N-terminal fragments of GFPPrP were detected intracellularly, starting in frame from Met17. When GFPPrP was expressed with a compromised Kozak sequence (GFPPrP*), dispersed intracellular fluorescence was observed. A similar switch from pericellular to intracellular PrP localization was seen when analogous constructs of sheep PrP, without inserted GFP, were expressed, showing that this phenomenon is not caused by the GFP tag. Western blotting revealed a reduction in glycosylated forms of GFPPrP*, whereas the N-terminal fragments starting from Met17 were still present. Formation of these N-terminal fragments was completely abolished when Met17 was replaced by Thr, indicating that leaky ribosomal scanning occurs for normal sheep PrP and that translation from Met17 is the cause of the aberrant cytoplasmic localization observed for a fraction of the protein. In contrast, the same phenomenon was not detected upon expression of similar constructs for mouse PrP. Analysis of samples from sheep brain allowed immunological detection of N-terminal PrP fragments, indicating that sheep PrP is subject to similar processing mechanisms in vivo. PMID:19451655

  10. SSCP analysis and sequencing of the human prion protein gene (PRNP) detects two different 24 bp deletions in an atypical Alzheimer`s disease family

    SciTech Connect

    Perry, R.T.; Go, R.C.P.; Harrell, L.E.; Acton, R.T.

    1995-02-27

    Alzheimer`s disease (AD) is a progressive, degenerative neurological disorder of the central nervous system. AD is the fourth leading cause of death in elderly persons 65 years or older in Western industrialized societies. The etiology of AD is unknown, but clinical, pathological, epidemiological, and molecular investigations suggest it is etiologically heterogeneous. Mutations in the amyloid protein are rare and segregate with the disease in a few early-onset familial AD (FAD) families. Similarities between AD and the unconventional viral (UCV) diseases, and between the amyloid and prion proteins, implicate the human prion protein gene (PRNP) as another candidate gene. Single strand conformation polymorphism (SSCP) analysis was used to screen for mutations at this locus in 82 AD patients from 54 families (30 FAD), vs. 39 age-matched controls. A 24-bp deletion around codon 68 that codes for one of five Gly-Pro rich octarepeats was identified in two affected sibs and one offspring of one late-onset FAD family. Two other affected sibs, three unaffected sibs, and three offspring from this family, in addition to one sporadic AD patient and three age-matched controls, were heterozygous for another octarepeat deletion located around codon 82. Two of the four affected sibs had features of PD, including one who was autopsy-verified AD and PD. Although these deletions were found infrequently in other AD patients and controls, they appear to be a rare polymorphism that is segregating in this FAD family. It does not appear that mutations at the PRNP locus are frequently associated with AD in this population. 54 refs., 4 figs.

  11. Insights into prion protein function from atomistic simulations.

    PubMed

    Hodak, Miroslav; Bernholc, Jerzy

    2010-01-01

    Computer simulations are a powerful tool for studies of biological systems. They have often been used to study prion protein (PrP), a protein responsible for neurodegenerative diseases, which include "mad cow disease" in cattle and Creutzfeldt-Jacob disease in humans. An important aspect of the prion protein is its interaction with copper ion, which is thought to be relevant for PrP's yet undetermined function and also potentially play a role in prion diseases. for studies of copper attachment to the prion protein, computer simulations have often been used to complement experimental data and to obtain binding structures of Cu-PrP complexes. This paper summarizes the results of recent ab initio calculations of copper-prion protein interactions focusing on the recently discovered concentration-dependent binding modes in the octarepeat region of this protein. In addition to determining the binding structures, computer simulations were also used to make predictions about PrP's function and the role of copper in prion diseases. The results demonstrate the predictive power and applicability of ab initio simulations for studies of metal-biomolecular complexes. PMID:20118658

  12. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  13. Manganese Upregulates Cellular Prion Protein and Contributes to Altered Stabilization and Proteolysis: Relevance to Role of Metals in Pathogenesis of Prion Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases are fatal neurodegenerative diseases resulting from misfolding of normal cellular prion (PrP**C) into an abnormal form of scrapie prion (PrP**Sc). The cellular mechanisms underlying the misfolding of PrP**C are not well understood. Since cellular prion proteins harbor divalent metal b...

  14. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio.

    PubMed

    Katorcha, Elizaveta; Makarava, Natallia; Savtchenko, Regina; Baskakov, Ilia V

    2015-01-01

    Prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded and aggregated form of a sialoglycoprotein called prion protein or PrP(C). PrP(C) has two sialylated N-linked carbohydrates. In PrP(Sc), the glycans are directed outward, with the terminal sialic acid residues creating a negative charge on the surface of prion particles. The current study proposes a new hypothesis that electrostatic repulsion between sialic residues creates structural constraints that control prion replication and PrP(Sc) glycoform ratio. In support of this hypothesis, here we show that diglycosylated PrP(C) molecules that have more sialic groups per molecule than monoglycosylated PrP(C) were preferentially excluded from conversion. However, when partially desialylated PrP(C) was used as a substrate, recruitment of three glycoforms into PrP(Sc) was found to be proportional to their respective populations in the substrate. In addition, hypersialylated molecules were also excluded from conversion in the strains with the strongest structural constraints, a strategy that helped reduce electrostatic repulsion. Moreover, as predicted by the hypothesis, partial desialylation of PrP(C) significantly increased the replication rate. This study illustrates that sialylation of N-linked glycans creates a prion replication barrier that controls replication rate and glycoform ratios and has broad implications. PMID:26576925

  15. Sialylation of the prion protein glycans controls prion replication rate and glycoform ratio

    PubMed Central

    Katorcha, Elizaveta; Makarava, Natallia; Savtchenko, Regina; Baskakov, Ilia V.

    2015-01-01

    Prion or PrPSc is a proteinaceous infectious agent that consists of a misfolded and aggregated form of a sialoglycoprotein called prion protein or PrPC. PrPC has two sialylated N-linked carbohydrates. In PrPSc, the glycans are directed outward, with the terminal sialic acid residues creating a negative charge on the surface of prion particles. The current study proposes a new hypothesis that electrostatic repulsion between sialic residues creates structural constraints that control prion replication and PrPSc glycoform ratio. In support of this hypothesis, here we show that diglycosylated PrPC molecules that have more sialic groups per molecule than monoglycosylated PrPC were preferentially excluded from conversion. However, when partially desialylated PrPC was used as a substrate, recruitment of three glycoforms into PrPSc was found to be proportional to their respective populations in the substrate. In addition, hypersialylated molecules were also excluded from conversion in the strains with the strongest structural constraints, a strategy that helped reduce electrostatic repulsion. Moreover, as predicted by the hypothesis, partial desialylation of PrPC significantly increased the replication rate. This study illustrates that sialylation of N-linked glycans creates a prion replication barrier that controls replication rate and glycoform ratios and has broad implications. PMID:26576925

  16. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  17. Protein misfolding cyclic amplification for diagnosis and prion propagation studies.

    PubMed

    Castilla, Joaquín; Saá, Paula; Morales, Rodrigo; Abid, Karim; Maundrell, Kinsey; Soto, Claudio

    2006-01-01

    Diverse human disorders are thought to arise from the misfolding and aggregation of an underlying protein. Among them, prion diseases are some of the most intriguing disorders that can be transmitted by an unprecedented infectious agent, termed prion, composed mainly (if not exclusively) of the misfolded prion protein. The hallmark event in the disease is the conversion of the native prion protein into the disease-associated misfolded protein. We have recently described a novel technology to mimic the prion conversion process in vitro. This procedure, named protein misfolding cyclic amplification (PMCA), conceptually analogous to DNA amplification by polymerase chain reaction (PCR), has important applications for research and diagnosis. In this chapter we describe the rational behind PMCA and some of the many potential applications of this novel technology. We also describe in detail the technical and methodological aspects of PMCA, as well as its application in automatic and serial modes that have been developed with a view to improving disease diagnosis. PMID:17046648

  18. Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein.

    PubMed

    Wu, Emilia L; Qi, Yifei; Park, Soohyung; Mallajosyula, Sairam S; MacKerell, Alexander D; Klauda, Jeffery B; Im, Wonpil

    2015-11-17

    Prion diseases are fatal neurodegenerative disorders, which are characterized by the accumulation of misfolded prion protein (PrP(Sc)) converted from a normal host cellular prion protein (PrP(C)). Experimental studies suggest that PrP(C) is enriched with ?-helical structure, whereas PrP(Sc) contains a high proportion of ?-sheet. In this study, we report the impact of N-glycosylation and the membrane on the secondary structure stability utilizing extensive microsecond molecular dynamics simulations. Our results reveal that the HB (residues 173 to 194) C-terminal fragment undergoes conformational changes and helix unfolding in the absence of membrane environments because of the competition between protein backbone intramolecular and protein-water intermolecular hydrogen bonds as well as its intrinsic instability originated from the amino acid sequence. This initiation of the unfolding process of PrP(C) leads to a subsequent increase in the length of the HB-HC loop (residues 195 to 199) that may trigger larger rigid body motions or further unfolding around this region. Continuous interactions between prion protein and the membrane not only constrain the protein conformation but also decrease the solvent accessibility of the backbone atoms, thereby stabilizing the secondary structure, which is enhanced by N-glycosylation via additional interactions between the N-glycans and the membrane surface. PMID:26588568

  19. X-ray structural and molecular dynamical studies of the globular domains of cow, deer, elk and Syrian hamster prion proteins.

    PubMed

    Baral, Pravas Kumar; Swayampakula, Mridula; Aguzzi, Adriano; James, Michael N G

    2015-10-01

    Misfolded prion proteins are the cause of neurodegenerative diseases that affect many mammalian species, including humans. Transmission of the prion diseases poses a considerable public-health risk as a specific prion disease such as bovine spongiform encephalopathy can be transferred to humans and other mammalian species upon contaminant exposure. The underlying mechanism of prion propagation and the species barriers that control cross species transmission has been investigated quite extensively. So far a number of prion strains have been characterized and those have been intimately linked to species-specific infectivity and other pathophysiological manifestations. These strains are encoded by a protein-only agent, and have a high degree of sequence identity across mammalian species. The molecular events that lead to strain differentiation remain elusive. In order to contribute to the understanding of strain differentiation, we have determined the crystal structures of the globular, folded domains of four prion proteins (cow, deer, elk and Syrian hamster) bound to the POM1 antibody fragment Fab. Although the overall structural folds of the mammalian prion proteins remains extremely similar, there are several local structural variations observed in the misfolding-initiator motifs. In additional molecular dynamics simulation studies on these several prion proteins reveal differences in the local fluctuations and imply that these differences have possible roles in the unfolding of the globular domains. These local variations in the structured domains perpetuate diverse patterns of prion misfolding and possibly facilitate the strain selection and adaptation. PMID:26320075

  20. Prions Ex Vivo: What Cell Culture Models Tell Us about Infectious Proteins

    PubMed Central

    Krauss, Sybille

    2013-01-01

    Prions are unconventional infectious agents that are composed of misfolded aggregated prion protein. Prions replicate their conformation by template-assisted conversion of the endogenous prion protein PrP. Templated conversion of soluble proteins into protein aggregates is also a hallmark of other neurodegenerative diseases. Alzheimer's disease or Parkinson's disease are not considered infectious diseases, although aggregate pathology appears to progress in a stereotypical fashion reminiscent of the spreading behavior ofmammalian prions. While basic principles of prion formation have been studied extensively, it is still unclear what exactly drives PrP molecules into an infectious, self-templating conformation. In this review, we discuss crucial steps in the life cycle of prions that have been revealed in ex vivo models. Importantly, the persistent propagation of prions in mitotically active cells argues that cellular processes are in place that not only allow recruitment of cellular PrP into growing prion aggregates but also enable the multiplication of infectious seeds that are transmitted to daughter cells. Comparison of prions with other protein aggregates demonstrates that not all the characteristics of prions are equally shared by prion-like aggregates. Future experiments may reveal to which extent aggregation-prone proteins associated with other neurodegenerative diseases can copy the replication strategies of prions. PMID:24282413

  1. Hot spot of structural ambivalence in prion protein revealed by secondary structure principal component analysis.

    PubMed

    Yamamoto, Norifumi

    2014-08-21

    The conformational conversion of proteins into an aggregation-prone form is a common feature of various neurodegenerative disorders including Alzheimer's, Huntington's, Parkinson's, and prion diseases. In the early stage of prion diseases, secondary structure conversion in prion protein (PrP) causing ?-sheet expansion facilitates the formation of a pathogenic isoform with a high content of ?-sheets and strong aggregation tendency to form amyloid fibrils. Herein, we propose a straightforward method to extract essential information regarding the secondary structure conversion of proteins from molecular simulations, named secondary structure principal component analysis (SSPCA). The definite existence of a PrP isoform with an increased ?-sheet structure was confirmed in a free-energy landscape constructed by mapping protein structural data into a reduced space according to the principal components determined by the SSPCA. We suggest a "spot" of structural ambivalence in PrP-the C-terminal part of helix 2-that lacks a strong intrinsic secondary structure, thus promoting a partial ?-helix-to-?-sheet conversion. This result is important to understand how the pathogenic conformational conversion of PrP is initiated in prion diseases. The SSPCA has great potential to solve various challenges in studying highly flexible molecular systems, such as intrinsically disordered proteins, structurally ambivalent peptides, and chameleon sequences. PMID:25101991

  2. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  3. Electrostatics in the stability and misfolding of the prion protein: salt bridges, self energy, and

    E-print Network

    Plotkin, Steven S.

    Creutzfeldt­Jakob disease (CJD), fatal familial insomnia, and Gerstmann­Stra¨ussler­Scheinker syndrome prion disease were among those with the largest electrostatic energies. The large barrier to charged for disease-susceptible human mutants of prion protein. Key words: salt bridge, prion, protein misfolding

  4. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  5. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein

    E-print Network

    Cai, Long

    , are infectious neurodegenerative diseases of mammals that include bovine spongiform encephalopathy, chronic of PrPSc formation. The transmissible spongiform encephalopathies (TSEs), or prion diseases

  6. Yeast prions are useful for studying protein chaperones and protein quality control.

    PubMed

    Masison, Daniel C; Reidy, Michael

    2015-01-01

    Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions. PMID:26110609

  7. Increasing Prion Propensity by Hydrophobic Insertion

    PubMed Central

    Petri, Michelina; Flores, Noe; Rogge, Ryan A.; Cascarina, Sean M.; Ross, Eric D.

    2014-01-01

    Prion formation involves the conversion of proteins from a soluble form into an infectious amyloid form. Most yeast prion proteins contain glutamine/asparagine-rich regions that are responsible for prion aggregation. Prion formation by these domains is driven primarily by amino acid composition, not primary sequence, yet there is a surprising disconnect between the amino acids thought to have the highest aggregation propensity and those that are actually found in yeast prion domains. Specifically, a recent mutagenic screen suggested that both aromatic and non-aromatic hydrophobic residues strongly promote prion formation. However, while aromatic residues are common in yeast prion domains, non-aromatic hydrophobic residues are strongly under-represented. Here, we directly test the effects of hydrophobic and aromatic residues on prion formation. Remarkably, we found that insertion of as few as two hydrophobic residues resulted in a multiple orders-of-magnitude increase in prion formation, and significant acceleration of in vitro amyloid formation. Thus, insertion or deletion of hydrophobic residues provides a simple tool to control the prion activity of a protein. These data, combined with bioinformatics analysis, suggest a limit on the number of strongly prion-promoting residues tolerated in glutamine/asparagine-rich domains. This limit may explain the under-representation of non-aromatic hydrophobic residues in yeast prion domains. Prion activity requires not only that a protein be able to form prion fibers, but also that these fibers be cleaved to generate new independently-segregating aggregates to offset dilution by cell division. Recent studies suggest that aromatic residues, but not non-aromatic hydrophobic residues, support the fiber cleavage step. Therefore, we propose that while both aromatic and non-aromatic hydrophobic residues promote prion formation, aromatic residues are favored in yeast prion domains because they serve a dual function, promoting both prion formation and chaperone-dependent prion propagation. PMID:24586661

  8. Characterization of the genomic region containing the Shadow of Prion Protein (SPRN) gene in sheep

    PubMed Central

    Lampo, Evelyne; Van Poucke, Mario; Hugot, Karine; Hayes, Hélène; Van Zeveren, Alex; Peelman, Luc J

    2007-01-01

    Background TSEs are a group of fatal neurodegenerative diseases occurring in man and animals. They are caused by prions, alternatively folded forms of the endogenous prion protein, encoded by PRNP. Since differences in the sequence of PRNP can not explain all variation in TSE susceptibility, there is growing interest in other genes that might have an influence on this susceptibility. One of these genes is SPRN, a gene coding for a protein showing remarkable similarities with the prion protein. Until now, SPRN has not been described in sheep, a highly relevant species in prion matters. Results In order to characterize the genomic region containing SPRN in sheep, a BAC mini-contig was built, covering approximately 200,000 bp and containing the genes ECHS1, PAOX, MTG1, SPRN, LOC619207, CYP2E1 and at least partially SYCE1. FISH mapping of the two most exterior BAC clones of the contig positioned this contig on Oari22q24. A fragment of 4,544 bp was also sequenced, covering the entire SPRN gene and 1206 bp of the promoter region. In addition, the transcription profile of SPRN in 21 tissues was determined by RT-PCR, showing high levels in cerebrum and cerebellum, and low levels in testis, lymph node, jejunum, ileum, colon and rectum. Conclusion Annotation of a mini-contig including SPRN suggests conserved linkage between Oari22q24 and Hsap10q26. The ovine SPRN sequence, described for the first time, shows a high level of homology with the bovine, and to a lesser extent with the human SPRN sequence. In addition, transcription profiling in sheep reveals main expression of SPRN in brain tissue, as in rat, cow, man and mouse. PMID:17537256

  9. Prion protein modulates cellular iron uptake: a novel function with implications for prion disease pathogenesis.

    PubMed

    Singh, Ajay; Mohan, Maradumane L; Isaac, Alfred Orina; Luo, Xiu; Petrak, Jiri; Vyoral, Daniel; Singh, Neena

    2009-01-01

    Converging evidence leaves little doubt that a change in the conformation of prion protein (PrP(C)) from a mainly alpha-helical to a beta-sheet rich PrP-scrapie (PrP(Sc)) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrP(Sc), nor the normal function of PrP(C) is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrP(C) mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrP(C) increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrP(C) on ferritin iron content is enhanced by stimulating PrP(C) endocytosis, and reversed by cross-linking PrP(C) on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP(102L) decreases ferritin iron content significantly relative to PrP(C) expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrP(C) nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrP(C) in cellular iron uptake and transport to ferritin, and dysfunction of PrP(C) as a significant contributing factor of brain iron imbalance in prion disorders. PMID:19212444

  10. Prion Protein Modulates Cellular Iron Uptake: A Novel Function with Implications for Prion Disease Pathogenesis

    PubMed Central

    Isaac, Alfred Orina; Luo, Xiu; Petrak, Jiri; Vyoral, Daniel; Singh, Neena

    2009-01-01

    Converging evidence leaves little doubt that a change in the conformation of prion protein (PrPC) from a mainly ?-helical to a ?-sheet rich PrP-scrapie (PrPSc) form is the main event responsible for prion disease associated neurotoxicity. However, neither the mechanism of toxicity by PrPSc, nor the normal function of PrPC is entirely clear. Recent reports suggest that imbalance of iron homeostasis is a common feature of prion infected cells and mouse models, implicating redox-iron in prion disease pathogenesis. In this report, we provide evidence that PrPC mediates cellular iron uptake and transport, and mutant PrP forms alter cellular iron levels differentially. Using human neuroblastoma cells as models, we demonstrate that over-expression of PrPC increases intra-cellular iron relative to non-transfected controls as indicated by an increase in total cellular iron, the cellular labile iron pool (LIP), and iron content of ferritin. As a result, the levels of iron uptake proteins transferrin (Tf) and transferrin receptor (TfR) are decreased, and expression of iron storage protein ferritin is increased. The positive effect of PrPC on ferritin iron content is enhanced by stimulating PrPC endocytosis, and reversed by cross-linking PrPC on the plasma membrane. Expression of mutant PrP forms lacking the octapeptide-repeats, the membrane anchor, or carrying the pathogenic mutation PrP102L decreases ferritin iron content significantly relative to PrPC expressing cells, but the effect on cellular LIP and levels of Tf, TfR, and ferritin is complex, varying with the mutation. Neither PrPC nor the mutant PrP forms influence the rate or amount of iron released into the medium, suggesting a functional role for PrPC in cellular iron uptake and transport to ferritin, and dysfunction of PrPC as a significant contributing factor of brain iron imbalance in prion disorders. PMID:19212444

  11. Prion protein degradation by lichens of the genus Cladonia

    USGS Publications Warehouse

    Bennett, James P.; Rodriguez, Cynthia M.; Johnson, Christopher J.

    2012-01-01

    It has recently been discovered that lichens contain a serine protease capable of degrading the pathogenic prion protein, the etiological agent of prion diseases such as sheep scrapie and cervid chronic wasting disease. Limited methods are available to degrade or inactivate prion disease agents, especially in the environment, and lichens or their serine protease could prove important for management of these diseases. Scant information is available regarding the presence or absence of the protease responsible for degrading prion protein (PrP) in lichen species and, in this study, we tested the hypothesis that PrP degradation activity in lichens is phylogenetically-based by testing 44 species of Cladonia lichens, a genus for which a significant portion of the phylogeny is well established. We categorized PrP degradation activity among the 44 species (high, moderate, low or none) and found that activity in Cladonia species did not correspond with phylogenetic position of the species. Degradation of PrP did correspond, however, with three classical taxonomic characters within the genus: species with brown apothecia, no usnic acid, and the presence of a cortex. Of the 44 species studied, 18 (41%) had either high or moderate PrP degradation activity, suggesting the protease may be frequent in this genus of lichens.

  12. The cellular prion protein and its role in Alzheimer disease

    PubMed Central

    Irujo, A; Cuadrado-Tejedor, M; Paternain, B; Moleres, FJ; Ferrer, V

    2009-01-01

    The cellular prion protein (PrPC) is a membrane-bound glycoprotein especially abundant in the central nervous system (CNS). The scrapie prion protein (PrPSc, also termed prions) is responsible of transmissible spongiform encephalopathies (TSE), a group of neurodegenerative diseases which affect humans and other mammal species, although the presence of PrPC is needed for the establishment and further evolution of prions. The present work compares the expression and localization of PrPC between healthy human brains and those suffering from Alzheimer disease (AD). In both situations we have observed a rostrocaudal decrease in the amount of PrPC within the CNS, both by immunoblotting and immunohistochemistry techniques. PrPC is higher expressed in our control brains than in AD cases. There was a neuronal loss and astogliosis in our AD cases. There was a tendency of a lesser expression of PrPC in AD cases than in healthy ones. And in AD cases, the intensity of the expression of the unglycosylated band is higher than the di- and monoglycosylated bands. With regards to amyloid plaques, those present in AD cases were positively labeled for PrPC, a result which is further supported by the presence of PrPC in the amyloid plaques of a transgenic line of mice mimicking AD. The work was done according to Helsinki Declaration of 1975, and approved by the Ethics Committee of the Faculty of Medicine of the University of Navarre. PMID:19556894

  13. Kinetics of Ozone Inactivation of Infectious Prion Protein

    PubMed Central

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Mitchell, Gordon; Belosevic, Miodrag

    2013-01-01

    The kinetics of ozone inactivation of infectious prion protein (PrPSc, scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrPSc was quantified by determining the in vitro destruction of PrPSc templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrPSc was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater. PMID:23416994

  14. Role of the prion protein family in the gonads

    PubMed Central

    Allais-Bonnet, Aurélie; Pailhoux, Eric

    2014-01-01

    The prion-gene family comprises four members named PRNP (PRPc), PRND (Doppel), PRNT (PRT), and SPRN (Shadoo). According to species, PRND is located 16–52 kb downstream from the PRNP locus, whereas SPRN is located on another chromosome. The fourth prion-family gene, PRNT, belongs to the same genomic cluster as PRNP and PRND in humans and bovidae. PRNT and PRND possibly resulted from a duplication event of PRND and PRNP, respectively, that occurred early during eutherian species divergence. Although most of the studies concerning the prion-family has been done on PRPc and its involvement in transmissible neurodegenerative disorders, different works report some potential roles of these proteins in the reproductive function of both sexes. Among them, a clear role of PRND, that encodes for the Doppel protein, in male fertility has been demonstrated through gene targeting studies in mice. In other species, Doppel seems to play a role in testis and ovary development but its cellular localization is variable according to the gonadal developmental stage and to the mammalian species considered. For the other three genes, their roles in reproductive function appear ill-defined and/or controversial. The present review aimed to synthesize all the available data on these prion-family members and their relations with reproductive processes, mainly in the gonad of both sexes. PMID:25364761

  15. Quaternary Structure of Pathological Prion Protein as a Determining Factor of Strain-Specific Prion Replication Dynamics

    PubMed Central

    Chapuis, Jérôme; Sibille, Pierre; Herzog, Laetitia; Reine, Fabienne; Jaumain, Emilie; Laude, Hubert; Rezaei, Human; Béringue, Vincent

    2013-01-01

    Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrPSc, an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). Stable variations in PrPSc conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrPSc quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrPSc quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrPSc. To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrPSc tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrPSc aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrPSc quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions. PMID:24130496

  16. Gingerol prevents prion protein-mediated neuronal toxicity by regulating HIF prolyl hydroxylase 2 and prion protein

    PubMed Central

    PARK, YANG-GYU; PARK, SANG-YOUEL

    2014-01-01

    Prion diseases are a family of progressive neurodegenerative disorders, which are fatal in the majority of cases and affect both humans and domestic animals. Prion protein (PrP) (106–126) retains the neurotoxic properties of the entire pathological PrPsc and it is generally used as a reasonable model to study the mechanisms responsible for prion diseases. In our previous studies, we demonstrated that hypoxia-inducible factor (HIF)-1? is involved in the gingerol-mediated protection of neuronal cells. HIF mediates cellular adaptations to low oxygen. Prolyl hydroxylase domain-containing protein 2 (PHD2) is an oxygen sensor that hydroxylates the HIF-?-subunit, promoting its proteasomal degradation under normoxic conditions. Thus, in the present study we wished to determine whether gingerol inhibits the catalytic activity of PHD2 and prevents HIF-1? protein proteasomal degradation, thereby preventing the occurrence of PrP (106–126)-induced neuronal apoptosis. We used the pharmacological inhibition of PHD2 by dimethyloxalylglycine (DMOG) or deferoxamine (DFO) and the genetic inhibition of HIF-1? by HIF-1? small interfering RNA (siRNA) to block the effects of gingerol against PrP (106–126)-induced neurotoxicity. Our results demonstrated that gingerol prevented PrP (106–126)-induced neuronal apoptosis by upregulating HIF-1? and inhibiting the catalytic activity of PHD2 under normoxic conditions. Moreover, the protective effects of gingerol against PrP (106–126)-induced neuronal apoptosis were associated with the upregulation of the expression of cellular prion protein (PrPc). In conclusion, our results indicate that gingerol has therapeutic potential for use in the treatment or prevention of prion diseases, and its inhibitory effects on the catalytic activity of PHD2 may be of clinical benefit. PMID:25231392

  17. Gingerol prevents prion protein-mediated neuronal toxicity by regulating HIF prolyl hydroxylase 2 and prion protein.

    PubMed

    Park, Yang-Gyu; Park, Sang-Youel

    2014-11-01

    Prion diseases are a family of progressive neurodegenerative disorders, which are fatal in the majority of cases and affect both humans and domestic animals. Prion protein (PrP) (106-126) retains the neurotoxic properties of the entire pathological PrPsc and it is generally used as a reasonable model to study the mechanisms responsible for prion diseases. In our previous studies, we demonstrated that hypoxia-inducible factor (HIF)-1? is involved in the gingerol-mediated protection of neuronal cells. HIF mediates cellular adaptations to low oxygen. Prolyl hydroxylase domain-containing protein 2 (PHD2) is an oxygen sensor that hydroxylates the HIF-?-subunit, promoting its proteasomal degradation under normoxic conditions. Thus, in the present study we wished to determine whether gingerol inhibits the catalytic activity of PHD2 and prevents HIF-1? protein proteasomal degradation, thereby preventing the occurrence of PrP (106-126)-induced neuronal apoptosis. We used the pharmacological inhibition of PHD2 by dimethyloxalylglycine (DMOG) or deferoxamine (DFO) and the genetic inhibition of HIF-1? by HIF-1? small interfering RNA (siRNA) to block the effects of gingerol against PrP (106-126)-induced neurotoxicity. Our results demonstrated that gingerol prevented PrP (106?126)-induced neuronal apoptosis by upregulating HIF-1? and inhibiting the catalytic activity of PHD2 under normoxic conditions. Moreover, the protective effects of gingerol against PrP (106-126)-induced neuronal apoptosis were associated with the upregulation of the expression of cellular prion protein (PrPc). In conclusion, our results indicate that gingerol has therapeutic potential for use in the treatment or prevention of prion diseases, and its inhibitory effects on the catalytic activity of PHD2 may be of clinical benefit. PMID:25231392

  18. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    NASA Astrophysics Data System (ADS)

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D’Angelo, Paola; Legname, Giuseppe

    2015-10-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation.

  19. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    PubMed Central

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D’Angelo, Paola; Legname, Giuseppe

    2015-01-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation. PMID:26482532

  20. Membrane perturbation effects of peptides derived from the N-termini of unprocessed prion proteins.

    PubMed

    Magzoub, Mazin; Oglecka, Kamila; Pramanik, Aladdin; Göran Eriksson, L E; Gräslund, Astrid

    2005-10-15

    Peptides derived from the unprocessed N-termini of mouse and bovine prion proteins (mPrPp and bPrPp, respectively), comprising hydrophobic signal sequences followed by charged domains (KKRPKP), function as cell-penetrating peptides (CPPs) with live cells, concomitantly causing toxicity. Using steady-state fluorescence techniques, including calcein leakage and polarization of a membrane probe (diphenylhexatriene, DPH), as well as circular dichroism, we studied the membrane interactions of the peptides with large unilamellar phospholipid vesicles (LUVs), generally with a 30% negative surface charged density, comparing the effects with those of the CPP penetratin (pAntp) and the pore-forming peptide melittin. The prion peptides caused significant calcein leakage from LUVs concomitant with increased membrane ordering. Fluorescence correlation spectroscopy (FCS) studies of either rhodamine-entrapping (REVs) or rhodamine-labeled (RLVs) vesicles, showed that addition of the prion peptides resulted in significant release of rhodamine from the REVs without affecting the overall integrity of the RLVs. The membrane leakage effects due to the peptides had the following order of potency: melittin>mPrPp>bPrPp>pAntp. The membrane perturbation effects of the N-terminal prion peptides suggest that they form transient pores (similar to melittin) causing toxicity in parallel with their cellular trafficking. PMID:16214105

  1. Functional Diversification of Hsp40: Distinct J-Protein Functional Requirements for Two Prions Allow for Chaperone-Dependent Prion Selection

    PubMed Central

    Patel, Milan J.; Sporn, Zachary A.; Hines, Justin K.

    2014-01-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or ‘strains’. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have been maintained in eukaryotic chaperone evolution. PMID:25058638

  2. The Role of Activity in Synaptic Degeneration in a Protein Misfolding Disease, Prion Disease

    PubMed Central

    Vannini, Eleonora; Siskova, Zuzana; Al-Malki, Hussain; Morgan, Ruth; O'Connor, Vincent; Perry, V. Hugh

    2012-01-01

    In chronic neurodegenerative diseases associated with aggregates of misfolded proteins (such as Alzheimer's, Parkinson's and prion disease), there is an early degeneration of presynaptic terminals prior to the loss of the neuronal somata. Identifying the mechanisms that govern synapse degeneration is of paramount importance, as cognitive decline is strongly correlated with loss of presynaptic terminals in these disorders. However, very little is known about the processes that link the presence of a misfolded protein to the degeneration of synapses. It has been suggested that the process follows a simple linear sequence in which terminals that become dysfunctional are targeted for death, but there is also evidence that high levels of activity can speed up degeneration. To dissect the role of activity in synapse degeneration, we infused the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of mice with prion disease and assessed synapse loss at the electron microscopy level. We found that injection of BoNT/A in naïve mice caused a significant enlargement of excitatory presynaptic terminals in the hippocampus, indicating transmission impairment. Long-lasting blockade of activity by BoNT/A caused only minimal synaptic pathology and no significant activation of microglia. In mice with prion disease infused with BoNT/A, rates of synaptic degeneration were indistinguishable from those observed in control diseased mice. We conclude that silencing synaptic activity neither prevents nor enhances the degree of synapse degeneration in prion disease. These results challenge the idea that dysfunction of synaptic terminals dictates their elimination during prion-induced neurodegeneration. PMID:22815961

  3. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  4. Copper and the prion protein: methods, structures, function, and disease.

    PubMed

    Millhauser, Glenn L

    2007-01-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrP(C) to PrP(Sc). Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrP(C) in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrP(C), with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrP(C) function, and emerging connections between copper and prion disease. PMID:17076634

  5. Copper and the Prion Protein: Methods, Structures, Function, and Disease

    NASA Astrophysics Data System (ADS)

    Millhauser, Glenn L.

    2007-05-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrPC in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrPC, with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrPC function, and emerging connections between copper and prion disease.

  6. Contrasting Effects of Two Lipid Cofactors of Prion Replication on the Conformation of the Prion Protein

    PubMed Central

    Srivastava, Saurabh; Baskakov, Ilia V.

    2015-01-01

    Recent studies introduced two experimental protocols for converting full-length recombinant prion protein (rPrP) purified from E.coli into the infectious prion state (PrPSc) with high infectivity titers. Both protocols employed protein misfolding cyclic amplification (PMCA) for generating PrPSc de novo, but used two different lipids, 1-palmitoyl-2-oleolyl-sn-glycero-3-phospho(1’-rac-glycerol) (POPG) or phosphatidylethanolamine (PE), as conversion cofactors. The current study compares the effect of POPG and PE on the physical properties of native, ?-helical full-length mouse rPrP under the solvent conditions used for converting rPrP into PrPSc. Surprisingly, the effects of POPG and PE on rPrP physical properties, including its conformation, thermodynamic stability, aggregation state and interaction with a lipid, were found to be remarkably different. PE was shown to have minimal, if any, effects on rPrP thermodynamic stability, cooperativity of unfolding, immediate solvent environment or aggregation state. In fact, little evidence indicates that PE interacts with rPrP directly. In contrast, POPG was found to bind to and induce dramatic changes in rPrP structure, including a loss of ?-helical conformation and formation of large lipid-protein aggregates that were resistant to partially denaturing conditions. These results suggest that the mechanisms by which lipids assist conversion of rPrP into PrPSc might be fundamentally different for POPG and PE. PMID:26090881

  7. Guanidine hydrochloride inhibits the generation of prion "seeds" but not prion protein aggregation in yeast.

    PubMed

    Ness, Frédérique; Ferreira, Paulo; Cox, Brian S; Tuite, Mick F

    2002-08-01

    [PSI(+)] strains of the yeast Saccharomyces cerevisiae replicate and transmit the prion form of the Sup35p protein but can be permanently cured of this property when grown in millimolar concentrations of guanidine hydrochloride (GdnHCl). GdnHCl treatment leads to the inhibition of the replication of the [PSI(+)] seeds necessary for continued [PSI(+)] propagation. Here we demonstrate that the rate of incorporation of newly synthesized Sup35p into the high-molecular-weight aggregates, diagnostic of [PSI(+)] strains, is proportional to the number of seeds in the cell, with seed number declining (and the levels of soluble Sup35p increasing) in the presence of GdnHCl. GdnHCl does not cause breakdown of preexisting Sup35p aggregates in [PSI(+)] cells. Transfer of GdnHCl-treated cells to GdnHCl-free medium reverses GdnHCl inhibition of [PSI(+)] seed replication and allows new prion seeds to be generated exponentially in the absence of ongoing protein synthesis. Following such release the [PSI(+)] seed numbers double every 20 to 22 min. Recent evidence (P. C. Ferreira, F. Ness, S. R. Edwards, B. S. Cox, and M. F. Tuite, Mol. Microbiol. 40:1357-1369, 2001; G. Jung and D. C. Masison, Curr. Microbiol. 43:7-10, 2001), together with data presented here, suggests that curing yeast prions by GdnHCl is a consequence of GdnHCl inhibition of the activity of molecular chaperone Hsp104, which in turn is essential for [PSI(+)] propagation. The kinetics of elimination of [PSI(+)] by coexpression of a dominant, ATPase-negative allele of HSP104 were similar to those observed for GdnHCl-induced elimination. Based on these and other data, we propose a two-cycle model for "prionization" of Sup35p in [PSI(+)] cells: cycle A is the GdnHCl-sensitive (Hsp104-dependent) replication of the prion seeds, while cycle B is a GdnHCl-insensitive (Hsp104-independent) process that converts these seeds to pelletable aggregates. PMID:12101251

  8. Prion protein fragment (106-126) induces prothrombotic state by raising platelet intracellular calcium and microparticle release.

    PubMed

    Mallick, Ram L; Kumari, Sharda; Singh, Nitesh; Sonkar, Vijay K; Dash, Debabrata

    2015-04-01

    Prion diseases are neurodegenerative disorders where infectious prion proteins (PrP) accumulate in brain leading to aggregation of amyloid fibrils and neuronal cell death. The amino acid sequence 106-126 from prion proteins, PrP(106-126), is highly amyloidogenic and implicated in prion-induced pathologies. As PrP is known to be expressed in blood following leakage from brain tissue, we sought to investigate its biological effects on human platelets, which have been widely employed as 'peripheral' model for neurons. Our findings suggested that, PrP(106-126) (20?M) induced dramatic 30-fold rise in intracellular calcium (from 105±30 to 3425±525nM) in platelets, which was attributable to influx from extracellular fluid with comparatively less contribution from intracellular stores. Calcium mobilization was associated with 8-10-fold stimulation in the activity of thiol protease calpain that led to partial cleavage of cytoskeleton-associated protein talin and extensive shedding of microparticles from platelets, thus transforming platelets to 'activated' phenotype. Both proteolysis of talin and microparticle release were precluded by calpeptin, a specific inhibitor of calpain. As microparticles are endowed with phosphatidylserine-enriched surface and hence are pro-coagulant in nature, exposure to prion favored a thrombogenic state in the organism. PMID:25749016

  9. Transmission of Atypical Bovine Prions to Mice Transgenic for Human Prion Protein

    PubMed Central

    Herzog, Laëtitia; Reine, Fabienne; Le Dur, Annick; Casalone, Cristina; Vilotte, Jean-Luc; Laude, Hubert

    2008-01-01

    To assess risk for cattle-to-human transmission of prions that cause uncommon forms of bovine spongiform encephalopathy (BSE), we inoculated mice expressing human PrP Met129 with field isolates. Unlike classical BSE agent, L-type prions appeared to propagate in these mice with no obvious transmission barrier. H-type prions failed to infect the mice. PMID:19046515

  10. The cellular prion protein and its role in Alzheimer disease.

    PubMed

    Velayos, J L; Irujo, A; Cuadrado-Tejedor, M; Paternain, B; Moleres, F J; Ferrer, V

    2009-01-01

    The cellular prion protein (PrP(C)) is a membrane-bound glycoprotein especially abundant in the central nervous system (CNS). The scrapie prion protein (PrP(Sc,) also termed prions) is responsible of transmissible spongiform encephalopathies (TSE), a group of neurodegenerative diseases which affect humans and other mammal species, although the presence of PrP(C) is needed for the establishment and further evolution of prions. The present work compares the expression and localization of PrP(C) between healthy human brains and those suffering from Alzheimer disease (AD). In both situations we have observed a rostrocaudal decrease in the amount of PrP(C) within the CNS, both by immunoblotting and immunohistochemistry techniques. PrP(C) is higher expressed in our control brains than in AD cases. There was a neuronal loss and astogliosis in our AD cases. There was a tendency of a lesser expression of PrP(C) in AD cases than in healthy ones. And in AD cases, the intensity of the expression of the unglycosylated band is higher than the di- and monoglycosylated bands. With regards to amyloid plaques, those present in AD cases were positively labeled for PrP(C), a result which is further supported by the presence of PrP(C) in the amyloid plaques of a transgenic line of mice mimicking AD. The work was done according to Helsinki Declaration of 1975, and approved by the Ethics Committee of the Faculty of Medicine of the University of Navarre. PMID:19556894

  11. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains.

    PubMed

    Orrú, Christina D; Groveman, Bradley R; Raymond, Lynne D; Hughson, Andrew G; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-06-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. PMID:26086786

  12. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains

    PubMed Central

    Raymond, Lynne D.; Hughson, Andrew G.; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-01-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far – a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. PMID:26086786

  13. Molecular dynamics studies on the structural stability of wild-type dog prion protein.

    PubMed

    Zhang, Jiapu; Liu, David D W

    2011-06-01

    Prion diseases such as Creutzfeldt-Jakob disease, variant Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, Fatal Familial Insomnia, Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (or 'mad-cow' disease) and chronic wasting disease in cattle are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches to treat all these prion diseases. In 2008, canine mammals including dogs (canis familials) were the first time academically reported to be resistant to prion diseases (Vaccine 26: 2601-2614 (2008)). Thus, it is very worth studying the molecular structures of dog prion protein to obtain insights into the immunity of dogs to prion diseases. This paper studies the molecular structural dynamics of wild-type dog prion protein. The comparison analyses with rabbit prion protein show that the dog prion protein has stable molecular structures whether under neutral or low pH environments. We also find that the salt bridges such as D177-R163 contribute to the structural stability of wild-type rabbit prion protein under neutral pH environment. PMID:21469747

  14. In Vitro and In Vivo Neurotoxicity of Prion Protein Oligomers

    PubMed Central

    Simoneau, Steve; Rezaei, Human; Salès, Nicole; Kaiser-Schulz, Gunnar; Lefebvre-Roque, Maxime; Vidal, Catherine; Fournier, Jean-Guy; Comte, Julien; Wopfner, Franziska; Grosclaude, Jeanne; Schätzl, Hermann; Lasmézas, Corinne Ida

    2007-01-01

    The mechanisms underlying prion-linked neurodegeneration remain to be elucidated, despite several recent advances in this field. Herein, we show that soluble, low molecular weight oligomers of the full-length prion protein (PrP), which possess characteristics of PrP to PrPsc conversion intermediates such as partial protease resistance, are neurotoxic in vitro on primary cultures of neurons and in vivo after subcortical stereotaxic injection. Monomeric PrP was not toxic. Insoluble, fibrillar forms of PrP exhibited no toxicity in vitro and were less toxic than their oligomeric counterparts in vivo. The toxicity was independent of PrP expression in the neurons both in vitro and in vivo for the PrP oligomers and in vivo for the PrP fibrils. Rescue experiments with antibodies showed that the exposure of the hydrophobic stretch of PrP at the oligomeric surface was necessary for toxicity. This study identifies toxic PrP species in vivo. It shows that PrP-induced neurodegeneration shares common mechanisms with other brain amyloidoses like Alzheimer disease and opens new avenues for neuroprotective intervention strategies of prion diseases targeting PrP oligomers. PMID:17784787

  15. The genetics of prion diseases.

    PubMed

    Mastrianni, James A

    2010-04-01

    Prion diseases are a rare group of fatal neurodegenerative disorders of humans and animals that manifest primarily as progressive dementia and ataxia. Unique to these diseases is the prion, a misfolded isoform of the prion protein that can transmit disease from cell to cell or host to host by associating with, and transforming, normal prion protein into the misfolded isoform (the pathogenic scrapie-inducing form). Although the majority of cases occur on a sporadic basis, and rarely result from exposure to prions, such as mad cow disease, 10-15% are attributable to the presence of an autosomal dominant mutation of the prion protein gene (PRNP). Single base pair changes, or the insertion of one or more multiples of a 24 base pair repeat segment, make up the known sequence alterations of PRNP associated with genetic prion disease. The common polymorphic codon 129 of PRNP also plays an important and complex role in risk and phenotype of sporadic and genetic prion disease. This review will focus on the clinical and histopathologic features of the genetic prion diseases. Selected mutations will be highlighted as a way to illustrate general phenotype-genotype correlations. PMID:20216075

  16. Species barrier in prion diseases: a kinetic interpretation based on the conformational adaptation of the prion protein.

    PubMed Central

    Kellershohn, N; Laurent, M

    1998-01-01

    Prion diseases are thought to result from the conformational change of the normal cellular prion protein to a pathogenic protease-resistant isoform. However, brain extracts not containing the protease-resistant isoform of the prion protein can be infectious following interspecies transmission. The 'protein-only' hypothesis of pathogenesis is extended to provide possible explanations which could be interpreted in terms of a different infectious agent. It is proposed that normal cellular protein (PrPC) may be transformed into a form (PrP*) that is conformationally distinct from the host-specific abnormal isoform (PrPSc). In infection from a heterologous donor, the dimeric forms of heterologous PrPSc, which may catalyse the formation of host PrP* from PrPC, host PrP* and host PrPSc are all considered to be capable of catalysing, to some extent, the conversion of PrPC into PrPSc. However, depending on the species involved, PrP* may, or may not, be pathogenic, and may, or may not, be sensitive to proteolysis. It is shown, by numerical integration of the differential rate equations derived from this model, that a strain may be stabilized after two or three passages through a different species and that transmission might occur in the absence of detectable protease-resistant prion protein. The natural transmission of scrapie to cattle is discussed in relation to the model. PMID:9729459

  17. Ubiquitin Ligase gp78 Targets Unglycosylated Prion Protein PrP for Ubiquitylation and Degradation

    PubMed Central

    Cheng, Haili; Tsai, Yien Che; Weissman, Allan M.; Luo, Shiwen; Rao, Hai

    2014-01-01

    Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligase gp78, known for its role in protein quality control, is critical for unglycosylated PrP ubiquitylation and degradation. Furthermore, C-terminal sequences of PrP protein are crucial for its ubiquitylation and degradation. Our study reveals the first ubiquitin ligase specifically involved in prion protein PrP degradation and PrP sequences crucial for its turnover. Our data may lead to a new avenue to control PrP level and pathogenesis. PMID:24714645

  18. Ubiquitin ligase gp78 targets unglycosylated prion protein PrP for ubiquitylation and degradation.

    PubMed

    Shao, Jia; Choe, Vitnary; Cheng, Haili; Tsai, Yien Che; Weissman, Allan M; Luo, Shiwen; Rao, Hai

    2014-01-01

    Prion protein PrP is a central player in several devastating neurodegenerative disorders, including mad cow disease and Creutzfeltd-Jacob disease. Conformational alteration of PrP into an aggregation-prone infectious form PrPSc can trigger pathogenic events. How levels of PrP are regulated is poorly understood. Human PrP is known to be degraded by the proteasome, but the specific proteolytic pathway responsible for PrP destruction remains elusive. Here, we demonstrate that the ubiquitin ligase gp78, known for its role in protein quality control, is critical for unglycosylated PrP ubiquitylation and degradation. Furthermore, C-terminal sequences of PrP protein are crucial for its ubiquitylation and degradation. Our study reveals the first ubiquitin ligase specifically involved in prion protein PrP degradation and PrP sequences crucial for its turnover. Our data may lead to a new avenue to control PrP level and pathogenesis. PMID:24714645

  19. Parallel in-register intermolecular ?-sheet architectures for prion-seeded prion protein (PrP) amyloids.

    PubMed

    Groveman, Bradley R; Dolan, Michael A; Taubner, Lara M; Kraus, Allison; Wickner, Reed B; Caughey, Byron

    2014-08-29

    Structures of the infectious form of prion protein (e.g. PrP(Sc) or PrP-Scrapie) remain poorly defined. The prevalent structural models of PrP(Sc) retain most of the native ?-helices of the normal, noninfectious prion protein, cellular prion protein (PrP(C)), but evidence is accumulating that these helices are absent in PrP(Sc) amyloid. Moreover, recombinant PrP(C) can form amyloid fibrils in vitro that have parallel in-register intermolecular ?-sheet architectures in the domains originally occupied by helices 2 and 3. Here, we provide solid-state NMR evidence that the latter is also true of initially prion-seeded recombinant PrP amyloids formed in the absence of denaturants. These results, in the context of a primarily ?-sheet structure, led us to build detailed models of PrP amyloid based on parallel in-register architectures, fibrillar shapes and dimensions, and other available experimentally derived conformational constraints. Molecular dynamics simulations of PrP(90-231) octameric segments suggested that such linear fibrils, which are consistent with many features of PrP(Sc) fibrils, can have stable parallel in-register ?-sheet cores. These simulations revealed that the C-terminal residues ?124-227 more readily adopt stable tightly packed structures than the N-terminal residues ?90-123 in the absence of cofactors. Variations in the placement of turns and loops that link the ?-sheets could give rise to distinct prion strains capable of faithful template-driven propagation. Moreover, our modeling suggests that single PrP monomers can comprise the entire cross-section of fibrils that have previously been assumed to be pairs of laterally associated protofilaments. Together, these insights provide a new basis for deciphering mammalian prion structures. PMID:25028516

  20. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    SciTech Connect

    Nieznanski, Krzysztof . E-mail: k.nieznanski@nencki.gov.pl; Podlubnaya, Zoya A.; Nieznanska, Hanna

    2006-10-13

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of {approx}50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers.

  1. Recombinant Prion Protein Refolded with Lipid and RNA Has the Biochemical Hallmarks of a Prion but Lacks In Vivo Infectivity

    PubMed Central

    Timmes, Andrew G.; Moore, Roger A.; Fischer, Elizabeth R.; Priola, Suzette A.

    2013-01-01

    During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res. PMID:23936256

  2. Shotgun protein sequencing.

    SciTech Connect

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  3. REFINEMENT OF UNDER-DETERMINED LOOPS OF HUMAN PRION PROTEIN BY

    E-print Network

    in mink (TME), chronic wasting disease in mule deer (CWD), bovine spongiform encephalopathy (BSE) in cows Spongiform encephalopathies, or prion diseases, are a group of neurodegenerative diseases in mammalian structures of the prion protein and hence would facilitate insights into its conversion in the spongiform

  4. Metal ions and protein aggregation: the case fo Prion protein and -amyloids

    E-print Network

    Morante, Silvia

    Metal ions and protein aggregation: the case fo Prion protein and -amyloids Silvia Morante community, is the structural rôle played by metals in intra-molecular and inter-molecular interactions. Metals are essential elements for many of the fundamental activities of cells. Storing, metabolism

  5. Computational analysis of candidate prion-like proteins in bacteria and their role

    PubMed Central

    Iglesias, Valentin; de Groot, Natalia S.; Ventura, Salvador

    2015-01-01

    Prion proteins were initially associated with diseases such as Creutzfeldt Jakob and transmissible spongiform encephalopathies. However, deeper research revealed them as versatile tools, exploited by the cells to execute fascinating functions, acting as epigenetic elements or building membrane free compartments in eukaryotes. One of the most intriguing properties of prion proteins is their ability to propagate a conformational assembly, even across species. In this context, it has been observed that bacterial amyloids can trigger the formation of protein aggregates by interacting with host proteins. As our life is closely linked to bacteria, either through a parasitic or symbiotic relationship, prion-like proteins produced by bacterial cells might play a role in this association. Bioinformatics is helping us to understand the factors that determine conformational conversion and infectivity in prion-like proteins. We have used PrionScan to detect prion domains in 839 different bacteria proteomes, detecting 2200 putative prions in these organisms. We studied this set of proteins in order to try to understand their functional role and structural properties. Our results suggest that these bacterial polypeptides are associated to peripheral rearrangement, macromolecular assembly, cell adaptability, and invasion. Overall, these data could reveal new threats and therapeutic targets associated to infectious diseases. PMID:26528269

  6. Prion Protein Protects against Renal Ischemia/Reperfusion Injury

    PubMed Central

    Siedlak, Sandra; Abouelsaad, Mai; Zeng, Liang; Zhou, Xuefeng; O'Toole, John; Das, Alvin S.; Kofskey, Diane; Warren, Miriam; Bian, Zehua; Cui, Yuqi; Tan, Tao; Kresak, Adam; Wyza, Robert E.; Petersen, Robert B.; Wang, Gong-Xian; Kong, Qingzhong; Wang, Xinglong; Sedor, John; Zhu, Xiongwei; Zhu, Hua; Zou, Wen-Quan

    2015-01-01

    The cellular prion protein (PrPC), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrPC in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrPC knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and N?-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrPC may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways. PMID:26327228

  7. Prion formation, but not clearance, is supported by protein misfolding cyclic amplification

    PubMed Central

    Shikiya, Ronald A; Eckland, Thomas E; Young, Alan J; Bartz, Jason C

    2014-01-01

    Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrPSc accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrPSc in animals is controlled by the relationship between the rate of PrPSc formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrPSc formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrPSc and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrPSc formation and did not observe either a reduction in PrPSc abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome. PMID:25482601

  8. Chaperone Proteins Select and Maintain [PIN+] Prion Conformations in Saccharomyces cerevisiae

    PubMed Central

    Lancaster, David L.; Dobson, C. Melissa; Rachubinski, Richard A.

    2013-01-01

    Prions are proteins that can adopt different infectious conformations known as “strains” or “variants,” each with a distinct, epigenetically inheritable phenotype. Mechanisms by which prion variants are determined remain unclear. Here we use the Saccharomyces cerevisiae prion Rnq1p/[PIN+] as a model to investigate the effects of chaperone proteins upon prion variant determination. We show that deletion of specific chaperone genes alters [PIN+] variant phenotypes, including [PSI+] induction efficiency, Rnq1p aggregate morphology/size and variant dominance. Mating assays demonstrate that gene deletion-induced phenotypic changes are stably inherited in a non-Mendelian manner even after restoration of the deleted gene, confirming that they are due to a bona fide change in the [PIN+] variant. Together, our results demonstrate a role for chaperones in regulating the prion variant complement of a cell. PMID:23148221

  9. Prion-like proteins sequester and suppress the toxicity of huntingtin exon 1.

    PubMed

    Kayatekin, Can; Matlack, Kent E S; Hesse, William R; Guan, Yinghua; Chakrabortee, Sohini; Russ, Jenny; Wanker, Erich E; Shah, Jagesh V; Lindquist, Susan

    2014-08-19

    Expansions of preexisting polyglutamine (polyQ) tracts in at least nine different proteins cause devastating neurodegenerative diseases. There are many unique features to these pathologies, but there must also be unifying mechanisms underlying polyQ toxicity. Using a polyQ-expanded fragment of huntingtin exon-1 (Htt103Q), the causal protein in Huntington disease, we and others have created tractable models for investigating polyQ toxicity in yeast cells. These models recapitulate key pathological features of human diseases and provide access to an unrivalled genetic toolbox. To identify toxicity modifiers, we performed an unbiased overexpression screen of virtually every protein encoded by the yeast genome. Surprisingly, there was no overlap between our modifiers and those from a conceptually identical screen reported recently, a discrepancy we attribute to an artifact of their overexpression plasmid. The suppressors of Htt103Q toxicity recovered in our screen were strongly enriched for glutamine- and asparagine-rich prion-like proteins. Separated from the rest of the protein, the prion-like sequences of these proteins were themselves potent suppressors of polyQ-expanded huntingtin exon-1 toxicity, in both yeast and human cells. Replacing the glutamines in these sequences with asparagines abolished suppression and converted them to enhancers of toxicity. Replacing asparagines with glutamines created stronger suppressors. The suppressors (but not the enhancers) coaggregated with Htt103Q, forming large foci at the insoluble protein deposit in which proteins were highly immobile. Cells possessing foci had fewer (if any) small diffusible oligomers of Htt103Q. Until such foci were lost, cells were protected from death. We discuss the therapeutic implications of these findings. PMID:25092318

  10. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  11. Characterization of Conformation-dependent Prion Protein Epitopes*

    PubMed Central

    Kang, Hae-Eun; Weng, Chu Chun; Saijo, Eri; Saylor, Vicki; Bian, Jifeng; Kim, Sehun; Ramos, Laylaa; Angers, Rachel; Langenfeld, Katie; Khaychuk, Vadim; Calvi, Carla; Bartz, Jason; Hunter, Nora; Telling, Glenn C.

    2012-01-01

    Whereas prion replication involves structural rearrangement of cellular prion protein (PrPC), the existence of conformational epitopes remains speculative and controversial, and PrP transformation is monitored by immunoblot detection of PrP(27–30), a protease-resistant counterpart of the pathogenic scrapie form (PrPSc) of PrP. We now describe the involvement of specific amino acids in conformational determinants of novel monoclonal antibodies (mAbs) raised against randomly chimeric PrP. Epitope recognition of two mAbs depended on polymorphisms controlling disease susceptibility. Detection by one, referred to as PRC5, required alanine and asparagine at discontinuous mouse PrP residues 132 and 158, which acquire proximity when residues 126–218 form a structured globular domain. The discontinuous epitope of glycosylation-dependent mAb PRC7 also mapped within this domain at residues 154 and 185. In accordance with their conformational dependence, tertiary structure perturbations compromised recognition by PRC5, PRC7, as well as previously characterized mAbs whose epitopes also reside in the globular domain, whereas conformation-independent epitopes proximal or distal to this region were refractory to such destabilizing treatments. Our studies also address the paradox of how conformational epitopes remain functional following denaturing treatments and indicate that cellular PrP and PrP(27–30) both renature to a common structure that reconstitutes the globular domain. PMID:22948149

  12. Isolation and characterization of a polymerized prion protein.

    PubMed Central

    Lu, Bao-Yuan; Chang, Jui-Yoa

    2002-01-01

    A polymerized form of recombinant mouse prion protein (mPrP) domain 23-231 [mPrP-(23-231)], designated mPrP-z, was generated at acidic pH (pH 2-5) in the presence of selected concentrations of denaturant (2 M guanidinium chloride or 5 M urea). This isoform of mPrP is stable in acidic solution after removal of denaturant. It can be isolated and purified using reversed-phase HPLC or size-exclusion HPLC. mPrP-z bears structural properties that partially resemble those of scrapie prion. Unlike the native mPrP-(23-231) (mPrP-N), mPrP-z exhibits a high content of beta-sheet structure, as shown by CD spectroscopy, and exists as an oligomer with an approximate molecular mass of 340000 Da, as measured by light scattering. However, similarly to mPrP-N, mPrP-z contains the intact disulphide bond and is sensitive to digestion by proteinase K. PMID:11988079

  13. To develop with or without the prion protein

    PubMed Central

    Halliez, Sophie; Passet, Bruno; Martin-Lannerée, Séverine; Hernandez-Rapp, Julia; Laude, Hubert; Mouillet-Richard, Sophie; Vilotte, Jean-Luc; Béringue, Vincent

    2014-01-01

    The deletion of the cellular form of the prion protein (PrPC) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrPC quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegenerative diseases such as prion and Alzheimer's diseases. In zebrafish embryos, depletion of PrP ortholog leads to a severe loss-of-function phenotype. This raises the question of a potential role of PrPC in the development of all vertebrates. This view is further supported by the early expression of the PrPC encoding gene (Prnp) in many tissues of the mouse embryo, the transient disruption of a broad number of cellular pathways in early Prnp?/? mouse embryos, and a growing body of evidence for PrPC involvement in the regulation of cell proliferation and differentiation in various types of mammalian stem cells and progenitors. Finally, several studies in both zebrafish embryos and in mammalian cells and tissues in formation support a role for PrPC in cell adhesion, extra-cellular matrix interactions and cytoskeleton. In this review, we summarize and compare the different models used to decipher PrPC functions at early developmental stages during embryo- and organo-genesis and discuss their relevance. PMID:25364763

  14. Prions in Yeast

    PubMed Central

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-? aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  15. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions.

    PubMed

    Derkatch, Irina L; Liebman, Susan W

    2013-01-01

    Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller "seeds." Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI(+)] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI(+)] aggregates to enlarge. This is incompatible with a previously proposed "capping" model where the overexpressed Q/N-rich protein poisons, or "caps," the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI(+)] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI(+)] aggregates in a way that blocks their shearing. PMID:23924684

  16. Highly Infectious Prions Generated by a Single Round of Microplate-Based Protein Misfolding Cyclic Amplification

    PubMed Central

    Moudjou, Mohammed; Sibille, Pierre; Fichet, Guillaume; Reine, Fabienne; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Laferrière, Florent; Richard, Charles-Adrien; Laude, Hubert; Andréoletti, Olivier; Rezaei, Human; Béringue, Vincent

    2013-01-01

    ABSTRACT Measurements of the presence of prions in biological tissues or fluids rely more and more on cell-free assays. Although protein misfolding cyclic amplification (PMCA) has emerged as a valuable, sensitive tool, it is currently hampered by its lack of robustness and rapidity for high-throughput purposes. Here, we made a number of improvements making it possible to amplify the maximum levels of scrapie prions in a single 48-h round and in a microplate format. The amplification rates and the infectious titer of the PMCA-formed prions appeared similar to those derived from the in vivo laboratory bioassays. This enhanced technique also amplified efficiently prions from different species, including those responsible for human variant Creutzfeldt-Jakob disease. This new format should help in developing ultrasensitive, high-throughput prion assays for cognitive, diagnostic, and therapeutic applications. PMID:24381300

  17. Context-dependent perturbation of neural systems in transgenic mice expressing a cytosolic prion protein

    E-print Network

    Lindquist, Susan

    We analyzed the relationship between pathogenic protein expression and perturbations to brain anatomy and physiology in a genetic model of prion disease. In this model, the mouse line 1D4, neuropathology is promoted by ...

  18. Conversion of a yeast prion protein to an infectious form in bacteria

    E-print Network

    Lindquist, Susan

    Prions are infectious, self-propagating protein aggregates that have been identified in evolutionarily divergent members of the eukaryotic domain of life. Nevertheless, it is not yet known whether prokaryotes can support ...

  19. A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins.

    PubMed

    Zhang, Jiapu; Wang, Feng

    2014-01-01

    Prion diseases which are serious neurodegenerative diseases that affect humans and animals occur in various of species. Unlike many other neurodegenerative diseases affected by amyloid, prion diseases can be highly infectious. Prion diseases occur in many species. In humans, prion diseases include the fatal human neurodegenerative diseases such as Creutzfeldt-Jakob Disease (CJD), Fatal Familial Insomnia (FFI), Gerstmann-Strussler-Scheinker syndrome (GSS) and Kuru etc. In animals, prion diseases are related to the bovine spongiform encephalopathy (BSE or 'mad-cow' disease) in cattle, the chronic wasting disease (CWD) found in deer and elk, and scrapie seen in sheep and goats, etc. More seriously, the fact that transmission of the prion diseases across the species barrier to other species such as humans has caused a major public health concern worldwide. For example, the BSE in Europe, the CWD in North America, and variant CJDs (vCJDs) in young people of UK. Fortunately, it is discovered that the hydrophobic region of prion proteins (PrP) controls the formation of diseased prions (PrP(Sc)), which provide some clues in control of such diseases. This article provides a detailed survey of recent studies with respect to the PrP hydrophobic region of human PrP(110-136) using molecular dynamics studies. PMID:25373387

  20. Application of protein misfolding cyclic amplification to detection of prions in anaerobic digestate.

    PubMed

    Gilroyed, Brandon H; Braithwaite, Shannon L; Price, Luke M; Reuter, Tim; Czub, Stefanie; Graham, Catherine; Balachandran, Arumuga; McAllister, Tim A; Belosevic, Miodrag; Neumann, Norman F

    2015-11-01

    The exceptional physio-chemical resistance of prions to established decontamination procedures poses a challenge to assessing the suitability of applied inactivation methods. Prion detection is limited by the sensitivity level of Western blotting or by the cost and time factors of bioassays. In addition, prion detection assays can be limited by either the unique or complex nature of matrices associated with environmental samples. To investigate anaerobic digestion (AD) as a practical and economical approach for potential conversion of specified risk materials (SRM) into value added products (i.e., renewable energy), challenges associated with detection of prions in a complex matrix need to be overcome to determine potential inactivation. Protein misfolding cyclic amplification (PMCA) assay, with subsequent Western blot visualization, was used to detect prions within the AD matrix. Anaerobic digestate initially inhibited the PMCA reaction and/or Western blot detection. However, at concentrations of ?1% of anaerobic digestate, 263K scrapie prions could be amplified and semi-quantitatively detected. Infectious 263K prions were also proven to be bioavailable in the presence of high concentrations of digestate (10-90%). Development of the PMCA application to digestate provides extremely valuable insight into the potential degradation and/or fate of prions in complex biological matrices without requiring expensive and time-consuming bioassays. PMID:26272376

  1. The Cellular Prion Protein: A Player in Immunological Quiescence

    PubMed Central

    Bakkebø, Maren K.; Mouillet-Richard, Sophie; Espenes, Arild; Goldmann, Wilfred; Tatzelt, Jörg; Tranulis, Michael A.

    2015-01-01

    Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrPC) remains elusive. Here, we present a novel concept suggesting that PrPC contributes to immunological quiescence in addition to cell protection. PrPC is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrPC serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrPC physiology in view of this concept. PMID:26388873

  2. Prion protein detection in serum using micromechanical resonator arrays.

    PubMed

    Varshney, Madhukar; Waggoner, Philip S; Montagna, Richard A; Craighead, Harold G

    2009-12-15

    Prion proteins that have transformed from their normal cellular counterparts (PrP(c)) into infectious form (PrP(res)) are responsible for causing progressive neurodegenerative diseases in numerous species, such as bovine spongiform encephalopathy (BSE) in cattle (also known as mad cow disease), scrapie in sheep, and Creutzfeldt-Jakob disease (CJD) in humans. Due to a possible link between BSE and CJD it is highly desirable to develop non-invasive and ante mortem tests for the detection of prion proteins in bovine samples. Such ante mortem tests of all cows prior to slaughter will help to prevent the introduction of PrP(res) into the human food supply. Furthermore, detection of PrP(res) in donated blood will also help to prevent the transmission of CJD among humans through blood transfusion. In this study, we have continued development of a micromechanical resonator array that is capable of detecting PrP(c) in bovine blood serum. The sensitivity of the resonators for the detection of PrP(c) is further enhanced by the use of secondary mass labels. A pair of antibodies is used in a sandwich immunoassay format to immobilize PrP(c) on the surface of resonators and attach nanoparticles as secondary mass labels to PrP(c). Secondary mass labeling is optimized in terms of incubation time to maximize the frequency shifts that correspond to the presence of PrP(c) on the surface of resonators. Our results show that a minimum of 200 pg mL(-1) of PrP(c) in blood serum can be detected using micromechanical resonator arrays. PMID:19836525

  3. Nitric oxide induces prion protein via MEK and p38 MAPK signaling.

    PubMed

    Wang, Vinchi; Chuang, Tzu-Chao; Hsu, Yaw-Don; Chou, Wei-Yuan; Kao, Ming-Ching

    2005-07-22

    The prion diseases or transmissible spongiform encephalopathy, such as human Creutzfeldt-Jakob disease (CJD) and so-called mad cow disease, are attributed to the causative agent, the scrapie variant of prion protein (PrP(Sc)) which causes fatal neurodegeneration. To investigate if stresses such as nitric oxide (NO) induced the cellular isoform of prion protein (PrP(C)), lipopolysaccharide, and sodium nitroprusside were used to treat N2a and NT2 cells, which resulted in elevated levels of the PRNP mRNA and prion protein. The signaling pathway for the NO-induced PrP(C) production involved guanylyl cyclase, MEK, and p38 MAPK as shown by the effect of specific pharmacological inhibitors ODQ, PD98059, and SB203580, respectively. Knowing the PrP induction by the biologically existing stimulus, this study provides useful information about the possible cellular mechanism and strategies for the treatment of CJD. PMID:15936714

  4. POLYMORPHIC DISTRIBUTION OF THE PRION PROTEIN (PRNP) GENE IN SCRAPIE-INFECTED SHEEP FLOCKS IN WHICH EMBRYO TRANSFER WAS USED TO CIRCUMVENT THE TRANSMISSIONS OF SCRAPIE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic sequence of the ovine prion protein (PrP) gene between codons 102 and 175, with emphasis on ovine PrP gene codons 136 and 171, was determined in scrapie-exposed Suffolk embryo donors and in offspring from those donors that had been transferred to scrapie-free recipient ewes. The most com...

  5. Influence of prion strain on prion protein adsorption to soil in a competitive matrix.

    PubMed

    Saunders, Samuel E; Bartz, Jason C; Bartelt-Hunt, Shannon L

    2009-07-15

    It is likely that the soil environment serves as a stable reservoir of infectious chronic wasting disease (CWD) and scrapie prions, as well as a potential reservoir of bovine spongiform encephalopathy (BSE, or "mad cow" disease). Prion adsorption to soil may play an important role in prion mobility, proteolysis, and infectivity. Differences in PrP environmental fate are possible due to the strain- and species-dependent structure of PrP(Sc). Kinetic and isothermal studies of PrP adsorption to sand and two whole soils were conducted using HY and DY TME-infected hamster, uninfected hamster, and CWD-infected elk brain homogenates as competitive PrP sources. The role of the N-terminus in PrP adsorption was also investigated. We report strain and species differences in PrP adsorption to soil over time and as a function of aqueous concentration, indicating that the fate of prions in the environment may vary with the prion strain and species infected. Our data also provide evidence that the N-terminal region of PrP enhances adsorption to clay but may hinder adsorption to sand. PrP adsorption was maximal at an intermediate aqueous concentration, most likely due to the competitive brain homogenate matrix in which it enters the soil environment. PMID:19708348

  6. Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease

    SciTech Connect

    Apostol, Marcin I.; Sawaya, Michael R.; Cascio, Duilio; Eisenberg, David

    2010-09-23

    A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are 'steric zippers,' pairs of interacting {beta}-sheets. Both structures of these 'homozygous steric zippers' reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.

  7. Synthesis and trafficking of prion proteins in cultured cells.

    PubMed

    Taraboulos, A; Raeber, A J; Borchelt, D R; Serban, D; Prusiner, S B

    1992-08-01

    Scrapie prions are composed largely, if not entirely, of the scrapie prion protein (PrPSc) that is encoded by a chromosomal gene. Scrapie-infected mouse neuroblastoma (ScN2a) and hamster brain (ScHaB) cells synthesize PrPSc from the normal PrP isoform (PrPC) or a precursor through a posttranslational process. In pulse-chase radiolabeling experiments, we found that presence of brefeldin A (BFA) during both the pulse and the chase periods prevented the synthesis of PrPSc. Removal of BFA after the chase permitted synthesis of PrPSc to resume. BFA also blocked the export of nascent PrPC to the cell surface but did not alter the distribution of intracellular deposits of PrPSc. Under the same conditions, BFA caused the redistribution of the Golgi marker MG160 into the endoplasmic reticulum (ER). Using monensin as an inhibitor of mid-Golgi glycosylation, we determined that PrP traverses the mid-Golgi stack before acquiring protease resistance. About 1 h after the formation of PrPSc, its N-terminus was removed by a proteolytic process that was inhibited by ammonium chloride, chloroquine, and monensin, arguing that this is a lysosomal event. These results suggest that the ER is not competent for the synthesis of PrPSc and that the synthesis of PrPSc occurs during the transit of PrP between the mid-Golgi stack and lysosomes. Presumably, the endocytic pathway features in the synthesis of PrPSc. PMID:1356522

  8. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease

    E-print Network

    Shorter, James

    , including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin rights reserved. Keywords: Prion RNA-binding protein TDP-43 FUS TAF15 EWSR1 Amyotrophic lateral sclerosis

  9. Molecular Dynamics Studies on the Structural Stability of Wild-type HORSE PRION PROTEIN

    E-print Network

    Zhang, Jiapu

    2011-01-01

    Prion diseases {\\it (e.g. Creutzfeldt-Jakob disease (CJD), variant CJD (vCJD), Gerstmann-Str$\\ddot{\\text{a}}$ussler-Scheinker syndrome (GSS), Fatal Familial Insomnia (FFI) and Kuru in humans, scrapie in sheep, bovine spongiform encephalopathy (BSE or `mad-cow' disease) and chronic wasting disease (CWD) in cattles)} are invariably fatal and highly infectious neurodegenerative diseases affecting humans and animals. However, by now there have not been some effective therapeutic approaches or medications to treat all these prion diseases. Rabbits, dogs, and horses are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species. Recently, the $\\beta$2--$\\alpha$2 loop has been reported to contribute to their protein structural stabilities. The author has found that rabbit prion protein has a strong salt bridge ASP177-ARG163 (like a taut bow string) keeping this loop linked. This paper confirms that this salt bridge also contributes to the structural stability of ...

  10. 76 FR 4602 - Declaration of Prion as a Pest Under FIFRA and Amendment of EPA's Regulatory Definition of Pests...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ...cellular'' isoform) while abnormal conformations of prion proteins are generally called prions. Different types of prions are...process, prions (such as PrP\\sc\\) recruit normal prion proteins (PrP\\c\\) and convert them into prions...

  11. Prion diseases and the 'protein only' hypothesis: a theoretical dynamic study.

    PubMed Central

    Laurent, M

    1996-01-01

    In the 'protein only' hypothesis, prion diseases are thought to result from the conformational change of a normal isoform of a prion protein (PrPC) to a protease-resistant, pathogenic form called PrPSc. This conversion rests on an autocatalytic process requiring the presence of pre-existing PrPSc. Theoretical kinetic analysis of the dynamic process, including the turnover of the normal prion protein, shows that the system exhibits bistability properties, indicating that the very slow accumulation of the abnormal form of the protein in the brain could in fact be the consequence and not the cause of the disorders. The cause would be a transition between two alternative steady states of the system. The presence of a small amount of the PrPSc protein in lymphocytes does not necessarily constitute any indication of a non-symptomatic but infectious pathogenic state. Moreover, infectious prion particles should not be seen as necessarily composed of the abnormal isoform of the protein, as usually stated. Particles containing only an excess of the normal form of the protein might also be pathogenic. Compounds that can act on the turnover rate of the normal PrPC protein could be a therapeutic strategy against prion diseases. PMID:8761449

  12. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    SciTech Connect

    Magzoub, Mazin; Sandgren, Staffan; Lundberg, Pontus; Oglecka, Kamila; Lilja, Johanna; Wittrup, Anders; Goeran Eriksson, L.E.; Langel, Ulo; Belting, Mattias . E-mail: mattias.belting@med.lu.se; Graeslund, Astrid . E-mail: astrid@dbb.su.se

    2006-09-22

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases.

  13. Copper attachment to a non-octarepeat site in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2010-03-01

    Prion protein, PrP, plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The PrP is known to efficiently bind copper ions and this ability has been linked to its function. PrP contains up to six binding sites, four of which are located in the so-called octarepeat region and are now well known. The binding sites outside this region are still largely undetermined, despite evidence of their relevance to prion diseases. Using a hybrid DFT/DFT, which combines Kohn-Sham DFT with orbital-free DFT to achieve accurate and efficient description of solvent effects in ab initio calculations, we have investigated copper attachment to the sequence GGGTH, which represents the copper binding site located at His96. We have considered both NNNN and NNNO types of copper coordination, as suggested by experiments. Our calculations have determined the geometry of copper attachment site and its energetics. Comparison to the already known binding sites provides insight into the process of copper uptake in PrP.

  14. Protein conformation determines the sensibility to high pressure treatment of infectious scrapie prions.

    PubMed

    Heindl, Philipp; García, Avelina Fernández; Butz, Peter; Pfaff, Eberhard; Tauscher, Bernhard

    2006-03-01

    Application of high pressure can be used for gentle pasteurizing of food, minimizing undesirable alterations such as vitamin losses and changes in taste and color. In addition, pressure has become a useful tool for investigating structural changes in proteins. Treatments of proteins with high pressure can reveal conformations that are not obtainable by other physical variables like temperature, since pressure favors structural transitions accompanied with smaller volumes. Here, we discuss both the potential use of high pressure to inactivate infectious TSE material and the application of this thermodynamic parameter for the investigation of prion folding. This review summarizes our findings on the effects of pressure on the structure of native infectious scrapie prions in hamster brain homogenates and on the structure of infectious prion rods isolated from diseased hamsters brains. Native prions were found to be pressure sensitive, whereas isolated prions revealed an extreme pressure-resistant structure. The discussion will be focused on the different pressure behavior of these prion isoforms, which points out differences in the protein structure that have not been taken into consideration before. PMID:16446130

  15. Circadian regulation of prion protein messenger RNA in the rat forebrain: a widespread and synchronous rhythm.

    PubMed

    Cagampang, F R; Whatley, S A; Mitchell, A L; Powell, J F; Campbell, I C; Coen, C W

    1999-01-01

    Although the expression of the normal prion protein in the host is critical to the development of transmissible spongiform encephalopathies, the physiological role of this protein and the processes regulating its expression remain obscure. We now report that the messenger RNA for the prion protein is regulated in the rat brain in a marked circadian manner not only in the suprachiasmatic nuclei, the principal site for the generation of mammalian circadian rhythms, but also in other forebrain regions. The data show a remarkable consistency in the concurrence of a single peak of prion protein messenger RNA at each of the sites early in the animal's phase of increased locomotor activity; behavioural arousal does not, however, appear to affect this expression. We believe this to be the first study demonstrating that the expression of prion protein messenger RNA can change over a relatively short period in vivo. The results are discussed with reference to the range of recently discovered "clock-related" transcripts which also have widespread tissue expression; these include the messenger RNAs for D-box binding protein and thyroid embryonic factor, transcription factors which bind to the prion protein promoter. PMID:10391428

  16. Superoxide dismutase activity of Cu-bound prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2009-03-01

    Misfolding of the prion protein, PrP, has been linked to a group of neurodegenerative diseases, including the mad cow disease in cattle and the Creutzfeldt-Jakob disease in humans. The normal function of PrP is still unknown, but it was found that the PrP can efficiently bind Cu(II) ions. Early experiments suggested that Cu-PrP complex possesses significant superoxide dismutase (SOD) activity, but later experiments failed to confirm it and at present this issue remains unresolved. Using a recently developed hybrid DFT/DFT method, which combines Kohn-Sham DFT for the solute and its first solvation shells with orbital-free DFT for the remainder of the solvent, we have investigated SOD activity of PrP. The PrP is capable of incorporating Cu(II) ions in several binding modes and our calculations find that each mode has a different SOD activity. The highest activity found is comparable to those of well-known SOD proteins, suggesting that the conflicting experimental results may be due to different bindings of Cu(II) in those experiments.

  17. Combined copper/zinc attachment to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  18. Ubiquitin-specific protease 14 modulates degradation of cellular prion protein

    PubMed Central

    Homma, Takujiro; Ishibashi, Daisuke; Nakagaki, Takehiro; Fuse, Takayuki; Mori, Tsuyoshi; Satoh, Katsuya; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of prion protein (PrPC). To date, there is no effective treatment for the disease. The accumulated PrP, termed PrPSc, forms amyloid fibrils and could be infectious. It has been suggested that PrPSc is abnormally folded and resistant to proteolytic degradation, and also inhibits proteasomal functions in infected cells, thereby inducing neuronal death. Recent work indicates that the ubiquitin-proteasome system is involved in quality control of PrPC. To reveal the significance of prion protein ubiqitination, we focused on ubiquitin-specific protease 14 (USP14), a deubiqutinating enzyme that catalyzes trimming of polyubiquitin chains and plays a role in regulation of proteasomal processes. Results from the present study showed that treatment with a selective inhibitor of USP14 reduced PrPC, as well as PrPSc, levels in prion-infected neuronal cells. Overexpression of the dominant negative mutant form of USP14 reduced PrPSc, whereas wildtype USP14 increased PrPSc in prion-infected cells. These results suggest that USP14 prevents degradation of both normal and abnormal PrP. Collectively, a better understanding about the regulation of PrPSc clearance caused by USP14 might contribute greatly to the development of therapeutic strategies for prion diseases. PMID:26061634

  19. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay.

    PubMed

    Johnson, Christopher J; Carlson, Christina M; Morawski, Aaron R; Manthei, Alyson; Cashman, Neil R

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitro prion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host's species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host's species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent. PMID:25867521

  20. Deposition pattern and subcellular distribution of disease-associated prion protein in cerebellar organotypic slice cultures infected with scrapie

    PubMed Central

    Wolf, Hanna; Hossinger, André; Fehlinger, Andrea; Büttner, Sven; Sim, Valerie; McKenzie, Debbie; Vorberg, Ina M.

    2015-01-01

    Organotypic cerebellar slices represent a suitable model for characterizing and manipulating prion replication in complex cell environments. Organotypic slices recapitulate prion pathology and are amenable to drug testing in the absence of a blood-brain-barrier. So far, the cellular and subcellular distribution of disease-specific prion protein in organotypic slices is unclear. Here we report the simultaneous detection of disease-specific prion protein and central nervous system markers in wild-type mouse cerebellar slices infected with mouse-adapted prion strain 22L. The disease-specific prion protein distribution profile in slices closely resembles that in vivo, demonstrating granular spot like deposition predominately in the molecular and Purkinje cell layers. Double immunostaining identified abnormal prion protein in the neuropil and associated with neurons, astrocytes and microglia, but absence in Purkinje cells. The established protocol for the simultaneous immunohistochemical detection of disease-specific prion protein and cellular markers enables detailed analysis of prion replication and drug efficacy in an ex vivo model of the central nervous system. PMID:26581229

  1. The prion protein family: a view from the placenta

    PubMed Central

    Makzhami, Samira; Passet, Bruno; Halliez, Sophie; Castille, Johan; Moazami-Goudarzi, Katayoun; Duchesne, Amandine; Vilotte, Marthe; Laude, Hubert; Mouillet-Richard, Sophie; Béringue, Vincent; Vaiman, Daniel; Vilotte, Jean-Luc

    2014-01-01

    Based on its developmental pattern of expression, early studies suggested the implication of the mammalian Prion protein PrP, a glycosylphosphatidylinositol-anchored ubiquitously expressed and evolutionary conserved glycoprotein encoded by the Prnp gene, in early embryogenesis. However, gene invalidation in several species did not result in obvious developmental abnormalities and it was only recently that it was associated in mice with intra-uterine growth retardation and placental dysfunction. A proposed explanation for this lack of easily detectable developmental-related phenotype is the existence in the genome of one or more gene (s) able to compensate for the absence of PrP. Indeed, two other members of the Prnp gene family have been recently described, Doppel and Shadoo, and the consequences of their invalidation alongside that of PrP tested in mice. No embryonic defect was observed in mice depleted for Doppel and PrP. Interestingly, the co-invalidation of PrP and Shadoo in two independent studies led to apparently conflicting observations, with no apparent consequences in one report and the observation of a developmental defect of the ectoplacental cone that leads to early embryonic lethality in the other. This short review aims at summarizing these recent, apparently conflicting data highlighting the related biological questions and associated implications in terms of animal and human health. PMID:25364742

  2. Prion protein lacks robust cytoprotective activity in cultured cells

    PubMed Central

    Christensen, Heather M; Harris, David A

    2008-01-01

    Background The physiological function of the cellular prion protein (PrPC) remains unknown. However, PrPC has been reported to possess a cytoprotective activity that prevents death of neurons and other cells after a toxic stimulus. To explore this effect further, we attempted to reproduce several of the assays in which a protective activity of PrP had been previously demonstrated in mammalian cells. Results In the first set of experiments, we found that PrP over-expression had a minimal effect on the death of MCF-7 breast carcinoma cells treated with TNF-? and Prn-p0/0 immortalized hippocampal neurons (HpL3-4 cells) subjected to serum deprivation. In the second set of assays, we observed only a small difference in viability between cerebellar granule neurons cultured from PrP-null and control mice in response to activation of endogenous or exogenous Bax. Conclusion Taken together, our results suggest either that cytoprotection is not a physiologically relevant activity of PrPC, or that PrPC-dependent protective pathways operative in vivo are not adequately modeled by these cell culture systems. We suggest that cell systems capable of mimicking the neurotoxic effects produced in transgenic mice by N-terminally deleted forms of PrP or Doppel may represent more useful tools for analyzing the cytoprotective function of PrPC. PMID:18718018

  3. Memory Impairment in Transgenic Alzheimer Mice Requires Cellular Prion Protein

    PubMed Central

    Gimbel, David A.; Nygaard, Haakon B.; Coffey, Erin E.; Gunther, Erik C.; Laurén, Juha; Gimbel, Zachary A.; Strittmatter, Stephen M.

    2012-01-01

    Soluble oligomers of the amyloid-? (A?) peptide are thought to play a key role in the pathophysiology of Alzheimer’s disease (AD). Recently, we reported that synthetic A? oligomers bind to cellular prion protein (PrPC) and that this interaction is required for suppression of synaptic plasticity in hippocampal slices by oligomeric A? peptide. We hypothesized that PrPC is essential for the ability of brain-derived A? to suppress cognitive function. Here, we crossed familial AD transgenes encoding APPswe and PSen1?E9 into Prnp?/? mice to examine the necessity of PrPC for AD-related phenotypes. Neither APP expression nor A? level is altered by PrPC absence in this transgenic AD model, and astrogliosis is unchanged. However, deletion of PrPC expression rescues 5-HT axonal degeneration, loss of synaptic markers, and early death in APPswe/PSen1?E9 transgenic mice. The AD transgenic mice with intact PrPC expression exhibit deficits in spatial learning and memory. Mice lacking PrPC, but containing A? plaque derived from APPswe/PSen1?E9 transgenes, show no detectable impairment of spatial learning and memory. Thus, deletion of PrPC expression dissociates A? accumulation from behavioral impairment in these AD mice, with the cognitive deficits selectively requiring PrPC. PMID:20445063

  4. Cellular prion protein as a therapeutic target in Alzheimer's disease.

    PubMed

    Laurén, Juha

    2014-01-01

    Soluble oligomeric species of amyloid-? (A?) peptide are presumed to be drivers of synaptic impairment, and the resulting cognitive dysfunction in Alzheimer's disease. In 2009, cellular prion protein (PrPC) was identified in a genome-wide screen as a high-affinity receptor for A? oligomers, and since then, many studies have explored the role of PrPC in Alzheimer's disease. Herein, I systematically assess the current level of target validation for PrPC in Alzheimer's disease and the merits of the identified approaches to therapeutically affect the PrPC:A? oligomer-interaction. The interaction of A? oligomers with PrPC in mice impairs hippocampal long-term potentiation, memory, and learning in a manner that involves Fyn, tau, and glutamate receptors. Furthermore, PrPC acts to catalyze the formation of certain A? oligomeric species in the synapse and may mediate the toxic effects of other ?-sheet rich oligomers as well. Therapeutic approaches utilizing soluble PrPC ectodomain or monoclonal antibodies targeting PrPC can at least partially prevent the neurotoxic effects of A? oligomers in mice. PMID:23948943

  5. Memory impairment in transgenic Alzheimer mice requires cellular prion protein.

    PubMed

    Gimbel, David A; Nygaard, Haakon B; Coffey, Erin E; Gunther, Erik C; Laurén, Juha; Gimbel, Zachary A; Strittmatter, Stephen M

    2010-05-01

    Soluble oligomers of the amyloid-beta (Abeta) peptide are thought to play a key role in the pathophysiology of Alzheimer's disease (AD). Recently, we reported that synthetic Abeta oligomers bind to cellular prion protein (PrP(C)) and that this interaction is required for suppression of synaptic plasticity in hippocampal slices by oligomeric Abeta peptide. We hypothesized that PrP(C) is essential for the ability of brain-derived Abeta to suppress cognitive function. Here, we crossed familial AD transgenes encoding APPswe and PSen1DeltaE9 into Prnp-/- mice to examine the necessity of PrP(C) for AD-related phenotypes. Neither APP expression nor Abeta level is altered by PrP(C) absence in this transgenic AD model, and astrogliosis is unchanged. However, deletion of PrP(C) expression rescues 5-HT axonal degeneration, loss of synaptic markers, and early death in APPswe/PSen1DeltaE9 transgenic mice. The AD transgenic mice with intact PrP(C) expression exhibit deficits in spatial learning and memory. Mice lacking PrP(C), but containing Abeta plaque derived from APPswe/PSen1DeltaE9 transgenes, show no detectable impairment of spatial learning and memory. Thus, deletion of PrP(C) expression dissociates Abeta accumulation from behavioral impairment in these AD mice, with the cognitive deficits selectively requiring PrP(C). PMID:20445063

  6. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    PubMed Central

    Black, Stefanie A. G.; Stys, Peter K.; Zamponi, Gerald W.; Tsutsui, Shigeki

    2014-01-01

    Although it is well established that misfolding of the cellular prion protein (PrPC) into the ?-sheet-rich, aggregated scrapie conformation (PrPSc) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (A?) peptides, suggesting a role for PrPC in Alzheimer's disease (AD). Our recent findings suggest that A? peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s) on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for AD and other neurodegenerative disorders involving dysfunction of PrPC. PMID:25364752

  7. Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification.

    PubMed

    Saá, Paula; Castilla, Joaquín; Soto, Claudio

    2006-11-17

    Prions are the unconventional infectious agents responsible for transmissible spongiform encephalopathies, which appear to be composed mainly or exclusively of the misfolded prion protein (PrPSc). Prion replication involves the conversion of the normal prion protein (PrPC) into the misfolded isoform, catalyzed by tiny quantities of PrPSc present in the infectious material. We have recently developed the protein misfolding cyclic amplification (PMCA) technology to sustain the autocatalytic replication of infectious prions in vitro. Here we show that PMCA enables the specific and reproducible amplification of exceptionally minute quantities of PrPSc. Indeed, after seven rounds of PMCA, we were able to generate large amounts of PrPSc starting from a 1x10(-12) dilution of scrapie hamster brain, which contains the equivalent of approximately 26 molecules of protein monomers. According to recent data, this quantity is similar to the minimum number of molecules present in a single particle of infectious PrPSc, indicating that PMCA may enable detection of as little as one oligomeric PrPSc infectious particle. Interestingly, the in vitro generated PrPSc was infectious when injected in wild-type hamsters, producing a disease identical to the one generated by inoculation of the brain infectious material. The unprecedented amplification efficiency of PMCA leads to a several billion-fold increase of sensitivity for PrPSc detection as compared with standard tests used to screen prion-infected cattle and at least 4000 times more sensitivity than the animal bioassay. Therefore, PMCA offers great promise for the development of highly sensitive, specific, and early diagnosis of transmissible spongiform encephalopathy and to further understand the molecular basis of prion propagation. PMID:16982620

  8. Complex folding and misfolding effects of deer-specific amino acid substitutions in the ?2-?2 loop of murine prion protein.

    PubMed

    Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A; Iyer, Pooja; Lane, Fiona M; Graham, James F; Goldmann, Wilfred; Pinheiro, Teresa J T; Gill, Andrew C

    2015-01-01

    The ?2-?2 loop of PrP(C) is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrP(C) appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the ?2-?2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that 'rigidity' in the ?2-?2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region. PMID:26490404

  9. Complex folding and misfolding effects of deer-specific amino acid substitutions in the ?2-?2 loop of murine prion protein

    PubMed Central

    Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.

    2015-01-01

    The ?2–?2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the ?2–?2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the ?2–?2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region. PMID:26490404

  10. Complex folding and misfolding effects of deer-specific amino acid substitutions in the ?2-?2 loop of murine prion protein

    NASA Astrophysics Data System (ADS)

    Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.

    2015-10-01

    The ?2–?2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the ?2–?2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the ?2–?2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.

  11. Dividing roles of prion protein in staurosporine-mediated apoptosis.

    PubMed

    Zhang, Ying; Qin, Kefeng; Wang, Jianwei; Hung, Tao; Zhao, Richard Y

    2006-10-20

    Prion protein (PrPC) is a normal cellular glycoprotein that is expressed in almost all tissues including the central nervous system. Much attention has been focused on this protein because conversion of the normal PrPC to the diseased form (PrPSc) plays an essential role in transmissible spongiform encephalopathies such as mad cow disease and Creutzfeldt-Jakob disease. In spite of the extensive effort, the normal physiological function of PrPC remains elusive. Emerging evidence suggests that PrPC plays a protective role against cellular stresses including apoptosis induced by various pro-apoptotic agents such as Bax and staurosporine (STS), however, other reports showed overexpression of PrPC enhances STS-mediated apoptosis. In this study, we took a different approach by depleting endogenous PrPC using specific interfering RNA technique and compared the depleting and overproducing effects of PrPC on STS-induced apoptosis in neuro-2a (N2a) cells. We demonstrate here that down-regulation of PrPC sensitizes N2a cells to STS-induced cytotoxicity and apoptosis. The enhanced apoptosis induced by STS was shown by increased DNA fragmentation, immunoreactivity of Bax, and caspase-3 cleavage. We also showed that overproduction of PrPC had little or no effect on STS-mediated DNA fragmentation in N2a cells but it augments STS-mediated apoptosis in HEK293 cells, suggesting a cell line-specific effect. In addition, the inhibitory effect of PrPC on STS-mediated cellular stress appears to be modulated in part through induction of cell cycle G2 accumulation. Together, our data suggest that physiological level of endogenous PrPC plays a protective role against STS-mediated cellular stress. Loss of this protection could render cells more prone to cellular insults such as STS. PMID:16950206

  12. SIRP? polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells

    PubMed Central

    Nuvolone, Mario; Kana, Veronika; Hutter, Gregor; Sakata, Daiji; Mortin-Toth, Steven M.; Russo, Giancarlo

    2013-01-01

    Prnp?/? mice lack the prion protein PrPC and are resistant to prion infections, but variable phenotypes have been reported in Prnp?/? mice and the physiological function of PrPC remains poorly understood. Here we examined a cell-autonomous phenotype, inhibition of macrophage phagocytosis of apoptotic cells, previously reported in Prnp?/? mice. Using formal genetic, genomic, and immunological analyses, we found that the regulation of phagocytosis previously ascribed to PrPC is instead controlled by a linked locus encoding the signal regulatory protein ? (Sirpa). These findings indicate that control of phagocytosis was previously misattributed to the prion protein and illustrate the requirement for stringent approaches to eliminate confounding effects of flanking genes in studies modeling human disease in gene-targeted mice. The plethora of seemingly unrelated functions attributed to PrPC suggests that additional phenotypes reported in Prnp?/? mice may actually relate to Sirpa or other genetic confounders. PMID:24145514

  13. Stress-dependent Proteolytic Processing of the Actin Assembly Protein Lsb1 Modulates a Yeast Prion*

    PubMed Central

    Ali, Moiez; Chernova, Tatiana A.; Newnam, Gary P.; Yin, Luming; Shanks, John; Karpova, Tatiana S.; Lee, Andrew; Laur, Oskar; Subramanian, Sindhu; Kim, Dami; McNally, James G.; Seyfried, Nicholas T.; Chernoff, Yury O.; Wilkinson, Keith D.

    2014-01-01

    Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI+] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI+] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI+] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments. PMID:25143386

  14. Stress-dependent proteolytic processing of the actin assembly protein Lsb1 modulates a yeast prion.

    PubMed

    Ali, Moiez; Chernova, Tatiana A; Newnam, Gary P; Yin, Luming; Shanks, John; Karpova, Tatiana S; Lee, Andrew; Laur, Oskar; Subramanian, Sindhu; Kim, Dami; McNally, James G; Seyfried, Nicholas T; Chernoff, Yury O; Wilkinson, Keith D

    2014-10-01

    Yeast prions are self-propagating amyloid-like aggregates of Q/N-rich protein that confer heritable traits and provide a model of mammalian amyloidoses. [PSI(+)] is a prion isoform of the translation termination factor Sup35. Propagation of [PSI(+)] during cell division under normal conditions and during the recovery from damaging environmental stress depends on cellular chaperones and is influenced by ubiquitin proteolysis and the actin cytoskeleton. The paralogous yeast proteins Lsb1 and Lsb2 bind the actin assembly protein Las17 (a yeast homolog of human Wiskott-Aldrich syndrome protein) and participate in the endocytic pathway. Lsb2 was shown to modulate maintenance of [PSI(+)] during and after heat shock. Here, we demonstrate that Lsb1 also regulates maintenance of the Sup35 prion during and after heat shock. These data point to the involvement of Lsb proteins in the partitioning of protein aggregates in stressed cells. Lsb1 abundance and cycling between actin patches, endoplasmic reticulum, and cytosol is regulated by the Guided Entry of Tail-anchored proteins pathway and Rsp5-dependent ubiquitination. Heat shock-induced proteolytic processing of Lsb1 is crucial for prion maintenance during stress. Our findings identify Lsb1 as another component of a tightly regulated pathway controlling protein aggregation in changing environments. PMID:25143386

  15. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans.

    PubMed

    Nussbaum-Krammer, Carmen I; Neto, Mário F; Brielmann, Renée M; Pedersen, Jesper S; Morimoto, Richard I

    2015-01-01

    Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans. PMID:25591151

  16. Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins.

    PubMed

    Zhang, Jiapu; Zhang, Yuanli

    2014-02-01

    Prion diseases, traditionally referred to as transmissible spongiform encephalopathies (TSEs), are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep and goats, bovine spongiform encephalopathy (BSE or mad-cow disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)), and the conversion of PrP(C) to PrP(Sc) is believed to involve conformational change from a predominantly ?-helical protein to one rich in ?-sheet structure. Such a conformational change may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show that they have a low susceptibility to be infected by PrP(Sc), but recently it was reported that rabbit prions can be generated through saPMCA (serial automated Protein Misfolding Cyclic Amplification) in vitro and the rabbit prion is infectious and transmissible. In this paper, we first do a detailed survey on the research advances of rabbit prion protein (RaPrP) and then we perform MD simulations on the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants. The survey shows to us that rabbits were not challenged directly in vivo with other known prion strains and the saPMCA result did not pass the test of the known BSE strain of cattle. Thus, we might still look rabbits as a prion resistant species. MD results indicate that the three ?-helices of the wild-type are stable under the neutral pH environment (but under low pH environment the three ?-helices have been unfolded into ?-sheets), and the three ?-helices of the mutants (I214V and S173N) are unfolded into rich ?-sheet structures under the same pH environment. In addition, we found an interesting result that the salt bridges such as ASP201-ARG155, ASP177-ARG163 contribute greatly to the structural stability of RaPrP. PMID:24184221

  17. Deer Prion Proteins Modulate the Emergence and Adaptation of Chronic Wasting Disease Strains

    PubMed Central

    Duque Velásquez, Camilo; Kim, Chiye; Herbst, Allen; Daude, Nathalie; Garza, Maria Carmen; Wille, Holger; Aiken, Judd

    2015-01-01

    ABSTRACT Transmission of chronic wasting disease (CWD) between cervids is influenced by the primary structure of the host cellular prion protein (PrPC). In white-tailed deer, PRNP alleles encode the polymorphisms Q95 G96 (wild type [wt]), Q95 S96 (referred to as the S96 allele), and H95 G96 (referred to as the H95 allele), which differentially impact CWD progression. We hypothesize that the transmission of CWD prions between deer expressing different allotypes of PrPC modifies the contagious agent affecting disease spread. To evaluate the transmission properties of CWD prions derived experimentally from deer of four PRNP genotypes (wt/wt, S96/wt, H95/wt, or H95/S96), transgenic (tg) mice expressing the wt allele (tg33) or S96 allele (tg60) were challenged with these prion agents. Passage of deer CWD prions into tg33 mice resulted in 100% attack rates, with the CWD H95/S96 prions having significantly longer incubation periods. The disease signs and neuropathological and protease-resistant prion protein (PrP-res) profiles in infected tg33 mice were similar between groups, indicating that a prion strain (Wisc-1) common to all CWD inocula was amplified. In contrast, tg60 mice developed prion disease only when inoculated with the H95/wt and H95/S96 CWD allotypes. Serial passage in tg60 mice resulted in adaptation of a novel CWD strain (H95+) with distinct biological properties. Transmission of first-passage tg60CWD-H95+ isolates into tg33 mice, however, elicited two prion disease presentations consistent with a mixture of strains associated with different PrP-res glycotypes. Our data indicate that H95-PRNP heterozygous deer accumulated two CWD strains whose emergence was dictated by the PrPC primary structure of the recipient host. These findings suggest that CWD transmission between cervids expressing distinct PrPC molecules results in the generation of novel CWD strains. IMPORTANCE CWD prions are contagious among wild and captive cervids in North America and in South Korea. We present data linking the amino acid variant Q95H in white-tailed deer cellular prion protein (PrPC) to the emergence of a novel CWD strain (H95+). We show that, upon infection, deer expressing H95-PrPC molecules accumulated a mixture of CWD strains that selectively propagated depending on the PRNP genotype of the host in which they were passaged. Our study also demonstrates that mice expressing the deer S96-PRNP allele, previously shown to be resistant to various cervid prions, are susceptible to H95+ CWD prions. The potential for the generation of novel strains raises the possibility of an expanded host range for CWD. PMID:26423950

  18. Cellular Prion Protein Promotes Brucella Infection into Macrophages

    PubMed Central

    Watarai, Masahisa; Kim, Suk; Erdenebaatar, Janchivdorj; Makino, Sou-ichi; Horiuchi, Motohiro; Shirahata, Toshikazu; Sakaguchi, Suehiro; Katamine, Shigeru

    2003-01-01

    The products of the Brucella abortus virB gene locus, which are highly similar to conjugative DNA transfer system, enable the bacterium to replicate within macrophage vacuoles. The replicative phagosome is thought to be established by the interaction of a substrate of the VirB complex with macrophages, although the substrate and its host cellular target have not yet been identified. We report here that Hsp60, a member of the GroEL family of chaperonins, of B. abortus is capable of interacting directly or indirectly with cellular prion protein (PrPC) on host cells. Aggregation of PrPC tail-like formation was observed during bacterial swimming internalization into macrophages and PrPC was selectively incorporated into macropinosomes containing B. abortus. Hsp60 reacted strongly with serum from human brucellosis patients and was exposed on the bacterial surface via a VirB complex–associated process. Under in vitro and in vivo conditions, Hsp60 of B. abortus bound to PrPC. Hsp60 of B. abortus, expressed on the surface of Lactococcus lactis, promoted the aggregation of PrPC but not PrPC tail formation on macrophages. The PrPC deficiency prevented swimming internalization and intracellular replication of B. abortus, with the result that phagosomes bearing the bacteria were targeted into the endocytic network. These results indicate that signal transduction induced by the interaction between bacterial Hsp60 and PrPC on macrophages contributes to the establishment of B. abortus infection. PMID:12847134

  19. Deficiency of prion protein induces impaired autophagic flux in neurons

    PubMed Central

    Shin, Hae-Young; Park, Jeong-Ho; Carp, Richard I.; Choi, Eun-Kyoung; Kim, Yong-Sun

    2014-01-01

    Normal cellular prion protein (PrPC) is highly expressed in the central nervous system. The Zürich I Prnp-deficient mouse strain did not show an abnormal phenotype in initial studies, however, in later studies, deficits in exploratory behavior and short- and long-term memory have been revealed. In the present study, numerous autophagic vacuoles were found in neurons from Zürich I Prnp-deficient mice. The autophagic accumulation in the soma of cortical neurons in Zürich I Prnp-deficient mice was observed as early as 3 months of age, and in the hippocampal neurons at 6 months of age. Specifically, there is accumulation of electron dense pigments associated with autophagy in the neurons of Zürich I Prnp-deficient mice. Furthermore, autophagic accumulations were observed as early as 3 months of age in the CA3 region of hippocampal and cerebral cortical neuropils. The autophagic vacuoles increased with age in the hippocampus of Zürich I Prnp-deficient mice at a faster rate and to a greater extent than in normal C57BL/6J mice, whereas the cortex exhibited high levels that were maintained from 3 months old in Zürich I Prnp-deficient mice. The pigmented autophagic accumulation is due to the incompletely digested material from autophagic vacuoles. Furthermore, a deficiency in PrPC may disrupt the autophagic flux by inhibiting autophagosome-lysosomal fusion. Overall, our results provide insight into the protective role of PrPC in neurons, which may play a role in normal behavior and other brain functions. PMID:25202268

  20. Hematological shift in goat kids naturally devoid of prion protein

    PubMed Central

    Reiten, Malin R.; Bakkebø, Maren K.; Brun-Hansen, Hege; Lewandowska-Sabat, Anna M.; Olsaker, Ingrid; Tranulis, Michael A.; Espenes, Arild; Boysen, Preben

    2015-01-01

    The physiological role of the cellular prion protein (PrPC) is incompletely understood. The expression of PrPC in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrPC knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrPC. Here we report hematological and immunological analyses of homozygous goat kids lacking PrPC (PRNPTer/Ter) compared to heterozygous (PRNP+/Ter) and normal (PRNP+/+) kids. Levels of cell surface PrPC and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNPTer/Ter, intermediate in PRNP+/Ter and high in PRNP+/+ kids. The PRNPTer/Ter animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrPC has a role in bone marrow physiology and warrant further studies of PrPC in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrPC-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrPC. PMID:26217662

  1. All quiet on the neuronal front: NMDA receptor inhibition by prion protein.

    PubMed

    Steele, Andrew D

    2008-05-01

    The normal function of the prion protein (PrP)-the causative agent of mad cow or prion disease-has long remained out of reach. Deciphering PrP's function may help to unravel the complex chain of events triggered by PrP misfolding during prion disease. In this issue of the JCB, an exciting paper (Khosravani, H., Y. Zhang, S. Tsutsui, S. Hameed, C. Altier, J. Hamid, L. Chen, M. Villemaire, Z. Ali, F.R. Jirik, and G.W. Zamponi. 2008. J. Cell Biol. 181:551-565) connects diverse observations regarding PrP into a coherent framework whereby PrP dampens the activity of an N-methyl-d-aspartate (NMDA) receptor (NMDAR) subtype and reduces excitotoxic lesions. The findings of this study suggest that understanding the normal function of proteins associated with neurodegenerative disease may elucidate the molecular pathogenesis. PMID:18443224

  2. All quiet on the neuronal front: NMDA receptor inhibition by prion protein.

    PubMed

    Steele, Andrew D

    2008-06-01

    The normal function of the prion protein (PrP)--the causative agent of mad cow or prion disease--has long remained out of reach. Deciphering PrP's function may help to unravel the complex chain of events triggered by PrP misfolding during prion disease. In this issue of the JCB, an exciting paper (Khosravani, H., Y. Zhang, S. Tsutsui, S. Hameed, C. Altier, J. Hamid, L. Chen, M. Villemaire, Z. Ali, F.R. Jirik, and G.W. Zamponi. 2008. J. Cell Biol. 181:551-565) connects diverse observations regarding PrP into a coherent framework whereby PrP dampens the activity of an N-methyl-D-aspartate (NMDA) receptor (NMDAR) subtype and reduces excitotoxic lesions. The findings of this study suggest that understanding the normal function of proteins associated with neurodegenerative disease may elucidate the molecular pathogenesis. PMID:18504309

  3. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay

    USGS Publications Warehouse

    Johnson, Christopher J.; Carlson, Christina M.; Morawski, Aaron R.; Manthei, Alyson; Cashman, Neil R.

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitroprion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

  4. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    USGS Publications Warehouse

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  5. Mechanisms of triggering H1 helix in prion proteins unfolding revealed by molecular dynamic simulation

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Yuan; Lee, H. C.

    2006-03-01

    In template-assistance model, normal Prion protein (PrP^C), the pathogen to cause several prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrP^Sc) through a transient interaction with PrP^Sc. Furthermore, conventional studies showed S1-H1-S2 region in PrP^C to be the template of S1-S2 ?-sheet in PrP^Sc, and Prion protein's conformational conversion may involve an unfolding of H1 and refolding into ?-sheet. Here we prepare several mouse prion peptides that contain S1-H1-S2 region with specific different structures, which are corresponding to specific interactions, to investigate possible mechanisms to trigger H1 ?-helix unfolding process via molecular dynamic simulation. Three properties, conformational transition, salt-bridge in H1, and hydrophobic solvent accessible surface (SAS) are analyzed. From these studies, we found the interaction that triggers H1 unfolding to be the one that causes dihedral angle at residue Asn^143 changes. Whereas interactions that cause S1 segment's conformational changes play a minor in this process. These studies offers an additional evidence for template-assistance model.

  6. Analysis of associations between the prion protein genotypes and production traits in East Friesian milk sheep.

    PubMed

    De Vries, F; Hamann, H; Drögemüller, C; Ganter, M; Distl, O

    2005-01-01

    The objective of this study was to analyze associations between ovine prion protein genotypes and production traits in East Friesian milk sheep. Production traits included the type traits scores for muscle mass, wool quality, and type; the reproduction traits age at first lambing, first lambing interval, second lambing interval, and total number of lambs born; the milk performance traits; milk, fat, and protein yields; fat and protein contents; and somatic cell scores. Prion protein genotypes were available for 658 East Friesian milk sheep. Linear animal models were used for the analysis of the prion protein genotype effects. The scores of the genotyped sheep for muscle mass, type, wool quality, and fat yield were significantly superior to those of the nongenotyped animals. An explanation for this might be that breeders seek to minimize genotyping costs by preselecting animals that do not meet the top breeding requirements. No significant associations were found between the prion protein genotypes and milk performance, type, or reproduction traits. PMID:15591404

  7. Shaking Alone Induces De Novo Conversion of Recombinant Prion Proteins to ?-Sheet Rich Oligomers and Fibrils

    PubMed Central

    Ladner-Keay, Carol L.; Griffith, Bethany J.; Wishart, David S.

    2014-01-01

    The formation of ?-sheet rich prion oligomers and fibrils from native prion protein (PrP) is thought to be a key step in the development of prion diseases. Many methods are available to convert recombinant prion protein into ?-sheet rich fibrils using various chemical denaturants (urea, SDS, GdnHCl), high temperature, phospholipids, or mildly acidic conditions (pH 4). Many of these methods also require shaking or another form of agitation to complete the conversion process. We have identified that shaking alone causes the conversion of recombinant PrP to ?-sheet rich oligomers and fibrils at near physiological pH (pH 5.5 to pH 6.2) and temperature. This conversion does not require any denaturant, detergent, or any other chemical cofactor. Interestingly, this conversion does not occur when the water-air interface is eliminated in the shaken sample. We have analyzed shaking-induced conversion using circular dichroism, resolution enhanced native acidic gel electrophoresis (RENAGE), electron microscopy, Fourier transform infrared spectroscopy, thioflavin T fluorescence and proteinase K resistance. Our results show that shaking causes the formation of ?-sheet rich oligomers with a population distribution ranging from octamers to dodecamers and that further shaking causes a transition to ?-sheet fibrils. In addition, we show that shaking-induced conversion occurs for a wide range of full-length and truncated constructs of mouse, hamster and cervid prion proteins. We propose that this method of conversion provides a robust, reproducible and easily accessible model for scrapie-like amyloid formation, allowing the generation of milligram quantities of physiologically stable ?-sheet rich oligomers and fibrils. These results may also have interesting implications regarding our understanding of prion conversion and propagation both within the brain and via techniques such as protein misfolding cyclic amplification (PMCA) and quaking induced conversion (QuIC). PMID:24892647

  8. Disease-associated prion protein in neural and lymphoid tissues of mink (Mustela vison) inoculated with transmissible mink encephalopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmissible mink encephalopathy (TME) is a prion disorder of farmed raised mink. As with the other transmissible spongiform encephalopathies, the disorder is associated with accumulation of the misfolded prion protein in the brain and an invariably fatal outcome. TME outbreaks have been rare but...

  9. Clinical features in prion protein-deficient and wild-type cattle inoculated with transmissible mink encephalopathy (TME)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Transmissible spongiform encephalopathies (TSEs) or prion diseases are caused by the propagation of a misfolded form (PrP**d) of the normal cellular prion protein, PrP**c. Recently, we have reported the generation and characterization of PrP**C-deficient cattle (PrP-/-) produced by a seq...

  10. MANGANESE UPREGULATES CELLULAR PRION PROTEINS AND INHIBITS THE RATE OF PROTEINASE-K DEPENDENT LIMITED PROTEOLYSIS IN NEURONAL CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The key event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent cations such as copper to th...

  11. Divalent metals stabilize cellular prion proteins and alter the rate of proteinase-K dependent limited proteolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The key biochemical event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent ca...

  12. Generating new prions by targeted mutation or segment duplication.

    PubMed

    Paul, Kacy R; Hendrich, Connor G; Waechter, Aubrey; Harman, Madison R; Ross, Eric D

    2015-07-14

    Yeasts contain various protein-based genetic elements, termed prions, that result from the structural conversion of proteins into self-propagating amyloid forms. Most yeast prion proteins contain glutamine/asparagine (Q/N)-rich prion domains that drive prion activity. Here, we explore two mechanisms by which new prion domains could evolve. First, it has been proposed that mutation and natural selection will tend to result in proteins with aggregation propensities just low enough to function under physiological conditions and thus that a small number of mutations are often sufficient to cause aggregation. We hypothesized that if the ability to form prion aggregates was a sufficiently generic feature of Q/N-rich domains, many nonprion Q/N-rich domains might similarly have aggregation propensities on the edge of prion formation. Indeed, we tested four yeast Q/N-rich domains that had no detectable aggregation activity; in each case, a small number of rationally designed mutations were sufficient to cause the proteins to aggregate and, for two of the domains, to create prion activity. Second, oligopeptide repeats are found in multiple prion proteins, and expansion of these repeats increases prion activity. However, it is unclear whether the effects of repeat expansion are unique to these specific sequences or are a generic result of adding additional aggregation-prone segments into a protein domain. We found that within nonprion Q/N-rich domains, repeating aggregation-prone segments in tandem was sufficient to create prion activity. Duplication of DNA elements is a common source of genetic variation and may provide a simple mechanism to rapidly evolve prion activity. PMID:26100899

  13. Specific binding modes of Cu(I) and Ag(I) with neurotoxic domain of the human prion protein.

    PubMed

    Valensin, Daniela; Padula, Emilia Maria; Hecel, Aleksandra; Luczkowski, Marek; Kozlowski, Henryk

    2016-02-01

    Prion diseases are neurodegenerative disorders associated with a conformational change of the normal cellular isoform of the prion protein (PrP(C)) to an abnormal scrapie isoform (PrP(Sc)). human prion protein (hPrP(C)) is able to bind up to six Cu(II) ions. Four of them are distributed in the octarepeat domain, containing four tandem-repetitions of the sequence PHGGGWGQ. Immediately outside the octarepeat domain, in so called PrP amyloidogenic region, two additional and independent Cu(II) binding sites, encompassing His96 and His111 residues, respectively, are present. Considering the potential involvement of PrP in cellular redox homeostasis, investigations on Cu(I)-PrP interaction might be also biologically relevant. Interestingly, the amyloidogenic fragment of PrP contains a -M(X)nM- motif, known to act as Cu(I) binding site in different proteins. In order to shed more light on this issue, copper(I) and silver(I) interactions with model peptides derived from that region were analyzed. The results of our studies reveal that both metal ions are anchored to two thioether sulfurs of Met109 and Met112, respectively. Subsequent metal interaction and coordination to His96 and His111 imidazoles are primarily found for Cu(I) at physiological pH. Metal binding was also investigated in the presence of negatively charged micelles formed by the anionic surfactant, sodium dodecyl sulfate (SDS). Our results strongly support that metal binding mode strongly depends on the protein backbone structure. In particular we show that ?-helix structuring of the amyloid PrP domain influences both the metal coordination sphere and the binding affinity. PMID:26606290

  14. Requirements for Mutant and Wild-Type Prion Protein Misfolding In Vitro

    PubMed Central

    Noble, Geoffrey P.; Walsh, Daniel J.; Miller, Michael B.; Jackson, Walker S.; Supattapone, Surachai

    2015-01-01

    Misfolding of the prion protein (PrP) plays a central role in the pathogenesis of infectious, sporadic, and inherited prion diseases. Here we use a chemically defined prion propagation system to study misfolding of the pathogenic PrP mutant D177N in vitro. This mutation causes PrP to misfold spontaneously in the absence of cofactor molecules in a process dependent on time, temperature, pH, and intermittent sonication. Spontaneously misfolded mutant PrP is able to template its unique conformation onto wild-type PrP substrate in a process that requires a phospholipid activity distinct from that required for the propagation of infectious prions. Similar results were obtained with a second pathogenic PrP mutant, E199K, but not with the polymorphic substitution M128V. Moreover, wild-type PrP inhibits mutant PrP misfolding in a dose-dependent manner, and cofactor molecules can antagonize this effect. These studies suggest that interactions between mutant PrP, wild-type PrP, and other cellular factors may control the rate of PrP misfolding in inherited prion diseases. PMID:25584902

  15. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton.

    PubMed

    Stephan, Joseph S; Fioriti, Luana; Lamba, Nayan; Colnaghi, Luca; Karl, Kevin; Derkatch, Irina L; Kandel, Eric R

    2015-06-23

    The mouse cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a translational regulator implicated in long-term memory maintenance. Invertebrate orthologs of CPEB3 in Aplysia and Drosophila are functional prions that are physiologically active in the aggregated state. To determine if this principle applies to the mammalian CPEB3, we expressed it in yeast and found that it forms heritable aggregates that are the hallmark of known prions. In addition, we confirm in the mouse the importance of CPEB3's prion formation for CPEB3 function. Interestingly, deletion analysis of the CPEB3 prion domain uncovered a tripartite organization: two aggregation-promoting domains surround a regulatory module that affects interaction with the actin cytoskeleton. In all, our data provide direct evidence that CPEB3 is a functional prion in the mammalian brain and underline the potential importance of an actin/CPEB3 feedback loop for the synaptic plasticity underlying the persistence of long-term memory. PMID:26074072

  16. Cellular prion protein (PrPC) and its role in stress responses

    PubMed Central

    Zeng, Liang; Zou, Wenquan; Wang, Gongxian

    2015-01-01

    Investigation of the physiological function of cellular prion protein (PrPC) has been developed by the generation of transgenic mice, however, the pathological mechanisms related to PrPC in prion diseases such as transmissible spongiform encephalopathies (TSEs) are still abstruse. Regardless of some differences, most studies describe the neuroprotective role of PrPC in environmental stresses. In this review, we will update the current knowledge on the responses of PrPC to various stresses, especially those correlated with cell signaling and neural degeneration, including ischemia, oxidative stress, inflammation and autophagy. PMID:26221369

  17. Ultra-sensitive detection of prion protein with a long range resonance energy transfer strategy.

    PubMed

    Hu, Ping Ping; Chen, Li Qiang; Liu, Chun; Zhen, Shu Jun; Xiao, Sai Jin; Peng, Li; Li, Yuan Fang; Huang, Cheng Zhi

    2010-11-21

    An ultra-sensitive detection strategy for prion protein is proposed based on the long range resonance energy transfer (LrRET) from quantum dots (QDs) to the surface of gold nanoparticles (AuNPs), in which process energy donor-acceptor separation distance ranges from 9 to 22 nm. PMID:20886138

  18. Detection of the disease associated form of the prion protein in biological samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are neurodegenerative diseases that occur in a variety of mammals. In these diseases, a chromosomally encoded protein (PrP**c) undergoes a conformational change to the disease associated form (PrP**d), and PrP**d is capable inducing ...

  19. Loss of prion protein leads to age-dependent behavioral abnormalities and changes in cytoskeletal protein expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular prion protein (PrPC) is a multifunctional protein, whose exact physiological role remains elusive. Since previous studies indicated a neuroprotective function of PrPC, we investigated whether Prnp knockout mice(Prnp0/0)display age-dependent behavioral abnormalities. Matched sets of Prnp0/0 ...

  20. Assessing Proteinase K Resistance of Fish Prion Proteins in a Scrapie-Infected Mouse Neuroblastoma Cell Line

    PubMed Central

    Salta, Evgenia; Kanata, Eirini; Ouzounis, Christos A.; Gilch, Sabine; Schätzl, Hermann; Sklaviadis, Theodoros

    2014-01-01

    The key event in prion pathogenesis is the structural conversion of the normal cellular protein, PrPC, into an aberrant and partially proteinase K resistant isoform, PrPSc. Since the minimum requirement for a prion disease phenotype is the expression of endogenous PrP in the host, species carrying orthologue prion genes, such as fish, could in theory support prion pathogenesis. Our previous work has demonstrated the development of abnormal protein deposition in sea bream brain, following oral challenge of the fish with natural prion infectious material. In this study, we used a prion-infected mouse neuroblastoma cell line for the expression of three different mature fish PrP proteins and the evaluation of the resistance of the exogenously expressed proteins to proteinase K treatment (PK), as an indicator of a possible prion conversion. No evidence of resistance to PK was detected for any of the studied recombinant proteins. Although not indicative of an absolute inability of the fish PrPs to structurally convert to pathogenic isoforms, the absence of PK-resistance may be due to supramolecular and conformational differences between the mammalian and piscine PrPs. PMID:25402173

  1. A bipolar functionality of Q/N-rich proteins: Lsm4 amyloid causes clearance of yeast prions

    PubMed Central

    Oishi, Keita; Kurahashi, Hiroshi; Pack, Chan-Gi; Sako, Yasushi; Nakamura, Yoshikazu

    2013-01-01

    Prions are epigenetic modifiers that cause partially loss-of-function phenotypes of the proteins in Saccharomyces cerevisiae. The molecular chaperone network that supports prion propagation in the cell has seen a great progress in the last decade. However, the cellular machinery to activate or deactivate the prion states remains an enigma, largely due to insufficient knowledge of prion-regulating factors. Here, we report that overexpression of a [PSI+]-inducible Q/N-rich protein, Lsm4, eliminates the three major prions [PSI+], [URE3], and [RNQ+]. Subcloning analysis revealed that the Q/N-rich region of Lsm4 is responsible for the prion loss. Lsm4 formed an amyloid in vivo, which seemed to play a crucial role in the prion elimination. Fluorescence correlation spectroscopy analysis revealed that in the course of the Lsm4-driven [PSI+] elimination, the [PSI+] aggregates undergo a size increase, which ultimately results in the formation of conspicuous foci in otherwise [psi?]-like mother cells. We also found that the antiprion activity is a general property of [PSI+]-inducible factors. These data provoked a novel “unified” model that explains both prion induction and elimination by a single scheme. PMID:23512891

  2. Development of techniques in magnetic resonance and structural studies of the prion protein

    SciTech Connect

    Bitter, Hans-Marcus L.

    2000-07-01

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging at ultra-low fields is realized by incorporating the high sensitivities of a dc superconducting quantum interference device (SQUID) with the high polarizations attainable through optica11y pumping {sup 129}Xe gas.

  3. N-terminal domain of prion protein directs its oligomeric association.

    PubMed

    Trevitt, Clare R; Hosszu, Laszlo L P; Batchelor, Mark; Panico, Silvia; Terry, Cassandra; Nicoll, Andrew J; Risse, Emmanuel; Taylor, William A; Sandberg, Malin K; Al-Doujaily, Huda; Linehan, Jacqueline M; Saibil, Helen R; Scott, David J; Collinge, John; Waltho, Jonathan P; Clarke, Anthony R

    2014-09-12

    The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar ?-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined ?-sheet-rich oligomer, containing ?12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP. The N-terminal region of prion protein (residues 23-90) is required for the formation of this distinct oligomer; a truncated form comprising residues 91-231 forms a broad distribution of aggregated species. No infectivity or toxicity was found using cell and animal model systems. This study demonstrates that examination of the full repertoire of conformers and assembly states that can be accessed by PrP under specific experimental conditions should ideally be done using the full-length protein. PMID:25074940

  4. Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants

    PubMed Central

    Wickner, Reed B.; Bezsonov, Evgeny; Bateman, David A.

    2014-01-01

    [URE3] is an amyloid prion of the Saccharomyces cerevisiae Ure2p, a regulator of nitrogen catabolism. Overproduction of Btn2p, involved in late endosome to Golgi protein transport, or its paralog Cur1p, cures [URE3]. Btn2p, in curing, is colocalized with Ure2p in a single locus, suggesting sequestration of Ure2p amyloid filaments. We find that most [URE3] variants generated in a btn2 cur1 double mutant are cured by restoring normal levels of Btn2p and Cur1p, with both proteins needed for efficient curing. The [URE3] variants cured by normal levels of Btn2p and Cur1p all have low seed number, again suggesting a seed sequestration mechanism. Hsp42 overproduction also cures [URE3], and Hsp42p aids Btn2 overproduction curing. Cur1p is needed for Hsp42 overproduction curing of [URE3], but neither Btn2p nor Cur1p is needed for overproduction curing by the other. Although hsp42? strains stably propagate [URE3-1], hsp26? destabilizes this prion. Thus, Btn2p and Cur1p are antiprion system components at their normal levels, acting with Hsp42. Btn2p is related in sequence to human Hook proteins, involved in aggresome formation and other transport activities. PMID:24938787

  5. Two amyloid states of the prion protein display significantly different folding patterns

    PubMed Central

    Ostapchenko, Valeriy G.; Sawaya, Michael R.; Makarava, Natallia; Savtchenko, Regina; Nilsson, K. Peter R.; Eisenberg, David; Baskakov, Ilia V.

    2010-01-01

    Summary It has been well established that a single amino acid sequence can give rise to several conformationally distinct amyloid states. The extent to which amyloid structures formed within the same sequence are different, however, remains unclear. To address this question we studied two amyloid states (referred to as R- and S-fibrils) produced in vitro from highly purified full-length recombinant prion protein (PrP). Several biophysical techniques including X-ray diffraction, CD, FTIR, hydrogen-deuterium exchange, proteinase K-digestion, and binding of a conformation-sensitive fluorescence dye revealed that R- and S-fibrils have substantially different secondary, tertiary and quaternary structures. While both states displayed a 4.8 Å meridional X-ray diffraction typical for amyloid cross-? spines, they showed markedly different equatorial profiles suggesting different folding pattern of ?-strands. The experiments on hydrogen-deuterium exchange monitored by FTIR revealed that only small fractions of amide protons were protected in R- or S-fibrils, an argument for the dynamic nature of their cross-? structure. Despite this fact, both amyloid states were found to be very stable conformationally as judged from temperature-induced denaturation monitored by FTIR and the conformation-sensitive dye. Upon heating to 80 °C, only local unfolding was revealed, while individual state-specific cross-? features were preserved. The current studies demonstrated that the two amyloid states formed by the same amino acid sequence exhibited significantly different folding patterns that presumably reflect two different architectures of cross-? structure. Both S- and R-fibrils, however, shared high conformational stability arguing that the energy landscape for protein folding and aggregation can contain several deep free energy minima. PMID:20553730

  6. Recent advances have elucidated the detailed glycosylation of the prion protein and highlighted the size of the sugars, which

    E-print Network

    encephalopathies, including bovine spongiform encephalopathy (BSE) in animals and Creutzfeldt­Jakob disease (CJD matter © 2002 Elsevier Science Ltd. All rights reserved. Abbreviations BSE bovine spongiform peripheral blood mononuclear cell TSE transmissible spongiform encephalopathy Introduction The prion protein

  7. A sequencing strategy for identifying variation throughout the prion gene of BSE-affected cattle

    PubMed Central

    Clawson, Michael L; Heaton, Michael P; Keele, John W; Smith, Timothy PL; Harhay, Gregory P; Richt, Juergen A; Laegreid, William W

    2008-01-01

    Background Classical and atypical bovine spongiform encephalopathies (BSEs) are cattle prion diseases. Distinct bovine prion gene (PRNP) alleles have been associated with classical and atypical BSE susceptibility. However, the full extent of PRNP allele association with BSE susceptibility is not known. A systematic sequence-based genotyping method that detects variation throughout PRNP would be useful for: 1) detecting rare PRNP alleles that may be present in BSE-affected animals and 2) testing PRNP alleles for an association with either classical or atypical BSE susceptibility. Findings We improved a Sanger-based sequencing strategy for detecting bovine PRNP variation through all exons, introns, and part of the promoter (25.2 kb). Our current method can detect 389 known and other potentially unknown PRNP polymorphisms that may be present in BSE-affected cattle. We determined PRNP genotypes for the first U.S. BSE case and her sire. Previously unknown PRNP polymorphisms were not detected in either animal and all PRNP genotypes support the sire-daughter relationship. Conclusion The methodologies described here characterize variation throughout PRNP. Consequently, rare PRNP alleles that may be present in BSE-affected cattle can be detected. PMID:18710485

  8. In vitro prion protein conversion suggests risk of bighorn sheep (Ovis canadensis) to transmissible spongiform encephalopathies

    USGS Publications Warehouse

    Johnson, Christopher J.; Morawski, A.R.; Carlson, C.M.; Chang, H.

    2013-01-01

    Background: Transmissible spongiform encephalopathies (TSEs) affect both domestic sheep (scrapie) and captive and free-ranging cervids (chronic wasting disease; CWD). The geographical range of bighorn sheep (Ovis canadensis; BHS) overlaps with states or provinces that have contained scrapie-positive sheep or goats and areas with present epizootics of CWD in cervids. No TSEs have been documented in BHS, but the susceptibility of this species to TSEs remains unknown. Results: We acquired a library of BHS tissues and found no evidence of preexisting TSEs in these animals. The prion protein gene (Prnp) in all BHS in our library was identical to scrapie-susceptible domestic sheep (A136R 154Q171). Using an in vitro prion protein conversion assay, which has been previously used to assess TSE species barriers and, in our study appears to recollect known species barriers in mice, we assessed the potential transmissibility of TSEs to BHS. As expected based upon Prnp genotype, we observed BHS prion protein conversion by classical scrapie agent and evidence for a species barrier between transmissible mink encephalopathy (TME) and BHS. Interestingly, our data suggest that the species barrier of BHS to white-tailed deer or wapiti CWD agents is likely low. We also used protein misfolding cyclic amplification to confirm that CWD, but not TME, can template prion protein misfolding in A136R 154Q171genotype sheep. Conclusions: Our results indicate the in vitro conversion assay used in our study does mimic the species barrier of mice to the TSE agents that we tested. Based on Prnp genotype and results from conversion assays, BHS are likely to be susceptible to infection by classical scrapie. Despite mismatches in amino acids thought to modulate prion protein conversion, our data indicate that A136R154Q171 genotype sheep prion protein is misfolded by CWD agent, suggesting that these animals could be susceptible to CWD. Further investigation of TSE transmissibility to BHS, including animal studies, is warranted. The lack of reported TSEs in BHS may be attributable to other host factors or a lack of TSE surveillance in this species.

  9. Prion protein mPrP[F175A](121-231): structure and stability in solution.

    PubMed

    Christen, Barbara; Hornemann, Simone; Damberger, Fred F; Wüthrich, Kurt

    2012-11-01

    The three-dimensional structures of prion proteins (PrPs) in the cellular form (PrP(C)) include a stacking interaction between the aromatic rings of the residues Y169 and F175, where F175 is conserved in all but two so far analyzed mammalian PrP sequences and where Y169 is strictly conserved. To investigate the structural role of F175, we characterized the variant mouse prion protein mPrP[F175A](121-231). The NMR solution structure represents a typical PrP(C)-fold, and it contains a 3(10)-helical ?2-?2 loop conformation, which is well defined because all amide group signals in this loop are observed at 20°C. With this "rigid-loop PrP(C)" behavior, mPrP[F175A](121-231) differs from the previously studied mPrP[Y169A](121-231), which contains a type I ?-turn ?2-?2 loop structure. When compared to other rigid-loop variants of mPrP(121-231), mPrP[F175A](121-231) is unique in that the thermal unfolding temperature is lowered by 8°C. These observations enable further refined dissection of the effects of different single-residue exchanges on the PrP(C) conformation and their implications for the PrP(C) physiological function. PMID:22922482

  10. Yeast prions: structure, biology, and prion-handling systems.

    PubMed

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E

    2015-03-01

    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered ?-sheet-rich protein aggregates with ?-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. PMID:25631286

  11. Subcellular distribution of the prion protein in sickness and in health.

    PubMed

    Godsave, Susan F; Peters, Peter J; Wille, Holger

    2015-09-01

    The cellular prion protein (PrP(C)) is an ubiquitously expressed glycoprotein that is most abundant in the central nervous system. It is thought to play a role in many cellular processes, including neuroprotection, but may also contribute to Alzheimer's disease and some cancers. However, it is best known for its central role in the prion diseases, such as Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (BSE), and scrapie. These protein misfolding diseases can be sporadic, acquired, or genetic and are caused by refolding of endogenous PrP(C) into a beta sheet-rich, pathogenic form, PrP(Sc). Once prions are present in the central nervous system, they increase and spread during a long incubation period that is followed by a relatively short clinical disease phase, ending in death. PrP molecules can be broadly categorized as either 'good' (cellular) PrP(C) or 'bad' (scrapie prion-type) PrP(Sc), but both populations are heterogeneous and different forms of PrP(C) may influence various cellular activities. Both PrP(C) and PrP(Sc) are localized predominantly at the cell surface, with the C-terminus attached to the plasma membrane via a glycosyl-phosphatidylinositol (GPI) anchor and both can exist in cleaved forms. PrP(C) also has cytosolic and transmembrane forms, and PrP(Sc) is known to exist in a variety of conformations and aggregation states. Here, we discuss the roles of different PrP isoforms in sickness and in health, and show the subcellular distributions of several forms of PrP that are particularly relevant for PrP(C) to PrP(Sc) conversion and prion-induced pathology in the hippocampus. PMID:25683509

  12. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.

    PubMed

    Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping

    2015-04-01

    Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. PMID:25616867

  13. A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins

    E-print Network

    Zhang, Jiapu

    2014-01-01

    Prion diseases are invariably fatal neurodegenerative diseases that affect humans and animals. Unlike most other amyloid forming neurodegenerative diseases, these can be highly infectious. Prion diseases occur in a variety of species. They include the fatal human neurodegenerative diseases Creutzfeldt-Jakob Disease (CJD), Fatal Familial Insomnia (FFI), Gerstmann-Straussler-Scheinker syndrome (GSS), Kuru, the bovine spongiform encephalopathy (BSE or 'mad-cow' disease) in cattle, the chronic wasting disease (CWD) in deer and elk, and scrapie in sheep and goats, etc. Transmission across the species barrier to humans, especially in the case of BSE in Europe, CWD in North America, and variant CJDs (vCJDs) in young people of UK, is a major public health concern. Fortunately, scientists reported that the (central) hydrophobic region of prion proteins (PrP) controls the formation of diseased prions. This article gives a detailed survey on PrP hydrophobic region and does molecular dynamics studies of human PrP(110-136...

  14. Strain-Dependent Effect of Macroautophagy on Abnormally Folded Prion Protein Degradation in Infected Neuronal Cells

    PubMed Central

    Ishibashi, Daisuke; Homma, Takujiro; Nakagaki, Takehiro; Fuse, Takayuki; Sano, Kazunori; Takatsuki, Hanae; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    Prion diseases are neurodegenerative disorders caused by the accumulation of abnormal prion protein (PrPSc) in the central nervous system. With the aim of elucidating the mechanism underlying the accumulation and degradation of PrPSc, we investigated the role of autophagy in its degradation, using cultured cells stably infected with distinct prion strains. The effects of pharmacological compounds that inhibit or stimulate the cellular signal transduction pathways that mediate autophagy during PrPSc degradation were evaluated. The accumulation of PrPSc in cells persistently infected with the prion strain Fukuoka-1 (FK), derived from a patient with Gerstmann–Sträussler–Scheinker syndrome, was significantly increased in cultures treated with the macroautophagy inhibitor 3-methyladenine (3MA) but substantially reduced in those treated with the macroautophagy inducer rapamycin. The decrease in FK-derived PrPSc levels was mediated, at least in part, by the phosphatidylinositol 3-kinase/MEK signalling pathway. By contrast, neither rapamycin nor 3MA had any apparently effect on PrPSc from either the 22L or the Chandler strain, indicating that the degradation of PrPSc in host cells might be strain-dependent. PMID:26368533

  15. Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion.

    PubMed

    Yu, Peng; Zhang, Xiaohua; Zhou, Jiawan; Xiong, Erhu; Li, Xiaoyu; Chen, Jinhua

    2015-01-01

    A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-?-cyclodextrins (MWCNTs-?-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between ?-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to ?-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of ?-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160?fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis. PMID:26531259

  16. Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Zhang, Xiaohua; Zhou, Jiawan; Xiong, Erhu; Li, Xiaoyu; Chen, Jinhua

    2015-11-01

    A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-?-cyclodextrins (MWCNTs-?-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between ?-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to ?-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of ?-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160?fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis.

  17. Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion

    PubMed Central

    Yu, Peng; Zhang, Xiaohua; Zhou, Jiawan; Xiong, Erhu; Li, Xiaoyu; Chen, Jinhua

    2015-01-01

    A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-?-cyclodextrins (MWCNTs-?-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between ?-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to ?-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of ?-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160?fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis. PMID:26531259

  18. Conformational Stability of Mammalian Prion Protein Amyloid Fibrils Is Dictated by a Packing Polymorphism within the Core Region*

    PubMed Central

    Cobb, Nathan J.; Apostol, Marcin I.; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K.

    2014-01-01

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrPSc. One key operational parameter used to define differences between strains has been conformational stability of PrPSc as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in ?-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrPSc, especially because large strain-specific differences in PrPSc stability are often observed despite a similar size of the PrPSc core region. PMID:24338015

  19. A rapid sequence-based method for comprehensive polymorphism identification within a 25.2-kb region of the bovine prion gene in BSE-affected cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine spongiform encephalopathy (BSE) is a fatal neurological disorder characterized by abnormal deposits of a protease-resistant isoform of the prion protein. Typical and atypical BSEs have been identified in cattle and the relationships of prion gene (PRNP) variation with susceptibility to these...

  20. Absolute Quantification of Prion Protein (90-231) Using Stable Isotope-Labeled Chymotryptic Peptide Standards in a LC-MRM AQUA Workflow

    NASA Astrophysics Data System (ADS)

    Sturm, Robert; Sheynkman, Gloria; Booth, Clarissa; Smith, Lloyd M.; Pedersen, Joel A.; Li, Lingjun

    2012-09-01

    Substantial evidence indicates that the disease-associated conformer of the prion protein (PrPTSE) constitutes the etiologic agent in prion diseases. These diseases affect multiple mammalian species. PrPTSE has the ability to convert the conformation of the normal prion protein (PrPC) into a ?-sheet rich form resistant to proteinase K digestion. Common immunological techniques lack the sensitivity to detect PrPTSE at subfemtomole levels, whereas animal bioassays, cell culture, and in vitro conversion assays offer higher sensitivity but lack the high-throughput the immunological assays offer. Mass spectrometry is an attractive alternative to the above assays as it offers high-throughput, direct measurement of a protein's signature peptide, often with subfemtomole sensitivities. Although a liquid chromatography-multiple reaction monitoring (LC-MRM) method has been reported for PrPTSE, the chemical composition and lack of amino acid sequence conservation of the signature peptide may compromise its accuracy and make it difficult to apply to multiple species. Here, we demonstrate that an alternative protease (chymotrypsin) can produce signature peptides suitable for a LC-MRM absolute quantification (AQUA) experiment. The new method offers several advantages, including: (1) a chymotryptic signature peptide lacking chemically active residues (Cys, Met) that can confound assay accuracy; (2) low attomole limits of detection and quantitation (LOD and LOQ); and (3) a signature peptide retaining the same amino acid sequence across most mammals naturally susceptible to prion infection as well as important laboratory models. To the authors' knowledge, this is the first report on the use of a non-tryptic peptide in a LC-MRM AQUA workflow.

  1. The prion protein gene polymorphisms associated with bovine spongiform encephalopathy susceptibility differ significantly between cattle and buffalo.

    PubMed

    Zhao, Hui; Du, Yanli; Chen, Shunmei; Qing, Lili; Wang, Xiaoyan; Huang, Jingfei; Wu, Dongdong; Zhang, Yaping

    2015-12-01

    Prion protein, encoded by the prion protein gene (PRNP), plays a crucial role in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Several polymorphisms within the PRNP are known to be associated with influencing bovine spongiform encephalopathy (BSE) susceptibility in cattle, namely two insertion/deletion (indel) polymorphisms (a 23-bp indel in the putative promoter and a 12-bp indel in intron 1), the number of octapeptide repeats (octarepeats) present in coding sequence (CDS) and amino acid polymorphisms. The domestic buffaloes, Bubalus bubalis, are a ruminant involved in various aspects of agriculture. It is of interest to ask whether the PRNP polymorphisms differ between cattle and buffalo. In this study, we analyzed the previously reported polymorphisms associated with BSE susceptibility in Chinese buffalo breeds, and compared these polymorphisms in cattle with BSE, healthy cattle and buffalo by pooling data from the literature. Our analysis revealed three significant findings in buffalo: 1) extraordinarily low deletion allele frequencies of the 23- and 12-bp indel polymorphisms; 2) significantly low allelic frequencies of six octarepeats in CDS and 3) the presence of S4R, A16V, P54S, G108S, V123M, S154N and F257L substitutions in buffalo CDSs. Sequence alignments comparing the buffalo coding sequence to other species were analyzed using the McDonald-Kreitman test to reveal five groups (Bison bonasus, Bos indicus, Bos gaurus, Boselaphus tragocamelus, Syncerus caffer caffer) with significantly divergent non-synonymous substitutions from buffalo, suggesting potential divergence of buffalo PRNP and others. To the best of our knowledge this is the first study of PRNP polymorphisms associated with BSE susceptibility in Chinese buffalo. Our findings have provided evidence that buffaloes have a unique genetic background in the PRNP gene in comparison with cattle. PMID:26319996

  2. Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus.

    PubMed Central

    Lledo, P M; Tremblay, P; DeArmond, S J; Prusiner, S B; Nicoll, R A

    1996-01-01

    We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus. PMID:8637886

  3. The role of the 132–160 region in prion protein conformational transitions

    PubMed Central

    Torrent, Joan; Alvarez-Martinez, Maria Teresa; Liautard, Jean-Pierre; Balny, Claude; Lange, Reinhard

    2005-01-01

    The native conformation of host-encoded cellular prion protein (PrPC) is metastable. As a result of a post-translational event, PrPC can convert to the scrapie form (PrPSc), which emerges as the essential constituent of infectious prions. Despite thorough research, the mechanism underlying this conformational transition remains unknown. However, several studies have highlighted the importance of the N-terminal region spanning residues 90–154 in PrP folding. In order to understand why PrP folds into two different conformational states exhibiting distinct secondary and tertiary structure, and to gain insight into the involvement of this particular region in PrP transconformation, we studied the pressure-induced unfolding/ refolding of recombinant Syrian hamster PrP expanding from residues 90–231, and compared it with heat unfolding. By using two intrinsic fluorescent variants of this protein (Y150W and F141W), conformational changes confined to the 132–160 segment were monitored. Multiple conformational states of the Trp variants, characterized by their spectroscopic properties (fluorescence and UV absorbance in the fourth derivative mode), were achieved by tuning the experimental conditions of pressure and temperature. Further insight into unexplored conformational states of the prion protein, likely to mimic the in vivo structural change, was obtained from pressure-assisted cold unfolding. Furthermore, salt-induced conformational changes suggested a structural stabilizing role of Tyr150 and Phe141 residues, slowing down the conversion to a ?-sheet form. PMID:15772306

  4. Modulation of Proteinase K-resistant Prion Protein in Cells and Infectious Brain Homogenate by Redox Iron: Implications for Prion Replication and Disease Pathogenesis

    PubMed Central

    Basu, Subhabrata; Mohan, Maradumane L.; Luo, Xiu; Kundu, Bishwajit; Kong, Qingzhong

    2007-01-01

    The principal infectious and pathogenic agent in all prion disorders is a ?-sheet–rich isoform of the cellular prion protein (PrPC) termed PrP-scrapie (PrPSc). Once initiated, PrPSc is self-replicating and toxic to neuronal cells, but the underlying mechanisms remain unclear. In this report, we demonstrate that PrPC binds iron and transforms to a PrPSc-like form (*PrPSc) when human neuroblastoma cells are exposed to an inorganic source of redox iron. The *PrPSc thus generated is itself redox active, and it induces the transformation of additional PrPC, simulating *PrPSc propagation in the absence of brain-derived PrPSc. Moreover, limited depletion of iron from prion disease-affected human and mouse brain homogenates and scrapie-infected mouse neuroblastoma cells results in 4- to 10-fold reduction in proteinase K (PK)-resistant PrPSc, implicating redox iron in the generation, propagation, and stability of PK-resistant PrPSc. Furthermore, we demonstrate increased redox-active ferrous iron levels in prion disease-affected brains, suggesting that accumulation of PrPSc is modulated by the combined effect of imbalance in brain iron homeostasis and the redox-active nature of PrPSc. These data provide information on the mechanism of replication and toxicity by PrPSc, and they evoke predictable and therapeutically amenable ways of modulating PrPSc load. PMID:17567949

  5. Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton.

    PubMed

    Li, Xiang; Rayman, Joseph B; Kandel, Eric R; Derkatch, Irina L

    2014-07-17

    Tia1/Pub1 is a stress granule component carrying a Q/N-rich prion domain. We provide direct evidence that Tia1 forms a prion in yeast. Moreover, Tia1/Pub1 acts cooperatively with release factor Sup35/eRF3 to establish a two-protein self-propagating state. This two-protein prion driven by the Q/N-rich prion domains of Sup35 and Tia1/Pub1 can be visualized as distinctive line structures along tubulin cytoskeleton. Furthermore, we find that tubulin-associated complex containing Pub1 and Sup35 oligomers normally exists in yeast, and its assembly depends on prion domains of Pub1 and Sup35. This Sup35/Pub1 complex, which also contains TUB1 mRNA and components of translation machinery, is important for the integrity of the tubulin cytoskeleton: PUB1 disruption and Sup35 depletion from the complex lead to cytoskeletal defects. We propose that the complex is implicated in protein synthesis at the site of microtubule assembly. Thus our study identifies the role for prion domains in the assembly of multiprotein complexes. PMID:24981173

  6. Integrity of Helix 2-Helix 3 Domain of the PrP Protein Is Not Mandatory for Prion Replication*

    PubMed Central

    Salamat, Khalid; Moudjou, Mohammed; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Béringue, Vincent; Rezaei, Human; Pastore, Annalisa; Laude, Hubert; Dron, Michel

    2012-01-01

    The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrPSc. We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrPSc and elucidate the conformational changes underlying prions generation. PMID:22511770

  7. Repeats are one of the main characteristics of RNA-binding proteins with prion-like domains.

    PubMed

    Galzitskaya, Oxana V

    2015-08-01

    It is not surprising that a large number of diseases related to amyloid fibril depositions are formed in various organs. Therefore, it is necessary to understand the transformation of native proteins into amyloid fibrils in order to clarify which key elements of this process determine the pathway of protein misfolding. Significant attention has been directed recently to investigating the mechanism of formation of cross-? structures that have the properties of liquids but can also exist in gel-like forms, thus facilitating the retention of both RNAs and RNA-binding proteins. Proteins that form stress granules are believed to do this rapidly, and they are expected to contain a prion-like domain that can facilitate this process. By analyzing the known yeast prion proteins and 29 RNA-binding proteins with prion-like domains, we demonstrate here that the existence of repeats is one of the general characteristics of prion-like domains. The presence of repeats should help to determine the border of prion domains as in the case of Rnq1: five found repeats shift the border of the prion domain from the 153-rd to at least the 133-th residue. One can suggest that such repeats assist in the rapid initiation of the process of assembly and formation of cross-? structures and such domains most likely should be disordered. These repeats should contain aromatic amino acid residues for the formation of a hydrogel because its amino acid context modulates the strength of interaction. The key factors determined here can be used to control the process of aggregation to prevent the development of pathologies and diseases caused by prion-like domains. PMID:26022110

  8. Techniques to elucidate the conformation of prions

    PubMed Central

    Daus, Martin L

    2015-01-01

    Proteinaceous infectious particles (prions) are unique pathogens as they are devoid of any coding nucleic acid. Whilst it is assumed that prion disease is transmitted by a misfolded isoform of the cellular prion protein, the structural insight of prions is still vague and research for high resolution structural information of prions is still ongoing. In this review, techniques that may contribute to the clarification of the conformation of prions are presented and discussed. PMID:26322176

  9. Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein

    PubMed Central

    Yedidia, Yifat; Horonchik, Lior; Tzaban, Salit; Yanai, Anat; Taraboulos, Albert

    2001-01-01

    Prion diseases propagate by converting a normal glycoprotein of the host, PrPC, into a pathogenic ‘prion’ conformation. Several misfolding mutants of PrPC are degraded through the ER-associated degradation (ERAD)–proteasome pathway. In their infectious form, prion diseases such as bovine spongiform encephalopathy involve PrPC of wild-type sequence. In contrast to mutant PrP, wild-type PrPC was hitherto thought to be stable in the ER and thus immune to ERAD. Using proteasome inhibitors, we now show that ?10% of nascent PrPC molecules are diverted into the ERAD pathway. Cells incubated with N-acetyl-leucinal-leucinal-norleucinal (ALLN), lactacystin or MG132 accumulated both detergent-soluble and insoluble PrP species. The insoluble fraction included an unglycosylated 26 kDa PrP species with a protease-resistant core, and a Mr ‘ladder’ that contained ubiquitylated PrP. Our results show for the first time that wild-type PrPC molecules are subjected to ERAD, in the course of which they are dislocated into the cytosol and ubiquitylated. The presence of wild-type PrP molecules in the cytosol may have potential pathogenic implications. PMID:11574470

  10. Conformational instability of human prion protein upon residue modification: a molecular dynamics simulation study

    PubMed Central

    Bamdad, Kourosh; Naderi-manesh, Hossein; Baumgaertner, Artur

    2014-01-01

    Technical strategies like amino acid substitution and residue modification have been widely used to characterize the importance of key amino acids and the role that each residue plays in the structural and functional properties of protein molecules. However, there is no systematic approach to assess the impact of the substituted/modified amino acids on the conformational dynamics of proteins. In this investigation to clarify the effects of residue modifications on the structural dynamics of human prion protein (PrP), a comparative molecular dynamics simulation study on the native and the amino acid-substituted analog at position 208 of PrP has been performed. It is believed that Arginine to Histidine mutation at position 208 is responsible for the structural transition of the native form of human prion protein to the pathogenic isoform causing Creutzfeldt-Jakob disease (CJD). So, three 10 ns molecular dynamics simulations on three model constructs have been performed. Simulation results indicated considerable differences of conformational fluctuations for Alanine substituted construct (PrPALA) and the analog form (PrPSB) comprising the neutralized state of the Arginine residue at position 208 of the human prion protein. According to our data, substitution of the Arginine residue by the uncharged state of this residue induces some reversible structural alterations in the intrinsically flexible loop area including residues 167–171 of PrP. Thus, deprotonation of Arg208 is a weak perturbation to the structural fluctuations of the protein backbone and the resulting construct behaves almost identical as its native form. Otherwise, Alanine substitution at position 208 imposed an irreversible impact on the secondary and tertiary structure of the protein, which leads to conformational instabilities in the remote hot region comprising residues 190–195 of the C–terminal part of helix 2. Based on the results, it could be deduced that the observed conformational transitions upon Arg208 to His point mutation, which is the main reason for CJD, may be mainly related to the structural instabilities due to the induced-conformational changes that caused alterations in local/spatial arrangements of the force distributions in the backbone of the human prion protein. PMID:26417255

  11. Conformational Switching and Nanoscale Assembly of Human Prion Protein into Polymorphic Amyloids via Structurally Labile Oligomers.

    PubMed

    Dalal, Vijit; Arya, Shruti; Bhattacharya, Mily; Mukhopadhyay, Samrat

    2015-12-29

    Conformational switching of the prion protein (PrP) from an ?-helical normal cellular form (PrP(C)) to an aggregation-prone and self-propagating ?-rich scrapie form (PrP(Sc)) underlies the molecular basis of pathogenesis in prion diseases. Anionic lipids play a critical role in the misfolding and conformational conversion of the membrane-anchored PrP into the amyloidogenic pathological form. In this work, we have used a diverse array of techniques to interrogate the early intermediates during amyloid formation from recombinant human PrP in the presence of a membrane mimetic anionic detergent such as sodium dodecyl sulfate. We have been able to detect and characterize two distinct types of interconvertible oligomers. Our results demonstrate that highly ordered large ?-oligomers represent benign off-pathway intermediates that lack the ability to mature into amyloid fibrils. On the contrary, structurally labile small oligomers are capable of switching to an ordered amyloid-state that exhibits profound toxicity to mammalian cells. Our fluorescence resonance energy transfer measurements revealed that the partially disordered PrP serves as precursors to small amyloid-competent oligomers. These on-pathway oligomers are eventually sequestered into higher order supramolecular assemblies that conformationally mature into polymorphic amyloids possessing varied nanoscale morphology as evident by the atomic force microscopy imaging. The nanoscale diversity of fibril architecture is attributed to the heterogeneous ensemble of early obligatory oligomers and offers a plausible explanation for the existence of multiple prion strains in vivo. PMID:26645611

  12. Can copper binding to the prion protein generate a misfolded form of the protein?

    PubMed

    Pushie, M Jake; Rauk, Arvi; Jirik, Frank R; Vogel, Hans J

    2009-02-01

    The native prion protein (PrP) has a two domain structure, with a globular folded alpha-helical C-terminal domain and a flexible extended N-terminal region. The latter can selectively bind Cu(2+) via four His residues in the octarepeat (OR) region, as well as two sites (His96 and His111) outside this region. In the disease state, the folded C-terminal domain of PrP undergoes a conformational change, forming amorphous aggregates high in beta-sheet content. Cu(2+) bound to the ORs can be redox active and has been shown to induce cleavage within the OR region, a process requiring conserved Trp residues. Using computational modeling, we have observed that electron transfer from Trp residues to copper can be favorable. These models also reveal that an indole-based radical cation or Cu(+) can initiate reactions leading to protein backbone cleavage. We have also demonstrated, by molecular dynamics simulations, that Cu(2+) binding to the His96 and His111 residues in the remaining PrP N-terminal fragment can induce localized beta-sheet structure, allowing us to suggest a potential mechanism for the initiation of beta-sheet misfolding in the C-terminal domain by Cu(2+). PMID:19140013

  13. The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent

    PubMed Central

    Tixador, Philippe; Herzog, Laëtitia; Reine, Fabienne; Jaumain, Emilie; Chapuis, Jérôme; Le Dur, Annick; Laude, Hubert; Béringue, Vincent

    2010-01-01

    Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics. PMID:20419156

  14. Prions, From Structure to Epigenetics and Neuronal Functions

    NASA Astrophysics Data System (ADS)

    Lindquist, Susan

    2012-02-01

    Prions are a unique type of protein that can misfold and convert other proteins to the same shape. The well-characterized yeast prion [PSI+] is formed from an inactive amyloid fiber conformation of the translation-termination factor, Sup35. This altered conformation is passed from mother cells to daughters, acting as a template to perpetuate the prion state and providing a mechanism of protein-based inheritance. We employed a variety of methods to determine the structure of Sup35 amyloid fibrils. First, using fluorescent tags and cross-linking we identified specific segments of the protein monomer that form intermolecular contacts in a ``Head-to-Head,'' ``Tail-to-Tail'' fashion while a central region forms intramolecular contacts. Then, using peptide arrays we mapped the region responsible for the prion transmission barrier between two different yeast species. We have also used optical tweezers to reveal that the non-covalent intermolecular contacts between monomers are unusually strong, and maintain fibril integrity even under forces that partially unfold individual monomers and extend fibril length. Based on the handful of known yeast prion proteins we predicted sequences that could be responsible for prion-like amyloid folding. Our screen identified 19 new candidate prions, whose protein-folding properties and diverse cellular functions we have characterized using a combination of genetic and biochemical techniques. Prion-driven phenotypic diversity increases under stress, and can be amplified by the dynamic maturation of prion-initiating states. These qualities allow prions to act as ``bet-hedging'' devices that facilitate the adaptation of yeast to stressful environments, and might speed the evolution of new traits. Together with Kandel and Si, we have also found that a regulatory protein that plays an important role in synaptic plasticity behaves as a prion in yeast. Cytoplasmic polyAdenylation element binding protein, CPEB, maintains synapses by promoting the local translation of mRNAs. We postulate that the self-perpetuating folding of the prion domain acts as a molecular memory. Thus yeast prions have provided evidence for the surprising possibility that amyloid protein folds can serve as the basis for memory and inheritance.

  15. Structure of the ?2-?2 loop and interspecies prion transmission

    PubMed Central

    Bett, Cyrus; Fernández-Borges, Natalia; Kurt, Timothy D.; Lucero, Melanie; Nilsson, K. Peter R.; Castilla, Joaquín; Sigurdson, Christina J.

    2012-01-01

    Prions are misfolded, aggregated conformers of the prion protein that can be transmitted between species. The precise determinants of interspecies transmission remain unclear, although structural similarity between the infectious prion and host prion protein is required for efficient conversion to the misfolded conformer. The ?2-?2 loop region of endogenous prion protein, PrPC, has been implicated in barriers to prion transmission. We recently discovered that conversion was efficient when incoming and host prion proteins had similar ?2-?2 loop structures; however, the roles of primary vs. secondary structural homology could not be distinguished. Here we uncouple the effect of primary and secondary structural homology of the ?2-?2 loop on prion conversion. We inoculated prions from animals having a disordered or an ordered ?2-?2 loop into mice having a disordered loop or an ordered loop due to a single residue substitution (D167S). We found that prion conversion was driven by a homologous primary structure and occurred independently of a homologous secondary structure. Similarly, cell-free conversion using PrPC from mice with disordered or ordered loops and prions from 5 species correlated with primary but not secondary structural homology of the loop. Thus, our findings support a model in which efficient interspecies prion conversion is determined by small stretches of the primary sequence rather than the secondary structure of PrP.—Bett, C., Fernández-Borges, N., Kurt, T. D., Lucero, M., Nilsson, K. P. R., Castilla, J., Sigurdson, C. J. Structure of the ?2-?2 loop and interspecies prion transmission. PMID:22490928

  16. Limited transcriptional response of ovine microglia to prion accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheep scrapie (Sc) is the classical transmissible spongiform encephalopathy (prion disease). The conversion of normal cellular prion protein (PrPC) to disease-associated prion protein (PrPSc) is the fundamental pathogenesis of prion diseases. Many of the molecular mechanisms contributing to prion ...

  17. Interaction between a recombinant prion protein and organo-mineral complexes as evidenced by CPMAS 13C-NMR

    NASA Astrophysics Data System (ADS)

    Russo, F.; Scotti, R.; Gianfreda, L.; Conte, P.; Rao, M. A.

    2009-04-01

    Prion proteins (PrP) are the main responsible for Transmissible Spongiform Encephalopathies (TSE). The TSE etiological agent is a misfolded form of the normal cellular prion protein. The amyloidal aggregates accumulated in the brain of infected animals and mainly composed of PrPSc exhibit resistance to protease attack and many conventional inactivating procedures. The prion protein diseases cause an environmental issue because the environment and in particular the soil compartment can be contaminated and then become a potential reservoir and diffuser of TSEs infectivity as a consequence of (i) accidental dispersion from storage plants of meat and bone meal, (ii) incorporation of contaminated material in fertilizers, (iii) possible natural contamination of pasture soils by grazing herds, and (v) burial of carcasses. The environmental problem can be even more relevant because very low amounts of PrPSc are able to propagate the disease. Several studies evidenced that infectious prion protein remains active in soils for years. Contaminated soils result, thus, a possible critical route of TSE transmission in wild animals. Soil can also protect prion protein toward degradation processes due to the presence of humic substances and inorganic components such as clays. Mineral and organic colloids and the more common association between clay minerals and humic substances can contribute to the adsorption/entrapment of molecules and macromolecules. The polymerization of organic monomeric humic precursors occurring in soil in the presence of oxidative enzymes or manganese and iron oxides, is considered one of the most important processes contributing to the formation of humic substances. The process is very fast and produces a population of polymeric products of different molecular structures, sizes, shapes and complexity. Other molecules and possibly biomacromolecules such as proteins may be involved. The aim of the present work was to study by CPMAS 13C-NMR the interactions between a non pathogenic ovine recombinant prion protein and a model soil system represented by a manganese oxide in the form of birnessite (?-MnO2), coated with a polymerized catechol. To better understand the effect of the polymerization process, PrP was added to the birnessite-cathecol system either before or after the polymerization processes. The NMR spectra of the prion protein interacting directly with birnessite revealed disappearance of the signals due to the paramagnetic nature of manganese oxide or abiotic degradation. Conversely, the signal pattern of the protein re-appeared as it is mixed to the soil-like system either during or after the catechol polymerization process. Results suggested that the possible interactions of the prion protein on soil systems can be mediated by natural organic matter. However, deeper studies on more complex real soil systems are needed to definitely confirm such hypothesis.

  18. Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrPc for the cytoskeleton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cellular prion protein (PrPC) is a highly conserved protein, which is anchored to the outer surface of the plasma membrane. Even though its physiological function has already been investigated in different cell or mouse models where PrPC expression is either up-regulated or depleted, its exact p...

  19. Molecular dynamics studies on the NMR structures of rabbit prion protein wild-type and mutants: surface electrostatic charge distributions

    E-print Network

    Zhang, Jiapu

    2014-01-01

    Prion is a misfolded protein found in mammals that causes infectious diseases of the nervous system in humans and animals. Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer, elk and humans etc. Recent studies have shown that rabbits have a low susceptibility to be infected by prion diseases with respect to other animals including humans. The present study employs molecular dynamics (MD) means to unravel the mechanism of rabbit prion proteins (RaPrPC) based on the recently available rabbit NMR structures (of the wild-type and its two mutants of two surface residues). The electrostatic charge distributions on the protein surface are the focus when analysing the MD trajectories. It is found that we can conclude that surface electrostatic charge distributions indeed contribute to the structural stability of wild-type RaPrPC; this may be useful for the medicinal treatment of prion diseases.

  20. Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding.

    PubMed

    Holmes, William M; Mannakee, Brian K; Gutenkunst, Ryan N; Serio, Tricia R

    2014-01-01

    Amino-terminal acetylation is among the most ubiquitous of protein modifications in eukaryotes. Although loss of N-terminal acetylation is associated with many abnormalities, the molecular basis of these effects is known for only a few cases, where acetylation of single factors has been linked to binding avidity or metabolic stability. In contrast, the impact of N-terminal acetylation for the majority of the proteome, and its combinatorial contributions to phenotypes, are unknown. Here, by studying the yeast prion [PSI(+)], an amyloid of the Sup35 protein, we show that loss of N-terminal acetylation promotes general protein misfolding, a redeployment of chaperones to these substrates, and a corresponding stress response. These proteostasis changes, combined with the decreased stability of unacetylated Sup35 amyloid, reduce the size of prion aggregates and reverse their phenotypic consequences. Thus, loss of N-terminal acetylation, and its previously unanticipated role in protein biogenesis, globally resculpts the proteome to create a unique phenotype. PMID:25023910

  1. Loss of N-terminal Acetylation Suppresses A Prion Phenotype By Modulating Global Protein Folding

    PubMed Central

    Holmes, William M.; Mannakee, Brian K.; Gutenkunst, Ryan N.; Serio, Tricia R.

    2014-01-01

    N-terminal acetylation is among the most ubiquitous of protein modifications in eukaryotes. While loss of N-terminal acetylation is associated with many abnormalities, the molecular basis of these effects is known for only a few cases, where acetylation of single factors has been linked to binding avidity or metabolic stability. In contrast, the impact of N-terminal acetylation for the majority of the proteome, and its combinatorial contributions to phenotypes, are unknown. Here, by studying the yeast prion [PSI+], an amyloid of the Sup35 protein, we show that loss of N-terminal acetylation promotes general protein misfolding, a redeployment of chaperones to these substrates, and a corresponding stress response. These proteostasis changes, combined with the decreased stability of unacetylated Sup35 amyloid, reduce the size of prion aggregates and reverse their phenotypic consequences. Thus, loss of N-terminal acetylation, and its previously unanticipated role in protein biogenesis, globally resculpts the proteome to create a unique phenotype. PMID:25023910

  2. Degradation of the disease-associated prion protein by a serine protease from lichens.

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  3. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  4. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  5. Degradation of the Disease-Associated Prion Protein by a Serine Protease from Lichens

    PubMed Central

    Johnson, Christopher J.; Bennett, James P.; Biro, Steven M.; Duque-Velasquez, Juan Camilo; Rodriguez, Cynthia M.; Bessen, Richard A.; Rocke, Tonie E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted. PMID:21589935

  6. Modulation of proteinase K-resistant prion protein in cells and infectious brain homogenate by redox iron: implications for prion replication and disease pathogenesis.

    PubMed

    Basu, Subhabrata; Mohan, Maradumane L; Luo, Xiu; Kundu, Bishwajit; Kong, Qingzhong; Singh, Neena

    2007-09-01

    The principal infectious and pathogenic agent in all prion disorders is a beta-sheet-rich isoform of the cellular prion protein (PrP(C)) termed PrP-scrapie (PrP(Sc)). Once initiated, PrP(Sc) is self-replicating and toxic to neuronal cells, but the underlying mechanisms remain unclear. In this report, we demonstrate that PrP(C) binds iron and transforms to a PrP(Sc)-like form (*PrP(Sc)) when human neuroblastoma cells are exposed to an inorganic source of redox iron. The *PrP(Sc) thus generated is itself redox active, and it induces the transformation of additional PrP(C), simulating *PrP(Sc) propagation in the absence of brain-derived PrP(Sc). Moreover, limited depletion of iron from prion disease-affected human and mouse brain homogenates and scrapie-infected mouse neuroblastoma cells results in 4- to 10-fold reduction in proteinase K (PK)-resistant PrP(Sc), implicating redox iron in the generation, propagation, and stability of PK-resistant PrP(Sc). Furthermore, we demonstrate increased redox-active ferrous iron levels in prion disease-affected brains, suggesting that accumulation of PrP(Sc) is modulated by the combined effect of imbalance in brain iron homeostasis and the redox-active nature of PrP(Sc). These data provide information on the mechanism of replication and toxicity by PrP(Sc), and they evoke predictable and therapeutically amenable ways of modulating PrP(Sc) load. PMID:17567949

  7. Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases

    PubMed Central

    2010-01-01

    Background Prion diseases are fatal neurodegenerative disorders that accompany an accumulation of the disease-associated form(s) of prion protein (PrPSc) in the central nervous system. The neuropathological changes in the brain begin with focal deposits of PrPSc, followed by pathomorphological abnormalities of axon terminal degeneration, synaptic loss, atrophy of dendritic trees, and eventual neuronal cell death in the lesions. However, the underlying molecular basis for these neuropathogenic abnormalities is not fully understood. Results In a proteomic analysis of soluble proteins in the brains of mice challenged intracerebrally with scrapie prion (Obihiro I strain), we found that the amount of the full-length form of collapsin response mediator protein-2 (CRMP-2; 61 kDa) decreased in the late stages of the disease, while the amount of its truncated form (56 kDa) increased to comparable levels observed for the full-length form. Detailed analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry showed that the 56-kDa form (named CRMP-2-?C) lacked the sequence from serine518 to the C-terminus, including the C-terminal phosphorylation sites important for the regulation of axonal growth and axon-dendrite specification in developing neurons. The invariable size of the mRNA transcript in Northern blot analysis suggested that the truncation was due to post-translational proteolysis. By overexpression of CRMP-2-?C in primary cultured neurons, we observed the augmentation of the development of neurite branch tips to the same levels as for CRMP-2T514A/T555A, a non-phosphorylated mimic of the full-length protein. This suggests that the increased level of CRMP-2-?C in the brain modulates the integrity of neurons, and may be involved in the pathogenesis of the neuronal abnormalities observed in the late stages of the disease. Conclusions We identified the presence of CRMP-2-?C in the brain of a murine model of prion disease. Of note, C-terminal truncations of CRMP-2 have been recently observed in models for neurodegenerative disorders such as ischemia, traumatic brain injury, and Wallerian degeneration. While the structural identity of CRMP-2-?C in those models remains unknown, the present study should provide clues to the molecular pathology of degenerating neurons in prion diseases in connection with other neurodegenerative disorders. PMID:20961402

  8. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    SciTech Connect

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  9. PrP Expression Level and Sensitivity to Prion Infection

    PubMed Central

    Douet, Jean-Yves; Lacroux, Caroline; Corbière, Fabien; Litaise, Claire; Simmons, Hugh; Lugan, Séverine; Costes, Pierrette; Cassard, Hervé; Weisbecker, Jean-Louis; Schelcher, François

    2014-01-01

    Mice overexpressing the prion protein (PrP) sequence from various host species are widely used for measuring infectious titers in prion disease. However, the impact that the transgene expression level might have on the susceptibility to infection raises some concerns about the final biological relevance of these models. Here we report that endpoint titration of a sheep scrapie isolate in sheep and in mice overexpressing the ovine PrP results in similar estimates of the infectious titer. PMID:24574409

  10. A Review on the Salt Bridge Between ASP177 and ARG163 of Wild-Type Rabbit Prion Protein

    E-print Network

    Zhang, Jiapu

    2014-01-01

    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer, elks, humans and mice etc., but rabbits have a low susceptibility to be infected by prion diseases with respect to other species. The stability of rabbit prion protein is due to its highly ordered beta2-alpha2 loop [PLoS One 5 (10) e13273 (2010); Journal of Biological Chemistry 285 (41) 31682-31693 (2010)] and a helix-capping motif within this loop [PLoS One 8 (5) e63047 (2013)]. The beta2-alpha2 loop has been a focus in prion studies. For this loop we found a salt bridge linkage ASP177-ARG163 (O-N) [Journal of Theoretical Biology 342 (7 February 2014) 70-82 (2014)]. Some scientists said on the 2FJ3.pdb NMR file of the rabbit prion protein, the distance of ASP177-ARG163 (O-N) gives the salt bridge of about 10 angstroms which is nearly null in terms of energy thus think our result is wrong. This opinion is clearly wrong simply due to the 3O7...

  11. Mechanism of neurotoxicity of prion and Alzheimer's disease-related proteins: molecular insights from bioinformatically identified ?-conotoxin-like pharmacophores.

    PubMed

    Bellacchio, Emanuele

    2013-01-01

    Prion diseases are fatal neurodegenerative disorders caused by altered forms of the prion protein (PrPC). It was reported that dysregulation of cellular Ca2+ homeostasis is recurrent in these diseases and that scrapie-infected cells exhibit Ca2+ perturbation via specific impairment of N-type calcium channels. However, it is not known whether such dysfunction is secondary to the broad neuronal damage accompanying prion diseases or whether it underlies pathological interactions of prions with calcium channels. In this research, we examined this latter possibility by searching for channel binding signatures in PrPC through structural comparison with known N-type channel blockers. To this aim, a computational method devised by us to recognize similar distributions of basic residues in protein structures enabled us to find that the bioactive groups representing the pharmacophores of ?-conotoxins GVIA and MVIIA can be overlaid onto similar residues within the PrPC globular domain. This finding, together with the knowledge that Ca2+ homeostasis disruption is common to other neurodegenerative disorders, led us to search for and identify an ?-conotoxin-like pharmacophore also in the Alzheimer's A?(1-42) peptide. These results point to the potential ability of prions and A?(1-42) to bind calcium channels as the elusive neurotoxic mechanism common to seemingly unrelated fatal neuropathies. PMID:24266850

  12. The prion protein constitutively controls neuronal store-operated Ca2+ entry through Fyn kinase

    PubMed Central

    De Mario, Agnese; Castellani, Angela; Peggion, Caterina; Massimino, Maria Lina; Lim, Dmitry; Hill, Andrew F.; Sorgato, M. Catia; Bertoli, Alessandro

    2015-01-01

    The prion protein (PrPC) is a cell surface glycoprotein mainly expressed in neurons, whose misfolded isoforms generate the prion responsible for incurable neurodegenerative disorders. Whereas PrPC involvement in prion propagation is well established, PrPC physiological function is still enigmatic despite suggestions that it could act in cell signal transduction by modulating phosphorylation cascades and Ca2+ homeostasis. Because PrPC binds neurotoxic protein aggregates with high-affinity, it has also been proposed that PrPC acts as receptor for amyloid-? (A?) oligomers associated with Alzheimer’s disease (AD), and that PrPC-A? binding mediates AD-related synaptic dysfunctions following activation of the tyrosine kinase Fyn. Here, use of gene-encoded Ca2+ probes targeting different cell domains in primary cerebellar granule neurons (CGN) expressing, or not, PrPC, allowed us to investigate whether PrPC regulates store-operated Ca2+ entry (SOCE) and the implication of Fyn in this control. Our findings show that PrPC attenuates SOCE, and Ca2+ accumulation in the cytosol and mitochondria, by constitutively restraining Fyn activation and tyrosine phosphorylation of STIM1, a key molecular component of SOCE. This data establishes the existence of a PrPC-Fyn-SOCE triad in neurons. We also demonstrate that treating cerebellar granule and cortical neurons with soluble A?(1–42) oligomers abrogates the control of PrPC over Fyn and SOCE, suggesting a PrPC-dependent mechanizm for A?-induced neuronal Ca2+ dyshomeostasis. PMID:26578881

  13. High affinity binding between copper and full-length prion protein identified by two different techniques.

    PubMed

    Thompsett, Andrew R; Abdelraheim, Salama R; Daniels, Maki; Brown, David R

    2005-12-30

    The cellular prion protein is known to be a copper-binding protein. Despite the wide range of studies on the copper binding of PrP, there have been no studies to determine the affinity of the protein on both full-length prion protein and under physiological conditions. We have used two techniques, isothermal titration calorimetry and competitive metal capture analysis, to determine the affinity of copper for wild type mouse PrP and a series of mutants. High affinity copper binding by wild type PrP has been confirmed by the independent techniques indicating the presence of specific tight copper binding sites up to femtomolar affinity. Altogether, four high affinity binding sites of between femto- and nanomolar affinities are located within the octameric repeat region of the protein at physiological pH. A fifth copper binding site of lower affinity than those of the octameric repeat region has been detected in full-length protein. Binding to this site is modulated by the histidine at residue 111. Removal of the octameric repeats leads to the enhancement of affinity of this fifth site and a second binding site outside of the repeat region undetected in the wild type protein. High affinity copper binding allows PrP to compete effectively for copper in the extracellular milieu. The copper binding affinities of PrP have been compared with those of proteins of known function and are of magnitudes compatible with an extracellular copper buffer or an enzymatic function such as superoxide dismutase like activity. PMID:16258172

  14. Nanoimaging for prion related diseases.

    PubMed

    Krasnoslobodtsev, Alexey V; Portillo, Alexander M; Deckert-Gaudig, Tanja; Deckert, Volker; Lyubchenko, Yuri L

    2010-01-01

    Misfolding and aggregation of prion proteins is linked to a number of neurodegenerative disorders such as Creutzfeldt-Jacob disease (CJD) and its variants: Kuru, Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia. In prion diseases, infectious particles are proteins that propagate by transmitting a misfolded state of a protein, leading to the formation of aggregates and ultimately to neurodegeneration. Prion phenomenon is not restricted to humans. There are a number of prion-related diseases in a variety of mammals, including bovine spongiform encephalopathy (BSE, also known as "mad cow disease") in cattle. All known prion diseases, collectively called transmissible spongiform encephalopathies (TSEs), are untreatable and fatal. Prion proteins were also found in some fungi where they are responsible for heritable traits. Prion proteins in fungi are easily accessible and provide a powerful model for understanding the general principles of prion phenomenon and molecular mechanisms of mammalian prion diseases. Presently, several fundamental questions related to prions remain unanswered. For example, it is not clear how prions cause the disease. Other unknowns include the nature and structure of infectious agent and how prions replicate. Generally, the phenomenon of misfolding of the prion protein into infectious conformations that have the ability to propagate their properties via aggregation is of significant interest. Despite the crucial importance of misfolding and aggregation, very little is currently known about the molecular mechanisms of these processes. While there is an apparent critical need to study molecular mechanisms underlying misfolding and aggregation, the detailed characterization of these single molecule processes is hindered by the limitation of conventional methods. Although some issues remain unresolved, much progress has been recently made primarily due to the application of nanoimaging tools. The use of nanoimaging methods shows great promise for understanding the molecular mechanisms of prion phenomenon, possibly leading toward early diagnosis and effective treatment of these devastating diseases. This review article summarizes recent reports which advanced our understanding of the prion phenomenon through the use of nanoimaging methods. PMID:20724837

  15. A novel expression system for production of soluble prion proteins in E. coli

    PubMed Central

    2012-01-01

    Expression of eukaryotic proteins in Escherichia coli is challenging, especially when they contain disulfide bonds. Since the discovery of the prion protein (PrP) and its role in transmissible spongiform encephalopathies, the need to obtain large quantities of the recombinant protein for research purposes has been essential. Currently, production of recombinant PrP is achieved by refolding protocols. Here, we show that the co-expression of two different PrP with the human Quiescin Sulfhydryl OXidase (QSOX), a human chaperone with thiol/disulfide oxidase activity, in the cytoplasm of E. coli produces soluble recombinant PrP. The structural integrity of the soluble PrP has been confirmed by nuclear magnetic resonance spectroscopy, demonstrating that properly folded PrP can be easily expressed in bacteria. Furthermore, the soluble recombinant PrP produced with this method can be used for functional and structural studies. PMID:22233534

  16. Prion protein-specific antibodies that detect multiple TSE agents with high sensitivity.

    PubMed

    McCutcheon, Sandra; Langeveld, Jan P M; Tan, Boon Chin; Gill, Andrew C; de Wolf, Christopher; Martin, Stuart; Gonzalez, Lorenzo; Alibhai, James; Blanco, A Richard Alejo; Campbell, Lauren; Hunter, Nora; Houston, E Fiona

    2014-01-01

    This paper describes the generation, characterisation and potential applications of a panel of novel anti-prion protein monoclonal antibodies (mAbs). The mAbs were generated by immunising PRNP null mice, using a variety of regimes, with a truncated form of recombinant ovine prion protein spanning residues 94-233. Epitopes of specific antibodies were mapped using solid-phase Pepscan analysis and clustered to four distinct regions within the PrP molecule. We have demonstrated the utility of these antibodies by use of Western blotting and immunohistochemistry in tissues from a range of different species affected by transmissible spongiform encephalopathy (TSE). In comparative tests against extensively-used and widely-published, commercially available antibodies, similar or improved results can be obtained using these new mAbs, specifically in terms of sensitivity of detection. Since many of these antibodies recognise native PrPC, they could also be applied to a broad range of immunoassays such as flow cytometry, DELFIA analysis or immunoprecipitation. We are using these reagents to increase our understanding of TSE pathogenesis and for use in potential diagnostic screening assays. PMID:24608105

  17. The cellular prion protein traps Alzheimer's A? in an oligomeric form and disassembles amyloid fibers

    PubMed Central

    Younan, Nadine D.; Sarell, Claire J.; Davies, Paul; Brown, David R.; Viles, John H.

    2013-01-01

    There is now strong evidence to show that the presence of the cellular prion protein (PrPC) mediates amyloid-? (A?) neurotoxicity in Alzheimer's disease (AD). Here, we probe the molecular details of the interaction between PrPC and A? and discover that substoichiometric amounts of PrPC, as little as 1/20, relative to A? will strongly inhibit amyloid fibril formation. This effect is specific to the unstructured N-terminal domain of PrPC. Electron microscopy indicates PrPC is able to trap A? in an oligomeric form. Unlike fibers, this oligomeric A? contains antiparallel ? sheet and binds to a oligomer specific conformational antibody. Our NMR studies show that a specific region of PrPC, notably residues 95–113, binds to A? oligomers, but only once A? misfolds. The ability of PrPC to trap and concentrate A? in an oligomeric form and disassemble mature fibers suggests a mechanism by which PrPC might confer A? toxicity in AD, as oligomers are thought to be the toxic form of A?. Identification of a specific recognition site on PrPC that traps A? in an oligomeric form is potentially a therapeutic target for the treatment of Alzheimer's disease.—Younan, N. D., Sarell, C. J., Davies, P., Brown, D. R., Viles, J. H. The cellular prion protein traps Alzheimer's A? in an oligomeric form and disassembles amyloid fibers. PMID:23335053

  18. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence

    SciTech Connect

    Coleman, Bradley M.; Nisbet, Rebecca M.; Han, Sen; Cappai, Roberto; Hatters, Danny M.; Hill, Andrew F.

    2009-03-13

    Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrP{sup C}) into a disease associated form (PrP{sup Sc}). Recombinant PrP can be refolded into either an {alpha}-helical rich conformation ({alpha}-PrP) resembling PrP{sup C} or a {beta}-sheet rich, protease resistant form similar to PrP{sup Sc}. Here, we generated tetracysteine tagged recombinant PrP, folded this into {alpha}- or {beta}-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished {beta}-PrP from {alpha}-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the {alpha}-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the {beta}-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrP{sup Sc} from PrP{sup C}. This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer's, Huntington's and Parkinson's diseases.

  19. The N-terminal, polybasic region is critical for prion protein neuroprotective activity.

    PubMed

    Turnbaugh, Jessie A; Westergard, Laura; Unterberger, Ursula; Biasini, Emiliano; Harris, David A

    2011-01-01

    Several lines of evidence suggest that the normal form of the prion protein, PrP(C), exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C) to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (?32-134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (?23-31, ?23-111, and ?23-134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although ?23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C) neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases. PMID:21980526

  20. ?-sheet-like formation during the mechanical unfolding of prion protein

    NASA Astrophysics Data System (ADS)

    Tao, Weiwei; Yoon, Gwonchan; Cao, Penghui; Eom, Kilho; Park, Harold S.

    2015-09-01

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrPC, whose misfolded form PrPSc can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded ?-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native ?-helical structure to the ?-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ?160-220.

  1. GFP-TAGGED MUTANT PRION PROTEIN FORMS INTRA-AXONAL AGGREGATES IN TRANSGENIC MICE

    PubMed Central

    Medrano, Andrea Z.; Barmada, Sami J.; Biasini, Emiliano; Harris, David A.

    2008-01-01

    A nine-octapeptide insertional mutation in the prion protein (PrP) causes a fatal neurodegenerative disorder in both humans and transgenic mice. To determine the precise cellular localization of this mutant PrP (designated PG14), we have generated transgenic mice expressing PG14-EGFP, a fluorescent fusion protein that can be directly visualized in vivo. Tg(PG14-EGFP) mice develop an ataxic neurological illness characterized by astrogliosis, PrP aggregation, and accumulation of a partially protease-resistant form of the mutant PrP. Strikingly, PG14-EGFP forms numerous fluorescent aggregates in the neuropil and white matter of multiple brain regions. These aggregates are particularly prominent along axonal tracts in both brain and peripheral nerve, and similar intracellular deposits are visible along the processes of cultured neurons. Our results reveal intra-axonal aggregates of a mutant PrP, which could contribute to the pathogenesis of familial prion disease by disrupting axonal transport. PMID:18514536

  2. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion

    PubMed Central

    Elmallah, Mohammed IY; Borgmeyer, Uwe; Betzel, Christian; Redecke, Lars

    2013-01-01

    Prion diseases comprise a group of fatal neurodegenerative disorders characterized by the autocatalytic conversion of the cellular prion protein PrPC into the infectious misfolded isoform PrPSc. Increasing evidence supports a specific role of oxidative stress in the onset of pathogenesis. Although the associated molecular mechanisms remain to be elucidated in detail, several studies currently suggest that methionine oxidation already detected in misfolded PrPSc destabilizes the native PrP fold as an early event in the conversion pathway. To obtain more insights about the specific impact of surface-exposed methionine residues on the oxidative-induced conversion of human PrP we designed, produced, and comparatively investigated two new pseudosulfoxidation mutants of human PrP 121–231 that comprises the well-folded C-terminal domain. Applying circular dichroism spectroscopy and dynamic light scattering techniques we showed that pseudosulfoxidation of all surface exposed Met residues formed a monomeric molten globule-like species with striking similarities to misfolding intermediates recently reported by other groups. However, individual pseudosulfoxidation at the polymorphic M129 site did not significantly contribute to the structural destabilization. Further metal-induced oxidation of the partly unfolded pseudosulfoxidation mutant resulted in the formation of an oligomeric state that shares a comparable size and stability with PrP oligomers detected after the application of different other triggers for structural conversion, indicating a generic misfolding pathway of PrP. The obtained results highlight the specific importance of methionine oxidation at surface exposed residues for PrP misfolding, strongly supporting the hypothesis that increased oxidative stress could be one causative event for sporadic prion diseases and other neurodegenerative disorders. PMID:24121542

  3. Comparison of the local structural stabilities of mammalian prion protein (PrP) by fragment molecular orbital calculations

    PubMed Central

    Hasegawa, Koji; Mohri, Shirou; Yokoyama, Takashi

    2013-01-01

    Bovine spongiform encephalopathy (BSE), a member of the prion diseases, is a fatal neurodegenerative disorder suspected to be caused by a malfunction of prion protein (PrP). Although BSE prions have been reported to be transmitted to a wide range of animal species, dogs and hamsters are known to be BSE-resistant animals. Analysis of canine and hamster PrP could elucidate the molecular mechanisms supporting the species barriers to BSE prion transmission. The structural stability of 6 mammalian PrPs, including human, cattle, mouse, hamster, dog and cat, was analyzed. We then evaluated intramolecular interactions in PrP by fragment molecular orbital (FMO) calculations. Despite similar backbone structures, the PrP side-chain orientations differed among the animal species examined. The pair interaction energies between secondary structural elements in the PrPs varied considerably, indicating that the local structural stabilities of PrP varied among the different animal species. Principal component analysis (PCA) demonstrated that different local structural stability exists in bovine PrP compared with the PrP of other animal species examined. The results of the present study suggest that differences in local structural stabilities between canine and bovine PrP link diversity in susceptibility to BSE prion infection. PMID:23232497

  4. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure.

    PubMed

    Kim, Soochan; Han, Sinsuk; Lee, Ye Eun; Jung, Woong-Jae; Lee, Hyung Soo; Kim, Yong-Sun; Choi, Eun-Kyoung; Kim, Mi-Yeon

    2016-01-01

    The cellular prion protein is expressed in almost all tissues, including the central nervous system and lymphoid tissues. To investigate the effects of the prion protein in lymphoid cells and spleen structure formation, we used prion protein-deficient (Prnp(0/0)) Zürich I mice generated by inactivation of the Prnp gene. Prnp(0/0) mice had decreased lymphocytes, in particular, CD4 T cells and lymphoid tissue inducer (LTi) cells. Decreased CD4 T cells resulted from impaired expression of CCL19 and CCL21 in the spleen rather than altered chemokine receptor CCR7 expression. Importantly, some of the white pulp regions in spleens from Prnp(0/0) mice displayed impaired T zone structure as a result of decreased LTi cell numbers and altered expression of the lymphoid tissue-organizing genes lymphotoxin-? and CXCR5, although expression of the lymphatic marker podoplanin and CXCL13 by stromal cells was not affected. In addition, CD3(-)CD4(+)IL-7R?(+) LTi cells were rarely detected in impaired white pulp in spleens of these mice. These data suggest that the prion protein is required to form the splenic white pulp structure and for development of normal levels of CD4 T and LTi cells. PMID:26299705

  5. Prion Protein is Expressed on Long-term Repopulating Hematopoietic Stem Cells and is Necessary for their Self-renewal

    E-print Network

    Lodish, Harvey F.

    We show that the prion protein (PrP) is expressed on the surface of bone marrow cell populations enriched in long-term repopulating hematopoietic stem cells. Affinity purification of the PrP-positive and PrP-negative ...

  6. CHRONIC WASTING DISEASE OF ELK AND DEER AND CREUTZFELDT-JAKOB DISEASE: COMPARATIVE ANALYSIS OF THE SCRAPIE PRION PROTEIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transmissible spongiform encephalopathies or prion diseases are a heterogeneous group of disorders associated with, and possibly caused by, accumulation of a neurotoxic, misfolded isoform, termed PrP-d, of a normal cellular protein, PrP-c. Primary amino acid differences and secondary conformati...

  7. Modelling human prion replication in cell-free systems 

    E-print Network

    Barria Matus, Marcelo Alejandro

    2014-11-28

    One of the key molecular events in the transmissible spongiform encephalopathies or prion diseases is the conformational conversion of the cellular prion protein PrPC into the misfolded and pathogenic isoform, PrPSc. Prion ...

  8. Novel epitopes identified by Anti-PrP monoclonal antibodies produced following immunization of Prnp0/0 Balb/cJ mice with purified scrapie prions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions, or infectious proteins, cause a class of uniformly fatal neurodegenerative diseases. Prions are composed solely of an aberrantly folded isoform(PrPSc)of a normal cellular protein (PrPC). Shared sequence identity of PrPSc with PrPC has limited the detection sensitivity of immunochemical assay...

  9. Proteomic consequences of expression and pathological conversion of the prion protein in inducible neuroblastoma N2a cells

    PubMed Central

    Pastore, Manuela; Casanova, Danielle; Belondrade, Maxime; Alais, Sandrine; Leblanc, Pascal; Windl, Otto

    2010-01-01

    Neurodegenerative diseases are often associated with misfolding and deposition of specific proteins in the nervous system. The prion protein, which is associated with transmissible spongiform encephalopathies (TSEs), is one of them. The normal function of the cellular form of the prion protein (PrPC) is mediated through specific signal transduction pathways and is linked to resistance to oxidative stress, neuronal outgrowth and cell survival. In TSEs, PrPC is converted into an abnormally folded isoform, called PrPSc, that may impair the normal function of the protein and/or generate toxic aggregates. To investigate these molecular events we performed a two-dimensional gel electrophoresis comparison of neuroblastoma N2a cells expressing different amounts of PrPC and eventually infected with the 22L prion strain. Mass spectrometry and peptide mass fingerprint analysis identified a series of proteins with modified expression. They included the chaperones Grp78/BiP, protein disulfide-isomerase A6, Grp75 and Hsp60 which had an opposite expression upon PrPC expression and PrPSc production. The detection of these proteins was coherent with the idea that protein misfolding plays an important role in TSEs. Other proteins, such as calreticulin, tubulin, vimentin or the laminin receptor had their expression modified in infected cells, which was reminiscent of previous results. Altogether our data provide molecular information linking PrP expression and misfolding, which could be the basis of further therapeutic and pathophysiological research in this field. PMID:20930564

  10. Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse

    PubMed Central

    2010-01-01

    Background The physiological function of the prion protein remains largely elusive while its key role in prion infection has been expansively documented. To potentially assess this conundrum, we performed a comparative transcriptomic analysis of the brain of wild-type mice with that of transgenic mice invalidated at this locus either at the zygotic or at the adult stages. Results Only subtle transcriptomic differences resulting from the Prnp knockout could be evidenced, beside Prnp itself, in the analyzed adult brains following microarray analysis of 24 109 mouse genes and QPCR assessment of some of the putatively marginally modulated loci. When performed at the adult stage, neuronal Prnp disruption appeared to sequentially induce a response to an oxidative stress and a remodeling of the nervous system. However, these events involved only a limited number of genes, expression levels of which were only slightly modified and not always confirmed by RT-qPCR. If not, the qPCR obtained data suggested even less pronounced differences. Conclusions These results suggest that the physiological function of PrP is redundant at the adult stage or important for only a small subset of the brain cell population under classical breeding conditions. Following its early reported embryonic developmental regulation, this lack of response could also imply that PrP has a more detrimental role during mouse embryogenesis and that potential transient compensatory mechanisms have to be searched for at the time this locus becomes transcriptionally activated. PMID:20649983

  11. Free Energy and Hidden Barriers of the ?-Sheet Structure of Prion Protein.

    PubMed

    Paz, S Alexis; Abrams, Cameron F

    2015-10-13

    On-the-fly free-energy parametrization is a new collective variable biasing approach akin to metadynamics with one important distinction: rather than acquiring an accelerated distribution via a history-dependent bias potential, sampling on this distribution is achieved from the beginning of the simulation using temperature-accelerated molecular dynamics. In the present work, we compare the performance of both approaches to compute the free-energy profile along a scalar collective variable measuring the H-bond registry of the ?-sheet structure of the mouse Prion protein. Both methods agree on the location of the free-energy minimum, but free-energy profiles from well-tempered metadynamics are subject to a much higher degree of statistical noise due to hidden barriers. The sensitivity of metadynamics to hidden barriers is shown to be a consequence of the history dependence of the bias potential, and we detail the nature of these barriers for the prion ?-sheet. In contrast, on-the-fly parametrization is much less sensitive to these barriers and thus displays improved convergence behavior relative to that of metadynamics. While hidden barriers are a frequent and central issue in free-energy methods, on-the-fly free-energy parametrization appears to be a robust and preferable method to confront this issue. PMID:26574287

  12. Mutant prion protein D202N associated with familial prion disease is retained in the endoplasmic reticulum and forms 'curly' intracellular aggregates.

    PubMed

    Gu, Yaping; Verghese, Susamma; Bose, Sharmila; Mohan, Maradumane; Singh, Neena

    2007-01-01

    Transmissible Spongiform Encephalopathies are fatal neurodegenerative disorders of humans and animals that are familial, sporadic, and infectious in nature. Familial disorders of humans include Gerstmann-Straussler-Scheinker disease (GSS), familial Creutzfeldt-Jakob disease (CJD), and fatal familial insomnia, and result from point mutations in the prion protein gene. Although neurotoxicity in familial cases is believed to result from a spontaneous change in conformation of mutant prion protein (PrP) to the pathogenic PrP-scrapie (PrPSc) form, emerging evidence indicates otherwise. We have investigated the processing and metabolism of mutant PrP D202N (PrP202N) in cell models to elucidate possible mechanisms of cytotoxicity. In this report, we demonstrate that PrP202N expressed in human neuroblastoma cells fails to achieve a mature conformation following synthesis and accumulates in the endoplasmic reticulum as 'curly' aggregates. In addition, PrP202N cells show increased sensitivity to free radicals, indicating that neuronal susceptibility to oxidative damage may account for the neurotoxicity observed in cases of GSS resulting from PrP D202N mutation. PMID:17873292

  13. Is the presence of abnormal prion protein in the renal glomeruli of feline species presenting with FSE authentic?

    PubMed

    Lezmi, Stéphane; Baron, Thierry G M; Bencsik, Anna A

    2010-01-01

    In a recent paper written by Hilbe et al (BMC vet res, 2009), the nature and specificity of the prion protein deposition in the kidney of feline species affected with feline spongiform encephalopathy (FSE) were clearly considered doubtful. This article was brought to our attention because we published several years ago an immunodetection of abnormal prion protein in the kidney of a cheetah affected with FSE. At this time we were convinced of its specificity but without having all the possibilities to demonstrate it. As previously published by another group, the presence of abnormal prion protein in some renal glomeruli in domestic cats affected with FSE is indeed generally considered as doubtful mainly because of low intensity detected in this organ and because control kidneys from safe animals present also a weak prion immunolabelling. Here we come back on these studies and thought it would be helpful to relay our last data to the readers of BMC Vet res for future reference on this subject.Here we come back on our material as it is possible to study and demonstrate the specificity of prion immunodetection using the PET-Blot method (Paraffin Embedded Tissue--Blot). It is admitted that this method allows detecting the Proteinase K (PK) resistant form of the abnormal prion protein (PrPres) without any confusion with unspecific immunoreaction. We re-analysed the kidney tissue versus adrenal gland and brain samples from the same cheetah affected with TSE using this PET-Blot method. The PET-Blot analysis revealed specific PrPres detection within the brain, adrenal gland and some glomeruli of the kidney, with a complete identicalness compared to our previous detection using immunohistochemistry. In conclusion, these new data enable us to confirm with assurance the presence of specific abnormal prion protein in the adrenal gland and in the kidney of the cheetah affected with FSE. It also emphasizes the usefulness for the re-examination of any available tissue blocks with the PET-Blot method as a sensitive complementary tool in case of doubtful PrP IHC results. PMID:20684771

  14. The Protein-disulfide Isomerase ERp57 Regulates the Steady-state Levels of the Prion Protein.

    PubMed

    Torres, Mauricio; Medinas, Danilo B; Matamala, José Manuel; Woehlbier, Ute; Cornejo, Víctor Hugo; Solda, Tatiana; Andreu, Catherine; Rozas, Pablo; Matus, Soledad; Muñoz, Natalia; Vergara, Carmen; Cartier, Luis; Soto, Claudio; Molinari, Maurizio; Hetz, Claudio

    2015-09-25

    Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease. PMID:26170458

  15. NMR solution structure of the human prion protein Ralph Zahn, Aizhuo Liu*, Thorsten Lu hrs, Roland Riek, Christine von Schroetter, Francisco Lo pez Garcia, Martin Billeter

    E-print Network

    Wider, Gerhard

    -Stra¨ussler- Scheinker syndrome, and kuru, and there is bovine spongiform encephalopathy in cattle and scrapie in sheep. Prion proteins (PrP) are associated with transmissible spon- giform encephalopathies (TSE), which

  16. Both Met(109) and Met(112) are Utilized for Cu(II) Coordination to the Amyloidogenic Fragment of the Human Prion Protein

    SciTech Connect

    Shearer, J.; Soh, P; Lentz, S

    2008-01-01

    The prion protein is a ubiquitous neuronal membrane protein. Misfolding of the prion protein has been implicated in transmissible spongiform encephalopathies (prion diseases). It has been demonstrated that the human prion protein (PrP) is capable of coordinating at least five Cu{sup II} ions under physiological conditions; four copper binding sites can be found in the octarepeat domain between residues 61 and 91, while another copper binding site can be found in the unstructured 'amyloidogenic' domain between residues 91 and 126 PrP(91-126). Herein we expand upon a previous study (J. Shearer, P. Soh, Inorg. Chem. 46 (2007) 710-719) where we demonstrated that the physiologically relevant high affinity Cu{sup II} coordination site within PrP(91-126) is found between residues 106 and 114. It was shown that Cu{sup II} is contained within a square planar (N/O){sub 3}S coordination environment with one His imidazole ligand (H(111)) and one Met thioether ligand (either M(109) or M(112)). The identity of the Met thioether ligand was not identified in that study. In this study we perform a detailed investigation of the Cu{sup II} coordination environment within the PrP fragment containing residues 106-114 (PrP(106-114)) involving optical, X-ray absorption, EPR, and fluorescence spectroscopies in conjunction with electronic structure calculations. By using derivatives of PrP(106-114) with systematic Met {yields} Ile 'mutations' we show that the Cu{sup II} coordination environment within PrP(106-114) is actually comprised of a mixture of two major species; one CuII(N/O){sub 3}S center with the M(109) thioether coordinated to Cu{sup II} and another Cu{sup II}(N/O){sub 3}S center with the M(112) thioether coordinated to Cu{sup II}. Furthermore, deletion of one or more Met residues from the primary sequence of PrP(106-114) both reduces the Cu{sup II} affinity of the peptide by two to seven fold, and renders the resulting Cu{sup II} metallopeptides redox inactive. The biological implications of these findings are discussed.

  17. Identification of a Compound That Disrupts Binding of Amyloid-? to the Prion Protein Using a Novel Fluorescence-based Assay*

    PubMed Central

    Risse, Emmanuel; Nicoll, Andrew J.; Taylor, William A.; Wright, Daniel; Badoni, Mayank; Yang, Xiaofan; Farrow, Mark A.; Collinge, John

    2015-01-01

    The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrPC) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrPC may act as a receptor for synaptotoxic oligomeric forms of amyloid-? (A?). There has been considerable interest in identification of compounds that bind to PrPC, stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrPC could also inhibit the binding of toxic A? species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of A? oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both A? binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting A? binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit A? binding and reduce prion levels was established in cell-based assays. PMID:25995455

  18. Identification of a Compound That Disrupts Binding of Amyloid-? to the Prion Protein Using a Novel Fluorescence-based Assay.

    PubMed

    Risse, Emmanuel; Nicoll, Andrew J; Taylor, William A; Wright, Daniel; Badoni, Mayank; Yang, Xiaofan; Farrow, Mark A; Collinge, John

    2015-07-01

    The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrP(C)) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrP(C) may act as a receptor for synaptotoxic oligomeric forms of amyloid-? (A?). There has been considerable interest in identification of compounds that bind to PrP(C), stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrP(C) could also inhibit the binding of toxic A? species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of A? oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both A? binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting A? binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit A? binding and reduce prion levels was established in cell-based assays. PMID:25995455

  19. Variant-specific prion interactions

    PubMed Central

    Sharma, Jaya; Liebman, Susan W

    2013-01-01

    Prions are protein conformations that “self-seed” the misfolding of their non-prion iso-forms into prion, often amyloid, conformations. The most famous prion is the mammalian PrP protein that in its prion form causes transmissible spongiform encephalopathy. Curiously there can be distinct conformational differences even between prions of the same protein propagated in the same host species. These are called prion strains or variants. For example, different PrP variants are faithfully transmitted during self-seeding and are associated with distinct disease characteristics. Variant-specific PrP prion differences include the length of the incubation period before the disease appears and the deposition of prion aggregates in distinct regions of the brain.1 Other more common neurodegenerative diseases (e.g., Alzheimer disease, Parkinson disease, type 2 diabetes and ALS) are likewise caused by the misfolding of a normal protein into a self-seeding aggregate.2-4 One of the most important unanswered questions is how the first prion-like seed arises de novo, resulting in the pathological cascade. PMID:24475372

  20. Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment.

    PubMed Central

    Pérez, M; Wandosell, F; Colaço, C; Avila, J

    1998-01-01

    Although a number of features distinguish the disease isoform of the prion protein (PrPSc) from its normal cellular counterpart (PrPC) in the transmissible spongiform encephalopathies (TSEs), the neuropathogenesis of these diseases remains an enigma. The amyloid fibrils formed by fragments of human PrP have, however, been shown to be directly neurotoxic in vitro. We show here that sulphated polysaccharides (heparin, keratan and chondroitin) inhibit the neurotoxicity of these amyloid fibrils and this appears to be mediated via inhibition of the polymerization of the PrP peptide into fibrils. This provides a rationale for the therapeutic effects of sulphated polysaccharides and suggests a rapid in vitro functional screen for TSE therapeutics. PMID:9761736

  1. Induced Prion Protein Controls Immune-Activated Retroviruses in the Mouse Spleen

    PubMed Central

    Lötscher, Marius; Recher, Mike; Lang, Karl S.; Navarini, Alexander; Hunziker, Lukas; Santimaria, Roger; Glatzel, Markus; Schwarz, Petra; Böni, Jürg; Zinkernagel, Rolf M.

    2007-01-01

    The prion protein (PrP) is crucially involved in transmissible spongiform encephalopathies (TSE), but neither its exact role in disease nor its physiological function are known. Here we show for mice, using histological, immunochemical and PCR-based methods, that stimulation of innate resistance was followed by appearance of numerous endogenous retroviruses and ensuing PrP up-regulation in germinal centers of the spleen. Subsequently, the activated retroviruses disappeared in a PrP-dependent manner. Our results reveal the regular involvement of endogenous retroviruses in murine immune responses and provide evidence for an essential function of PrP in the control of the retroviral activity. The interaction between PrP and ubiquitous endogenous retroviruses may allow new interpretations of TSE pathophysiology and explain the evolutionary conservation of PrP. PMID:17987132

  2. BSE-associated polymorphisms in the prion protein gene: an investigation.

    PubMed

    Vernerova, K; Tothova, L; Mikova, A; Vodrazka, P; Simek, B; Hanusova, L; Citek, J

    2014-10-01

    The aim of this study was to determine the frequency of the 12-bp and 23-bp indel polymorphisms in the prion protein gene (PRNP) in cattle and to investigate the association between these frequencies and the occurrence of bovine spongiform encephalopathy (BSE). There was no significant difference in the 12-bp indel frequency between the BSE animals and control group. For the 23-bp indel, the BSE animals had a significantly lower + + (insins) genotype frequency and + allele frequency compared with the control animals. The - - / - - genotype frequency in the BSE animals was not significantly higher when compared with the control animals. One - allele increased the risk of BSE by a factor of 1.55 (i.e. by 55%) for the 12-bp indel and by a factor of 2.10 for the 23-bp indel. When both indels are considered, one - allele increased the risk of BSE by a factor of 1.54. PMID:24720684

  3. Early Intermediate in Human Prion Protein Folding As Evidenced by Ultrarapid Mixing Experiments

    E-print Network

    Roder, Heinrich

    disorders that include scrapie in sheep, bovine spongiform encephalopathy in cattle, chronic wasting disease Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative

  4. Assessing the Role of Oxidized Methionine at Position 213 in the Formation of Prions in Hamsters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are infectious proteins that are able to recruit a normal cellular prion protein and convert it into a prion. The mechanism of this conversion is unknown. Detailed mass spectrometric analysis of the normal cellular prion protein and a corresponding prion has shown they possess identical post-...

  5. Establishing homologies in protein sequences

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.

    1983-01-01

    Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.

  6. The [URE3] Prion in Candida

    PubMed Central

    Edskes, Herman K.

    2013-01-01

    Ure2p, normally a regulator of nitrogen catabolism in Saccharomyces cerevisiae, can be a prion (infectious protein) by forming a folded in-register parallel amyloid called [URE3]. Using S. cerevisiae as a test bed, we previously showed that Ure2p of Candida albicans (CaUre2p) can also form a prion, but that Ure2p of C. glabrata (CgUre2p) cannot. Here, we constructed C. glabrata strains to test whether CgUre2p can form a prion in its native environment. We find that while CaUre2p can form a [URE3] in C. glabrata, CgUre2p cannot, although the latter has a prion domain sequence more similar to that of ScUre2p than that of CaUre2p. This supports the notion that prion formation is not a conserved property of Ure2p but is a pathology arising sporadically. We find that some [URE3albicans] variants are restricted in their transmissibility to certain recipient strains. In addition, we show that the C. glabrata HO can induce switching of the C. glabrata mating type locus. PMID:23397567

  7. Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein.

    PubMed

    Cavaliere, Paola; Torrent, Joan; Prigent, Stephanie; Granata, Vincenzo; Pauwels, Kris; Pastore, Annalisa; Rezaei, Human; Zagari, Adriana

    2013-01-01

    Neurodegenerative protein misfolding diseases, including prionopathies, share the common feature of accumulating specific misfolded proteins, with a molecular mechanism closely related. Misfolded prion protein (PrP) generates soluble oligomers that, in turn, aggregate into amyloid fibers. Preventing the formation of these entities, crucially associated with the neurotoxic and/or infectious properties of the resulting abnormal PrP, represents an attractive therapeutic strategy to ameliorate prionopathies. We focused our attention into methylene blue (MB), a well-characterized drug, which is under study against Alzheimer's disease and other neurodegenerative disorders. Here, we have undertaken an in vitro study on the effects of MB on oligomerization and fibrillization of human, ovine and murine PrP. We demonstrated that MB affects the kinetics of PrP oligomerization and reduces the amount of oligomer of about 30%, in a pH-dependent manner, by using SLS and DSC methodologies. Moreover, TEM images showed that MB completely suppresses fiber formation at a PrP:MB molar ratio of 1:2. Finally, NMR revealed a direct interaction between PrP and MB, which was mapped on a surface cleft including a fibrillogenic region of the protein. Our results allowed to surmise a mechanism of action in which the MB binding to PrP surface markedly interferes with the pathway towards oligomers and fibres. Therefore MB could be considered as a general anti-aggregation compound, acting against proteinopathies. PMID:23022479

  8. Zebrafish Prion Protein PrP2 Controls Collective Migration Process during Lateral Line Sensory System Development

    PubMed Central

    Huc-Brandt, Sylvaine; Hieu, Nelson; Imberdis, Thibaut; Cubedo, Nicolas; Silhol, Michelle; Leighton, Patricia L. A.; Domaschke, Thomas; Allison, W. Ted; Perrier, Véronique; Rossel, Mireille

    2014-01-01

    Prion protein is involved in severe neurodegenerative disorders but its physiological role is still in debate due to an absence of major developmental defects in knockout mice. Previous reports in zebrafish indicate that the two prion genes, PrP1 and PrP2, are both involved in several steps of embryonic development thus providing a unique route to discover prion protein function. Here we investigate the role of PrP2 during development of a mechano-sensory system, the posterior lateral line, using morpholino knockdown and PrP2 targeted inactivation. We confirm the efficiency of the translation blocking morpholino at the protein level. Development of the posterior lateral line is altered in PrP2 morphants, including nerve axonal outgrowth and primordium migration defects. Reduced neuromast deposition was observed in PrP2 morphants as well as in PrP2?/? mutants. Rosette formation defects were observed in PrP2 morphants, strongly suggesting an abnormal primordium organization and reflecting loss of cell cohesion during migration of the primordium. In addition, the adherens junction proteins, E-cadherin and ß-catenin, were mis-localized after reduction of PrP2 expression and thus contribute to the primordium disorganization. Consequently, hair cell differentiation and number were affected and this resulted in reduced functional neuromasts. At later developmental stages, myelination of the posterior lateral line nerve was altered. Altogether, our study reports an essential role of PrP2 in collective migration process of the primordium and in neuromast formation, further implicating a role for prion protein in cell adhesion. PMID:25436888

  9. Mass Spectrometric Approaches to Detecting and Quantifying Prions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are infectious proteins that replicate by converting a normal cellular protein (PrPC)into a prion. Although prions and PrPC are isoforms, they have dramatically different physicochemical properties. Prions are resistant to proteinase K (PK) degradation, while PrPC is completely degraded by PK...

  10. Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding

    PubMed Central

    Le Brun, Anton P.; Haigh, Cathryn L.; Drew, Simon C.; James, Michael; Boland, Martin P.; Collins, Steven J.

    2014-01-01

    The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and ?-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions. PMID:25418300

  11. Molecular dynamics study of the dominant-negative E219K polymorphism in human prion protein.

    PubMed

    Jahandideh, Samad; Jamalan, Mostafa; Faridounnia, Maryam

    2015-01-01

    Human prion diseases are associated with misfolding or aggregation of the Human Prion Protein (HuPrP). Missense mutations in the HuPrP gene, contribute to conversion of HuPrP(C) to HuPrP(Sc) and amyloid formation. Based on our previous comprehensive study, three missense mutations, from two different functional groups, i.e. disease-related mutations, and protective mutations, were selected and extensive molecular dynamics simulations were performed on these three mutants to compare their dynamics and conformations with those of the wildtype HuPrP. In addition to simulations of monomeric forms of mutants, in order to study the dominant-negative effect of protective mutation (E219K), 30-ns simulations were performed on E219K-wildtype and wildtype-wildtype dimeric forms. Our results indicate that, although after 30-ns simulations the global three-dimensional structure of models remain fairly intact, the disease-related mutations (V210I and Q212P) introduce local structural changes, i.e. close contact changes and secondary structure changes, in addition to global flexibility changes. Furthermore, our results support the loss of hydrophobic interaction due to the mutations in hydrophobic core that has been reported by previous NMR and computational studies. On the other hand, this protective mutation (E219K) results in helix elongation, and significant increases of overall flexibility of E219K mutant during 30-ns simulation. In conclusion, the simulations of dimeric forms suggest that the dominant-negative effect of this protective mutation (E219K) is due to the incompatible structures and dynamics of allelic variants during conversion process. PMID:25027605

  12. Adaptation and Selection of Prion Protein Strain Conformations following Interspecies Transmission of Transmissible Mink Encephalopathy

    PubMed Central

    Bartz, Jason C.; Bessen, Richard A.; McKenzie, Debbie; Marsh, Richard F.; Aiken, Judd M.

    2000-01-01

    Interspecies transmission of the transmissible spongiform encephalopathies (TSEs), or prion diseases, can result in the adaptation and selection of TSE strains with an expanded host range and increased virulence such as in the case of bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease. To investigate TSE strain adaptation, we serially passaged a biological clone of transmissible mink encephalopathy (TME) into Syrian golden hamsters and examined the selection of distinct strain phenotypes and conformations of the disease-specific isoform of the prion protein (PrPSc). The long-incubation-period drowsy (DY) TME strain was the predominate strain, based on the presence of its strain-specific PrPSc following interspecies passage. Additional serial passages in hamsters resulted in the selection of the hyper (HY) TME PrPSc strain-dependent conformation and its short incubation period phenotype unless the passages were performed with a low-dose inoculum (e.g., 10?5 dilution), in which case the DY TME clinical phenotype continued to predominate. For both TME strains, the PrPSc strain pattern preceded stabilization of the TME strain phenotype. These findings demonstrate that interspecies transmission of a single cloned TSE strain resulted in adaptation of at least two strain-associated PrPSc conformations that underwent selection until one type of PrPSc conformation and strain phenotype became predominant. To examine TME strain selection in the absence of host adaptation, hamsters were coinfected with hamster-adapted HY and DY TME. DY TME was able to interfere with the selection of the short-incubation HY TME phenotype. Coinfection could result in the DY TME phenotype and PrPSc conformation on first passage, but on subsequent passages, the disease pattern converted to HY TME. These findings indicate that during TSE strain adaptation, there is selection of a strain-specific PrPSc conformation that can determine the TSE strain phenotype. PMID:10823860

  13. Creutzfeldt-Jakob Disease (CJD) with a Mutation at Codon 148 of Prion Protein Gene

    PubMed Central

    Pastore, Manuela; Chin, Steven S.; Bell, Karen L.; Dong, Zhiqian; Yang, Qiwei; Yang, Lizhu; Yuan, Jue; Chen, Shu G.; Gambetti, Pierluigi; Zou, Wen-Quan

    2005-01-01

    Creutzfeldt-Jakob disease (CJD), the most common human prion disease, includes sporadic (s) and familial (f) forms. Regardless of etiology, both forms are thought to share the pathogenic mechanism whereby the cellular prion protein (PrPC) converts into its pathogenic isoform (PrPSc). While PrPC conversion is thought to be random in sCJD, conversion in fCJD is facilitated by the congenital presence of mutated PrP. Differences in PrP genotype (PRNP) and in conversion circumstances lead to PrPSc with distinct characteristics that elicit different disease phenotypes. Here, we describe a case of fCJD with a substitution of histidine (H) for arginine (R) at codon 148 (R148H) and heterozygosity of the methionine/valine (M/V) polymorphic codon 129, with the 129M allele coupled with the mutation. The disease phenotype and all major characteristics of PrPSc of fCJDR148H were virtually indistinguishable from those of sCJDMV2, which has features different from those of any other sCJD. Therefore, despite the differences in etiology, PRNP, and conversion process, the two forms of PrPSc had similar characteristics. Furthermore, comparison of fCJDR148H with a recently reported case carrying R148H and homozygosity at codon 129 suggests that codon 129 coupled with the mutation as well as that located on the normal allele can modify major phenotypic and PrPSc features of fCJDR148H. PMID:16314483

  14. Biochemical typing of pathological prion protein in aging cattle with BSE

    PubMed Central

    Tester, Seraina; Juillerat, Valerie; Doherr, Marcus G; Haase, Bianca; Polak, Miroslaw; Ehrensperger, Felix; Leeb, Tosso; Zurbriggen, Andreas; Seuberlich, Torsten

    2009-01-01

    Background The broad enforcement of active surveillance for bovine spongiform encephalopathy (BSE) in 2000 led to the discovery of previously unnoticed, atypical BSE phenotypes in aged cattle that differed from classical BSE (C-type) in biochemical properties of the pathological prion protein. Depending on the molecular mass and the degree of glycosylation of its proteinase K resistant core fragment (PrPres), mainly determined in samples derived from the medulla oblongata, these atypical cases are currently classified into low (L)-type or high (H)-type BSE. In the present study we address the question to what extent such atypical BSE cases are part of the BSE epidemic in Switzerland. Results To this end we analyzed the biochemical PrPres type by Western blot in a total of 33 BSE cases in cattle with a minimum age of eight years, targeting up to ten different brain regions. Our work confirmed H-type BSE in a zebu but classified all other cases as C-type BSE; indicating a very low incidence of H- and L-type BSE in Switzerland. It was documented for the first time that the biochemical PrPres type was consistent across different brain regions of aging animals with C-type and H-type BSE, i.e. independent of the neuroanatomical structure investigated. Conclusion Taken together this study provides further characteristics of the BSE epidemic in Switzerland and generates new baseline data for the definition of C- and H-type BSE phenotypes, thereby underpinning the notion that they indeed represent distinct prion disease entities. PMID:19470160

  15. A solid-phase immunoassay of protease-resistant prion protein with filtration blotting involving sodium dodecyl sulfate.

    PubMed

    Kobayashi, Yoshiteru; Kohno, Naoyuki; Wanibe, Shoko; Hirayasu, Kazunari; Uemori, Hitoshi; Tagawa, Yuichi; Yokoyama, Takashi; Shinagawa, Morikazu

    2006-02-15

    The precise diagnosis for bovine spongiform encephalopathy (BSE) is crucial for preventing new transmission to humans. Several testing procedures are reported for determining protease-resistant prion protein in various tissues as a major hallmark of prion diseases such as BSE, scrapie, and Creutzfeldt-Jakob disease. However, contamination of materials from tissues or degradation of the specimens sometimes disturbs the accuracy of the assay. Here, we have developed a novel method for solid-phase immunoassay of the disease-specific conformational isoform, PrP(Sc), using filtration blotting of protein in the presence of sodium dodecyl sulfate (SDS) followed by a filtration-based immunoassay with a single anti-prion protein antibody, together with the improved fractionation procedure involving high concentrations of surfactant/detergent. The SDS/heat treatment renders unfolded PrP(Sc) quantitative retention on a polyvinylidene difluoride filter and allows enhancement of the analyte signal with immunodetection; thus, all of the tested specimens are determined with 100% accuracy. In addition, the immunoassay is completed in approximately 1h, indicating its usefulness not only for the screening of BSE specimens but probably also for the postmortem BSE diagnosis of fallen stock as the antibody recognizes the core part of PrP(Sc). The solid-phase immunoassay method, including the filtration blotting with SDS, would be applicable to determining even more sensitively proteins other than PrP(Sc), especially those having rigid conformations. PMID:16289444

  16. Protein sequence comparison and protein evolution

    SciTech Connect

    Pearson, W.R.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  17. Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils

    PubMed Central

    Helmus, Jonathan J.; Surewicz, Krystyna; Nadaud, Philippe S.; Surewicz, Witold K.; Jaroniec, Christopher P.

    2008-01-01

    A C-terminally truncated Y145Stop variant of the human prion protein (huPrP23–144) is associated with a hereditary amyloid disease known as PrP cerebral amyloid angiopathy. Previous studies have shown that recombinant huPrP23–144 can be efficiently converted in vitro to the fibrillar amyloid state, and that residues 138 and 139 play a critical role in the amyloidogenic properties of this protein. Here, we have used magic-angle spinning solid-state NMR spectroscopy to provide high-resolution insight into the protein backbone conformation and dynamics in fibrils formed by 13C,15N-labeled huPrP23–144. Surprisingly, we find that signals from ?100 residues (i.e., ?80% of the sequence) are not detected above approximately ?20°C in conventional solid-state NMR spectra. Sequential resonance assignments revealed that signals, which are observed, arise exclusively from residues in the region 112–141. These resonances are remarkably narrow, exhibiting average 13C and 15N linewidths of ?0.6 and 1 ppm, respectively. Altogether, the present findings indicate the existence of a compact, highly ordered core of huPrP23–144 amyloid encompassing residues 112–141. Analysis of 13C secondary chemical shifts identified likely ?-strand segments within this core region, including ?-strand 130–139 containing critical residues 138 and 139. In contrast to this relatively rigid, ?-sheet-rich amyloid core, the remaining residues in huPrP23–144 amyloid fibrils under physiologically relevant conditions are largely unordered, displaying significant conformational dynamics. PMID:18436646

  18. INSIGHTS ON SCRAPIE PRION PROTEIN (PrPSc) STRUCTURE OBTAINED BY LIMITED PROTEOLYSIS AND MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elucidation of the structure of PrPSc, essential to understand the molecular mechanism of prion transmission, continues to be one of the major challenges in prion research, and is hampered by the insolubility and polymeric character of PrPSc. Limited proteolysis is a useful tool to obtain insight on...

  19. Mass Spectrometric Detection of Attomole Amounts of the Prion Protein by nanoLC-MS-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitation of prions in biological samples other than brain or spinal cord is an extremely important and challenging analytical problem. Prions are the cause of several fatal neurodegenerative diseases in animal and humans known as Transmissible Spongiform Encephalopathies (TSEs). At present there...

  20. Doppel: more rival than double to prion.

    PubMed

    Qin, K; O'Donnell, M; Zhao, R Y

    2006-08-11

    Conversion of normal cellular prion protein to the diseased form plays an essential role in transmissible spongiform encephalopathies such as mad cow disease and Creutzfeldt-Jakob disease. However, the normal physiological function of prion protein remains elusive. Doppel, a German synonym of double, was initially identified as a prion-like protein due to its structural and biochemical similarities. However, emerging evidence suggests that function of prion protein is more antagonistic to Doppel than synergistic. In this review, basic biochemical and structural similarities of prion protein and Doppel are introduced; evidence demonstrating antagonistic interaction of prion protein with Doppel is presented; and a potential novel activity of Doppel and prion protein in spermatogenesis, which could stimulate new avenues for research, is discussed. PMID:16781817

  1. Investigation of the effect of glycosylation on human prion protein by molecular dynamics.

    PubMed

    Zhong, Linghao; Xie, Jimin

    2009-04-01

    Prion protein conformational isomerization, PrP(C)-->PrP(Sc), has been attributed as the cause of TSE diseases such as mad-cow disease. The mechanism of such isomerization, however, is little known due the experimental difficulties in studying the scrapie form. Among factors that affect PrP isomerization, the role which glycosylation plays remains vague. The number of innumerous glycan species, together with their high flexibility, leads to ineffective structural characterization. In this research, we studied the effect of chitobiose glycosylation on human PrP, in both monomeric (huPrP(mono)) and dimeric (huPrP(dimer)) forms, by molecular dynamics (MD) simulations. Our results show that this glycosylation has minimal impact on the structure of huPrP(mono). However, it affects the secondary structure of dimeric protein. An additional beta-sheet strand is found while the glycosylation is absent in the huPrP(dimer). Comparatively, when the protein is glycosylated with chitobiose, such beta-sheet addition is not observed. PMID:19236103

  2. Use of Proteinase K Nonspecific Digestion for Selective and Comprehensive Identification of Interpeptide Cross-links: Application to Prion Proteins*

    PubMed Central

    Petrotchenko, Evgeniy V.; Serpa, Jason J.; Hardie, Darryl B.; Berjanskii, Mark; Suriyamongkol, Bow P.; Wishart, David S.; Borchers, Christoph H.

    2012-01-01

    Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a “family” of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrPC) and oligomeric form of prion protein (PrP?). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrPC and PrP? prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90–124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including a Lys185–Lys220 cross-link, which is unique to the PrP? and thus may be indicative of the conformational change involved in the formation of prion protein oligomers. PMID:22438564

  3. Impact of SDS surfactant on the interactions of Cu(2+) ions with the amyloidogenic region of human prion protein.

    PubMed

    Hecel, Aleksandra; Migliorini, Caterina; Valensin, Daniela; Luczkowski, Marek; Kozlowski, Henryk

    2015-08-01

    Prion diseases, known as Transmissible Spongiform Encephalopathies (TSEs), are a group of fatal neuronal, and to some extent infectious disorders, associated with a pathogenic protein agent called prion protein (PrP). The human prion protein (hPrP) fragment encompassing the 91-127 region, also known as the amyloidogenic domain, comprises two copper-binding sites corresponding to His-96 and His-111 residues that act as anchors for Cu(2+) binding. In this work, we investigated Cu(2+) interaction with hPrP91-127 in the presence of the anionic surfactant sodium dodecyl sulfate (SDS), which induces a partial ?-helix folding of the peptide. Our data indicate that the Cu(2+) coordination ability of the amyloidogenic fragment in the presence of SDS micelles is significantly different to that observed in aqueous solution. This is mainly due to the fact that SDS micelles strongly stabilize the formation of the ?-helical structure of the peptide backbone, which is well conserved also upon Cu(2+) binding, contrary to the random coil conformation mainly assumed by hPrP91-127 in aqueous solutions. Potentiometric and spectroscopic studies clearly indicate that in the case of SDS containing solutions, Cu(2+) ions coordinate simultaneously to both imidazoles, while in the case of water solutions, metal ion coordination involves only a single His side chain, which individually acts as an independent Cu(2+) anchoring site. PMID:26107283

  4. Prions mediated neurodegenerative disorders.

    PubMed

    Huang, W-J; Chen, W-W; Zhang, X

    2015-11-01

    Prions are unprecedented infectious pathogens that are devoid of nucleic acid and cause a group of rare and invariably fatal neurodegenerative disorders, affecting approximately 1 person per 1 million inhabitants annually worldwide. These disorders include Creutzfeld-Jacob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, fatal insomnia (FI), and variable protease-sensitive prionopathy (VPSPr), all of which involve a conformational change of the normal cellular prion protein (PrPC) into the abnormal scrapie prion protein (PrPSc) through a posttranslational process during which PrPc acquires high ?-sheet content. This structural change is accompanied by profound changes in the physicochemical properties of PrPC, rendering the molecule resistant to proteolysis. The conformational change of PrPC can occur due to either spontaneous conversion, dominant mutations in the prion protein (PRNP) gene encoding PrPC, or infection with pathogenic isoform PrPsc from exogenous sources. There is general agreement that PrPC serves as a substrate for conversion to abnormal PrPSc. This latter multiplies exponentially and aggregates in the brain, forming deposits that are associated with the neurodegenerative changes. Although the understanding of the primary causes of prion-induced neurodegeneration is still limited, propagation of PrPSc and neurotoxic signaling seem to interplay in pathogenic process of prions. Here, we review recent findings that have provided fresh insights into this process, and present an overview of incidence, causes and spectrum of related disorders. PMID:26592824

  5. Prions and Prion-Like Pathogens in Neurodegenerative Disorders

    PubMed Central

    Peggion, Caterina; Sorgato, Maria Catia; Bertoli, Alessandro

    2014-01-01

    Prions are unique elements in biology, being able to transmit biological information from one organism to another in the absence of nucleic acids. They have been identified as self-replicating proteinaceous agents responsible for the onset of rare and fatal neurodegenerative disorders—known as transmissible spongiform encephalopathies, or prion diseases—which affect humans and other animal species. More recently, it has been proposed that other proteins associated with common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease, can self-replicate like prions, thus sustaining the spread of neurotoxic entities throughout the nervous system. Here, we review findings that have contributed to expand the prion concept, and discuss if the involved toxic species can be considered bona fide prions, including the capacity to infect other organisms, or whether these pathogenic aggregates share with prions only the capability to self-replicate. PMID:25437612

  6. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations

    SciTech Connect

    Moore, R.C.; Redhead, N.J.; Selfridge, J.

    1995-09-01

    We have developed a double replacement gene targeting strategy which enables the production of a series of mouse strains bearing different subtle alterations to endogenous genes. This is a two-step process in which a region of the gene of interest is first replaced with a selectable marker to produce an inactivated allele, which is then re-targeted with a second vector to reconstruct the inactivated allele, concomitantly introducing an engineered mutation. Five independent embryonic stem cell lines have been produced bearing different targeted alterations to the prion protein gene, including one which raises the level of expression. We have constructed mice bearing the codon 101 proline to leucine substitution linked to the human familial prion disease, Gerstmann-Straussler-Scheinker syndrome. We anticipate that this procedure will have applications to the study of human inherited diseases and the development of therapies. 43 refs., 6 figs., 1 tab.

  7. Ovine Reference Materials and Assays for Prion Genetic Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Genetic predisposition to scrapie in sheep is associated with variation in the peptide sequence of the ovine prion protein encoded by Prnp. Codon variants implicated in scrapie susceptibility or disease progression include those at amino acid positions 112, 136, 141, 154, and 171. Nin...

  8. Dynamically-expressed prion-like proteins form a cuticle in the pharynx of Caenorhabditis elegans

    PubMed Central

    George-Raizen, Julia B.; Shockley, Keith R.; Trojanowski, Nicholas F.; Lamb, Annesia L.; Raizen, David M.

    2014-01-01

    ABSTRACT In molting animals, a cuticular extracellular matrix forms the first barrier to infection and other environmental insults. In the nematode Caenorhabditis elegans there are two types of cuticle: a well-studied collagenous cuticle lines the body, and a poorly-understood chitinous cuticle lines the pharynx. In the posterior end of the pharynx is the grinder, a tooth-like cuticular specialization that crushes food prior to transport to the intestine for digestion. We here show that the grinder increases in size only during the molt. To gain molecular insight into the structure of the grinder and pharyngeal cuticle, we performed a microarray analysis to identify mRNAs increased during the molt. We found strong transcriptional induction during the molt of 12 of 15 previously identified abu genes encoding Prion-like (P) glutamine (Q) and asparagine (N) rich PQN proteins, as well as 15 additional genes encoding closely related PQN proteins. abu/pqn genes, which we name the abu/pqn paralog group (APPG) genes, were expressed in pharyngeal cells and the proteins encoded by two APPG genes we tested localized to the pharyngeal cuticle. Deleting the APPG gene abu-14 caused abnormal pharyngeal cuticular structures and knocking down other APPG genes resulted in abnormal cuticular function. We propose that APPG proteins promote the assembly and function of a unique cuticular structure. The strong developmental regulation of the APPG genes raises the possibility that such genes would be identified in transcriptional profiling experiments in which the animals' developmental stage is not precisely staged. PMID:25361578

  9. Molecular mechanisms for protein-encoded inheritance

    SciTech Connect

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  10. Protein Sequence Analysis by Proximities.

    PubMed

    Schleif, Frank-Michael

    2016-01-01

    Sequence data are widely used to get a deeper insight into biological systems. From a data analysis perspective they are given as a set of sequences of symbols with varying length. In general they are compared using nonmetric score functions. In this form the data are nonstandard, because they do not provide an immediate metric vector space and their analysis using standard methods is complicated. In this chapter we provide various strategies for how to analyze these type of data in a mathematically accurate way instead of the often seen ad hoc solutions. Our approach is based on the scoring values from protein sequence data although be applicable in a broader sense. We discuss potential recoding concepts of the scores and discuss algorithms to solve clustering, classification and embedding tasks for score data for a protein sequence application. PMID:26519178

  11. Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast

    PubMed Central

    Kanneganti, Vydehi; Kama, Rachel; Gerst, Jeffrey E.

    2011-01-01

    Yeast Btn2 facilitates the retrieval of specific proteins from late endosomes (LEs) to the Golgi, a process that may be adversely affected in Batten disease patients. We isolated the putative yeast orthologue of a human complex I deficiency gene, designated here as BTN3, as encoding a Btn2-interacting protein and negative regulator. First, yeast overexpressing BTN3 phenocopy the deletion of BTN2 and mislocalize certain trans-Golgi proteins, like Kex2 and Yif1, to the LE and vacuole, respectively. In contrast, the deletion of BTN3 results in a tighter pattern of protein localization to the Golgi. Second, BTN3 overexpression alters Btn2 localization from the IPOD compartment, which correlates with a sharp reduction in Btn2-mediated [URE3] prion curing. Third, Btn3 and the Snc1 v-SNARE compete for the same binding domain on Btn2, and this competition controls Btn2 localization and function. The inhibitory effects upon protein retrieval and prion curing suggest that Btn3 sequesters Btn2 away from its substrates, thus down-regulating protein trafficking and aggregation. Therefore Btn3 is a novel negative regulator of intracellular protein sorting, which may be of importance in the onset of complex I deficiency and Batten disease in humans. PMID:21441304

  12. Synthetic amyloid-? oligomers impair long-term memory independently of cellular prion protein

    PubMed Central

    Balducci, Claudia; Beeg, Marten; Stravalaci, Matteo; Bastone, Antonio; Sclip, Alessandra; Biasini, Emiliano; Tapella, Laura; Colombo, Laura; Manzoni, Claudia; Borsello, Tiziana; Chiesa, Roberto; Gobbi, Marco; Salmona, Mario; Forloni, Gianluigi

    2010-01-01

    Inability to form new memories is an early clinical sign of Alzheimer’s disease (AD). There is ample evidence that the amyloid-? (A?) peptide plays a key role in the pathogenesis of this disorder. Soluble, bio-derived oligomers of A? are proposed as the key mediators of synaptic and cognitive dysfunction, but more tractable models of A??mediated cognitive impairment are needed. Here we report that, in mice, acute intracerebroventricular injections of synthetic A?1–42 oligomers impaired consolidation of the long-term recognition memory, whereas mature A?1–42 fibrils and freshly dissolved peptide did not. The deficit induced by oligomers was reversible and was prevented by an anti-A? antibody. It has been suggested that the cellular prion protein (PrPC) mediates the impairment of synaptic plasticity induced by A?. We confirmed that A?1–42 oligomers interact with PrPC, with nanomolar affinity. However, PrP-expressing and PrP knock-out mice were equally susceptible to this impairment. These data suggest that A?1–42 oligomers are responsible for cognitive impairment in AD and that PrPC is not required. PMID:20133875

  13. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward ?-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of ?-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  14. Plasma Soluble Prion Protein, a Potential Biomarker for Sport-Related Concussions: A Pilot Study

    PubMed Central

    Pham, Nam; Akonasu, Hungbo; Shishkin, Rhonda; Taghibiglou, Changiz

    2015-01-01

    Sport-related mild traumatic brain injury (mTBI) or concussion is a significant health concern to athletes with potential long-term consequences. The diagnosis of sport concussion and return to sport decision making is one of the greatest challenges facing health care clinicians working in sports. Blood biomarkers have recently demonstrated their potential in assisting the detection of brain injury particularly, in those cases with no obvious physical injury. We have recently discovered plasma soluble cellular prion protein (PrPC) as a potential reliable biomarker for blast induced TBI (bTBI) in a rodent animal model. In order to explore the application of this novel TBI biomarker to sport-related concussion, we conducted a pilot study at the University of Saskatchewan (U of S) by recruiting athlete and non-athlete 18 to 30 year-old students. Using a modified quantitative ELISA method, we first established normal values for the plasma soluble PrPC in male and female students. The measured plasma soluble PrPC in confirmed concussion cases demonstrated a significant elevation of this analyte in post-concussion samples. Data collected from our pilot study indicates that the plasma soluble PrPC is a potential biomarker for sport-related concussion, which may be further developed into a clinical diagnostic tool to assist clinicians in the assessment of sport concussion and return-to-play decision making. PMID:25643046

  15. Ab initio Study of Transition metal binding to the Prion Protein

    NASA Astrophysics Data System (ADS)

    Cox, Daniel L.; Singh, Rajiv R. P.; Pan, Jianping

    2004-03-01

    Fundamental understanding of the prion protein (PrP) is of critical public health importance in view of mad cow and chronic wasting diseases. In recent years, it has been shown that the normal form (PrP^c) binds copper^1), and the structure of the copper binding domain has been elaborated. Hypotheses about toxicity associated with binding of other metals (notably manganese) have been put forward, Accordingly, using the ab initio SIESTA density functional theory code^2), we calculated the binding energy E_B(M) of M-(PrP) complexes relative to initially uncomplexed M ions, with M=Cu,Ni,Zn,Mn and (PrP)^* the minimal binding domain. The binding energy trend is E_B(Ni)>E_B(Cu)>E_B(Zn)>E_B(Mn), consistent with recent experiments apart from the surprising stability of Ni. We will also present preliminary results for binding of initially complexed M ions. *-Supported by U.S. DOE, Office of Basic Energy Sciences, Division of Materials Research 1) G.S. Jackson et al., Proc. Nat. Acad. Sci. (USA) 98, 8531 (2001). 2) P. Ordejón, et al., Phys. Rev. B53, R10441 (1996); J.M. Soler et al., J. Phys. Cond. Matt. 14, 2745 (2002).

  16. Molecular Dynamics Simulations Capture the Misfolding of the Bovine Prion Protein at Acidic pH

    PubMed Central

    Cheng, Chin Jung; Daggett, Valerie

    2014-01-01

    Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is ?-helix rich; and PrPSc is the ?-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative ?-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative ?-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative ?-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative ?-strand formation, thereby improving our understanding of how PrPC misfolds into the ?-sheet rich PrPSc and how pH factors into the process. PMID:24970211

  17. Copper attachment to prion protein at a non-octarepeat site

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    Prion protein (PrP) plays a causative role in a group of neurodegenerative diseases, which include ``mad cow disease'' or its human form variant Creutzfeld-Jacob disease. Normal function of PrP remains unknown, but it is now well established that PrP can efficiently bind copper ions and this ability has been linked to its function. The primary binding sites are located in the so-called octarepeat region located between residues 60-91. While these are by now well characterized, the sites located outside these region remain mostly undetermined. In this work, we investigate the properties of Cu binding site located at His 111 using recently developed hybrid Kohn-Sham/orbital-free density functional simulations. Experimental data indicate that copper is coordinated by either four nitrogens or three nitrogens and one oxygen. We investigate both possibilities, comparing their energetics and attachment geometries. Similarities and differences with other binding sites and implications for PrP function will also be discussed.

  18. Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH.

    PubMed

    Cheng, Chin Jung; Daggett, Valerie

    2014-01-01

    Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is ?-helix rich; and PrPSc is the ?-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative ?-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative ?-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative ?-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative ?-strand formation, thereby improving our understanding of how PrPC misfolds into the ?-sheet rich PrPSc and how pH factors into the process. PMID:24970211

  19. Acute cellular uptake of abnormal prion protein is cell type and scrapie strain independent

    PubMed Central

    Greil, Christopher S.; Vorberg, Ina M.; Ward, Anne E.; Meade-White, Kimberly D.; Harris, David A.; Priola, Suzette A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that include Creutzfeldt-Jakob disease, bovine spongiform encephalopathy and sheep scrapie. Although one of the earliest events during TSE infection is the cellular uptake of protease resistant prion protein (PrP-res), this process is poorly understood due to the difficulty of clearly distinguishing input PrP-res from either PrP-res or protease-sensitive PrP (PrP-sen) made by the cell. Using PrP-res tagged with a unique antibody epitope, we examined PrP-res uptake in neuronal and fibroblast cells exposed to three different mouse scrapie strains. PrP-res uptake was rapid and independent of scrapie strain, cell type, or cellular PrP expression, but occurred in only a subset of cells and was influenced by PrP-res preparation and aggregate size. Our results suggest that PrP-res aggregate size, the PrP-res microenvironment, and/or host cell-specific factors can all influence whether or not a cell takes up PrP-res following exposure to TSE infectivity. PMID:18692214

  20. Prion protein-mediated toxicity of amyloid-? oligomers requires lipid rafts and the transmembrane LRP1.

    PubMed

    Rushworth, Jo V; Griffiths, Heledd H; Watt, Nicole T; Hooper, Nigel M

    2013-03-29

    Soluble oligomers of the amyloid-? (A?) peptide cause neurotoxicity, synaptic dysfunction, and memory impairments that underlie Alzheimer disease (AD). The cellular prion protein (PrP(C)) was recently identified as a high affinity neuronal receptor for A? oligomers. We report that fibrillar A? oligomers recognized by the OC antibody, which have been shown to correlate with the onset and severity of AD, bind preferentially to cells and neurons expressing PrP(C). The binding of A? oligomers to cell surface PrP(C), as well as their downstream activation of Fyn kinase, was dependent on the integrity of cholesterol-rich lipid rafts. In SH-SY5Y cells, fluorescence microscopy and co-localization with subcellular markers revealed that the A? oligomers co-internalized with PrP(C), accumulated in endosomes, and subsequently trafficked to lysosomes. The cell surface binding, internalization, and downstream toxicity of A? oligomers was dependent on the transmembrane low density lipoprotein receptor-related protein-1 (LRP1). The binding of A? oligomers to cell surface PrP(C) impaired its ability to inhibit the activity of the ?-secretase BACE1, which cleaves the amyloid precursor protein to produce A?. The green tea polyphenol (-)-epigallocatechin gallate and the red wine extract resveratrol both remodeled the fibrillar conformation of A? oligomers. The resulting nonfibrillar oligomers displayed significantly reduced binding to PrP(C)-expressing cells and were no longer cytotoxic. These data indicate that soluble, fibrillar A? oligomers bind to PrP(C) in a conformation-dependent manner and require the integrity of lipid rafts and the transmembrane LRP1 for their cytotoxicity, thus revealing potential targets to alleviate the neurotoxic properties of A? oligomers in AD. PMID:23386614

  1. Low entropic barrier to the hydrophobic collapse of the prion protein: effects of intermediate states and conformational flexibility.

    PubMed

    Bergasa-Caceres, Fernando; Rabitz, Herschel A

    2010-07-01

    A simple kinetic model is applied to study the folding reaction of the C-terminal domain of the murine prion protein, mPrP(121-231). The model provides an equation linking a protein's folding rate with its native topology and the conformational entropic cost of folding. The model predicts that the average conformational entropic cost per residue associated with the folding transition of mPrP(121-231) is smaller than the average for a broad sample of two-state folding proteins. The results are consistent with the native state of mPrP(121-231) being more flexible than the average protein, but the behavior could also arise from the presence of early intermediate states. The findings are in agreement with experimental and theoretical results on the prion protein conformational flexibility. The model is fully analytical and provides a simple way to obtain a quantitative measure of conformational flexibility in two-state proteins from kinetic and structural experimental data. PMID:20540513

  2. Progressive accumulation of the abnormal conformer of the prion protein and spongiform encephalopathy in the obex of nonsymptomatic and symptomatic Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy, has been reported in captive and free-ranging cervids. An abnormal isoform of a prion protein (PrP-CWD) has been associated with CWD in Rocky Mountain elk (Cervus elaphus nelsoni) and this prion protein can be detected with i...

  3. Mutation and polymorphism of the prion protein gene in Libyan Jews with Creutzfeldt-Jakob disease (CJD)

    SciTech Connect

    Gabizon, R.; Rosenmann, H.; Meiner, Z.; Kahana, I. ); Kahana, E. ); Shugart, Y.; Ott, J. ); Prusiner, S.B. )

    1993-10-01

    The inherited prion diseases are neurodegenerative disorders which are not only genetic but also transmissible. More than a dozen mutations in the prion protein gene that result in nonconservative amino acid substitutions segregate with the inherited prion diseases including familial Creutzfeldt-Jakob disease (CJD). In Israel, the incidence of CJD is about 1 case/10[sup 4] Libyan Jews. A Lys[sub 200] substitution segregates with CJD and is reported here to be genetically linked to CJD with a lod score of >4.8. Some healthy elderly Lys[sub 200] carriers > age 65 years were identified, suggesting the possibility of incomplete penetrance. In contrast, no linkage was found between the development of familial CJD and a polymorphism encoding either Met[sub 129] or Val[sub 129]. All Libyan Jewish CJD patients with the Lys[sub 200] mutation encode a Met[sub 129] on the mutant allele. Homozygosity for Met[sub 129] did not correlate with age at disease onset or the duration of illness. The frequency of the Met[sub 129] allele was higher in the affected pedigrees than in a control population of Libyan Jews. The frequency of the Met[sub 129] and Val[sub 129] alleles in the control Libyan population was similar to that found in the general Caucasian population. The identification of three Libyan Jews homozygous for the Lys[sub 200] mutation suggests frequent intrafamilial marriages, a custom documented by genealogical investigations. 26 refs., 3 figs., 6 tabs.

  4. Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1

    PubMed Central

    Caetano, Fabiana A.; Lopes, Marilene H.; Hajj, Glaucia N.M.; Machado, Cleiton F.; Arantes, Camila Pinto; Magalhães, Ana C.; Vieira, Mônica De Paoli B.; Américo, Tatiana A.; Massensini, Andre R.; Priola, Suzette A.; Vorberg, Ina; Gomez, Marcus V.; Linden, Rafael; Prado, Vania F.; Martins, Vilma R.; Prado, Marco A.M.

    2009-01-01

    The secreted co-chaperone STI1 triggers activation of PKA and ERK1/2 signaling by interacting with the cellular prion (PrPC) at the cell surface, resulting in neuroprotection and increased neuritogenesis. Here we investigated whether STI1 triggers PrPC trafficking and tested if this process controls PrPC-dependent signaling. We found that STI1, but not a STI1 mutant unable to bind PrPC, induced PrPC endocytosis. STI1-induced signaling did not occur in cells devoid of endogenous PrPC, however heterologous expression of PrPC reconstituted both PKA and ERK1/2 activation. In contrast, a PrPC mutant lacking endocytic activity was unable to promote ERK1/2 activation induced by STI1, whereas it reconstituted PKA activity in the same condition, suggesting a key role of endocytosis in the former process. The activation of ERK1/2 by STI1 was transient and appeared to depend on the interaction of the two proteins at the cell surface or shortly after internalization. Moreover, inhibition of dynamin activity by expression of a dominant-negative mutant caused the accumulation and colocalization of these proteins at the plasma membrane, suggesting that both proteins use a dynamin-dependent internalization pathway. These results show that PrPC endocytosis is a necessary step to modulate STI1-dependent ERK1/2 signaling involved in neuritogenesis. PMID:18579743

  5. Prion protein functions as a ferrireductase partner for ZIP14 and DMT1.

    PubMed

    Tripathi, Ajai K; Haldar, Swati; Qian, Juan; Beserra, Amber; Suda, Srinivas; Singh, Ajay; Hopfer, Ulrich; Chen, Shu G; Garrick, Michael D; Turner, Jerrold R; Knutson, Mitchell D; Singh, Neena

    2015-07-01

    Excess circulating iron is stored in the liver, and requires reduction of non-Tf-bound iron (NTBI) and transferrin (Tf) iron at the plasma membrane and endosomes, respectively, by ferrireductase (FR) proteins for transport across biological membranes through divalent metal transporters. Here, we report that prion protein (PrP(C)), a ubiquitously expressed glycoprotein most abundant on neuronal cells, functions as a FR partner for divalent-metal transporter-1 (DMT1) and ZIP14. Thus, absence of PrP(C) in PrP-knock-out (PrP(-/-)) mice resulted in markedly reduced liver iron stores, a deficiency that was not corrected by chronic or acute administration of iron by the oral or intraperitoneal routes. Likewise, preferential radiolabeling of circulating NTBI with (59)Fe revealed significantly reduced uptake and storage of NTBI by the liver of PrP(-/-) mice relative to matched PrP(+/+) controls. However, uptake, storage, and utilization of ferritin-bound iron that does not require reduction for uptake were increased in PrP(-/-) mice, indicating a compensatory response to the iron deficiency. Expression of exogenous PrP(C) in HepG2 cells increased uptake and storage of ferric iron (Fe(3+)), not ferrous iron (Fe(2+)), from the medium, supporting the function of PrP(C) as a plasma membrane FR. Coexpression of PrP(C) with ZIP14 and DMT1 in HepG2 cells increased uptake of Fe(3+) significantly, and surprisingly, increased the ratio of N-terminally truncated PrP(C) forms lacking the FR domain relative to full-length PrP(C). Together, these observations indicate that PrP(C) promotes, and possibly regulates, the uptake of NTBI through DMT1 and Zip14 via its FR activity. Implications of these observations for neuronal iron homeostasis under physiological and pathological conditions are discussed. PMID:25862412

  6. Oxidative stress impairs autophagic flux in prion protein-deficient hippocampal cells.

    PubMed

    Oh, Jae-Min; Choi, Eun-Kyoung; Carp, Richard I; Kim, Yong-Sun

    2012-10-01

    We previously reported that autophagy is upregulated in Prnp-deficient (Prnp ( 0/0) ) hippocampal neuronal cells in comparison to cellular prion protein (PrP (C) )-expressing (Prnp (+/+) ) control cells under conditions of serum deprivation. In this study, we determined whether a protective mechanism of PrP (C) is associated with autophagy using Prnp ( 0/0) hippocampal neuronal cells under hydrogen peroxide (H 2O 2)-induced oxidative stress. We found that Prnp ( 0/0) cells were more susceptible to oxidative stress than Prnp (+/+) cells in a dose- and time-dependent manner. In addition, we observed enhanced autophagy by immunoblotting, which detected the conversion of microtubule-associated protein 1 light chain 3 ? (LC3B)-I to LC3B-II, and we observed increased punctate LC3B immunostaining in H 2O 2-treated Prnp ( 0/0) cells compared with H 2O 2-treated control cells. Interestingly, this enhanced autophagy was due to impaired autophagic flux in the H 2O 2-treated Prnp ( 0/0) cells, while the H 2O 2-treated Prnp (+/+) cells showed enhanced autophagic flux. Furthermore, caspase-dependent and independent apoptosis was observed when both cell lines were exposed to H 2O 2. Moreover, the inhibition of autophagosome formation by Atg7 siRNA revealed that increased autophagic flux in Prnp (+/+) cells contributes to the prosurvival effect of autophagy against H 2O 2 cytotoxicity. Taken together, our results provide the first experimental evidence that the deficiency of PrP (C) may impair autophagic flux via H 2O 2-induced oxidative stress. PMID:22889724

  7. Review: Contribution of transgenic models to understanding human prion disease

    PubMed Central

    Wadsworth, J D F; Asante, E A; Collinge, J

    2010-01-01

    J. D. F. Wadsworth, E. A. Asante and J. Collinge (2010) Neuropathology and Applied Neurobiology36, 576–597Contribution of transgenic models to understanding human prion disease Transgenic mice expressing human prion protein in the absence of endogenous mouse prion protein faithfully replicate human prions. These models reproduce all of the key features of human disease, including long clinically silent incubation periods prior to fatal neurodegeneration with neuropathological phenotypes that mirror human prion strain diversity. Critical contributions to our understanding of human prion disease pathogenesis and aetiology have only been possible through the use of transgenic mice. These models have provided the basis for the conformational selection model of prion transmission barriers and have causally linked bovine spongiform encephalopathy with variant Creutzfeldt-Jakob disease. In the future these models will be essential for evaluating newly identified potentially zoonotic prion strains, for validating effective methods of prion decontamination and for developing effective therapeutic treatments for human prion disease. PMID:20880036

  8. Spontaneous generation of prion infectivity in fatal familial insomnia knock-in mice

    E-print Network

    Faas, Henryk

    A crucial tenet of the prion hypothesis is that misfolding of the prion protein (PrP) induced by mutations associated with familial prion disease is, in an otherwise normal mammalian brain, sufficient to generate the ...

  9. Prion transmission

    PubMed Central

    Maddison, Ben C

    2010-01-01

    Prion diseases range from being highly infectious, for example scrapie and CWD, which show facile transmission between susceptible individuals, to showing negligible horizontal transmission, such as BSE and CJD, which are spread via food or iatrogenically, respectively. Scrapie and CWD display considerable in vivo dissemination, with PrPSc and infectivity being found in a range of peripheral tissues. This in vivo dissemination appears to facilitate the recently reported excretion of prion through multiple routes such as from skin, feces, urine, milk, nasal secretions, saliva and placenta. Furthermore, excreted scrapie and CWD agent is detected within environmental samples such as water and on the surfaces of inanimate objects. The cycle of “uptake of prion from the environment—widespread in vivo prion dissemination—prion excretion—prion persistence in the environment” is likely to explain the facile transmission and maintenance of these diseases within wild and farmed populations over many years. PMID:20948292

  10. Revealing structural changes of prion protein during conversion from ?-helical monomer to ?-oligomers by means of ESR and nanochannel encapsulation.

    PubMed

    Yang, Che; Lo, Wei-Lin; Kuo, Yun-Hsuan; Sang, Jason C; Lee, Chung-Yu; Chiang, Yun-Wei; Chen, Rita P-Y

    2015-02-20

    Under nondenaturing neutral pH conditions, full-length mouse recombinant prion protein lacking the only disulfide bridge can spontaneously convert from an ?-helical-dominant conformer (?-state) to a ?-sheet-rich conformer (?-state), which then associates into ?-oligomers, and the kinetics of this spontaneous conversion depends on the properties of the buffer used. The molecular details of this structural conversion have not been reported due to the difficulty of exploring big protein aggregates. We introduced spin probes into different structural segments (three helices and the loop between strand 1 and helix 1), and employed a combined approach of ESR spectroscopy and protein encapsulation in nanochannels to reveal local structural changes during the ?-to-? transition. Nanochannels provide an environment in which prion protein molecules are isolated from each other, but the ?-to-? transition can still occur. By measuring dipolar interactions between spin probes during the transition, we showed that helix 1 and helix 3 retained their helicity, while helix 2 unfolded to form an extended structure. Moreover, our pulsed ESR results allowed clear discrimination between the intra- and intermolecular distances between spin labeled residues in helix 2 in the ?-oligomers, making it possible to demonstrate that the unfolded helix 2 segment lies at the association interface of the ?-oligomers to form cross-? structure. PMID:25375095

  11. Effect of electrostatics on aggregation of prion protein Sup35 peptide

    NASA Astrophysics Data System (ADS)

    Portillo, Alexander M.; Krasnoslobodtsev, Alexey V.; Lyubchenko, Yuri L.

    2012-04-01

    Self-assembly of misfolded proteins into ordered fibrillar structures is a fundamental property of a wide range of proteins and peptides. This property is also linked with the development of various neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Environmental conditions modulate the misfolding and aggregation processes. We used a peptide, CGNNQQNY, from yeast prion protein Sup35, as a model system to address effects of environmental conditions on aggregate formation. The GNNQQNY peptide self-assembles in fibrils with structural features that are similar to amyloidogenic proteins. Atomic force microscopy (AFM) and thioflavin T (ThT) fluorescence assay were employed to follow the aggregation process at various pHs and ionic strengths. We also used single molecule AFM force spectroscopy to probe interactions between the peptides under various conditions. The ThT fluorescence data showed that the peptide aggregates fast at pH values approaching the peptide isoelectric point (pI = 5.3) and the kinetics is 10 times slower at acidic pH (pH 2.0), suggesting that electrostatic interactions contribute to the peptide self-assembly into aggregates. This hypothesis was tested by experiments performed at low (11 mM) and high (150 mM) ionic strengths. Indeed, the aggregation lag time measured at pH 2 at low ionic strength (11 mM) is 195 h, whereas the lag time decreases ˜5 times when the ionic strength is increased to 150 mM. At conditions close to the pI value, pH 5.6, the aggregation lag time is 12 ± 6 h under low ionic strength, and there is minimal change to the lag time at 150 mM NaCl. The ionic strength also influences the morphology of aggregates visualized with AFM. In pH 2.0 and at high ionic strength, the aggregates are twofold taller than those formed at low ionic strength. In parallel, AFM force spectroscopy studies revealed minimal contribution of electrostatics to dissociation of transient peptide dimers.

  12. Cellular Prion Protein Mediates Impairment of Synaptic Plasticity by Amyloid-? Oligomers

    PubMed Central

    Laurén, Juha; Gimbel, David A.; Nygaard, Haakon B.; Gilbert, John W.; Strittmatter, Stephen M.

    2009-01-01

    A pathological hallmark of Alzheimer’s disease (AD) is an accumulation of insoluble plaque containing the amyloid-? peptide (A?) of 40–42 aa residues1. Prefibrillar, soluble oligomers of A? have been recognized to be early and key intermediates in AD-related synaptic dysfunction2–9. At nanomolar concentrations, soluble A?-oligomers block hippocampal long-term potentiation7, cause dendritic spine retraction from pyramidal cells5,8 and impair rodent spatial memory2. Soluble A?-oligomers have been prepared from chemical syntheses, from transfected cell culture supernatants, from transgenic mouse brain and from human AD brain2,4,7,9. Together, these data imply a high affinity cell surface receptor for soluble A?-oligomers on neurons, one that is central to the pathophysiological process in AD. Here, we identify the cellular Prion Protein (PrPC) as an A?-oligomer receptor by expression cloning. A?-oligomers bind with nanomolar affinity to PrPC, but the interaction does not require the infectious PrPSc conformation. Synaptic responsiveness in hippocampal slices from young adult PrP null mice is normal, but the A?-oligomer blockade of long-term potentiation is absent. Anti-PrP antibodies prevent A?-oligomer binding to PrPC and rescue synaptic plasticity in hippocampal slices from oligomeric ?. Thus, PrPC is a mediator of A?oligomer induced synaptic dysfunction, and PrPC-specific pharmaceuticals may have therapeutic potential for Alzheimer’s disease. PMID:19242475

  13. Pronounced cytosolic aggregation of cellular prion protein in pancreatic beta-cells in response to hyperglycemia.

    PubMed

    Strom, Alexander; Wang, Gen-Sheng; Reimer, Rudolph; Finegood, Diane T; Scott, Fraser W

    2007-02-01

    Cellular prion protein (PrP(C)), an N-linked glycoprotein, is expressed in a variety of tissues, but its functions remain unclear. PrP(C) is abundantly expressed in the endocrine pancreas, which regulates blood glucose homeostasis. Therefore, we investigated whether the expression of PrP(C) was altered in islets of Langerhans in a model of spontaneous type 1 diabetes, the diabetes-prone BioBreeding (BBdp) rat and a model of beta-cell adaptation to hyperglycemia, the chronic glucose-infused Sprague Dawley rat. Pancreatic sections from animals aged 7-100 days were stained immunohistochemically and evaluated using light, fluorescence and confocal microscopy. PrP(C) was ubiquitously expressed in all four major endocrine cell types within islets. Surprisingly, cytosolic inclusions containing PrP(C) were identified exclusively in a subpopulation of insulin-producing beta-cells. The inclusions exhibited different molecular characteristics from the PrP aggregates previously described in vitro in neurons. The frequency of beta-cells with PrP(C) inclusions increased with age and was threefold greater in diabetes-prone rats than in controls at 100 days. Cytosolic PrP(C) expression in beta-cells was suppressed whereas the number and size of PrP(C) inclusions markedly increased in response to hyperglycemia during the first 2 days of continuous glucose infusion in Sprague Dawley rats. In summary, this is the first report describing in vivo cytosolic PrP(C) aggregation. These unique PrP(C) inclusions were beta-cell specific, more frequent in diabetes-prone animals, and responded to hyperglycemia in glucose-infused Sprague Dawley rats. These data suggest a potential dysfunction in beta-cells of diabetes-prone rats, and point to new avenues for the study of diabetes pathogenesis. PMID:17146448

  14. Digestion and transportation of bovine spongiform encephalopathy-derived prion protein in the sheep intestine.

    PubMed

    Dagleish, Mark P; Hamilton, Scott; González, Lorenzo; Eaton, Samantha L; Steele, Philip; Finlayson, Jeanie; Sisó, Sílvia; Pang, Yvonne; Sales, Jill; Chianini, Francesca; Jeffrey, Martin

    2010-12-01

    Bovine spongiform encephalopathy (BSE) is acquired orally and the mechanisms involved in the absorption and transportation of infectivity across the gut wall are therefore critical. Isolated gut loops were created in lambs, massaged to remove intestinal contents (flushed) or left non-flushed, inoculated with cattle BSE homogenate and excised at different time-points. Gut loops were examined by immunohistochemistry (IHC) for disease-associated prion protein (PrP(d)), and the contents were analysed by Western blotting (WB) to determine the degradation rate of protease-resistant PrP (PrP(res)). The contents of scrapie-inoculated gut loops from a previous experiment were analysed by WB, and these in vivo digestion results were compared with those of an in vitro experiment on the same transmissible spongiform encephalopathy homogenates. BSE-inoculum-derived PrP(d) was detected by IHC in the gut lumen between 15 min and 3.5 h. It was found in the intestinal lymphatic system from 30 min onwards and was present at the highest frequency at 120 min post-inoculation. In vivo degradation of PrP(res) in the BSE inoculum had a significantly (P=0.006) different pattern compared with scrapie-derived PrP(res), with the BSE PrP(res) degrading more rapidly. However, the overall amount of degradation became similar by 120 min post-challenge. The results of the in vitro digestion experiments showed a similar pattern, although the magnitude of PrP(res) degradation was less than in the in vivo environment where absorption could also take place. BSE-derived PrP(res) is less protease resistant than scrapie PrP over a short time-course and the disappearance of detectable PrP(res) from the gut lumen results from both absorption and digestion by intestinal contents. PMID:20826616

  15. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers.

    PubMed

    Laurén, Juha; Gimbel, David A; Nygaard, Haakon B; Gilbert, John W; Strittmatter, Stephen M

    2009-02-26

    A pathological hallmark of Alzheimer's disease is an accumulation of insoluble plaque containing the amyloid-beta peptide of 40-42 amino acid residues. Prefibrillar, soluble oligomers of amyloid-beta have been recognized to be early and key intermediates in Alzheimer's-disease-related synaptic dysfunction. At nanomolar concentrations, soluble amyloid-beta oligomers block hippocampal long-term potentiation, cause dendritic spine retraction from pyramidal cells and impair rodent spatial memory. Soluble amyloid-beta oligomers have been prepared from chemical syntheses, transfected cell culture supernatants, transgenic mouse brain and human Alzheimer's disease brain. Together, these data imply a high-affinity cell-surface receptor for soluble amyloid-beta oligomers on neurons-one that is central to the pathophysiological process in Alzheimer's disease. Here we identify the cellular prion protein (PrP(C)) as an amyloid-beta-oligomer receptor by expression cloning. Amyloid-beta oligomers bind with nanomolar affinity to PrP(C), but the interaction does not require the infectious PrP(Sc) conformation. Synaptic responsiveness in hippocampal slices from young adult PrP null mice is normal, but the amyloid-beta oligomer blockade of long-term potentiation is absent. Anti-PrP antibodies prevent amyloid-beta-oligomer binding to PrP(C) and rescue synaptic plasticity in hippocampal slices from oligomeric amyloid-beta. Thus, PrP(C) is a mediator of amyloid-beta-oligomer-induced synaptic dysfunction, and PrP(C)-specific pharmaceuticals may have therapeutic potential for Alzheimer's disease. PMID:19242475

  16. The prion protein ligand, stress-inducible phosphoprotein 1, regulates amyloid-? oligomer toxicity.

    PubMed

    Ostapchenko, Valeriy G; Beraldo, Flavio H; Mohammad, Amro H; Xie, Yu-Feng; Hirata, Pedro H F; Magalhaes, Ana C; Lamour, Guillaume; Li, Hongbin; Maciejewski, Andrzej; Belrose, Jillian C; Teixeira, Bianca L; Fahnestock, Margaret; Ferreira, Sergio T; Cashman, Neil R; Hajj, Glaucia N M; Jackson, Michael F; Choy, Wing-Yiu; MacDonald, John F; Martins, Vilma R; Prado, Vania F; Prado, Marco A M

    2013-10-16

    In Alzheimer's disease (AD), soluble amyloid-? oligomers (A?Os) trigger neurotoxic signaling, at least partially, via the cellular prion protein (PrP(C)). However, it is unknown whether other ligands of PrP(C) can regulate this potentially toxic interaction. Stress-inducible phosphoprotein 1 (STI1), an Hsp90 cochaperone secreted by astrocytes, binds to PrP(C) in the vicinity of the A?O binding site to protect neurons against toxic stimuli. Here, we investigated a potential role of STI1 in A?O toxicity. We confirmed the specific binding of A?Os and STI1 to the PrP and showed that STI1 efficiently inhibited A?O binding to PrP in vitro (IC50 of ?70 nm) and also decreased A?O binding to cultured mouse primary hippocampal neurons. Treatment with STI1 prevented A?O-induced synaptic loss and neuronal death in mouse cultured neurons and long-term potentiation inhibition in mouse hippocampal slices. Interestingly, STI1-haploinsufficient neurons were more sensitive to A?O-induced cell death and could be rescued by treatment with recombinant STI1. Noteworthy, both A?O binding to PrP(C) and PrP(C)-dependent A?O toxicity were inhibited by TPR2A, the PrP(C)-interacting domain of STI1. Additionally, PrP(C)-STI1 engagement activated ?7 nicotinic acetylcholine receptors, which participated in neuroprotection against A?O-induced toxicity. We found an age-dependent upregulation of cortical STI1 in the APPswe/PS1dE9 mouse model of AD and in the brains of AD-affected individuals, suggesting a compensatory response. Our findings reveal a previously unrecognized role of the PrP(C) ligand STI1 in protecting neurons in AD and suggest a novel pathway that may help to offset A?O-induced toxicity. PMID:24133259

  17. Assessing the susceptibility of transgenic mice overexpressing deer prion protein to bovine spongiform encephalopathy.

    PubMed

    Vickery, Christopher M; Lockey, Richard; Holder, Thomas M; Thorne, Leigh; Beck, Katy E; Wilson, Christina; Denyer, Margaret; Sheehan, John; Marsh, Sarah; Webb, Paul R; Dexter, Ian; Norman, Angela; Popescu, Emma; Schneider, Amanda; Holden, Paul; Griffiths, Peter C; Plater, Jane M; Dagleish, Mark P; Martin, Stuart; Telling, Glenn C; Simmons, Marion M; Spiropoulos, John

    2014-02-01

    Several transgenic mouse models have been developed which facilitate the transmission of chronic wasting disease (CWD) of cervids and allow prion strain discrimination. The present study was designed to assess the susceptibility of the prototypic mouse line, Tg(CerPrP)1536(+/-), to bovine spongiform encephalopathy (BSE) prions, which have the ability to overcome species barriers. Tg(CerPrP)1536(+/-) mice challenged with red deer-adapted BSE resulted in 90% to 100% attack rates, and BSE from cattle failed to transmit, indicating agent adaptation in the deer. PMID:24257620

  18. Metal-enhanced fluorescence of nano-core-shell structure used for sensitive detection of prion protein with a dual-aptamer strategy.

    PubMed

    Hu, Ping Ping; Zheng, Lin Ling; Zhan, Lei; Li, Jing Yun; Zhen, Shu Jun; Liu, Hui; Luo, Ling Fei; Xiao, Geng Fu; Huang, Cheng Zhi

    2013-07-17

    Metal-enhanced fluorescence (MEF) as a newly recognized technology is widespread throughout biological research. The use of fluorophore-metal interactions is recognized to be able to alleviate some of fluorophore photophysical constraints, favorably increase both the fluorophore emission intensity and photostability. In this contribution, we developed a novel metal-enhanced fluorescence (MEF) and dual-aptamer-based strategy to achieve the prion detection in solution and intracellular protein imaging simultaneously, which shows high promise for nanostructure-based biosensing. In the presence of prion protein, core-shell Ag@SiO2, which are functionalized covalently by single stranded aptamer (Apt1) of prions and Cyanine 3 (Cy3) decorated the other aptamer (Apt2) were coupled together by the specific interaction between prions and the anti-prion aptamers in solution. By adjusting shell thickness of the pariticles, a dual-aptamer strategy combined MEF can be realized by the excitation and/or emission rates of Cy3. It was found that the enhanced fluorescence intensities followed a linear relationship in the range of 0.05-0.30 nM, which is successfully applied to the detection of PrP in mice brain homogenates. PMID:23830445

  19. Evidence That Bank Vole PrP Is a Universal Acceptor for Prions

    PubMed Central

    Watts, Joel C.; Giles, Kurt; Patel, Smita; Oehler, Abby; DeArmond, Stephen J.; Prusiner, Stanley B.

    2014-01-01

    Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP), we inoculated Tg(M109) and Tg(I109) mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109) and Tg(I109) mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD) subtype MM1, into Tg(M109) mice gave incubation periods of ?200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ?250 days, which shortened to ?150 days upon second passage in Tg(M109) mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109) mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates—including the size of proteinase K–resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability—were remarkably conserved upon serial passage in Tg(M109) mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions. PMID:24699458

  20. Chronic Lymphocytic Inflammation Specifies the Organ Tropism of Prions

    NASA Astrophysics Data System (ADS)

    Heikenwalder, Mathias; Zeller, Nicolas; Seeger, Harald; Prinz, Marco; Klöhn, Peter-Christian; Schwarz, Petra; Ruddle, Nancy H.; Weissmann, Charles; Aguzzi, Adriano

    2005-02-01

    Prions typically accumulate in nervous and lymphoid tissues. Because proinflammatory cytokines and immune cells are required for lymphoid prion replication, we tested whether inflammatory conditions affect prion pathogenesis. We administered prions to mice with five inflammatory diseases of the kidney, pancreas, or liver. In all cases, chronic lymphocytic inflammation enabled prion accumulation in otherwise prion-free organs. Inflammatory foci consistently correlated with lymphotoxin up-regulation and ectopic induction of FDC-M1+ cells expressing the normal cellular prion protein PrPC. By contrast, inflamed organs of mice lacking lymphotoxin-? or its receptor did not accumulate the abnormal isoform PrPSc, nor did they display infectivity upon prion inoculation. By expanding the tissue distribution of prions, chronic inflammatory conditions may act as modifiers of natural and iatrogenic prion transmission.

  1. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae

    PubMed Central

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI+]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI+] and [PIN+] ([RNQ+]) (Genetics, Vol. 197, 685–700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI+] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ+] or [SWI+]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI+] prion stabilizes. Our finding provides strong evidence supporting the “cross-seeding” model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes. PMID:25517561

  2. Distinguishing Proteins From Arbitrary Amino Acid Sequences

    PubMed Central

    Yau, Stephen S.-T.; Mao, Wei-Guang; Benson, Max; He, Rong Lucy

    2015-01-01

    What kinds of amino acid sequences could possibly be protein sequences? From all existing databases that we can find, known proteins are only a small fraction of all possible combinations of amino acids. Beginning with Sanger's first detailed determination of a protein sequence in 1952, previous studies have focused on describing the structure of existing protein sequences in order to construct the protein universe. No one, however, has developed a criteria for determining whether an arbitrary amino acid sequence can be a protein. Here we show that when the collection of arbitrary amino acid sequences is viewed in an appropriate geometric context, the protein sequences cluster together. This leads to a new computational test, described here, that has proved to be remarkably accurate at determining whether an arbitrary amino acid sequence can be a protein. Even more, if the results of this test indicate that the sequence can be a protein, and it is indeed a protein sequence, then its identity as a protein sequence is uniquely defined. We anticipate our computational test will be useful for those who are attempting to complete the job of discovering all proteins, or constructing the protein universe. PMID:25609314

  3. Prolonged incubation time in sheep with prion protein containing lysine at position 171

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheep scrapie susceptibility or resistance is a function of genotype with polymorphisms at codon 171 in the sheep prion gene playing a major role. Glutamine (Q) at 171 contributes to scrapie susceptibility while arginine (R) is associated with resistance. In some breeds, lysine (K) occurs at codon 1...

  4. Statistical mechanics of prion diseases.

    PubMed

    Slepoy, A; Singh, R R; Pázmándi, F; Kulkarni, R V; Cox, D L

    2001-07-30

    We present a two-dimensional, lattice based, protein-level statistical mechanical model for prion diseases (e.g., mad cow disease) with concomitant prion protein misfolding and aggregation. Our studies lead us to the hypothesis that the observed broad incubation time distribution in epidemiological data reflect fluctuation dominated growth seeded by a few nanometer scale aggregates, while much narrower incubation time distributions for innoculated lab animals arise from statistical self-averaging. We model "species barriers" to prion infection and assess a related treatment protocol. PMID:11497806

  5. Statistical Mechanics of Prion Diseases

    NASA Astrophysics Data System (ADS)

    Slepoy, A.; Singh, R. R.; Pázmándi, F.; Kulkarni, R. V.; Cox, D. L.

    2001-07-01

    We present a two-dimensional, lattice based, protein-level statistical mechanical model for prion diseases (e.g., mad cow disease) with concomitant prion protein misfolding and aggregation. Our studies lead us to the hypothesis that the observed broad incubation time distribution in epidemiological data reflect fluctuation dominated growth seeded by a few nanometer scale aggregates, while much narrower incubation time distributions for innoculated lab animals arise from statistical self-averaging. We model ``species barriers'' to prion infection and assess a related treatment protocol.

  6. MASS SPECTROMETRIC DETECTION OF ATTOMOLE AMOUNTS OF THE PRION PROTEIN, PRP 27-30, BY NANOLC-MS-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At present there are no methods to diagnose Bovine Spongiform Encephalopathy (BSE) in live animals, or to assure a prion-free blood supply; and the result of prion infection is initiation of a neurodegenerative disease, invariably fatal after onset of symptoms. Prions have been shown to be present ...

  7. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP

    PubMed Central

    Sakudo, Akikazu; Onodera, Takashi

    2015-01-01

    Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp?/?) mice. So far, six types of Prnp?/? mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp?/? cell lines established from Prnp?/? mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp?/? cell lines and summarize currently available Prnp?/? cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives. PMID:25642423

  8. Effects of nutrition and genotype on prion protein (PrP-c) gene expression and localization in the fetal and maternal sheep placenta.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scrapie is the prototype transmissible spongiform encephalopathy, or prion disease, of domestic livestock. The disease appears to be transmitted most readily by post-parturient ewes and the presence of the marker protein PrP-Sc in the shed fetal cotyledon suggests that contamination of the lambing ...

  9. Accumulation of protease-resistant prion protein (PrP) and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutation

    PubMed Central

    Chiesa, Roberto; Drisaldi, Bettina; Quaglio, Elena; Migheli, Antonio; Piccardo, Pedro; Ghetti, Bernardino; Harris, David A.

    2000-01-01

    We have generated lines of transgenic mice that express a mutant prion protein (PrP) containing 14 octapeptide repeats whose human homologue is associated with an inherited prion dementia. These mice develop a neurological illness with prominent ataxia at 65 or 240 days of age, depending on whether the transgene array is, respectively, homozygous or hemizygous. Starting from birth, mutant PrP is converted into a protease-resistant and detergent-insoluble form that resembles the scrapie isoform of PrP, and this form accumulates dramatically in many brain regions throughout the lifetime of the mice. As PrP accumulates, there is massive apoptosis of granule cells in the cerebellum. Our analysis provides important insights into the molecular pathogenesis of inherited prion disorders in humans. PMID:10805813

  10. Partially Unfolded Forms of the Prion Protein Populated under Misfolding-promoting Conditions: CHARACTERIZATION BY HYDROGEN EXCHANGE MASS SPECTROMETRY AND NMR.

    PubMed

    Moulick, Roumita; Das, Ranabir; Udgaonkar, Jayant B

    2015-10-16

    The susceptibility of the cellular prion protein (PrP(C)) to convert to an alternative misfolded conformation (PrP(Sc)), which is the key event in the pathogenesis of prion diseases, is indicative of a conformationally flexible native (N) state. In the present study, hydrogen-deuterium exchange (HDX) in conjunction with mass spectrometry and nuclear magnetic resonance spectroscopy were used for the structural and energetic characterization of the N state of the full-length mouse prion protein, moPrP(23-231), under conditions that favor misfolding. The kinetics of HDX of 34 backbone amide hydrogens in the N state were determined at pH 4. In contrast to the results of previous HDX studies on the human and Syrian hamster prion proteins at a higher pH, various segments of moPrP were found to undergo different extents of subglobal unfolding events at pH 4, a pH at which the protein is known to be primed to misfold to a ?-rich conformation. No residual structure around the disulfide bond was observed for the unfolded state at pH 4. The N state of the prion protein was observed to be at equilibrium with at least two partially unfolded forms (PUFs). These PUFs, which are accessed by stochastic fluctuations of the N state, have altered surface area exposure relative to the N state. One of these PUFs resembles a conformation previously implicated to be an initial intermediate in the conversion of monomeric protein into misfolded oligomer at pH 4. PMID:26306043

  11. A novel copper(II) coordination at His186 in full-length murine prion protein

    SciTech Connect

    Watanabe, Yasuko; Hiraoka, Wakako; Igarashi, Manabu; Ito, Kimihito; Shimoyama, Yuhei; Horiuchi, Motohiro; Yamamori, Tohru; Yasui, Hironobu; Kuwabara, Mikinori; Inagaki, Fuyuhiko; Inanami, Osamu

    2010-04-09

    To explore Cu(II) ion coordination by His{sup 186} in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP{sup C}.

  12. Compression of protein sequence databases.

    PubMed

    Strelets, V B; Lim, H A

    1995-10-01

    We have created an algorithm for compressing a PIR database to assist individual researchers and software developers who utilize sequence database information but may not have huge storage space. The resulting compact databank contains compressed PIR information and an interface written in C which allows fast direct access to the stored information without extensive decompression of corresponding files. The databank files as well as the interface C-file can be used on both PC-compatibles and UNIX-based computers without any modifications. The interface supports all standard PIR Request Network queries (i.e. gets databank SEQ number by entry; for a defined databank SEQ number, gets specified information like: name, organism(s), keyword(s), sequence, sequence features with coordinates, etc.). In contrast with PIR Request Network, our package allows us to call PIR-contained information directly from the C programs, even on a personal computer not on a network. Our PIR-derived databank, SAGITTARIUS PIR, was implemented in the form of separate file sets. Each file set contains database information of independent types (i.e. sequences, entry indexes, organisms, etc.). On a particular computer, the available configuration of the PIR information (and storage space) can be easily changed as needed by the user without affecting retrievals of other types of stored information. Due to an original alignment-based algorithm, in the compression of protein sequences themselves, our package out-performs the well-known ZIP file compressor. For PC-compatibles, a dialogue shell is available which supports all standard PIR Request Network queries plus homology searches, alignments, etc. PMID:8590180

  13. Prion protein gene heterogeneity in free-ranging white-tailed deer within the chronic wasting disease affected region of Wisconsin.

    PubMed

    Johnson, Chad; Johnson, Jody; Clayton, Murray; McKenzie, Debbie; Aiken, Judd

    2003-07-01

    Chronic wasting disease (CWD) was first identified in Wisconsin (USA) in whitetailed deer (Odocoileus virginianus) in February 2002. To determine if prion protein gene (Prnp) allelic variability was associated with CWD in white-tailed deer from Wisconsin, we sequenced Prnp from 26 CWD-positive and 100 CWD-negative deer. Sequence analysis of Prnp suggests that at least 86-96% of the white-tailed deer in this region have Prnp allelic combinations that will support CWD infection. Four Prnp alleles were identified in the deer population, one of which, resulting in a glutamine to histidine change at codon 95, has not been previously reported. The predominant allele in the population encodes for glutamine at codon 95, glycine at codon 96, and serine at codon 138 (QGS). Less abundant alleles encoded QSS, QGN, and HGS at the three variable positions. Comparison of CWD-positive with CWD-negative deer suggested a trend towards an over-representation of the QGS allele and an under-representation of the QSS allele. PMID:14567218

  14. A genetic prion disease Background information:Background information

    E-print Network

    Brutlag, Doug

    on homo- or heterozygosity · Genetic counseling ­ Prenatal and pre-implantation diagnosis for familyA genetic prion disease #12;Background information:Background information: About PrionsAbout Prions· Structure ­ Misfolded proteins ­ Not alive; no genetic material · Pathogenesis ­ Convert normal proteins

  15. Interaction of Human Laminin Receptor with Sup35, the [PSI+] Prion-Forming Protein from S. cerevisiae: A Yeast Model for Studies of LamR Interactions with Amyloidogenic Proteins

    PubMed Central

    Pampeno, Christine; Derkatch, Irina L.; Meruelo, Daniel

    2014-01-01

    The laminin receptor (LamR) is a cell surface receptor for extracellular matrix laminin, whereas the same protein within the cell interacts with ribosomes, nuclear proteins and cytoskeletal fibers. LamR has been shown to be a receptor for several bacteria and viruses. Furthermore, LamR interacts with both cellular and infectious forms of the prion protein, PrPC and PrPSc. Indeed, LamR is a receptor for PrPC. Whether LamR interacts with PrPSc exclusively in a capacity of the PrP receptor, or LamR specifically recognizes prion determinants of PrPSc, is unclear. In order to explore whether LamR has a propensity to interact with prions and amyloids, we examined LamR interaction with the yeast prion-forming protein, Sup35. Sup35 is a translation termination factor with no homology or functional relationship to PrP. Plasmids expressing LamR or LamR fused with the green fluorescent protein (GFP) were transformed into yeast strain variants differing by the presence or absence of the prion conformation of Sup35, respectively [PSI+] and [psi?]. Analyses by immunoprecipitation, centrifugal fractionation and fluorescent microscopy reveal interaction between LamR and Sup35 in [PSI+] strains. The presence of [PSI+] promotes LamR co-precipitation with Sup35 as well as LamR aggregation. In [PSI+] cells, LamR tagged with GFP or mCherry forms bright fluorescent aggregates that co-localize with visible [PSI+] foci. The yeast prion model will facilitate studying the interaction of LamR with amyloidogenic prions in a safe and easily manipulated system that may lead to a better understanding and treatment of amyloid diseases. PMID:24416454

  16. Atypical BSE: role of the E211K prion polymorphism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that naturally affect several species including human beings. These chronic diseases are associated with the accumulation of a protease-resistant, disease-associated isoform of the prion protein (...

  17. Creutzfeldt-Jakob Disease with a prion protein gene codon 180 mutation presenting asymmetric cortical high-intensity on magnetic resonance imaging.

    PubMed

    Amano, Yuko; Kimura, Noriyuki; Hanaoka, Takuya; Aso, Yasuhiro; Hirano, Teruyuki; Murai, Hiroyuki; Satoh, Katsuya; Matsubara, Etsuro

    2015-01-01

    Here we report a genetically confirmed case of Creutzfeldt-Jakob disease with a prion protein gene codon 180 mutation presenting atypical magnetic resonance imaging findings. The present case exhibited an acute onset and lateralized neurologic signs, and progressive cognitive impairment. No myoclonus or periodic synchronous discharges on electroencephalography were observed. Diffusion-weighted images revealed areas of high signal intensity in the right frontal and temporal cortices at onset that extended to the whole cortex and basal ganglia of the right cerebral hemisphere at 3 months. Although the cerebrospinal fluid (CSF) was initially negative for neuron specific enolase, tau protein, 14-3-3 protein, and abnormal prion protein, the CSF was positive for these brain-derived proteins at 3 months after onset. PMID:25730397

  18. Oxidation of methionine 216 in sheep and elk prion protein is highly dependent upon the amino acid at position 218 but is not important for prion propagation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a sensitive mass spectrometry-based method of quantitating the prions present in elk and sheep. Calibration curves relating the area ratios of the selected analyte peptides and their homologous stable isotope labeled internal standards were prepared. This method was compared to the ELIS...

  19. Transgenic Mice Expressing Porcine Prion Protein Resistant to Classical Scrapie but Susceptible to Sheep Bovine Spongiform Encephalopathy and Atypical Scrapie

    PubMed Central

    Espinosa, Juan-Carlos; Herva, María-Eugenia; Andréoletti, Olivier; Padilla, Danielle; Lacroux, Caroline; Cassard, Hervé; Lantier, Isabelle; Castilla, Joaquin

    2009-01-01

    How susceptible pigs are to infection with sheep prions is unknown. We show, through transmission experiments in transgenic mice expressing porcine prion protein (PrP), that the susceptibility of this mouse model to bovine spongiform encephalopathy (BSE) can be enhanced after its passage in ARQ sheep, indicating that the pathogenicity of the BSE agent is modified after passage in sheep. Transgenic mice expressing porcine PrP were, nevertheless, completely resistant to infection with a broad panel of classical scrapie isolates from different sheep PrP genotypes and with different biochemical characteristics. The atypical (Nor98 like) isolate (SC-PS152) was the only scrapie isolate capable of transmission in these mice, although with a marked transmission barrier. Unexpectedly, the atypical scrapie agent appeared to undergo a strain phenotype shift upon transmission to porcine-PrP transgenic mice and acquired new strain properties, suggesting that atypical scrapie agent may exhibit different phenotypes depending on the host cellular PrP or other genetic factors. PMID:19751582

  20. Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

    PubMed

    Feng, Boya; Wang, Zonglin; Liu, Ting; Jin, Rui; Wang, Shaobo; Wang, Wei; Xiao, Gengfu; Zhou, Zheng

    2014-12-01

    The D178N mutation of the prion protein (PrP) results in the hereditary prion disease fatal familial insomnia (FFI). Little is known regarding the effects of methionine oxidation on the pathogenesis of D178N-associated FFI. In the present study, we found that the D178N variant was more susceptible to oxidation than wild-type PrP, as indicated by reverse-phase high performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) analysis. Circular dichroism (CD), differential scanning calorimetry (DSC), thioflavin T (ThT) binding assay studies demonstrated that methionine oxidation decreased the structural stability of the D178N variant, and the oxidized D178N variant exhibited a greater propensity to form ?-sheet-rich oligomers and aggregates. Moreover, these aggregates of oxidized D178N PrP were more resistant to proteinase K (PK) digestion. Additionally, using fluorescence confocal microscopy, we detected a high degree of aggregation in D178N-transfected Neuro-2a (N2a) cells after treatment with hydrogen peroxide (H2O2). Furthermore, the oxidation and consequent aggregation of the D178N variant induced greater apoptosis of N2a cells, as monitored using flow cytometry. Collectively, these observations suggest that methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant, possibly providing direct evidence to link the pathogenesis of D178N-associated FFI with methionine oxidation. PMID:25281825

  1. 78 FR 13501 - Declaration of Prion as a Pest Under FIFRA; Related Amendments; and Availability of Final Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... types of prions are commonly designated by the type of diseases they produce, such as PrP\\Sc\\ (prions associated with scrapie) and PrP\\BSE\\ (prions associated with bovine spongiform encephalopathy--mad cow disease). In the disease process, prions (such as PrP\\sc\\) recruit normal prion proteins (PrP\\c\\)...

  2. Prion protein regulates glutathione metabolism and neural glutamate and cysteine uptake via excitatory amino acid transporter 3.

    PubMed

    Guitart, Kathrin; Loers, Gabriele; Schachner, Melitta; Kleene, Ralf

    2015-05-01

    Prion protein (PrP) plays crucial roles in regulating antioxidant systems to improve cell defenses against cellular stress. Here, we show that the interactions of PrP with the excitatory amino acid transporter 3 (EAAT3), ?-glutamyl transpeptidase (?-GT), and multi-drug resistance protein 1 (MRP1) in astrocytes and the interaction between PrP and EAAT3 in neurons regulate the astroglial and neuronal metabolism of the antioxidant glutathione. Ablation of PrP in astrocytes and cerebellar neurons leads to dysregulation of EAAT3-mediated uptake of glutamate and cysteine, which are precursors for the synthesis of glutathione. In PrP-deficient astrocytes, levels of intracellular glutathione are increased, and under oxidative stress, levels of extracellular glutathione are increased, due to (i) increased glutathione release via MRP1 and (ii) reduced activity of the glutathione-degrading enzyme ?-GT. In PrP-deficient cerebellar neurons, cell death is enhanced under oxidative stress and glutamate excitotoxicity, when compared to wild-type cerebellar neurons. These results indicate a functional interplay of PrP with EAAT3, MRP1 and ?-GT in astrocytes and of PrP and EAAT3 in neurons, suggesting that these interactions play an important role in the metabolic cross-talk between astrocytes and neurons and in protection of neurons by astrocytes from oxidative and glutamate-induced cytotoxicity. Interactions of prion protein (PrP) with excitatory amino acid transporter 3 (EAAT3), ?-glutamyl transpeptidase (GGT) and multi-drug resistance protein 1 (MRP1) regulate the astroglial and neuronal metabolism of glutathione (GSH) which protects cells against the cytotoxic oxidative stress. PrP controls the release of GSH from astrocytes via MRP1 and regulates the hydrolysis of extracellular GSH by GGT as well as the neuronal and astroglial glutamate and cysteine uptake via EAAT3. PMID:25692227

  3. Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI (+)].

    PubMed

    Gasset-Rosa, Fátima; Giraldo, Rafael

    2015-01-01

    The yeast translation termination factor Sup35p, by aggregating as the [PSI (+)] prion, enables ribosomes to read-through stop codons, thus expanding the diversity of the Saccharomyces cerevisiae proteome. Yeast prions are functional amyloids that replicate by templating their conformation on native protein molecules, then assembling as large aggregates and fibers. Prions propagate epigenetically from mother to daughter cells by fragmentation of such assemblies. In the N-terminal prion-forming domain, Sup35p has glutamine/asparagine-rich oligopeptide repeats (OPRs), which enable propagation through chaperone-elicited shearing. We have engineered chimeras by replacing the polar OPRs in Sup35p by up to five repeats of a hydrophobic amyloidogenic sequence from the synthetic bacterial prionoid RepA-WH1. The resulting hybrid, [REP-PSI (+)], (i) was functional in a stop codon read-through assay in S. cerevisiae; (ii) generates weak phenotypic variants upon both its expression or transformation into [psi (-)] cells; (iii) these variants correlated with high molecular weight aggregates resistant to SDS during electrophoresis; and (iv) according to fluorescence microscopy, the fusion of the prion domains from the engineered chimeras to the reporter protein mCherry generated perivacuolar aggregate foci in yeast cells. All these are signatures of bona fide yeast prions. As assessed through biophysical approaches, the chimeras assembled as oligomers rather than as the fibers characteristic of [PSI (+)]. These results suggest that it is the balance between polar and hydrophobic residues in OPRs what determines prion conformational dynamics. In addition, our findings illustrate the feasibility of enabling new propagation traits in yeast prions by engineering OPRs with heterologous amyloidogenic sequence repeats. PMID:25954252

  4. Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI+

    PubMed Central

    Gasset-Rosa, Fátima; Giraldo, Rafael

    2015-01-01

    The yeast translation termination factor Sup35p, by aggregating as the [PSI+] prion, enables ribosomes to read-through stop codons, thus expanding the diversity of the Saccharomyces cerevisiae proteome. Yeast prions are functional amyloids that replicate by templating their conformation on native protein molecules, then assembling as large aggregates and fibers. Prions propagate epigenetically from mother to daughter cells by fragmentation of such assemblies. In the N-terminal prion-forming domain, Sup35p has glutamine/asparagine-rich oligopeptide repeats (OPRs), which enable propagation through chaperone-elicited shearing. We have engineered chimeras by replacing the polar OPRs in Sup35p by up to five repeats of a hydrophobic amyloidogenic sequence from the synthetic bacterial prionoid RepA-WH1. The resulting hybrid, [REP-PSI+], (i) was functional in a stop codon read-through assay in S. cerevisiae; (ii) generates weak phenotypic variants upon both its expression or transformation into [psi-] cells; (iii) these variants correlated with high molecular weight aggregates resistant to SDS during electrophoresis; and (iv) according to fluorescence microscopy, the fusion of the prion domains from the engineered chimeras to the reporter protein mCherry generated perivacuolar aggregate foci in yeast cells. All these are signatures of bona fide yeast prions. As assessed through biophysical approaches, the chimeras assembled as oligomers rather than as the fibers characteristic of [PSI+]. These results suggest that it is the balance between polar and hydrophobic residues in OPRs what determines prion conformational dynamics. In addition, our findings illustrate the feasibility of enabling new propagation traits in yeast prions by engineering OPRs with heterologous amyloidogenic sequence repeats. PMID:25954252

  5. Does an infrasonic acoustic shock wave resonance of the manganese 3+ loaded/copper depleted prion protein initiate the pathogenesis of TSE?

    PubMed

    Purdey, Mark

    2003-06-01

    Intensive exposures to natural and artificial sources of infrasonic acoustic shock (tectonic disturbances, supersonic aeroplanes, etc.) have been observed in ecosystems supporting mammalian populations that are blighted by clusters of traditional and new variant strains of transmissible spongiform encephalopathy (TSE). But TSEs will only emerge in those 'infrasound-rich' environments which are simultaneously influenced by eco-factors that induce a high manganese (Mn)/low copper (Cu)-zinc (Zn) ratio in brains of local mammalian populations. Since cellular prion protein (PrPc) is a cupro-protein expressed throughout the circadian mediated pathways of the body, it is proposed that PrP's Cu component performs a role in the conduction and distribution of endogenous electromagnetic energy; energy that has been transduced from incoming ultraviolet, acoustic, geomagnetic radiations. TSE pathogenesis is initiated once Mn substitutes at the vacant Cu domain on PrPc and forms a nonpathogenic, protease resistant, 'sleeping' prion. A second stage of pathogenesis comes into play once a low frequency wave of infrasonic shock metamorphoses the piezoelectric atomic structure of the Mn 3+ component of the prion, thereby 'priming' the sleeping prion into its fully fledged, pathogenic TSE isoform - where the paramagnetic status of the Mn 3+ atom is transformed into a stable ferrimagnetic lattice work, due to the strong electron-phonon coupling resulting from the dynamic 'Jahn-Teller' type distortions of the oxygen octahedra specific to the trivalent Mn species. The so called 'infectivity' of the prion is a misnomer and should be correctly defined as the contagious field inducing capacity of the ferrimagnetic Mn 3+ component of the prion; which remains pathogenic at all temperatures below the 'curie point'. A progressive domino-like 'metal to ligand to metal' ferrimagnetic corruption of the conduits of electromagnetic superexchange is initiated. The TSE diseased brain can be likened to a solar charged battery on continuous charge; where the Mn contaminated/Cu depleted circadian-auditory pathways absorb and pile up, rather than conduct the vital life force energies of incoming ultra violet, acoustic and geomagnetic radiation. Instead of harnessing these energies for the body's own bio-rhythmic requirements, an infrasonic shock induced metamorphosis of the Mn atom intervenes; initiating an explosive pathogenesis that perverts the healthy pathways of darkness and light; Cu prions are replaced by hyperpolarized Mn 3+ prions that seed self perpetuating 'cluster bombs' of free radical mediated neurodegeneration. TSE ensues. PMID:12699706

  6. Prion Diseases

    MedlinePLUS

    ... trying to access this site from a secured browser on the server. Please enable scripts and reload ... the human prion disease CJD ?? Javascript Error Your browser JavaScript is turned off causing certain features of ...

  7. Complex proteinopathy with accumulations of prion protein, hyperphosphorylated tau, ?-synuclein and ubiquitin in experimental bovine spongiform encephalopathy of monkeys.

    PubMed

    Piccardo, Pedro; Cervenak, Juraj; Bu, Ming; Miller, Lindsay; Asher, David M

    2014-07-01

    Proteins aggregate in several slowly progressive neurodegenerative diseases called 'proteinopathies'. Studies with cell cultures and transgenic mice overexpressing mutated proteins suggested that aggregates of one protein induced misfolding and aggregation of other proteins as well - a possible common mechanism for some neurodegenerative diseases. However, most proteinopathies are 'sporadic', without gene mutation or overexpression. Thus, proteinopathies in WT animals genetically close to humans might be informative. Squirrel monkeys infected with the classical bovine spongiform encephalopathy agent developed an encephalopathy resembling variant Creutzfeldt-Jakob disease with accumulations not only of abnormal prion protein (PrP(TSE)), but also three other proteins: hyperphosphorylated tau (p-tau), ?-synuclein and ubiquitin; ?-amyloid protein (A?) did not accumulate. Severity of brain lesions correlated with spongiform degeneration. No amyloid was detected. These results suggested that PrP(TSE) enhanced formation of p-tau and aggregation of ?-synuclein and ubiquitin, but not A?, providing a new experimental model for neurodegenerative diseases associated with complex proteinopathies. PMID:24769839

  8. Superparamagnetic Nanoparticle Capture of Prions for Amplification?

    PubMed Central

    Miller, Michael B.; Supattapone, Surachai

    2011-01-01

    Prion diseases are associated with the presence of PrPSc, a disease-associated misfolded conformer of the prion protein. We report that superparamagnetic nanoparticles bind PrPSc molecules efficiently and specifically, permitting magnetic separation of prions from a sample mixture. Captured PrPSc molecules retain the activity to seed protein misfolding cyclic amplification (PMCA) reactions, enabling the rapid concentration of dilute prions to improve detection. Furthermore, superparamagnetic nanoparticles clear contaminated solutions of PrPSc. Our findings suggest that coupling magnetic nanoparticle capture with PMCA could accelerate and improve prion detection. Magnetic nanoparticles may also be useful for developing a nontoxic prion decontamination method for biologically derived products. PMID:21228242

  9. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    NASA Astrophysics Data System (ADS)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  10. Discover protein sequence signatures from protein-protein interaction data

    E-print Network

    Fang, Jianwen; Haasl, R. J.; Dong, Yinghua; Lushington, Gerald H.

    2005-11-23

    Bioinformatics Open Access Research article Discover protein sequence signatures from protein-protein interaction data Jianwen Fang* 1,2 , Ryan J Haasl 1 , Yinghua Dong 1 and Gerald H Lushington 1,3 Address: 1 Bioinformatics Core Facility, University of Kansas...@ku.edu; Ryan J Haasl - rh2@medicine.wisc.edu; Yinghua Dong - yinghua@ku.edu; Gerald H Lushington - glushington@ku.edu * Corresponding author Abstract Background: The development of high-throughput technologies such as yeast two-hybrid systems and mass...

  11. Structural Definition Is Important for the Propagation of the Yeast [PSI+] Prion

    PubMed Central

    Marchante, Ricardo; Rowe, Michelle; Zenthon, Jo; Howard, Mark J.; Tuite, Mick F.

    2013-01-01

    Summary Prions are propagated in Saccharomyces cerevisiae with remarkable efficiency, yet we know little about the structural basis of sequence variations in the prion protein that support or prohibit propagation of the prion conformation. We show that certain single-amino-acid substitutions in the prion protein Sup35 impact negatively on the maintenance of the associated prion-based [PSI+] trait by combining in vivo phenotypic analysis with solution NMR structural studies. A clear correlation is observed between mutationally induced conformational differences in one of the oligopeptide repeats (R2) in the N terminus of Sup35 and the relative ability to propagate [PSI+]. Strikingly, substitution of one of a Gly-Gly pair with highly charged residues that significantly increase structural definition of R2 lead to a severe [PSI+] propagation defect. These findings offer a molecular explanation for the dominant-negative effects of such psi-no-more (PNM) mutations and demonstrate directly the importance of localized structural definition in prion propagation. PMID:23746351

  12. Role of the Cellular Prion Protein in Oligodendrocyte Precursor Cell Proliferation and Differentiation in the Developing and Adult Mouse CNS

    PubMed Central

    Bribián, Ana; Gavín, Rosalina; Reina, Manuel; García-Verdugo, José Manuel; Torres, Juan María; de Castro, Fernando; del Río, José Antonio

    2012-01-01

    There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrPc) to this process remains unclear. PrPc is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrPc influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrPc proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrPc knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells. PMID:22529900

  13. Biology and Genetics of Prions Causing Neurodegeneration

    PubMed Central

    Prusiner, Stanley B.

    2014-01-01

    Prions are proteins that acquire alternative conformations that become self-propagating. Transformation of proteins into prions is generally accompanied by an increase in ?-sheet structure and a propensity to aggregate into oligomers. Some prions are beneficial and perform cellular functions, whereas others cause neurodegeneration. In mammals, more than a dozen proteins that become prions have been identified and a similar number has been found in fungi. In both mammals and fungi, variations in the prion conformation encipher the biological properties of distinct prion strains. Increasing evidence argues that prions cause many neurodegenerative diseases (NDs), including Alzheimer’s, Parkinson’s, Creutzfeldt-Jakob, and Lou Gehrig’s diseases, as well as the tauopathies. The majority of NDs are sporadic, and 10% to 20% are inherited. The late onset of heritable NDs, like their sporadic counterparts, may reflect the stochastic nature of prion formation; the pathogenesis of such illnesses seems to require prion accumulation to exceed some critical threshold before neurological dysfunction manifests. PMID:24274755

  14. Cell-free propagation of prion strains.

    PubMed

    Castilla, Joaquín; Morales, Rodrigo; Saá, Paula; Barria, Marcelo; Gambetti, Pierluigi; Soto, Claudio

    2008-10-01

    Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP(Sc)). Disease is transmitted by the autocatalytic propagation of PrP(Sc) misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrP(Sc) generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrP(Sc) caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrP(Sc) properties. PMID:18800058

  15. Cell-free propagation of prion strains

    PubMed Central

    Castilla, Joaquín; Morales, Rodrigo; Saá, Paula; Barria, Marcelo; Gambetti, Pierluigi; Soto, Claudio

    2008-01-01

    Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrPSc). Disease is transmitted by the autocatalytic propagation of PrPSc misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrPSc generated in vitro by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain-specific properties. Inoculation of wild-type mice with in vitro-generated PrPSc caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrPSc properties. PMID:18800058

  16. The Octarepeat Domain of the Prion Protein Binds Cu(II) with Three Distinct Coordination Modes at pH 7.4

    PubMed Central

    Chattopadhyay, Madhuri; Walter, Eric D.; Newell, Dustin J.; Jackson, Pilgrim J.; Aronoff-Spencer, Eliah; Peisach, Jack; Gerfen, Gary J.; Bennett, Brian; Antholine, William E.; Millhauser, Glenn L.

    2010-01-01

    The prion protein (PrP) binds Cu2+ in its N-terminal octarepeat domain. This unusual domain is comprised of four or more tandem repeats of the fundamental sequence PHGGGWGQ. Previous work from our laboratories demonstrates that at full copper occupancy, each HGGGW segment binds a single Cu2+. However, several recent studies suggest that low copper occupancy favors different coordination modes, possibly involving imidazoles from histidines in adjacent octapeptide segments. This is investigated here using a combination of X-band EPR, S-band EPR, and ESEEM, along with a library of modified peptides designed to favor different coordination interactions. At pH 7.4, three distinct coordination modes are identified. Each mode is fully characterized to reveal a series of copper-dependent octarepeat domain structures. Multiple His coordination is clearly identified at low copper stoichiometry. In addition, EPR detected copper–copper interactions at full occupancy suggest that the octarepeat domain partially collapses, perhaps stabilizing this specific binding mode and facilitating cooperative copper uptake. This work provides the first complete characterization of all dominant copper coordination modes at pH 7.4. PMID:16144413

  17. Rapidly progressive dementia with thalamic degeneration and peculiar cortical prion protein immunoreactivity, but absence of proteinase K resistant PrP: a new disease entity?

    PubMed Central

    2013-01-01

    Background Human prion diseases are a group of rare fatal neurodegenerative conditions with well-developed clinical and neuropathological diagnostic criteria. Recent observations have expanded the spectrum of prion diseases beyond the classically recognized forms. Results In the present study we report six patients with a novel, apparently sporadic disease characterised by thalamic degeneration and rapidly progressive dementia (duration of illness 2–12 months; age at death: 55–81 years). Light and electron microscopic immunostaining for the prion protein (PrP) revealed a peculiar intraneuritic distribution in neocortical regions. Proteinase K resistant PrP (PrPres) was undetectable by Western blotting in frontal cortex from the three cases with frozen tissue, even after enrichment for PrPres by centrifugation or by phosphotungstic acid precipitation. Conformation-dependent immunoassay analysis using a range of PK digestion conditions (and no PK digestion) produced only very limited evidence of meaningful D-N (denatured/native) values, indicative of the presence of disease-associated PrP (PrPSc) in these cases, when the results were compared with appropriate negative control groups. Conclusions Our observation expands the spectrum of conditions associated with rapidly progressive dementia and may have implications for the understanding of the pathogenesis of prion diseases. PMID:24252716

  18. Complete penetrance of Creutzfeldt-Jakob disease in Libyan Jews carrying the E200K mutation in the prion protein gene.

    PubMed Central

    Spudich, S.; Mastrianni, J. A.; Wrensch, M.; Gabizon, R.; Meiner, Z.; Kahana, I.; Rosenmann, H.; Kahana, E.; Prusiner, S. B.

    1995-01-01

    BACKGROUND: Creutzfeldt-Jakob disease (CJD) is a prion disease which is manifest as a sporadic, inherited, and transmissible neurodegenerative disorder. The mean age at onset of CJD is approximately 60 years, and as such, many people destined to succumb undoubtedly die of other illnesses first. The delayed onset of CJD has complicated the analysis of inherited forms of the illness and led to the suggestion that mutations in the prion protein (PrP) gene are necessary but not sufficient for prion disease despite genetic linkage; indeed, an environmental factor such as a ubiquitous virus has been proposed as a second necessary factor. MATERIALS AND METHODS: To examine what appeared to be incomplete penetrance, we applied a life-table analysis to clinical and pedigree data from a cluster population of Libyan Jews in which the E200K mutation is prevalent. The study population included 42 affected and 44 unaffected members of 13 Libyan Jewish families, all of whom possessed the E200K mutation. RESULTS: The calculated value using life table analysis is 0.77 at age 70 which increases to 0.89 if a mutation carrier survives to age 80 and 0.96 if age 80 is surpassed. CONCLUSIONS: These data argue that the E200K mutation alone is sufficient to cause prion disease and does so in an age-dependent manner. PMID:8529127

  19. De novo generation of prion strains.

    PubMed

    Colby, David W; Prusiner, Stanley B

    2011-11-01

    Prions are self-replicating proteins that can cause neurodegenerative disorders such as bovine spongiform encephalopathy (also known as mad cow disease). Aberrant conformations of prion proteins accumulate in the central nervous system, causing spongiform changes in the brain and eventually death. Since the inception of the prion hypothesis - which states that misfolded proteins are the infectious agents that cause these diseases - researchers have sought to generate infectious proteins from defined components in the laboratory with varying degrees of success. Here, we discuss several recent studies that have produced an array of novel prion strains in vitro that exhibit increasingly high titres of infectivity. These advances promise unprecedented insight into the structure of prions and the mechanisms by which they originate and propagate. PMID:21947062

  20. A virtual lab for exploring the yeast prion

    E-print Network

    Kent, University of

    A virtual lab for exploring the ¢¡¤£¦¥¨§© yeast prion Jacqueline L. Whalley , Mick F. Tuite within the cell of a prion protein in yeast. The biological background to the project is outlined in simpler organisms such as yeasts [20], which make an ideal subject for laboratory study of the prion

  1. Detecting and quantifying prions: Mass spectrometry-based approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are novel pathogens that cause a set of rare fatal neurological diseases know as transmissible spongiform encephalopathies. Examples of these diseases include Creutzfeldt-Jakob disease, scrapie and chronic wasting disease. Prions are able to recruit a normal cellular prion protein and convert...

  2. Mass Spectrometry of Prions: Approaches to Conformational Distinction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are the agents that cause a set of fatal neurological diseases that include Creutzfeldt-Jakob disease. Prions are composed solely of protein. Unlike viral, bacterial, or fungal pathogens, the information necessary to propagate the infection is contained in the conformation of the prion isofor...

  3. [Biology and pathology of prion diseases].

    PubMed

    Jerkovi?-Mujki?, Anesa

    2002-01-01

    During the last few decades, intensive research of the nature of causes of transmissible spongiform encephalophatics (TSE) have been undertaken. The interest in this field of research has risen especially after the outbreak of mad cow disease epidemy. According to proposed Prion hypothesis, PSE agents lack nucleic acid, with protein as their primary component. Various research has detected the presence of Prion genes which code normal cellular Prion proteins. Normal and pathogen protein are isomers but of different conformations. It is hypothesed that a pathogen protein when in contact with normal protein causes its conversion into a pathogen form which leads to disease. PMID:12518540

  4. The physical basis of how prion conformations determine strain phenotypes

    NASA Astrophysics Data System (ADS)

    Tanaka, Motomasa; Collins, Sean R.; Toyama, Brandon H.; Weissman, Jonathan S.

    2006-08-01

    A principle that has emerged from studies of protein aggregation is that proteins typically can misfold into a range of different aggregated forms. Moreover, the phenotypic and pathological consequences of protein aggregation depend critically on the specific misfolded form. A striking example of this is the prion strain phenomenon, in which prion particles composed of the same protein cause distinct heritable states. Accumulating evidence from yeast prions such as [PSI+] and mammalian prions argues that differences in the prion conformation underlie prion strain variants. Nonetheless, it remains poorly understood why changes in the conformation of misfolded proteins alter their physiological effects. Here we present and experimentally validate an analytical model describing how [PSI+] strain phenotypes arise from the dynamic interaction among the effects of prion dilution, competition for a limited pool of soluble protein, and conformation-dependent differences in prion growth and division rates. Analysis of three distinct prion conformations of yeast Sup35 (the [PSI+] protein determinant) and their in vivo phenotypes reveals that the Sup35 amyloid causing the strongest phenotype surprisingly shows the slowest growth. This slow growth, however, is more than compensated for by an increased brittleness that promotes prion division. The propensity of aggregates to undergo breakage, thereby generating new seeds, probably represents a key determinant of their physiological impact for both infectious (prion) and non-infectious amyloids.

  5. An overview of animal prion diseases.

    PubMed

    Imran, Muhammad; Mahmood, Saqib

    2011-01-01

    Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases. PMID:22044871

  6. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion

    PubMed Central

    Wang, Xinhe; McGovern, Gillian; Zhang, Yi; Wang, Fei; Zha, Liang; Jeffrey, Martin; Ma, Jiyan

    2015-01-01

    The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / ?g. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. PMID:26136122

  7. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  8. The Shannon information entropy of protein sequences.

    PubMed Central

    Strait, B J; Dewey, T G

    1996-01-01

    A comprehensive data base is analyzed to determine the Shannon information content of a protein sequence. This information entropy is estimated by three methods: a k-tuplet analysis, a generalized Zipf analysis, and a "Chou-Fasman gambler." The k-tuplet analysis is a "letter" analysis, based on conditional sequence probabilities. The generalized Zipf analysis demonstrates the statistical linguistic qualities of protein sequences and uses the "word" frequency to determine the Shannon entropy. The Zipf analysis and k-tuplet analysis give Shannon entropies of approximately 2.5 bits/amino acid. This entropy is much smaller than the value of 4.18 bits/amino acid obtained from the nonuniform composition of amino acids in proteins. The "Chou-Fasman" gambler is an algorithm based on the Chou-Fasman rules for protein structure. It uses both sequence and secondary structure information to guess at the number of possible amino acids that could appropriately substitute into a sequence. As in the case for the English language, the gambler algorithm gives significantly lower entropies than the k-tuplet analysis. Using these entropies, the number of most probable protein sequences can be calculated. The number of most probable protein sequences is much less than the number of possible sequences but is still much larger than the number of sequences thought to have existed throughout evolution. Implications of these results for mutagenesis experiments are discussed. PMID:8804598

  9. Amyloids or prions? That is the question.

    PubMed

    Sabate, Raimon; Rousseau, Frederic; Schymkowitz, Joost; Batlle, Cristina; Ventura, Salvador

    2015-01-01

    Despite major efforts devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the amino acid sequence. In recent years, experimental data on yeast prion domains allow to start at least partially decrypting the sequence requirements of prion formation. These experiments illustrate the need for intrinsically disordered sequence regions enriched with a particularly high proportion of glutamine and asparagine. Bioinformatic analysis suggests that these regions strike a balance between sufficient amyloid nucleation propensity on the one hand and disorder on the other, which ensures availability of the amyloid prone regions but entropically prevents unwanted nucleation and facilitates brittleness required for propagation. PMID:26039159

  10. Proteinase K-Resistant Material in ARR/VRQ Sheep Brain Affected with Classical Scrapie Is Composed Mainly of VRQ Prion Protein?†

    PubMed Central

    Jacobs, J. G.; Bossers, A.; Rezaei, H.; van Keulen, L. J. M.; McCutcheon, S.; Sklaviadis, T.; Lantier, I.; Berthon, P.; Lantier, F.; van Zijderveld, F. G.; Langeveld, J. P. M.

    2011-01-01

    Classical scrapie is a prion disease in sheep and goats. In sheep, susceptibility to disease is genetically influenced by single amino acid substitutions. Genetic breeding programs aimed at enrichment of arginine-171 (171R) prion protein (PrP), the so-called ARR allele, in the sheep population have been demonstrated to be effective in reducing the occurrence of classical scrapie in the field. Understanding the molecular basis for this reduced prevalence would serve the assessment of ARR adaptation. The prion formation mechanism and conversion of PrP from the normal form (PrPC) to the scrapie-associated form (PrPSc) could play a key role in this process. Therefore, we investigated whether the ARR allele substantially contributes to scrapie prion formation in naturally infected heterozygous 171Q/R animals. Two methods were applied to brain tissue of 171Q/R heterozygous sheep with natural scrapie to determine the relative amount of the 171R PrP fraction in PrPres, the proteinase K-resistant PrPSc core. An antibody test differentiating between 171Q and 171R PrP fragments showed that PrPres was mostly composed of the 171Q allelotype. Furthermore, using a novel tool for prion research, endoproteinase Lys-C-digested PrPres yielded substantial amounts of a nonglycosylated and a monoglycosylated PrP fragment comprising codons 114 to 188. Following two-dimensional gel electrophoresis, only marginal amounts (<9%) of 171R PrPres were detected. Enhanced 171Rres proteolytic susceptibility could be excluded. Thus, these data support a nearly zero contribution of 171R PrP in PrPres of 171R/Q field scrapie-infected animals. This is suggestive of a poor adaptation of classical scrapie to this resistance allele under these natural conditions. PMID:21917981

  11. When amyloids become prions

    PubMed Central

    Sabate, Raimon

    2014-01-01

    The conformational diseases, linked to protein aggregation into amyloid conformations, range from non-infectious neurodegenerative disorders, such as Alzheimer's disease (AD), to highly infectious ones, such as human transmissible spongiform encephalopathies (TSEs). They are commonly known as prion diseases. However, since all amyloids could be considered prions (from those involved in cell-to-cell transmission to those responsible for real neuronal invasion), it is necessary to find an underlying cause of the different capacity to infect that each of the proteins prone to form amyloids has. As proposed here, both the intrinsic cytotoxicity and the number of nuclei of aggregation per cell could be key factors in this transmission capacity of each amyloid. PMID:24831240

  12. Elements Modulating the Prion Species Barrier and Its Passage Consequences

    PubMed Central

    Torres, Juan-Maria; Espinosa, Juan-Carlos; Aguilar-Calvo, Patricia; Herva, María-Eugenia; Relaño-Ginés, Aroa; Villa-Diaz, Ana; Morales, Mónica; Parra, Beatriz; Alamillo, Elia; Brun, Alejandro; Castilla, Joaquín; Molina, Susana; Hawkins, Steve A. C.; Andreoletti, Olivier

    2014-01-01

    The specific characteristics of Transmissible Spongiform Encephalopathy (TSE) strains may be altered during passage across a species barrier. In this study we investigated the biochemical and biological characteristics of Bovine Spongiform Encephalopathy (BSE) after transmission in both natural host species (cattle, sheep, pigs and mice) and in transgenic mice overexpressing the corresponding cellular prion protein (PrPC) in comparison with other non-BSE related prions from the same species. After these passages, most features of the BSE agent remained unchanged. BSE-derived agents only showed slight modifications in the biochemical properties of the accumulated PrPSc, which were demonstrated to be reversible upon re-inoculation into transgenic mice expressing bovine-PrPC. Transmission experiments in transgenic mice expressing bovine, porcine or human-PrP revealed that all BSE-derived agents were transmitted with no or a weak transmission barrier. In contrast, a high species barrier was observed for the non-BSE related prions that harboured an identical PrP amino acid sequence, supporting the theory that the prion transmission barrier is modulated by strain properties (presumably conformation-dependent) rather than by PrP amino acid sequence differences between host and donor. As identical results were observed with prions propagated either in natural hosts or in transgenic mouse models, we postulate that the species barrier and its passage consequences are uniquely governed by the host PrPC sequence and not influenced by other host genetic factors. The results presented herein reinforce the idea that the BSE agent is highly promiscuous, infecting other species, maintaining its properties in the new species, and even increasing its capabilities to jump to other species including humans. These data are essential for the development of an accurate risk assessment for BSE. PMID:24608126

  13. Monoacylated Cellular Prion Proteins Reduce Amyloid-?-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    PubMed Central

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-? (A?) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by A? oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural A?”, sequestering A? outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the A?-induced activation of cytoplasmic phospholipase A2 (cPLA2) and A?-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to ?-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by A? oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding A? oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  14. Protein Sequencing with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ziady, Assem G.; Kinter, Michael

    The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.

  15. Accelerated, Spleen-Based Titration of Variant Creutzfeldt-Jakob Disease Infectivity in Transgenic Mice Expressing Human Prion Protein with Sensitivity Comparable to That of Survival Time Bioassay

    PubMed Central

    Halliez, Sophie; Reine, Fabienne; Herzog, Laetitia; Jaumain, Emilie; Haïk, Stéphane; Rezaei, Human; Vilotte, Jean-Luc; Laude, Hubert

    2014-01-01

    ABSTRACT The dietary exposure of the human population to the prions responsible for the bovine spongiform encephalopathy (BSE) epizooty has led to the emergence of variant Creutzfeldt-Jakob disease (vCJD). This fatal, untreatable neurodegenerative disorder is a growing public health concern because the prevalence of the infection seems much greater than the disease incidence and because secondary transmission of vCJD by blood transfusion or use of blood products has occurred. A current limitation in variant CJD risk assessment is the lack of quantitative information on the infectivity of contaminated tissues. To address this limitation, we tested the potential of a transgenic mouse line overexpressing human prion protein (PrP), which was previously reported to propagate vCJD prions. Endpoint titration of vCJD infectivity in different tissues was evaluated by two different methods: (i) the “classical” bioassay, based on the appearance of clinical symptoms and the detection of pathological prion protein in tissues of the inoculated mouse, and (ii) a shortened bioassay based on the detection of the protein in the mouse spleen at defined time points. The two methods proved equally sensitive in quantifying infectivity, even after very-low-dose inoculation of infected material, but the time schedule was shortened from ?2.5 years to ?1 year with the spleen bioassay. Compared to the “gold-standard” RIII model routinely used for endpoint titration of vCJD/BSE prions, either method improved the sensitivity by >2 orders of magnitude and allowed reevaluating the infectious titer of spleen from a vCJD individual at disease end stage to >1,000-fold-higher values. IMPORTANCE Here, we provide key reevaluation of the infectious titer of variant CJD brain and spleen tissues. The highly sensitive, accelerated spleen-based assay should thus constitute a key advance for variant CJD epidemiological and risk assessment purposes and should greatly facilitate future titration studies, including, for example, those aimed at validating decontamination procedures. The overlooked notion that the lymphoid tissue exhibits a higher capacity than the brain to replicate prions even after low-dose infection raises new questions about the molecular and/or cellular determinant(s) involved, a key issue regarding potent silent carriers of variant CJD in the lymphoid tissue. PMID:24850746

  16. Novel compounds lowering the cellular isoform of the human prion protein in cultured human cells

    PubMed Central

    Silber, B. Michael; Gever, Joel R.; Rao, Satish; Li, Zhe; Renslo, Adam R.; Widjaja, Kartika; Wong, Casper; Giles, Kurt; Freyman, Yevgeniy; Elepano, Manuel; Irwin, John J.; Jacobson, Matthew P.; Prusiner, Stanley B.

    2014-01-01

    Purpose Previous studies showed that lowering PrPC concomitantly reduced PrPSc in the brains of mice inoculated with prions. We aimed to develop assays that measure PrPC on the surface of human T98G glioblastoma and IMR32 neuroblastoma cells. Using these assays, we sought to identify chemical hits, confirmed hits, and scaffolds that potently lowered PrPC levels in human brains cells, without lethality, and that could achieve drug concentrations in the brain after oral or intraperitoneal dosing in mice. Methods We utilized HTS ELISA assays to identify small compounds that lower PrPC levels by ?30% on the cell surface of human glioblastoma (T98G) and neuroblastoma (IMR32) cells. Results From 44,578 diverse chemical compounds tested, 138 hits were identified by single point confirmation (SPC) representing 7 chemical scaffolds in T98G cells, and 114 SPC hits representing 6 scaffolds found in IMR32 cells. When the confirmed SPC hits were combined with structurally related analogs, >300 compounds (representing 6 distinct chemical scaffolds) were tested for dose-response (EC50) in both cell lines, only studies in T98G cells identified compounds that reduced PrPC without killing the cells. EC50 values from 32 hits ranged from 65 nM to 4.1 ?M. Twenty-eight were evaluated in vivo in pharmacokinetic studies after a single 10 mg/kg oral or intraperitoneal dose in mice. Our results showed brain concentrations as high as 16.2 ?M, but only after intraperitoneal dosing. Conclusions Our studies identified leads for future studies to determine which compounds might lower PrPC levels in rodent brain, and provide the basis of a therapeutic for fatal disorders caused by PrP prions. PMID:24530226

  17. Evidence for zoonotic potential of ovine scrapie prions.

    PubMed

    Cassard, Hervé; Torres, Juan-Maria; Lacroux, Caroline; Douet, Jean-Yves; Benestad, Sylvie L; Lantier, Frédéric; Lugan, Séverine; Lantier, Isabelle; Costes, Pierrette; Aron, Naima; Reine, Fabienne; Herzog, Laetitia; Espinosa, Juan-Carlos; Beringue, Vincent; Andréoletti, Olivier

    2014-01-01

    Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. PMID:25510416

  18. A brief history of prions.

    PubMed

    Zabel, Mark D; Reid, Crystal

    2015-12-01

    Proteins were described as distinct biological molecules and their significance in cellular processes was recognized as early as the 18th century. At the same time, Spanish shepherds observed a disease that compelled their Merino sheep to pathologically scrape against fences, a defining clinical sign that led to the disease being named scrapie. In the late 19th century, Robert Koch published his postulates for defining causative agents of disease. In the early 20th century, pathologists Creutzfeldt and Jakob described a neurodegenerative disease that would later be included with scrapie into a group of diseases known as transmissible spongiform encephalopathies (TSEs). Later that century, mounting evidence compelled a handful of scientists to betray the prevailing biological dogma governing pathogen replication that Watson and Crick so convincingly explained by cracking the genetic code just two decades earlier. Because TSEs seemed to defy these new rules, J.S. Griffith theorized mechanisms by which a pathogenic protein could encipher its own replication blueprint without a genetic code. Stanley Prusiner called this proteinaceous infectious pathogen a prion. Here we offer a concise account of the discovery of prions, the causative agent of TSEs, in the wider context of protein biochemistry and infectious disease. We highlight the discovery of prions in yeast and discuss the implication of prions as epigenomic carriers of biological and pathological information. We also consider expanding the prion hypothesis to include other proteins whose alternate isoforms confer new biological or pathological properties. PMID:26449713

  19. Lichens: unexpected anti-prion agents?

    USGS Publications Warehouse

    Rodriguez, Cynthia M.; Bennett, James P.; Johnson, Christopher J.

    2012-01-01

    The prion diseases sheep scrapie and cervid chronic wasting disease are transmitted, in part, via an environmental reservoir of infectivity; prions released from infected animals persist in the environment and can cause disease years later. Central to controlling disease transmission is the identification of methods capable of inactivating these agents on the landscape. We have found that certain lichens, common, ubiquitous, symbiotic organisms, possess a serine protease capable of degrading prion protein (PrP) from prion-infected animals. The protease functions against a range of prion strains from various hosts and reduces levels of abnormal PrP by at least two logs. We have now tested more than 20 lichen species from several geographical locations and from various taxa and found that approximately half of these species degrade PrP. Critical next steps include examining the effect of lichens on prion infectivity and cloning the protease responsible for PrP degradation. The impact of lichens on prions in the environment remains unknown. We speculate that lichens could have the potential to degrade prions when they are shed from infected animals onto lichens or into environments where lichens are abundant. In addition, lichens are frequently consumed by cervids and many other animals and the effect of dietary lichens on prion disease transmission should also be considered.

  20. Compositional Determinants of Prion Formation in Yeast?

    PubMed Central

    Toombs, James A.; McCarty, Blake R.; Ross, Eric D.

    2010-01-01

    Numerous prions (infectious proteins) have been identified in yeast that result from the conversion of soluble proteins into ?-sheet-rich amyloid-like protein aggregates. Yeast prion formation is driven primarily by amino acid composition. However, yeast prion domains are generally lacking in the bulky hydrophobic residues most strongly associated with amyloid formation and are instead enriched in glutamines and asparagines. Glutamine/asparagine-rich domains are thought to be involved in both disease-related and beneficial amyloid formation. These domains are overrepresented in eukaryotic genomes, but predictive methods have not yet been developed to efficiently distinguish between prion and nonprion glutamine/asparagine-rich domains. We have developed a novel in vivo assay to quantitatively assess how composition affects prion formation. Using our results, we have defined the compositional features that promote prion formation, allowing us to accurately distinguish between glutamine/asparagine-rich domains that can form prion-like aggregates and those that cannot. Additionally, our results explain why traditional amyloid prediction algorithms fail to accurately predict amyloid formation by the glutamine/asparagine-rich yeast prion domains. PMID:19884345

  1. Fate of Prions in Soil: A Review

    PubMed Central

    Smith, Christen B.; Booth, Clarissa J.; Pedersen, Joel A.

    2011-01-01

    Prions are the etiological agents of transmissible spongiform encephalopathies (TSEs), a class of fatal neurodegenerative diseases affecting humans and other mammals. The pathogenic prion protein is a misfolded form of the host-encoded prion protein and represents the predominant, if not sole, component of the infectious agent. Environmental routes of TSE transmission are implicated in epizootics of sheep scrapie and chronic wasting disease (CWD) of deer, elk, and moose. Soil represents a plausible environmental reservoir of scrapie and CWD agents, which can persist in the environment for years. Attachment to soil particles likely influences the persistence and infectivity of prions in the environment. Effective methods to inactivate TSE agents in soil are currently lacking, and the effects of natural degradation mechanisms on TSE infectivity are largely unknown. An improved understanding of the processes affecting the mobility, persistence, and bioavailability of prions in soil is needed for the management of TSE-contaminated environments. PMID:21520752

  2. Distinct amino acid compositional requirements for formation and maintenance of the [PSI?] prion in yeast.

    PubMed

    MacLea, Kyle S; Paul, Kacy R; Ben-Musa, Zobaida; Waechter, Aubrey; Shattuck, Jenifer E; Gruca, Margaret; Ross, Eric D

    2015-03-01

    Multiple yeast prions have been identified that result from the structural conversion of proteins into a self-propagating amyloid form. Amyloid-based prion activity in yeast requires a series of discrete steps. First, the prion protein must form an amyloid nucleus that can recruit and structurally convert additional soluble proteins. Subsequently, maintenance of the prion during cell division requires fragmentation of these aggregates to create new heritable propagons. For the Saccharomyces cerevisiae prion protein Sup35, these different activities are encoded by different regions of the Sup35 prion domain. An N-terminal glutamine/asparagine-rich nucleation domain is required for nucleation and fiber growth, while an adjacent oligopeptide repeat domain is largely dispensable for prion nucleation and fiber growth but is required for chaperone-dependent prion maintenance. Although prion activity of glutamine/asparagine-rich proteins is predominantly determined by amino acid composition, the nucleation and oligopeptide repeat domains of Sup35 have distinct compositional requirements. Here, we quantitatively define these compositional requirements in vivo. We show that aromatic residues strongly promote both prion formation and chaperone-dependent prion maintenance. In contrast, nonaromatic hydrophobic residues strongly promote prion formation but inhibit prion propagation. These results provide insight into why some aggregation-prone proteins are unable to propagate as prions. PMID:25547291

  3. Protein structure prediction from sequence variation

    PubMed Central

    Marks, Debora S; Hopf, Thomas A; Sander, Chris

    2015-01-01

    Genomic sequences contain rich evolutionary information about functional constraints on macromolecules such as proteins. This information can be efficiently mined to detect evolutionary couplings between residues in proteins and address the long-standing challenge to compute protein three-dimensional structures from amino acid sequences. Substantial progress has recently been made on this problem owing to the explosive growth in available sequences and the application of global statistical methods. In addition to three-dimensional structure, the improved understanding of covariation may help identify functional residues involved in ligand binding, protein-complex formation and conformational changes. We expect computation of covariation patterns to complement experimental structural biology in elucidating the full spectrum of protein structures, their functional interactions and evolutionary dynamics. PMID:23138306

  4. Sequencing proteins with transverse ionic transport

    NASA Astrophysics Data System (ADS)

    Boynton, Paul; di Ventra, Massimiliano

    2015-03-01

    De novo protein sequencing is essential for understanding cellular processes that govern the function of living organisms. By obtaining the order of the amino acids that composes a given protein one can determine both its secondary and tertiary structures through protein structure prediction, which is used to create models for protein aggregation diseases such as Alzheimer's Disease. Mass spectrometry is the current technique of choice for de novo sequencing, but because some amino acids have the same mass the sequence cannot be completely determined in many cases. In this paper we propose a new technique for de novo protein sequencing that involves translocating a polypeptide through a synthetic nanochannel and measuring the ionic current of each amino acid through an intersecting perpendicular nanochannel, similar to that proposed in for DNA sequencing. Indeed, we find that the distribution of ionic currents for each of the 20 proteinogenic amino acids encoded by eukaryotic genes is statistically distinct, showing this technique's potential for de novo protein sequencing.

  5. Investigating the relationship between abnormal prion protein (PrPSc) and the transmissible spongiform encephalopathy (TSE) infectious agent 

    E-print Network

    Dobie, Karen Louise

    2013-07-06

    Transmissible spongiform encephalopathies (TSEs) are a group of fatal, neurodegenerative diseases that can affect both humans and animals. TSEs can be sporadic, familial, or acquired diseases. The prion hypothesis states ...

  6. Predicting protein sumoylation sites from sequence features.

    PubMed

    Teng, Shaolei; Luo, Hong; Wang, Liangjiang

    2012-07-01

    Protein sumoylation is a post-translational modification that plays an important role in a wide range of cellular processes. Small ubiquitin-related modifier (SUMO) can be covalently and reversibly conjugated to the sumoylation sites of target proteins, many of which are implicated in various human genetic disorders. The accurate prediction of protein sumoylation sites may help biomedical researchers to design their experiments and understand the molecular mechanism of protein sumoylation. In this study, a new machine learning approach has been developed for predicting sumoylation sites from protein sequence information. Random forests (RFs) and support vector machines (SVMs) were trained with the data collected from the literature. Domain-specific knowledge in terms of relevant biological features was used for input vector encoding. It was shown that RF classifier performance was affected by the sequence context of sumoylation sites, and 20 residues with the core motif ?KXE in the middle appeared to provide enough context information for sumoylation site prediction. The RF classifiers were also found to outperform SVM models for predicting protein sumoylation sites from sequence features. The results suggest that the machine learning approach gives rise to more accurate prediction of protein sumoylation sites than the other existing methods. The accurate classifiers have been used to develop a new web server, called seeSUMO (http://bioinfo.ggc.org/seesumo/), for sequence-based prediction of protein sumoylation sites. PMID:21986959

  7. The cellular prion protein PrPc is a partner of the Wnt pathway in intestinal epithelial cells

    PubMed Central

    Besnier, Laura S.; Cardot, Philippe; Da Rocha, Barbara; Simon, Anthony; Loew, Damarys; Klein, Christophe; Riveau, Béatrice; Lacasa, Michel; Clair, Caroline; Rousset, Monique; Thenet, Sophie

    2015-01-01

    We reported previously that the cellular prion protein (PrPc) is a component of desmosomes and contributes to the intestinal barrier function. We demonstrated also the presence of PrPc in the nucleus of proliferating intestinal epithelial cells. Here we sought to decipher the function of this nuclear pool. In human intestinal cancer cells Caco-2/TC7 and SW480 and normal crypt-like HIEC-6 cells, PrPc interacts, in cytoplasm and nucleus, with ?-catenin, one of its desmosomal partners, and with ?-catenin and TCF7L2, effectors of the canonical Wnt pathway. PrPc up-regulates the transcriptional activity of the ?-catenin/TCF7L2 complex, whereas ?-catenin down-regulates it. Silencing of PrPc results in the modulation of several Wnt target gene expressions in human cells, with different effects depending on their Wnt signaling status, and in mouse intestinal crypt cells in vivo. PrPc also interacts with the Hippo pathway effector YAP, suggesting that it may contribute to the regulation of gene transcription beyond the ?-catenin/TCF7L2 complex. Finally, we demonstrate that PrPc is required for proper formation of intestinal organoids, indicating that it contributes to proliferation and survival of intestinal progenitors. In conclusion, PrPc must be considered as a new modulator of the Wnt signaling pathway in proliferating intestinal epithelial cells. PMID:26224313

  8. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    SciTech Connect

    Medori, R.; Tritschler, H.J. )

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.

  9. Genetic diversity in the prion protein gene (PRNP) of domestic cattle and water buffaloes in Vietnam, Indonesia and Thailand.

    PubMed

    Uchida, Leo; Heriyanto, Agus; Thongchai, Chalermchaikit; Hanh, Tran Thi; Horiuchi, Motohiro; Ishihara, Kanako; Tamura, Yutaka; Muramatsu, Yasukazu

    2014-07-01

    There has been an accumulation of information on frequencies of insertion/deletion (indel) polymorphisms within the bovine prion protein gene (PRNP) and on the number of octapeptide repeats and single nucleotide polymorphisms (SNPs) in the coding region of bovine PRNP related to bovine spongiform encephalopathy (BSE) susceptibility. We investigated the frequencies of 23-bp indel polymorphism in the promoter region (23indel) and 12-bp indel polymorphism in intron 1 region (12indel), octapeptide repeat polymorphisms and SNPs in the bovine PRNP of cattle and water buffaloes in Vietnam, Indonesia and Thailand. The frequency of the deletion allele in the 23indel site was significantly low in cattle of Indonesia and Thailand and water buffaloes. The deletion allele frequency in the 12indel site was significantly low in all of the cattle and buffaloes categorized in each subgroup. In both indel sites, the deletion allele has been reported to be associated with susceptibility to classical BSE. In some Indonesian local cattle breeds, the frequency of the allele with 5 octapeptide repeats was significantly high despite the fact that the allele with 6 octapeptide repeats has been reported to be most frequent in many breeds of cattle. Four SNPs observed in Indonesian local cattle have not been reported for domestic cattle. This study provided information on PRNP of livestock in these Southeast Asian countries. PMID:24705506

  10. Prion Protein Gene Variability in Spanish Goats. Inference through Susceptibility to Classical Scrapie Strains and Pathogenic Distribution of Peripheral PrPsc

    PubMed Central

    Acín, Cristina; Martín-Burriel, Inmaculada; Monleón, Eva; Lyahyai, Jaber; Pitarch, José Luis; Serrano, Carmen; Monzón, Marta; Zaragoza, Pilar; Badiola, Juan José

    2013-01-01

    Classical scrapie is a neurological disorder of the central nervous system (CNS) characterized by the accumulation of an abnormal, partially protease resistant prion protein (PrPsc) in the CNS and in some peripheral tissues in domestic small ruminants. Whereas the pathological changes and genetic susceptibility of ovine scrapie are well known, caprine scrapie has been less well studied. We report here a pathological study of 13 scrapie-affected goats diagnosed in Spain during the last 9 years. We used immunohistochemical and biochemical techniques to discriminate between classical and atypical scrapie and bovine spongiform encephalopathy (BSE). All the animals displayed PrPsc distribution patterns and western blot characteristics compatible with classical scrapie. In addition, we determined the complete open reading frame sequence of the PRNP in these scrapie-affected animals. The polymorphisms observed were compared with those of the herd mates (n?=?665) and with the frequencies of healthy herds (n?=?581) of native Spanish goats (Retinta, Pirenaica and Moncaina) and other worldwide breeds reared in Spain (Saanen, Alpine and crossbreed). In total, sixteen polymorphic sites were identified, including the known amino acid substitutions at codons G37V, G127S, M137I, I142M, H143R, R151H, R154H, R211Q, Q222K, G232W, and P240S, and new polymorphisms at codons G74D, M112T, R139S, L141F and Q215R. In addition, the known 42, 138 and 179 silent mutations were detected, and one new one is reported at codon 122. The genetic differences observed in the population studied have been attributed to breed and most of the novel polymorphic codons show frequencies lower than 5%. This work provides the first basis of polymorphic distribution of PRNP in native and worldwide goat breeds reared in Spain. PMID:23580248

  11. Axonal and Transynaptic Spread of Prions

    PubMed Central

    Shearin, Harold

    2014-01-01

    ABSTRACT Natural transmission of prion diseases depends upon the spread of prions from the nervous system to excretory or secretory tissues, but the mechanism of prion transport in axons and into peripheral tissue is unresolved. Here, we examined the temporal and spatial movement of prions from the brain stem along cranial nerves into skeletal muscle as a model of axonal transport and transynaptic spread. The disease-specific isoform of the prion protein, PrPSc, was observed in nerve fibers of the tongue approximately 2 weeks prior to PrPSc deposition in skeletal muscle. Initially, PrPSc deposits had a small punctate pattern on the edge of muscle cells that colocalized with synaptophysin, a marker for the neuromuscular junction (NMJ), in >50% of the cells. At later time points PrPSc was widely distributed in muscle cells, but <10% of prion-infected cells exhibited PrPSc deposition at the NMJ, suggesting additional prion replication and dissemination within muscle cells. In contrast to the NMJ, PrPSc was not associated with synaptophysin in nerve fibers but was found to colocalize with LAMP-1 and cathepsin D during early stages of axonal spread. We propose that PrPSc-bound endosomes can lead to membrane recycling in which PrPSc is directed to the synapse, where it either moves across the NMJ into the postsynaptic muscle cell or induces PrPSc formation on muscle cells across the NMJ. IMPORTANCE Prion diseases are transmissible and fatal neurodegenerative diseases in which prion dissemination to excretory or secretory tissues is necessary for natural disease transmission. Despite the importance of this pathway, the cellular mechanism of prion transport in axons and into peripheral tissue is unresolved. This study demonstrates anterograde spread of prions within nerve fibers prior to infection of peripheral synapses (i.e., neuromuscular junction) and infection of peripheral tissues (i.e., muscle cells). Within nerve fibers prions were associated with the endosomal-lysosomal pathway prior to entry into muscle cells. Since early prion spread is anterograde and endosome-lysosomal movement within axons is primarily retrograde, these findings suggest that endosome-bound prions may have an alternate fate that directs prions to the peripheral synapse. PMID:24850738

  12. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the ? -amyloid Protein Precursor in Developing Hamster Brain

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the ? protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the ? -protein precursor (? -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and ? -PP mRNAs. The increases in PrP and ? -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and ? -PP mRNA levels. Increased PrP and ? -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and ? -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  13. A systems approach to prion disease

    PubMed Central

    Hwang, Daehee; Lee, Inyoul Y; Yoo, Hyuntae; Gehlenborg, Nils; Cho, Ji-Hoon; Petritis, Brianne; Baxter, David; Pitstick, Rose; Young, Rebecca; Spicer, Doug; Price, Nathan D; Hohmann, John G; DeArmond, Stephen J; Carlson, George A; Hood, Leroy E

    2009-01-01

    Prions cause transmissible neurodegenerative diseases and replicate by conformational conversion of normal benign forms of prion protein (PrPC) to disease-causing PrPSc isoforms. A systems approach to disease postulates that disease arises from perturbation of biological networks in the relevant organ. We tracked global gene expression in the brains of eight distinct mouse strain–prion strain combinations throughout the progression of the disease to capture the effects of prion strain, host genetics, and PrP concentration on disease incubation time. Subtractive analyses exploiting various aspects of prion biology and infection identified a core of 333 differentially expressed genes (DEGs) that appeared central to prion disease. DEGs were mapped into functional pathways and networks reflecting defined neuropathological events and PrPSc replication and accumulation, enabling the identification of novel modules and modules that may be involved in genetic effects on incubation time and in prion strain specificity. Our systems analysis provides a comprehensive basis for developing models for prion replication and disease, and suggests some possible therapeutic approaches. PMID:19308092

  14. The FK506-binding protein FKBP52 in vitro induces aggregation of truncated Tau forms with prion-like behavior.

    PubMed

    Giustiniani, Julien; Guillemeau, Kevin; Dounane, Omar; Sardin, Elodie; Huvent, Isabelle; Schmitt, Alain; Hamdane, Malika; Buée, Luc; Landrieu, Isabelle; Lippens, Guy; Baulieu, Etienne Emile; Chambraud, Béatrice

    2015-08-01

    Tauopathies, including Alzheimer's disease (AD), are neurodegenerative diseases associated with the pathologic aggregation of human brain Tau protein. Neuronal Tau is involved in microtubule (MT) formation and stabilization. We showed previously that the immunophilin FK506-binding protein of MW ?52 kDa (FKBP52) interferes with this function of full-length Tau and provokes aggregation of a disease-related mutant of Tau. To dissect the molecular interaction between recombinant human FKBP52 and Tau, here, we study the effect of FKBP52 on a functional Tau fragment (Tau-F4, Ser(208)-Ser(324)) containing part of the proline- rich region and MT-binding repeats. Therefore, we perform MT assembly and light-scattering assays, blue native PAGE analysis, electron microscopy, and Tau seeding experiments in SH-SY5Y human neuroblastoma cells. We show that FKBP52 (6 µM) prevents MT formation generated by Tau-F4 (5 µM) and induces Tau-F4 oligomerization and aggregation. Electron microscopy analyses show granular oligomers and filaments of Tau-F4 after short-time FKBP52 incubation. We demonstrate that the terminal parts of Tau interfere with the effects of FKBP52. Finally, we find that FKBP52-induced Tau-F4 oligomers cannot only generate in vitro, direct conformational changes in full-length Tau and that their uptake into neuronal cells can equally lead to aggregation of wild-type endogenous Tau. This suggests a potential prion-like property of these particular Tau-F4 aggregates. Collectively, our results strengthen the hypothesis of FKBP52 involvement in the Tau pathogenicity process. PMID:25888602

  15. Species-barrier-independent prion replication in apparently resistant species

    NASA Astrophysics Data System (ADS)

    Hill, Andrew F.; Joiner, Susan; Linehan, Jackie; Desbruslais, Melanie; Lantos, Peter L.; Collinge, John

    2000-08-01

    Transmission of prions between mammalian species is thought to be limited by a "species barrier," which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host. Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions. Current definitions of the species barrier, which have been based on clinical end-points, need to be fundamentally reassessed.

  16. Urinary ?1-Antichymotrypsin: A Biomarker of Prion Infection

    PubMed Central

    Miele, Gino; Seeger, Harald; Marino, Denis; Eberhard, Ralf; Heikenwalder, Mathias; Stoeck, Katharina; Basagni, Max; Knight, Richard; Green, Alison; Chianini, Francesca; Wüthrich, Rudolf P.; Hock, Christoph; Zerr, Inga; Aguzzi, Adriano

    2008-01-01

    The occurrence of blood-borne prion transmission incidents calls for identification of potential prion carriers. However, current methods for intravital diagnosis of prion disease rely on invasive tissue biopsies and are unsuitable for large-scale screening. Sensitive biomarkers may help meeting this need. Here we scanned the genome for transcripts elevated upon prion infection and encoding secreted proteins. We found that ?1-antichymotrypsin (?1-ACT) was highly upregulated in brains of scrapie-infected mice. Furthermore, ?1-ACT levels were dramatically increased in urine of patients suffering from sporadic Creutzfeldt-Jakob disease, and increased progressively throughout the disease. Increased ?1-ACT excretion was also found in cases of natural prion disease of animals. Therefore measurement of urinary ?1-ACT levels may be useful for monitoring the efficacy of therapeutic regimens for prion disease, and possibly also for deferring blood and organ donors that may be at risk of transmitting prion infections. PMID:19057641

  17. The Structure of Human Prions: From Biology to Structural Models — Considerations and Pitfalls

    PubMed Central

    Acevedo-Morantes, Claudia Y.; Wille, Holger

    2014-01-01

    Prion diseases are a family of transmissible, progressive, and uniformly fatal neurodegenerative disorders that affect humans and animals. Although cross-species transmissions of prions are usually limited by an apparent “species barrier”, the spread of a prion disease to humans by ingestion of contaminated food, or via other routes of exposure, indicates that animal prions can pose a significant public health risk. The infectious agent responsible for the transmission of prion diseases is a misfolded conformer of the prion protein, PrPSc, a pathogenic isoform of the host-encoded, cellular prion protein, PrPC. The detailed mechanisms of prion conversion and replication, as well as the high-resolution structure of PrPSc, are unknown. This review will discuss the general background related to prion biology and assess the structural models proposed to date, while highlighting the experimental challenges of elucidating the structure of PrPSc. PMID:25333467

  18. Mercury BLASTP: Accelerating Protein Sequence Alignment

    PubMed Central

    Jacob, Arpith; Lancaster, Joseph; Buhler, Jeremy; Harris, Brandon; Chamberlain, Roger D.

    2008-01-01

    Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this paper, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results. PMID:19492068

  19. Animal models for prion-like diseases.

    PubMed

    Fernández-Borges, Natalia; Eraña, Hasier; Venegas, Vanesa; Elezgarai, Saioa R; Harrathi, Chafik; Castilla, Joaquín

    2015-09-01

    Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a ?-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid ? peptide and tau present in AD, ?-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum ?-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease. PMID:25907990

  20. Correlation between Infectivity and Disease Associated Prion Protein in the Nervous System and Selected Edible Tissues of Naturally Affected Scrapie Sheep

    PubMed Central

    Chianini, Francesca; Cosseddu, Gian Mario; Steele, Philip; Hamilton, Scott; Hawthorn, Jeremy; Síso, Sílvia; Pang, Yvonne; Finlayson, Jeanie; Eaton, Samantha L.; Reid, Hugh W.; Dagleish, Mark P.; Di Bari, Michele Angelo; D’Agostino, Claudia; Agrimi, Umberto; Terry, Linda; Nonno, Romolo

    2015-01-01

    The transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of a pathological form of a host protein known as prion protein (PrP). The validation of abnormal PrP detection techniques is fundamental to allow the use of high-throughput laboratory based tests, avoiding the limitations of bioassays. We used scrapie, a prototype TSE, to examine the relationship between infectivity and laboratory based diagnostic tools. The data may help to optimise strategies to prevent exposure of humans to small ruminant TSE material via the food chain. Abnormal PrP distribution/accumulation was assessed by immunohistochemistry (IHC), Western blot (WB) and ELISA in samples from four animals. In addition, infectivity was detected using a sensitive bank vole bioassay with selected samples from two of the four sheep and protein misfolding cyclic amplification using bank vole brain as substrate (vPMCA) was also carried out in selected samples from one animal. Lymph nodes, oculomotor muscles, sciatic nerve and kidney were positive by IHC, WB and ELISA, although at levels 100–1000 fold lower than the brain, and contained detectable infectivity by bioassay. Tissues not infectious by bioassay were also negative by all laboratory tests including PMCA. Although discrepancies were observed in tissues with very low levels of abnormal PrP, there was an overall good correlation between IHC, WB, ELISA and bioassay results. Most importantly, there was a good correlation between the detection of abnormal PrP in tissues using laboratory tests and the levels of infectivity even when the titre was low. These findings provide useful information for risk modellers and represent a first step toward the validation of laboratory tests used to quantify prion infectivity, which would greatly aid TSE risk assessment policies. PMID:25807559

  1. Correlation between infectivity and disease associated prion protein in the nervous system and selected edible tissues of naturally affected scrapie sheep.

    PubMed

    Chianini, Francesca; Cosseddu, Gian Mario; Steele, Philip; Hamilton, Scott; Hawthorn, Jeremy; Síso, Sílvia; Pang, Yvonne; Finlayson, Jeanie; Eaton, Samantha L; Reid, Hugh W; Dagleish, Mark P; Di Bari, Michele Angelo; D'Agostino, Claudia; Agrimi, Umberto; Terry, Linda; Nonno, Romolo

    2015-01-01

    The transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of a pathological form of a host protein known as prion protein (PrP). The validation of abnormal PrP detection techniques is fundamental to allow the use of high-throughput laboratory based tests, avoiding the limitations of bioassays. We used scrapie, a prototype TSE, to examine the relationship between infectivity and laboratory based diagnostic tools. The data may help to optimise strategies to prevent exposure of humans to small ruminant TSE material via the food chain. Abnormal PrP distribution/accumulation was assessed by immunohistochemistry (IHC), Western blot (WB) and ELISA in samples from four animals. In addition, infectivity was detected using a sensitive bank vole bioassay with selected samples from two of the four sheep and protein misfolding cyclic amplification using bank vole brain as substrate (vPMCA) was also carried out in selected samples from one animal. Lymph nodes, oculomotor muscles, sciatic nerve and kidney were positive by IHC, WB and ELISA, although at levels 100-1000 fold lower than the brain, and contained detectable infectivity by bioassay. Tissues not infectious by bioassay were also negative by all laboratory tests including PMCA. Although discrepancies were observed in tissues with very low levels of abnormal PrP, there was an overall good correlation between IHC, WB, ELISA and bioassay results. Most importantly, there was a good correlation between the detection of abnormal PrP in tissues using laboratory tests and the levels of infectivity even when the titre was low. These findings provide useful information for risk modellers and represent a first step toward the validation of laboratory tests used to quantify prion infectivity, which would greatly aid TSE risk assessment policies. PMID:25807559

  2. RML prions act through Mahogunin and Attractin-independent pathways

    PubMed Central

    Gunn, Teresa M; Carlson, George A

    2013-01-01

    While the conversion of the normal form of prion protein to a conformationally distinct pathogenic form is recognized to be the primary cause of prion disease, it is not clear how this leads to spongiform change, neuronal dysfunction and death. Mahogunin ring finger-1 (Mgrn1) and Attractin (Atrn) null mutant mice accumulate vacuoles throughout the brain that appear very similar to those associated with prion disease, but they do not accumulate the protease-resistant scrapie form of the prion protein or become sick. A study demonstrating an interaction between cytosolically-exposed prion protein and MGRN1 suggested that disruption of MGRN1 function may contribute to prion disease pathogenesis, but we recently showed that neither loss of MGRN1 nor MGRN1 overexpression influences the onset or progression of prion disease following intracerebral inoculation with Rocky Mountain Laboratory prions. Here, we show that loss of ATRN also has no effect on prion disease onset or progression and discuss possible mechanisms that could cause vacuolation of the central nervous system in Mgrn1 and Atrn null mutant mice and whether the same pathways might contribute to this intriguing phenotype in prion disease. PMID:23787699

  3. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation

    PubMed Central

    Malinovska, Liliana; Palm, Sandra; Gibson, Kimberley; Verbavatz, Jean-Marc; Alberti, Simon

    2015-01-01

    Many protein-misfolding diseases are caused by proteins carrying prion-like domains. These proteins show sequence similarity to yeast prion proteins, which can interconvert between an intrinsically disordered and an aggregated prion state. The natural presence of prions in yeast has provided important insight into disease mechanisms and cellular proteostasis. However, little is known about prions in other organisms, and it is not yet clear whether the findings in yeast can be generalized. Using bioinformatics tools, we show that Dictyostelium discoideum has the highest content of prion-like proteins of all organisms investigated to date, suggesting that its proteome has a high overall aggregation propensity. To study mechanisms regulating these proteins, we analyze the behavior of several well-characterized prion-like proteins, such as an expanded version of human huntingtin exon 1 (Q103) and the prion domain of the yeast prion protein Sup35 (NM), in D. discoideum. We find that these proteins remain soluble and are innocuous to D. discoideum, in contrast to other organisms, where they form cytotoxic cytosolic aggregates. However, when exposed to conditions that compromise molecular chaperones, these proteins aggregate and become cytotoxic. We show that the disaggregase Hsp101, a molecular chaperone of the Hsp100 family, dissolves heat-induced aggregates and promotes thermotolerance. Furthermore, prion-like proteins accumulate in the nucleus, where they are targeted by the ubiquitin–proteasome system. Our data suggest that D. discoideum has undergone specific adaptations that increase the proteostatic capacity of this organism and allow for an efficient regulation of its prion-like proteome. PMID:25941378

  4. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation.

    PubMed

    Malinovska, Liliana; Palm, Sandra; Gibson, Kimberley; Verbavatz, Jean-Marc; Alberti, Simon

    2015-05-19

    Many protein-misfolding diseases are caused by proteins carrying prion-like domains. These proteins show sequence similarity to yeast prion proteins, which can interconvert between an intrinsically disordered and an aggregated prion state. The natural presence of prions in yeast has provided important insight into disease mechanisms and cellular proteostasis. However, little is known about prions in other organisms, and it is not yet clear whether the findings in yeast can be generalized. Using bioinformatics tools, we show that Dictyostelium discoideum has the highest content of prion-like proteins of all organisms investigated to date, suggesting that its proteome has a high overall aggregation propensity. To study mechanisms regulating these proteins, we analyze the behavior of several well-characterized prion-like proteins, such as an expanded version of human huntingtin exon 1 (Q103) and the prion domain of the yeast prion protein Sup35 (NM), in D. discoideum. We find that these proteins remain soluble and are innocuous to D. discoideum, in contrast to other organisms, where they form cytotoxic cytosolic aggregates. However, when exposed to conditions that compromise molecular chaperones, these proteins aggregate and become cytotoxic. We show that the disaggregase Hsp101, a molecular chaperone of the Hsp100 family, dissolves heat-induced aggregates and promotes thermotolerance. Furthermore, prion-like proteins accumulate in the nucleus, where they are targeted by the ubiquitin-proteasome system. Our data suggest that D. discoideum has undergone specific adaptations that increase the proteostatic capacity of this organism and allow for an efficient regulation of its prion-like proteome. PMID:25941378

  5. Using Mass Spectrometry to Diagnose Prion diseases: Can we do that?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions (PrPSc) are infectious proteins. They are able to convert a normal cellular protein (PrPC) into a prion and, thereby, propagate an infection. We have used mass spectrometry to quantitate the prions present in infected hamsters, mice, and sheep. Calibration curves relating the area ratios of t...

  6. Prions are a common mechanism for phenotypic inheritance in wild yeasts

    E-print Network

    Halfmann, Randal Arthur

    The self-templating conformations of yeast prion proteins act as epigenetic elements of inheritance. Yeast prions might provide a mechanism for generating heritable phenotypic diversity that promotes survival in fluctuating ...

  7. Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures

    E-print Network

    Lindquist, Susan

    Yeast prions constitute a “protein-only” mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI+], is governed by a conformational change in ...

  8. Opposing Effects of Glutamine and Asparagine Govern Prion Formation by Intrinsically Disordered Proteins

    E-print Network

    Halfmann, Randal Arthur

    Sequences rich in glutamine (Q) and asparagine (N) residues often fail to fold at the monomer level. This, coupled to their unusual hydrogen-bonding abilities, provides the driving force to switch between disordered monomers ...

  9. Epigenetic Dominance of Prion Conformers

    PubMed Central

    Saijo, Eri; Kang, Hae-Eun; Bian, Jifeng; Bowling, Kristi G.; Browning, Shawn; Kim, Sehun; Hunter, Nora; Telling, Glenn C.

    2013-01-01

    Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP) primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg) mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A) at (OvPrP-A136) infected with SSBP/1 scrapie prions propagated a relatively stable (S) prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V) at 136 (OvPrP-V136) infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U), diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb) PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to the otherwise unfavorable U conformer. This epigenetic mechanism thus expands the range of selectable conformations that can be adopted by PrP, and therefore the variety of options for strain propagation. PMID:24204258

  10. Prediction of parallel in-register amyloidogenic beta-structures In highly beta-rich protein sequences by pairwise propensity analysis

    E-print Network

    Bryan, Allen Wayne

    2009-01-01

    Amyloids and prion proteins are clinically and biologically important beta-structures, whose supersecondary structures are difficult to determine by standard experimental or computational means. In addition, significant ...

  11. Cellular prion protein promotes post-ischemic neuronal survival, angioneurogenesis and enhances neural progenitor cell homing via proteasome inhibition.

    PubMed

    Doeppner, T R; Kaltwasser, B; Schlechter, J; Jaschke, J; Kilic, E; Bähr, M; Hermann, D M; Weise, J

    2015-01-01

    Although cellular prion protein (PrP(c)) has been suggested to have physiological roles in neurogenesis and angiogenesis, the pathophysiological relevance of both processes remain unknown. To elucidate the role of PrP(c) in post-ischemic brain remodeling, we herein exposed PrP(c) wild type (WT), PrP(c) knockout (PrP-/-) and PrP(c) overexpressing (PrP+/+) mice to focal cerebral ischemia followed by up to 28 days reperfusion. Improved neurological recovery and sustained neuroprotection lasting over the observation period of 4 weeks were observed in ischemic PrP+/+ mice compared with WT mice. This observation was associated with increased neurogenesis and angiogenesis, whereas increased neurological deficits and brain injury were noted in ischemic PrP-/- mice. Proteasome activity and oxidative stress were increased in ischemic brain tissue of PrP-/- mice. Pharmacological proteasome inhibition reversed the exacerbation of brain injury induced by PrP-/-, indicating that proteasome inhibition mediates the neuroprotective effects of PrP(c). Notably, reduced proteasome activity and oxidative stress in ischemic brain tissue of PrP+/+ mice were associated with an increased abundance of hypoxia-inducible factor 1? and PACAP-38, which are known stimulants of neural progenitor cell (NPC) migration and trafficking. To elucidate effects of PrP(c) on intracerebral NPC homing, we intravenously infused GFP(+) NPCs in ischemic WT, PrP-/- and PrP+/+ mice, showing that brain accumulation of GFP(+) NPCs was greatly reduced in PrP-/- mice, but increased in PrP+/+ animals. Our results suggest that PrP(c) induces post-ischemic long-term neuroprotection, neurogenesis and angiogenesis in the ischemic brain by inhibiting proteasome activity. PMID:26673668

  12. Resistance to classical scrapie in experimentally challenged goats carrying mutation K222 of the prion protein gene

    PubMed Central

    2012-01-01

    Susceptibility of sheep to scrapie, a transmissible spongiform encephalopathy of small ruminants, is strongly influenced by polymorphisms of the prion protein gene (PRNP). Breeding programs have been implemented to increase scrapie resistance in sheep populations; though desirable, a similar approach has not yet been applied in goats. European studies have now suggested that several polymorphisms can modulate scrapie susceptibility in goats: in particular, PRNP variant K222 has been associated with resistance in case-control studies in Italy, France and Greece. In this study we investigated the resistance conferred by this variant using a natural Italian goat scrapie isolate to intracerebrally challenge five goats carrying genotype Q/Q 222 (wild type) and five goats carrying genotype Q/K 222. By the end of the study, all five Q/Q 222 goats had died of scrapie after a mean incubation period of 19 months; one of the five Q/K 222 goats died after 24 months, while the other four were alive and apparently healthy up to the end of the study at 4.5 years post-challenge. All five of these animals were found to be scrapie negative. Statistical analysis showed that the probability of survival of the Q/K 222 goats versus the Q/Q 222 goats was significantly higher (p = 0.002). Our study shows that PRNP gene mutation K222 is strongly associated with resistance to classical scrapie also in experimental conditions, making it a potentially positive target for selection in the frame of breeding programs for resistance to classical scrapie in goats. PMID:22296670

  13. HPMV: Human protein mutation viewer - relating sequence mutations to protein sequence architecture and function changes.

    PubMed

    Sherman, Westley Arthur; Kuchibhatla, Durga Bhavani; Limviphuvadh, Vachiranee; Maurer-Stroh, Sebastian; Eisenhaber, Birgit; Eisenhaber, Frank

    2015-10-01

    Next-generation sequencing advances are rapidly expanding the number of human mutations to be analyzed for causative roles in genetic disorders. Our Human Protein Mutation Viewer (HPMV) is intended to explore the biomolecular mechanistic significance of non-synonymous human mutations in protein-coding genomic regions. The tool helps to assess whether protein mutations affect the occurrence of sequence-architectural features (globular domains, targeting signals, post-translational modification sites, etc.). As input, HPMV accepts protein mutations - as UniProt accessions with mutations (e.g. HGVS nomenclature), genome coordinates, or FASTA sequences. As output, HPMV provides an interactive cartoon showing the mutations in relation to elements of the sequence architecture. A large variety of protein sequence architectural features were selected for their particular relevance to mutation interpretation. Clicking a sequence feature in the cartoon expands a tree view of additional information including multiple sequence alignments of conserved domains and a simple 3D viewer mapping the mutation to known PDB structures, if available. The cartoon is also correlated with a multiple sequence alignment of similar sequences from other organisms. In cases where a mutation is likely to have a straightforward interpretation (e.g. a point mutation disrupting a well-understood targeting signal), this interpretation is suggested. The interactive cartoon can be downloaded as standalone viewer in Java jar format to be saved and viewed later with only a standard Java runtime environment. The HPMV website is: http://hpmv.bii.a-star.edu.sg/ . PMID:26503432

  14. Myiasis as a risk factor for prion diseases in humans.

    PubMed

    Lupi, O

    2006-10-01

    Prion diseases are transmissible spongiform encephalopathies of humans and animals. The oral route is clearly associated with some prion diseases, according to the dissemination of bovine spongiform encephalopathy (BSE or mad cow disease) in cattle and kuru in humans. However, other prion diseases such as scrapie (in sheep) and chronic wasting disease (CWD) (in cervids) cannot be explained in this way and are probably more associated with a pattern of horizontal transmission in both domestic and wild animals. The skin and mucous membranes are a potential target for prion infections because keratinocytes and lymphocytes are susceptible to the abnormal infective isoform of the prion protein. Iatrogenic transmission of Creutzfeldt-Jakob disease (CJD) was also recognized after corneal transplants in humans and scrapie was successfully transmitted to mice after ocular instillation of infected brain tissue, confirming that these new routes could also be important in prion infections. Some ectoparasites have been proven to harbour prion rods in laboratory experiments. Prion rods were identified in both fly larvae and pupae; adult flies are also able to express prion proteins. The most common causes of myiasis in cattle and sheep, closely related animals with previous prion infections, are Hypoderma bovis and Oestrus ovis, respectively. Both species of flies present a life cycle very different from human myiasis, as they have a long contact with neurological structures, such as spinal canal and epidural fat, which are potentially rich in prion rods. Ophthalmomyiases in humans is commonly caused by both species of fly larvae worldwide, providing almost direct contact with the central nervous system (CNS). The high expression of the prion protein on the skin and mucosa and the severity of the inflammatory response to the larvae could readily increase the efficiency of transmission of prions in both animals and humans. PMID:16987255

  15. Overexpression of Q-rich prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome.

    PubMed

    Ripaud, Leslie; Chumakova, Victoria; Antonin, Matthias; Hastie, Alex R; Pinkert, Stefan; Körner, Roman; Ruff, Kiersten M; Pappu, Rohit V; Hornburg, Daniel; Mann, Matthias; Hartl, F Ulrich; Hipp, Mark S

    2014-12-23

    Expansion of a poly-glutamine (polyQ) repeat in a group of functionally unrelated proteins is the cause of several inherited neurodegenerative disorders, including Huntington's disease. The polyQ length-dependent aggregation and toxicity of these disease proteins can be reproduced in Saccharomyces cerevisiae. This system allowed us to screen for genes that when overexpressed reduce the toxic effects of an N-terminal fragment of mutant huntingtin with 103 Q. Surprisingly, among the identified suppressors were three proteins with Q-rich, prion-like domains (PrDs): glycine threonine serine repeat protein (Gts1p), nuclear polyadenylated RNA-binding protein 3, and minichromosome maintenance protein 1. Overexpression of the PrD of Gts1p, containing an imperfect 28 residue glutamine-alanine repeat, was sufficient for suppression of toxicity. Association with this discontinuous polyQ domain did not prevent 103Q aggregation, but altered the physical properties of the aggregates, most likely early in the assembly pathway, as reflected in their increased SDS solubility. Molecular simulations suggested that Gts1p arrests the aggregation of polyQ molecules at the level of nonfibrillar species, acting as a cap that destabilizes intermediates on path to form large fibrils. Quantitative proteomic analysis of polyQ interactors showed that expression of Gts1p reduced the interaction between polyQ and other prion-like proteins, and enhanced the association of molecular chaperones with the aggregates. These findings demonstrate that short, Q-rich peptides are able to shield the interactive surfaces of toxic forms of polyQ proteins and direct them into nontoxic aggregates. PMID:25489109

  16. Overexpression of Q-rich prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome

    PubMed Central

    Ripaud, Leslie; Chumakova, Victoria; Antonin, Matthias; Hastie, Alex R.; Pinkert, Stefan; Körner, Roman; Ruff, Kiersten M.; Pappu, Rohit V.; Hornburg, Daniel; Mann, Matthias; Hartl, F. Ulrich; Hipp, Mark S.

    2014-01-01

    Expansion of a poly-glutamine (polyQ) repeat in a group of functionally unrelated proteins is the cause of several inherited neurodegenerative disorders, including Huntington’s disease. The polyQ length-dependent aggregation and toxicity of these disease proteins can be reproduced in Saccharomyces cerevisiae. This system allowed us to screen for genes that when overexpressed reduce the toxic effects of an N-terminal fragment of mutant huntingtin with 103 Q. Surprisingly, among the identified suppressors were three proteins with Q-rich, prion-like domains (PrDs): glycine threonine serine repeat protein (Gts1p), nuclear polyadenylated RNA-binding protein 3, and minichromosome maintenance protein 1. Overexpression of the PrD of Gts1p, containing an imperfect 28 residue glutamine-alanine repeat, was sufficient for suppression of toxicity. Association with this discontinuous polyQ domain did not prevent 103Q aggregation, but altered the physical properties of the aggregates, most likely early in the assembly pathway, as reflected in their increased SDS solubility. Molecular simulations suggested that Gts1p arrests the aggregation of polyQ molecules at the level of nonfibrillar species, acting as a cap that destabilizes intermediates on path to form large fibrils. Quantitative proteomic analysis of polyQ interactors showed that expression of Gts1p reduced the interaction between polyQ and other prion-like proteins, and enhanced the association of molecular chaperones with the aggregates. These findings demonstrate that short, Q-rich peptides are able to shield the interactive surfaces of toxic forms of polyQ proteins and direct them into nontoxic aggregates. PMID:25489109

  17. Copper induces increased beta-sheet content in the scrapie-susceptible ovine prion protein PrPVRQ compared with the resistant allelic variant PrPARR.

    PubMed Central

    Wong, Edmond; Thackray, Alana M; Bujdoso, Raymond

    2004-01-01

    Prion diseases are characterized by conformational change in the copper-binding protein PrP (prion protein). Polymorphisms in ovine PrP at amino acid residues 136, 154 and 171 are associated with variation in susceptibility to scrapie. PrPVRQ [PrP(Val136/Arg154/Gln171)] or PrPARQ [PrP(Ala136/Arg154/Gln171)] animals show susceptibility to scrapie, whereas those that express Ala136/Arg154/Arg171 (PrPARR) show resistance. Results are presented here that show PrPVRQ and PrPARR display different conformational responses to metal-ion interaction. At 37 degrees C copper induced different levels of b-sheet content in the allelic variants of ovine full-length prion protein (amino acid 25-232). PrPVRQ showed a significant increase in b-sheet content when exposed to copper at 37 degrees C, whereas PrPARR remained relatively unchanged. The conversion of a-helical PrPVRQ to b-sheet form was shown by CD spectroscopy and the decreased binding of C-terminal specific monoclonal anti-PrP antibodies. This conversion to an increased b-sheet form did not occur with truncated PrPVRQ (amino acids 89-233), which demonstrates that additional metal-binding sites outside of the N-terminus may not overtly influence the overall structure of ovine PrP. Despite the difference in b-sheet content, both the scrapie-susceptible and -resistant allelic forms of ovine PrP acquired resistance to proteinase K digestion following exposure to copper at 37 degrees C, suggesting the potential for disease-associated PrPARR to accumulate in vivo. Our present study demonstrates that allelic variants of ovine PrP differ in their structure and response to the interaction with copper. These observations will contribute to a better understanding of the mechanism of susceptibility and resistance to prion disease. PMID:14969585

  18. Prion-like proteins sequester and suppress the toxicity of huntingtin exon 1

    E-print Network

    Hesse, William R.

    Expansions of preexisting polyglutamine (polyQ) tracts in at least nine different proteins cause devastating neurodegenerative diseases. There are many unique features to these pathologies, but there must also be unifying ...

  19. Molecular Modeling of Prion Transmission to Humans

    PubMed Central

    Levavasseur, Etienne; Privat, Nicolas; Martin, Juan-Carlos Espinosa; Simoneau, Steve; Baron, Thierry; Flan, Benoit; Torres, Juan-Maria; Haïk, Stéphane

    2014-01-01

    Using different prion strains, such as the variant Creutzfeldt-Jakob disease agent and the atypical bovine spongiform encephalopathy agents, and using transgenic mice expressing human or bovine prion protein, we assessed the reliability of protein misfolding cyclic amplification (PMCA) to model interspecies and genetic barriers to prion transmission. We compared our PMCA results with in vivo transmission data characterized by attack rates, i.e., the percentage of inoculated mice that developed the disease. Using 19 seed/substrate combinations, we observed that a significant PMCA amplification was only obtained when the mouse line used as substrate is susceptible to the corresponding strain. Our results suggest that PMCA provides a useful tool to study genetic barriers to transmission and to study the zoonotic potential of emerging prion strains. PMID:25279820

  20. Molecular modeling of prion transmission to humans.

    PubMed

    Levavasseur, Etienne; Privat, Nicolas; Martin, Juan-Carlos Espinosa; Simoneau, Steve; Baron, Thierry; Flan, Benoit; Torres, Juan-Maria; Haïk, Stéphane

    2014-10-01

    Using different prion strains, such as the variant Creutzfeldt-Jakob disease agent and the atypical bovine spongiform encephalopathy agents, and using transgenic mice expressing human or bovine prion protein, we assessed the reliability of protein misfolding cyclic amplification (PMCA) to model interspecies and genetic barriers to prion transmission. We compared our PMCA results with in vivo transmission data characterized by attack rates, i.e., the percentage of inoculated mice that developed the disease. Using 19 seed/substrate combinations, we observed that a significant PMCA amplification was only obtained when the mouse line used as substrate is susceptible to the corresponding strain. Our results suggest that PMCA provides a useful tool to study genetic barriers to transmission and to study the zoonotic potential of emerging prion strains. PMID:25279820

  1. INHIBITION OF PROTEASE-RESISTANT PRION PROTEIN FORMATION IN A TRANSFORMED DEER CELL LINE INFECTED WITH CHRONIC WASTING DISEASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected wi...

  2. Detection of the disease-associated isoform of the prion protein in formalin-fixed tissues by Western blot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clinical signs of prion disease are not pathognomonic and include a variety of differential diagnoses. Specific immune responses have not been detected in affected organisms, serological tests to obtain evidence for the presence of the infectious agent are not available, and nucleic acid-based detec...

  3. Final Report for CRADA Agreement , AL-C-2006-01 with Microsens Biotechnologies: Detection of the Abnormal Prion Protein in Blood by Improving the Extraction of this Protein

    SciTech Connect

    Schmerr, Mary Jo

    2009-03-31

    Several conditions were examined to optimize the extraction protocol using Seprion beads for the abnormal prion protein. Different combinations of water, hexafluro-2-propanol and formic acid were used. The results of these extraction protocols showed that the magnetic beads coated with Seprion reagents were subject to degradation, themselves, when the extraction conditions that would solubilize the abnormal prion protein were used. These compounds caused interference in the immunoassay for the abnormal prion protein and rendered these protocols incompatible with the assay systems. In an attempt to overcome this problem, another approach was then used. The coated beads were used as an integral part of the assay platform. After washing away denaturing agents, the beads with the 'captured' abnormal prion were incubated directly in the immunoassay, followed by analysis by the capillary electrophoresis. When a capillary electrophoresis electro-kinetic separation was attempted, the beads disturbed the analysis making it impossible to interpret. A pressure separation method was then developed for capillary electrophoresis analysis. When 20 samples, 5 of which were positive were analyzed, the assay identified 4 of the 5 positives and had no false positives. When a larger number of samples were analyzed the results were not as good - there were false positives and false negatives. It was then observed that the amount of beads that were loaded was dependent upon how long the beads were allowed to settle before loading them into the capillary. This resulted in unacceptable variations in the results and explained that when large numbers of samples were evaluated the results were not consistent. Because the technical difficulties with using the Seprion beads could not be overcome at this time, another approach is underway that is outside of the scope of this CRADA. No further agreements have been developed. Because the results were not favorable, no manuscripts were written nor intellectual property developed.

  4. Reduced response of splenocytes after mitogen-stimulation in the prion protein (PrP) gene-deficient mouse: PrPLP/Doppel production and cerebral degeneration

    SciTech Connect

    Kim, Chi-Kyeong; Hirose, Yuko; Sakudo, Akikazu; Takeyama, Natsumi; Kang, Chung-Boo; Taniuchi, Yojiro; Matsumoto, Yoshitsugu; Itohara, Shigeyoshi; Sakaguchi, Suehiro; Onodera, Takashi . E-mail: aonoder@mail.ecc.u-tokyo.ac.jp

    2007-06-29

    Splenocytes of wild-type (Prnp {sup +/+}) and prion protein gene-deficient (Prnp {sup -/-}) mice were treated with various activation stimuli such as T cell mitogen concanavalin A (ConA), phorbol 12-myristate 13-acetate (PMA) + ionomycin (Io), or B cell mitogen lipopolysaccharide (LPS). Cellular prion protein (PrP{sup C}) expression was enhanced following ConA stimulation, but not PMA + Io or LPS in Prnp {sup +/+} splenocytes. Rikn Prnp {sup -/-} splenocytes elicited lower cell proliferations than Prnp {sup +/+} or Zrch I Prnp {sup -/-} splenocytes after LPS stimulation and showed sporadic nerve cells in the cerebral cortex and deeper structure. Around the degenerated nerve cells, mild vacuolation in the neuropil was observed. This neural alteration correlated well to the suppressed response of B cells in the spleen. The finding that discrete lesions within the central nervous systems induced marked modulation of immune function probably indicates the existence of a delicately balanced neural-endocrine network by PrP{sup C} and PrPLP/Doppel.

  5. Prion-Specific Antibodies Produced in Wild-Type Mice.

    PubMed

    Heegaard, Peter M H; Bergström, Ann-Louise; Andersen, Heidi Gertz; Cordes, Henriette

    2015-01-01

    Peptide-specific antibodies produced against synthetic peptides are of high value in probing protein structure and function, especially when working with challenging proteins, including not readily available, non-immunogenic, toxic, and/or pathogenic proteins. Here, we present a straightforward method for production of mouse monoclonal antibodies (MAbs) against peptides representing two sites of interest in the bovine prion protein (boPrP), the causative agent of bovine spongiform encephalopathy ("mad cow disease") and new variant Creutzfeldt-Jakob's disease (CJD) in humans, as well as a thorough characterization of their reactivity with a range of normal and pathogenic (misfolded) prion proteins. It is demonstrated that immunization of wild-type mice with ovalbumin-conjugated peptides formulated with Freund's adjuvant induces a good immune response, including high levels of specific anti-peptide antibodies, even against peptides very homologous to murine protein sequences. In general, using the strategies described here for selecting, synthesizing, and conjugating peptides and immunizing 4-5 mice with 2-3 different peptides, high-titered antibodies reacting with the target protein are routinely obtained with at least one of the peptides after three to four immunizations with incomplete Freund's adjuvant. PMID:26424281

  6. Loss of Cellular Sialidases Does Not Affect the Sialylation Status of the Prion Protein but Increases the Amounts of Its Proteolytic Fragment C1

    PubMed Central

    Katorcha, Elizaveta; Klimova, Nina; Makarava, Natallia; Savtchenko, Regina; Pan, Xuefang; Annunziata, Ida; Takahashi, Kohta; Miyagi, Taeko; Pshezhetsky, Alexey V.; d’Azzo, Alessandra; Baskakov, Ilia V.

    2015-01-01

    The central molecular event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC), which is a sialoglycoprotein, into the disease-associated, transmissible form denoted PrPSc. Recent studies revealed a correlation between the sialylation status of PrPSc and incubation time to disease and introduced a new hypothesis that progression of prion diseases could be controlled or reversed by altering the sialylation level of PrPC. Of the four known mammalian sialidases, the enzymes that cleave off sialic acid residues, only NEU1, NEU3 and NEU4 are expressed in the brain. To test whether cellular sialidases control the steady-state sialylation level of PrPC and to identify the putative sialidase responsible for desialylating PrPC, we analyzed brain-derived PrPC from knockout mice deficient in Neu1, Neu3, Neu4, or from Neu3/Neu4 double knockouts. Surprisingly, no differences in the sialylation of PrPC or its proteolytic product C1 were noticed in any of the knockout mice tested as compared to the age-matched controls. However, significantly higher amounts of the C1 fragment relative to full-length PrPC were detected in the brains of Neu1 knockout mice as compared to WT mice or to the other knockout mice. Additional experiments revealed that in neuroblastoma cell line the sialylation pattern of C1 could be changed by an inhibitor of sialylatransferases. In summary, this study suggests that targeting cellular sialidases is apparently not the correct strategy for altering the sialylation levels of PrPC, whereas modulating the activity of sialylatransferases might offer a more promising approach. Our findings also suggest that catabolism of PrPC involves its ?-cleavage followed by desialylation of the resulting C1 fragments by NEU1 and consequent fast degradation of the desialylated products. PMID:26569607

  7. Comparison of sequence masking algorithms and the detection of biased protein sequence

    E-print Network

    Kreil, David

    Comparison of sequence masking algorithms and the detection of biased protein sequence regions;Abstract Motivation Separation of protein sequence regions according to their local information complexity by sequence similarity. Comparison with alternative methods that focus on compositional sequence bias rather

  8. Prion extraction methods: comparison of bead beating, ultrasonic disruption and repeated freeze-thaw methodologies for the recovery of functional renilla-prion fusion protein from bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular DNA technology allows for production of mammalian proteins in bacteria at sufficient quantities for downstream use and analysis. Variation in design and engineering of DNA expression vectors imparts selective alterations resulting in the generation of fusion proteins with intrinsic report...

  9. H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism: clinical and pathologic features in wild-type and E211K cattle following intracranial inoculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006 an H-type bovine spongiform encephalopathy (BSE) case was reported in an animal with an unusual polymorphism (E211K) in the prion protein gene. Although the prevalence of this polymorphism is low, cattle carrying the K211 allele are predisposed to rapid onset of H-type BSE when exposed. The ...

  10. Genetic evaluation of the ovine and bovine prion protein genes (PRNP) 

    E-print Network

    Seabury, Christopher Mark

    2006-04-12

    of Brucella abortus infection into mouse macrophages (Watarai et al. 2003; Watarai et al. 2004; Aguzzi and Hardt). Interestingly, several different lines of evidence all point to a relationship between PrPC and B. abortus heat shock protein (Hsp) 60.... First, immunofluorescence microscopy demonstrates distinct PrPC tail formation upon internalization of B. abortus into mouse macrophages (Watarai et al. 2003; Watarai 2004). Second, when mouse macrophage lysates were added to pull-down assays...

  11. Methods for Differentiating Prion Types in Food-Producing Animals

    PubMed Central

    Gough, Kevin C.; Rees, Helen C.; Ives, Sarah E.; Maddison, Ben C.

    2015-01-01

    Prions are an enigma amongst infectious disease agents as they lack a genome yet confer specific pathologies thought to be dictated mainly, if not solely, by the conformation of the disease form of the prion protein (PrPSc). Prion diseases affect humans and animals, the latter including the food-producing ruminant species cattle, sheep, goats and deer. Importantly, it has been shown that the disease agent of bovine spongiform encephalopathy (BSE) is zoonotic, causing variant Creutzfeldt Jakob disease (vCJD) in humans. Current diagnostic tests can distinguish different prion types and in food-producing animals these focus on the differentiation of BSE from the non-zoonotic agents. Whilst BSE cases are now rare, atypical forms of both scrapie and BSE have been reported, as well as two types of chronic wasting disease (CWD) in cervids. Typing of animal prion isolates remains an important aspect of prion diagnosis and is now becoming more focused on identifying the range of prion types that are present in food-producing animals and also developing tests that can screen for emerging, novel prion diseases. Here, we review prion typing methodologies in light of current and emerging prion types in food-producing animals. PMID:26580664

  12. Methods for Differentiating Prion Types in Food-Producing Animals.

    PubMed

    Gough, Kevin C; Rees, Helen C; Ives, Sarah E; Maddison, Ben C

    2015-01-01

    Prions are an enigma amongst infectious disease agents as they lack a genome yet confer specific pathologies thought to be dictated mainly, if not solely, by the conformation of the disease form of the prion protein (PrP(Sc)). Prion diseases affect humans and animals, the latter including the food-producing ruminant species cattle, sheep, goats and deer. Importantly, it has been shown that the disease agent of bovine spongiform encephalopathy (BSE) is zoonotic, causing variant Creutzfeldt Jakob disease (vCJD) in humans. Current diagnostic tests can distinguish different prion types and in food-producing animals these focus on the differentiation of BSE from the non-zoonotic agents. Whilst BSE cases are now rare, atypical forms of both scrapie and BSE have been reported, as well as two types of chronic wasting disease (CWD) in cervids. Typing of animal prion isolates remains an important aspect of prion diagnosis and is now becoming more focused on identifying the range of prion types that are present in food-producing animals and also developing tests that can screen for emerging, novel prion diseases. Here, we review prion typing methodologies in light of current and emerging prion types in food-producing animals. PMID:26580664

  13. Characteristic CSF prion seeding efficiency in humans with prion diseases.

    PubMed

    Cramm, Maria; Schmitz, Matthias; Karch, André; Zafar, Saima; Varges, Daniela; Mitrova, Eva; Schroeder, Bjoern; Raeber, Alex; Kuhn, Franziska; Zerr, Inga

    2015-02-01

    The development of in vitro amplification systems allows detecting femtomolar amounts of prion protein scrapie (PrP(Sc)) in human cerebrospinal fluid (CSF). We performed a CSF study to determine the effects of prion disease type, codon 129 genotype, PrP(Sc) type, and other disease-related factors on the real-time quaking-induced conversion (RT-QuIC) response. We analyzed times to 10,000 relative fluorescence units, areas under the curve and the signal maximum of RT-QuIC response as seeding parameters of interest. Interestingly, type of prion disease (sporadic vs. genetic) and the PRNP mutation (E200K vs. V210I and FFI), codon 129 genotype, and PrP(Sc) type affected RT-QuIC response. In genetic forms, type of mutation showed the strongest effect on the observed outcome variables. In sporadic CJD, MM1 patients displayed a higher RT-QuIC signal maximum compared to MV1 and VV1. Age and gender were not associated with RT-QuIC signal, but patients with a short disease course showed a higher seeding efficiency of the RT-QuIC response. This study demonstrated that PrP(Sc) characteristics in the CSF of human prion disease patients are associated with disease subtypes and rate of decline as defined by disease duration. PMID:24809690

  14. Accelerated Shedding of Prions following Damage to the Olfactory Epithelium

    PubMed Central

    Wilham, Jason M.; Lowe, Diana; Watschke, Christopher P.; Shearin, Harold; Martinka, Scott; Caughey, Byron; Wiley, James A.

    2012-01-01

    In this study, we investigated the role of damage to the nasal mucosa in the shedding of prions into nasal samples as a pathway for prion transmission. Here, we demonstrate that prions can replicate to high levels in the olfactory sensory epithelium (OSE) in hamsters and that induction of apoptosis in olfactory receptor neurons (ORNs) in the OSE resulted in sloughing off of the OSE from nasal turbinates into the lumen of the nasal airway. In the absence of nasotoxic treatment, olfactory marker protein (OMP), which is specific for ORNs, was not detected in nasal lavage samples. However, after nasotoxic treatment that leads to apoptosis of ORNs, both OMP and prion proteins were present in nasal lavage samples. The cellular debris that was released from the OSE into the lumen of the nasal airway was positive for both OMP and the disease-specific isoform of the prion protein, PrPSc. By using the real-time quaking-induced conversion assay to quantify prions, a 100- to 1,000-fold increase in prion seeding activity was observed in nasal lavage samples following nasotoxic treatment. Since neurons replicate prions to higher levels than other cell types and ORNs are the most environmentally exposed neurons, we propose that an increase in ORN apoptosis or damage to the nasal mucosa in a host with a preexisting prion infection of the OSE could lead to a substantial increase in the release of prion infectivity into nasal samples. This mechanism of prion shedding from the olfactory mucosa could contribute to prion transmission. PMID:22130543

  15. Assessment of the prevalence of vCJD through testing tonsils and appendices for abnormal prion protein.

    PubMed

    Ghani, A C; Donnelly, C A; Ferguson, N M; Anderson, R M

    2000-01-01

    The objective of this study was to determine the age group or groups which will provide the most information on the potential size of the vCJD epidemic in Great Britain via the sampling of tonsil and appendix material to detect the presence of abnormal prion protein (PrP(Sc)). A subsidiary aim was to determine the degree to which such an anonymous age-stratified testing programme will reduce current uncertainties in the size of the epidemic in future years. A cohort- and time-stratified model was used to generate epidemic scenarios consistent with the observed vCJD case incidence. These scenarios, together with data on the age distribution of tonsillectomies and appendectomies, were used to evaluate the optimal age group and calendar time for undertaking testing and to calculate the range of epidemic sizes consistent with different outcomes. The analyses suggested that the optimal five-year age group to test is 25-29 years, although a random sample of appendix tissue from all age groups is nearly as informative. A random sample of tonsil tissue from all age groups is less informative, but the information content is improved if sampling is restricted to tissues removed from those over ten years of age. Based on the assumption that the test is able to detect infection in the last 75% of the incubation period, zero detected infections in an initial random sample of 1000 tissues would suggest that the epidemic will be less than 870,000 cases. If infections are detected, then the model prediction suggests that both relatively small epidemics (800+ cases if one is detected or 8300+ if two are detected) and larger epidemics (21,000+ cases if three or more are detected) are possible. It was concluded that testing will be most informative if undertaken using appendix tissues or tonsil tissues removed from those over ten years of age. Large epidemics can only be excluded if a small number of infections are detected and the test is able to detect infection early in the incubation period. PMID:10670948

  16. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    PubMed

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae. PMID:23764836

  17. Genetics of Prion Disease in Cattle

    PubMed Central

    Murdoch, Brenda M.; Murdoch, Gordon K.

    2015-01-01

    Bovine spongiform encephalopathy (BSE) is a prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. As a transmissible disease of livestock, it has impacted food safety, production practices, global trade, and profitability. Genetic polymorphisms that alter the prion protein in humans and sheep are associated with transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that nonsynonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE (C-BSE) disease susceptibility, though two bovine PRNP insertion/deletion polymorphisms, in the putative region, are associated with susceptibility to C-BSE. However, these associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. This article provides a review of the current state of genetic knowledge regarding prion diseases in cattle. PMID:26462233

  18. Genetics of Prion Disease in Cattle.

    PubMed

    Murdoch, Brenda M; Murdoch, Gordon K

    2015-01-01

    Bovine spongiform encephalopathy (BSE) is a prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. As a transmissible disease of livestock, it has impacted food safety, production practices, global trade, and profitability. Genetic polymorphisms that alter the prion protein in humans and sheep are associated with transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that nonsynonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE (C-BSE) disease susceptibility, though two bovine PRNP insertion/deletion polymorphisms, in the putative region, are associated with susceptibility to C-BSE. However, these associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. This article provides a review of the current state of genetic knowledge regarding prion diseases in cattle. PMID:26462233

  19. Prion protein localizes at the ciliary base during neural and cardiovascular development, and its depletion affects ?-tubulin post-translational modifications.

    PubMed

    Halliez, Sophie; Martin-Lannerée, Séverine; Passet, Bruno; Hernandez-Rapp, Julia; Castille, Johan; Urien, Céline; Chat, Sophie; Laude, Hubert; Vilotte, Jean-Luc; Mouillet-Richard, Sophie; Béringue, Vincent

    2015-01-01

    Although conversion of the cellular form of the prion protein (PrP(C)) into a misfolded isoform is the underlying cause of prion diseases, understanding PrP(C) physiological functions has remained challenging. PrP(C) depletion or overexpression alters the proliferation and differentiation properties of various types of stem and progenitor cells in vitro by unknown mechanisms. Such involvement remains uncertain in vivo in the absence of any drastic phenotype of mice lacking PrP(C). Here, we report PrP(C) enrichment at the base of the primary cilium in stem and progenitor cells from the central nervous system and cardiovascular system of developing mouse embryos. PrP(C) depletion in a neuroepithelial cell line dramatically altered key cilium-dependent processes, such as Sonic hedgehog signalling and ?-tubulin post-translational modifications. These processes were also affected over a limited time window in PrP(C)-ablated embryos. Thus, our study reveals PrP(C) as a potential actor in the developmental regulation of microtubule dynamics and ciliary functions. PMID:26679898

  20. Prion protein localizes at the ciliary base during neural and cardiovascular development, and its depletion affects ?-tubulin post-translational modifications

    PubMed Central

    Halliez, Sophie; Martin-Lannerée, Séverine; Passet, Bruno; Hernandez-Rapp, Julia; Castille, Johan; Urien, Céline; Chat, Sophie; Laude, Hubert; Vilotte, Jean-Luc; Mouillet-Richard, Sophie; Béringue, Vincent

    2015-01-01

    Although conversion of the cellular form of the prion protein (PrPC) into a misfolded isoform is the underlying cause of prion diseases, understanding PrPC physiological functions has remained challenging. PrPC depletion or overexpression alters the proliferation and differentiation properties of various types of stem and progenitor cells in vitro by unknown mechanisms. Such involvement remains uncertain in vivo in the absence of any drastic phenotype of mice lacking PrPC. Here, we report PrPC enrichment at the base of the primary cilium in stem and progenitor cells from the central nervous system and cardiovascular system of developing mouse embryos. PrPC depletion in a neuroepithelial cell line dramatically altered key cilium-dependent processes, such as Sonic hedgehog signalling and ?-tubulin post-translational modifications. These processes were also affected over a limited time window in PrPC–ablated embryos. Thus, our study reveals PrPC as a potential actor in the developmental regulation of microtubule dynamics and ciliary functions. PMID:26679898

  1. Novel Antibody-Lectin Enzyme-Linked Immunosorbent Assay That Distinguishes Prion Proteins in Sporadic and Variant Cases of Creutzfeldt-Jakob Disease

    PubMed Central

    Pan, Tao; Li, Ruliang; Wong, Boon-Seng; Kang, Shin-Chung; Ironside, James; Sy, Man-Sun

    2005-01-01

    We used different anti-prion protein (anti-PrP) monoclonal antibodies to capture either full-length or truncated PrP species and then used biotinylated lectin to compare the nature of the glycans on bound PrP species present in control, sporadic Creutzfeldt-Jakob disease (sCJD), or variant CJD (vCJD) brains. When full-length PrP species in these three groups were compared, no significant difference in the binding of concanavalin A or Aleuria aurantia lectin was detected. However, the binding of Ricinus communis agglutinin I (RCA) to sCJD and vCJD samples was significantly increased. In contrast, when only truncated PrP species were compared, only vCJD samples had more RCA binding activity. Therefore, while most of the RCA binding activity in sCJD is restricted to the full-length PrP species, the RCA binding activity in vCJD is associated with truncated and full-length PrP species. Furthermore, the RCA binding activity in sCJD and vCJD samples is mostly associated with proteinase K-resistant PrP species, a known signature of infectious prion. Therefore, PrP species in sCJD and vCJD have dissimilar lectin immunoreactivity, which reflects differences in their N-linked glycans. These differences may account for the distinct phenotypes of sCJD and vCJD. PMID:15750071

  2. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission.

    PubMed

    Angers, Rachel; Christiansen, Jeffrey; Nalls, Amy V; Kang, Hae-Eun; Hunter, Nora; Hoover, Edward; Mathiason, Candace K; Sheetz, Michael; Telling, Glenn C

    2014-07-29

    Understanding the molecular parameters governing prion propagation is crucial for controlling these lethal, proteinaceous, and infectious neurodegenerative diseases. To explore the effects of prion protein (PrP) sequence and structural variations on intra- and interspecies transmission, we integrated studies in deer, a species naturally susceptible to chronic wasting disease (CWD), a burgeoning, contagious epidemic of uncertain origin and zoonotic potential, with structural and transgenic (Tg) mouse modeling and cell-free prion amplification. CWD properties were faithfully maintained in deer following passage through Tg mice expressing cognate PrP, and the influences of naturally occurring PrP polymorphisms on CWD susceptibility were accurately reproduced in Tg mice or cell-free systems. Although Tg mice also recapitulated susceptibility of deer to sheep prions, polymorphisms that provided protection against CWD had distinct and varied influences. Whereas substitutions at residues 95 and 96 in the unstructured region affected CWD propagation, their protective effects were overridden during replication of sheep prions in Tg mice and, in the case of residue 96, deer. The inhibitory effects on sheep prions of glutamate at residue 226 in elk PrP, compared with glutamine in deer PrP, and the protective effects of the phenylalanine for serine substitution at the adjacent residue 225, coincided with structural rearrangements in the globular domain affecting interaction between ?-helix 3 and the loop between ?2 and ?-helix 2. These structure-function analyses are consistent with previous structural investigations and confirm a role for plasticity of this tertiary structural epitope in the control of PrP conversion and strain propagation. PMID:25034251

  3. Discovery and characterization of prions in Saccharomyces cerevisiae

    E-print Network

    Halfmann, Randal A. (Randal Arthur)

    2011-01-01

    Some protein aggregates can perpetuate themselves in a self-templating protein-misfolding reaction. These aggregates, or prions, are the infectious agents behind diseases like Kuru and mad-cow disease. In yeast, however, ...

  4. Prion gene haplotypes of U.S. cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Bovine spongiform encephalopathy (BSE) is a fatal neurological disorder characterized by abnormal deposits of a protease-resistant isoform of the prion protein. Characterizing linkage disequilibrium (LD) and haplotype networks within the bovine prion gene (PRNP) is important for 1) test...

  5. Mechanisms of Protein Sequence Divergence and Incompatibility

    PubMed Central

    Wellner, Alon; Raitses Gurevich, Maria; Tawfik, Dan S.

    2013-01-01

    Alignments of orthologous protein sequences convey a complex picture. Some positions are utterly conserved whilst others have diverged to variable degrees. Amongst the latter, many are non-exchangeable between extant sequences. How do functionally critical and highly conserved residues diverge? Why and how did these exchanges become incompatible within contemporary sequences? Our model is phosphoglycerate kinase (PGK), where lysine 219 is an essential active-site residue completely conserved throughout Eukaryota and Bacteria, and serine is found only in archaeal PGKs. Contemporary sequences tested exhibited complete loss of function upon exchanges at 219. However, a directed evolution experiment revealed that two mutations were sufficient for human PGK to become functional with serine at position 219. These two mutations made position 219 permissive not only for serine and lysine, but also to a range of other amino acids seen in archaeal PGKs. The identified trajectories that enabled exchanges at 219 show marked sign epistasis - a relatively small loss of function with respect to one amino acid (lysine) versus a large gain with another (serine, and other amino acids). Our findings support the view that, as theoretically described, the trajectories underlining the divergence of critical positions are dominated by sign epistatic interactions. Such trajectories are an outcome of rare mutational combinations. Nonetheless, as suggested by the laboratory enabled K219S exchange, given enough time and variability in selection levels, even utterly conserved and functionally essential residues may change. PMID:23935519

  6. Prion diseases as transmissible zoonotic diseases.

    PubMed

    Lee, Jeongmin; Kim, Su Yeon; Hwang, Kyu Jam; Ju, Young Ran; Woo, Hee-Jong

    2013-02-01

    Prion diseases, also called transmissible spongiform encephalopathies (TSEs), lead to neurological dysfunction in animals and are fatal. Infectious prion proteins are causative agents of many mammalian TSEs, including scrapie (in sheep), chronic wasting disease (in deer and elk), bovine spongiform encephalopathy (BSE; in cattle), and Creutzfeldt-Jakob disease (CJD; in humans). BSE, better known as mad cow disease, is among the many recently discovered zoonotic diseases. BSE cases were first reported in the United Kingdom in 1986. Variant CJD (vCJD) is a disease that was first detected in 1996, which affects humans and is linked to the BSE epidemic in cattle. vCJD is presumed to be caused by consumption of contaminated meat and other food products derived from affected cattle. The BSE epidemic peaked in 1992 and decreased thereafter; this decline is continuing sharply owing to intensive surveillance and screening programs in the Western world. However, there are still new outbreaks and/or progression of prion diseases, including atypical BSE, and iatrogenic CJD and vCJD via organ transplantation and blood transfusion. This paper summarizes studies on prions, particularly on prion molecular mechanisms, BSE, vCJD, and diagnostic procedures. Risk perception and communication policies of the European Union for the prevention of prion diseases are also addressed to provide recommendations for appropriate government policies in Korea. PMID:24159531

  7. Redox Control of Prion and Disease Pathogenesis

    PubMed Central

    Singh, Ajay; Das, Dola; Mohan, Maradumane L.

    2010-01-01

    Abstract Imbalance of brain metal homeostasis and associated oxidative stress by redox-active metals like iron and copper is an important trigger of neurotoxicity in several neurodegenerative conditions, including prion disorders. Whereas some reports attribute this to end-stage disease, others provide evidence for specific mechanisms leading to brain metal dyshomeostasis during disease progression. In prion disorders, imbalance of brain-iron homeostasis is observed before end-stage disease and worsens with disease progression, implicating iron-induced oxidative stress in disease pathogenesis. This is an unexpected observation, because the underlying cause of brain pathology in all prion disorders is PrP-scrapie (PrPSc), a ?-sheet–rich conformation of a normal glycoprotein, the prion protein (PrPC). Whether brain-iron dyshomeostasis occurs because of gain of toxic function by PrPSc or loss of normal function of PrPC remains unclear. In this review, we summarize available evidence suggesting the involvement of oxidative stress in prion-disease pathogenesis. Subsequently, we review the biology of PrPC to highlight its possible role in maintaining brain metal homeostasis during health and the contribution of PrPSc in inducing brain metal imbalance with disease progression. Finally, we discuss possible therapeutic avenues directed at restoring brain metal homeostasis and alleviating metal-induced oxidative stress in prion disorders. Antioxid. Redox Signal. 12, 1271–1294. PMID:19803746

  8. Influence of breed and genotype on the onset and distribution of infectivity and disease-associated prion protein in sheep following oral infection with the bovine spongiform encephalopathy agent.

    PubMed

    McGovern, G; Martin, S; Jeffrey, M; Bellworthy, S J; Spiropoulos, J; Green, R; Lockey, R; Vickery, C M; Thurston, L; Dexter, G; Hawkins, S A C; González, L

    2015-01-01

    The onset and distribution of infectivity and disease-specific prion protein (PrP(d)) accumulation was studied in Romney and Suffolk sheep of the ARQ/ARQ, ARQ/ARR and ARR/ARR prion protein gene (Prnp) genotypes (where A stands for alanine, R for arginine and Q for glutamine at codons 136, 154 and 171 of PrP), following experimental oral infection with cattle-derived bovine spongiform encephalopathy (BSE) agent. Groups of sheep were killed at regular intervals and a wide range of tissues taken for mouse bioassay or immunohistochemistry (IHC), or both. Bioassay results for infectivity were mostly coincident with those of PrP(d) detection by IHC both in terms of tissues and time post infection. Neither PrP(d) nor infectivity was detected in any tissues of BSE-dosed ARQ/ARR or ARR/ARR sheep or of undosed controls. Moreover, four ARQ/ARQ Suffolk sheep, which were methionine (M)/threonine heterozygous at codon 112 of the Prnp gene, did not show any biological or immunohistochemical evidence of infection, while those homozygous for methionine (MARQ/MARQ) did. In MARQ/MARQ sheep of both breeds, initial PrP(d) accumulation was identified in lymphoreticular system (LRS) tissues followed by the central nervous system (CNS) and enteric nervous system (ENS) and finally by the autonomic nervous system and peripheral nervous system and other organs. Detection of infectivity closely mimicked this sequence. No PrP(d) was observed in the ENS prior to its accumulation in the CNS, suggesting that ENS involvement occurred simultaneously to that of, or followed centrifugal spread from, the CNS. The distribution of PrP(d) within the ENS further suggested a progressive spread from the ileal plexus to other ENS segments via neuronal connections of the gut wall. Differences between the two breeds were noted in terms of involvement of LRS and ENS tissues, with Romney sheep showing a more delayed and less consistent PrP(d) accumulation than Suffolk sheep in such tissues. Whether this accounted for the slight delay (?5 months) in the appearance of clinical signs in Romney sheep is debatable since by the last scheduled kill before animals reached clinical end point, both breeds showed widespread accumulation and similar magnitudes of PrP(d) accumulation in the brain. PMID:25435510

  9. Orientation of aromatic residues in amyloid cores: structural insights into prion fiber diversity.

    PubMed

    Reymer, Anna; Frederick, Kendra K; Rocha, Sandra; Beke-Somfai, Tamás; Kitts, Catherine C; Lindquist, Susan; Nordén, Bengt

    2014-12-01

    Structural conversion of one given protein sequence into different amyloid states, resulting in distinct phenotypes, is one of the most intriguing phenomena of protein biology. Despite great efforts the structural origin of prion diversity remains elusive, mainly because amyloids are insoluble yet noncrystalline and therefore not easily amenable to traditional structural-biology methods. We investigate two different phenotypic prion strains, weak and strong, of yeast translation termination factor Sup35 with respect to angular orientation of tyrosines using polarized light spectroscopy. By applying a combination of alignment methods the degree of fiber orientation can be assessed, which allows a relatively accurate determination of the aromatic ring angles. Surprisingly, the strains show identical average orientations of the tyrosines, which are evenly spread through the amyloid core. Small variations between the two strains are related to the local environment of a fraction of tyrosines outside the core, potentially reflecting differences in fibril packing. PMID:25404291

  10. Synthetic prions and other human neurodegenerative proteinopathies.

    PubMed

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Auli?, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-01

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a ?-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into ?-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as ?-synuclein, superoxide dismutase-1, amyloid-? and tau. PMID:25449570

  11. A genome-wide survey for prion-regulated miRNAs associated with cholesterol homeostasis

    PubMed Central

    2012-01-01

    Background Prion diseases are neurodegenerative diseases that are characterized by the conversion of the cellular prion protein (PrPc) into a pathogenic isoform (PrPSc). It is known that neurodegeneration is often accompanied by the disturbance of cholesterol homeostasis. We have recently identified a set of genes that were upregulated after prion infection of N2a neuronal cells (Bach et al., 2009). Results We have now used ultra-deep sequencing technology to profile all microRNAs (miRNA) that could be associated with this effect in these N2a cells. Using stringent filters and normalization strategies we identified a small set of miRNAs that were up- or downregulated upon prion infection. Using bioinformatic tools we predicted whether the downregulated miRNAs could target mRNAs that have been previously identified to enhance cholesterol synthesis in these cells. Application of this joint profiling approach revealed that nine miRNAs potentially target cholesterol-related genes. Four of those miRNAs are localized in a miRNA-dense cluster on the mouse X-chromosome. Among these, twofold downregulation of mmu-miR-351 and mmu-miR-542-5p was confirmed by qRT-PCR. The same miRNAs were predicted as putative regulators of the sterol regulatory element-binding factor 2 (Srebf2), the low-density lipoprotein receptor (Ldlr) or the IPP isomerase. Conclusions The results demonstrate that joined profiling by ultra-deep sequencing is highly valuable to identify candidate miRNAs involved in prion-induced dysregulation of cholesterol homeostasis. PMID:22985096

  12. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David (Los Angeles, CA); Marcotte, Edward M. (Los Angeles, CA); Pellegrini, Matteo (Sherman Oaks, CA); Thompson, Michael J. (Santa Monica, CA); Yeates, Todd O. (Agoura Hills, CA)

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  13. Molecular pathogenesis of sporadic prion diseases in man

    PubMed Central

    Safar, Jiri G.

    2012-01-01

    The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare. PMID:22421210

  14. Could ectoparasites act as vectors for prion diseases?

    PubMed

    Lupi, Omar

    2003-06-01

    Prion diseases are rare neurodegenerative diseases of humans and animals with a lethal evolution. Several cell types found on the human skin, including keratinocytes, fibroblasts and lymphocytes, are susceptible to the abnormal infective isoform of the prion protein, which transforms the skin to produce a potential target for prion infection. Iatrogenic transmission of Creutzfeldt-Jakob disease was also recognized after corneal transplants in humans, and scrapie was successfully transmitted to mice after ocular instillation of infected brain tissue, confirming that these new routes, as well as cerebral inoculation and oral ingestion, could be important in prion infections. Animal prion infections, such as scrapie (sheep) and "mad cow disease" (cattle), have shown a pattern of horizontal transmission in farm conditions and several ectoparasites have been shown to harbor prion rods in laboratory experiments. Fly larvae and mites were exposed to brain-infected material and were readily able to transmit scrapie to hamsters. New lines of evidence have confirmed that adult flies are also able to express prion proteins. Because ocular and cerebral myiases and mite infestation are not rare worldwide, and most cases are caused by fly larvae or hay mites that usually affect sheep and cattle, it is important to discuss the possibility that these ectoparasites could eventually act as reservoirs and/or vectors for prion diseases. PMID:12786866

  15. Next-Generation Sequencing for Binary Protein–Protein Interactions

    PubMed Central

    Suter, Bernhard; Zhang, Xinmin; Pesce, C. Gustavo; Mendelsohn, Andrew R.; Dinesh-Kumar, Savithramma P.; Mao, Jian-Hua

    2015-01-01

    The yeast two-hybrid (Y2H) system exploits host cell genetics in order to display binary protein–protein interactions (PPIs) via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS), and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  16. Predicting the beta-trefoil fold from protein sequence data

    E-print Network

    Menke, Matthew Ewald, 1978-

    2004-01-01

    A method is presented that uses [beta]-strand interactions at both the sequence and the atomic level, to predict the beta-structural motifs in protein sequences. A program called Wrap-and-Pack implements this method, and ...

  17. The ribosome-associated complex antagonizes prion formation in yeast.

    PubMed

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in ?zuo1 strains. Consistent with this finding, ?zuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome. PMID:25739058

  18. Prospects for safe and effective vaccines against prion diseases.

    PubMed

    Mabbott, Neil Andrew

    2015-01-01

    Prion diseases are subacute neurodegenerative diseases that affect humans and animals. An abnormally folded isoform (PrP(Sc)) of the host cellular prion protein is considered to constitute the major, if not sole, component of the infectious prion. The occurrence of variant Creutzfeldt-Jakob disease in humans most likely arose due to consumption of food contaminated with bovine spongiform encephalopathy prions. The demonstration that some prion infections may have the capacity to transmit to other species, especially humans, has focused attention on the development of safe and effective vaccines against these invariably fatal and currently incurable diseases. Although much effort has been invested in the development of safe and effective anti-PrP vaccines, many important issues remain to be resolved. PMID:25266267

  19. Viroids and prions.

    PubMed Central

    Diener, T O; McKinley, M P; Prusiner, S B

    1982-01-01

    Viroids are small "naked" infectious RNA molecules that are pathogens of higher plants. The potato spindle tuber viroid (PSTV) is composed of a covalently closed circular RNA molecule containing 359 ribonucleotides. The properties of PSTV were compared with those of the scrapie agent, which causes a degenerative neurological disease in animals. PSTV was inactivated by ribonuclease digestion, psoralen photoadduct formation, Zn2+ -catalyzed hydrolysis, and chemical modification with NH2OH. The scrapie agent resisted inactivation by these procedures, which modify nucleic acids. The scrapie agent was inactivated by proteinase K and trypsin digestion, chemical modification with diethylpyrocarbonate, and by exposure to phenol, NaDodSO4, KSCN, or urea. PSTV resisted inactivation by these procedures, which modify proteins. Earlier evidence suggested that the scrapie agent is smaller than PSTV. Its small size seems to preclude the presence of a genome coding for the protein(s) of a putative capsid. The properties of the scrapie agent distinguish it from both viroids and viruses and have prompted the introduction of the term "prion" to denote a small proteinaceous infectious particle that resists inactivation by procedures that modify nucleic acids. PMID:6813855

  20. [Is Parkinson's disease a prion disease?].

    PubMed

    Brandel, J-P; Corbillé, A-G; Derkinderen, P; Haïk, S

    2015-12-01

    The accumulation of a specific protein in aggregated form is a common phenomenon in human neurodegenerative diseases. In Parkinson's disease, this protein is ?-synuclein which is a neuronal protein of 143 amino acids. With a monomeric conformation in solution, it also has a natural capacity to aggregate into amyloid structures (dimers, oligomers, fibrils and Lewy bodies or neurites). It therefore fulfils the characteristics of a prion protein (different conformations, seeding and spreading). In vitro and in vivo experimental evidence in transgenic and wild animals indicates a prion-like propagation of Parkinson's disease. The sequential and predictive distribution of ?-synuclein demonstrated by Braak et al. and its correlation with non-motor signs are consistent with the prion-like progression. Although the triggering factor causing the misfolding and aggregation of the target protein is unknown, Parkinson's disease is a highly relevant model for the study of these mechanisms and also to test specific treatments targeting the assemblies of ?-synuclein and propagation from pre-motor phase of the disease. Despite this prion-like progression, there is currently no argument indicating a risk of human transmission of Parkinson's disease. PMID:26563663

  1. De novo sequencing of unique sequence tags for discovery of post-translational modifications of proteins

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Hixson, Kim K.; Purvine, Samuel O.; Anderson, Gordon A.; Smith, Richard D.

    2008-10-15

    De novo sequencing has a promise to discover the protein post-translation modifications; however, such approach is still in their infancy and not widely applied for proteomics practices due to its limited reliability. In this work, we describe a de novo sequencing approach for discovery of protein modifications through identification of the UStags (Anal. Chem. 2008, 80, 1871-1882). The de novo information was obtained from Fourier-transform tandem mass spectrometry for peptides and polypeptides in a yeast lysate, and the de novo sequences obtained were filtered to define a more limited set of UStags. The DNA-predicted database protein sequences were then compared to the UStags, and the differences observed across or in the UStags (i.e., the UStags’ prefix and suffix sequences and the UStags themselves) were used to infer the possible sequence modifications. With this de novo-UStag approach, we uncovered some unexpected variances of yeast protein sequences due to amino acid mutations and/or multiple modifications to the predicted protein sequences. Random matching of the de novo sequences to the predicted sequences were examined with use of two random (false) databases, and ~3% false discovery rates were estimated for the de novo-UStag approach. The factors affecting the reliability (e.g., existence of de novo sequencing noise residues and redundant sequences) and the sensitivity are described. The de novo-UStag complements the UStag method previously reported by enabling discovery of new protein modifications.

  2. The end of the BSE saga: do we still need surveillance for human prion diseases?

    PubMed

    Budka, Herbert; Will, Robert G

    2015-01-01

    The epidemics of classical bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) related to BSE-infected food are coming to an end. The decline in concern about these diseases may invite complacency and questions whether surveillance for human prion diseases is still necessary. This article reviews the main points of surveillance and why it is still needed: animal sources for human prion infection other than BSE cannot be excluded; the potentially increasing circulation of prions between humans by blood, blood products and medical procedures; the prevalence of vCJD prion carriers in the UK; and the scientific study of prion diseases as paradigm for other neurodegenerative diseases with "prion-like" spread of pathological proteins. We conclude that continuation of detailed surveillance of human prion disorders would be prudent in view of all these points that deserve clarification. PMID:26715203

  3. W8, a new Sup35 prion strain, transmits distinctive information with a conserved assembly scheme.

    PubMed

    Huang, Yu-Wen; Chang, Yuan-Chih; Diaz-Avalos, Ruben; King, Chih-Yen

    2015-01-01

    Prion strains are different self-propagating conformers of the same infectious protein. Three strains of the [PSI] prion, infectious forms of the yeast Sup35 protein, have been previously characterized in our laboratory. Here we report the discovery of a new [PSI] strain, named W8. We demonstrate its robust cellular propagation as well as the protein-only transmission. To reveal strain-specific sequence requirement, mutations that interfered with the propagation of W8 were identified by consecutive substitution of residues 5-55 of Sup35 by proline and insertion of glycine at alternate sites in this segment. Interestingly, propagating W8 with single mutations at residues 5-7 and around residue 43 caused the strain to transmute. In contrast to the assertion that [PSI] existed as a dynamic cloud of sub-structures, no random drift in transmission characteristics was detected in mitotically propagated W8 populations. Electron diffraction and mass-per-length measurements indicate that, similar to the 3 previously characterized strains, W8 fibers are composed of about 1 prion molecule per 4.7-Å cross-? repeat period. Thus differently folded single Sup35 molecules, not dimeric and trimeric assemblies, form the basic repeating units to build the 4 [PSI] strains. PMID:26038983

  4. Cells release prions in association with exosomes

    PubMed Central

    Fevrier, Benoit; Vilette, Didier; Archer, Fabienne; Loew, Damarys; Faigle, Wolfgang; Vidal, Michel; Laude, Hubert; Raposo, Graça

    2004-01-01

    Prion diseases are infectious neurodegenerative disorders linked to the accumulation in the central nervous system of the abnormally folded prion protein (PrP) scrapie (PrPsc), which is thought to be the infectious agent. Once present, PrPsc catalyzes the conversion of naturally occurring cellular PrP (PrPc) to PrPsc. Prion infection is usually initiated in peripheral organs, but the mechanisms involved in infectious spread to the brain are unclear. We found that both PrPc and PrPsc were actively released into the extracellular environment by PrP-expressing cells before and after infection with sheep prions, respectively. Based on Western blot with specific markers, MS, and morphological analysis, our data revealed that PrPc and PrPsc in the medium are associated with exosomes, membranous vesicles that are secreted upon fusion of multivesicular endosomes with the plasma membrane. Furthermore, we found that exosomes bearing PrPsc are infectious. Our data suggest that exosomes may contribute to intercellular membrane exchange and the spread of prions throughout the organism. PMID:15210972

  5. Prion degradation pathways: Potential for therapeutic intervention

    PubMed Central

    Goold, Rob; McKinnon, Chris; Tabrizi, Sarah J.

    2015-01-01

    Prion diseases are fatal neurodegenerative disorders. Pathology is closely linked to the misfolding of native cellular PrPC into the disease-associated form PrPSc that accumulates in the brain as disease progresses. Although treatments have yet to be developed, strategies aimed at stimulating the degradation of PrPSc have shown efficacy in experimental models of prion disease. Here, we describe the cellular pathways that mediate PrPSc degradation and review possible targets for therapeutic intervention. This article is part of a Special Issue entitled ‘Neuronal Protein’. PMID:25584786

  6. Cellular form of prion protein inhibits Reelin-mediated shedding of Caspr from the neuronal cell surface to potentiate Caspr-mediated inhibition of neurite outgrowth.

    PubMed

    Devanathan, Vasudharani; Jakovcevski, Igor; Santuccione, Antonella; Li, Shen; Lee, Hyun Joon; Peles, Elior; Leshchyns'ka, Iryna; Sytnyk, Vladimir; Schachner, Melitta

    2010-07-01

    Extension of axonal and dendritic processes in the CNS is tightly regulated by outgrowth-promoting and -inhibitory cues to assure precision of synaptic connections. We identify a novel role for contactin-associated protein (Caspr) as an inhibitory cue that reduces neurite outgrowth from CNS neurons. We show that proteolysis of Caspr at the cell surface is regulated by the cellular form of prion protein (PrP), which directly binds to Caspr. PrP inhibits Reelin-mediated shedding of Caspr from the cell surface, thereby increasing surface levels of Caspr and potentiating the inhibitory effect of Caspr on neurite outgrowth. PrP deficiency results in reduced levels of Caspr at the cell surface, enhanced neurite outgrowth in vitro, and more efficient regeneration of axons in vivo following spinal cord injury. Thus, we reveal a previously unrecognized role for Caspr and PrP in inhibitory modulation of neurite outgrowth in CNS neurons, which is counterbalanced by the proteolytic activity of Reelin. PMID:20610764

  7. Molecular-level insights of early-stage prion protein aggregation on mica and gold surface determined by AFM imaging and molecular simulation.

    PubMed

    Lou, Zhichao; Wang, Bin; Guo, Cunlan; Wang, Kun; Zhang, Haiqian; Xu, Bingqian

    2015-11-01

    By in situ time-lapse AFM, we investigated early-stage aggregates of PrP formed at low concentration (100ng/mL) on mica and Au(111) surfaces in acetate buffer (pH 4.5). Remarkably different PrP assemblies were observed. Oligomeric structures of PrP aggregates were observed on mica surface, which was in sharp contrast to the multi-layer PrP aggregates yielding parallel linear patterns observed Au(111) surface. Combining molecular dynamics and docking simulations, PrP monomers, dimers and trimers were revealed as the basic units of the observed aggregates. Besides, the mechanisms of the observed PrP aggregations and the corresponding molecular-substrate and intermolecular interactions were suggested. These interactions involved gold-sulfur interaction, electrostatic interaction, hydrophobic interaction, and hydrogen binding interaction. In contrast, the PrP aggregates observed in pH 7.2 PBS buffer demonstrated similar large ball-like structures on both mica and Au(111) surfaces. The results indicate that the pH of a solution and the surface of the system can have strong effects on supramolecular assemblies of prion proteins. This study provides in-depth understanding on the structural and mechanistic nature of PrP aggregation, and can be used to study the aggregation mechanisms of other proteins with similar misfolding properties. PMID:26275839

  8. Orpinomyces cellulase celf protein and coding sequences

    DOEpatents

    Li, Xin-Liang (Athens, GA); Chen, Huizhong (Athens, GA); Ljungdahl, Lars G. (Athens, GA)

    2000-09-05

    A cDNA (1,520 bp), designated celF, consisting of an open reading frame (ORF) encoding a polypeptide (CelF) of 432 amino acids was isolated from a cDNA library of the anaerobic rumen fungus Orpinomyces PC-2 constructed in Escherichia coli. Analysis of the deduced amino acid sequence showed that starting from the N-terminus, CelF consists of a signal peptide, a cellulose binding domain (CBD) followed by an extremely Asn-rich linker region which separate the CBD and the catalytic domains. The latter is located at the C-terminus. The catalytic domain of CelF is highly homologous to CelA and CelC of Orpinomyces PC-2, to CelA of Neocallimastix patriciarum and also to cellobiohydrolase IIs (CBHIIs) from aerobic fungi. However, Like CelA of Neocallimastix patriciarum, CelF does not have the noncatalytic repeated peptide domain (NCRPD) found in CelA and CelC from the same organism. The recombinant protein CelF hydrolyzes cellooligosaccharides in the pattern of CBHII, yielding only cellobiose as product with cellotetraose as the substrate. The genomic celF is interrupted by a 111 bp intron, located within the region coding for the CBD. The intron of the celF has features in common with genes from aerobic filamentous fungi.

  9. Pathogenesis of scrapie in ARQ/ARQ sheep after subcutaneous infection: effect of lymphadenectomy and immune cell subset changes in relation to prion protein accumulation.

    PubMed

    Chianini, F; Sisó, S; Ricci, E; Eaton, S L; Finlayson, J; Pang, Y; Hamilton, S; Steele, P; Reid, H W; Cantile, C; Sales, J; Jeffrey, M; Dagleish, M P; González, L

    2013-04-15

    It is well established that the infectious agent of scrapie can replicate in the lymphoreticular system (LRS). However, the effects of removal of LRS target tissues on the pathogenesis of the infection and the accumulation of disease-associated prion protein (PrP(d)) in LRS tissues on specific immune cell subsets are poorly understood aspects. To address these questions 16 ARQ/ARQ sheep were subcutaneously inoculated in the drainage area of the prefemoral lymph node with brain homogenate derived from Suffolk sheep naturally infected with scrapie. Fourteen sheep were then subjected to either early (14-17 days post-inoculation [dpi]) or late (175-201 dpi) lymphadenectomy and culled at preclinical or clinical stages of infection. Neither late nor even early lymphadenectomy prevented infection or had any effect on the accumulation of PrP(d) in the LRS or CNS suggesting a rapid organic dissemination of the infectious agent after inoculation. Lymph nodes from eight scrapie inoculated sheep selected on the basis of the amount of PrP(d) in their LRS tissues (negative, low or high) were examined for six different immune cell markers. The PrP(d) negative lymph nodes from two sheep with no evidence of scrapie infection showed lower numbers of cluster of determination (CD) 21 positive cells than PrP(d) positive nodes, irrespective of their location (hind leg or head). However, quantitative differences in the expression of this marker were not detected when comparing lymph nodes with low and high levels of PrP(d) accumulation, suggesting that proliferation of CD21 positive cells is related to scrapie infection, but not directly linked to the magnitude of PrP(d) accumulation. An additional observation of the study was that sheep that were methionin-threonine at codon 112 of the prion protein gene showed lower attack rates than methionine homozygotes (67% and 100%, respectively) and also generally lower levels of PrP(d) accumulation in the LRS and brain and increased survival times, suggesting an influence of such polymorphism in the susceptibility to scrapie. PMID:23398720

  10. Prion Transmission Prevented by Modifying the ?2-?2 Loop Structure of Host PrPC

    PubMed Central

    Kurt, Timothy D.; Bett, Cyrus; Fernández-Borges, Natalia; Joshi-Barr, Shivanjali; Hornemann, Simone; Rülicke, Thomas; Castilla, Joaquín; Wüthrich, Kurt

    2014-01-01

    Zoonotic prion transmission was reported after the bovine spongiform encephalopathy (BSE) epidemic, when >200 cases of prion disease in humans were diagnosed as variant Creutzfeldt-Jakob disease. Assessing the risk of cross-species prion transmission remains challenging. We and others have studied how specific amino acid residue differences between species impact prion conversion and have found that the ?2-?2 loop region of the mouse prion protein (residues 165–175) markedly influences infection by sheep scrapie, BSE, mouse-adapted scrapie, deer chronic wasting disease, and hamster-adapted scrapie prions. The tyrosine residue at position 169 is strictly conserved among mammals and an aromatic side chain in this position is essential to maintain a 310-helical turn in the ?2-?2 loop. Here we examined the impact of the Y169G substitution together with the previously described S170N, N174T “rigid loop” substitutions on cross-species prion transmission in vivo and in vitro. We found that transgenic mice expressing mouse PrP containing the triple-amino acid substitution completely resisted infection with two strains of mouse prions and with deer chronic wasting disease prions. These studies indicate that Y169 is important for prion formation, and they provide a strong indication that variation of the ?2-?2 loop structure can modulate interspecies prion transmission. PMID:24431459

  11. Quinacrine promotes replication and conformational mutation of chronic wasting disease prions.

    PubMed

    Bian, Jifeng; Kang, Hae-Eun; Telling, Glenn C

    2014-04-22

    Quinacrine's ability to reduce levels of pathogenic prion protein (PrP(Sc)) in mouse cells infected with experimentally adapted prions led to several unsuccessful clinical studies in patients with prion diseases, a 10-y investment to understand its mechanism of action, and the production of related compounds with expectations of greater efficacy. We show here, in stark contrast to this reported inhibitory effect, that quinacrine enhances deer and elk PrP(Sc) accumulation and promotes propagation of prions causing chronic wasting disease (CWD), a fatal, transmissible, neurodegenerative disorder of cervids of uncertain zoonotic potential. Surprisingly, despite increased prion titers in quinacrine-treated cells, transmission of the resulting prions produced prolonged incubation times and altered PrP(Sc) deposition patterns in the brains of diseased transgenic mice. This unexpected outcome is consistent with quinacrine affecting the intrinsic properties of the CWD prion. Accordingly, quinacrine-treated CWD prions were comprised of an altered PrP(Sc) conformation. Our findings provide convincing evidence for drug-induced conformational mutation of prions without the prerequisite of generating drug-resistant variants of the original strain. More specifically, they show that a drug capable of restraining prions in one species/strain setting, and consequently used to treat human prion diseases, improves replicative ability in another and therefore force reconsideration of current strategies to screen antiprion compounds. PMID:24711410

  12. Discovery of a novel, monocationic, small-molecule inhibitor of scrapie prion accumulation in cultured sheep microglia and rov cells PLoS one

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases, including sheep scrapie are neurodegenerative diseases with the fundamental pathogenesis involving conversion of normal cellular prion protein (PrPC) to disease-associated prion protein (PrPSc). An aromatic monocationic furamidine analogue (DB772), which has previously demonstrated a...

  13. Motifs in Protein SequencesMotifs in Protein Sequences Examples: Helix-Turn-Helix, Zinc-finger,

    E-print Network

    Narasimhan, Giri

    Motifs in Protein SequencesMotifs in Protein Sequences Examples: Helix-Turn-Helix, Zinc. Examples: Helix-Turn-Helix, Zinc-finger, Homeobox domain, Hairpin-beta motif, Calcium-binding motif, Beta of the motif M? Example: Zinc Finger Motif ...YYKCCGLCCERSFFVEKSALLSRHHORVHHKN... 3 6 19 23 Input

  14. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses.

    PubMed

    Haïk, Stéphane; Brandel, Jean-Philippe

    2014-08-01

    In contrast with other neurodegenerative disorders associated to protein misfolding, human prion diseases include infectious forms (also called transmitted forms) such as kuru, iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease. The transmissible agent is thought to be solely composed of the abnormal isoform (PrP(Sc)) of the host-encoded prion protein that accumulated in the central nervous system of affected individuals. Compared to its normal counterpart, PrP(Sc) is ?-sheet enriched and aggregated and its propagation is based on an autocatalytic conversion process. Increasing evidence supports the view that conformational variations of PrP(Sc) encoded the biological properties of the various prion strains that have been isolated by transmission studies in experimental models. Infectious forms of human prion diseases played a pivotal role in the emergence of the prion concept and in the characterization of the very unconventional properties of prions. They provide a unique model to understand how prion strains are selected and propagate in humans. Here, we review and discuss how genetic factors interplay with strain properties and route of transmission to influence disease susceptibility, incubation period and phenotypic expression in the light of the kuru epidemics due to ritual endocannibalism, the various series iatrogenic diseases secondary to extractive growth hormone treatment or dura mater graft and the epidemics of variant Creutzfeldt-Jakob disease linked to dietary exposure to the agent of bovine spongiform encephalopathy. PMID:24956437

  15. Experimental oral transmission of chronic wasting disease to red deer (Cervus elaphus elaphus): Early detection and late stage distribution of protease-resistant prion protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic wasting disease CWD is the transmissible spongiform encephalopathy or prion disease of wild and farmed cervid ruminants, including Rocky Mountain elk (Cervus elaphus nelsoni), white tailed deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), or moose (Alces alces). Reliable data ...

  16. Describing Sequence-Ensemble Relationships for Intrinsically Disordered Proteins

    PubMed Central

    Mao, Albert H.; Lyle, Nicholas; Pappu, Rohit V.

    2014-01-01

    Synopsis Intrinsically disordered proteins participate in important protein-protein and protein-nucleic acid interactions and control cellular phenotypes through their prominence as dynamic organizers of transcriptional, post-transcriptional, and signaling networks. These proteins challenge the tenets of the structure-function paradigm and their functional mechanisms remain a mystery given that they fail to fold autonomously into specific structures. Solving this mystery requires a first principles understanding of the quantitative relationships between information encoded in the sequences of disordered proteins and the ensemble of conformations they sample. Advances in quantifying sequence-ensemble relationships have been facilitated through a four-way synergy between bioinformatics, biophysical experiments, computer simulations, and polymer physics theories. Here, we review these advances and the resultant insights that allow us to develop a concise quantitative framework for describing sequence-ensemble relationships of intrinsically disordered proteins. PMID:23240611

  17. Does an ultra violet photooxidation of the manganese-loaded/copper-depleted prion protein in the retina initiate the pathogenesis of TSE?

    PubMed

    Purdey, M

    2001-07-01

    Ecosystems supporting clusters of sporadic transmissible spongiform encephalopathy (TSE) are characterized by common properties of high-manganese/low-copper, zinc, selenium mineral status, and high-altitude/snow-covered/pre-cambrian mountain terrain where above-average intensities of ultra violet/ozone oxidants are prevalent. Cell culture trials have confirmed the hypothesis that manganese (Mn) substitutes at Prion Protein's (PrP's) vacated copper (Cu) domain, whereupon PrP loses its Cu-mediated antioxidant function, transforming into a protease-resistant misfolded isoform that aggregates into fibril 'tombstone' structures - the key hallmark distinguishing TSE central nervous system (CNS) pathology. The cellular localisation of PrP suggests PrP serves a 'front line' contributory role in neutralizing radicals generated by incoming environmental oxidants, whilst an intensive expression of PrP messenger ribonucleic acid (mRNA) in the retina, melanocytes, epidermis, etc., suggests PrP performs a key antioxidant role as a 'photooxidative shock absorber'; binding of porphyrin IX, Congo red and other photosensitisers to PrPc suggests PrPc serves as an integral associate of the porphyrin/melanin chromophore electron transfer chain; thereby serving as a quencher of singlet O2/superoxide generated by photoenergised chromophores/xeno photosensitisers. It is proposed that sporadic TSE pathogenesis is initiated in the retina of environmentally/genetically predisposed individuals via a two-stage chronic toxic process - Mn substitution at PrP's Cu domain forming a stable Mn2+-PrP complex, followed by an ultra violet in situ photo-oxidization of the Mn2+ component; whereby the latent 'Jekyll and Hyde' capacity of the Mn2+-PrP conjugate is activated into the fully fledged, 'infectious' lethal auto-oxidizing, Mn3+-PrP 'prion' agent. Thus, PrPc's Cu-mediated antioxidant function is replaced by a Mn3+-mediated autooxidant dysfunction. Could the UK's increased loading of a cocktail of environmental oxidants that penetrated the CNS of the UK bovine (ultra violet microwaves/ozone/systemic cu-chelating insecticides) account for a more virulent Mn4+ mediated acceleration of the TSE degenerative process in Mn-contaminated/genetically predisposed individuals, manifesting as the widespread emergence of new-variant bovine spongiform encephalopathy (BSE)/variant Creutzfeldt-Jacob disease (VCJD)/FSE in younger mammals? PMID:11421622

  18. Single-Molecule Imaging Reveals that Small Amyloid-?1–42 Oligomers Interact with the Cellular Prion Protein (PrPC)

    PubMed Central

    Ganzinger, Kristina A; Narayan, Priyanka; Qamar, Seema S; Weimann, Laura; Ranasinghe, Rohan T; Aguzzi, Adriano; Dobson, Christopher M; McColl, James; St George-Hyslop, Peter; Klenerman, David

    2014-01-01

    Oligomers of the amyloid-? peptide (A?) play a central role in the pathogenesis of Alzheimer’s disease and have been suggested to induce neurotoxicity by binding to a plethora of cell-surface receptors. However, the heterogeneous mixtures of oligomers of varying sizes and conformations formed by A?42 have obscured the nature of the oligomeric species that bind to a given receptor. Here, we have used single-molecule imaging to characterize A?42 oligomers (oA?42) and to confirm the controversial interaction of oA?42 with the cellular prion protein (PrPC) on live neuronal cells. Our results show that, at nanomolar concentrations, oA?42 interacts with PrPC and that the species bound to PrPC are predominantly small oligomers (dimers and trimers). Single-molecule biophysical studies can thus aid in deciphering the mechanisms that underlie receptor-mediated oA?-induced neurotoxicity, and ultimately facilitate the discovery of novel inhibitors of these pathways. PMID:25294384

  19. Prion-Protein-interacting Amyloid-? Oligomers of High Molecular Weight Are Tightly Correlated with Memory Impairment in Multiple Alzheimer Mouse Models.

    PubMed

    Kostylev, Mikhail A; Kaufman, Adam C; Nygaard, Haakon B; Patel, Pujan; Haas, Laura T; Gunther, Erik C; Vortmeyer, Alexander; Strittmatter, Stephen M

    2015-07-10

    Alzheimer disease (AD) is characterized by amyloid-? accumulation, with soluble oligomers (A?o) being the most synaptotoxic. However, the multivalent and unstable nature of A?o limits molecular characterization and hinders research reproducibility. Here, we characterized multiple A?o forms throughout the life span of various AD mice and in post-mortem human brain. A?o exists in several populations, where prion protein (PrP(C))-interacting A?o is a high molecular weight A? assembly present in multiple mice and humans with AD. Levels of PrP(C)-interacting A?o match closely with mouse memory and are equal or superior to other A? measures in predicting behavioral impairment. However, A?o metrics vary considerably between mouse strains. Deleting PrP(C) expression in mice with relatively low PrP(C)-interacting A?o (Tg2576) results in partial rescue of cognitive performance as opposed to complete recovery in animals with a high percentage of PrP(C)-interacting A?o (APP/PSEN1). These findings highlight the relative contributions and interplay of A?o forms in AD. PMID:26018073

  20. One Octarepeate Expansion to the Human Prion Protein Alters Both the Zn2plus and Cu2plus Coordination Environments within the Octarepeate Domain

    SciTech Connect

    J Shearer; K Rosenkoetter; P Callan; C Pham

    2011-12-31

    The influence of a single octarepeat expansion on the Cu{sup II} and Zn{sup II} coordination environments within the octarepeat domain of the human prion protein is examined. Using X-ray absorption spectroscopy and diethyl pyrocarbonate labeling studies, we find that at low copper concentrations the 'normal' octarepeat domain (four PHGGGWGQ repeats) coordinates Zn{sup II} in an (N/O){sub 6} coordination environment with two histidine residues and Cu{sup II} in a redox-inactive (N/O){sub 4} coordination environment using one imidazole residue. Expansion of the octarepeat region by one repeat (five PHGGGWGQ repeats) yields a three-histidine (N/O){sub 6} coordination environment for Zn{sup II} and a two-histidine (N/O){sub 4} coordination environment for Cu{sup II} at low copper concentrations. This Cu{sup II}[(N/O){sub 2}-histidine{sub 2}] coordination motif is redox-active and capable of generating H{sub 2}O{sub 2} under reducing aerobic conditions.

  1. The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses

    PubMed Central

    Haigh, Cathryn L.; Tumpach, Carolin; Drew, Simon C.; Collins, Steven J.

    2015-01-01

    Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response. PMID:26252007

  2. Crossing species barrier by PrPSc replication in vitro generates new infectious prions

    PubMed Central

    Castilla, Joaquín; Gonzalez-Romero, Dennisse; Saá, Paula; Morales, Rodrigo; De Castro, Jorge; Soto, Claudio

    2008-01-01

    Summary Prions are unconventional infectious agents composed exclusively by the misfolded prion protein (PrPSc), which transmits the disease by propagating its abnormal conformation to the cellular prion protein (PrPC). A key characteristic of prions is their species barrier, by which prions from one species can only infect a limited number of other species. Here we report the generation of novel infectious prions by inter-species transmission of PrPSc misfolding in vitro. Hamster PrPC misfolded by mixing with mouse PrPSc generated new prions that were infectious to wild type hamsters. Similarly, new mouse prions were generated by crossing the species barrier in the opposite direction. A detailed characterization of the infectious, biochemical and histological properties of the disease produced indicate that the in vitro generated material across the species barrier correspond to new prion strains. Successive rounds of PMCA amplification result in a progressive adaptation of the in vitro produced prions, in a process reminiscent to the strain stabilization process observed upon serial passage in vivo. Our results indicate that PMCA is a valuable tool to investigate cross-species transmission and suggest that species barrier and strain generation are determined by the propagation of PrP misfolding. PMID:18775309