Sample records for prion protein sequence

  1. Molecular cloning and sequence analysis of prion protein gene in Xiji donkey in China.

    PubMed

    Zhang, Zhuming; Wang, Renli; Xu, Lihua; Yuan, Fangzhong; Zhou, Xiangmei; Yang, Lifeng; Yin, Xiaomin; Xu, Binrui; Zhao, Deming

    2013-10-25

    Prion diseases are a group of human and animal neurodegenerative disorders caused by the deposition of an abnormal isoform prion protein (PrP(Sc)) encoded by a single copy prion protein gene (PRNP). Prion disease has been reported in many herbivores but not in Equus and the species barrier might be playing a role in resistance of these species to the disease. Therefore, analysis of genotype of prion protein (PrP) in these species may help understand the transmission of the disease. Xiji donkey is a rare species of Equus not widely reared in Ningxia, China, for service, food and medicine, but its PRNP has not been studied. Based on the reported PrP sequence in GenBank we designed primers and amplified, cloned and sequenced the PRNP of Xiji donkey. The sequence analysis showed that the Xiji donkey PRNP was consisted of an open reading frame of 768 nucleotides encoding 256 amino acids. Amino acid residues unique to donkey as compared with some Equus animals, mink, cow, sheep, human, dog, sika deer, rabbit and hamster were identified. The results showed that the amino acid sequence of Xiji donkey PrP starts with the consensus sequence MVKSH, with almost identical amino acid sequence to the PrP of other Equus species in this study. Amino acid sequence analysis showed high identity within species and close relation to the PRNP of sika deer, sheep, dog, camel, cow, mink, rabbit and hamster with 83.1-99.7% identity. The results provided the PRNP data for an additional Equus species, which should be useful to the study of the prion disease pathogenesis, resistance and cross species transmission. PMID:23954254

  2. In silico comparative analysis of DNA and amino acid sequences for prion protein gene.

    PubMed

    Kim, Y; Lee, J; Lee, C

    2008-01-01

    Genetic variability might contribute to species specificity of prion diseases in various organisms. In this study, structures of the prion protein gene (PRNP) and its amino acids were compared among species of which sequence data were available. Comparisons of PRNP DNA sequences among 12 species including human, chimpanzee, monkey, bovine, ovine, dog, mouse, rat, wallaby, opossum, chicken and zebrafish allowed us to identify candidate regulatory regions in intron 1 and 3'-untranslated region (UTR) in addition to the coding region. Highly conserved putative binding sites for transcription factors, such as heat shock factor 2 (HSF2) and myocite enhancer factor 2 (MEF2), were discovered in the intron 1. In 3'-UTR, the functional sequence (ATTAAA) for nucleus-specific polyadenylation was found in all the analysed species. The functional sequence (TTTTTAT) for maturation-specific polyadenylation was identically observed only in ovine, and one or two nucleotide mismatches in the other species. A comparison of the amino acid sequences in 53 species revealed a large sequence identity. Especially the octapeptide repeat region was observed in all the species but frog and zebrafish. Functional changes and susceptibility to prion diseases with various isoforms of prion protein could be caused by numeric variability and conformational changes discovered in the repeat sequences. PMID:18397498

  3. Sequence analysis of the prion protein gene in Mongolian gazelles (Procapra gutturosa).

    PubMed

    Wang, Yiqin; Qin, Zhenkui; Bao, Yonggan; Qiao, Junwen; Yang, Lifeng; Zhao, Deming

    2009-10-01

    Prion diseases are a group of human and animal neurodegenerative conditions, which are caused by the deposition of an abnormal isoform prion protein (PrPSc) encoded by a single copy prion protein gene (Prnp). In sheep, genetic variations of Prnp were found to be associated with the incubation period, susceptibility, and species barrier to the scrapie disease. We investigated the sequence and polymorphisms of the prion protein gene of Mongolian gazelles (gPrnp). gPrnp gene sequence analysis of blood samples from 26 Mongolian gazelles showed high identity within species. The gPrnp gene was closely related to the Prnp genes of Thomson’s gazelle, blackbuck, and cattle with 100, 100, and 98.5% identity, respectively, whereas the gPrnp gene with a deletion was closely related to the Prnp genes of wildebeest, Western roe deer, and sheep with 99.3, 99.3, and 98.9% identity, respectively. Polymorphisms of the open reading frame of Prnp as amino acid substitutions were detected at codons 119(N --> S), 143(S --> G) or 160(Y --> H), 172(V --> A), 182(N --> S) and 221(V --> A). There was also deletion of one octapeptide repeat at the N-terminal octapeptide repeat region. The polymorphisms of gPrnp will assist the study of prion disease pathogenesis, resistance, and cross species transmission. PMID:19579063

  4. Human prion protein sequence elements impede cross-species chronic wasting disease transmission

    PubMed Central

    Kurt, Timothy D.; Jiang, Lin; Fernández-Borges, Natalia; Bett, Cyrus; Liu, Jun; Yang, Tom; Spraker, Terry R.; Castilla, Joaquín; Eisenberg, David; Kong, Qingzhong; Sigurdson, Christina J.

    2015-01-01

    Chronic wasting disease (CWD) is a fatal prion disease of North American deer and elk and poses an unclear risk for transmission to humans. Human exposure to CWD occurs through hunting activities and consumption of venison from prion-infected animals. Although the amino acid residues of the prion protein (PrP) that prevent or permit human CWD infection are unknown, NMR-based structural studies suggest that the ?2-?2 loop (residues 165–175) may impact species barriers. Here we sought to define PrP sequence determinants that affect CWD transmission to humans. We engineered transgenic mice that express human PrP with four amino acid substitutions that result in expression of PrP with a ?2-?2 loop (residues 165–175) that exactly matches that of elk PrP. Compared with transgenic mice expressing unaltered human PrP, mice expressing the human-elk chimeric PrP were highly susceptible to elk and deer CWD prions but were concurrently less susceptible to human Creutzfeldt-Jakob disease prions. A systematic in vitro survey of amino acid differences between humans and cervids identified two additional residues that impacted CWD conversion of human PrP. This work identifies amino acids that constitute a substantial structural barrier for CWD transmission to humans and helps illuminate the molecular requirements for cross-species prion transmission. PMID:25705888

  5. Human prion protein sequence elements impede cross-species chronic wasting disease transmission.

    PubMed

    Kurt, Timothy D; Jiang, Lin; Fernández-Borges, Natalia; Bett, Cyrus; Liu, Jun; Yang, Tom; Spraker, Terry R; Castilla, Joaquín; Eisenberg, David; Kong, Qingzhong; Sigurdson, Christina J

    2015-04-01

    Chronic wasting disease (CWD) is a fatal prion disease of North American deer and elk and poses an unclear risk for transmission to humans. Human exposure to CWD occurs through hunting activities and consumption of venison from prion-infected animals. Although the amino acid residues of the prion protein (PrP) that prevent or permit human CWD infection are unknown, NMR-based structural studies suggest that the ?2-?2 loop (residues 165-175) may impact species barriers. Here we sought to define PrP sequence determinants that affect CWD transmission to humans. We engineered transgenic mice that express human PrP with four amino acid substitutions that result in expression of PrP with a ?2-?2 loop (residues 165-175) that exactly matches that of elk PrP. Compared with transgenic mice expressing unaltered human PrP, mice expressing the human-elk chimeric PrP were highly susceptible to elk and deer CWD prions but were concurrently less susceptible to human Creutzfeldt-Jakob disease prions. A systematic in vitro survey of amino acid differences between humans and cervids identified two additional residues that impacted CWD conversion of human PrP. This work identifies amino acids that constitute a substantial structural barrier for CWD transmission to humans and helps illuminate the molecular requirements for cross-species prion transmission. PMID:25705888

  6. Quantum dots and prion proteins

    PubMed Central

    Sobrova, Pavlina; Blazkova, Iva; Chomoucka, Jana; Drbohlavova, Jana; Vaculovicova, Marketa; Kopel, Pavel; Hubalek, Jaromir; Kizek, Rene; Adam, Vojtech

    2013-01-01

    A diagnostics of infectious diseases can be done by the immunologic methods or by the amplification of nucleic acid specific to contagious agent using polymerase chain reaction. However, in transmissible spongiform encephalopathies, the infectious agent, prion protein (PrPSc), has the same sequence of nucleic acids as a naturally occurring protein. The other issue with the diagnosing based on the PrPSc detection is that the pathological form of prion protein is abundant only at late stages of the disease in a brain. Therefore, the diagnostics of prion protein caused diseases represent a sort of challenges as that hosts can incubate infectious prion proteins for many months or even years. Therefore, new in vivo assays for detection of prion proteins and for diagnosis of their relation to neurodegenerative diseases are summarized. Their applicability and future prospects in this field are discussed with particular aim at using quantum dots as fluorescent labels. PMID:24055838

  7. Treatment of Prion Disease with Heterologous Prion Proteins

    PubMed Central

    Skinner, Pamela J.; Kim, Hyeon O.; Bryant, Damani; Kinzel, Nikilyn J.; Reilly, Cavan; Priola, Suzette A.; Ward, Anne E.; Goodman, Patricia A.; Olson, Katherine; Seelig, Davis M.

    2015-01-01

    Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep are fatal neurodegenerative diseases for which there is no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPsc or PrPres). Both in vitro (cell culture and cell free conversion assays) and in vivo (animal) studies have demonstrated the strong dependence of this conversion process on protein sequence homology between the initial prion inoculum and the host’s own cellular prion protein. The presence of non-homologous (heterologous) proteins is often inhibitory to this conversion process. We hypothesize that the presence of heterologous prion proteins from one species might therefore constitute an effective treatment for prion disease in another species. To test this hypothesis, we infected mice intracerebrally with murine adapted RML-Chandler scrapie and treated them with heterologous prion protein (purified bacterially expressed recombinant hamster prion protein) or vehicle alone. Treated animals demonstrated reduced disease associated pathology, decreased accumulation of protease-resistant disease-associated prion protein, with delayed onset of clinical symptoms and motor deficits. This was concomitant with significantly increased survival times relative to mock-treated animals. These results provide proof of principle that recombinant hamster prion proteins can effectively and safely inhibit prion disease in mice, and suggest that hamster or other non-human prion proteins may be a viable treatment for prion diseases in humans. PMID:26134409

  8. A Systematic Survey Identifies Prions and Illuminates Sequence Features of Prionogenic Proteins

    E-print Network

    Kapila, Atul

    Prions are proteins that convert between structurally and functionally distinct states, one or more of which is transmissible. In yeast, this ability allows them to act as non-Mendelian elements of phenotypic inheritance. ...

  9. Recombinant Human Prion Protein Inhibits Prion Propagation in vitro

    E-print Network

    Recombinant Human Prion Protein Inhibits Prion Propagation in vitro Jue Yuan1,3 *, Yi-An Zhan1, Ohio, USA, 3 National Prion Disease Pathology Surveillance Center, Case Western Reserve University), Cairo, Egypt. Prion diseases are associated with the conformational conversion of the cellular prion

  10. Discriminant analysis of prion sequences for prediction of susceptibility

    PubMed Central

    Lee, Ji-Hae; Bae, Se-Eun; Jung, Sunghoon; Ahn, Insung; Son, Hyeon Seok

    2013-01-01

    Prion diseases, including ovine scrapie, bovine spongiform encephalopathy (BSE), human kuru and Creutzfeldt–Jakob disease (CJD), originate from a conformational change of the normal cellular prion protein (PrPC) into abnormal protease-resistant prion protein (PrPSc). There is concern regarding these prion diseases because of the possibility of their zoonotic infections across species. Mutations and polymorphisms of prion sequences may influence prion-disease susceptibility through the modified expression and conformation of proteins. Rapid determination of susceptibility based on prion-sequence polymorphism information without complex structural and molecular biological analyses may be possible. Information regarding the effects of mutations and polymorphisms on prion-disease susceptibility was collected based on previous studies to classify the susceptibilities of sequences, whereas the BLOSUM62 scoring matrix and the position-specific scoring matrix were utilised to determine the distance of target sequences. The k-nearest neighbour analysis was validated with cross-validation methods. The results indicated that the number of polymorphisms did not influence prion-disease susceptibility, and three and four k-objects showed the best accuracy in identifying the susceptible group. Although sequences with negative polymorphisms showed relatively high accuracy for determination, polymorphisms may still not be an appropriate factor for estimating variation in susceptibility. Discriminant analysis of prion sequences with scoring matrices was attempted as a possible means of determining susceptibility to prion diseases. Further research is required to improve the utility of this method. PMID:24113272

  11. Prion protein and aging

    PubMed Central

    Gasperini, Lisa; Legname, Giuseppe

    2014-01-01

    The cellular prion protein (PrPC) has been widely investigated ever since its conformational isoform, the prion (or PrPSc), was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate ?-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and fate in aging. PMID:25364751

  12. Recombinant human prion protein inhibits prion propagation in vitro.

    PubMed

    Yuan, Jue; Zhan, Yi-An; Abskharon, Romany; Xiao, Xiangzhu; Martinez, Manuel Camacho; Zhou, Xiaochen; Kneale, Geoff; Mikol, Jacqueline; Lehmann, Sylvain; Surewicz, Witold K; Castilla, Joaquín; Steyaert, Jan; Zhang, Shulin; Kong, Qingzhong; Petersen, Robert B; Wohlkonig, Alexandre; Zou, Wen-Quan

    2013-01-01

    Prion diseases are associated with the conformational conversion of the cellular prion protein (PrP(C)) into the pathological scrapie isoform (PrP(Sc)) in the brain. Both the in vivo and in vitro conversion of PrP(C) into PrP(Sc) is significantly inhibited by differences in amino acid sequence between the two molecules. Using protein misfolding cyclic amplification (PMCA), we now report that the recombinant full-length human PrP (rHuPrP23-231) (that is unglycosylated and lacks the glycophosphatidylinositol anchor) is a strong inhibitor of human prion propagation. Furthermore, rHuPrP23-231 also inhibits mouse prion propagation in a scrapie-infected mouse cell line. Notably, it binds to PrP(Sc), but not PrP(C), suggesting that the inhibitory effect of recombinant PrP results from blocking the interaction of brain PrP(C) with PrP(Sc). Our findings suggest a new avenue for treating prion diseases, in which a patient's own unglycosylated and anchorless PrP is used to inhibit PrP(Sc) propagation without inducing immune response side effects. PMID:24105336

  13. Prion protein in Caenorhabditis elegans

    PubMed Central

    Park, Kyung-Won

    2011-01-01

    The infectious agent of prion diseases is believed to be nucleic acid-free particles composed of misfolded conformational isomers of a host protein known as prion protein (PrP). Although this “protein-only” concept is generally accepted, decades of extensive research have not been able to elucidate the mechanisms by which PrP misfolding leads to neurodegeneration and infectivity. The challenges in studying prion diseases relate in part to the limitations of mammalian prion models, which include the long incubation period post-infection until symptoms develop, the high expense of maintaining mammals for extended periods, as well as safety issues. In order to develop prion models incorporating a genetically tractable simple system with a well-defined neuronal system, we generated transgenic C. elegans expressing the mouse PrP behind the pan-neuronal ric-19 promoter (Pric-19). We show here that high expression of Pric-19::PrP in C. elegans can result in altered morphology, defective mobility and shortened lifespan. Low expression of Pric-19::PrP, however, does not cause any detectable harm. Using the dopamine neuron specific promoter Pdat-1, we also show that expression of the murine BAX, a pro-apoptotic member of the Bcl-2 family, causes dopamine neuron destruction in the nematode. However, co-expression of PrP inhibits BAX-mediated dopamine neuron degeneration, demonstrating for the first time that PrP has anti-BAX activity in living animals. Thus, these distinct PrP-transgenic C. elegans lines recapitulate a number of functional and neuropathological features of mammalian prion models and provide an opportunity for facile identification of genetic and environmental contributors to prion-associated pathology. PMID:21084837

  14. Mammalian prions: tolerance to sequence changes-how far?

    PubMed

    Salamat, Muhammad Khalid; Munoz-Montesino, Carola; Moudjou, Mohammed; Rezaei, Human; Laude, Hubert; Béringue, Vincent; Dron, Michel

    2013-01-01

    Upon prion infection, abnormal prion protein (PrP (Sc) ) self-perpetuate by conformational conversion of ?-helix-rich PrP (C) into ? sheet enriched form, leading to formation and deposition of PrP (Sc) aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrP (Sc) and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region. PMID:23232499

  15. Signal Transduction Through Prion Protein

    Microsoft Academic Search

    S. Mouillet-Richard; M. Ermonval; C. Chebassier; J. L. Laplanche; S. Lehmann; J. M. Launay; O. Kellermann

    2000-01-01

    The cellular prion protein PrPc is a glycosylphosphatidylinositol-anchored cell-surface protein whose biological function is unclear. We used the murine 1C11 neuronal differentiation model to search for PrPc-dependent signal transduction through antibody-mediated cross-linking. A caveolin-1-dependent coupling of PrPc to the tyrosine kinase Fyn was observed. Clathrin might also contribute to this coupling. The ability of the 1C11 cell line to trigger

  16. ?-Cleavage of cellular prion protein

    PubMed Central

    Liang, Jingjing; Kong, Qingzhong

    2012-01-01

    The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the ?-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the ?-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the ?-cleavage of PrPC, but there has been no report of direct PrPC ?-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the ?-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer. PMID:23052041

  17. Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes

    E-print Network

    Mayfield, John

    Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes) On passaging synthetic prions, two isolates emerged with incubation times differing by nearly 100 days. Using to denature 50% of disease-causing prion protein (PrPSc) molecules, denoted as the [Gdn HCl]1/2 value

  18. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores

    PubMed Central

    Zambrano, Rafael; Conchillo-Sole, Oscar; Iglesias, Valentin; Illa, Ricard; Rousseau, Frederic; Schymkowitz, Joost; Sabate, Raimon; Daura, Xavier; Ventura, Salvador

    2015-01-01

    Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/. PMID:25977297

  19. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores.

    PubMed

    Zambrano, Rafael; Conchillo-Sole, Oscar; Iglesias, Valentin; Illa, Ricard; Rousseau, Frederic; Schymkowitz, Joost; Sabate, Raimon; Daura, Xavier; Ventura, Salvador

    2015-07-01

    Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/. PMID:25977297

  20. Epithelial and endothelial expression of the green fluorescent protein reporter gene under the control of bovine prion protein (PrP) gene regulatory sequences in transgenic mice

    NASA Astrophysics Data System (ADS)

    Lemaire-Vieille, Catherine; Schulze, Tobias; Podevin-Dimster, Valérie; Follet, Jérome; Bailly, Yannick; Blanquet-Grossard, Françoise; Decavel, Jean-Pierre; Heinen, Ernst; Cesbron, Jean-Yves

    2000-05-01

    The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5' untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.

  1. Exploring prion protein biology in flies

    PubMed Central

    Casas-Tinto, Sergio

    2010-01-01

    The fruit fly Drosophila melanogaster has been a favored tool for genetic studies for over 100 years and has become an excellent model system to study development, signal transduction, cell biology, immunity and behavior. The relevance of Drosophila to humans is perhaps best illustrated by the fact that more than 75% of the genes identified in human diseases have counterparts in Drosophila. During the last decade, many fly models of neurodegenerative disorders have contributed to the identification of novel pathways mediating pathogenesis. However, the development of prion disease models in flies has been remarkably challenging. We recently reported a Drosophila model of sporadic prion pathology that shares relevant features with the typical disease in mammals. This new model provides the basis to explore relevant aspects of the biology of the prion protein, such as uncovering the genetic mechanisms regulating prion protein misfolding and prion-induced neurodegeneration, in a dynamic, genetically tractable in vivo system. PMID:20083902

  2. Regional Mapping of Prion Proteins in Brain

    Microsoft Academic Search

    Albert Taraboulos; Klaus Jendroska; Dan Serban; Shu-Lian Yang; Stephen J. Dearmond

    1992-01-01

    Scrapie is characterized by the accumulation of a protease-resistant isoform of the prion protein PrPSc. Limited proteolysis and chaotropes were used to map the distribution of PrPSc in cryostat sections of scrapie-infected brain blotted onto nitrocellulose membranes, designated histoblots. Proteolysis was omitted in order to map the cellular isoform of the prion protein (PrP^C) in uninfected brains. Compared with immunohistochemistry,

  3. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment

    Microsoft Academic Search

    David R. Brown; Bernhard Schmidt; Hans A. Kretzschmar

    1996-01-01

    THE prion protein PrPc is a glycoprotein of unknown function1 normally found in neurons2 and glia3. It is involved in diseases such as bovine spongiform encephalopathy (BSE), scrapie and Creutzfeldt-Jakob disease4. PrPSc, an altered isoform of PrPc that is associated with disease, shows greater protease resistance and is part of the infectious agent, the prion5,6. Prion diseases are characterized by

  4. Polymorphisms and variants in the prion protein sequence of European moose (Alces alces), reindeer (Rangifer tarandus), roe deer (Capreolus capreolus) and fallow deer (Dama dama) in Scandinavia.

    PubMed

    Wik, Lotta; Mikko, Sofia; Klingeborn, Mikael; Stéen, Margareta; Simonsson, Magnus; Linné, Tommy

    2012-07-01

    The prion protein (PrP) sequence of European moose, reindeer, roe deer and fallow deer in Scandinavia has high homology to the PrP sequence of North American cervids. Variants in the European moose PrP sequence were found at amino acid position 109 as K or Q. The 109Q variant is unique in the PrP sequence of vertebrates. During the 1980s a wasting syndrome in Swedish moose, Moose Wasting Syndrome (MWS), was described. SNP analysis demonstrated a difference in the observed genotype proportions of the heterozygous Q/K and homozygous Q/Q variants in the MWS animals compared with the healthy animals. In MWS moose the allele frequencies for 109K and 109Q were 0.73 and 0.27, respectively, and for healthy animals 0.69 and 0.31. Both alleles were seen as heterozygotes and homozygotes. In reindeer, PrP sequence variation was demonstrated at codon 176 as D or N and codon 225 as S or Y. The PrP sequences in roe deer and fallow deer were identical with published GenBank sequences. PMID:22441661

  5. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    Microsoft Academic Search

    Christopher J Johnson; PUPA Gilbert; Debbie McKenzie; Joel A Pedersen; Judd M Aiken

    2009-01-01

    BACKGROUND: Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. FINDINGS:

  6. Original Research Communication Prion Protein Expression and Functional Importance in

    E-print Network

    Paris-Sud XI, Université de

    1 1 Original Research Communication Prion Protein Expression and Functional Importance illustrations: 7 Color illustrations: 2 (online 2) Page 1 of 48 Antioxidants&RedoxSignaling PrionProtein prion protein (PrPC ), a GPI-anchored glycoprotein, which we reported to be highly expressed in human

  7. Conformational variations in an infectious protein determine prion strain differences

    Microsoft Academic Search

    Motomasa Tanaka; Peter Chien; Nariman Naber; Roger Cooke; Jonathan S. Weissman

    2004-01-01

    A remarkable feature of prion biology is the strain phenomenon wherein prion particles apparently composed of the same protein lead to phenotypically distinct transmissible states. To reconcile the existence of strains with the `protein-only' hypothesis of prion transmission, it has been proposed that a single protein can misfold into multiple distinct infectious forms, one for each different strain. Several studies

  8. Characterization of the genomic region containing the Shadow of Prion Protein (SPRN) gene in sheep

    Microsoft Academic Search

    Evelyne Lampo; Mario Van Poucke; Karine Hugot; Hélène Hayes; Alex Van Zeveren; Luc J Peelman

    2007-01-01

    BACKGROUND: TSEs are a group of fatal neurodegenerative diseases occurring in man and animals. They are caused by prions, alternatively folded forms of the endogenous prion protein, encoded by PRNP. Since differences in the sequence of PRNP can not explain all variation in TSE susceptibility, there is growing interest in other genes that might have an influence on this susceptibility.

  9. Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding

    Microsoft Academic Search

    Ralph Zahn; Christine von Schroetter; Kurt Wüthrich

    1997-01-01

    An efficient method is presented for the production of intact mammalian prion proteins and partial sequences thereof. As an illustration we describe the production of polypeptides comprising residues 23–231, 81–231, 90–231 and 121–231 of the human prion protein (hPrP)1Sequence positions according to Syrian hamster PrP [1].1. Polypeptides were expressed as histidine tail fusion proteins into inclusion bodies in the cytoplasm

  10. Sonication Induced Intermediate in Prion Protein Conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vivo conversion of prion protein (PrPC) to its abnormal pathogenic isoform (PrPSc) is associated with conformational transition of alpha-helices and unstructured regions to beta-sheets. Protein misfolding cyclic amplification (PMCA) is thought to mimics this conversion in vitro. PMCA involves son...

  11. NMR structure of the bovine prion protein

    Microsoft Academic Search

    Francisco López García; Ralph Zahn; Roland Riek; Kurt Wüthrich

    2000-01-01

    The NMR structures of the recombinant 217-residue polypeptide chain of the mature bovine prion protein, bPrP(23-230), and a C-terminal fragment, bPrP(121-230), include a globular domain extending from residue 125 to residue 227, a short flexible chain end of residues 228-230, and an N-terminal flexibly disordered \\

  12. Copper Binding to the N-Terminal Tandem Repeat Regions of Mammalian and Avian Prion Protein

    Microsoft Academic Search

    M. P. Hornshaw; J. R. Mcdermott; J. M. Candy

    1995-01-01

    Mammalian prion protein (PrP) is a normal cellular protein (PrPc) which through post-translational modification produces the infectious prion protein (PrPsc). We have shown, using mass spectrometry, that synthetic peptides containing three or four copies of an octapeptide repeat sequence (PHGGGWGQ), found in a highly conserved N-terminal domain of PrP, preferentially bind copper over other metals. Peptides from the analogous region

  13. Prion protein interaction with soil humic substances: environmental implications.

    PubMed

    Giachin, Gabriele; Narkiewicz, Joanna; Scaini, Denis; Ngoc, Ai Tran; Margon, Alja; Sequi, Paolo; Leita, Liviana; Legname, Giuseppe

    2014-01-01

    Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants. PMID:24937266

  14. Knocked-out and still walking: prion protein-deficient cattle are resistant to prion disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Transmissible spongiform encephalopathies (TSEs) or prion diseases are caused by the propagation of a misfolded form (PrP**d) of the normal cellular prion protein, PrP**c. Disruption of PrP**c expression in the mouse results in resistance to PrP-propagation and disease. However, the impa...

  15. Evolutionary Implications of Metal Binding Features in Different Species’ Prion Protein: An Inorganic Point of View

    PubMed Central

    La Mendola, Diego; Rizzarelli, Enrico

    2014-01-01

    Prion disorders are a group of fatal neurodegenerative conditions of mammals. The key molecular event in the pathogenesis of such diseases is the conformational conversion of prion protein, PrPC, into a misfolded form rich in ?-sheet structure, PrPSc, but the detailed mechanistic aspects of prion protein conversion remain enigmatic. There is uncertainty on the precise physiological function of PrPC in healthy individuals. Several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ mainly through a domain composed by four to five repeats of eight amino acids. In addition to mammals, PrP homologues have also been identified in birds, reptiles, amphibians and fish. The globular domain of protein is retained in the different species, suggesting that the protein carries out an essential common function. However, the comparison of amino acid sequences indicates that prion protein has evolved differently in each vertebrate class. The primary sequences are strongly conserved in each group, but these exhibit a low similarity with those of mammals. The N-terminal domain of different prions shows tandem amino acid repeats with an increasing amount of histidine residues going from amphibians to mammals. The difference in the sequence affects the number of copper binding sites, the affinity and the coordination environment of metal ions, suggesting that the involvement of prion in metal homeostasis may be a specific characteristic of mammalian prion protein. In this review, we describe the similarities and the differences in the metal binding of different species’ prion protein, as revealed by studies carried out on the entire protein and related peptide fragments. PMID:24970230

  16. Neurotoxicity of a prion protein fragment

    Microsoft Academic Search

    Gianluigi Forloni; Nadia Angeretti; Roberto Chiesa; Enrico Monzani; Mario Salmona; Orso Bugiani; Fabrizio Tagliavini

    1993-01-01

    THE cellular prion protein (PrPc) is a sialoglycoprotein of Mr 33-35K that is expressed predominantly in neurons1-3. In transmissible and genetic neurodegenerative disorders such as scrapie of sheep, spongiform encephalopathy of cattle and Creutzfeldt-Jakob or Gerstmann-Sträussler-Scheinker diseases of humans4,5, PrPc is converted into an altered form (termed PrPSc) which is distinguishable from its normal homologue by its relative resistance to

  17. Rapid cell-surface prion protein conversion revealed using a novel cell system

    Microsoft Academic Search

    R. Goold; S. Rabbanian; L. Sutton; R. Andre; P. Arora; J. Moonga; A. R. Clarke; G. Schiavo; P. Jat; J. Collinge; S. J. Tabrizi

    2011-01-01

    Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrPC). Here we develop a unique cell system in which

  18. Sialylation of Prion Protein Controls the Rate of Prion Amplification, the Cross-Species Barrier, the Ratio of PrPSc Glycoform and Prion Infectivity

    PubMed Central

    Katorcha, Elizaveta; Makarava, Natallia; Savtchenko, Regina; d?Azzo, Alessandra; Baskakov, Ilia V.

    2014-01-01

    The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into the disease-associated, transmissible form (PrPSc). PrPC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrPC and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrPC glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. The current study demonstrates that undersialylated PrPC is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrPC. As a result, PMCAb-derived PrPSc was less sialylated than brain-derived PrPSc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrPC using sialidase was found to increase the rate of PrPSc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrPC reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrPC was also found to control PrPSc glycoform ratio. A decrease in PrPC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrPSc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrPC differed from that of spleen-derived PrPC. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrPC, suggesting that Neu1 is not responsible for desialylation of PrPC. The current work highlights previously unappreciated role of PrPC sialylation in prion diseases and opens multiple new research directions, including development of new therapeutic approaches. PMID:25211026

  19. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody

    Microsoft Academic Search

    Masato Enari; Eckhard Flechsig; Charles Weissmann

    2001-01-01

    Exposure of susceptible neuroblastoma N2a cells to mouse scrapie prions leads to infection, as evidenced by the continued presence of the scrapie form of the prion protein (PrPSc) and infectivity after 300 or more cell doublings. We find that exposure to phosphatidylinositol-specific phospholipase C (PIPLC) or to the monoclonal anti-prion protein (PrP) antibody 6H4 not only prevents infection of susceptible

  20. Disease-associated prion protein is not detectable in human systemic amyloid deposits.

    PubMed

    Tennent, G A; Head, M W; Bishop, M; Hawkins, P N; Will, R G; Knight, R; Peden, A H; McCardle, L M; Ironside, J W; Pepys, M B

    2007-12-01

    Cerebral and cardiac amyloid deposits have been reported after scrapie infection in transgenic mice expressing variant prion protein (PrP(C)) lacking the glycophosphatidylinositol anchor. The amyloid fibril protein in the systemic amyloid deposits was not characterized, and there is no clinical or pathological association between prion diseases and systemic amyloidosis in humans. Nevertheless, in view of the potential clinical significance of these murine observations, we tested both human amyloidotic tissues and isolated amyloid fibrils for the presence of PrP(Sc), the prion protein conformation associated with transmissible spongiform encephalopathy (TSE). We also sequenced the complete prion protein gene, PRNP, in amyloidosis patients. No specific immunohistochemical staining for PrP(Sc) was obtained in the amyloidotic cardiac and other visceral tissues of patients with different types of systemic amyloidosis. No protease-resistant prion protein, PrP(res), was detectable by Western blotting of amyloid fibrils isolated from cardiac and other systemic amyloid deposits. Only the complete normal wild-type PRNP gene sequence was identified, including the usual distribution of codon 129 polymorphisms. These reassuringly negative results do not support the idea that there is any relationship of prions or TSE with human systemic amyloidosis, including cardiac amyloid deposition. PMID:17955450

  1. Molecular mechanism of prion protein oligomerization at atomic resolution.

    PubMed

    Schlepckow, Kai; Schwalbe, Harald

    2013-09-16

    Prion protein oligomerization: Despite the crucial role of oligomers during prion protein (PrP) pathogenesis the molecular mechanism of their formation has remained largely elusive. A 2D time-resolved NMR study which made it possible to characterize the oligomerization kinetics with unprecedented site-specificity is reported. PMID:23934741

  2. Spontaneous Neurodegeneration in Transgenic Mice with Mutant Prion Protein

    Microsoft Academic Search

    Karen K. Hsiao; Michael Scott; Dallas Foster; Darlene F. Groth; Stephen J. Dearmond

    1990-01-01

    Transgenic mice were created to assess genetic linkage between Gerstmann-Straussler-Scheinker syndrome and a leucine substitution at codon 102 of the human prion protein gene. Spontaneous neurologic disease with spongiform degeneration and gliosis similar to that in mouse scrapie developed at a mean age of 166 days in 35 mice expressing mouse prion protein with the leucine substitution. Thus, many of

  3. On the kinetics of infection by pathogenic prion protein molecules

    NASA Astrophysics Data System (ADS)

    Durup, Jean

    1997-03-01

    Literature data on the transmission of spongiform encephalopathies between mammal species point to the importance of methionine residuies in species barriers. This in turn favours the assumption of an oligomerization of identical metastable pathogenic prion protein molecules as the rate-determining step in those diseases. Published experimental data on the analogous case of yeast prion proteins closely agree with the proposed scheme.

  4. Thermodynamics of Model Prions and its Implications for the Problem of Prion Protein Folding

    E-print Network

    Chan, Hue Sun

    -Jakob disease (CJD), Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia in humans), infectious & Prusiner, 1998; Prusiner et al., 1998). The link between the misfolding of the prion protein and the actual

  5. A naturally occurring variant of the human prion protein completely prevents prion disease.

    PubMed

    Asante, Emmanuel A; Smidak, Michelle; Grimshaw, Andrew; Houghton, Richard; Tomlinson, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Richard-Londt, Angela; Linehan, Jacqueline M; Brandner, Sebastian; Alpers, Michael; Whitfield, Jerome; Mead, Simon; Wadsworth, Jonathan D F; Collinge, John

    2015-06-25

    Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (G?V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation. PMID:26061765

  6. Prion protein induced signaling cascades in monocytes

    SciTech Connect

    Krebs, Bjarne [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Muenchen (Germany); Dorner-Ciossek, Cornelia [CNS Research III, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach/Riss (Germany); Schmalzbauer, Ruediger [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich (Germany); Vassallo, Neville [Department of Physiology and Biochemistry, University of Malta, Msida (Malta); Herms, Jochen [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich (Germany); Kretzschmar, Hans A. [Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich (Germany)]. E-mail: Hans.Kretzschmar@med.uni-muenchen.de

    2006-02-03

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP{sup C}), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP{sup C} fusion proteins synthesized with a human Fc-tag. PrP{sup C} fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK{sub 1,2} and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP{sup C} in monocytes and macrophages.

  7. Prion Protein Amino Acid Determinants of Differential Susceptibility and Molecular Feature of Prion Strains in Mice and Voles

    PubMed Central

    Agrimi, Umberto; Nonno, Romolo; Dell'Omo, Giacomo; Di Bari, Michele Angelo; Conte, Michela; Chiappini, Barbara; Esposito, Elena; Di Guardo, Giovanni; Windl, Otto; Vaccari, Gabriele; Lipp, Hans-Peter

    2008-01-01

    The bank vole is a rodent susceptible to different prion strains from humans and various animal species. We analyzed the transmission features of different prions in a panel of seven rodent species which showed various degrees of phylogenetic affinity and specific prion protein (PrP) sequence divergences in order to investigate the basis of vole susceptibility in comparison to other rodent models. At first, we found a differential susceptibility of bank and field voles compared to C57Bl/6 and wood mice. Voles showed high susceptibility to sheep scrapie but were resistant to bovine spongiform encephalopathy, whereas C57Bl/6 and wood mice displayed opposite features. Infection with mouse-adapted scrapie 139A was faster in voles than in C57Bl/6 and wood mice. Moreover, a glycoprofile change was observed in voles, which was reverted upon back passage to mice. All strains replicated much faster in voles than in mice after adapting to the new species. PrP sequence comparison indicated a correlation between the transmission patterns and amino acids at positions 154 and 169 (Y and S in mice, N and N in voles). This correlation was confirmed when inoculating three additional rodent species: gerbils, spiny mice and oldfield mice with sheep scrapie and 139A. These rodents were chosen because oldfield mice do have the 154N and 169N substitutions, whereas gerbil and spiny mice do not have them. Our results suggest that PrP residues 154 and 169 drive the susceptibility, molecular phenotype and replication rate of prion strains in rodents. This might have implications for the assessment of host range and molecular traceability of prion strains, as well as for the development of improved animal models for prion diseases. PMID:18654630

  8. Attachment of Pathogenic Prion Protein to Model Oxide Surfaces

    PubMed Central

    Jacobson, Kurt H.; Kuech, Thomas R.; Pedersen, Joel A.

    2014-01-01

    Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The N-terminal portion of the protein appeared to facilitate attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions preferentially associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides). PMID:23611152

  9. Context Dependent Neuroprotective Properties of Prion Protein (Prp)

    E-print Network

    Steele, Andrew D.

    Although it has been known for more than twenty years that an aberrant conformation of the prion protein (PrP) is the causative agent in prion diseases, the role of PrP in normal biology is undetermined. Numerous studies ...

  10. Doxycycline Control of Prion Protein Transgene Expression Modulates Prion Disease in Mice

    Microsoft Academic Search

    Patrick Tremblay; Zeev Meiner; Maria Galou; Cornelia Heinrich; Chris Petromilli; Thomas Lisse; Juliana Cayetano; Marilyn Torchia; William Mobley; Hermann Bujard; Stephen J. Dearmond

    1998-01-01

    Conversion of the cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) is the fundamental event underlying transmission and pathogenesis of prion disease. To control the expression of PrPC in transgenic (Tg) mice, we used a tetracycline controlled transactivator (tTA) driven by the PrP gene control elements and a tTA-responsive promoter linked to a PrP gene [Gossen, M. and Bujard,

  11. Molecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein

    E-print Network

    Scott, William

    , the physiological function of this remarkable protein is only now becoming clear. Recent work suggests residue sequence PHGGGWGQ (Figure 1). Most current work suggests that copper binding takes place withinMolecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein Colin

  12. De novo design of synthetic prion domains

    PubMed Central

    Toombs, James A.; Petri, Michelina; Paul, Kacy R.; Kan, Grace Y.; Ben-Hur, Asa; Ross, Eric D.

    2012-01-01

    Prions are important disease agents and epigenetic regulatory elements. Prion formation involves the structural conversion of proteins from a soluble form into an insoluble amyloid form. In many cases, this structural conversion is driven by a glutamine/asparagine (Q/N)-rich prion-forming domain. However, our understanding of the sequence requirements for prion formation and propagation by Q/N-rich domains has been insufficient for accurate prion propensity prediction or prion domain design. By focusing exclusively on amino acid composition, we have developed a prion aggregation prediction algorithm (PAPA), specifically designed to predict prion propensity of Q/N-rich proteins. Here, we show not only that this algorithm is far more effective than traditional amyloid prediction algorithms at predicting prion propensity of Q/N-rich proteins, but remarkably, also that PAPA is capable of rationally designing protein domains that function as prions in vivo. PMID:22474356

  13. Prions of yeast as epigenetic phenomena: high protein "copy number" inducing protein "silencing".

    PubMed

    Wickner, Reed B; Edskes, Herman K; Roberts, B Tibor; Pierce, Michael; Baxa, Ulrich

    2002-01-01

    Yeast infectious protein (prion) forms of the Ure2 and Sup35 proteins determine the nonchromosomal genes [URE3] and [PSI], and these are, therefore, the basis for a kind of epigenetic phenomena. In many systems, introduction of multiple copies of a DNA gene, or dsRNA copies of its sequence, results in the epigenetic silencing of that gene. In parallel with these homology effects, which act at the level of DNA or RNA, elevated copy number of the Ure2 and Sup35 proteins increases the frequency of their own "silencing" by prion formation. Both [URE3] and [PSI] appear to be due to self-propagating-amyloid formation of Ure2p and Sup35p, respectively. Another prion, [Het-s] of the filamentous fungus, Podospora anserina, is necessary for a normal cellular function, heterokaryon incompatibility. Since these prions are nonchromosomal genes, they are proteins acting as genes, a parallel to the fact that nucleic acids can catalyze enzymatic reactions. PMID:11931236

  14. Evidence for Protein X Binding to a Discontinuous Epitope on the Cellular Prion Protein during Scrapie Prion Propagation

    Microsoft Academic Search

    Kiyotoshi Kaneko; Laurence Zulianello; Michael Scott; Carol M. Cooper; Andrew C. Wallace; Thomas L. James; Fred E. Cohen

    1997-01-01

    Studies on the transmission of human (Hu) prions to transgenic (Tg) mice suggested that another molecule provisionally designated protein X participates in the formation of nascent scrapie isoform of prion protein (PrPSc). We report the identification of the site at which protein X binds to the cellular isoform of PrP (PrPC) using scrapie-infected mouse (Mo) neuroblastoma cells transfected with chimeric

  15. Mammalian prions

    PubMed Central

    Salamat, Muhammad Khalid; Munoz-Montesino, Carola; Moudjou, Mohammed; Rezaei, Human; Laude, Hubert; Béringue, Vincent; Dron, Michel

    2013-01-01

    Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of ?-helix-rich PrPC into ? sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region. PMID:23232499

  16. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  17. Persistence of pathogenic prion protein during simulated wastewater treatment processes.

    PubMed

    Hinckley, Glen T; Johnson, Christopher J; Jacobson, Kurt H; Bartholomay, Christian; McMahon, Katherine D; McKenzie, Debbie; Aiken, Judd M; Pedersen, Joel A

    2008-07-15

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP(TSE)) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment. Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. PMID:18754377

  18. Developmental expression of the prion protein gene in glial cells

    Microsoft Academic Search

    Markus Moser; Raymond J Colello; Uwe Pott; Bruno Oesch

    1995-01-01

    Replication of prions is dependent on the presence of the host protein PrPc. During the course of disease, PrPc is converted into an abnormal isoform, PrPsc, which accumulates in the brain. Attempts to identify the cell type(s) in which prion replication and PrP conversion occur have reached conflicting results. Although PrP mRNA is present in high amounts in neurons throughout

  19. Manganese Upregulates Cellular Prion Protein and Contributes to Altered Stabilization and Proteolysis: Relevance to Role of Metals in Pathogenesis of Prion Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases are fatal neurodegenerative diseases resulting from misfolding of normal cellular prion (PrP**C) into an abnormal form of scrapie prion (PrP**Sc). The cellular mechanisms underlying the misfolding of PrP**C are not well understood. Since cellular prion proteins harbor divalent metal b...

  20. Structure and polymorphism of the mouse prion protein gene.

    PubMed Central

    Westaway, D; Cooper, C; Turner, S; Da Costa, M; Carlson, G A; Prusiner, S B

    1994-01-01

    Missense mutations in the prion protein (PrP) gene, overexpression of the cellular isoform of PrP (PrPC), and infection with prions containing the scrapie isoform of PrP (PrPSc) all cause neurodegenerative disease. To understand better the physiology and expression of PrPC, we retrieved mouse PrP gene (Prn-p) yeast artificial chromosome (YAC), cosmid, phage, and cDNA clones. Physical mapping positions Prn-p approximately 300 kb from ecotropic virus integration site number 4 (Evi-4), compatible with failure to detect recombination between Prn-p and Evi-4 in genetic crosses. The Prn-pa allele encompasses three exons, with exons 1 and 2 encoding the mRNA 5' untranslated region. Exon 2 has no equivalent in the Syrian hamster and human PrP genes. The Prn-pb gene shares this intron/exon structure but harbors an approximately 6-kb deletion within intron 2. While the Prn-pb open reading frame encodes two amino acid substitutions linked to prolonged scrapie incubation periods, a deletion of intron 2 sequences also characterizes inbred strains such as RIII/S and MOLF/Ei with shorter incubation periods, making a relationship between intron 2 size and scrapie pathogenesis unlikely. The promoter regions of a and b Prn-p alleles include consensus Sp1 and AP-1 sites, as well as other conserved motifs which may represent binding sites for as yet unidentified transcription factors. Images PMID:7912827

  1. Cytosolic prion protein is the predominant anti-Bax prion protein form: Exclusion of transmembrane and secreted prion protein forms in the anti-Bax function

    Microsoft Academic Search

    David T. S. Lin; Julie Jodoin; Michaël Baril; Cynthia G. Goodyer; Andréa C. LeBlanc

    2008-01-01

    Prion protein (PrP) prevents Bax-mediated cell death by inhibiting the initial Bax conformational change that converts cytosolic Bax into a pro-apoptotic protein. PrP is mostly a glycophosphatidylinositol-anchored cell surface protein but it is also retrotranslocated into cytosolic PrP (CyPrP) or can become a type 1 or type 2 transmembrane protein. To determine the form and subcellular location of the PrP

  2. Low Copper and High Manganese Levels in Prion Protein Plaques

    PubMed Central

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecht, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; Aiken, Judd M.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system. PMID:23435237

  3. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  4. NMR structures of three single-residue variants of the human prion protein

    E-print Network

    Riek, Roland

    NMR structures of three single-residue variants of the human prion protein Luigi Calzolai single-amino acid variants of the C-terminal domain of the human prion protein, hPrP(121 ``protein X,'' and it is related to the species barrier for transmission of prion diseases. As expected

  5. Electrostatics in the stability and misfolding of the prion protein: salt bridges, self energy, and

    E-print Network

    Plotkin, Steven S.

    Electrostatics in the stability and misfolding of the prion protein: salt bridges, self energy and mutants of the prion protein. Salt bridges and self energies play key roles in stabilizing secondary and tertiary struc- tural elements of the prion protein. The total electrostatic potential energy of each

  6. Cytoplasmic Expression of Mouse Prion Protein Causes Severe Toxicity in C. elegans

    PubMed Central

    Park, Kyung-Won; Li, Liming

    2008-01-01

    To test if Caenorhabditis elegans could be established as a model organism for prion study, we created transgenic C. elegans expressing the cytosolic form of the mouse prion .protein, MoPrP(23-231), which lacks the N-terminal signal sequence and the C-terminal glycosylphosphatidylinisotol (GPI) anchor site. We report here that transgenic worms expressing MoPrP(23-231)–CFP exhibited a wide range of distinct phenotypes: from normal growth and development, reduced mobility and development delay, complete paralysis and development arrest, to embryonic lethality. Similar levels of MoPrP (23-231)-CFP were produced in animals exhibiting these distinct phenotypes, suggesting that MoPrP (23-231)-CFP might have misfolded into distinct toxic species. In combining with the observation that mutations in PrP that affect prion pathogenesis also affect the toxic phenotypes in C. elegans, we conclude that the prion protein folding mechanism is similar in mammals and C. elegans. Thus, C. elegans can be a useful model organism for prion research. PMID:18519028

  7. Transmission of scrapie and sheep-passaged bovine spongiform encephalopathy prions to transgenic mice expressing elk prion protein

    PubMed Central

    Tamgüney, Gültekin; Miller, Michael W.; Giles, Kurt; Lemus, Azucena; Glidden, David V.; DeArmond, Stephen J.; Prusiner, Stanley B.

    2009-01-01

    Chronic wasting disease (CWD) is a transmissible, fatal prion disease of cervids and is largely confined to North America. The origin of CWD continues to pose a conundrum: does the disease arise spontaneously or result from some other naturally occurring reservoir? To address whether prions from sheep might be able to cause disease in cervids, we inoculated mice expressing the elk prion protein (PrP) transgene [Tg(ElkPrP) mice] with two scrapie prion isolates. The SSBP/1 scrapie isolate transmitted disease to Tg(ElkPrP) mice with a median incubation time of 270?days, but a second isolate failed to produce neurological dysfunction in these mice. Although prions from cattle with bovine spongiform encephalopathy (BSE) did not transmit to the Tg(ElkPrP) mice, they did transmit after being passaged through sheep. In Tg(ElkPrP) mice, the sheep-passaged BSE prions exhibited an incubation time of approximately 300?days. SSBP/1 prions produced abundant deposits of the disease-causing PrP isoform, denoted PrPSc, in the cerebellum and pons of Tg(ElkPrP) mice, whereas PrPSc accumulation in Tg mice inoculated with sheep-passaged BSE prions was confined to the deep cerebellar nuclei, habenula and the brainstem. The susceptibility of ‘cervidized’ mice to ‘ovinized’ prions raises the question about why CWD has not been reported in other parts of the world where cervids and scrapie-infected sheep coexist. PMID:19264659

  8. Aptamers to explore prion protein interactions with nucleic acids.

    PubMed

    Marc, Daniel

    2010-01-01

    A misfolded isoform of the prion protein (PrP) is the essential component of the prion diseases' agent. The prion concept has progressively gained acceptance, in a large part thanks to the realization that it played a role not only in the transmissible spongiform encephalopathies, but also in the non-Mendelian propagation of self-perpetuating phenotypes of the yeast Saccharomyces cerevisiae. Uncertainties about the nature of the agent and the function of PrP have fostered searches of nucleic acid ligands of the protein. In vitro methods of nucleic acid evolutions have been used to identify RNAs or DNAs that bind PrP, towards the triple objective of i) setting up new diagnostic tools, ii) identifying nucleic acids with which PrP may interact, as part of its physiological or pathological function, and iii) elucidating the pathological transconformation of PrP. This review will focus on these studies, their methods, the knowledge acquired from them about the prion protein, and the possibilities that they offer in the areas of diagnosis and therapy of prion diseases. PMID:20036833

  9. Direct Observation of Protein Folding, Aggregation, and a Prion-like Conformational Conversion*

    E-print Network

    Dokholyan, Nikolay V.

    Direct Observation of Protein Folding, Aggregation, and a Prion-like Conformational Conversion to -sheets precedes aggregation of proteins implicated in many diseases, including Alzheimer and prion, S. B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 13363­ 13383) to account for prion infectivity

  10. Surface charge of polyoxometalates modulates polymerization of the scrapie prion protein

    E-print Network

    Surface charge of polyoxometalates modulates polymerization of the scrapie prion protein Holger 31, 2008 (sent for review October 13, 2008) Prions are composed solely of an alternatively folded isoform of the prion protein (PrP), designated PrPSc. N-terminally truncated PrPSc, denoted PrP 27

  11. Inherited Prion Disease A117V Is Not Simply a Proteinopathy but Produces Prions Transmissible to Transgenic Mice Expressing Homologous Prion Protein

    PubMed Central

    Asante, Emmanuel A.; Linehan, Jacqueline M.; Smidak, Michelle; Tomlinson, Andrew; Grimshaw, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Powell, Caroline; Brandner, Sebastian; Wadsworth, Jonathan D. F.; Collinge, John

    2013-01-01

    Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrPSc), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP (CtmPrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrPSc was demonstrated in the brains of recipient transgenic mice. This PrPSc rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of CtmPrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established. PMID:24086135

  12. Environmentally-Relevant Forms of the Prion Protein

    PubMed Central

    Saunders, Samuel E.; Bartz, Jason C.; Telling, Glenn C.; Bartelt-Hunt, Shannon L.

    2015-01-01

    Scrapie and chronic wasting disease (CWD) are prion diseases of particular environmental concern as they are horizontally transmissible and can remain infectious after years in the environment. Recent evidence suggests that the N-terminus of PrPSc, the infectious conformation of the prion protein, plays an important role in the mechanism of sorption to soil particles. We hypothesize that, in a prion-infected animal carcass, a portion of the N-terminus of PrPSc could be cleaved by proteinases in the brain at ordinary temperatures. Hamster (HY transmissible mink encephalopathy-infected), transgenic mice (CWD-infected), and elk (CWD-infected) brain homogenates were incubated at 22 and 37 °C for up to 1 month and then analyzed by Western blot using N-terminal and middle region monoclonal anti-PrP antibodies. For all three systems, there was a very faint or undetectable N-terminal PrP signal after 35 days at both temperatures, which indicates that full-length PrPSc might be rare in the brain matter of animal carcasses. Future studies on prion–soil interactions should therefore consider N-terminal-degraded PrPSc in addition to the full-length form. Both mouse and elk CWD PrPSc demonstrated greater resistance to degradation than HY TME PrPSc. This indicates that the transgenic mouse-CWD model is a good surrogate for natural CWD prions, but that other rodent prion models might not accurately represent CWD prion fate in the environment. PMID:18800532

  13. The same primary structure of the prion protein yields two distinct self-propagating states.

    PubMed

    Makarava, Natallia; Baskakov, Ilia V

    2008-06-01

    The question of whether distinct self-propagating structures could be formed within the same amino acid sequence in the absence of external cofactors or templates has important implications for a number of issues, including the origin of prion strains and the engineering of smart, self-assembling peptide-based biomaterials. In the current study, we showed that chemically identical prion protein can give rise to conformationally distinct, self-propagating amyloid structures in the absence of cellular cofactors, post-translational modification, or PrP(Sc)-specified templates. Even more surprising, two self-replicating states were produced under identical solvent conditions, but under different shaking modes. Individual prion conformations were inherited by daughter fibrils in seeding experiments conducted under alternative shaking modes, illustrating the high fidelity of fibrillation reactions. Our study showed that the ability to acquire conformationally different self-propagating structures is an intrinsic ability of protein fibrillation and strongly supports the hypothesis that conformational variation in self-propagating protein states underlies prion strain diversity. PMID:18400757

  14. Analysis of the prion protein gene in thalamic dementia

    Microsoft Academic Search

    R. B. Petersen; M. Tabaton; L. Berg; B. Schrank; R. M. Torack; S. Leal; J. Julien; C. Vital; B. Deleplanque; W. W. Pendlebury; David A. Drachman

    1992-01-01

    Thalamic degenerations or dementias are poorly understood conditions. The familial forms are (1) selective thalamic degenerations and (2) thalamic degenerations associated with multiple system atrophy. Selective thalamic degenerations share clinical and pathologic features with fatal familial insomnia, an autosomal dominant disease linked to a mutation at codon 178 of the prion protein (PrP) gene that causes the substitution of asparagine

  15. NMR solution structure of the human prion protein

    Microsoft Academic Search

    Ralph Zahn; Aizhuo Liu; Thorsten Lührs; Roland Riek; Christine von Schroetter; Francisco López García; Martin Billeter; Luigi Calzolai; Gerhard Wider; Kurt Wüthrich

    2000-01-01

    The NMR structures of the recombinant human prion protein, hPrP(23-230), and two C-terminal fragments, hPrP(90-230) and hPrP(121-230), include a globular domain extending from residues 125-228, for which a detailed structure was obtained, and an N-terminal flexibly disordered \\

  16. Structural studies of the scrapie prion protein by electron crystallography

    E-print Network

    Agard, David

    Structural studies of the scrapie prion protein by electron crystallography Holger Wille* , Melissa structural studies by x-ray crystallography or NMR spectroscopy, we used electron crystallographyPSc has thwarted attempts to investigate its structure by either x-ray crystallography or NMR spectroscopy

  17. Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling

    PubMed Central

    Hu, Wei; Nessler, Stefan; Hemmer, Bernhard; Eagar, Todd N.; Kane, Lawrence P.; Leliveld, S. Rutger; Müller-Schiffmann, Andreas; Gocke, Anne R.; Lovett-Racke, Amy; Ben, Li-Hong; Hussain, Rehana Z.; Breil, Andreas; Elliott, Jeffrey L.; Puttaparthi, Krishna; Cravens, Petra D.; Singh, Mahendra P.; Petsch, Benjamin; Stitz, Lothar; Racke, Michael K.

    2010-01-01

    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein1–11 T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central nervous system. Our data identify cellular prion protein as a regulator of cellular immunological homoeostasis and suggest cellular prion protein as a novel potential target for therapeutic immunomodulation. PMID:20145049

  18. Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable

    E-print Network

    Lindquist, Susan

    Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation Jens Tyedmersa,b , Sebastian Treuscha,c , Jijun Donga , J. Michael (sent for review December 16, 2009) When the translation termination factor Sup35 adopts the prion state

  19. The HET-s Prion Protein of the Filamentous Fungus Podospora anserina Aggregates in Vitro into Amyloid-like Fibrils

    Microsoft Academic Search

    Suzana Dos Reis; Vincent Forge; Joel Begueret; Sven J. Saupe; Universitede Bordeaux

    2002-01-01

    The HET-s protein of Podospora anserina is a fungal prion. This protein behaves as an infectious cytoplasmic element that is transmitted horizontally from one strain to another. Under the prion form, the HET-s protein forms aggregates in vivo. The specificity of this prion model compared with the yeast prions resides in the fact that under the prion form HET-s causes

  20. Yeast prions assembly and propagation

    PubMed Central

    2011-01-01

    Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the “non-prion” domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others. PMID:22052349

  1. Electrostatics in the Stability and Misfolding of the Prion Protein: Salt Bridges, Self-Energy, and Solvation

    E-print Network

    Will Guest; Neil R. Cashman; Steven S. Plotkin

    2010-04-09

    Using a recently developed mesoscopic theory of protein dielectrics, we have calculated the salt bridge energies, total residue electrostatic potential energies, and transfer energies into a low dielectric amyloid-like phase for 12 species and mutants of the prion protein. Salt bridges and self energies play key roles in stabilizing secondary and tertiary structural elements of the prion protein. The total electrostatic potential energy of each residue was found to be invariably stabilizing. Residues frequently found to be mutated in familial prion disease were among those with the largest electrostatic energies. The large barrier to charged group desolvation imposes regional constraints on involvement of the prion protein in an amyloid aggregate, resulting in an electrostatic amyloid recruitment pro?le that favours regions of sequence between alpha helix 1 and beta strand 2, the middles of helices 2 and 3, and the region N-terminal to alpha helix 1. We found that the stabilization due to salt bridges is minimal among the proteins studied for disease-susceptible human mutants of prion protein.

  2. Prion protein degradation by lichens of the genus Cladonia

    USGS Publications Warehouse

    Bennett, James P.; Rodriguez, Cynthia M.; Johnson, Christopher J.

    2012-01-01

    It has recently been discovered that lichens contain a serine protease capable of degrading the pathogenic prion protein, the etiological agent of prion diseases such as sheep scrapie and cervid chronic wasting disease. Limited methods are available to degrade or inactivate prion disease agents, especially in the environment, and lichens or their serine protease could prove important for management of these diseases. Scant information is available regarding the presence or absence of the protease responsible for degrading prion protein (PrP) in lichen species and, in this study, we tested the hypothesis that PrP degradation activity in lichens is phylogenetically-based by testing 44 species of Cladonia lichens, a genus for which a significant portion of the phylogeny is well established. We categorized PrP degradation activity among the 44 species (high, moderate, low or none) and found that activity in Cladonia species did not correspond with phylogenetic position of the species. Degradation of PrP did correspond, however, with three classical taxonomic characters within the genus: species with brown apothecia, no usnic acid, and the presence of a cortex. Of the 44 species studied, 18 (41%) had either high or moderate PrP degradation activity, suggesting the protease may be frequent in this genus of lichens.

  3. Kinetics of Ozone Inactivation of Infectious Prion Protein

    PubMed Central

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Mitchell, Gordon; Belosevic, Miodrag

    2013-01-01

    The kinetics of ozone inactivation of infectious prion protein (PrPSc, scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrPSc was quantified by determining the in vitro destruction of PrPSc templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrPSc was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater. PMID:23416994

  4. Chaperonin-mediated de novo generation of prion protein aggregates.

    PubMed

    Stöckel, J; Hartl, F U

    2001-11-01

    The infectious prion protein, PrP(Sc), a predominantly beta-sheet aggregate, is derived from PrP(C), the largely alpha-helical cellular isoform of PrP. Conformational conversion of PrP(C) into PrP(Sc) has been suggested to involve a chaperone-like factor. Here we report that the bacterial chaperonin GroEL, a close homolog of eukaryotic Hsp60, can catalyze the aggregation of chemically denatured and of folded, recombinant PrP in a model reaction in vitro. Aggregates form upon ATP-dependent release of PrP from chaperonin and have certain properties of PrP(Sc), including a high beta-sheet content, the ability to bind the dye Congo red, detergent-insolubility and increased protease-resistance. A conserved sequence segment of PrP (residues 90-121), critical for PrP(Sc) generation in vivo, is also required for chaperonin-mediated aggregate formation in vitro. Initial binding of refolded, alpha-helical PrP to chaperonin is mediated by the unstructured N-terminal segment of PrP (residues 23-121) and is followed by a rearrangement of the globular PrP core-domain. These results show that chaperonins of the Hsp60 class can, in principle, mediate PrP aggregation de novo, i.e. independently of a pre-existent PrP(Sc) template. PMID:11697909

  5. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein

    Microsoft Academic Search

    Kimberly Meade-White; Brent Race; Matthew Trifilo; Alex Bossers; Cynthia Favara; Rachel Lacasse; Michael Miller; Elizabeth Williams; Michael Oldstone; Richard Race; Bruce Chesebro

    2007-01-01

    Prion protein (PrP) is a required factor for susceptibility to transmissible spongiform encephalopathy or prion diseases. In transgenic mice, expression of prion protein (PrP) from another species often confers susceptibility to prion disease from that donor species. For example, expression of deer or elk PrP in transgenic mice has induced susceptibility to chronic wasting disease (CWD), the prion disease of

  6. Stability and Cu(II) binding of prion protein variants related to inherited human prion diseases.

    PubMed

    Cereghetti, Grazia M; Schweiger, Arthur; Glockshuber, Rudi; Van Doorslaer, Sabine

    2003-03-01

    All inherited forms of human prion diseases are linked with mutations in the prion protein (PrP) gene. Here we have investigated the stability and Cu(II) binding properties of three recombinant variants of murine full-length PrP(23-231)-containing destabilizing point mutations that are associated with human Gerstmann-Sträussler-Scheinker disease (F198S), Creutzfeld-Jakob disease (E200K), and fatal familial insomnia (D178N) by electron paramagnetic resonance and circular dichroism spectroscopy. Furthermore, we analyzed the variants H140S, H177S, and H187S of the isolated C-terminal domain of murine PrP, mPrP(121-231), to test a role of the histidine residues in Cu(II) binding. The F198S and E200K variants of PrP(23-231) differed in Cu(II) binding from the wild-type mPrP(23-231). However, circular dichroism spectroscopy indicated that the variants and the wild type did not undergo conformational changes in the presence of Cu(II). The D178N variant showed a high tendency to aggregate at pH 7.4 both with and without Cu(II). At lower pH values, it showed the same Cu(II) binding behavior as the wild type. The analysis allowed for a better location of the Cu(II) binding sites in the C-terminal part of the protein. Our present data indicate that hereditary forms of prion diseases cannot be rationalized on the basis of altered Cu(II) binding or mutation-induced protein destabilization alone. PMID:12609901

  7. Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates.

    PubMed

    Ellett, Laura J; Coleman, Bradley M; Shambrook, Mitch C; Johanssen, Vanessa A; Collins, Steven J; Masters, Colin L; Hill, Andrew F; Lawson, Victoria A

    2015-07-01

    Prion diseases are transmissible neurodegenerative disorders associated with the conversion of the cellular prion protein, PrP(C), to a misfolded isoform called PrP(Sc). Although PrP(Sc) is a necessary component of the infectious prion, additional factors, or cofactors, have been shown to contribute to the efficient formation of transmissible PrP(Sc). Glycosaminoglycans (GAGs) are attractive cofactor candidates as they can be found associated with PrP(Sc) deposits, have been shown to enhance PrP misfolding in vitro, are found in the same cellular compartments as PrP(C) and have been shown to be disease modifying in vivo. Here we investigated the effects of the sulfated GAGs, heparin and heparan sulfate (HS), on disease associated misfolding of full-length recombinant PrP. More specifically, the degree of sulfation of these molecules was investigated for its role in modulating the disease-associated characteristics of PrP. Both heparin and HS induced a ?-sheet conformation in recombinant PrP that was associated with the formation of aggregated species; however, the biochemical properties of the aggregates formed in the presence of heparin or HS varied in solubility and protease resistance. Furthermore, these properties could be modified by changes in GAG sulfation, indicating that subtle changes in the properties of prion disease cofactors could initiate disease associated misfolding. PMID:25701659

  8. Selective expression of prion protein in peripheral tissues of the adult mouse

    Microsoft Academic Search

    M. J Ford; L. J Burton; R. J Morris; S. M Hall

    2002-01-01

    The level of expression of normal cellular prion protein, PrPc (cellular prion protein), controls both the rate and the route of neuroinvasive infection, from peripheral entry portal to the CNS. Paradoxically, an overview of the distribution of PrPc within tissues outside the CNS is lacking. We have used novel antibodies that recognise cellular prion protein in glutaraldehyde-fixed tissue (in order

  9. Contrasting Effects of Two Lipid Cofactors of Prion Replication on the Conformation of the Prion Protein

    PubMed Central

    Srivastava, Saurabh; Baskakov, Ilia V.

    2015-01-01

    Recent studies introduced two experimental protocols for converting full-length recombinant prion protein (rPrP) purified from E.coli into the infectious prion state (PrPSc) with high infectivity titers. Both protocols employed protein misfolding cyclic amplification (PMCA) for generating PrPSc de novo, but used two different lipids, 1-palmitoyl-2-oleolyl-sn-glycero-3-phospho(1’-rac-glycerol) (POPG) or phosphatidylethanolamine (PE), as conversion cofactors. The current study compares the effect of POPG and PE on the physical properties of native, ?-helical full-length mouse rPrP under the solvent conditions used for converting rPrP into PrPSc. Surprisingly, the effects of POPG and PE on rPrP physical properties, including its conformation, thermodynamic stability, aggregation state and interaction with a lipid, were found to be remarkably different. PE was shown to have minimal, if any, effects on rPrP thermodynamic stability, cooperativity of unfolding, immediate solvent environment or aggregation state. In fact, little evidence indicates that PE interacts with rPrP directly. In contrast, POPG was found to bind to and induce dramatic changes in rPrP structure, including a loss of ?-helical conformation and formation of large lipid-protein aggregates that were resistant to partially denaturing conditions. These results suggest that the mechanisms by which lipids assist conversion of rPrP into PrPSc might be fundamentally different for POPG and PE. PMID:26090881

  10. Copper and the Prion Protein: Methods, Structures, Function, and Disease

    NASA Astrophysics Data System (ADS)

    Millhauser, Glenn L.

    2007-05-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrPC in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrPC, with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrPC function, and emerging connections between copper and prion disease.

  11. Soluble prion protein inhibits amyloid-? (A?) fibrillization and toxicity.

    PubMed

    Nieznanski, Krzysztof; Choi, Jin-Kyu; Chen, Shugui; Surewicz, Krystyna; Surewicz, Witold K

    2012-09-28

    The pathogenesis of Alzheimer disease appears to be strongly linked to the aggregation of amyloid-? (A?) peptide and, especially, formation of soluble A?1-42 oligomers. It was recently demonstrated that the cellular prion protein, PrP(C), binds with high affinity to these oligomers, acting as a putative receptor that mediates at least some of their neurotoxic effects. Here we show that the soluble (i.e. glycophosphatidylinositol anchor-free) prion protein and its N-terminal fragment have a strong effect on the aggregation pathway of A?1-42, inhibiting its assembly into amyloid fibrils. Furthermore, the prion protein prevents formation of spherical oligomers that normally occur during A? fibrillogenesis, acting as a potent inhibitor of A?1-42 toxicity as assessed in experiments with neuronal cell culture. These findings may provide a molecular level foundation to explain the reported protective action of the physiologically released N-terminal N1 fragment of PrP(C) against A? neurotoxicity. They also suggest a novel approach to pharmacological intervention in Alzheimer disease. PMID:22915585

  12. Prion protein fragment (106-126) induces prothrombotic state by raising platelet intracellular calcium and microparticle release.

    PubMed

    Mallick, Ram L; Kumari, Sharda; Singh, Nitesh; Sonkar, Vijay K; Dash, Debabrata

    2015-04-01

    Prion diseases are neurodegenerative disorders where infectious prion proteins (PrP) accumulate in brain leading to aggregation of amyloid fibrils and neuronal cell death. The amino acid sequence 106-126 from prion proteins, PrP(106-126), is highly amyloidogenic and implicated in prion-induced pathologies. As PrP is known to be expressed in blood following leakage from brain tissue, we sought to investigate its biological effects on human platelets, which have been widely employed as 'peripheral' model for neurons. Our findings suggested that, PrP(106-126) (20?M) induced dramatic 30-fold rise in intracellular calcium (from 105±30 to 3425±525nM) in platelets, which was attributable to influx from extracellular fluid with comparatively less contribution from intracellular stores. Calcium mobilization was associated with 8-10-fold stimulation in the activity of thiol protease calpain that led to partial cleavage of cytoskeleton-associated protein talin and extensive shedding of microparticles from platelets, thus transforming platelets to 'activated' phenotype. Both proteolysis of talin and microparticle release were precluded by calpeptin, a specific inhibitor of calpain. As microparticles are endowed with phosphatidylserine-enriched surface and hence are pro-coagulant in nature, exposure to prion favored a thrombogenic state in the organism. PMID:25749016

  13. Heat stability of prion rods and recombinant prion protein in water, lipid and lipid-water mixtures.

    PubMed

    Appel, T; Wolff, M; von Rheinbaben, F; Heinzel, M; Riesner, D

    2001-02-01

    Prion rods, i.e. insoluble infectious aggregates of the N-terminally truncated form of the prion protein, PrP 27-30, and the corresponding recombinant protein, rPrP(90-231), were autoclaved in water, bovine lipid or lipid-water mixtures for 20 min at temperatures from 100 to 170 degrees C. A protocol was developed for the quantitative precipitation of small amounts of protein from large excesses of lipid. PrP remaining undegraded after autoclaving was quantified by Western blot and degradation factors were calculated. The Arrhenius plot of the rate of degradation vs temperature yielded linear relationships for prion rods in water or lipid-water as well as for rPrP(90-231) in lipid-water. The presence of lipids increased the heat stability of prion rods, especially at lower temperatures. Prion rods had a much higher thermal stability compared to rPrP. Autoclaving of prion rods in pure lipid gave different results - not simple degradation but bands indicative of covalently linked dimers, tetramers and higher aggregates. The heat stability of prion rods in pure lipid exceeded that in lipid-water mixtures. Degradation factors larger than 10(4) were reached at 170 degrees C in the presence of lipids and at 150 degrees C in the absence of lipids. The linear correlation of the data allows cautious extrapolation to conditions not tested, i.e. temperatures higher than 170 degrees C. A factual basis for assessing the biological safety of industrial processes utilizing potentially BSE-or scrapie-contaminated animal fat is provided. PMID:11161287

  14. The cellular prion protein and its role in Alzheimer disease.

    PubMed

    Velayos, J L; Irujo, A; Cuadrado-Tejedor, M; Paternain, B; Moleres, F J; Ferrer, V

    2009-01-01

    The cellular prion protein (PrP(C)) is a membrane-bound glycoprotein especially abundant in the central nervous system (CNS). The scrapie prion protein (PrP(Sc,) also termed prions) is responsible of transmissible spongiform encephalopathies (TSE), a group of neurodegenerative diseases which affect humans and other mammal species, although the presence of PrP(C) is needed for the establishment and further evolution of prions. The present work compares the expression and localization of PrP(C) between healthy human brains and those suffering from Alzheimer disease (AD). In both situations we have observed a rostrocaudal decrease in the amount of PrP(C) within the CNS, both by immunoblotting and immunohistochemistry techniques. PrP(C) is higher expressed in our control brains than in AD cases. There was a neuronal loss and astogliosis in our AD cases. There was a tendency of a lesser expression of PrP(C) in AD cases than in healthy ones. And in AD cases, the intensity of the expression of the unglycosylated band is higher than the di- and monoglycosylated bands. With regards to amyloid plaques, those present in AD cases were positively labeled for PrP(C), a result which is further supported by the presence of PrP(C) in the amyloid plaques of a transgenic line of mice mimicking AD. The work was done according to Helsinki Declaration of 1975, and approved by the Ethics Committee of the Faculty of Medicine of the University of Navarre. PMID:19556894

  15. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains

    PubMed Central

    Raymond, Lynne D.; Hughson, Andrew G.; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-01-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far – a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. PMID:26086786

  16. Dissection of Conformational Conversion Events during Prion Amyloid Fibril

    E-print Network

    Dissection of Conformational Conversion Events during Prion Amyloid Fibril Formation Using Hydrogen A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural

  17. Rapid cell-surface prion protein conversion revealed using a novel cell system.

    PubMed

    Goold, R; Rabbanian, S; Sutton, L; Andre, R; Arora, P; Moonga, J; Clarke, A R; Schiavo, G; Jat, P; Collinge, J; Tabrizi, S J

    2011-01-01

    Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrP(C)). Here we develop a unique cell system in which epitope-tagged PrP(C) is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrP(C), when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrP(Sc)). Using this epitope-tagged PrP(Sc), we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion. PMID:21505437

  18. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein

    E-print Network

    Cai, Long

    wasting disease of deer and elk, scrapie in sheep and Creutzfeldt-Jakob disease in humans. TSEs have, are infectious neurodegenerative diseases of mammals that include bovine spongiform encephalopathy, chronic of PrPSc formation. The transmissible spongiform encephalopathies (TSEs), or prion diseases

  19. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding

    Microsoft Academic Search

    Gabriela P. Saborio; Bruno Permanne; Claudio Soto

    2001-01-01

    Prions are the infectious agents responsible for transmissible spongiform encephalopathies. The principal component of prions is the glycoprotein PrPSc, which is a conformationally modified isoform of a normal cell-surface protein called PrPC (ref. 1). During the time between infection and the appearance of the clinical symptoms, minute amounts of PrPSc replicate by conversion of host PrPC, generating large amounts of

  20. A comparative analysis of rapid methods for purification and refolding of recombinant bovine prion protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterially-produced recombinant prion protein (rPrP) is a frequently used model system for the study of the properties of wild-type and mutant prion proteins by biochemical and biophysical approaches. A range of approaches have been developed for the purification and refolding of untagged, overexpr...

  1. Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain

    Microsoft Academic Search

    Bruce Chesebro; Richard Race; Kathy Wehrly; Jane Nishio; Marshall Bloom; David Lechner; Sven Bergstrom; Ken Robbins; Leonard Mayer; Jerry M. Keith; Claude Garon; Ashley Haase

    1985-01-01

    To date no nucleic acid has been found in the purified infectious agent which causes the spongiform encephalopathy known as scrapie. In an attempt to identify a unique scrapie virus-associated messenger RNA in tissues of infected animals, we have synthesized an oligonucleotide probe complementary to the mRNA sequence corresponding to the amino-acid sequence of the prion protein, PrP27-30 (ref. 1).

  2. New Molecular Insights into Cellular Survival and Stress Responses: Neuroprotective Role of Cellular Prion Protein (PrP C )

    Microsoft Academic Search

    Raymond Yen-Yu Lo; Woei-Cherng Shyu; Shinn-Zong Lin; Hsiao-Jung Wang; Shun-Sheng Chen; Hung Li

    2007-01-01

    Knowledge of the physiological function of cellular prion protein has been acquired from prion diseases such as Creutzfeldt–Jakob\\u000a disease, as well as PRNP knock out and transgenic mice. Recent progress in neurobiology has further delineated the neuroprotective\\u000a role played by cellular prion protein. In this paper, we review the role of cellular prion protein in cell survival including\\u000a its antiapoptotic

  3. In Vivo Generation of Neurotoxic Prion Protein: Role for Hsp70 in Accumulation of Misfolded Isoforms

    Microsoft Academic Search

    Pedro Fernandez-Funez; Sergio Casas-Tinto; Yan Zhang; Melisa Gómez-Velazquez; Marco A. Morales-Garza; Ana C. Cepeda-Nieto; Joaquín Castilla; Claudio Soto; Diego E. Rincon-Limas

    2009-01-01

    Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrPC) converts into a misfolded isoform (PrPSc) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed

  4. Manganese Upregulates Cellular Prion Protein and Contributes to Altered Stabilization and Proteolysis: Relevance to Role of Metals in Pathogenesis of Prion Disease

    PubMed Central

    Choi, Christopher J.; Anantharam, Vellareddy; Martin, Dustin P.; Nicholson, Eric M.; Richt, Jürgen A.; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2010-01-01

    Prion diseases are fatal neurodegenerative diseases resulting from misfolding of normal cellular prion (PrPC) into an abnormal form of scrapie prion (PrPSc). The cellular mechanisms underlying the misfolding of PrPC are not well understood. Since cellular prion proteins harbor divalent metal-binding sites in the N-terminal region, we examined the effect of manganese on PrPC processing in in vitro models of prion disease. Exposure to manganese significantly increased PrPC levels both in cytosolic and in membrane-rich fractions in a time-dependent manner. Manganese-induced PrPC upregulation was independent of messenger RNA transcription or stability. Additionally, manganese treatment did not alter the PrPC degradation by either proteasomal or lysosomal pathways. Interestingly, pulse-chase analysis showed that the PrPC turnover rate was significantly altered with manganese treatment, indicating increased stability of PrPC with the metal exposure. Limited proteolysis studies with proteinase-K further supported that manganese increases the stability of PrPC. Incubation of mouse brain slice cultures with manganese also resulted in increased prion protein levels and higher intracellular manganese accumulation. Furthermore, exposure of manganese to an infectious prion cell model, mouse Rocky Mountain Laboratory–infected CAD5 cells, significantly increased prion protein levels. Collectively, our results demonstrate for the first time that divalent metal manganese can alter the stability of prion proteins and suggest that manganese-induced stabilization of prion protein may play a role in prion protein misfolding and prion disease pathogenesis. PMID:20176619

  5. Species barrier in prion diseases: a kinetic interpretation based on the conformational adaptation of the prion protein.

    PubMed Central

    Kellershohn, N; Laurent, M

    1998-01-01

    Prion diseases are thought to result from the conformational change of the normal cellular prion protein to a pathogenic protease-resistant isoform. However, brain extracts not containing the protease-resistant isoform of the prion protein can be infectious following interspecies transmission. The 'protein-only' hypothesis of pathogenesis is extended to provide possible explanations which could be interpreted in terms of a different infectious agent. It is proposed that normal cellular protein (PrPC) may be transformed into a form (PrP*) that is conformationally distinct from the host-specific abnormal isoform (PrPSc). In infection from a heterologous donor, the dimeric forms of heterologous PrPSc, which may catalyse the formation of host PrP* from PrPC, host PrP* and host PrPSc are all considered to be capable of catalysing, to some extent, the conversion of PrPC into PrPSc. However, depending on the species involved, PrP* may, or may not, be pathogenic, and may, or may not, be sensitive to proteolysis. It is shown, by numerical integration of the differential rate equations derived from this model, that a strain may be stabilized after two or three passages through a different species and that transmission might occur in the absence of detectable protease-resistant prion protein. The natural transmission of scrapie to cattle is discussed in relation to the model. PMID:9729459

  6. The Residue 129 Polymorphism in Human Prion Protein Does Not Confer Susceptibility to Creutzfeldt-Jakob Disease by Altering the

    E-print Network

    Hosszu, Laszlo

    The Residue 129 Polymorphism in Human Prion Protein Does Not Confer Susceptibility to Creutzfeldt¶ From the Medical Research Council Prion Unit, Department of Neurodegenerative Disease, Institute10 2TN, United Kingdom There are two common forms of prion protein (PrP) in humans, with either

  7. Recombinant prion protein refolded with lipid and RNA has the biochemical hallmarks of a prion but lacks in vivo infectivity.

    PubMed

    Timmes, Andrew G; Moore, Roger A; Fischer, Elizabeth R; Priola, Suzette A

    2013-01-01

    During prion infection, the normal, protease-sensitive conformation of prion protein (PrP(C)) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrP(Sc)). In vitro, protein misfolding cyclic amplification (PMCA) uses PrP(Sc) in prion-infected brain homogenates as an initiating seed to convert PrP(C) and trigger the self-propagation of PrP(Sc) over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrP(Sc). More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrP(Sc) seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrP(Sc). However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res. PMID:23936256

  8. Do Bovine Lymphocytes Express a Peculiar Prion Protein?

    PubMed Central

    Mélot, France; Thielen, Caroline; Labiet, Thouraya; Eisher, Sabine; Jolois, Olivier; Heinen, Ernst; Antoine, Nadine

    2002-01-01

    The cellular prion protein (PrPc) is a glycolipid-anchored cell surface protein that usually exhibits three glycosylation states. Its post-translationally modified isoform, PrPsc, is involved in the pathogenesis of various transmissible spongiform encephalopathies (TSEs). In bovine species, BSE infectivity appears to be restricted to the central nervous system; few or no detectable infectivity is found in lymphoid tissues in contrast to scrapie or variant CJD. Since expression of PrPc is a prerequisite for prion replication, we have investigated PrPc expression by bovine immune cells. Lymphocytes from blood and five different lymph organs were isolated from the same animal to assess intra- and interindividual variability of PrPc expression, considering six individuals. As shown by flow cytometry, this expression is absent or weak on granulocytes but is measurable on monocytes, B and T cells from blood and lymph organs. The activation of the bovine cells produces an upregulation of PrPc. The results of our in vitro study of PrPc biosynthesis are consistent with previous studies in other species. Interestingly, western blotting experiments showed only one form of the protein, the diglycosylated band. We propose that the glycosylation state could explain the lack of infectivity of the bovine immune cells. PMID:15144021

  9. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    SciTech Connect

    Nieznanski, Krzysztof [Nencki Institute of Experimental Biology, Department of Muscle Biochemistry, Warsaw (Poland)]. E-mail: k.nieznanski@nencki.gov.pl; Podlubnaya, Zoya A. [Institute of Theoretical and Experimental Biophysics, Laboratory of Structure and Function of Muscle Proteins, Pushchino (Russian Federation); Pushchino State University, Pushchino (Russian Federation); Nieznanska, Hanna [Nencki Institute of Experimental Biology, Department of Muscle Biochemistry, Warsaw (Poland)

    2006-10-13

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of {approx}50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers.

  10. REFINEMENT OF UNDER-DETERMINED LOOPS OF HUMAN PRION PROTEIN BY

    E-print Network

    in mink (TME), chronic wasting disease in mule deer (CWD), bovine spongiform encephalopathy (BSE) in cows elements of the E200K variant of human prion protein (hPrPc ), a disease-related isoform, can be refined Spongiform encephalopathies, or prion diseases, are a group of neurodegenerative diseases in mammalian

  11. Physical studies of conformational plasticity in a recombinant prion protein.

    PubMed

    Zhang, H; Stockel, J; Mehlhorn, I; Groth, D; Baldwin, M A; Prusiner, S B; James, T L; Cohen, F E

    1997-03-25

    PrP(Sc) is known to be the major, if not the only, component of the infectious prion. Limited proteolysis of PrP(Sc) produces an N-terminally truncated polypeptide of about 142 residues, designated PrP 27-30. Recently, a recombinant protein (rPrP) of 142 residues corresponding to the Syrian hamster PrP 27-30 was expressed in Escherichia coli and purified (Mehlhorn et al., 1996). rPrP has been refolded into both alpha-helical and beta-sheet structures as well as various intermediates in aqueous buffers. The beta-sheet state and two pH-dependent alpha-helical states were characterized by CD and NMR. The alpha-helical conformation occurred only after the formation of an intramolecular disulfide bond, whereas the beta-sheet form was accessible either with or without the disulfide. Of the different alpha-helical forms studied, only those refolded in the pH range 5-8 were substantially soluble at physiological pH, exhibiting similar conformations and monomeric analytical sedimentation profiles throughout the above pH range. Furthermore, refolded alpha-rPrP showed NMR chemical shift dispersion typical of proteins with native conformations, although 2D NMR indicated large segments of conformational flexibility. It displayed a cooperative thermal denaturation transition; at elevated temperatures, it converted rapidly and irreversibly to the thermodynamically more stable beta-sheet form. Unfolding of alpha-rPrP by GdnHCl revealed a two-phase transition with a relatively stable folding intermediate at 2 M GdnHCl. The deltaG values were estimated to be 1.9 +/- 0.4 kcal/mol for the first phase and 6.5 +/- 1.2 kcal/mol for the second, consistent with a folding core surrounded by significant segments of flexible conformation. By NMR, alpha-rPrP(acid) isolated at pH 2 without refolding exhibited heterogeneous line widths, consistent with an acid-denatured molten globular state. We conclude that to the extent that rPrP constitutes a relevant folding domain of PrP(C), the various conformations exhibited by rPrP suggest that the PrP sequence may be intrinsically plastic in its conformations; indeed, portions of PrP(C) may possess a relatively open conformation which makes it susceptible to conversion into PrP(Sc) under appropriate conditions. PMID:9132005

  12. An N-terminal Polybasic Domain and Cell Surface Localization Are Required for Mutant Prion Protein Toxicity*S

    E-print Network

    Huettner, James E.

    An N-terminal Polybasic Domain and Cell Surface Localization Are Required for Mutant Prion Protein that alterations in the normal physiological activity of PrPC contribute to prion-induced neurotoxicityPSc . Prion diseases or transmissible spongiform encephalopa- thies comprise a group of fatal

  13. Mouse Prion Protein Polymorphism Phe-108/Val-189 Affects the Kinetics of Fibril Formation and the Response to Seeding

    PubMed Central

    Cortez, Leonardo M.; Kumar, Jitendra; Renault, Ludovic; Young, Howard S.; Sim, Valerie L.

    2013-01-01

    Prion diseases are fatal neurodegenerative disorders associated with the polymerization of the cellular form of prion protein (PrPC) into an amyloidogenic ?-sheet infectious form (PrPSc). The sequence of host PrP is the major determinant of host prion disease susceptibility. In mice, the presence of allele a (Prnpa, encoding the polymorphism Leu-108/Thr-189) or b (Prnpb, Phe-108/Val-189) is associated with short or long incubation times, respectively, following infection with PrPSc. The molecular bases linking PrP sequence, infection susceptibility, and convertibility of PrPC into PrPSc remain unclear. Here we show that recombinant PrPa and PrPb aggregate and respond to seeding differently in vitro. Our kinetic studies reveal differences during the nucleation phase of the aggregation process, where PrPb exhibits a longer lag phase that cannot be completely eliminated by seeding the reaction with preformed fibrils. Additionally, PrPb is more prone to propagate features of the seeds, as demonstrated by conformational stability and electron microscopy studies of the formed fibrils. We propose a model of polymerization to explain how the polymorphisms at positions 108 and 189 produce the phenotypes seen in vivo. This model also provides insight into phenomena such as species barrier and prion strain generation, two phenomena also influenced by the primary structure of PrP. PMID:23283973

  14. NMR structure of the mouse prion protein domain PrP(121-231)

    Microsoft Academic Search

    Roland Riek; Simone Hornemann; Gerhard Wider; Martin Billeter; Rudi Glockshuber; Kurt Wüthrich

    1996-01-01

    THE 'protein only' hypothesis1 states that a modified form of normal prion protein triggers infectious neurodegenerative diseases, such as bovine spongiform encephalopathy (BSE), or Creutzfeldt-Jakob disease (CJD) in humans2-4. Prion proteins are thought to exist in two different conformations5: the 'benign' PrPC form, and the infectious 'scrapie form', PrPSc. Knowledge of the three-dimensional structure of PrPC is essential for understanding

  15. Follicular Dendritic Cell-Specific Prion Protein (PrPc) Expression Alone Is Sufficient to Sustain Prion Infection in the Spleen

    PubMed Central

    McCulloch, Laura; Brown, Karen L.; Bradford, Barry M.; Hopkins, John; Bailey, Mick; Rajewsky, Klaus; Manson, Jean C.; Mabbott, Neil A.

    2011-01-01

    Prion diseases are characterised by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. Following peripheral exposure high levels of prion-specific PrPSc accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrPC is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrPC expression was specifically “switched on” or “off” only on FDC. We show that PrPC-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrPC-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrPC expression on FDC. PMID:22144895

  16. Definable Equilibrium States in the Folding of Human Prion Protein Laszlo L. P. Hosszu,*,, Mark A. Wells,, Graham S. Jackson, Samantha Jones, Mark Batchelor,

    E-print Network

    Hosszu, Laszlo

    Definable Equilibrium States in the Folding of Human Prion Protein Laszlo L. P. Hosszu,*,,§ Mark A,§ Jonathan P. Waltho,§ and John Collinge MRC Prion Unit and National Prion Clinic, Institute of Neurology: The role of conformational intermediates in the conversion of prion protein from its normal cellular form

  17. Cytosolic prion protein is the predominant anti-Bax prion protein form: exclusion of transmembrane and secreted prion protein forms in the anti-Bax function.

    PubMed

    Lin, David T S; Jodoin, Julie; Baril, Michaël; Goodyer, Cynthia G; Leblanc, Andréa C

    2008-10-01

    Prion protein (PrP) prevents Bax-mediated cell death by inhibiting the initial Bax conformational change that converts cytosolic Bax into a pro-apoptotic protein. PrP is mostly a glycophosphatidylinositol-anchored cell surface protein but it is also retrotranslocated into cytosolic PrP (CyPrP) or can become a type 1 or type 2 transmembrane protein. To determine the form and subcellular location of the PrP that has anti-Bax function, we co-expressed various Syrian hamster PrP (SHaPrP) mutants that favour specific PrP topologies and subcellular localization with N-terminally green fluorescent protein tagged pro-apoptotic Bax (EGFP-Bax) in MCF-7 cells and primary human neurons. Mutants that generate both CyPrP and secreted PrP ((Sec)PrP) or only CyPrP have anti-Bax activity. Mutants that produce (Ctm)PrP or (Ntm)PrP lose the anti-Bax activity, despite their ability to also make (Sec)PrP. Transmembrane-generating mutants do not produce CyPrP and both normal and cognate mutant forms of CyPrP rescue against the loss of anti-Bax activity. (Sec)PrP-generating constructs also produce non-membrane attached (Sec)PrP. However, this form of PrP has minimal anti-Bax activity. We conclude that CyPrP is the predominant form of PrP with anti-Bax function. These results imply that the retrotranslocation of PrP encompasses a survival function and is not merely a pathway for the proteasomal degradation of misfolded protein. PMID:18590778

  18. Transport of the Pathogenic Prion Protein through Landfill Materials

    PubMed Central

    Jacobson, Kurt H.; Lee, Seunghak; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrPTSE) is the major, if not sole, component of the infectious agent. Recent TSE outbreaks in domesticated and wild animal populations has created the need for safe and effective disposal of large quantities of potentially infected materials. Here, we report the results of a study to evaluate the potential for transport of PrPTSE derived from carcasses and associated wastes in a municipal solid waste (MSW) landfill. Column experiments were conducted to evaluate PrPTSE transport in quartz sand, two fine-textured burial soils currently used in landfill practice, a green waste residual material (a potential burial material), and fresh and aged MSW. PrPTSE was retained by quartz sand and the fine-textured burial soils, with no detectable PrPTSE eluted over more than 40 pore volumes. In contrast, PrPTSE was more mobile in MSW and green waste residual. Transport parameters were estimated from the experimental data and used to model PrPTSE migration in a MSW landfill. To the extent that the PrPTSE used mimics that released from decomposing carcasses, burial of CWD-infected materials at MSW landfills could provide secure containment of PrPTSE provided reasonable burial strategies (e.g., encasement in soil) are used. PMID:19368208

  19. Oxidation of methionine 216 in sheep and elk prion protein is highly dependent upon the amino acid at position 218 but is not important for prion propagation.

    PubMed

    Silva, Christopher J; Dynin, Irina; Erickson, Melissa L; Requena, Jesús R; Balachandran, Aru; Hui, Colleen; Onisko, Bruce C; Carter, John Mark

    2013-03-26

    We employed a sensitive mass spectrometry-based method to deconstruct, confirm, and quantitate the prions present in elk naturally infected with chronic wasting disease and sheep naturally infected with scrapie. We used this approach to study the oxidation of a methionine at position 216 (Met216), because this oxidation (MetSO216) has been implicated in prion formation. Three polymorphisms (Ile218, Val218, and Thr218) of sheep recombinant prion protein were prepared. Our analysis showed the novel result that the proportion of MetSO216 was highly dependent upon the amino acid residue at position 218 (I > V > T), indicating that Ile218 in sheep and elk prion protein (PrP) renders the Met216 intrinsically more susceptible to oxidation than the Val218 or Thr218 analogue. We were able to quantitate the prions in the attomole range. The presence of prions was verified by the detection of two confirmatory peptides: GENFTETDIK (sheep and elk) and ESQAYYQR (sheep) or ESEAYYQR (elk). This approach required much smaller amounts of tissue (600 ?g) than traditional methods of detection (enzyme-linked immunosorbent assay, Western blot, and immunohistochemical analysis) (60 mg). In sheep and elk, a normal cellular prion protein containing MetSO216 is not actively recruited and converted to prions, although we observed that this Met216 is intrinsically more susceptible to oxidation. PMID:23458153

  20. Distinct patterns of spread of prion infection in brains of mice expressing anchorless or anchored forms of prion protein

    PubMed Central

    2014-01-01

    Background In humans and animals, prion protein (PrP) is usually expressed as a glycophosphatidylinositol (GPI)-anchored membrane protein, but anchorless PrP may be pathogenic in humans with certain familial prion diseases. Anchored PrP expressed on neurons mediates spread of prions along axons in the peripheral and central nervous systems. However, the mechanism of prion spread in individuals expressing anchorless PrP is poorly understood. Here we studied prion spread within brain of mice expressing anchorless or anchored PrP. Results To create a localized initial point of infection, we microinjected scrapie in a 0.5 microliter volume in the striatum. In this experiment, PrPres and gliosis were first detected in both types of mice at 40 days post-inoculation near the needle track. In mice with anchored PrP, PrPres appeared to spread via neurons to distant connected brain areas by the clinical endpoint at 150 days post-inoculation. This PrPres was rarely associated with blood vessels. In contrast, in mice with anchorless PrP, PrPres spread did not follow neuronal circuitry, but instead followed a novel slower pattern utilizing the drainage system of the brain interstitial fluid (ISF) including perivascular areas adjacent to blood vessels, subependymal areas and spaces between axons in white matter tracts. Conclusions In transgenic mice expressing anchorless PrP small amyloid-seeding PrPres aggregates appeared to be transported in the ISF, thus spreading development of cerebral amyloid angiopathy (CAA) throughout the brain. Spread of amyloid seeding by ISF may also occur in multiple human brain diseases involving CAA. PMID:24447368

  1. Prion Protein Expression and Functional Importance in Skeletal Muscle

    PubMed Central

    Smith, Jeffrey D.; Moylan, Jennifer S.; Hardin, Brian J.; Chambers, Melissa A.; Estus, Steven; Telling, Glenn C.

    2011-01-01

    Abstract Skeletal muscle expresses prion protein (PrP) that buffers oxidant activity in neurons. Aims We hypothesize that PrP deficiency would increase oxidant activity in skeletal muscle and alter redox-sensitive functions, including contraction and glucose uptake. We used real-time polymerase chain reaction and Western blot analysis to measure PrP mRNA and protein in human diaphragm, five murine muscles, and muscle-derived C2C12 cells. Effects of PrP deficiency were tested by comparing PrP-deficient mice versus wild-type mice and morpholino-knockdown versus vehicle-treated myotubes. Oxidant activity (dichlorofluorescin oxidation) and specific force were measured in murine diaphragm fiber bundles. Results PrP content differs among mouse muscles (gastrocnemius>extensor digitorum longus, EDL>tibialis anterior, TA; soleus>diaphragm) as does glycosylation (di-, mono-, nonglycosylated; gastrocnemius, EDL, TA=60%, 30%, 10%; soleus, 30%, 40%, 30%; diaphragm, 30%, 30%, 40%). PrP is predominantly di-glycosylated in human diaphragm. PrP deficiency decreases body weight (15%) and EDL mass (9%); increases cytosolic oxidant activity (fiber bundles, 36%; C2C12 myotubes, 7%); and depresses specific force (12%) in adult (8–12?mos) but not adolescent (2?mos) mice. Innovation This study is the first to directly assess a role of prion protein in skeletal muscle function. Conclusions PrP content varies among murine skeletal muscles and is essential for maintaining normal redox homeostasis, muscle size, and contractile function in adult animals. Antioxid. Redox Signal. 15, 2465—2475. PMID:21453198

  2. A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins.

    PubMed

    Zhang, Jiapu; Wang, Feng

    2014-01-01

    Prion diseases which are serious neurodegenerative diseases that affect humans and animals occur in various of species. Unlike many other neurodegenerative diseases affected by amyloid, prion diseases can be highly infectious. Prion diseases occur in many species. In humans, prion diseases include the fatal human neurodegenerative diseases such as Creutzfeldt-Jakob Disease (CJD), Fatal Familial Insomnia (FFI), Gerstmann-Strussler-Scheinker syndrome (GSS) and Kuru etc. In animals, prion diseases are related to the bovine spongiform encephalopathy (BSE or 'mad-cow' disease) in cattle, the chronic wasting disease (CWD) found in deer and elk, and scrapie seen in sheep and goats, etc. More seriously, the fact that transmission of the prion diseases across the species barrier to other species such as humans has caused a major public health concern worldwide. For example, the BSE in Europe, the CWD in North America, and variant CJDs (vCJDs) in young people of UK. Fortunately, it is discovered that the hydrophobic region of prion proteins (PrP) controls the formation of diseased prions (PrP(Sc)), which provide some clues in control of such diseases. This article provides a detailed survey of recent studies with respect to the PrP hydrophobic region of human PrP(110-136) using molecular dynamics studies. PMID:25373387

  3. Context-dependent perturbation of neural systems in transgenic mice expressing a cytosolic prion protein

    E-print Network

    Lindquist, Susan

    We analyzed the relationship between pathogenic protein expression and perturbations to brain anatomy and physiology in a genetic model of prion disease. In this model, the mouse line 1D4, neuropathology is promoted by ...

  4. Capillary electromigration based techniques in diagnostics of prion protein caused diseases.

    PubMed

    Sobrova, Pavlina; Ryvolova, Marketa; Adam, Vojtech; Kizek, Rene

    2012-12-01

    Transmissible spongiform encephalopathies are a group of fatal neurodegenerative diseases with long incubation time. This group includes Creutzfeld-Jakob disease, kuru, scrapie, chronic wasting disease, and bovine spongiform encephalopathy. Sensitive and specific detection of abnormal prion protein as "a source agent" of the above-mentioned diseases in blood could provide a diagnostic test or a screening assay for animal and human prion protein diseases diagnostics. Therefore, diagnostic tests for prion protein diseases represent unique challenge requiring development of novel assays exploiting properties of prion protein complex. Presently, diagnostic methods such as protein misfolding cyclic amplification, conformation-dependent immunoassay, dissociation-enhanced lanthanide fluorescent immunoassay, fluorescence correlation spectroscopy, and/or flow microbead immunoassay are used for abnormal prion protein (PrP(Sc) ) detection. On the other hand, using of CE for PrP(Sc) detection in body fluids is an attractive alternative; it has been already applied for the blood samples of infected sheep, elk, chimpanzee, as well as humans. In this review, assays for prion protein detection are summarized with special attention to capillary electromigration based techniques, such as CE, CIEF, and/or CGE. The potential of the miniaturized and integrated lab-on-chip devices is highlighted, emphasizing recent advances of this field in the proteomic analysis. PMID:23161211

  5. Cell-surface prion protein interacts with glycosaminoglycans.

    PubMed Central

    Pan, Tao; Wong, Boon-Seng; Liu, Tong; Li, Ruliang; Petersen, Robert B; Sy, Man-Sun

    2002-01-01

    We used ELISA and flow cytometry to study the binding of prion protein PrP to glycosaminoglycans (GAGs). We found that recombinant human PrP (rPrP) binds GAGs including chondroitin sulphate A, chondroitin sulphate B, hyaluronic acid, and heparin. rPrP binding to GAGs occurs via the N-terminus, a region known to bind divalent cations. Additionally, rPrP binding to GAGs is enhanced in the presence of Cu2+ and Zn2+, but not Ca2+ and Mn2+. rPrP binds heparin strongest, and the binding is inhibited by certain heparin analogues, including heparin disaccharide and sulphate-containing monosaccharides, but not by acetylated heparin. Full-length normal cellular prion protein (PrPC), but not N-terminally truncated PrPC species, from human brain bind GAGs in a similar Cu2+/Zn2+-enhanced fashion. We found that GAGs specifically bind to a synthetic peptide corresponding to amino acid residues 23-35 in the N-terminus of rPrP. We further demonstrated that while both wild-type PrPC and an octapeptide-repeat-deleted mutant PrP produced by transfected cells bound heparin at the cell surface, the PrP N-terminal deletion mutant and non-transfectant control failed to bind heparin. Binding of heparin to wild-type PrPC on the cell surface results in a reduction of the level of cell-surface PrPC. These results provide strong evidence that PrPC is a surface receptor for GAGs. PMID:12186633

  6. Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease

    SciTech Connect

    Apostol, Marcin I.; Sawaya, Michael R.; Cascio, Duilio; Eisenberg, David (UCLA)

    2010-09-23

    A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are 'steric zippers,' pairs of interacting {beta}-sheets. Both structures of these 'homozygous steric zippers' reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.

  7. POLYMORPHIC DISTRIBUTION OF THE PRION PROTEIN (PRNP) GENE IN SCRAPIE-INFECTED SHEEP FLOCKS IN WHICH EMBRYO TRANSFER WAS USED TO CIRCUMVENT THE TRANSMISSIONS OF SCRAPIE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic sequence of the ovine prion protein (PrP) gene between codons 102 and 175, with emphasis on ovine PrP gene codons 136 and 171, was determined in scrapie-exposed Suffolk embryo donors and in offspring from those donors that had been transferred to scrapie-free recipient ewes. The most com...

  8. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions. PMID:23100369

  9. Prion protein promotes kidney iron uptake via its ferrireductase activity.

    PubMed

    Haldar, Swati; Tripathi, Ajai; Qian, Juan; Beserra, Amber; Suda, Srinivas; McElwee, Matthew; Turner, Jerrold; Hopfer, Ulrich; Singh, Neena

    2015-02-27

    Brain iron-dyshomeostasis is an important cause of neurotoxicity in prion disorders, a group of neurodegenerative conditions associated with the conversion of prion protein (PrP(C)) from its normal conformation to an aggregated, PrP-scrapie (PrP(Sc)) isoform. Alteration of iron homeostasis is believed to result from impaired function of PrP(C) in neuronal iron uptake via its ferrireductase activity. However, unequivocal evidence supporting the ferrireductase activity of PrP(C) is lacking. Kidney provides a relevant model for this evaluation because PrP(C) is expressed in the kidney, and ?370 ?g of iron are reabsorbed daily from the glomerular filtrate by kidney proximal tubule cells (PT), requiring ferrireductase activity. Here, we report that PrP(C) promotes the uptake of transferrin (Tf) and non-Tf-bound iron (NTBI) by the kidney in vivo and mainly NTBI by PT cells in vitro. Thus, uptake of (59)Fe administered by gastric gavage, intravenously, or intraperitoneally was significantly lower in PrP-knock-out (PrP(-/-)) mouse kidney relative to PrP(+/+) controls. Selective in vivo radiolabeling of plasma NTBI with (59)Fe revealed similar results. Expression of exogenous PrP(C) in immortalized PT cells showed localization on the plasma membrane and intracellular vesicles and increased transepithelial transport of (59)Fe-NTBI and to a smaller extent (59)Fe-Tf from the apical to the basolateral domain. Notably, the ferrireductase-deficient mutant of PrP (PrP(?51-89)) lacked this activity. Furthermore, excess NTBI and hemin caused aggregation of PrP(C) to a detergent-insoluble form, limiting iron uptake. Together, these observations suggest that PrP(C) promotes retrieval of iron from the glomerular filtrate via its ferrireductase activity and modulates kidney iron metabolism. PMID:25572394

  10. Detection of Prion Protein in Urine-Derived Injectable Fertility Products by a Targeted Proteomic Approach

    PubMed Central

    Van Dorsselaer, Alain; Carapito, Christine; Delalande, François; Schaeffer-Reiss, Christine; Thierse, Daniele; Diemer, Hélène; McNair, Douglas S.; Krewski, Daniel; Cashman, Neil R.

    2011-01-01

    Background Iatrogenic transmission of human prion disease can occur through medical or surgical procedures, including injection of hormones such as gonadotropins extracted from cadaver pituitaries. Annually, more than 300,000 women in the United States and Canada are prescribed urine-derived gonadotropins for infertility. Although menopausal urine donors are screened for symptomatic neurological disease, incubation of Creutzfeldt-Jakob disease (CJD) is impossible to exclude by non-invasive testing. Risk of carrier status of variant CJD (vCJD), a disease associated with decades-long peripheral incubation, is estimated to be on the order of 100 per million population in the United Kingdom. Studies showing infectious prions in the urine of experimental animals with and without renal disease suggest that prions could be present in asymptomatic urine donors. Several human fertility products are derived from donated urine; recently prion protein has been detected in preparations of human menopausal gonadotropin (hMG). Methodology/Principal Findings Using a classical proteomic approach, 33 and 34 non-gonadotropin proteins were identified in urinary human chorionic gonadotropin (u-hCG) and highly-purified urinary human menopausal gonadotropin (hMG-HP) products, respectively. Prion protein was identified as a major contaminant in u-hCG preparations for the first time. An advanced prion protein targeted proteomic approach was subsequently used to conduct a survey of gonadotropin products; this approach detected human prion protein peptides in urine-derived injectable fertility products containing hCG, hMG and hMG-HP, but not in recombinant products. Conclusions/Significance The presence of protease-sensitive prion protein in urinary-derived injectable fertility products containing hCG, hMG, and hMG-HP suggests that prions may co-purify in these products. Intramuscular injection is a relatively efficient route of transmission of human prion disease, and young women exposed to prions can be expected to survive an incubation period associated with a minimal inoculum. The risks of urine-derived fertility products could now outweigh their benefits, particularly considering the availability of recombinant products. PMID:21448279

  11. Rational targeting for prion therapeutics

    Microsoft Academic Search

    Giovanna Mallucci; John Collinge

    2005-01-01

    Prions — pathogens that are lethal to humans and other animals — are thought to be conformational isomers of the cellular prion protein. Their unique biology, and the potential for a wider pathobiological significance of prion-like mechanisms, has motivated much research into understanding prion neurodegeneration. Moreover, concerns that extensive dietary exposure to bovine spongiform encephalopathy (BSE) prions might have infected

  12. Prion Protein Misfolding Affects Calcium Homeostasis and Sensitizes Cells to Endoplasmic Reticulum Stress

    Microsoft Academic Search

    Mauricio Torres; Karen Castillo; Ricardo Armisén; Andrés Stutzin; Claudio Soto; Claudio Hetz; Maria A. Deli

    2010-01-01

    Prion-related disorders (PrDs) are fatal neurodegenerative disorders characterized by progressive neuronal impairment as well as the accumulation of an abnormally folded and protease resistant form of the cellular prion protein, termed PrPRES. Altered endoplasmic reticulum (ER) homeostasis is associated with the occurrence of neurodegeneration in sporadic, infectious and familial forms of PrDs. The ER operates as a major intracellular calcium

  13. Selective Processing and Metabolism of Disease-Causing Mutant Prion Proteins

    Microsoft Academic Search

    Aarthi Ashok; Ramanujan S. Hegde

    2009-01-01

    Prion diseases are fatal neurodegenerative disorders caused by aberrant metabolism of the cellular prion protein (PrPC). In genetic forms of these diseases, mutations in the globular C-terminal domain are hypothesized to favor the spontaneous generation of misfolded PrP conformers (including the transmissible PrPSc form) that trigger downstream pathways leading to neuronal death. A mechanistic understanding of these diseases therefore requires

  14. Altered circadian activity rhythms and sleep in mice devoid of prion protein

    Microsoft Academic Search

    I. Tobler; S. E. Gaus; T. Deboer; P. Achermann; M. Fischer; T. Rülicke; M. Moser; B. Oesch; P. A. McBride; J. C. Manson

    1996-01-01

    THERE is a wealth of data supporting a central role for the prion protein (PrP) in the neurodegenerative prion diseases of both humans and other species1, yet the normal function of PrP, which is expressed at the cell surface of neurons and glial cells2,3, is unknown. It has been speculated that neuropathology may be due to loss of normal function

  15. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    SciTech Connect

    Magzoub, Mazin [Department of Biochemistry and Biophysics, Stockholm University (Sweden); Sandgren, Staffan [Department of Clinical Sciences, Section for Oncology, Lund University (Sweden); Lundberg, Pontus [Department of Neurochemistry, Stockholm University (Sweden); Oglecka, Kamila [Department of Biochemistry and Biophysics, Stockholm University (Sweden); Lilja, Johanna [Department of Clinical Sciences, Section for Oncology, Lund University (Sweden); Wittrup, Anders [Department of Clinical Sciences, Section for Oncology, Lund University (Sweden); Goeran Eriksson, L.E. [Department of Biochemistry and Biophysics, Stockholm University (Sweden); Langel, Ulo [Department of Neurochemistry, Stockholm University (Sweden); Belting, Mattias [Department of Clinical Sciences, Section for Oncology, Lund University (Sweden)]. E-mail: mattias.belting@med.lu.se; Graeslund, Astrid [Department of Biochemistry and Biophysics, Stockholm University (Sweden)]. E-mail: astrid@dbb.su.se

    2006-09-22

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases.

  16. Origins and evolution of the HET-s prion-forming protein: searching for other amyloid-forming solenoids.

    PubMed

    Gendoo, Deena M A; Harrison, Paul M

    2011-01-01

    The HET-s prion-forming domain from the filamentous fungus Podospora anserina is gaining considerable interest since it yielded the first well-defined atomic structure of a functional amyloid fibril. This structure has been identified as a left-handed beta solenoid with a triangular hydrophobic core. To delineate the origins of the HET-s prion-forming protein and to discover other amyloid-forming proteins, we searched for all homologs of the HET-s protein in a database of protein domains and fungal genomes, using a combined application of HMM, psi-blast and pGenThreader techniques, and performed a comparative evolutionary analysis of the N-terminal alpha-helical domain and the C-terminal prion-forming domain of HET-s. By assessing the tandem evolution of both domains, we observed that the prion-forming domain is restricted to Sordariomycetes, with a marginal additional sequence homolog in Arthroderma otae as a likely case of horizontal transfer. This suggests innovation and rapid evolution of the solenoid fold in the Sordariomycetes clade. In contrast, the N-terminal domain evolves at a slower rate (in Sordariomycetes) and spans many diverse clades of fungi. We performed a full three-dimensional protein threading analysis on all identified HET-s homologs against the HET-s solenoid fold, and present detailed structural annotations for identified structural homologs to the prion-forming domain. An analysis of the physicochemical characteristics in our set of structural models indicates that the HET-s solenoid shape can be readily adopted in these homologs, but that they are all less optimized for fibril formation than the P. anserina HET-s sequence itself, due chiefly to the presence of fewer asparagine ladders and salt bridges. Our combined structural and evolutionary analysis suggests that the HET-s shape has "limited scope" for amyloidosis across the wider protein universe, compared to the 'generic' left-handed beta helix. We discuss the implications of our findings on future identification of amyloid-forming proteins sharing the solenoid fold. PMID:22096554

  17. Cellular prion protein is released on exosomes from activated platelets.

    PubMed

    Robertson, Catherine; Booth, Stephanie A; Beniac, Daniel R; Coulthart, Michael B; Booth, Timothy F; McNicol, Archibald

    2006-05-15

    Cellular prion protein (PrP(C)) is a glycophosphatidylinositol (GPI)-anchored protein, of unknown function, found in a number of tissues throughout the body, including several blood components of which platelets constitute the largest reservoir in humans. It is widely believed that a misfolded, protease-resistant form of PrP(C), PrP(Sc), is responsible for the transmissible spongiform encephalopathy (TSE) group of fatal neurodegenerative diseases. Although the pathogenesis of TSEs is poorly understood, it is known that PrP(C) must be present in order for the disease to progress; thus, it is important to determine the physiologic function of PrP(C). Resolving the location of PrP(C) in blood will provide valuable clues as to its function. PrP(C) was previously shown to be on the alpha granule membrane of resting platelets. In the current study platelet activation led to the transient expression of PrP(C) on the platelet surface and its subsequent release on both microvesicles and exosomes. The presence of PrP(C) on platelet-derived exosomes suggests a possible mechanism for PrP(C) transport in blood and for cell-to-cell transmission. PMID:16434486

  18. NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231)

    Microsoft Academic Search

    Roland Riek; Simone Hornemann; Gerhard Wider; Rudi Glockshuber; Kurt Wüthrich

    1997-01-01

    The recombinant murine prion protein, mPrP(23–231), was expressed in E. coli with uniform 15N-labeling. NMR experiments showed that the previously determined globular three-dimensional structure of the C-terminal domain mPrP(121–231) is preserved in the intact protein, and that the N-terminal polypeptide segment 23–120 is flexibly disordered. This structural information is based on nearly complete sequence-specific assignments for the backbone amide nitrogens,

  19. Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells.

    PubMed

    Villa, Valentina; Thellung, Stefano; Corsaro, Alessandro; Novelli, Federica; Tasso, Bruno; Colucci-D'Amato, Luca; Gatta, Elena; Tonelli, Michele; Florio, Tullio

    2014-11-18

    Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity. PMID:25404089

  20. Ubiquitin-specific protease 14 modulates degradation of cellular prion protein.

    PubMed

    Homma, Takujiro; Ishibashi, Daisuke; Nakagaki, Takehiro; Fuse, Takayuki; Mori, Tsuyoshi; Satoh, Katsuya; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of prion protein (PrP(C)). To date, there is no effective treatment for the disease. The accumulated PrP, termed PrP(Sc), forms amyloid fibrils and could be infectious. It has been suggested that PrP(Sc) is abnormally folded and resistant to proteolytic degradation, and also inhibits proteasomal functions in infected cells, thereby inducing neuronal death. Recent work indicates that the ubiquitin-proteasome system is involved in quality control of PrP(C). To reveal the significance of prion protein ubiqitination, we focused on ubiquitin-specific protease 14 (USP14), a deubiqutinating enzyme that catalyzes trimming of polyubiquitin chains and plays a role in regulation of proteasomal processes. Results from the present study showed that treatment with a selective inhibitor of USP14 reduced PrP(C), as well as PrP(Sc), levels in prion-infected neuronal cells. Overexpression of the dominant negative mutant form of USP14 reduced PrP(Sc), whereas wildtype USP14 increased PrP(Sc) in prion-infected cells. These results suggest that USP14 prevents degradation of both normal and abnormal PrP. Collectively, a better understanding about the regulation of PrP(Sc) clearance caused by USP14 might contribute greatly to the development of therapeutic strategies for prion diseases. PMID:26061634

  1. Ubiquitin-specific protease 14 modulates degradation of cellular prion protein

    PubMed Central

    Homma, Takujiro; Ishibashi, Daisuke; Nakagaki, Takehiro; Fuse, Takayuki; Mori, Tsuyoshi; Satoh, Katsuya; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of prion protein (PrPC). To date, there is no effective treatment for the disease. The accumulated PrP, termed PrPSc, forms amyloid fibrils and could be infectious. It has been suggested that PrPSc is abnormally folded and resistant to proteolytic degradation, and also inhibits proteasomal functions in infected cells, thereby inducing neuronal death. Recent work indicates that the ubiquitin-proteasome system is involved in quality control of PrPC. To reveal the significance of prion protein ubiqitination, we focused on ubiquitin-specific protease 14 (USP14), a deubiqutinating enzyme that catalyzes trimming of polyubiquitin chains and plays a role in regulation of proteasomal processes. Results from the present study showed that treatment with a selective inhibitor of USP14 reduced PrPC, as well as PrPSc, levels in prion-infected neuronal cells. Overexpression of the dominant negative mutant form of USP14 reduced PrPSc, whereas wildtype USP14 increased PrPSc in prion-infected cells. These results suggest that USP14 prevents degradation of both normal and abnormal PrP. Collectively, a better understanding about the regulation of PrPSc clearance caused by USP14 might contribute greatly to the development of therapeutic strategies for prion diseases. PMID:26061634

  2. Strain-specified relative conformational stability of the scrapie prion protein

    PubMed Central

    Peretz, David; Scott, Michael R.; Groth, Darlene; Williamson, R. Anthony; Burton, Dennis R.; Cohen, Fred E.; Prusiner, Stanley B.

    2001-01-01

    Studies of prion biology and diseases have elucidated several new concepts, but none was more heretical than the proposal that the biological properties that distinguish different prion strains are enciphered in the disease-causing prion protein (PrPSc). To explore this postulate, we examined the properties of PrPSc from eight prion isolates that propagate in Syrian hamster (SHa). Using resistance to protease digestion as a marker for the undenatured protein, we examined the conformational stabilities of these PrPSc molecules. All eight isolates showed sigmoidal patterns of transition from native to denatured PrPSc as a function of increasing guanidine hydrochloride (GdnHCl) concentration. Half-maximal denaturation occurred at a mean value of 1.48 M GdnHCl for the Sc237, HY, SHa(Me7), and MT-C5 isolates, all of which have ?75-d incubation periods; a concentration of 1.08 M was found for the DY strain with a ?170-d incubation period and ?1.25 M for the SHa(RML) and 139H isolates with ?180-d incubation periods. A mean value of 1.39 M GdnHCl for the Me7-H strain with a ?320-d incubation period was found. Based on these results, the eight prion strains segregated into four distinct groups. Our results support the unorthodox proposal that distinct PrPSc conformers encipher the biological properties of prion strains. PMID:11274476

  3. The prion protein family: a view from the placenta

    PubMed Central

    Makzhami, Samira; Passet, Bruno; Halliez, Sophie; Castille, Johan; Moazami-Goudarzi, Katayoun; Duchesne, Amandine; Vilotte, Marthe; Laude, Hubert; Mouillet-Richard, Sophie; Béringue, Vincent; Vaiman, Daniel; Vilotte, Jean-Luc

    2014-01-01

    Based on its developmental pattern of expression, early studies suggested the implication of the mammalian Prion protein PrP, a glycosylphosphatidylinositol-anchored ubiquitously expressed and evolutionary conserved glycoprotein encoded by the Prnp gene, in early embryogenesis. However, gene invalidation in several species did not result in obvious developmental abnormalities and it was only recently that it was associated in mice with intra-uterine growth retardation and placental dysfunction. A proposed explanation for this lack of easily detectable developmental-related phenotype is the existence in the genome of one or more gene (s) able to compensate for the absence of PrP. Indeed, two other members of the Prnp gene family have been recently described, Doppel and Shadoo, and the consequences of their invalidation alongside that of PrP tested in mice. No embryonic defect was observed in mice depleted for Doppel and PrP. Interestingly, the co-invalidation of PrP and Shadoo in two independent studies led to apparently conflicting observations, with no apparent consequences in one report and the observation of a developmental defect of the ectoplacental cone that leads to early embryonic lethality in the other. This short review aims at summarizing these recent, apparently conflicting data highlighting the related biological questions and associated implications in terms of animal and human health. PMID:25364742

  4. Suppression of prion protein in livestock by RNA interference.

    PubMed

    Golding, Michael C; Long, Charles R; Carmell, Michelle A; Hannon, Gregory J; Westhusin, Mark E

    2006-04-01

    Given the difficulty of applying gene knockout technology to species other than mice, we decided to explore the utility of RNA interference (RNAi) in silencing the expression of genes in livestock. Short hairpin RNAs (shRNAs) were designed and screened for their ability to suppress the expression of caprine and bovine prion protein (PrP). Lentiviral vectors were used to deliver a transgene expressing GFP and an shRNA targeting PrP into goat fibroblasts. These cells were then used for nuclear transplantation to produce a cloned goat fetus, which was surgically recovered at 81 days of gestation and compared with an age-matched control derived by natural mating. All tissues examined in the cloned fetus expressed GFP, and PCR analysis confirmed the presence of the transgene encoding the PrP shRNA. Most relevant, Western blot analysis performed on brain tissues comparing the transgenic fetus with control demonstrated a significant (>90%) decrease in PrP expression levels. To confirm that similar methodologies could be applied to the bovine, recombinant virus was injected into the perivitelline space of bovine ova. After in vitro fertilization and culture, 76% of the blastocysts exhibited GFP expression, indicative that they expressed shRNAs targeting PrP. Our results provide strong evidence that the approach described here will be useful in producing transgenic livestock conferring potential disease resistance and provide an effective strategy for suppressing gene expression in a variety of large-animal models. PMID:16567624

  5. Transport of the Pathogenic Prion Protein through Soils

    PubMed Central

    Jacobson, Kurt H.; Lee, Seunghak; Somerville, Robert A.; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2011-01-01

    Transmissible spongiform encephalopathies (TSEs) are progressive neurodegenerative diseases and include bovine spongiform encephalopathy of cattle, chronic wasting disease (CWD) of deer and elk, scrapie in sheep and goats, and Creutzfeldt-Jakob disease in humans. An abnormally folded form of the prion protein (designated PrPTSE) is typically associated with TSE infectivity and may constitute the major, if not sole, component of the infectious agent. Transmission of CWD and scrapie is mediated in part by an environmental reservoir of infectivity. Soil appears to be a plausible candidate for this reservoir. TSE agent transport through soil is expected to influence the accessibility of the pathogen to animals after deposition and must be understood to assess the risks associated with burial of infected carcasses. We report results of saturated column experiments designed to evaluate PrPTSE transport through five soils with relatively high sand or silt contents. Protease-treated TSE-infected brain homogenate was used as a model for PrPTSE present in decomposing infected tissue. Synthetic rainwater was used as the eluent. PrPTSE was retained by all five soils; no detectable PrPTSE was eluted over more than 40 pore volumes of flow. Lower bound apparent attachment coefficients were estimated for each soil. Our results suggest that TSE agent released from decomposing tissues would remain near the site of initial deposition. In the case of infected carcasses deposited on the land surface, this may result in local sources of infectivity to other animals. PMID:20830901

  6. Fatal Familial Insomnia and Familial Creutzfeldt-Jakob Disease: Different Prion Proteins Determined by a DNA Polymorphism

    Microsoft Academic Search

    Lucia Monari; Shu G. Chen; Paul Brown; Piero Parchi; Robert B. Petersen; Jacqueline Mikol; Franscoise Gray; Pietro Cortelli; Pasquale Montagna; Bernardino Ghetti; Lev G. Goldfarb; D. Carleton Gajdusek; Elio Lugaresi; Pierluigi Gambetti; Lucila Autilio-Gambetti

    1994-01-01

    Fatal familial insomnia and a subtype of Creutzfeldt-Jakob disease, two clinically and pathologically distinct diseases, are linked to the same mutation at codon 178 (Asp-178 --> Asn) but segregate with different genotypes determined by this mutation and the methionine-valine polymorphism at codon 129 of the prion protein gene. The abnormal isoforms of the prion protein in these two diseases were

  7. Prion protein accumulation in the spinal cords of patients with sporadic and growth hormone associated Creutzfeldt-Jakob disease

    Microsoft Academic Search

    I. A. Goodbrand; J. W. Ironside; D. Nicolson; J. E. Bell

    1995-01-01

    An immunohistological study of the spinal cord in 20 cases of sporadic and 4 iatrogenic (growth hormone) cases of Creutzfeldt-Jakob (CJD) disease patients was performed to detect the presence of disease specific prion protein using a number of different antisera. Prion protein was present in all the growth hormone recipients and in 11 of the 20 sporadic CJD cases. Plaque-like

  8. Molecular Features of the Copper Binding Sites in the Octarepeat Domain of the Prion Protein

    PubMed Central

    Burns, Colin S.; Aronoff-Spencer, Eliah; Dunham, Christine M.; Lario, Paula; Avdievich, Nikolai I.; Antholine, William E.; Olmstead, Marilyn M.; Vrielink, Alice; Gerfen, Gary J.; Peisach, Jack; Scott, William G.; Millhauser, Glenn L.

    2010-01-01

    Recent evidence suggests that the prion protein (PrP) is a copper binding protein. The N-terminal region of human PrP contains four sequential copies of the highly conserved octarepeat sequence PHGGGWGQ spanning residues 60–91. This region selectively binds Cu2+ in vivo. In a previous study using peptide design, EPR, and CD spectroscopy, we showed that the HGGGW segment within each octarepeat comprises the fundamental Cu2+ binding unit [Aronoff-Spencer et al. (2000) Biochemistry 40, 13760–13771]. Here we present the first atomic resolution view of the copper binding site within an octarepeat. The crystal structure of HGGGW in a complex with Cu2+ reveals equatorial coordination by the histidine imidazole, two deprotonated glycine amides, and a glycine carbonyl, along with an axial water bridging to the Trp indole. Companion S-band EPR, X-band ESEEM, and HYSCORE experiments performed on a library of 15N-labeled peptides indicate that the structure of the copper binding site in HGGGW and PHGGGWGQ in solution is consistent with that of the crystal structure. Moreover, EPR performed on PrP(23–28, 57–91) and an 15N-labeled analogue demonstrates that the identified structure is maintained in the full PrP octarepeat domain. It has been shown that copper stimulates PrP endocytosis. The identified Gly–Cu linkage is unstable below pH ?6.5 and thus suggests a pH-dependent molecular mechanism by which PrP detects Cu2+ in the extracellular matrix or releases PrP-bound Cu2+ within the endosome. The structure also reveals an unusual complementary interaction between copper-structured HGGGW units that may facilitate molecular recognition between prion proteins, thereby suggesting a mechanism for transmembrane signaling and perhaps conversion to the pathogenic form. PMID:11900542

  9. PRION PROTEIN GENE HETEROGENEITY IN FREE-RANGING WHITE-TAILED DEER WITHIN THE CHRONIC WASTING DISEASE AFFECTED REGION OF WISCONSIN

    Microsoft Academic Search

    Chad Johnson; Jody Johnson; Murray Clayton; Debbie McKenzie; Judd Aiken

    Chronic wasting disease (CWD) was first identified in Wisconsin (USA) in white- tailed deer (Odocoileus virginianus) in February 2002. To determine if prion protein gene (Prnp) allelic variability was associated with CWD in white-tailed deer from Wisconsin, we sequenced Prnp from 26 CWD-positive and 100 CWD-negative deer. Sequence analysis of Prnp suggests that at least 86-96% of the white-tailed deer

  10. Prevalence of the prion protein gene E211K variant in U.S. cattle

    PubMed Central

    Heaton, Michael P; Keele, John W; Harhay, Gregory P; Richt, Jürgen A; Koohmaraie, Mohammad; Wheeler, Tommy L; Shackelford, Steven D; Casas, Eduardo; King, D Andy; Sonstegard, Tad S; Van Tassell, Curtis P; Neibergs, Holly L; Chase, Chad C; Kalbfleisch, Theodore S; Smith, Timothy PL; Clawson, Michael L; Laegreid, William W

    2008-01-01

    Background In 2006, an atypical U.S. case of bovine spongiform encephalopathy (BSE) was discovered in Alabama and later reported to be polymorphic for glutamate (E) and lysine (K) codons at position 211 in the bovine prion protein gene (Prnp) coding sequence. A bovine E211K mutation is important because it is analogous to the most common pathogenic mutation in humans (E200K) which causes hereditary Creutzfeldt – Jakob disease, an autosomal dominant form of prion disease. The present report describes a high-throughput matrix-associated laser desorption/ionization-time-of-flight mass spectrometry assay for scoring the Prnp E211K variant and its use to determine an upper limit for the K211 allele frequency in U.S. cattle. Results The K211 allele was not detected in 6062 cattle, including those from five commercial beef processing plants (3892 carcasses) and 2170 registered cattle from 42 breeds. Multiple nearby polymorphisms in Prnp coding sequence of 1456 diverse purebred cattle (42 breeds) did not interfere with scoring E211 or K211 alleles. Based on these results, the upper bounds for prevalence of the E211K variant was estimated to be extremely low, less than 1 in 2000 cattle (Bayesian analysis based on 95% quantile of the posterior distribution with a uniform prior). Conclusion No groups or breeds of U.S. cattle are presently known to harbor the Prnp K211 allele. Because a carrier was not detected, the number of additional atypical BSE cases with K211 will also be vanishingly low. PMID:18625065

  11. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans.

    PubMed

    Nussbaum-Krammer, Carmen I; Neto, Mário F; Brielmann, Renée M; Pedersen, Jesper S; Morimoto, Richard I

    2015-01-01

    Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans. PMID:25591151

  12. Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins.

    PubMed

    Zhang, Jiapu; Zhang, Yuanli

    2014-02-01

    Prion diseases, traditionally referred to as transmissible spongiform encephalopathies (TSEs), are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep and goats, bovine spongiform encephalopathy (BSE or mad-cow disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)), and the conversion of PrP(C) to PrP(Sc) is believed to involve conformational change from a predominantly ?-helical protein to one rich in ?-sheet structure. Such a conformational change may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show that they have a low susceptibility to be infected by PrP(Sc), but recently it was reported that rabbit prions can be generated through saPMCA (serial automated Protein Misfolding Cyclic Amplification) in vitro and the rabbit prion is infectious and transmissible. In this paper, we first do a detailed survey on the research advances of rabbit prion protein (RaPrP) and then we perform MD simulations on the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants. The survey shows to us that rabbits were not challenged directly in vivo with other known prion strains and the saPMCA result did not pass the test of the known BSE strain of cattle. Thus, we might still look rabbits as a prion resistant species. MD results indicate that the three ?-helices of the wild-type are stable under the neutral pH environment (but under low pH environment the three ?-helices have been unfolded into ?-sheets), and the three ?-helices of the mutants (I214V and S173N) are unfolded into rich ?-sheet structures under the same pH environment. In addition, we found an interesting result that the salt bridges such as ASP201-ARG155, ASP177-ARG163 contribute greatly to the structural stability of RaPrP. PMID:24184221

  13. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease.

    PubMed

    King, Oliver D; Gitler, Aaron D; Shorter, James

    2012-06-26

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable 'prion domain' enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer's disease and Huntington's disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the prion domains of RNA-binding proteins could underlie the classical non-cell-autonomous emanation of neurodegenerative pathology from originating epicenters to neighboring portions of the nervous system. This article is part of a Special Issue entitled RNA-Binding Proteins. PMID:22445064

  14. Detecting and discriminating among pathogenic protein conformers(prions), using mass spectrometry-based and antibody-based approaches(Abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of fatal neurological diseases that includes scrapie and chronic wasting disease (CWD) are caused by a pathological protein referred to as a prion (PrPSc). A prion propagates an infection by converting a normal cellular protein (PrPC) into a prion. Unlike viral, bacterial, or fungal pathogens,...

  15. NMR solution structure of the human prion protein Ralph Zahn, Aizhuo Liu*, Thorsten Lu hrs, Roland Riek, Christine von Schroetter, Francisco Lo pez Garcia, Martin Billeter

    E-print Network

    Wider, Gerhard

    NMR solution structure of the human prion protein Ralph Zahn, Aizhuo Liu*, Thorsten Lu¨ hrs, Roland The NMR structures of the recombinant human prion protein, hPrP(23­230), and two C-terminal fragments, h compared with the previously reported structures of the murine and Syrian hamster prion pro- teins

  16. A comparative molecular dynamics study on thermostability of human and chicken prion proteins

    SciTech Connect

    Ji, Hong-Fang [Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049 (China); Zhang, Hong-Yu [Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049 (China)]. E-mail: zhanghy@sdut.edu.cn

    2007-08-03

    To compare the thermostabilities of human and chicken normal cellular prion proteins (HuPrP{sup C} and CkPrP{sup C}), molecular dynamics (MD) simulations were performed for both proteins at an ensemble level (10 parallel simulations at 400 K and 5 parallel simulations at 300 K as a control). It is found that the thermostability of HuPrP{sup C} is comparable with that of CkPrP{sup C}, which implicates that the non-occurrence of prion diseases in non-mammals cannot be completely attributed to the thermodynamic properties of non-mammalian PrP{sup C}.

  17. Deficiency of prion protein induces impaired autophagic flux in neurons

    PubMed Central

    Shin, Hae-Young; Park, Jeong-Ho; Carp, Richard I.; Choi, Eun-Kyoung; Kim, Yong-Sun

    2014-01-01

    Normal cellular prion protein (PrPC) is highly expressed in the central nervous system. The Zürich I Prnp-deficient mouse strain did not show an abnormal phenotype in initial studies, however, in later studies, deficits in exploratory behavior and short- and long-term memory have been revealed. In the present study, numerous autophagic vacuoles were found in neurons from Zürich I Prnp-deficient mice. The autophagic accumulation in the soma of cortical neurons in Zürich I Prnp-deficient mice was observed as early as 3 months of age, and in the hippocampal neurons at 6 months of age. Specifically, there is accumulation of electron dense pigments associated with autophagy in the neurons of Zürich I Prnp-deficient mice. Furthermore, autophagic accumulations were observed as early as 3 months of age in the CA3 region of hippocampal and cerebral cortical neuropils. The autophagic vacuoles increased with age in the hippocampus of Zürich I Prnp-deficient mice at a faster rate and to a greater extent than in normal C57BL/6J mice, whereas the cortex exhibited high levels that were maintained from 3 months old in Zürich I Prnp-deficient mice. The pigmented autophagic accumulation is due to the incompletely digested material from autophagic vacuoles. Furthermore, a deficiency in PrPC may disrupt the autophagic flux by inhibiting autophagosome-lysosomal fusion. Overall, our results provide insight into the protective role of PrPC in neurons, which may play a role in normal behavior and other brain functions. PMID:25202268

  18. Immunohistochemical detection of prion protein in sheep with scrapie.

    PubMed

    Miller, J M; Jenny, A L; Taylor, W D; Marsh, R F; Rubenstein, R; Race, R E

    1993-07-01

    Prion protein (PrP), which is involved in the pathogenesis of scrapie, occurs in 2 forms. The form extracted from scrapie brain is protease resistant (PrP-res), whereas PrP from normal brain is protease sensitive (PrP-sen). This study examined whether PrP-res could be detected in brains of sheep with scrapie by immunohistochemistry (IHC). A suitable IHC procedure was developed using brain tissue from hamsters that had been inoculated with the transmissible mink encephalopathy agent. Tissue samples were fixed in PLP (periodate, lysine, paraformaldehyde) that contained paraformaldehyde at a concentration of 0.125%. Before application of the IHC technique, tissue sections were deparaffinized and treated with formic acid to simultaneously enhance PrP-res immunoreactivity and degrade PrP-sen. Primary antibody was obtained from a rabbit immunized to PrP-res extracted from brains of mice with experimentally induced scrapie. Brain from 21 sheep with histopathologically confirmed scrapie were examined by IHC. In all 21 brains, PrP-res was widely distributed throughout the brain stem. Staining was particularly intense in neuronal cell bodies and around blood vessels. The IHC technique successfully detected PrP-res in brain samples that had been frozen or that were severely autolyzed before fixation in PLP. Brains from 11 scrapie-suspect sheep that were not considered histologically positive were also examined by IHC. PrP-res was found in 4 of these brains. Sections of brains from 14 clinically normal sheep did not have detectable PrP-res. Results of this study indicate that IHC detection of PrP-res is equivalent, and perhaps superior, to histopathology for the diagnosis of scrapie in sheep. Furthermore, IHC is applicable to tissues that have autolytic changes or processing artifacts that prevent satisfactory histopathologic evaluation for lesions of scrapie. PMID:8104039

  19. Selective vulnerability to neurodegenerative disease: the curious case of Prion Protein

    PubMed Central

    Jackson, Walker S.

    2014-01-01

    The mechanisms underlying the selective targeting of specific brain regions by different neurodegenerative diseases is one of the most intriguing mysteries in medicine. For example, it is known that Alzheimer’s disease primarily affects parts of the brain that play a role in memory, whereas Parkinson’s disease predominantly affects parts of the brain that are involved in body movement. However, the reasons that other brain regions remain unaffected in these diseases are unknown. A better understanding of the phenomenon of selective vulnerability is required for the development of targeted therapeutic approaches that specifically protect affected neurons, thereby altering the disease course and preventing its progression. Prion diseases are a fascinating group of neurodegenerative diseases because they exhibit a wide phenotypic spectrum caused by different sequence perturbations in a single protein. The possible ways that mutations affecting this protein can cause several distinct neurodegenerative diseases are explored in this Review to highlight the complexity underlying selective vulnerability. The premise of this article is that selective vulnerability is determined by the interaction of specific protein conformers and region-specific microenvironments harboring unique combinations of subcellular components such as metals, chaperones and protein translation machinery. Given the abundance of potential contributory factors in the neurodegenerative process, a better understanding of how these factors interact will provide invaluable insight into disease mechanisms to guide therapeutic discovery. PMID:24396151

  20. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    USGS Publications Warehouse

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  1. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay

    USGS Publications Warehouse

    Johnson, Christopher J.; Carlson, Christina M.; Morawski, Aaron R.; Manthei, Alyson; Cashman, Neil R.

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitroprion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

  2. Shaking Alone Induces De Novo Conversion of Recombinant Prion Proteins to ?-Sheet Rich Oligomers and Fibrils

    PubMed Central

    Ladner-Keay, Carol L.; Griffith, Bethany J.; Wishart, David S.

    2014-01-01

    The formation of ?-sheet rich prion oligomers and fibrils from native prion protein (PrP) is thought to be a key step in the development of prion diseases. Many methods are available to convert recombinant prion protein into ?-sheet rich fibrils using various chemical denaturants (urea, SDS, GdnHCl), high temperature, phospholipids, or mildly acidic conditions (pH 4). Many of these methods also require shaking or another form of agitation to complete the conversion process. We have identified that shaking alone causes the conversion of recombinant PrP to ?-sheet rich oligomers and fibrils at near physiological pH (pH 5.5 to pH 6.2) and temperature. This conversion does not require any denaturant, detergent, or any other chemical cofactor. Interestingly, this conversion does not occur when the water-air interface is eliminated in the shaken sample. We have analyzed shaking-induced conversion using circular dichroism, resolution enhanced native acidic gel electrophoresis (RENAGE), electron microscopy, Fourier transform infrared spectroscopy, thioflavin T fluorescence and proteinase K resistance. Our results show that shaking causes the formation of ?-sheet rich oligomers with a population distribution ranging from octamers to dodecamers and that further shaking causes a transition to ?-sheet fibrils. In addition, we show that shaking-induced conversion occurs for a wide range of full-length and truncated constructs of mouse, hamster and cervid prion proteins. We propose that this method of conversion provides a robust, reproducible and easily accessible model for scrapie-like amyloid formation, allowing the generation of milligram quantities of physiologically stable ?-sheet rich oligomers and fibrils. These results may also have interesting implications regarding our understanding of prion conversion and propagation both within the brain and via techniques such as protein misfolding cyclic amplification (PMCA) and quaking induced conversion (QuIC). PMID:24892647

  3. Divalent metals stabilize cellular prion proteins and alter the rate of proteinase-K dependent limited proteolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The key biochemical event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent ca...

  4. Disease-associated prion protein in neural and lymphoid tissues of mink (Mustela vison) inoculated with transmissible mink encephalopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmissible mink encephalopathy (TME) is a prion disorder of farmed raised mink. As with the other transmissible spongiform encephalopathies, the disorder is associated with accumulation of the misfolded prion protein in the brain and an invariably fatal outcome. TME outbreaks have been rare but...

  5. Generating new prions by targeted mutation or segment duplication.

    PubMed

    Paul, Kacy R; Hendrich, Connor G; Waechter, Aubrey; Harman, Madison R; Ross, Eric D

    2015-07-14

    Yeasts contain various protein-based genetic elements, termed prions, that result from the structural conversion of proteins into self-propagating amyloid forms. Most yeast prion proteins contain glutamine/asparagine (Q/N)-rich prion domains that drive prion activity. Here, we explore two mechanisms by which new prion domains could evolve. First, it has been proposed that mutation and natural selection will tend to result in proteins with aggregation propensities just low enough to function under physiological conditions and thus that a small number of mutations are often sufficient to cause aggregation. We hypothesized that if the ability to form prion aggregates was a sufficiently generic feature of Q/N-rich domains, many nonprion Q/N-rich domains might similarly have aggregation propensities on the edge of prion formation. Indeed, we tested four yeast Q/N-rich domains that had no detectable aggregation activity; in each case, a small number of rationally designed mutations were sufficient to cause the proteins to aggregate and, for two of the domains, to create prion activity. Second, oligopeptide repeats are found in multiple prion proteins, and expansion of these repeats increases prion activity. However, it is unclear whether the effects of repeat expansion are unique to these specific sequences or are a generic result of adding additional aggregation-prone segments into a protein domain. We found that within nonprion Q/N-rich domains, repeating aggregation-prone segments in tandem was sufficient to create prion activity. Duplication of DNA elements is a common source of genetic variation and may provide a simple mechanism to rapidly evolve prion activity. PMID:26100899

  6. Structure of the flexible amino terminal domain of prion protein bound to a sulfated glycan

    PubMed Central

    Taubner, Lara M.; Bienkiewicz, Ewa A.; Copié, Valérie; Caughey, Byron

    2010-01-01

    The intrinsically disordered amino-proximal domain of hamster prion protein (PrP) contains four copies of a highly conserved octapeptide sequence PHGGGWGQ that is flanked by two polycationic residue clusters. This N-terminal domain mediates the binding of sulfated glycans, which can profoundly influence the conversion of PrP to pathological forms and the progression of prion disease. To investigate the structural consequences of sulfated glycan binding, we performed multidimensional heteronuclear (1H, 13C, 15N) nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence studies on hamster PrP residues 23–106 (PrP 23–106) and fragments thereof when bound to pentosan polysulfate (PPS). While the majority of PrP 23–106 remains disordered upon PPS binding, the octarepeat region adopts a repeating loop-turn structure that we have determined by NMR. The ?-like turns within the repeats are corroborated by CD data, which demonstrate that these turns are also present, although less pronounced, without PPS. Binding to PPS exposes a hydrophobic surface composed of aligned tryptophan sidechains, the spacing and orientation of which are consistent with a self-association or ligand binding site. The unique tryptophan motif was probed by intrinsic tryptophan fluorescence, which displayed enhanced fluorescence of PrP 23–106 when bound to PPS, consistent with the alignment of tryptophan sidechains. Chemical shift mapping identified binding sites on PrP 23–106 for PPS, which include the octarepeat histidine and an N-terminal basic cluster previously linked to sulfated glycan binding. These data may in part explain how sulfated glycans modulate PrP conformational conversions and oligomerizations. PMID:19913031

  7. Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation.

    PubMed

    Moore, Roger A; Herzog, Christian; Errett, John; Kocisko, David A; Arnold, Kevin M; Hayes, Stanley F; Priola, Suzette A

    2006-03-01

    A central feature of transmissible spongiform encephalopathies (TSE or prion diseases) involves the conversion of a normal, protease-sensitive glycoprotein termed prion protein (PrP-sen) into a pro-tease-resistant form, termed PrP-res. The N terminus of PrP-sen has five copies of a repeating eight amino acid sequence (octapeptide repeat). The presence of one to nine extra copies of this motif is associated with a heritable form of Creutzfeld-Jakob disease (CJD) in humans. An increasing number of octapeptide repeats correlates with earlier CJD onset, suggesting that the rate at which PrP-sen misfolds into PrP-res may be influenced by these mutations. In order to determine if octapeptide repeat insertions influence the rate at which PrP-res is formed, we used a hamster PrP amyloid-forming peptide (residues 23-144) into which two to 10 extra octapeptide repeats were inserted. The spontaneous formation of protease-resistant PrP amyloid from these peptides was more rapid in response to an increased number of octapeptide repeats. Furthermore, experiments using full-length glycosylated hamster PrP-sen demonstrated that PrP-res formation also occurred more rapidly from PrP-sen molecules expressing 10 extra copies of the octapeptide repeat. The rate increase for PrP-res formation did not appear to be due to any influence of the octapeptide repeat region on PrP structure, but rather to more rapid binding between PrP molecules. Our data from both models support the hypothesis that extra octapeptide repeats in PrP increase the rate at which protease resistant PrP is formed which in turn may affect the rate of disease onset in familial forms of CJD. PMID:16452616

  8. Amyloid-? Activates Microglia and Regulates Protein Expression in a Manner Similar to Prions.

    PubMed

    Tu, Jian; Chen, Baian; Yang, Lifeng; Qi, Kezong; Lu, Jing; Zhao, Deming

    2015-06-01

    Prions are the only convincingly demonstrated proteinaceous infectious particle, yet recent studies find that amyloid-? peptide (A?) aggregates are capable of self-propagation, which induces amyloidosis pathology in Alzheimer's disease (AD) model mice that is similar to the self-propagation phenomenon of prions in neurons. Gliosis is a common hallmark of AD and prion diseases, in which activated microglia accumulate around abnormal protein deposits. Analyses of the characteristics of activated microglia induced by A? in comparison with those induced by prions will provide new insight into the pathogenesis of AD. Therefore, we compared the characteristics of BV-2 cells (model microglia) activated by A? fibrillar peptides (A?1-42) and prions (PrP106-126). A?1-42 and PrP106-126, as well as the supernatants of the media collected from BV-2 cells cocultured with A?1-42 and PrP106-126, were potent activators of BV-2 microglial activity, but the chemotaxis index (CI) induced by A?1-42 was significantly higher than that induced by PrP106-126 at each concentration. A?1-42 and PrP106-126 increased the proliferation index (PI) and upregulated monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor beta 1 (TGF-?1) expression after 12 h of exposure. Our results show that A? activates microglia and regulates microglial protein expression in a manner similar to prions and, thus, provide new insight into the pathogenesis of AD. PMID:25869610

  9. Inactivation of prion proteins via covalent grafting with methoxypoly(ethylene glycol).

    PubMed

    Scott, Mark D

    2006-01-01

    Transmissible spongiform encephalopathies (TSE) such as bovine spongiform encephalitis (BSE), Creutzfeld-Jakob disease (CJD) as well as other proteinaceous infectious particles (prions) mediated diseases have emerged as a significant concern in transfusion medicine. This concern is derived from both the disease causing potential of prion contaminated blood products but also due to tremendous impact of the active deferral of current and potential blood donors due to their extended stays in BSE prevalent countries (e.g., the United Kingdom). To date, there are no effective means by which infectious prion proteins can be inactivated in cellular and acellular blood products. Based on current work on the covalent grafting of methoxypoly(ethylene glycol) [mPEG] to proteins, viruses, and anuclear, and nucleated cells, it is hypothesized that the conversion of the normal PrP protein to its mutant conformation can be prevented by the covalent grafting of mPEG to the mutant protein. Inactivation of infective protein particles (prions) in both cellular blood products as well as cell free solutions (e.g., clotting factors) could be of medical/commercial value. It is hypothesized that consequent to the covalent modification of donor-derived prions with mPEG the requisite nucleation of the normal and mutant PrP proteins is inhibited due to the increased solubility of the modified mutant PrP and that the conformational conversion arising from the mutant PrP is prevented due to obscuration of protein charge by the heavily hydrated and neutral mPEG polymers, as well as by direct steric hindrance of the interaction due to the highly mobile polymer graft. PMID:16242248

  10. Requirements for mutant and wild-type prion protein misfolding in vitro.

    PubMed

    Noble, Geoffrey P; Walsh, Daniel J; Miller, Michael B; Jackson, Walker S; Supattapone, Surachai

    2015-02-10

    Misfolding of the prion protein (PrP) plays a central role in the pathogenesis of infectious, sporadic, and inherited prion diseases. Here we use a chemically defined prion propagation system to study misfolding of the pathogenic PrP mutant D177N in vitro. This mutation causes PrP to misfold spontaneously in the absence of cofactor molecules in a process dependent on time, temperature, pH, and intermittent sonication. Spontaneously misfolded mutant PrP is able to template its unique conformation onto wild-type PrP substrate in a process that requires a phospholipid activity distinct from that required for the propagation of infectious prions. Similar results were obtained with a second pathogenic PrP mutant, E199K, but not with the polymorphic substitution M128V. Moreover, wild-type PrP inhibits mutant PrP misfolding in a dose-dependent manner, and cofactor molecules can antagonize this effect. These studies suggest that interactions between mutant PrP, wild-type PrP, and other cellular factors may control the rate of PrP misfolding in inherited prion diseases. PMID:25584902

  11. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton.

    PubMed

    Stephan, Joseph S; Fioriti, Luana; Lamba, Nayan; Colnaghi, Luca; Karl, Kevin; Derkatch, Irina L; Kandel, Eric R

    2015-06-23

    The mouse cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a translational regulator implicated in long-term memory maintenance. Invertebrate orthologs of CPEB3 in Aplysia and Drosophila are functional prions that are physiologically active in the aggregated state. To determine if this principle applies to the mammalian CPEB3, we expressed it in yeast and found that it forms heritable aggregates that are the hallmark of known prions. In addition, we confirm in the mouse the importance of CPEB3's prion formation for CPEB3 function. Interestingly, deletion analysis of the CPEB3 prion domain uncovered a tripartite organization: two aggregation-promoting domains surround a regulatory module that affects interaction with the actin cytoskeleton. In all, our data provide direct evidence that CPEB3 is a functional prion in the mammalian brain and underline the potential importance of an actin/CPEB3 feedback loop for the synaptic plasticity underlying the persistence of long-term memory. PMID:26074072

  12. Inactivation of Template-Directed Misfolding of Infectious Prion Protein by Ozone

    PubMed Central

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Belosevic, Miodrag

    2012-01-01

    Misfolded prions (PrPSc) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrPSc). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrPSc, as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (?4 log10) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter?1 min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater. PMID:22138993

  13. Variant Creutzfeldt-Jakob Disease With Extremely Low Lymphoreticular Deposition of Prion Protein

    PubMed Central

    Mead, Simon; Wadsworth, Jonathan D. F.; Porter, Marie-Claire; Linehan, Jacqueline M.; Pietkiewicz, Wojciech; Jackson, Graham S.; Brandner, Sebastian; Collinge, John

    2014-01-01

    IMPORTANCE Human transmission of bovine spongiform encephalopathy causes the fatal neurodegenerative condition variant Creutzfeldt-Jakob disease (vCJD) and, based on recent human prevalence studies, significant subclinical prion infection of the UK population. To date, all clinical cases have been fatal, totaling 228 mostly young adults residing in the United Kingdom. OBSERVATIONS Here we describe the investigation and case history of a patient recently diagnosed as having vCJD in the United Kingdom. Although his presentation, imaging findings, cerebrospinal fluid investigation results, and clinical progression were typical of other cases, tonsillar biopsy and subsequent examination of multiple tissues at autopsy showed minimal deposition of disease-associated prion protein in peripheral lymphoreticular tissue. The result of a blood test for vCJD, the Direct Detection Assay for vCJD, was negative. CONCLUSIONS AND RELEVANCE These findings suggest that some patients with vCJD have very low peripheral prion colonization and therefore may not have detectable prion deposition in diagnostic tonsillar biopsy or markers of prion infection in blood. These results have implications for accurate interpretation of diagnostic tests and prevalence studies based on lymphoreticular tissue or blood. PMID:24445428

  14. Synaptosomal glutamate release and uptake in mice lacking the cellular prion protein

    Microsoft Academic Search

    Maria Emília Thais; Cristiane L. Carqueja; Tiago G. Santos; Ronan V. Silva; Ellen Stroeh; Ronny S. Machado; Daniela O. Wahlheim; Marino M. Bianchin; Américo C. Sakamoto; Ricardo R. Brentani; Vilma R. Martins; Roger Walz; Carla I. Tasca

    2006-01-01

    Glutamate plays a central role in the fast excitatory synaptic transmission and is a key neurotransmitter involved in several neurophysiological processes. Glutamate levels on the synaptic cleft are related to neural excitability, neuroplasticity, and neuronal damage associated with excitotoxicity. Mice lacking the cellular prion protein (PrPc) gene (Prnp) present a decreased astrocytic glutamate uptake in cultures, higher neuronal excitability in

  15. IMMUNOHISTOCHEMICAL DETECTION AND DISTRIBUTION OF PRION PROTEIN IN A GOAT WITH NATURAL SCRAPIE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formalin-fixed, paraffin-embedded tissue sections from a 3-year-old female Angora goat suffering from clinical scrapie were immunostained using a monoclonal antibody (mAb, F99/97.6.1; IgG1) specific for a conserved epitope on the prion protein. Widespread and prominent deposition of the scrapie iso...

  16. Familial mutations and the thermodynamic stability of the recombinant human prion protein.

    PubMed

    Swietnicki, W; Petersen, R B; Gambetti, P; Surewicz, W K

    1998-11-20

    Hereditary forms of human prion disease are linked to specific mutations in the PRNP gene. It has been postulated that these mutations may facilitate the pathogenic process by reducing the stability of the prion protein (PrP). To test this hypothesis, we characterized the recombinant variants of human PrP(90-231) containing point mutations corresponding to Gerstmann-Straussler-Scheinker disease (P102L), Creutzfeld-Jakob disease (E200K), and fatal familial insomnia (M129/D178N). The first two of these mutants could be recovered form from the periplasmic space of Escherichia coli in a soluble form, whereas the D178N variant aggregated into inclusion bodies. The secondary structure of the two soluble variants was essentially identical to that of the wild-type protein. The thermodynamic stability of these mutants was assessed by unfolding in guanidine hydrochloride and thermal denaturation. The stability properties of the P102L variant were indistinguishable from those of wild-type PrP, whereas the E200K mutation resulted in a very small destabilization of the protein. These data, together with the predictive analysis of other familial mutations, indicate that some hereditary forms of prion disease cannot be rationalized using the concept of mutation-induced thermodynamic destabilization of the cellular prion protein. PMID:9813003

  17. Human prion strain selection in transgenic mice

    PubMed Central

    Giles, Kurt; Glidden, David V.; Patel, Smita; Korth, Carsten; Groth, Darlene; Lemus, Azucena; DeArmond, Stephen J.; Prusiner, Stanley B.

    2010-01-01

    Transgenic (Tg) mice expressing chimeras of mouse and human prion proteins (PrP) have shorter incubation periods for Creutzfeldt-Jakob disease (CJD) prions than mice expressing full-length human PrP. Increasing the sequence similarity of the chimeric PrP to mouse PrP, by reverting human residues to mouse, resulted in a Tg line, denoted Tg22372, which was susceptible to sporadic (s) CJD prions in ~110 days 1. Reversion of one additional residue (M111V) resulted in a new Tg line, termed Tg1014, susceptible to sCJD prions in ~75 days. Tg1014 mice also has shorter incubation periods for variant (v) CJD prions, providing a more tractable model for studying this prion strain. Transmission of vCJD prions to Tg1014 mice resulted in two different strains, determined by neuropathology and biochemical analysis, which correlated with the length of the incubation time. One strain had the biochemical, neuropathological, and transmission characteristics including longer incubation times of the inoculated vCJD strain; the second strain produced a phenotype resembling that of sCJD prions including relatively shorter incubation periods. Mice with intermediate incubation periods for vCJD prions had a mixture of the two strains. Both strains were serially transmitted in Tg1014 mice, which led to further reduction in incubation periods. Conversion of vCJD-like to sCJD-like strains was favored in Tg1014 mice more than in the Tg22372 line. The single amino acid difference therefore appears to offer selective pressure for propagation of the sCJD-like strain. These two Tg mouse lines provide relatively rapid models to study human prion diseases as well as the evolution of human prion strains. PMID:20695008

  18. Loss of prion protein leads to age-dependent behavioral abnormalities and changes in cytoskeletal protein expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular prion protein (PrPC) is a multifunctional protein, whose exact physiological role remains elusive. Since previous studies indicated a neuroprotective function of PrPC, we investigated whether Prnp knockout mice(Prnp0/0)display age-dependent behavioral abnormalities. Matched sets of Prnp0/0 ...

  19. Efficient Conversion of Normal Prion Protein (PrP) by Abnormal Hamster PrP Is Determined by Homology at Amino Acid Residue 155

    Microsoft Academic Search

    SUZETTE A. PRIOLA; JOELLE CHABRY; KAMAN CHAN

    2001-01-01

    In the transmissible spongiform encephalopathies, disease is closely associated with the conversion of the normal proteinase K-sensitive host prion protein (PrP-sen) to the abnormal proteinase K-resistant form (PrP-res). Amino acid sequence homology between PrP-res and PrP-sen is important in the formation of new PrP-res and thus in the efficient transmission of infectivity across species barriers. It was previously shown that

  20. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein

    Microsoft Academic Search

    Glenn C. Telling; Michael Scott; James Mastrianni; Ruth Gabizon; Marilyn Torchia; Fred E. Cohen; Stephen J. DeArmond

    1995-01-01

    Transgenic (Tg) mice expressing human (Hu) and chimeric prion protein (PrP) genes were inoculated with brain extracts from humans with inherited or sporadic prion disease to investigate the mechanism by which PrPc is transformed into PrPSc. Although Tg(HuPrP) mice expressed high levels of HuPrPc, they were resistant to human prions. They became susceptible to human prions upon ablation of the

  1. A bipolar functionality of Q/N-rich proteins: Lsm4 amyloid causes clearance of yeast prions

    PubMed Central

    Oishi, Keita; Kurahashi, Hiroshi; Pack, Chan-Gi; Sako, Yasushi; Nakamura, Yoshikazu

    2013-01-01

    Prions are epigenetic modifiers that cause partially loss-of-function phenotypes of the proteins in Saccharomyces cerevisiae. The molecular chaperone network that supports prion propagation in the cell has seen a great progress in the last decade. However, the cellular machinery to activate or deactivate the prion states remains an enigma, largely due to insufficient knowledge of prion-regulating factors. Here, we report that overexpression of a [PSI+]-inducible Q/N-rich protein, Lsm4, eliminates the three major prions [PSI+], [URE3], and [RNQ+]. Subcloning analysis revealed that the Q/N-rich region of Lsm4 is responsible for the prion loss. Lsm4 formed an amyloid in vivo, which seemed to play a crucial role in the prion elimination. Fluorescence correlation spectroscopy analysis revealed that in the course of the Lsm4-driven [PSI+] elimination, the [PSI+] aggregates undergo a size increase, which ultimately results in the formation of conspicuous foci in otherwise [psi?]-like mother cells. We also found that the antiprion activity is a general property of [PSI+]-inducible factors. These data provoked a novel “unified” model that explains both prion induction and elimination by a single scheme. PMID:23512891

  2. The role of glycophosphatidylinositol anchor in the amplification of the scrapie isoform of prion protein in vitro

    Microsoft Academic Search

    Jae-Il Kim; Krystyna Surewicz; Pierluigi Gambetti; Witold K. Surewicz

    2009-01-01

    Transmissible spongiform encephalopathies are associated with an autocatalytic conversion of normal prion protein, PrPC, to a protease-resistant form, PrPres. This autocatalytic reaction can be reproduced in vitro using a procedure called protein misfolding cyclic amplification (PMCA). Here we show that, unlike brain-derived PrPC, bacterially-expressed recombinant prion protein (rPrP) is a poor substrate for PrPres amplification in a standard PMCA reaction.

  3. Development of techniques in magnetic resonance and structural studies of the prion protein

    SciTech Connect

    Bitter, Hans-Marcus L.

    2000-07-01

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging at ultra-low fields is realized by incorporating the high sensitivities of a dc superconducting quantum interference device (SQUID) with the high polarizations attainable through optica11y pumping {sup 129}Xe gas.

  4. Role of Lipid Rafts and GM1 in the Segregation and Processing of Prion Protein

    PubMed Central

    Botto, Laura; Cunati, Diana; Coco, Silvia; Sesana, Silvia; Bulbarelli, Alessandra; Biasini, Emiliano; Colombo, Laura; Negro, Alessandro; Chiesa, Roberto; Masserini, Massimo; Palestini, Paola

    2014-01-01

    The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (?-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology. PMID:24859148

  5. N-terminal Domain of Prion Protein Directs Its Oligomeric Association*

    PubMed Central

    Trevitt, Clare R.; Hosszu, Laszlo L. P.; Batchelor, Mark; Panico, Silvia; Terry, Cassandra; Nicoll, Andrew J.; Risse, Emmanuel; Taylor, William A.; Sandberg, Malin K.; Al-Doujaily, Huda; Linehan, Jacqueline M.; Saibil, Helen R.; Scott, David J.; Collinge, John; Waltho, Jonathan P.; Clarke, Anthony R.

    2014-01-01

    The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar ?-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined ?-sheet-rich oligomer, containing ?12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP. The N-terminal region of prion protein (residues 23–90) is required for the formation of this distinct oligomer; a truncated form comprising residues 91–231 forms a broad distribution of aggregated species. No infectivity or toxicity was found using cell and animal model systems. This study demonstrates that examination of the full repertoire of conformers and assembly states that can be accessed by PrP under specific experimental conditions should ideally be done using the full-length protein. PMID:25074940

  6. N-terminal domain of prion protein directs its oligomeric association.

    PubMed

    Trevitt, Clare R; Hosszu, Laszlo L P; Batchelor, Mark; Panico, Silvia; Terry, Cassandra; Nicoll, Andrew J; Risse, Emmanuel; Taylor, William A; Sandberg, Malin K; Al-Doujaily, Huda; Linehan, Jacqueline M; Saibil, Helen R; Scott, David J; Collinge, John; Waltho, Jonathan P; Clarke, Anthony R

    2014-09-12

    The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar ?-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined ?-sheet-rich oligomer, containing ?12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP. The N-terminal region of prion protein (residues 23-90) is required for the formation of this distinct oligomer; a truncated form comprising residues 91-231 forms a broad distribution of aggregated species. No infectivity or toxicity was found using cell and animal model systems. This study demonstrates that examination of the full repertoire of conformers and assembly states that can be accessed by PrP under specific experimental conditions should ideally be done using the full-length protein. PMID:25074940

  7. Translation of the Prion Protein mRNA Is Robust in Astrocytes but Does Not Amplify during Reactive Astrocytosis in the Mouse Brain

    PubMed Central

    Jackson, Walker S.; Krost, Clemens; Borkowski, Andrew W.; Kaczmarczyk, Lech

    2014-01-01

    Prion diseases induce neurodegeneration in specific brain areas for undetermined reasons. A thorough understanding of the localization of the disease-causing molecule, the prion protein (PrP), could inform on this issue but previous studies have generated conflicting conclusions. One of the more intriguing disagreements is whether PrP is synthesized by astrocytes. We developed a knock-in reporter mouse line in which the coding sequence of the PrP expressing gene (Prnp), was replaced with that for green fluorescent protein (GFP). Native GFP fluorescence intensity varied between and within brain regions. GFP was present in astrocytes but did not increase during reactive gliosis induced by scrapie prion infection. Therefore, reactive gliosis associated with prion diseases does not cause an acceleration of local PrP production. In addition to aiding in Prnp gene activity studies, this reporter mouse line will likely prove useful for analysis of chimeric animals produced by stem cell and tissue transplantation experiments. PMID:24752288

  8. The role of glycophosphatidylinositol anchor in the amplification of the scrapie isoform of prion protein in vitro.

    PubMed

    Kim, Jae-Il; Surewicz, Krystyna; Gambetti, Pierluigi; Surewicz, Witold K

    2009-11-19

    Transmissible spongiform encephalopathies are associated with an autocatalytic conversion of normal prion protein, PrP(C), to a protease-resistant form, PrPres. This autocatalytic reaction can be reproduced in vitro using a procedure called protein misfolding cyclic amplification (PMCA). Here we show that, unlike brain-derived PrP(C), bacterially-expressed recombinant prion protein (rPrP) is a poor substrate for PrPres amplification in a standard PMCA reaction. The differences between PrP(C) and rPrP appear to be due to the lack of the glycophosphatidylinositol anchor in the recombinant protein. These findings shed a new light on prion protein conversion process and have important implications for the efforts to generate synthetic prions for structural and biophysical studies. PMID:19854187

  9. Linkage of prion protein and scrapie incubation time genes

    Microsoft Academic Search

    G A Carlson; D T Kingsbury; P A Goodman; S Coleman; S T Marshall; S DeArmond; D Westaway; S B Prusiner

    1986-01-01

    A single gene (Prn-i) that affects scrapie incubation period in mice has been identified. I\\/LnJ mice have a very long incubation period after inoculation of scrapie prions (200-385 days) and NZW\\/LacJ mice have a short one (113 +\\/- 2.8 days). (NZW X I\\/Ln)F1 hybrid mice had incubation times of 223 +\\/- 2.8 days indicating longer incubation times were dominant. Incubation

  10. Lack of Prion Accumulation in Lymphoid Tissues of Scrapie-affected Sheep with the AA136, QR171 Prion Protein Genotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Sheep scrapie is a transmissible spongiform encephalopathy which can be transmitted horizontally through the shedding of an infectious conformer (PrP**Sc) of the normal cellular prion protein (PrP**c). Genetics profoundly influence the susceptibility of sheep to scrapie. PrP**c amino-aci...

  11. Molecular Dynamics Studies on the Structural Stability of Wild-Type Rabbit Prion Protein: Surface Electrostatic Charge Distributions

    E-print Network

    Zhang, Jiapu

    2011-01-01

    Prion diseases cover a large range of neurodegenerative diseases in humans and animals, which are invariably fatal and highly infectious. By now there have not been some effective therapeutic approaches or medications to treat all prion diseases. Fortunately, numerous experimental experiences have showed that rabbits are resistant to infection from prion diseases isolated from other species, and recently the molecular structures of rabbit prion protein and its mutants were released into protein data bank. Prion diseases are "protein structural conformational" diseases. Thus, in order to reveal some secrets of prion diseases, it is amenable to study rabbits by techniques of the molecular structure and its dynamics. Wen et al. (PLoS One 5(10) e13273 (2010), Journal of Biological Chemistry 285(41) 31682-31693 (2010)) reported the surface of NMR RaPrPC(124-228) molecular snapshot has a large land of continuous positive charge distribution, which contributes to the structural stability of rabbit prion protein. Thi...

  12. Implications of prion polymorphisms

    PubMed Central

    Cortez, Leonardo M; Sim, Valerie L

    2013-01-01

    The sequence of a host’s prion protein (PrP) can affect that host’s susceptibility to prion disease and is the primary basis for the species barrier to transmission. Yet within many species, polymorphisms of the prion protein gene (Prnp) exist, each of which can further affect susceptibility or influence incubation period, pathology and phenotype. As strains are defined by these features (incubation period, pathology, phenotype), polymorphisms may also lead to the preferential propagation or generation of certain strains. In our recent study of the mouse Prnpa and Prnpb polymorphisms (which produced the proteins PrPa and PrPb, respectively), we found differences in aggregation tendency, strain adaptability and conformational variability. Comparing our in vitro data with that of in vivo studies, we found that differing incubation periods between Prnpa and Prnpb mice can primarily be explained on the basis of faster or more efficient aggregation of PrPa. In addition, and more importantly, we found that the faithful propagation of strains in Prnpb mice can be explained by the ability of PrPb to adopt a wider range of conformations. This adaptability allows PrPb to successfully propagate the structural features of a seed. In contrast, Prnpa mice revert PrPb strains into PrPa -type strains, and overall they have a narrower distribution of incubation periods. This can be explained by PrPa having fewer preferred conformations. We propose that Prnp polymorphisms are one route by which certain prion strains may preferentially propagate. This has significant implications for prion disease, chronic wasting disease (CWD) in particular, as it is spreading through North America. Deer which are susceptible to CWD also carry polymorphisms which influence their susceptibility. If these polymorphisms also preferentially allow strain diversification and propagation, this may accelerate the crossing of species barriers and propagation of the disease up the food chain. PMID:23807178

  13. Games Played by Rogue Proteins in Prion Disorders and Alzheimer's Disease

    Microsoft Academic Search

    Adriano Aguzzi; Christian Haass

    2003-01-01

    The incidence of Alzheimer's disease (AD) and that of prion disorders (PrD) could not be more different. One-third of octogenarians succumb to AD, whereas Creutzfeldt-Jakob disease typically affects one individual in a million each year. However, these diseases have many common features impinging on the metabolism of neuronal membrane proteins: the amyloid precursor protein APP in the case of AD,

  14. Distinct prion proteins in short and long scrapie incubation period mice

    Microsoft Academic Search

    D Westaway; P A Goodman; C A Mirenda; M P McKinley; G A Carlson; S B Prusiner

    1987-01-01

    The Prn-i gene, controlling scrapie incubation period, is linked to or congruent with the murine prion protein (PrP) gene, Prn-p. In prototypic mouse strains with long (l\\/Ln) and short (NZW) incubation periods, Prn-p transcription is initiated at similar multiple sites. The predicted NZW and l\\/Ln PrP proteins differ at codons 108 and 189. Codon 189, highly conserved in mammals, lies

  15. Zinc significantly changes the aggregation pathway and the conformation of aggregates of human prion protein.

    PubMed

    Pan, Kai; Yi, Chuan-Wei; Chen, Jie; Liang, Yi

    2015-08-01

    Prion diseases are caused by the conformational change of cellular prion protein PrP(C) into pathological prion protein PrP(Sc). Here we study the effect of zinc on the aggregation and conformational change of human prion protein (PrP). As revealed by thioflavin T binding assays, Sarkosyl-soluble SDS-PAGE, and transmission electron microscopy, aggregation of wild-type PrP in the absence of Zn(2+) undergoes four steps: amorphous aggregates, profibrils, mature fibrils, and fragmented fibrils. When the molar ratio of Zn(2+) to PrP was 9:1, however, aggregation of wild-type PrP undergoes another pathway in which wild-type PrP forms oligomers quickly and then forms short-rod aggregates. Unlike wild-type PrP, the octarepeats deletion mutant PrP?octa forms typical mature fibrils either with or without zinc. As evidenced by isothermal titration calorimetry, Fourier transform infrared spectroscopy, and proteinase K digestion assays, Zn(2+) strongly binds to wild-type PrP monomers with the first binding constant exceeding 10(7)M(-1) under denaturing conditions, and changes the conformation of wild-type PrP aggregates remarkably, but weakly binds to PrP?octa with binding affinity around 10(4)M(-1) and has no obvious effects on the conformation of PrP?octa aggregates. Our data demonstrate that zinc significantly changes the aggregation pathway and the conformation of wild-type PrP aggregates mainly via interaction with its octarepeat region. Our findings could explain how zinc modifies pathological PrP conformation associated with prion diseases. PMID:25922234

  16. In vitro prion protein conversion suggests risk of bighorn sheep (Ovis canadensis) to transmissible spongiform encephalopathies

    USGS Publications Warehouse

    Johnson, Christopher J.; Morawski, A.R.; Carlson, C.M.; Chang, H.

    2013-01-01

    Background: Transmissible spongiform encephalopathies (TSEs) affect both domestic sheep (scrapie) and captive and free-ranging cervids (chronic wasting disease; CWD). The geographical range of bighorn sheep (Ovis canadensis; BHS) overlaps with states or provinces that have contained scrapie-positive sheep or goats and areas with present epizootics of CWD in cervids. No TSEs have been documented in BHS, but the susceptibility of this species to TSEs remains unknown. Results: We acquired a library of BHS tissues and found no evidence of preexisting TSEs in these animals. The prion protein gene (Prnp) in all BHS in our library was identical to scrapie-susceptible domestic sheep (A136R 154Q171). Using an in vitro prion protein conversion assay, which has been previously used to assess TSE species barriers and, in our study appears to recollect known species barriers in mice, we assessed the potential transmissibility of TSEs to BHS. As expected based upon Prnp genotype, we observed BHS prion protein conversion by classical scrapie agent and evidence for a species barrier between transmissible mink encephalopathy (TME) and BHS. Interestingly, our data suggest that the species barrier of BHS to white-tailed deer or wapiti CWD agents is likely low. We also used protein misfolding cyclic amplification to confirm that CWD, but not TME, can template prion protein misfolding in A136R 154Q171genotype sheep. Conclusions: Our results indicate the in vitro conversion assay used in our study does mimic the species barrier of mice to the TSE agents that we tested. Based on Prnp genotype and results from conversion assays, BHS are likely to be susceptible to infection by classical scrapie. Despite mismatches in amino acids thought to modulate prion protein conversion, our data indicate that A136R154Q171 genotype sheep prion protein is misfolded by CWD agent, suggesting that these animals could be susceptible to CWD. Further investigation of TSE transmissibility to BHS, including animal studies, is warranted. The lack of reported TSEs in BHS may be attributable to other host factors or a lack of TSE surveillance in this species.

  17. Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro.

    PubMed

    Tagliavini, F; Prelli, F; Verga, L; Giaccone, G; Sarma, R; Gorevic, P; Ghetti, B; Passerini, F; Ghibaudi, E; Forloni, G

    1993-10-15

    Gerstmann-Sträussler-Scheinker disease (GSS) is a prion-related encephalopathy pathologically characterized by massive deposition of prion protein (PrP) amyloid in the central nervous system. The major component of amyloid fibrils isolated from patients of the Indiana kindred of GSS (GSS-Ik) is an 11-kDa fragment of PrP spanning residues 58 to approximately 150. These patients carry a missense mutation of the PRNP gene, causing a Phe-->Ser substitution at codon 198. We investigated fibrillogenesis in vitro by using synthetic peptides homologous to consecutive segments of GSS-Ik amyloid protein (residues 57-64, 89-106, 106-126, and 127-147) as well as peptides from the PrP region with the GSS-Ik mutation (residues 191-205 and 181-205, both wild type and mutant). Peptide PrP-(106-126) formed straight fibrils similar to those extracted from GSS brains, whereas peptide PrP-(127-147) formed twisted fibrils resembling scrapie-associated fibrils isolated from subjects with transmissible spongiform encephalopathies. Congo red staining and x-ray fibril diffraction showed that both straight and twisted fibrils had tinctorial and conformational properties of native amyloid. Conversely, the other peptides did not form amyloid-like fibrils under similar conditions. These findings suggest that the sequence spanning residues 106-147 of PrP is central to amyloid fibril formation in GSS and related encephalopathies. PMID:8105481

  18. A survey and a molecular dynamics study on the (central) hydrophobic region of prion proteins

    E-print Network

    Zhang, Jiapu

    2014-01-01

    Prion diseases are invariably fatal neurodegenerative diseases that affect humans and animals. Unlike most other amyloid forming neurodegenerative diseases, these can be highly infectious. Prion diseases occur in a variety of species. They include the fatal human neurodegenerative diseases Creutzfeldt-Jakob Disease (CJD), Fatal Familial Insomnia (FFI), Gerstmann-Straussler-Scheinker syndrome (GSS), Kuru, the bovine spongiform encephalopathy (BSE or 'mad-cow' disease) in cattle, the chronic wasting disease (CWD) in deer and elk, and scrapie in sheep and goats, etc. Transmission across the species barrier to humans, especially in the case of BSE in Europe, CWD in North America, and variant CJDs (vCJDs) in young people of UK, is a major public health concern. Fortunately, scientists reported that the (central) hydrophobic region of prion proteins (PrP) controls the formation of diseased prions. This article gives a detailed survey on PrP hydrophobic region and does molecular dynamics studies of human PrP(110-136...

  19. Efficient Uptake and Dissemination of Scrapie Prion Protein by Astrocytes and Fibroblasts from Adult Hamster Brain

    PubMed Central

    Hollister, Jason R.; Lee, Kil Sun; Dorward, David W.; Baron, Gerald S.

    2015-01-01

    Prion infections target neurons and lead to neuronal loss. However, the role of non-neuronal cells in the initiation and spread of infection throughout the brain remains unclear despite the fact these cells can also propagate prion infectivity. To evaluate how different brain cells process scrapie prion protein (PrPres) during acute infection, we exposed neuron-enriched and non-neuronal cell cultures from adult hamster brain to fluorescently-labeled purified PrPres and followed the cultures by live cell confocal imaging over time. Non-neuronal cells present in both types of cultures, specifically astrocytes and fibroblasts, internalized PrPres more efficiently than neurons. PrPres was trafficked to late endosomal/lysosomal compartments and rapidly transported throughout the cell bodies and processes of all cell types, including contacts between astrocytes and neurons. These observations suggest that astrocytes and meningeal fibroblasts play an as yet unappreciated role in prion infections via efficient uptake and dissemination of PrPres. PMID:25635871

  20. Conformational Stability of Mammalian Prion Protein Amyloid Fibrils Is Dictated by a Packing Polymorphism within the Core Region*

    PubMed Central

    Cobb, Nathan J.; Apostol, Marcin I.; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K.

    2014-01-01

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrPSc. One key operational parameter used to define differences between strains has been conformational stability of PrPSc as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in ?-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrPSc, especially because large strain-specific differences in PrPSc stability are often observed despite a similar size of the PrPSc core region. PMID:24338015

  1. A rapid sequence-based method for comprehensive polymorphism identification within a 25.2-kb region of the bovine prion gene in BSE-affected cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine spongiform encephalopathy (BSE) is a fatal neurological disorder characterized by abnormal deposits of a protease-resistant isoform of the prion protein. Typical and atypical BSEs have been identified in cattle and the relationships of prion gene (PRNP) variation with susceptibility to these...

  2. Prion formation by a yeast GLFG nucleoporin

    PubMed Central

    Halfmann, Randal; Wright, Jessica R.; Alberti, Simon; Lindquist, Susan; Rexach, Michael

    2012-01-01

    The self-assembly of proteins into higher order structures is both central to normal biology and a dominant force in disease. Certain glutamine/asparagine (Q/N)-rich proteins in the budding yeast Saccharomyces cerevisiae assemble into self-replicating amyloid-like protein polymers, or prions, that act as genetic elements in an entirely protein-based system of inheritance. The nuclear pore complex (NPC) contains multiple Q/N-rich proteins whose self-assembly has also been proposed to underlie structural and functional properties of the NPC. Here we show that an essential sequence feature of these proteins—repeating GLFG motifs—strongly promotes their self-assembly into amyloids with characteristics of prions. Furthermore, we demonstrate that Nup100 can form bona fide prions, thus establishing a previously undiscovered ability of yeast GLFG nucleoporins to adopt this conformational state in vivo. PMID:22561191

  3. Inactivation of template-directed misfolding of infectious prion protein by ozone.

    PubMed

    Ding, Ning; Neumann, Norman F; Price, Luke M; Braithwaite, Shannon L; Balachandran, Aru; Belosevic, Miodrag; El-Din, Mohamed Gamal

    2012-02-01

    Misfolded prions (PrP(Sc)) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrP(Sc)). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrP(Sc), as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (?4 log(10)) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter(-1) min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater. PMID:22138993

  4. Prion induction involves an ancient system for the sequestration of aggregated proteins and heritable changes in prion fragmentation

    E-print Network

    Tyedmers, Jens

    When the translation termination factor Sup35 adopts the prion state, [PSI+], the read-through of stop codons increases, uncovering hidden genetic variation and giving rise to new, often beneficial, phenotypes. Evidence ...

  5. Genetic variability of the coding region for the prion protein gene ( PRNP ) in gayal ( Bos frontalis )

    Microsoft Academic Search

    Dongmei XiQing; Qing Liu; Jianhong Guo; Hongman Yu; Yuai Yang; Yiduo He; Huaming Mao; Xiao Gou; Weidong Deng

    The gayal (Bos frontalis) is a rare semi-wild bovid species in which bovine spongiform encephalopathy (BSE) has not been reported. Polymorphisms of\\u000a the prion protein gene (PRNP) have been correlated significantly with resistance to BSE. In this study, the coding region of PRNP was cloned and characterized in samples from 125 gayal. A total of ten single nucleotide polymorphisms (SNPs),

  6. Relationships between ultrastructural scrapie pathology and patterns of abnormal prion protein accumulation

    Microsoft Academic Search

    Cecilie Ersdal; Marion M. Simmons; Lorenzo González; Caroline M. Goodsir; Stuart Martin; Martin Jeffrey

    2004-01-01

    On immunohistochemical examination several morphological types of disease-specific prion protein (PrP d) accumulation are recognised in the brain of sheep suffering from scrapie. The present study examined the relationship between the type of PrP d deposits seen by light microscopy and ultrastructural changes in the olivary nuclei and the dorsal motor nucleus of the vagus (DMNV) in naturally infected sheep

  7. Pronounced cytosolic aggregation of cellular prion protein in pancreatic ?-cells in response to hyperglycemia

    Microsoft Academic Search

    Alexander Strom; Gen-Sheng Wang; Rudolph Reimer; Diane T Finegood; Fraser W Scott

    2007-01-01

    Cellular prion protein (PrPC), an N-linked glycoprotein, is expressed in a variety of tissues, but its functions remain unclear. PrPC is abundantly expressed in the endocrine pancreas, which regulates blood glucose homeostasis. Therefore, we investigated whether the expression of PrPC was altered in islets of Langerhans in a model of spontaneous type 1 diabetes, the diabetes-prone BioBreeding (BBdp) rat and

  8. Involvement of cellular prion protein in the nociceptive response in mice

    Microsoft Academic Search

    Flavia Carla Meotti; Cristiane Lima Carqueja; Vinícius de Maria Gadotti; Carla I. Tasca; Roger Walz; Adair R. S. Santos

    2007-01-01

    The role of the cellular prion protein (PrPc) in neuronal functioning includes neuronal excitability, cellular adhesion, neurite outgrowth and maintenance. Here we investigated the putative involvement of the PrPc function on the nociceptive response using PrPc null (Prnp0\\/0) and wild-type (Prnp+\\/+) mice submitted to thermal and chemical models of nociception. PrPc null mice were more resistant than wild-type mice to

  9. Normal brain mitochondrial respiration in adult mice lacking cellular prion protein

    Microsoft Academic Search

    Bruno Lobão-Soares; Marino Muxfeldt Bianchin; Marcelo Neves Linhares; Cristiane Lima Carqueja; Carla Inês Tasca; Márcia Souza; Wilson Marques; Ricardo Brentani; Vilma R. Martins; Américo C. Sakamoto; Carlos Gilberto Carlotti; Roger Walz

    2005-01-01

    Cellular prion protein (PrPc) gene (Prnp) null mice (Prnp0\\/0) show higher sensitivity to seizures, enhanced brain oxidative stress, and their neurons exhibit higher excitability “in vitro”. Mitochondrial respiration is a useful parameter for the determination of cellular metabolic rate and it is a major source of reactive oxygen species (ROS). In the present study, we investigated the mitochondrial function of

  10. The N-Terminal, Polybasic Region Is Critical for Prion Protein Neuroprotective Activity

    Microsoft Academic Search

    Jessie A. Turnbaugh; Laura Westergard; Ursula Unterberger; Emiliano Biasini; David A. Harris; Andrew Francis Hill

    2011-01-01

    Several lines of evidence suggest that the normal form of the prion protein, PrPC, exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrPC to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (?32–134, called F35). To define domains of PrP

  11. Subcellular Colocalization of the Cellular and Scrapie Prion Proteins in Caveolae-Like Membranous Domains

    Microsoft Academic Search

    Martin Vey; Susanne Pilkuhn; Holger Wille; Randal Nixon; Stephen J. Dearmond; Eric J. Smart; Richard G. W. Anderson; Albert Taraboulos

    1996-01-01

    Results of transgenetic studies argue that the scrapie isoform of the prion protein (PrPSc) interacts with the substrate cellular PrP (PrPC) during conversion into nascent PrPSc. While PrPSc appears to accumulate primarily in lysosomes, caveolae-like domains (CLDs) have been suggested to be the site where PrPC is converted into PrPSc. We report herein that CLDs isolated from scrapie-infected neuroblastoma (ScN2a)

  12. Thermodynamic Characterization of the Unfolding of the Prion Protein Roumita Moulick and Jayant B. Udgaonkar*

    E-print Network

    of the mouse prion protein (moPrP), the full-length moPrP (23­231) and the structured C-terminal domain, mo conformation. Three-dimensional NMR-derived structures of the re- combinant mouse (8), human (9), and Syrian-terminal domain (NTD), and a structured C-terminal domain (CTD) comprised of three a-helices and two short b

  13. Interactions between the Conserved Hydrophobic Region of the Prion Protein and Dodecylphosphocholine Micelles*

    PubMed Central

    Sauvé, Simon; Buijs, Daniel; Gingras, Geneviève; Aubin, Yves

    2012-01-01

    The three-dimensional structure of PrP110–136, a peptide encompassing the conserved hydrophobic region of the human prion protein, has been determined at high resolution in dodecylphosphocholine micelles by NMR. The results support the conclusion that the CtmPrP, a transmembrane form of the prion protein, adopts a different conformation than the reported structures of the normal prion protein determined in solution. Paramagnetic relaxation enhancement studies with gadolinium-diethylenetriaminepentaacetic acid indicated that the conserved hydrophobic region peptide is not inserted symmetrically in the micelle, thus suggesting the presence of a guanidium-phosphate ion pair involving the side chain of the terminal arginine and the detergent headgroup. Titration of dodecylphosphocholine into a solution of PrP110–136 revealed the presence of a surface-bound species. In addition, paramagnetic probes located the surface-bound peptide somewhere below the micelle-water interface when using the inserted helix as a positional reference. This localization of the unknown population would allow a similar ion pair interaction. PMID:22128151

  14. Seeking for binding determinants of the prion protein to human plasminogen

    NASA Astrophysics Data System (ADS)

    Menziani, M. C.; de Benedetti, P. G.; Langella, E.; Barone, V.

    Plasminogen (Pg), a pro-protease implicated in neuronal excitotoxicity, has recently been identified as binding to prion protein (PrP) from several species. Although the precise effect of the binding of PrP to plasminogen in the course of prion-caused diseases has not yet been demonstrated, the implications of this important finding for diagnostic applications are straightforward. In this paper we have investigated the possible modes of interaction of PrP with plasminogen, by means of molecular modelling and computational simulation techniques. To this goal, we first exploited the information available for the mK2Pg/VEK-30 complex in order to identify the PrP residues which satisfy the specific electronic and geometric requirements needed to interact with the kringle lysine binding site, we compared the relevant mK2Pg/VEK-30 and mK2Pg/PrP interactions obtained from the simulated protein-protein complexes and we assessed the docking hypothesis utilized for the mK2Pg/PrP complex by simulating the interaction of PrP with the multi-kringle angiostatin, a more realistic model of the physiological target. The results obtained will be instrumental for planning experiments tailored to clarify the role of the plasminogen activator system in prion-related diseases and, eventually, for mimicking dominant binding determinants through structure-based drug design.

  15. A New Paradigm for Enzymatic Control of ?-Cleavage and ?-Cleavage of the Prion Protein*

    PubMed Central

    McDonald, Alex J.; Dibble, Jessie P.; Evans, Eric G. B.; Millhauser, Glenn L.

    2014-01-01

    The cellular form of the prion protein (PrPC) is found in both full-length and several different cleaved forms in vivo. Although the precise functions of the PrPC proteolytic products are not known, cleavage between the unstructured N-terminal domain and the structured C-terminal domain at Lys-109?His-110 (mouse sequence), termed ?-cleavage, has been shown to produce the anti-apoptotic N1 and the scrapie-resistant C1 peptide fragments. ?-Cleavage, residing adjacent to the octarepeat domain and N-terminal to the ?-cleavage site, is thought to arise from the action of reactive oxygen species produced from redox cycling of coordinated copper. We sought to elucidate the role of key members of the ADAM (a disintegrin and metalloproteinase) enzyme family, as well as Cu2+ redox cycling, in recombinant mouse PrP (MoPrP) cleavage through LC/MS analysis. Our findings show that although Cu2+ redox-generated reactive oxygen species do produce fragmentation corresponding to ?-cleavage, ADAM8 also cleaves MoPrP in the octarepeat domain in a Cu2+- and Zn2+-dependent manner. Additional cleavage by ADAM8 was observed at the previously proposed location of ?-cleavage, Lys-109?His-110 (MoPrP sequencing); however, upon addition of Cu2+, the location of ?-cleavage shifted by several amino acids toward the C terminus. ADAM10 and ADAM17 have also been implicated in ?-cleavage at Lys-109?His-110; however, we observed that they instead cleaved MoPrP at a novel location, Ala-119?Val-120, with additional cleavage by ADAM10 at Gly-227?Arg-228 near the C terminus. Together, our results show that MoPrP cleavage is far more complex than previously thought and suggest a mechanism by which PrPC fragmentation responds to Cu2+ and Zn2+. PMID:24247244

  16. Intracellular accumulation of a 46 kDa species of mouse prion protein as a result of loss of glycosylation in cultured mammalian cells

    Microsoft Academic Search

    Subhabrata Biswas; Jan P. M. Langeveld; Donald Tipper; Shan Lu

    2006-01-01

    Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of an abnormal isoform (PrPSc) of the normal cellular prion protein (PrPC) in the brain. Reportedly, abnormal N-linked glycosylation patterns in PrPC are associated with disease susceptibility; thus, we compared the glycosylation status of normal and several mutant forms of the murine prion protein (MuPrP) in cultured mammalian cells. Substitution

  17. Integrity of helix 2-helix 3 domain of the PrP protein is not mandatory for prion replication.

    PubMed

    Salamat, Khalid; Moudjou, Mohammed; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Béringue, Vincent; Rezaei, Human; Pastore, Annalisa; Laude, Hubert; Dron, Michel

    2012-06-01

    The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrP(Sc). We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrP(Sc) and elucidate the conformational changes underlying prions generation. PMID:22511770

  18. Integrity of Helix 2-Helix 3 Domain of the PrP Protein Is Not Mandatory for Prion Replication*

    PubMed Central

    Salamat, Khalid; Moudjou, Mohammed; Chapuis, Jérôme; Herzog, Laetitia; Jaumain, Emilie; Béringue, Vincent; Rezaei, Human; Pastore, Annalisa; Laude, Hubert; Dron, Michel

    2012-01-01

    The process of prion conversion is not yet well understood at the molecular level. The regions critical for the conformational change of PrP remain mostly debated and the extent of sequence change acceptable for prion conversion is poorly documented. To achieve progress on these issues, we applied a reverse genetic approach using the Rov cell system. This allowed us to test the susceptibility of a number of insertion mutants to conversion into prion in the absence of wild-type PrP molecules. We were able to propagate several prions with 8 to 16 extra amino acids, including a polyglycine stretch and His or FLAG tags, inserted in the middle of the protease-resistant fragment. These results demonstrate the possibility to increase the length of the loop between helices H2 and H3 up to 4-fold, without preventing prion replication. They also indicate that this loop probably remains unstructured in PrPSc. We also showed that bona fide prions can be produced following insertion of octapeptides in the two C-terminal turns of H2. These insertions do not interfere with the overall fold of the H2-H3 domain indicating that the highly conserved sequence of the terminal part of H2 is not critical for the conversion. Altogether these data showed that the amplitude of modifications acceptable for prion conversion in the core of the globular domain of PrP is much greater than one might have assumed. These observations should help to refine structural models of PrPSc and elucidate the conformational changes underlying prions generation. PMID:22511770

  19. Ultrastructural studies on scrapie prion protein crystals obtained from reverse micellar solutions.

    PubMed Central

    Wille, H; Prusiner, S B

    1999-01-01

    The structural transition from the cellular prion protein (PrPC) that is rich in alpha-helices to the pathological form (PrPSc) that has a high beta-sheet content seems to be the fundamental event underlying the prion diseases. Determination of the structure of PrPSc and the N-terminally truncated PrP 27-30 has been complicated by their insolubility. Here we report the solubilization of PrP 27-30 through a system of reverse micelles that yields monomeric and dimeric PrP. Although solubilization of PrP 27-30 was not accompanied by any recognizable change in secondary structure as measured by FTIR spectroscopy, it did result in a loss of prion infectivity. The formation of small two- and three-dimensional crystals upon exposure to uranyl salts argues that soluble PrP 27-30 possesses considerable tertiary structure. The crystals of PrP 27-30 grown from reverse micellar solutions suggest a novel crystallization mechanism that might be applicable for other membrane proteins. A variety of different crystal lattices diffracted up to 1.85 nm by electron microscopy. Despite the lack of measurable biological activity, the structure of PrP 27-30 in these crystals may provide insight into the structural transition that occurs during PrPSc formation. PMID:9916037

  20. Transcriptomic Analysis Brings New Insight into the Biological Role of the Prion Protein during Mouse Embryogenesis

    PubMed Central

    Khalifé, Manal; Young, Rachel; Passet, Bruno; Halliez, Sophie; Vilotte, Marthe; Jaffrezic, Florence; Marthey, Sylvain; Béringue, Vincent; Vaiman, Daniel; Le Provost, Fabienne; Laude, Hubert; Vilotte, Jean-Luc

    2011-01-01

    The biological function of the Prion protein remains largely unknown but recent data revealed its implication in early zebrafish and mammalian embryogenesis. To gain further insight into its biological function, comparative transcriptomic analysis between FVB/N and FVB/N Prnp knockout mice was performed at early embryonic stages. RNAseq analysis revealed the differential expression of 73 and 263 genes at E6.5 and E7.5, respectively. The related metabolic pathways identified in this analysis partially overlap with those described in PrP1 and PrP2 knockdown zebrafish embryos and prion-infected mammalian brains and emphasize a potentially important role for the PrP family genes in early developmental processes. PMID:21858045

  1. Repeats are one of the main characteristics of RNA-binding proteins with prion-like domains.

    PubMed

    Galzitskaya, Oxana V

    2015-07-14

    It is not surprising that a large number of diseases related to amyloid fibril depositions are formed in various organs. Therefore, it is necessary to understand the transformation of native proteins into amyloid fibrils in order to clarify which key elements of this process determine the pathway of protein misfolding. Significant attention has been directed recently to investigating the mechanism of formation of cross-? structures that have the properties of liquids but can also exist in gel-like forms, thus facilitating the retention of both RNAs and RNA-binding proteins. Proteins that form stress granules are believed to do this rapidly, and they are expected to contain a prion-like domain that can facilitate this process. By analyzing the known yeast prion proteins and 29 RNA-binding proteins with prion-like domains, we demonstrate here that the existence of repeats is one of the general characteristics of prion-like domains. The presence of repeats should help to determine the border of prion domains as in the case of Rnq1: five found repeats shift the border of the prion domain from the 153-rd to at least the 133-th residue. One can suggest that such repeats assist in the rapid initiation of the process of assembly and formation of cross-? structures and such domains most likely should be disordered. These repeats should contain aromatic amino acid residues for the formation of a hydrogel because its amino acid context modulates the strength of interaction. The key factors determined here can be used to control the process of aggregation to prevent the development of pathologies and diseases caused by prion-like domains. PMID:26022110

  2. Motomasa Tanaka Recent progress in prion biology

    E-print Network

    Fukai, Tomoki

    Motomasa Tanaka RIKEN BSI Recent progress in prion biology Abstract Proteins often misfold is the prion strain phenomenon, in which prion particles apparently composed of the same protein lead to phenotypically distinct heritable states. In this lecture, I will review recent progress in prion biology

  3. Doped diamond-like carbon coatings for surgical instruments reduce protein and prion-amyloid biofouling and improve subsequent cleaning.

    PubMed

    Secker, T J; Hervé, R; Zhao, Q; Borisenko, K B; Abel, E W; Keevil, C W

    2012-01-01

    Doped diamond-like carbon (DLC) coatings offer potential antifouling surfaces against microbial and protein attachment. In particular, stainless steel surgical instruments are subject to tissue protein and resilient prion protein attachment, making decontamination methods used in sterile service departments ineffective, potentially increasing the risk of iatrogenic Creutzfeldt-Jakob disease during surgical procedures. This study examined the adsorption of proteins and prion-associated amyloid to doped DLC surfaces and the efficacy of commercial cleaning chemistries applied to these spiked surfaces, compared to titanium nitride coating and stainless steel. Surfaces inoculated with ME7-infected brain homogenate were visualised using SYPRO Ruby/Thioflavin T staining and modified epi-fluorescence microscopy before and after cleaning. Reduced protein and prion amyloid contamination was observed on the modified surfaces and subsequent decontamination efficacy improved. This highlights the potential for a new generation of coatings for surgical instruments to reduce the risk of iatrogenic CJD infection. PMID:22694725

  4. The normal cellular prion protein is strongly expressed by myeloid dendritic cells.

    PubMed

    Burthem, J; Urban, B; Pain, A; Roberts, D J

    2001-12-15

    Abnormal isoforms of the prion protein (PrP(Sc)) that cause prion diseases are propagated and spread within the body by "carrier" cell(s). Cells of the immune system have been strongly implicated in this process. In particular, PrP(Sc) is known to accumulate on follicular dendritic cells (FDCs) in individuals affected by variant Creutzfeld-Jakob disease. However, FDCs do not migrate widely and the natural history of prion disorders suggests other cells may be required for the transport of PrP(Sc) from the site of ingestion to lymphoid organs and the central nervous system. Substantial evidence suggests that the spread of PrP(Sc) requires bone marrow-derived cells that express normal cellular prion protein (PrP(C)). This study examined the expression of PrP(C) on bone marrow-derived cells that interact with lymphoid follicles. High levels of PrP(C) are present on myeloid dendritic cells (DCs) that surround the splenic white pulp. These myeloid DCs are ontologically and functionally distinct from the FDCs. Consistent with these observations, expression of PrP(C) was strongly induced during the generation of mature myeloid DCs in vitro. In these cells PrP(C) colocalized with major histocompatibility complex class II molecules at the level of light microscopy. Furthermore, given the close anatomic and functional connection of myeloid DCs with lymphoid follicles, these results raise the possibility that myeloid DCs may play a role in the propagation of PrP(Sc) in humans. PMID:11739179

  5. Spontaneous Generation of Infectious Prion Disease in Transgenic Mice

    PubMed Central

    Castilla, Joaquín; Pintado, Belén; Gutiérrez-Adan, Alfonso; Andréoletti, Olivier; Aguilar-Calvo, Patricia; Arroba, Ana-Isabel; Parra-Arrondo, Beatriz; Ferrer, Isidro; Manzanares, Jorge; Espinosa, Juan-Carlos

    2013-01-01

    We generated transgenic mice expressing bovine cellular prion protein (PrPC) with a leucine substitution at codon 113 (113L). This protein is homologous to human protein with mutation 102L, and its genetic link with Gerstmann–Sträussler–Scheinker syndrome has been established. This mutation in bovine PrPC causes a fully penetrant, lethal, spongiform encephalopathy. This genetic disease was transmitted by intracerebral inoculation of brain homogenate from ill mice expressing mutant bovine PrP to mice expressing wild-type bovine PrP, which indicated de novo generation of infectious prions. Our findings demonstrate that a single amino acid change in the PrPC sequence can induce spontaneous generation of an infectious prion disease that differs from all others identified in hosts expressing the same PrPC sequence. These observations support the view that a variety of infectious prion strains might spontaneously emerge in hosts displaying random genetic PrPC mutations. PMID:24274622

  6. Reversible monomer-oligomer transition in human prion protein

    PubMed Central

    Sasaki, Ken; Gaikwad, Jyoti; Hashiguchi, Shuhei; Kubota, Toshiya; Sugimura, Kazuhisa; Kremer, Werner; Kalbitzer, Hans Robert

    2008-01-01

    The structure and the dissociation reaction of oligomers PrPoligo from reduced human prion huPrPC(23–231) have been studied by 1H-NMR and tryptophan fluorescence spectroscopy at varying pressure, along with circular dichroism and atomic force microscopy. The 1H-NMR and fluorescence spectral feature of the oligomer is consistent with the notion that the N-terminal residues including all seven Trp residues, are free and mobile, while residues 105?210, comprising the AGAAAAGA motif and S1-Loop-HelixA-Loop-S2-Loop-HelixC, are engaged in intra- and/or inter-molecular interactions. By increasing pressure to 200 MPa, the oligomers tend to dissociate into monomers which may be identified with PrPC*, a rare metastable form of PrPC stabilized at high pressure (Kachel et al., BMC Struct Biol 6:16). The results strongly suggest that the oligomeric form PrPoligo is in dynamic equilibrium with the monomeric forms via PrPC*, namely huPrPC ? huPrPC* ? huPrPoligo. PMID:19158507

  7. Expression of the prion protein gene (PRNP) and cellular prion protein (PrPc) in cattle and sheep fetuses and maternal tissues during pregnancy.

    PubMed

    Thumdee, Patama; Ponsuksili, Siriluck; Murani, Eduard; Nganvongpanit, Korakot; Gehrig, Bernhard; Tesfaye, Dawit; Gilles, Markus; Hoelker, Michael; Jennen, Danyel; Griese, Josef; Schellander, Karl; Wimmers, Klaus

    2007-01-01

    We investigated the expression of prion protein gene both on mRNA and protein levels in bovine and ovine female reproductive organs during gestation and various tissues of their fetuses. The fetal tissues of both species included brain, cotyledon, heart, intestine, kidney, liver, lung, and muscle. In cattle, prion protein gene (PRNP) transcripts were detected by semiquantitative RT-PCR in reproductive tissues such as ovary, oviduct, endometrium, myometrium, follicles, and granulosa cells. In various tissues of 2-month-old fetuses, higher expression levels were found in brain and cotyledon compared to the other tissues. To detect the expression of the gene transcript in in vivo preimplantation embryos and 1-month-old fetuses, real-time PCR was performed showing that the level of gene expression in zygote stage was significantly higher (p < or = 0.05) than that of the other stages. Sheep were categorized as resistant (RI) or high susceptible (R5) to scrapie according to their PRNP genotype. In both genotype groups, the PRNP mRNA was detectable in all tissues studied including ovary, oviduct, endometrium, myometrium, and caruncle of ewes and all tissues of 2-month-old fetuses of both groups. Comparison between reproductive organs demonstrates the highest expression level in caruncle tissue of R1 ewes, whereas the level was high in brain and low in liver of both R1 and R5 fetuses. In addition, real-time RT-PCR was performed in immature oocytes, mature oocytes, in vivo embryos at morula stage, and 1-month-old fetuses. The results showed that the relative expression levels of the ovine PRNP mRNA in mature oocytes and morula stage embryos were significantly lower than those in immature oocytes and 1-month-old fetuses (p < or = 0.05). Western blot analyses revealed the immunoreactive bands corresponding to the cellular prion protein (PrPc) in all maternal and fetal tissues examined of both cattle and sheep. Moreover, immunohistochemical staining implicated localization of the PrPc in ovarian cortex and ovarian medulla of both species. However, PrPc was not detected in oocyte, granulosa cells, theca cells, and corpus luteum in this study. PMID:17605301

  8. Dopamine induces the accumulation of insoluble prion protein and affects autophagic flux.

    PubMed

    da Luz, Marcio H M; Peres, Italo T; Santos, Tiago G; Martins, Vilma R; Icimoto, Marcelo Y; Lee, Kil S

    2015-01-01

    Accumulation of protein aggregates is a histopathological hallmark of several neurodegenerative diseases, but in most cases the aggregation occurs without defined mutations or clinical histories, suggesting that certain endogenous metabolites can promote aggregation of specific proteins. One example that supports this hypothesis is dopamine and its metabolites. Dopamine metabolism generates several oxidative metabolites that induce aggregation of ?-synuclein, and represents the main etiology of Parkinson's diseases. Because dopamine and its metabolites are unstable and can be highly reactive, we investigated whether these molecules can also affect other proteins that are prone to aggregate, such as cellular prion protein (PrP(C)). In this study, we showed that dopamine treatment of neuronal cells reduced the number of viable cells and increased the production of reactive oxygen species (ROS) as demonstrated in previous studies. Overall PrP(C) expression level was not altered by dopamine treatment, but its unglycosylated form was consistently reduced at 100 ?M of dopamine. At the same concentration, the level of phosphorylated mTOR and 4EBP1 was also reduced. Moreover, dopamine treatment decreased the solubility of PrP(C), and increased its accumulation in autophagosomal compartments with concomitant induction of LC3-II and p62/SQSTM1 levels. In vitro oxidation of dopamine promoted formation of high-order oligomers of recombinant prion protein. These results suggest that dopamine metabolites alter the conformation of PrP(C), which in turn is sorted to degradation pathway, causing autophagosome overload and attenuation of protein synthesis. Accumulation of PrP(C) aggregates is an important feature of prion diseases. Thus, this study brings new insight into the dopamine metabolism as a source of endogenous metabolites capable of altering PrP(C) solubility and its subcellular localization. PMID:25698927

  9. Intracellular accumulation of a 46 kDa species of mouse prion protein as a result of loss of glycosylation in cultured mammalian cells.

    PubMed

    Biswas, Subhabrata; Langeveld, Jan P M; Tipper, Donald; Lu, Shan

    2006-10-13

    Prion diseases are fatal neurodegenerative disorders characterized by the accumulation of an abnormal isoform (PrPSc) of the normal cellular prion protein (PrPC) in the brain. Reportedly, abnormal N-linked glycosylation patterns in PrPC are associated with disease susceptibility; thus, we compared the glycosylation status of normal and several mutant forms of the murine prion protein (MuPrP) in cultured mammalian cells. Substitution of the N-terminal signal sequence of normal MuPrP with a heterologous signal peptide did not alter glycosylation. When expressed without the C-terminal glycophosphatidylinositol anchor signal, the majority of MuPrP remained intracellular and unglycosylated, and a 46 kDa species (p46) of the unglycosylated PrPC was detected on reducing gels. p46 was also observed when wild-type MuPrP was expressed in the presence of tunicamycin or enzymatically deglycosylated in vitro. A rabbit polyclonal anti-serum raised against dimeric MuPrP cross-reacted with p46 and localized the signal within the Golgi apparatus. We propose that the 46 kDa signal is a dimeric form of MuPrP and in the light of recent studies, it can be argued that a relatively stable, non-glycosylated, cytoplasmic PrPC dimer, produced as a result of compromised glycosylation is an intermediate in initiating conversion of PrPC to PrPSc in sporadic transmissible spongiform encephalopathies. PMID:16935263

  10. Functional characterization of the human prion protein promoter in neuronal and endothelial cells.

    PubMed

    Funke-Kaiser, H; Theis, S; Behrouzi, T; Thomas, A; Scheuch, K; Zollmann, F S; Paterka, M; Paul, M; Orzechowski, H D

    2001-09-01

    Human prion diseases such as Creutzfeld-Jakob disease and kuru are of major medical and biological importance because of their fatal course, epidemic potential, and unique pathophysiology. Endogenous expression of the normal cellular prion protein (PrP(C)) is necessary for infection and prion replication. However, knowledge of human PrP(C) gene regulation is rudimentary. We therefore cloned1543 bp of the 5' untranslated and promoter region of the PrP gene. Using transient transfection assays, the full-length promoter and serial deletion mutants subcloned in a luciferase reporter vector were analyzed in neuronal (KELLY) and endothelial (EA.hy926) cell lines, which both express PrP(C) as shown by RT/PCR. Analysis of promoter constructs in KELLY cells indicated two activating regions at -131/-284 and -1303/-1543, relative to the 3'-terminal end of exon 1, and also two repressing elements at -254/-567 and -567/-909 in neuronal cells. In EA.hy926 cells, activating elements were identified at -131/-284 and -284/-567, and one repressing region was localized at -567/-909. In addition, transcriptional start sites were determined by 5'-RACE reaction and RNase protection assay, revealing one major transcriptional start site located at -47 (in KELLY cells), -53 (in human thalamus) and at about -55 (in EA.hy926 cells). PMID:11692166

  11. Effect of Congo red on wild-type and mutated prion proteins in cultured cells.

    PubMed

    Milhavet, O; Mangé, A; Casanova, D; Lehmann, S

    2000-01-01

    Transmissible spongiform encephalopathies form a group of fatal neurodegenerative disorders that have the unique property of being infectious, sporadic, or genetic in origin. Although some doubts remain on the nature of the responsible agent of these diseases, it is clear that a protein called PrP(Sc) (which stands for the scrapie isoform of the prion protein) has a central role in their pathology. PrP(Sc) represents a conformational variant of a normal protein of the host: the cellular isoform of the prion protein, or PrP(C). Compounds such as glycosaminoglycans and Congo red (CR) have been shown to interfere with both in vitro and in vivo PrP(Sc) formation. It was hypothesized that CR acts by overstabilizing the conformation of PrP(Sc) molecules or by modifying trafficking of PrP(C). Using transfected cells expressing 3F4-tagged mouse PrPs, we show here that CR does not interfere with conversion of PrP molecules carrying pathogenic mutations. On the contrary, after incubation with the drug, some of their properties, such as insolubility and protease resistance, are enhanced and are even acquired by the wild-type molecule. This last observation suggests an alternative mechanism of action of CR and leads us to reconsider the relationship between the biochemical properties of PrP and conformational alteration of the protein. PMID:10617123

  12. Interaction between a recombinant prion protein and organo-mineral complexes as evidenced by CPMAS 13C-NMR

    NASA Astrophysics Data System (ADS)

    Russo, F.; Scotti, R.; Gianfreda, L.; Conte, P.; Rao, M. A.

    2009-04-01

    Prion proteins (PrP) are the main responsible for Transmissible Spongiform Encephalopathies (TSE). The TSE etiological agent is a misfolded form of the normal cellular prion protein. The amyloidal aggregates accumulated in the brain of infected animals and mainly composed of PrPSc exhibit resistance to protease attack and many conventional inactivating procedures. The prion protein diseases cause an environmental issue because the environment and in particular the soil compartment can be contaminated and then become a potential reservoir and diffuser of TSEs infectivity as a consequence of (i) accidental dispersion from storage plants of meat and bone meal, (ii) incorporation of contaminated material in fertilizers, (iii) possible natural contamination of pasture soils by grazing herds, and (v) burial of carcasses. The environmental problem can be even more relevant because very low amounts of PrPSc are able to propagate the disease. Several studies evidenced that infectious prion protein remains active in soils for years. Contaminated soils result, thus, a possible critical route of TSE transmission in wild animals. Soil can also protect prion protein toward degradation processes due to the presence of humic substances and inorganic components such as clays. Mineral and organic colloids and the more common association between clay minerals and humic substances can contribute to the adsorption/entrapment of molecules and macromolecules. The polymerization of organic monomeric humic precursors occurring in soil in the presence of oxidative enzymes or manganese and iron oxides, is considered one of the most important processes contributing to the formation of humic substances. The process is very fast and produces a population of polymeric products of different molecular structures, sizes, shapes and complexity. Other molecules and possibly biomacromolecules such as proteins may be involved. The aim of the present work was to study by CPMAS 13C-NMR the interactions between a non pathogenic ovine recombinant prion protein and a model soil system represented by a manganese oxide in the form of birnessite (?-MnO2), coated with a polymerized catechol. To better understand the effect of the polymerization process, PrP was added to the birnessite-cathecol system either before or after the polymerization processes. The NMR spectra of the prion protein interacting directly with birnessite revealed disappearance of the signals due to the paramagnetic nature of manganese oxide or abiotic degradation. Conversely, the signal pattern of the protein re-appeared as it is mixed to the soil-like system either during or after the catechol polymerization process. Results suggested that the possible interactions of the prion protein on soil systems can be mediated by natural organic matter. However, deeper studies on more complex real soil systems are needed to definitely confirm such hypothesis.

  13. Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrPc for the cytoskeleton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cellular prion protein (PrPC) is a highly conserved protein, which is anchored to the outer surface of the plasma membrane. Even though its physiological function has already been investigated in different cell or mouse models where PrPC expression is either up-regulated or depleted, its exact p...

  14. A Variational Model for Oligomer-Formation Process of GNNQQNY Peptide from Yeast Prion Protein Sup35

    E-print Network

    Zhang, Yang

    A Variational Model for Oligomer-Formation Process of GNNQQNY Peptide from Yeast Prion Protein Sup-like fibrous proteins. However, the processes by which the randomly diffused monomer peptides aggregate is determined to be three peptides for the homogeneous nucleation process, whereas the zig-zag growth pattern

  15. Conformational Properties of Prion Strains Can Be Transmitted to Recombinant Prion Protein Fibrils in Real-Time Quaking-Induced Conversion

    PubMed Central

    Sano, Kazunori; Ishibashi, Daisuke; Nakagaki, Takehiro; Satoh, Katsuya; Nishida, Noriyuki

    2014-01-01

    ABSTRACT The phenomenon of prion strains with distinct biological characteristics has been hypothesized to be involved in the structural diversity of abnormal prion protein (PrPSc). However, the molecular basis of the transmission of strain properties remains poorly understood. Real-time quaking-induced conversion (RT-QUIC) is a cell-free system that uses Escherichia coli-derived recombinant PrP (rPrP) for the sensitive detection of PrPSc. To investigate whether the properties of various prion strains can be transmitted to amyloid fibrils consisting of rPrP (rPrP fibrils) using RT-QUIC, we examined the secondary structure, conformational stability, and infectivity of rPrP fibrils seeded with PrPSc derived from either the Chandler or the 22L strain. In the first round of the reaction, there were differences in the secondary structures, especially in bands attributed to ?-sheets, as determined by infrared spectroscopy, and conformational stability between Chandler-seeded (1st-rPrP-fibCh) and 22L-seeded (1st-rPrP-fib22L) rPrP fibrils. Of note, specific identifying characteristics of the two rPrP fibril types seen in the ?-sheets resembled those of the original PrPSc. Furthermore, the conformational stability of 1st-rPrP-fibCh was significantly higher than that of 1st-rPrP-fib22L, as with Chandler and 22L PrPSc. The survival periods of mice inoculated with 1st-rPrP-fibCh or 1st-rPrP-fib22L were significantly shorter than those of mice inoculated with mixtures from the mock 1st-round RT-QUIC procedure. In contrast, these biochemical characteristics were no longer evident in subsequent rounds, suggesting that nonspecific uninfected rPrP fibrils became predominant probably because of their high growth rate. Together, these findings show that at least some strain-specific conformational properties can be transmitted to rPrP fibrils and unknown cofactors or environmental conditions may be required for further conservation. IMPORTANCE The phenomenon of prion strains with distinct biological characteristics is assumed to result from the conformational variations in the abnormal prion protein (PrPSc). However, important questions remain about the mechanistic relationship between the conformational differences and the strain diversity, including how strain-specific conformations are transmitted. In this study, we investigated whether the properties of diverse prion strains can be transmitted to amyloid fibrils consisting of E. coli-derived recombinant PrP (rPrP) generated by real-time quaking-induced conversion (RT-QUIC), a recently developed in vitro PrPSc formation method. We demonstrate that at least some of the strain-specific conformational properties can be transmitted to rPrP fibrils in the first round of RT-QUIC by examining the secondary structure, conformational stability, and infectivity of rPrP fibrils seeded with PrPSc derived from either the Chandler or the 22L prion strain. We believe that these findings will advance our understanding of the conformational basis underlying prion strain diversity. PMID:25078700

  16. Degradation of the disease-associated prion protein by a serine protease from lichens.

    PubMed

    Johnson, Christopher J; Bennett, James P; Biro, Steven M; Duque-Velasquez, Juan Camilo; Rodriguez, Cynthia M; Bessen, Richard A; Rocke, Tonie E

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted. PMID:21589935

  17. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  18. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  19. Degradation of the disease-associated prion protein by a serine protease from lichens.

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  20. PrP Expression Level and Sensitivity to Prion Infection

    PubMed Central

    Douet, Jean-Yves; Lacroux, Caroline; Corbière, Fabien; Litaise, Claire; Simmons, Hugh; Lugan, Séverine; Costes, Pierrette; Cassard, Hervé; Weisbecker, Jean-Louis; Schelcher, François

    2014-01-01

    Mice overexpressing the prion protein (PrP) sequence from various host species are widely used for measuring infectious titers in prion disease. However, the impact that the transgene expression level might have on the susceptibility to infection raises some concerns about the final biological relevance of these models. Here we report that endpoint titration of a sheep scrapie isolate in sheep and in mice overexpressing the ovine PrP results in similar estimates of the infectious titer. PMID:24574409

  1. Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases

    PubMed Central

    2010-01-01

    Background Prion diseases are fatal neurodegenerative disorders that accompany an accumulation of the disease-associated form(s) of prion protein (PrPSc) in the central nervous system. The neuropathological changes in the brain begin with focal deposits of PrPSc, followed by pathomorphological abnormalities of axon terminal degeneration, synaptic loss, atrophy of dendritic trees, and eventual neuronal cell death in the lesions. However, the underlying molecular basis for these neuropathogenic abnormalities is not fully understood. Results In a proteomic analysis of soluble proteins in the brains of mice challenged intracerebrally with scrapie prion (Obihiro I strain), we found that the amount of the full-length form of collapsin response mediator protein-2 (CRMP-2; 61 kDa) decreased in the late stages of the disease, while the amount of its truncated form (56 kDa) increased to comparable levels observed for the full-length form. Detailed analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry showed that the 56-kDa form (named CRMP-2-?C) lacked the sequence from serine518 to the C-terminus, including the C-terminal phosphorylation sites important for the regulation of axonal growth and axon-dendrite specification in developing neurons. The invariable size of the mRNA transcript in Northern blot analysis suggested that the truncation was due to post-translational proteolysis. By overexpression of CRMP-2-?C in primary cultured neurons, we observed the augmentation of the development of neurite branch tips to the same levels as for CRMP-2T514A/T555A, a non-phosphorylated mimic of the full-length protein. This suggests that the increased level of CRMP-2-?C in the brain modulates the integrity of neurons, and may be involved in the pathogenesis of the neuronal abnormalities observed in the late stages of the disease. Conclusions We identified the presence of CRMP-2-?C in the brain of a murine model of prion disease. Of note, C-terminal truncations of CRMP-2 have been recently observed in models for neurodegenerative disorders such as ischemia, traumatic brain injury, and Wallerian degeneration. While the structural identity of CRMP-2-?C in those models remains unknown, the present study should provide clues to the molecular pathology of degenerating neurons in prion diseases in connection with other neurodegenerative disorders. PMID:20961402

  2. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    SciTech Connect

    Tsuji, Toshikazu; Kawai-Noma, Shigeko [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)] [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Pack, Chan-Gi [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan)] [Cellular Informatics Laboratory, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Terajima, Hideki [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)] [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan); Yajima, Junichiro; Nishizaka, Takayuki [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)] [Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Kinjo, Masataka [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan)] [Laboratory of Molecular Cell Dynamics, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021 (Japan); Taguchi, Hideki, E-mail: taguchi@bio.titech.ac.jp [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)] [Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, B56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501 (Japan)

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  3. Solid-state NMR studies of the prion protein H1 fragment.

    PubMed Central

    Heller, J.; Kolbert, A. C.; Larsen, R.; Ernst, M.; Bekker, T.; Baldwin, M.; Prusiner, S. B.; Pines, A.; Wemmer, D. E.

    1996-01-01

    Conformational changes in the prion protein (PrP) seem to be responsible for prion diseases. We have used conformation-dependent chemical-shift measurements and rotational-resonance distance measurements to analyze the conformation of solid-state peptides lacking long-range order, corresponding to a region of PrP designated H1. This region is predicted to undergo a transformation of secondary structure in generating the infectious form of the protein. Solid-state NMR spectra of specifically 13C-enriched samples of H1, residues 109-122 (MKHMAGAAAAGAVV) of Syrian hamster PrP, have been acquired under cross-polarization and magic-angle spinning conditions. Samples lyophilized from 50% acetonitrile/50% water show chemical shifts characteristic of a beta-sheet conformation in the region corresponding to residues 112-121, whereas samples lyophilized from hexafluoroisopropanol display shifts indicative of alpha-helical secondary structure in the region corresponding to residues 113-117. Complete conversion to the helical conformation was not observed and conversion from alpha-helix back to beta-sheet, as inferred from the solid-state NMR spectra, occurred when samples were exposed to water. Rotational-resonance experiments were performed on seven doubly 13C-labeled H1 samples dried from water. Measured distances suggest that the peptide is in an extended, possibly beta-strand, conformation. These results are consistent with the experimental observation that PrP can exist in different conformational states and with structural predictions based on biological data and theoretical modeling that suggest that H1 may play a key role in the conformational transition involved in the development of prion diseases. PMID:8844854

  4. Implications of prion polymorphisms.

    PubMed

    Cortez, Leonardo M; Sim, Valerie L

    2013-01-01

    The sequence of a host's prion protein (PrP) can affect that host's susceptibility to prion disease and is the primary basis for the species barrier to transmission. Yet within many species, polymorphisms of the prion protein gene (Prnp) exist, each of which can further affect susceptibility or influence incubation period, pathology and phenotype. As strains are defined by these features (incubation period, pathology, phenotype), polymorphisms may also lead to the preferential propagation or generation of certain strains. In our recent study of the mouse Prnp(a) and Prnp(b) polymorphisms (which produced the proteins PrP(a) and PrP(b), respectively), we found differences in aggregation tendency, strain adaptability and conformational variability. Comparing our in vitro data with that of in vivo studies, we found that differing incubation periods between Prnp(a) and Prnp(b) mice can primarily be explained on the basis of faster or more efficient aggregation of PrP(a). In addition, and more importantly, we found that the faithful propagation of strains in Prnp(b) mice can be explained by the ability of PrP(b) to adopt a wider range of conformations. This adaptability allows PrP(b) to successfully propagate the structural features of a seed. In contrast, Prnp(a) mice revert PrP(b) strains into PrP(a) -type strains, and overall they have a narrower distribution of incubation periods. This can be explained by PrP(a) having fewer preferred conformations. We propose that Prnp polymorphisms are one route by which certain prion strains may preferentially propagate. This has significant implications for prion disease, chronic wasting disease (CWD) in particular, as it is spreading through North America. Deer which are susceptible to CWD also carry polymorphisms which influence their susceptibility. If these polymorphisms also preferentially allow strain diversification and propagation, this may accelerate the crossing of species barriers and propagation of the disease up the food chain. PMID:23807178

  5. Kinetics of Amyloid Aggregation: A Study of the GNNQQNY Prion Sequence

    PubMed Central

    Nasica-Labouze, Jessica; Mousseau, Normand

    2012-01-01

    The small amyloid-forming GNNQQNY fragment of the prion sequence has been the subject of extensive experimental and numerical studies over the last few years. Using unbiased molecular dynamics with the OPEP coarse-grained potential, we focus here on the onset of aggregation in a 20-mer system. With a total of 16.9 of simulations at 280 K and 300 K, we show that the GNNQQNY aggregation follows the classical nucleation theory (CNT) in that the number of monomers in the aggregate is a very reliable descriptor of aggregation. We find that the critical nucleus size in this finite-size system is between 4 and 5 monomers at 280 K and 5 and 6 at 300 K, in overall agreement with experiment. The kinetics of growth cannot be fully accounted for by the CNT, however. For example, we observe considerable rearrangements after the nucleus is formed, as the system attempts to optimize its organization. We also clearly identify two large families of structures that are selected at the onset of aggregation demonstrating the presence of well-defined polymorphism, a signature of amyloid growth, already in the 20-mer aggregate. PMID:23209391

  6. Proteinase K-sensitive disease-associated ovine prion protein revealed by conformation-dependent immunoassay

    PubMed Central

    Thackray, Alana M.; Hopkins, Lee; Bujdoso, Raymond

    2006-01-01

    PrPSc [abnormal disease-specific conformation of PrP (prion-related protein)] accumulates in prion-affected individuals in the form of amorphous aggregates. Limited proteolysis of PrPSc results in a protease-resistant core of PrPSc of molecular mass of 27–30 kDa (PrP27–30). Aggregated forms of PrP co-purify with prion infectivity, although infectivity does not always correlate with the presence of PrP27–30. This suggests that discrimination between PrPC (normal cellular PrP) and PrPSc by proteolysis may underestimate the repertoire and quantity of PrPSc subtypes. We have developed a CDI (conformation-dependent immunoassay) utilizing time-resolved fluorescence to study the conformers of disease-associated PrP in natural cases of sheep scrapie, without using PK (proteinase K) treatment to discriminate between PrPC and PrPSc. The capture-detector CDI utilizes N-terminal- and C-terminal-specific anti-PrP monoclonal antibodies that recognize regions of the prion protein differentially buried or exposed depending on the extent of denaturation of the molecule. PrPSc was precipitated from scrapie-infected brain stem and cerebellum tissue following sarkosyl extraction, with or without the use of sodium phosphotungstic acid, and native and denatured PrPSc detected by CDI. PrPSc was detectable in brain tissue from homozygous VRQ (V136 R154 Q171) and ARQ (A136 R154 Q171) scrapie-infected sheep brains. The highest levels of PrPSc were found in homozygous VRQ scrapie-infected brains. The quantity of PrPSc was significantly reduced, up to 90% in some cases, when samples were treated with PK prior to the CDI. Collectively, our results show that the level of PrPSc in brain samples from cases of natural scrapie display genotypic differences and that a significant amount of this material is PK-sensitive. PMID:17018021

  7. Modelling human prion replication in cell-free systems 

    E-print Network

    Barria Matus, Marcelo Alejandro

    2014-11-28

    One of the key molecular events in the transmissible spongiform encephalopathies or prion diseases is the conformational conversion of the cellular prion protein PrPC into the misfolded and pathogenic isoform, PrPSc. Prion ...

  8. Prion recognition elements govern nucleation, strain specificity and species

    E-print Network

    Lindquist, Susan

    ARTICLES Prion recognition elements govern nucleation, strain specificity and species barriers Peter M. Tessier1 & Susan Lindquist2 Prions are proteins that can switch to self-perpetuating, infectious conformations. The abilities of prions to replicate, form structurally distinct strains

  9. Cellular Prion Protein Regulates Its Own ?-Cleavage through ADAM8 in Skeletal Muscle*

    PubMed Central

    Liang, Jingjing; Wang, Wei; Sorensen, Debra; Medina, Sarah; Ilchenko, Sergei; Kiselar, Janna; Surewicz, Witold K.; Booth, Stephanie A.; Kong, Qingzhong

    2012-01-01

    The ubiquitously expressed cellular prion protein (PrPC) is subjected to the physiological ?-cleavage at a region critical for both PrP toxicity and the conversion of PrPC to its pathogenic prion form (PrPSc), generating the C1 and N1 fragments. The C1 fragment can activate caspase 3 while the N1 fragment is neuroprotective. Recent articles indicate that ADAM10, ADAM17, and ADAM9 may not play a prominent role in the ?-cleavage of PrPC as previously thought, raising questions on the identity of the responsible protease(s). Here we show that, ADAM8 can directly cleave PrP to generate C1 in vitro and PrP C1/full-length ratio is greatly decreased in the skeletal muscles of ADAM8 knock-out mice; in addition, the PrP C1/full-length ratio is linearly correlated with ADAM8 protein level in myoblast cell line C2C12 and in skeletal muscle tissues of transgenic mice. These results indicate that ADAM8 is the primary protease responsible for the ?-cleavage of PrPC in muscle cells. Moreover, we found that overexpression of PrPC led to up-regulation of ADAM8, suggesting that PrPC may regulate its own ?-cleavage through modulating ADAM8 activity. PMID:22447932

  10. The cellular prion protein traps Alzheimer's A? in an oligomeric form and disassembles amyloid fibers

    PubMed Central

    Younan, Nadine D.; Sarell, Claire J.; Davies, Paul; Brown, David R.; Viles, John H.

    2013-01-01

    There is now strong evidence to show that the presence of the cellular prion protein (PrPC) mediates amyloid-? (A?) neurotoxicity in Alzheimer's disease (AD). Here, we probe the molecular details of the interaction between PrPC and A? and discover that substoichiometric amounts of PrPC, as little as 1/20, relative to A? will strongly inhibit amyloid fibril formation. This effect is specific to the unstructured N-terminal domain of PrPC. Electron microscopy indicates PrPC is able to trap A? in an oligomeric form. Unlike fibers, this oligomeric A? contains antiparallel ? sheet and binds to a oligomer specific conformational antibody. Our NMR studies show that a specific region of PrPC, notably residues 95–113, binds to A? oligomers, but only once A? misfolds. The ability of PrPC to trap and concentrate A? in an oligomeric form and disassemble mature fibers suggests a mechanism by which PrPC might confer A? toxicity in AD, as oligomers are thought to be the toxic form of A?. Identification of a specific recognition site on PrPC that traps A? in an oligomeric form is potentially a therapeutic target for the treatment of Alzheimer's disease.—Younan, N. D., Sarell, C. J., Davies, P., Brown, D. R., Viles, J. H. The cellular prion protein traps Alzheimer's A? in an oligomeric form and disassembles amyloid fibers. PMID:23335053

  11. Methionine Oxidation Perturbs the Structural Core of the Prion Protein and Suggests a Generic Misfolding Pathway*

    PubMed Central

    Younan, Nadine D.; Nadal, Rebecca C.; Davies, Paul; Brown, David R.; Viles, John H.

    2012-01-01

    Oxidative stress and misfolding of the prion protein (PrPC) are fundamental to prion diseases. We have therefore probed the effect of oxidation on the structure and stability of PrPC. Urea unfolding studies indicate that H2O2 oxidation reduces the thermodynamic stability of PrPC by as much as 9 kJ/mol. 1H-15N NMR studies indicate methionine oxidation perturbs key hydrophobic residues on one face of helix-C as follows: Met-205, Val-209, and Met-212 together with residues Val-160 and Tyr-156. These hydrophobic residues pack together and form the structured core of the protein, stabilizing its ternary structure. Copper-catalyzed oxidation of PrPC causes a more significant alteration of the structure, generating a monomeric molten globule species that retains its native helical content. Further copper-catalyzed oxidation promotes extended ?-strand structures that lack a cooperative fold. This transition from the helical molten globule to ?-conformation has striking similarities to a misfolding intermediate generated at low pH. PrP may therefore share a generic misfolding pathway to amyloid fibers, irrespective of the conditions promoting misfolding. Our observations support the hypothesis that oxidation of PrP destabilizes the native fold of PrPC, facilitating the transition to PrPSc. This study gives a structural and thermodynamic explanation for the high levels of oxidized methionine in scrapie isolates. PMID:22654104

  12. The N-terminal, polybasic region is critical for prion protein neuroprotective activity.

    PubMed

    Turnbaugh, Jessie A; Westergard, Laura; Unterberger, Ursula; Biasini, Emiliano; Harris, David A

    2011-01-01

    Several lines of evidence suggest that the normal form of the prion protein, PrP(C), exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C) to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (?32-134, called F35). To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (?23-31, ?23-111, and ?23-134) to rescue the phenotype of Tg(F35) mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although ?23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C) neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases. PMID:21980526

  13. Proteolysis of abnormal prion protein with a thermostable protease from Thermococcus kodakarensis KOD1.

    PubMed

    Koga, Yuichi; Tanaka, Shun-ichi; Sakudo, Akikazu; Tobiume, Minoru; Aranishi, Mutsuo; Hirata, Azumi; Takano, Kazufumi; Ikuta, Kazuyoshi; Kanaya, Shigenori

    2014-03-01

    The abnormal prion protein (scrapie-associated prion protein, PrP(Sc)) is considered to be included in the group of infectious agents of transmissible spongiform encephalopathies. Since PrP(Sc) is highly resistant to normal sterilization procedures, the decontamination of PrP(Sc) is a significant public health issue. In the present study, a hyperthermostable protease, Tk-subtilisin, was used to degrade PrP(Sc). Although PrP(Sc) is known to be resistant toward proteolytic enzymes, Tk-subtilisin was able to degrade PrP(Sc) under extreme conditions. The level of PrP(Sc) in brain homogenates was found to decrease significantly in vitro following Tk-subtilisin treatment at 100 °C, whereas some protease-resistant fractions remain after proteinase K treatment. Rather small amounts of Tk-subtilisin (0.3 U) were required to degrade PrP(Sc) at 100 °C and pH 8.0. In addition, Tk-subtilisin was observed to degrade PrP(Sc) in the presence of sodium dodecyl sulfate or other industrial surfactants. Although several proteases degrading PrP(Sc) have been reported, practical decontamination procedures using enzymes are not available. This report aims to provide basic information for the practical use of a proteolytic enzyme for PrP(Sc) degradation. PMID:23880875

  14. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion

    PubMed Central

    Elmallah, Mohammed IY; Borgmeyer, Uwe; Betzel, Christian; Redecke, Lars

    2013-01-01

    Prion diseases comprise a group of fatal neurodegenerative disorders characterized by the autocatalytic conversion of the cellular prion protein PrPC into the infectious misfolded isoform PrPSc. Increasing evidence supports a specific role of oxidative stress in the onset of pathogenesis. Although the associated molecular mechanisms remain to be elucidated in detail, several studies currently suggest that methionine oxidation already detected in misfolded PrPSc destabilizes the native PrP fold as an early event in the conversion pathway. To obtain more insights about the specific impact of surface-exposed methionine residues on the oxidative-induced conversion of human PrP we designed, produced, and comparatively investigated two new pseudosulfoxidation mutants of human PrP 121–231 that comprises the well-folded C-terminal domain. Applying circular dichroism spectroscopy and dynamic light scattering techniques we showed that pseudosulfoxidation of all surface exposed Met residues formed a monomeric molten globule-like species with striking similarities to misfolding intermediates recently reported by other groups. However, individual pseudosulfoxidation at the polymorphic M129 site did not significantly contribute to the structural destabilization. Further metal-induced oxidation of the partly unfolded pseudosulfoxidation mutant resulted in the formation of an oligomeric state that shares a comparable size and stability with PrP oligomers detected after the application of different other triggers for structural conversion, indicating a generic misfolding pathway of PrP. The obtained results highlight the specific importance of methionine oxidation at surface exposed residues for PrP misfolding, strongly supporting the hypothesis that increased oxidative stress could be one causative event for sporadic prion diseases and other neurodegenerative disorders. PMID:24121542

  15. CHRONIC WASTING DISEASE OF ELK AND DEER AND CREUTZFELDT-JAKOB DISEASE: COMPARATIVE ANALYSIS OF THE SCRAPIE PRION PROTEIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transmissible spongiform encephalopathies or prion diseases are a heterogeneous group of disorders associated with, and possibly caused by, accumulation of a neurotoxic, misfolded isoform, termed PrP-d, of a normal cellular protein, PrP-c. Primary amino acid differences and secondary conformati...

  16. An Engineered PrPsc-like Molecule from the Chimera of Mammalian Prion Protein and Yeast Ure2p Prion-inducing Domain

    Microsoft Academic Search

    Shao-Man YIN; Man-Sun SY; Po TIEN

    2004-01-01

    Production of the pathogenic prion isoform PrPsc-like molecules is thought to be useful for understanding the mysterious mechanism of conformational conversion process of prion diseases and proving the \\

  17. Cloning and expression analysis of a prion protein encoding gene in guppy ( Poecilia reticulata)

    NASA Astrophysics Data System (ADS)

    Wu, Suihan; Wei, Qiwei; Yang, Guanpin; Wang, Dengqiang; Zou, Guiwei; Chen, Daqing

    2008-11-01

    The full length cDNA of a prion protein (PrP) encoding gene of guppy ( Poecilia reticulata) and the corresponding genomic DNA were cloned. The cDNA was 2245 bp in length and contained an open reading frame (ORF) of 1545 bp encoding a protein of 515 amino acids, which held all typical structural characteristics of the functional PrP. The cloned genomic DNA fragment corresponding to the cDNA was 3720 bp in length, consisting of 2 introns and 2 exons. The 5' untranslated region of cDNA originated from the 2 exons, while the ORF originated from the second exon. Although the gene was transcribed in diverse tissues including brain, eye, liver, intestine, muscle and tail, its transcript was most abundant in the brain. In addition, the transcription of the gene was enhanced by 5 salinity, implying that it was associated with the response of guppy to saline stress.

  18. The Persistence of Hippocampal-Based Memory Requires Protein Synthesis Mediated by the Prion-like Protein CPEB3.

    PubMed

    Fioriti, Luana; Myers, Cory; Huang, Yan-You; Li, Xiang; Stephan, Joseph S; Trifilieff, Pierre; Colnaghi, Luca; Kosmidis, Stylianos; Drisaldi, Bettina; Pavlopoulos, Elias; Kandel, Eric R

    2015-06-17

    Consolidation of long-term memories depends on de novo protein synthesis. Several translational regulators have been identified, and their contribution to the formation of memory has been assessed in the mouse hippocampus. None of them, however, has been implicated in the persistence of memory. Although persistence is a key feature of long-term memory, how this occurs, despite the rapid turnover of its molecular substrates, is poorly understood. Here we find that both memory storage and its underlying synaptic plasticity are mediated by the increase in level and in the aggregation of the prion-like translational regulator CPEB3 (cytoplasmic polyadenylation element-binding protein). Genetic ablation of CPEB3 impairs the maintenance of both hippocampal long-term potentiation and hippocampus-dependent spatial memory. We propose a model whereby persistence of long-term memory results from the assembly of CPEB3 into aggregates. These aggregates serve as functional prions and regulate local protein synthesis necessary for the maintenance of long-term memory. PMID:26074003

  19. Both Met(109) and Met(112) are Utilized for Cu(II) Coordination to the Amyloidogenic Fragment of the Human Prion Protein

    SciTech Connect

    Shearer, J.; Soh, P; Lentz, S

    2008-01-01

    The prion protein is a ubiquitous neuronal membrane protein. Misfolding of the prion protein has been implicated in transmissible spongiform encephalopathies (prion diseases). It has been demonstrated that the human prion protein (PrP) is capable of coordinating at least five Cu{sup II} ions under physiological conditions; four copper binding sites can be found in the octarepeat domain between residues 61 and 91, while another copper binding site can be found in the unstructured 'amyloidogenic' domain between residues 91 and 126 PrP(91-126). Herein we expand upon a previous study (J. Shearer, P. Soh, Inorg. Chem. 46 (2007) 710-719) where we demonstrated that the physiologically relevant high affinity Cu{sup II} coordination site within PrP(91-126) is found between residues 106 and 114. It was shown that Cu{sup II} is contained within a square planar (N/O){sub 3}S coordination environment with one His imidazole ligand (H(111)) and one Met thioether ligand (either M(109) or M(112)). The identity of the Met thioether ligand was not identified in that study. In this study we perform a detailed investigation of the Cu{sup II} coordination environment within the PrP fragment containing residues 106-114 (PrP(106-114)) involving optical, X-ray absorption, EPR, and fluorescence spectroscopies in conjunction with electronic structure calculations. By using derivatives of PrP(106-114) with systematic Met {yields} Ile 'mutations' we show that the Cu{sup II} coordination environment within PrP(106-114) is actually comprised of a mixture of two major species; one CuII(N/O){sub 3}S center with the M(109) thioether coordinated to Cu{sup II} and another Cu{sup II}(N/O){sub 3}S center with the M(112) thioether coordinated to Cu{sup II}. Furthermore, deletion of one or more Met residues from the primary sequence of PrP(106-114) both reduces the Cu{sup II} affinity of the peptide by two to seven fold, and renders the resulting Cu{sup II} metallopeptides redox inactive. The biological implications of these findings are discussed.

  20. Distinct Transmissibility Features of TSE Sources Derived from Ruminant Prion Diseases by the Oral Route in a Transgenic Mouse Model (TgOvPrP4) Overexpressing the Ovine Prion Protein

    PubMed Central

    Arsac, Jean-Noël; Baron, Thierry

    2014-01-01

    Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases associated with a misfolded form of host-encoded prion protein (PrP). Some of them, such as classical bovine spongiform encephalopathy in cattle (BSE), transmissible mink encephalopathy (TME), kuru and variant Creutzfeldt–Jakob disease in humans, are acquired by the oral route exposure to infected tissues. We investigated the possible transmission by the oral route of a panel of strains derived from ruminant prion diseases in a transgenic mouse model (TgOvPrP4) overexpressing the ovine prion protein (A136R154Q171) under the control of the neuron-specific enolase promoter. Sources derived from Nor98, CH1641 or 87V scrapie sources, as well as sources derived from L-type BSE or cattle-passaged TME, failed to transmit by the oral route, whereas those derived from classical BSE and classical scrapie were successfully transmitted. Apart from a possible effect of passage history of the TSE agent in the inocula, this implied the occurrence of subtle molecular changes in the protease-resistant prion protein (PrPres) following oral transmission that can raises concerns about our ability to correctly identify sheep that might be orally infected by the BSE agent in the field. Our results provide proof of principle that transgenic mouse models can be used to examine the transmissibility of TSE agents by the oral route, providing novel insights regarding the pathogenesis of prion diseases. PMID:24797075

  1. Identification of a Compound That Disrupts Binding of Amyloid-? to the Prion Protein Using a Novel Fluorescence-based Assay.

    PubMed

    Risse, Emmanuel; Nicoll, Andrew J; Taylor, William A; Wright, Daniel; Badoni, Mayank; Yang, Xiaofan; Farrow, Mark A; Collinge, John

    2015-07-01

    The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrP(C)) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrP(C) may act as a receptor for synaptotoxic oligomeric forms of amyloid-? (A?). There has been considerable interest in identification of compounds that bind to PrP(C), stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrP(C) could also inhibit the binding of toxic A? species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of A? oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both A? binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting A? binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit A? binding and reduce prion levels was established in cell-based assays. PMID:25995455

  2. Identification of a Compound That Disrupts Binding of Amyloid-? to the Prion Protein Using a Novel Fluorescence-based Assay*

    PubMed Central

    Risse, Emmanuel; Nicoll, Andrew J.; Taylor, William A.; Wright, Daniel; Badoni, Mayank; Yang, Xiaofan; Farrow, Mark A.; Collinge, John

    2015-01-01

    The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrPC) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrPC may act as a receptor for synaptotoxic oligomeric forms of amyloid-? (A?). There has been considerable interest in identification of compounds that bind to PrPC, stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrPC could also inhibit the binding of toxic A? species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of A? oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both A? binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting A? binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit A? binding and reduce prion levels was established in cell-based assays. PMID:25995455

  3. CD34 + cells from paroxysmal nocturnal hemoglobinuria (PNH) patients are deficient in surface expression of cellular prion protein (PrP c)

    Microsoft Academic Search

    Antonio M Risitano; Karel Holada; Guibin Chen; Jan Simak; Jaroslav G Vostal; Neal S Young; Jaroslaw P Maciejewski

    2003-01-01

    ObjectiveCellular prion protein (PrPc) is a glycosylphosphatidylinositol (GPI)-anchored protein (GPI-AP) constitutively expressed by neurons but also in hematopoietic cells. In trasmissible spongiform encephalopathies, the protease-resistant form of prion (PrP s c) converts the host PrPc into the pathologic form. We have investigated PrPc expression in hematopoietic cells from paroxysmal nocturnal hemoglobinuria (PNH). In this disease, due to somatic mutations in

  4. The prion protein is critical for DNA repair and cell survival after genotoxic stress.

    PubMed

    Bravard, Anne; Auvré, Frédéric; Fantini, Damiano; Bernardino-Sgherri, Jacqueline; Sissoëff, Ludmilla; Daynac, Mathieu; Xu, Zhou; Etienne, Olivier; Dehen, Capucine; Comoy, Emmanuel; Boussin, François D; Tell, Gianluca; Deslys, Jean-Philippe; Radicella, J Pablo

    2015-01-01

    The prion protein (PrP) is highly conserved and ubiquitously expressed, suggesting that it plays an important physiological function. However, despite decades of investigation, this role remains elusive. Here, by using animal and cellular models, we unveil a key role of PrP in the DNA damage response. Exposure of neurons to a genotoxic stress activates PRNP transcription leading to an increased amount of PrP in the nucleus where it interacts with APE1, the major mammalian endonuclease essential for base excision repair, and stimulates its activity. Preventing the induction of PRNP results in accumulation of abasic sites in DNA and impairs cell survival after genotoxic treatment. Brains from Prnp(-/-) mice display a reduced APE1 activity and a defect in the repair of induced DNA damage in vivo. Thus, PrP is required to maintain genomic stability in response to genotoxic stresses. PMID:25539913

  5. Normal brain mitochondrial respiration in adult mice lacking cellular prion protein.

    PubMed

    Lobão-Soares, Bruno; Bianchin, Marino Muxfeldt; Linhares, Marcelo Neves; Carqueja, Cristiane Lima; Tasca, Carla Inês; Souza, Márcia; Marques, Wilson; Brentani, Ricardo; Martins, Vilma R; Sakamoto, Américo C; Carlotti, Carlos Gilberto; Walz, Roger

    2005-03-01

    Cellular prion protein (PrP(c)) gene (Prnp) null mice (Prnp0/0) show higher sensitivity to seizures, enhanced brain oxidative stress, and their neurons exhibit higher excitability "in vitro". Mitochondrial respiration is a useful parameter for the determination of cellular metabolic rate and it is a major source of reactive oxygen species (ROS). In the present study, we investigated the mitochondrial function of different brain areas of Prnp0/0 adult mice and then compared this to normal control animals. Baseline mitochondrial respiration (stages 3 and 4), respiratory control ratio (RCR) and membrane potential were evaluated in the neocortex, entorhinal cortex, hippocampus, and cerebellum. No differences in these parameters were detected between Prnp0/0 and wild-type mice. Thus, we concluded that baseline mitochondrial respiration might not be directly related with the higher oxidative stress previously observed in brains from Prnp0/0 mice. PMID:15694261

  6. The prion protein is critical for DNA repair and cell survival after genotoxic stress

    PubMed Central

    Bravard, Anne; Auvré, Frédéric; Fantini, Damiano; Bernardino-Sgherri, Jacqueline; Sissoëff, Ludmilla; Daynac, Mathieu; Xu, Zhou; Etienne, Olivier; Dehen, Capucine; Comoy, Emmanuel; Boussin, François D.; Tell, Gianluca; Deslys, Jean-Philippe; Radicella, J. Pablo

    2015-01-01

    The prion protein (PrP) is highly conserved and ubiquitously expressed, suggesting that it plays an important physiological function. However, despite decades of investigation, this role remains elusive. Here, by using animal and cellular models, we unveil a key role of PrP in the DNA damage response. Exposure of neurons to a genotoxic stress activates PRNP transcription leading to an increased amount of PrP in the nucleus where it interacts with APE1, the major mammalian endonuclease essential for base excision repair, and stimulates its activity. Preventing the induction of PRNP results in accumulation of abasic sites in DNA and impairs cell survival after genotoxic treatment. Brains from Prnp?/? mice display a reduced APE1 activity and a defect in the repair of induced DNA damage in vivo. Thus, PrP is required to maintain genomic stability in response to genotoxic stresses. PMID:25539913

  7. Physiological and environmental control of yeast prions

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.

    2014-01-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638

  8. Reversible Conversion of Monomeric Human Prion

    E-print Network

    Hosszu, Laszlo

    Reversible Conversion of Monomeric Human Prion Protein Between Native and Fibrilogenic J. P. Waltho,2 A. R. Clarke,1,4 J. Collinge1 * Prion propagation involves the conversion of cellular prion protein (PrPC ) into a disease-specific isomer, PrPSc , shifting from a predominantly -helical

  9. Roles of the cellular prion protein in the regulation of cell-cell junctions and barrier function

    PubMed Central

    Petit, Constance S.V.; Besnier, Laura; Morel, Etienne; Rousset, Monique; Thenet, Sophie

    2013-01-01

    The cellular prion protein was historically characterized owing to its misfolding in prion disease. Although its physiological role remains incompletely understood, PrPC has emerged as an evolutionary conserved, multifaceted protein involved in a wide-range of biological processes. PrPC is a GPI-anchored protein targeted to the plasma membrane, in raft microdomains, where its interaction with a repertoire of binding partners, which differ depending on cell models, mediates its functions. Among identified PrPC partners are cell adhesion molecules. This review will focus on the multiple implications of PrPC in cell adhesion processes, mainly the regulation of cell-cell junctions in epithelial and endothelial cells and the consequences on barrier properties. We will show how recent findings argue for a role of PrPC in the recruitment of signaling molecules, which in turn control the targeting or the stability of adhesion complexes at the plasma membrane. PMID:24665391

  10. Highly infectious CJD particles lack prion protein but contain many viral-linked peptides by LC-MS/MS.

    PubMed

    Kipkorir, Terry; Tittman, Sarah; Botsios, Sotirios; Manuelidis, Laura

    2014-11-01

    It is widely believed that host prion protein (PrP), without nucleic acid, converts itself into an infectious form (PrP-res) that causes transmissible encephalopathies (TSEs), such as human sporadic CJD (sCJD), endemic sheep scrapie, and epidemic BSE. There are many detailed investigations of PrP, but proteomic studies of other proteins in verified infectious TSE particles have not been pursued, even though brain homogenates without PrP retain their complete infectious titer. To define proteins that may be integral to, process, or protect an agent genome, we developed a streamlined, high-yield purification of infectious FU-CJD mouse brain particles with minimal PrP. Proteinase K (PK) abolished all residual particle PrP, but did not reduce infectivity, and viral-size particles lacking PrP were ?70S (vs. 90-120S without PK). Furthermore, over 1,500 non-PrP proteins were still present and positively identified in high titer FU-CJD particles without detectable PrP by mass spectrometry (LC-MS/MS); 114 of these peptides were linked to viral motifs in the environmental-viral database, and not evident in parallel uninfected controls. Host components were also identified in both PK and non-PK treated particles from FU-CJD mouse brain and human sCJD brain. This abundant cellular data had several surprises, including finding Huntingtin in the sCJD but not normal human brain samples. Similarly, the neural Wiskott-Aldrich sequence and multivesicular and endosome components associated with retromer APP (Alzheimer amyloid) processing were only in sCJD. These cellular findings suggest that new therapies directed at retromer-vesicular trafficking in other neurodegenerative diseases may also counteract late-onset sCJD PrP amyloid pathology. PMID:24933657

  11. Mass Spectrometric Approaches to Detecting and Quantifying Prions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are infectious proteins that replicate by converting a normal cellular protein (PrPC)into a prion. Although prions and PrPC are isoforms, they have dramatically different physicochemical properties. Prions are resistant to proteinase K (PK) degradation, while PrPC is completely degraded by PK...

  12. Sequence repeats and protein structure

    NASA Astrophysics Data System (ADS)

    Hoang, Trinh X.; Trovato, Antonio; Seno, Flavio; Banavar, Jayanth R.; Maritan, Amos

    2012-11-01

    Repeats are frequently found in known protein sequences. The level of sequence conservation in tandem repeats correlates with their propensities to be intrinsically disordered. We employ a coarse-grained model of a protein with a two-letter amino acid alphabet, hydrophobic (H) and polar (P), to examine the sequence-structure relationship in the realm of repeated sequences. A fraction of repeated sequences comprises a distinct class of bad folders, whose folding temperatures are much lower than those of random sequences. Imperfection in sequence repetition improves the folding properties of the bad folders while deteriorating those of the good folders. Our results may explain why nature has utilized repeated sequences for their versatility and especially to design functional proteins that are intrinsically unstructured at physiological temperatures.

  13. Induction of cellular prion protein (PrPc) under hypoxia inhibits apoptosis caused by TRAIL treatment

    PubMed Central

    Lee, Ju-Hee; Moon, Ji-Hong; Kim, Sung-Wook; Lee, You-Jin; Park, Sang-Youel

    2015-01-01

    Hypoxia decreases cytotoxic responses to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. Cellular prion protein (PrPc) is regulated by HIF-1? in neurons. We hypothesized that PrPc is involved in hypoxia-mediated resistance to TRAIL-induced apoptosis. We found that hypoxia induced PrPc protein and inhibited TRAIL-induced apoptosis. Thus silencing of PrPc increased TRAIL-induced apoptosis under hypoxia. Overexpression of PrPc protein using an adenoviral vector inhibited TRAIL-induced apoptosis. In xenograft model in vivo, shPrPc transfected cells were more sensitive to TRAIL-induced apoptosis than in shMock transfected cells. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia. PMID:25742790

  14. Zebrafish Prion Protein PrP2 Controls Collective Migration Process during Lateral Line Sensory System Development

    PubMed Central

    Huc-Brandt, Sylvaine; Hieu, Nelson; Imberdis, Thibaut; Cubedo, Nicolas; Silhol, Michelle; Leighton, Patricia L. A.; Domaschke, Thomas; Allison, W. Ted; Perrier, Véronique; Rossel, Mireille

    2014-01-01

    Prion protein is involved in severe neurodegenerative disorders but its physiological role is still in debate due to an absence of major developmental defects in knockout mice. Previous reports in zebrafish indicate that the two prion genes, PrP1 and PrP2, are both involved in several steps of embryonic development thus providing a unique route to discover prion protein function. Here we investigate the role of PrP2 during development of a mechano-sensory system, the posterior lateral line, using morpholino knockdown and PrP2 targeted inactivation. We confirm the efficiency of the translation blocking morpholino at the protein level. Development of the posterior lateral line is altered in PrP2 morphants, including nerve axonal outgrowth and primordium migration defects. Reduced neuromast deposition was observed in PrP2 morphants as well as in PrP2?/? mutants. Rosette formation defects were observed in PrP2 morphants, strongly suggesting an abnormal primordium organization and reflecting loss of cell cohesion during migration of the primordium. In addition, the adherens junction proteins, E-cadherin and ß-catenin, were mis-localized after reduction of PrP2 expression and thus contribute to the primordium disorganization. Consequently, hair cell differentiation and number were affected and this resulted in reduced functional neuromasts. At later developmental stages, myelination of the posterior lateral line nerve was altered. Altogether, our study reports an essential role of PrP2 in collective migration process of the primordium and in neuromast formation, further implicating a role for prion protein in cell adhesion. PMID:25436888

  15. Biochemical typing of pathological prion protein in aging cattle with BSE

    PubMed Central

    Tester, Seraina; Juillerat, Valerie; Doherr, Marcus G; Haase, Bianca; Polak, Miroslaw; Ehrensperger, Felix; Leeb, Tosso; Zurbriggen, Andreas; Seuberlich, Torsten

    2009-01-01

    Background The broad enforcement of active surveillance for bovine spongiform encephalopathy (BSE) in 2000 led to the discovery of previously unnoticed, atypical BSE phenotypes in aged cattle that differed from classical BSE (C-type) in biochemical properties of the pathological prion protein. Depending on the molecular mass and the degree of glycosylation of its proteinase K resistant core fragment (PrPres), mainly determined in samples derived from the medulla oblongata, these atypical cases are currently classified into low (L)-type or high (H)-type BSE. In the present study we address the question to what extent such atypical BSE cases are part of the BSE epidemic in Switzerland. Results To this end we analyzed the biochemical PrPres type by Western blot in a total of 33 BSE cases in cattle with a minimum age of eight years, targeting up to ten different brain regions. Our work confirmed H-type BSE in a zebu but classified all other cases as C-type BSE; indicating a very low incidence of H- and L-type BSE in Switzerland. It was documented for the first time that the biochemical PrPres type was consistent across different brain regions of aging animals with C-type and H-type BSE, i.e. independent of the neuroanatomical structure investigated. Conclusion Taken together this study provides further characteristics of the BSE epidemic in Switzerland and generates new baseline data for the definition of C- and H-type BSE phenotypes, thereby underpinning the notion that they indeed represent distinct prion disease entities. PMID:19470160

  16. Proteomics applications in prion biology and structure.

    PubMed

    Moore, Roger A; Faris, Robert; Priola, Suzette A

    2015-04-01

    Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis. PMID:25795148

  17. Mass Spectrometric Detection of Attomole Amounts of the Prion Protein by nanoLC-MS-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitation of prions in biological samples other than brain or spinal cord is an extremely important and challenging analytical problem. Prions are the cause of several fatal neurodegenerative diseases in animal and humans known as Transmissible Spongiform Encephalopathies (TSEs). At present there...

  18. INSIGHTS ON SCRAPIE PRION PROTEIN (PrPSc) STRUCTURE OBTAINED BY LIMITED PROTEOLYSIS AND MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elucidation of the structure of PrPSc, essential to understand the molecular mechanism of prion transmission, continues to be one of the major challenges in prion research, and is hampered by the insolubility and polymeric character of PrPSc. Limited proteolysis is a useful tool to obtain insight on...

  19. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    Microsoft Academic Search

    R. Medori; H. J. Tritschler

    1993-01-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of

  20. Effects of Nutrition and Genotype on Prion Protein (PrPC) Gene Expression in the Fetal and Maternal Sheep Placenta

    Microsoft Academic Search

    J. M. Evoniuk; M. L. Johnson; P. P. Borowicz; J. S. Caton; K. A. Vonnahme; L. P. Reynolds; J. B. Taylor; C. L. Stoltenow; K. I. O'Rourke; D. A. Redmer

    2008-01-01

    For placental transmission of scrapie to occur, the normal cellular prion protein (PrPC) must be converted to an abnormal infectious form known as PrPSc. PrPC genotype influences susceptibility to contracting scrapie, but we still do not understand whether genotype or expression levels of PrPC are important in transmission of scrapie. Some evidence exists that nutrition affects expression levels of PrPC.

  1. Prion Protein-Deficient Cells Show Altered Response to Oxidative Stress Due to Decreased SOD1 Activity

    Microsoft Academic Search

    David R. Brown; Walter J. Schulz-Schaeffer; Bernhard Schmidt; Hans A. Kretzschmar

    1997-01-01

    The cellular function of the prion protein (PrPC), a cell surface glycoprotein expressed in neurones and astrocytes, has not been elucidated. Cell culture experiments reveal that cerebellar cells lacking PrPCare more sensitive to oxidative stress and undergo cell death more readily than wild-type cells. This effect is reversible by treatment with vitamin E.In vivostudies show that the activity of Cu\\/Zn

  2. Introducing a rigid loop structure from deer into mouse prion protein increases its propensity for misfolding in vitro.

    PubMed

    Kyle, Leah M; John, Theodore R; Schätzl, Hermann M; Lewis, Randolph V

    2013-01-01

    Prion diseases are fatal neurodegenerative disorders characterized by misfolding of the cellular prion protein (PrP(c)) into the disease-associated isoform (PrP(Sc)) that has increased ?-sheet content and partial resistance to proteolytic digestion. Prion diseases from different mammalian species have varying propensities for transmission upon exposure of an uninfected host to the infectious agent. Chronic Wasting Disease (CWD) is a highly transmissible prion disease that affects free ranging and farmed populations of cervids including deer, elk and moose, as well as other mammals in experimental settings. The molecular mechanisms allowing CWD to maintain comparatively high transmission rates have not been determined. Previous work has identified a unique structural feature in cervid PrP, a rigid loop between ?-sheet 2 and ?-helix 2 on the surface of the protein. This study was designed to test the hypothesis that the rigid loop has a direct influence on the misfolding process. The rigid loop was introduced into murine PrP as the result of two amino acid substitutions: S170N and N174T. Wild-type and rigid loop murine PrP were expressed in E. coli and purified. Misfolding propensity was compared for the two proteins using biochemical techniques and cell free misfolding and conversion systems. Murine PrP with a rigid loop misfolded in cell free systems with greater propensity than wild type murine PrP. In a lipid-based conversion assay, rigid loop PrP converted to a PK resistant, aggregated isoform at lower concentrations than wild-type PrP. Using both proteins as substrates in real time quaking-induced conversion, rigid loop PrP adopted a misfolded isoform more readily than wild type PrP. Taken together, these findings may help explain the high transmission rates observed for CWD within cervids. PMID:23825561

  3. Deposition patterns of disease-associated prion protein in captive mule deer brains with chronic wasting disease

    Microsoft Academic Search

    Pawel P. Liberski; Don C. Guiroy; Elizabeth S. Williams; Anna Walis; Herbert Budka

    2001-01-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) in captive and free-ranging cervids in the USA; its origin is obscure. Archival formalin-fixed and paraffin-embedded specimens of 16 captive mule deer brains with CWD were analyzed using immunocytochemistry for the disease-associated prion protein (PrP). The most prominent pattern of PrP deposition were plaque-like structures, a substantial proportion of which

  4. Different allelic effects of the codons 136 and 171 of the prion protein gene in sheep with natural scrapie

    Microsoft Academic Search

    C. Clouscard; P. Beaudry; J. M. Elsen; D. Milan; M. Dussaucy; C. Bounneau; F. Schelcher; J. Chatelain; J. M. Launay; J. L. Laplanche

    1995-01-01

    Scrapie is a transmissible degenerative disease of the central nervous system occurring naturally in sheep. It belongs to the group ofprion diseases also affecting man in which an abnormal isoform of the host-encoded prion protein (PrP) accumulating in the brain is responsible for neuronal death. Three main polymorphisms have been described in the sheep PrP gene, at positions 136, 154

  5. The Affinity of Copper Binding to the Prion Protein Octarepeat Domain: Evidence for Negative Cooperativity†

    PubMed Central

    Walter, Eric D.; Chattopadhyay, Madhuri; Millhauser, Glenn L.

    2010-01-01

    The prion protein (PrP) binds Cu2+ in its N-terminal octarepeat domain, composed of four or more tandem PHGGGWGQ segments. Previous work from our laboratory demonstrates that copper interacts with the octarepeat domain through three distinct coordination modes at pH 7.4, depending upon the precise ratio of Cu2+ to protein. Here, we apply both electron paramagnetic resonance (EPR) and fluorescence quenching to determine the copper affinity for each of these modes. At low copper occupancy, which favors multiple His coordination, the octarepeat domain binds Cu2+ with a dissociation constant of 0.10 (±0.08) nM. In contrast, high copper occupancy, involving coordination through deprotonated amide nitrogens, exhibits a weaker affinity characterized by dissociation constants in the range of 7.0–12.0 ?M. Decomposition of the EPR spectra reveals the proportions of all coordination species throughout the copper concentration range and identifies significant populations of intermediates, consistent with negative cooperativity. At most copper concentrations, the Hill coefficient is less than 1.0 and approximately 0.7 at half copper occupancy. These findings demonstrate that the octarepeat domain is responsive to a remarkably wide copper concentration range covering approximately 5 orders of magnitude. Consideration of these findings, along with the demonstrated ability of the protein to quench copper redox activity at high occupancy, suggests that PrP may function to protect cells by scavenging excess copper. PMID:17059225

  6. Conformational pH dependence of intermediate states during oligomerization of the human prion protein

    PubMed Central

    Gerber, Remo; Tahiri-Alaoui, Abdessamad; Hore, P.J.; James, William

    2008-01-01

    Intermediate states are key to understanding the molecular mechanisms governing protein misfolding. The human prion protein (PrP) can follow various misfolding pathways, and forms a soluble ?-sheet-rich oligomer under acidic, mildly denaturing, high salt conditions. Here we describe a fast conformational switch from the native ?-monomer to monomeric intermediate states under oligomer-forming conditions, followed by a slower oligomerization process. We observe a pH dependence of the secondary structure of these intermediate forms, with almost native-like ?-helical secondary structure at pH 4.1 and predominantly ?-sheet characteristics at pH 3.6. NMR spectroscopy differentiates these intermediate states from the native protein and indicates dynamic rearrangements of secondary structure elements characteristic of a molten globule. The ?-helical intermediate formed at pH 4.1 can convert to the ?-sheet conformation at pH 3.6 but not vice versa, and neither state can be reconverted to an ?-monomer. The presence of methionine rather than valine at codon 129 accelerates the rate of oligomer formation from the intermediate state. PMID:18218718

  7. Impact of SDS surfactant on the interactions of Cu(2+) ions with the amyloidogenic region of human prion protein.

    PubMed

    Hecel, Aleksandra; Migliorini, Caterina; Valensin, Daniela; Luczkowski, Marek; Kozlowski, Henryk

    2015-07-14

    Prion diseases, known as Transmissible Spongiform Encephalopathies (TSEs), are a group of fatal neuronal, and to some extent infectious disorders, associated with a pathogenic protein agent called prion protein (PrP). The human prion protein (hPrP) fragment encompassing the 91-127 region, also known as the amyloidogenic domain, comprises two copper-binding sites corresponding to His-96 and His-111 residues that act as anchors for Cu(2+) binding. In this work, we investigated Cu(2+) interaction with hPrP91-127 in the presence of the anionic surfactant sodium dodecyl sulfate (SDS), which induces a partial ?-helix folding of the peptide. Our data indicate that the Cu(2+) coordination ability of the amyloidogenic fragment in the presence of SDS micelles is significantly different to that observed in aqueous solution. This is mainly due to the fact that SDS micelles strongly stabilize the formation of the ?-helical structure of the peptide backbone, which is well conserved also upon Cu(2+) binding, contrary to the random coil conformation mainly assumed by hPrP91-127 in aqueous solutions. Potentiometric and spectroscopic studies clearly indicate that in the case of SDS containing solutions, Cu(2+) ions coordinate simultaneously to both imidazoles, while in the case of water solutions, metal ion coordination involves only a single His side chain, which individually acts as an independent Cu(2+) anchoring site. PMID:26107283

  8. Role of the cellular prion protein in the neuron adaptation strategy to copper deficiency.

    PubMed

    Urso, Emanuela; Manno, Daniela; Serra, Antonio; Buccolieri, Alessandro; Rizzello, Antonia; Danieli, Antonio; Acierno, Raffaele; Salvato, Benedetto; Maffia, Michele

    2012-08-01

    Copper transporter 1 (CTR1), cellular prion protein (PrP(C)), natural resistance-associated macrophage protein 2 (NRAMP2) and ATP7A proteins control the cell absorption and efflux of copper (Cu) ions in nervous tissues upon physiological conditions. Little is known about their regulation under reduced Cu availability, a condition underlying the onset of diffused neurodegenerative disorders. In this study, rat neuron-like cells were exposed to Cu starvation for 48 h. The activation of Caspase-3 enzymes and the impairment of Cu,Zn superoxide dismutase (Cu,Zn SOD) activity depicted the initiation of a pro-apoptotic program, preliminary to the appearance of the morphological signs of apoptosis. The transcriptional response related to Cu transport proteins has been investigated. Notably, PrP(C) transcript and protein levels were consistently elevated upon Cu deficiency. The CTR1 protein amount was stable, despite a two-fold increase in the transcript amount, meaning the activation of post-translational regulatory mechanisms. NRAMP2 and ATP7A expressions were unvaried. The up-regulated PrP(C) has been demonstrated to enhance the cell Cu uptake ability by about 50% with respect to the basal transport, and so sustain the Cu delivery to the Cu,Zn SOD cuproenzymes. Conclusively, the study suggests a pivotal role for PrP(C) in the cell adaptation to Cu limitation through a direct activity of ion uptake. In this view, the PrP(C) accumulation observed in several cancer cell lines could be interpreted as a molecular marker of cell Cu deficiency and a potential target of therapeutic interventions against disorders caused by metal imbalances. PMID:22362149

  9. Molecular Barriers to Zoonotic Transmission of Prions

    PubMed Central

    Barria, Marcelo A.; Balachandran, Aru; Morita, Masanori; Kitamoto, Tetsuyuki; Barron, Rona; Manson, Jean; Knight, Richard; Ironside, James W.

    2014-01-01

    The risks posed to human health by individual animal prion diseases cannot be determined a priori and are difficult to address empirically. The fundamental event in prion disease pathogenesis is thought to be the seeded conversion of normal prion protein to its pathologic isoform. We used a rapid molecular conversion assay (protein misfolding cyclic amplification) to test whether brain homogenates from specimens of classical bovine spongiform encephalopathy (BSE), atypical BSE (H-type BSE and L-type BSE), classical scrapie, atypical scrapie, and chronic wasting disease can convert normal human prion protein to the abnormal disease-associated form. None of the tested prion isolates from diseased animals were as efficient as classical BSE in converting human prion protein. However, in the case of chronic wasting disease, there was no absolute barrier to conversion of the human prion protein. PMID:24377702

  10. Structural instability of the prion protein upon M205S/R mutations revealed by molecular dynamics simulations.

    PubMed

    Hirschberger, Thomas; Stork, Martina; Schropp, Bernhard; Winklhofer, Konstanze F; Tatzelt, Jörg; Tavan, Paul

    2006-06-01

    The point mutations M205S and M205R have been demonstrated to severely disturb the folding and maturation process of the cellular prion protein (PrP(C)). These disturbances have been interpreted as consequences of mutation-induced structural changes in PrP, which are suggested to involve helix 1 and its attachment to helix 3, because the mutated residue M205 of helix 3 is located at the interface of these two helices. Furthermore, current models of the prion protein scrapie (PrP(Sc)), which is the pathogenic isoform of PrP(C) in prion diseases, imply that helix 1 disappears during refolding of PrP(C) into PrP(Sc). Based on molecular-dynamics simulations of wild-type and mutant PrP(C) in aqueous solution, we show here that the native PrP(C) structure becomes strongly distorted within a few nanoseconds, once the point mutations M205S and M205R have been applied. In the case of M205R, this distortion is characterized by a motion of helix 1 away from the hydrophobic core into the aqueous environment and a subsequent structural decay. Together with experimental evidence on model peptides, this decay suggests that the hydrophobic attachment of helix 1 to helix 3 at M205 is required for its correct folding into its stable native structure. PMID:16513786

  11. Structural Instability of the Prion Protein upon M205S/R Mutations Revealed by Molecular Dynamics Simulations

    PubMed Central

    Hirschberger, Thomas; Stork, Martina; Schropp, Bernhard; Winklhofer, Konstanze F.; Tatzelt, Jörg; Tavan, Paul

    2006-01-01

    The point mutations M205S and M205R have been demonstrated to severely disturb the folding and maturation process of the cellular prion protein (PrPC). These disturbances have been interpreted as consequences of mutation-induced structural changes in PrP, which are suggested to involve helix 1 and its attachment to helix 3, because the mutated residue M205 of helix 3 is located at the interface of these two helices. Furthermore, current models of the prion protein scrapie (PrPSc), which is the pathogenic isoform of PrPC in prion diseases, imply that helix 1 disappears during refolding of PrPC into PrPSc. Based on molecular-dynamics simulations of wild-type and mutant PrPC in aqueous solution, we show here that the native PrPC structure becomes strongly distorted within a few nanoseconds, once the point mutations M205S and M205R have been applied. In the case of M205R, this distortion is characterized by a motion of helix 1 away from the hydrophobic core into the aqueous environment and a subsequent structural decay. Together with experimental evidence on model peptides, this decay suggests that the hydrophobic attachment of helix 1 to helix 3 at M205 is required for its correct folding into its stable native structure. PMID:16513786

  12. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations

    SciTech Connect

    Moore, R.C.; Redhead, N.J.; Selfridge, J. [Univ. of Edinburgh (United Kingdom)] [and others] [Univ. of Edinburgh (United Kingdom); and others

    1995-09-01

    We have developed a double replacement gene targeting strategy which enables the production of a series of mouse strains bearing different subtle alterations to endogenous genes. This is a two-step process in which a region of the gene of interest is first replaced with a selectable marker to produce an inactivated allele, which is then re-targeted with a second vector to reconstruct the inactivated allele, concomitantly introducing an engineered mutation. Five independent embryonic stem cell lines have been produced bearing different targeted alterations to the prion protein gene, including one which raises the level of expression. We have constructed mice bearing the codon 101 proline to leucine substitution linked to the human familial prion disease, Gerstmann-Straussler-Scheinker syndrome. We anticipate that this procedure will have applications to the study of human inherited diseases and the development of therapies. 43 refs., 6 figs., 1 tab.

  13. [Prion disease and brain amyloidosis].

    PubMed

    Rukosuev, V S; Zhavoronkov, A A

    1999-01-01

    Human prion disorders include Kuru, Creutzfeld-Jakob disease (CJD), Gerstman-Straussler-Scheinkler syndrome (GSS), fatal familial insomnia (FFI) and prion protein cerebral amyloid angiopathy (PrPCAA). Prion diseases manifest as infections, genetic and sporadic disorders. In these diseases an abnormal form of the host's protein, prion protein protease-resistant (PrPres), is essential for pathogenic process. Host protein, prion protein protease-sensitive (PrPsen) in humans is encoded by a single copy gene (PRNP) located in the short arm of chromosome 20. To date, 19 different mutations in PRNP have been found that cause inherited prion disease. In these diseases PrPsen undergoes conformational changes involving a shift from alpha-helix to beta-sheet structures. This conversion is important for PrP-amyloidogenesis which occurs to the highest degree in GSS, while it is less frequently seen in other prion diseases. Pathomorphologically, amyloidogenesis in the brain is characterized by formation of PrPres conglomerates, diffuse homogeneous deposits and pleomorphic fibrillar amyloid plaques. The neurotoxic activity of PrPres and its fragments supports the causal relationship between PrPres deposits and neuropathological events in prion diseases. Congo-red and certain sulfated glycans potently inhibit PrPres formation. This raises the potential of therapeutic strategies for the treatment of these diseases. PMID:10412591

  14. Mutant Prion Protein Expression Is Associated with an Alteration of the Rab GDP Dissociation Inhibitor ? (GDI)/Rab11 Pathway*

    PubMed Central

    Massignan, Tania; Biasini, Emiliano; Lauranzano, Eliana; Veglianese, Pietro; Pignataro, Mauro; Fioriti, Luana; Harris, David A.; Salmona, Mario; Chiesa, Roberto; Bonetto, Valentina

    2010-01-01

    The prion protein (PrP) is a glycosylphosphatidylinositol-anchored membrane glycoprotein that plays a vital role in prion diseases, a class of fatal neurodegenerative disorders of humans and animals. Approximately 20% of human prion diseases display autosomal dominant inheritance and are linked to mutations in the PrP gene on chromosome 20. PrP mutations are thought to favor the conformational conversion of PrP into a misfolded isoform that causes disease by an unknown mechanism. The PrP mutation D178N/Met-129 is linked to fatal familial insomnia, which causes severe sleep abnormalities and autonomic dysfunction. We showed by immunoelectron microscopy that this mutant PrP accumulates abnormally in the endoplasmic reticulum and Golgi of transfected neuroblastoma N2a cells. To investigate the impact of intracellular PrP accumulation on cellular homeostasis, we did a two-dimensional gel-based differential proteomics analysis. We used wide range immobilized pH gradient strips, pH 4–7 and 6–11, to analyze a large number of proteins. We found changes in proteins involved in energy metabolism, redox regulation, and vesicular transport. Rab GDP dissociation inhibitor ? (GDI) was one of the proteins that changed most. GDI regulates vesicular protein trafficking by acting on the activity of several Rab proteins. We found a specific reduction in the level of functional Rab11 in mutant PrP-expressing cells associated with impaired post-Golgi trafficking. Our data are consistent with a model by which mutant PrP induces overexpression of GDI, activating a cytotoxic feedback loop that leads to protein accumulation in the secretory pathway. PMID:19996123

  15. NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1? and neuronal toxicity

    PubMed Central

    Hafner-Bratkovi?, Iva; Ben?ina, Mojca; Fitzgerald, Katherine A.; Golenbock, Douglas; Jerala, Roman

    2012-01-01

    Prion diseases are fatal transmissible neurodegenerative diseases, characterized by aggregation of the pathological form of prion protein, spongiform degeneration, neuronal loss and activation of astrocytes and microglia. Microglia can clear prion plaques but on the other hand cause neuronal death via release of neurotoxic species. Elevated expression of the proinflammatory cytokine IL-1? has been observed in brains affected by several prion diseases and IL-1R-deficiency significantly prolonged the onset of the neurodegeneration in mice. We show that microglial cells stimulated by prion protein (PrP) fibrils induced neuronal toxicity. Microglia and macrophages release IL-1? upon stimulation by PrP fibrils, which depends on the NLRP3 inflammasome. Activation of NLRP3 inflammasome by PrP fibrils requires depletion of intracellular K+ and requires phagocytosis of PrP fibrils and consecutive lysosome destabilization. Among the well-defined molecular forms of PrP the strongest NLRP3 activation was observed by fibrils, followed by aggregates, while neither native monomeric nor oligomeric PrP were able to activate the NLRP3 inflammasome. Our results together with previous studies on IL-1R-deficient mice suggest the IL-1 signaling pathway as the perspective target for the therapy of prion disease. PMID:22926439

  16. Molecular biology and transgenetics of prion diseases.

    PubMed

    Prusiner, S B

    1991-01-01

    Considerable progress has been made deciphering the role of an abnormal isoform of the prion protein (PrP) in scrapie of animals and Gerstmann-Sträussler syndrome (GSS) of humans. Some transgenic (Tg) mouse (Mo) lines that carry and express a Syrian hamster (Ha) PrP gene developed scrapie 75 d after inoculation with Ha prions; non-Tg mice failed to show symptoms after greater than 500 d. Brains of these infected Tg(HaPrP) mice featured protease-resistant HaPrPSc, amyloid plaques characteristic for Ha scrapie, and 10(9) ID50 units of Ha-specific prions upon bioassay. Studies on Syrian, Armenian, and Chinese hamsters suggest that the domain of the PrP molecule between codons 100 and 120 controls both the length of the incubation time and the deposition of PrP in amyloid plaques. Ataxic GSS in families shows genetic linkage to a mutation in the PrP gene, leading to the substitution of Leu for Pro at codon 102. Discovery of a point mutation in the Prp gene from humans with GSS established that GSS is unique among human diseases--it is both genetic and infectious. These results have revised thinking about sporadic Creutzfeldt-Jakob disease, suggesting it may arise from a somatic mutation. These findings combined with those from many other studies assert that PrPSc is a component of the transmissible particle, and the PrP amino acid sequence controls the neuropathology and species specificity of prion infectivity. The precise mechanism of PrPSc formation remains to be established. Attempts to demonstrate a scrapie-specific nucleic acid within highly purified preparations of prions have been unrewarding to date. Whether transmissible prions are composed only of PrPSc molecules or do they also contain a second component such as small polynucleotide remains uncertain. PMID:1684745

  17. Sequence Analysis by Numbers: Proteins

    Microsoft Academic Search

    JOHNSON F. Yan

    1996-01-01

    As a number code to the protein sequence language, the amino acid numbers (z) derived previously (1, 25, 45, and 17 prime numbers smaller than 64) are used to characterize oligopeptide motifs. The grammatical rule of this language is expressed with two theorems governing the collective properties of oligopeptides. This numeric representation contrasts particular sequence patterns. The language's equivalent forms

  18. Molecular mechanisms for protein-encoded inheritance

    SciTech Connect

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David; (Cornell); (HHMI)

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  19. Channel activity of deamidated isoforms of prion protein fragment 106-126 in planar lipid bilayers.

    PubMed

    Kourie, J I; Farrelly, P V; Henry, C L

    2001-10-15

    Using the lipid bilayer technique, we have found that age-related derivatives, PrP[106-126] (L-Asp108) and PrP[106-126] (L-iso-Asp108), of the prion protein fragment 106-126 (PrP[106-126] (Asn108)) form heterogeneous ion channels. The deamidated isoforms, PrP[106-126] (L-Asp108) and PrP[106-126] (L-iso-Asp108), showed no enhanced propensity to form heterogeneous channels compared with PrP[106-126] (Asn108). One of the PrP[106-126] (L-Asp108)- and PrP[106-126] (L-iso-Asp108)-formed channels had three kinetic modes. The current-voltage (I-V) relationship of this channel, which had a reversal potential, E(rev), between -40 and -10 mV close to the equilibrium potential for K+ (E(K)-35 mV), exhibited a sigmoidal shape. The value of the maximal slope conductance (g(max)) was 62.5 pS at positive potentials between 0 and 140 mV. The probability (P(o)) and the frequency (F(o)) of the channel being open had inverted and bell-shaped curves, respectively, with a peak at membrane potential (V(m)) between -80 and +80 mV. The mean open and closed times (T(o) and T(c)) had inverted bell-shaped curves. The biophysical properties of PrP[106-126] (L-Asp108)- and PrP[106-126] (L-iso-Asp108)-formed channels and their response to Cu(2+) were similar to those of channels formed with PrP[106-126] (Asn108). Cu(2+) shifted the kinetics of the channel from being in the open state to a "burst state" in which rapid channel activities were separated by long durations of inactivity. The action of Cu(2+) on the open channel activity was both time-dependent and voltage-dependent. The fact that Cu(2+) induced changes in the kinetics of this channel with no changes in the conductance of the channel indicated that Cu(2+) binds at the mouth of the channel. Consistently with the hydrophilic and structural properties of PrP[106-126], the Cu(2+)-induced changes in the kinetic parameters of this channel suggest that the Cu(2+) binding site could be located at M(109) and H(111) of this prion fragment. PMID:11592116

  20. Early Embryonic Gene Expression Profiling of Zebrafish Prion Protein (Prp2) Morphants

    PubMed Central

    Nourizadeh-Lillabadi, Rasoul; Seilø Torgersen, Jacob; Vestrheim, Olav; König, Melanie; Aleström, Peter; Syed, Mohasina

    2010-01-01

    Background The Prion protein (PRNP/Prp) plays a crucial role in transmissible spongiform encephalopathies (TSEs) like Creutzfeldt-Jakob disease (CJD), scrapie and mad cow disease. Notwithstanding the importance in human and animal disease, fundamental aspects of PRNP/Prp function and transmission remains unaccounted for. Methodology/Principal Findings The zebrafish (Danio rerio) genome contains three Prp encoding genes assigned prp1, prp2 and prp3. Currently, the second paralogue is believed to be the most similar to the mammalian PRNP gene in structure and function. Functional studies of the PRNP gene ortholog was addressed by prp2 morpholino (MO) knockdown experiments. Investigation of Prp2 depleted embryos revealed high mortality and apoptosis at 24 hours post fertilization (hpf) as well as impaired brain and neuronal development. In order to elucidate the underlying mechanisms, a genome-wide transcriptome analysis was carried out in viable 24 hpf morphants. The resulting changes in gene expression profiles revealed 249 differently expressed genes linked to biological processes like cell death, neurogenesis and embryonic development. Conclusions/Significance The current study contributes to the understanding of basic Prp functions and demonstrates that the zebrafish is an excellent model to address the role of Prp in vertebrates. The gene knockdown of prp2 indicates an essential biological function for the zebrafish ortholog with a morphant phenotype that suggests a neurodegenerative action and gene expression effects which are apoptosis related and effects gene networks controlling neurogenesis and embryo development. PMID:21042590

  1. Conformational diversity in prion protein variants influences intermolecular [beta]-sheet formation

    SciTech Connect

    Lee, Seungjoo; Antony, Lizamma; Hartmann, Rune; Knaus, Karen J.; Surewicz, Krystyna; Surewicz, Witold K.; Yee, Vivien C. (Case Western); (Cleveland Clinic)

    2010-04-19

    A conformational transition of normal cellular prion protein (PrP{sup C}) to its pathogenic form (PrP{sup Sc}) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild-type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129. Comparison of these structures with each other and with previously published WT PrP structures containing M129 revealed that only WT PrPs were found to crystallize as domain-swapped dimers or closed monomers; the four mutant PrPs crystallized as non-swapped dimers. Three of the four mutant PrPs aligned to form intermolecular {beta}-sheets. Several regions of structural variability were identified, and analysis of their conformations provides an explanation for the structural features, which can influence the formation and conformation of intermolecular {beta}-sheets involving the M/V129 polymorphic residue.

  2. Recruitment of cellular prion protein to mitochondrial raft-like microdomains contributes to apoptosis execution

    PubMed Central

    Mattei, Vincenzo; Matarrese, Paola; Garofalo, Tina; Tinari, Antonella; Gambardella, Lucrezia; Ciarlo, Laura; Manganelli, Valeria; Tasciotti, Vincenzo; Misasi, Roberta; Malorni, Walter; Sorice, Maurizio

    2011-01-01

    We examined the possibility that cellular prion protein (PrPC) plays a role in the receptor-mediated apoptotic pathway. We first found that CD95/Fas triggering induced a redistribution of PrPC to the mitochondria of T lymphoblastoid CEM cells via a mechanism that brings into play microtubular network integrity and function. In particular, we demonstrated that PrPC was redistributed to raft-like microdomains at the mitochondrial membrane, as well as at endoplasmic reticulum-mitochondria–associated membranes. Our in vitro experiments also demonstrated that, although PrPC had such an effect on mitochondria, it induced the loss of mitochondrial membrane potential and cytochrome c release only after a contained rise of calcium concentration. Finally, the involvement of PrPC in apoptosis execution was also analyzed in PrPC-small interfering RNA–transfected cells, which were found to be significantly less susceptible to CD95/Fas–induced apoptosis. Taken together, these results suggest that PrPC might play a role in the complex multimolecular signaling associated with CD95/Fas receptor–mediated apoptosis. PMID:22031292

  3. Synaptosomal glutamate release and uptake in mice lacking the cellular prion protein.

    PubMed

    Thais, Maria Emília; Carqueja, Cristiane L; Santos, Tiago G; Silva, Ronan V; Stroeh, Ellen; Machado, Ronny S; Wahlheim, Daniela O; Bianchin, Marino M; Sakamoto, Américo C; Brentani, Ricardo R; Martins, Vilma R; Walz, Roger; Tasca, Carla I

    2006-02-23

    Glutamate plays a central role in the fast excitatory synaptic transmission and is a key neurotransmitter involved in several neurophysiological processes. Glutamate levels on the synaptic cleft are related to neural excitability, neuroplasticity, and neuronal damage associated with excitotoxicity. Mice lacking the cellular prion protein (PrP(c)) gene (Prnp) present a decreased astrocytic glutamate uptake in cultures, higher neuronal excitability in vitro and sensitivity to pro-convulsant drugs in vivo, and age-dependent memory impairment. Here, we investigate if PrP(c) might be involved in neuronal uptake and release of glutamate. For this purpose, we compared synaptosomal preparations from the cerebral cortex, entorhinal cortex, hippocampus, cerebellum, and olfactory bulb of 3- or 9-month-old PrP(c) null mice and with respective wild-type controls. Although we observed differences in synaptosomal glutamate release and uptake regarding the age of mice and the brain structure studied, these differences were similar for PrP(c) null mice and their respective wild-type controls. Therefore, despite a possible correlation between neuronal glutamate transporters, excitability, and neuronal damage, our results suggest that PrP(c) expression is not critical for neuronal glutamate transport. PMID:16519879

  4. Cellular prion protein (PrP(C)) modulates ethanol-induced behavioral adaptive changes in mice.

    PubMed

    Rial, Daniel; Pandolfo, Pablo; Bitencourt, Rafael M; Pamplona, Fabrício A; Moreira, Karin M; Hipolide, Débora; Dombrowski, Patrícia A; Da Cunha, Claudio; Walz, Roger; Cunha, Rodrigo A; Takahashi, Reinaldo N; Prediger, Rui D

    2014-09-01

    Chronic consumption of drugs with addictive potential induces profound synaptic changes in the dopaminergic mesocorticolimbic pathway that underlie the long-term behavioral alterations seen in addicted subjects. Thus, exploring modulation systems of dopaminergic function may reveal novel targets to interfere with drug addiction. We recently showed that cellular prion protein (PrP(C)) affects the homeostasis of the dopaminergic system by interfering with dopamine synthesis, content, receptor density and signaling pathways in different brain areas. Here we report that the genetic deletion of PrP(C) modulates ethanol (EtOH)-induced behavioral alterations including the maintenance of drug seeking, voluntary consumption and the development of EtOH tolerance, all pivotal steps in drug addiction. Notably, these behavioral changes were accompanied by a significant depletion of dopamine levels in the prefrontal cortex and reduced dopamine D1 receptors in PrP(C) knockout mice. Furthermore, the pharmacological blockade of dopamine D1 receptors, but not D2 receptors, attenuated the abnormal EtOH consumption in PrP(C) knockout mice. Altogether, these findings provide new evidence that the PrP(C)/dopamine interaction plays a pivotal role in EtOH addictive properties in mice. PMID:24975422

  5. Cellular prion protein in mammary gland and milk fractions of domestic ruminants.

    PubMed

    Didier, A; Gebert, R; Dietrich, R; Schweiger, M; Gareis, M; Märtlbauer, E; Amselgruber, W M

    2008-05-01

    The present study shows that PrP(c) is expressed in the mammary gland and milk fractions of domestic ruminants in a species-specific manner. By applying immunohistochemistry, Western blot and ELISA, clear expression differences between bovine, ovine and caprine mammary gland, skimmed milk, acid whey and cream could be demonstrated, the highest relative PrP(c) levels being associated with the cream fraction. In the bovine gland PrP(c) was preferentially detectable at the basolateral surface of mammary gland epithelial cells, whereas in ovine and caprine samples the prion protein was more homogeneously distributed. Moreover, in ovine and caprine bovine mammary gland epithelial cells, apocrine secretory vesicles were strongly stained. Ovine and caprine milk proved to contain PrP(c) in all fractions with an additional truncated form at 12kDa in Western blot. This truncated isoform is the predominate one in caprine acid whey. These results support the hypothesis that the apocrine secretion mode of milk fat globules is a major way of PrP(c) transport into the milk. PMID:18325321

  6. Associations between the prion protein genotype and performance traits of meat breeds of sheep.

    PubMed

    de Vries, F; Borchers, N; Hamann, H; Drögemüller, C; Reinecke, S; Lüpping, W; Distl, O

    2004-07-31

    The prion protein (PrP) genotypes of four German meat breeds of sheep were examined in relation to their scores for muscle mass, conformation, wool quality, daily liveweight gain and ultrasonic measurements of the depth of back muscle and back fat. The dataset included 912 genotyped German texel sheep among 10,383 recorded sheep, 474 genotyped Suffolk sheep among 4079 recorded sheep, 271 genotyped German white-headed mutton sheep among 3393 recorded sheep, and 99 genotyped German black-headed mutton sheep among 1642 recorded sheep. The model included the fixed effects of PrP genotype, herd, year and season, test day, sex, rearing method, the regression coefficient of average age, and the random additive genetic effect of the animal. In all four breeds there were no statistically significant associations between these performance traits and the occurrence of ARR alleles and the ARR/ARR genotype except for the depth of back muscle and the daily liveweight gain of German black-headed mutton sheep; however, in this breed, the interpretation could be affected by the small number of animals involved. All the genotyped sheep had significantly better performance traits than the non-genotyped sheep. PMID:15338706

  7. Salivary prions in sheep and deer.

    PubMed

    Tamgüney, Gültekin; Richt, Jürgen A; Hamir, Amir N; Greenlee, Justin J; Miller, Michael W; Wolfe, Lisa L; Sirochman, Tracey M; Young, Alan J; Glidden, David V; Johnson, Natrina L; Giles, Kurt; DeArmond, Stephen J; Prusiner, Stanley B

    2012-01-01

    Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ~17 L/day of saliva, and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of -0.5 to 1.7 log ID?? U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of -1.1 to -0.4 log ID?? U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID?? units for sheep and 7.0 log ID?? units for deer. These estimates are similar to 7.9 log ID?? units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission. PMID:22453179

  8. Mutation and polymorphism of the prion protein gene in Libyan Jews with Creutzfeldt-Jakob disease (CJD)

    SciTech Connect

    Gabizon, R.; Rosenmann, H.; Meiner, Z.; Kahana, I. (Hadassah Univ., Jerusalem (Israel)); Kahana, E. (Barzilai Medical Center, Ashkelon (Israel)); Shugart, Y.; Ott, J. (Columbia Univ., New York, NY (United States)); Prusiner, S.B. (Univ. of California, San Francisco, CA (United States))

    1993-10-01

    The inherited prion diseases are neurodegenerative disorders which are not only genetic but also transmissible. More than a dozen mutations in the prion protein gene that result in nonconservative amino acid substitutions segregate with the inherited prion diseases including familial Creutzfeldt-Jakob disease (CJD). In Israel, the incidence of CJD is about 1 case/10[sup 4] Libyan Jews. A Lys[sub 200] substitution segregates with CJD and is reported here to be genetically linked to CJD with a lod score of >4.8. Some healthy elderly Lys[sub 200] carriers > age 65 years were identified, suggesting the possibility of incomplete penetrance. In contrast, no linkage was found between the development of familial CJD and a polymorphism encoding either Met[sub 129] or Val[sub 129]. All Libyan Jewish CJD patients with the Lys[sub 200] mutation encode a Met[sub 129] on the mutant allele. Homozygosity for Met[sub 129] did not correlate with age at disease onset or the duration of illness. The frequency of the Met[sub 129] allele was higher in the affected pedigrees than in a control population of Libyan Jews. The frequency of the Met[sub 129] and Val[sub 129] alleles in the control Libyan population was similar to that found in the general Caucasian population. The identification of three Libyan Jews homozygous for the Lys[sub 200] mutation suggests frequent intrafamilial marriages, a custom documented by genealogical investigations. 26 refs., 3 figs., 6 tabs.

  9. Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways.

    PubMed

    El Moustaine, Driss; Perrier, Veronique; Smeller, Laszlo; Lange, Reinhard; Torrent, Joan

    2008-05-01

    As limited structural information is available on prion protein (PrP) misfolding and aggregation, a causative link between the specific (supra)molecular structure of PrP and transmissible spongiform encephalopathies remains to be elucidated. In this study, high pressure was utilized, as an approach to perturb protein structure, to characterize different morphological and structural PrP aggregates. It was shown that full-length recombinant PrP undergoes beta-sheet aggregation on high-pressure-induced destabilization. By tuning the physicochemical conditions, the assembly process evolves through two distinct pathways leading to the irreversible formation of spherical particles or amyloid fibrils, respectively. When the PrP aggregation propensity is enhanced, high pressure induces the formation of a partially unfolded aggregated protein, Agg(HP), which relaxes at ambient pressure to form amorphous aggregates. The latter largely retain the native secondary structure. On prolonged incubation at high pressure, followed by depressurization, Agg(HP) transforms to a monodisperse population of spherical particles of about 20 nm in diameter, characterized by an essentially beta-sheet secondary structure. When the PrP aggregation propensity is decreased, an oligomeric reaction intermediate, I(HP), is formed under high pressure. After pressure release, I(HP) relaxes to the original native structure. However, on prolonged incubation at high pressure and subsequent depressurization, it transforms to amyloid fibrils. Structural evaluation, using optical spectroscopic methods, demonstrates that the conformation adopted by the subfibrillar oligomeric intermediate, I(HP), constitutes a necessary prerequisite for the formation of amyloids. The use of high-pressure perturbation thus provides an insight into the molecular mechanism of the first stages of PrP misfolding into amyloids. PMID:18355314

  10. Neuroprotective function of cellular prion protein in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Steinacker, Petra; Hawlik, Andreas; Lehnert, Stefan; Jahn, Olaf; Meier, Stephen; Görz, Evamaria; Braunstein, Kerstin E; Krzovska, Marija; Schwalenstöcker, Birgit; Jesse, Sarah; Pröpper, Christian; Böckers, Tobias; Ludolph, Albert; Otto, Markus

    2010-03-01

    Transgenic mice expressing human mutated superoxide dismutase 1 (SOD1) linked to familial forms of amyotrophic lateral sclerosis are frequently used as a disease model. We used the SOD1G93A mouse in a cross-breeding strategy to study the function of physiological prion protein (Prp). SOD1G93APrp-/- mice exhibited a significantly reduced life span, and an earlier onset and accelerated progression of disease, as compared with SOD1G93APrp+/+ mice. Additionally, during disease progression, SOD1G93APrp-/- mice showed impaired rotarod performance, lower body weight, and reduced muscle strength. Histologically, SOD1G93APrp-/- mice showed reduced numbers of spinal cord motor neurons and extended areas occupied by large vacuoles early in the course of the disease. Analysis of spinal cord homogenates revealed no differences in SOD1 activity. Using an unbiased proteomic approach, a marked reduction of glial fibrillary acidic protein and enhanced levels of collapsing response mediator protein 2 and creatine kinase were detected in SOD1G93APrp-/- versus SOD1G93A mice. In the course of disease, Bcl-2 decreases, nuclear factor-kappaB increases, and Akt is activated, but these changes were largely unaffected by Prp expression. Exclusively in double-transgenic mice, we detected a significant increase in extracellular signal-regulated kinase 2 activation at clinical onset. We propose that Prp has a beneficial role in the SOD1G93A amyotrophic lateral sclerosis mouse model by influencing neuronal and/or glial factors involved in antioxidative defense, rather than anti-apoptotic signaling. PMID:20075202

  11. Differences in proteinase K resistance and neuronal deposition of abnormal prion proteins characterize bovine spongiform encephalopathy (BSE) and scrapie strains.

    PubMed Central

    Kuczius, T.; Groschup, M. H.

    1999-01-01

    Prion diseases are associated with the accumulation of an abnormal isoform of host-encoded prion protein (PrP(Sc)). A number of prion strains can be distinguished by "glycotyping" analysis of the respective deposited PrP(Sc) compound. In this study, the long-term proteinase K resistance, the molecular mass, and the localization of PrP(Sc) deposits derived from conventional and transgenic mice inoculated with 11 different BSE and scrapie strains or isolates were examined. Differences were found in the long-term proteinase K resistance (50 microg/ml at 37 degrees C) of PrP(Sc). For example, scrapie strain Chandler or PrP(Sc) derived from field BSE isolates were destroyed after 6 hr of exposure, whereas PrP(Sc) of strains 87V and ME7 and of the Hessen1 isolate were extremely resistant to proteolytic cleavage. Nonglycosylated, proteinase K-treated PrP(Sc) of BSE isolates and of scrapie strain 87V exhibited a 1-2 kD lower molecular mass than PrP(Sc) derived from all other scrapie strains and isolates. With the exception of strain 87V, PrP(Sc) was generally deposited in the cerebrum, cerebellum, and brain stem of different mouse lines at comparable levels. Long-term proteinase resistance, molecular mass, and the analysis of PrP(Sc) deposition therefore provide useful criteria in discriminating prion strains and isolates (e.g., BSE and 87V) that are otherwise indistinguishable by the PrP(Sc) "glycotyping" technique. Images Fig. 2 Fig. 4 Fig. 6 PMID:10415165

  12. Prion transmission

    PubMed Central

    Maddison, Ben C

    2010-01-01

    Prion diseases range from being highly infectious, for example scrapie and CWD, which show facile transmission between susceptible individuals, to showing negligible horizontal transmission, such as BSE and CJD, which are spread via food or iatrogenically, respectively. Scrapie and CWD display considerable in vivo dissemination, with PrPSc and infectivity being found in a range of peripheral tissues. This in vivo dissemination appears to facilitate the recently reported excretion of prion through multiple routes such as from skin, feces, urine, milk, nasal secretions, saliva and placenta. Furthermore, excreted scrapie and CWD agent is detected within environmental samples such as water and on the surfaces of inanimate objects. The cycle of “uptake of prion from the environment—widespread in vivo prion dissemination—prion excretion—prion persistence in the environment” is likely to explain the facile transmission and maintenance of these diseases within wild and farmed populations over many years. PMID:20948292

  13. Genes contributing to prion pathogenesis

    PubMed Central

    Tamgüney, Gültekin; Giles, Kurt; Glidden, David V.; Lessard, Pierre; Wille, Holger; Tremblay, Patrick; Groth, Darlene F.; Yehiely, Fruma; Korth, Carsten; Moore, Richard C.; Tatzelt, Jörg; Rubenstein, Eric; Boucheix, Claude; Yang, Xiaoping; Stanley, Pamela; Lisanti, Michael P.; Dwek, Raymond A.; Rudd, Pauline M.; Moskovitz, Jackob; Epstein, Charles J.; Cruz, Tracey Dawson; Kuziel, William A.; Maeda, Nobuyo; Sap, Jan; Ashe, Karen Hsiao; Carlson, George A.; Tesseur, Ina; Wyss-Coray, Tony; Mucke, Lennart; Weisgraber, Karl H.; Mahley, Robert W.; Cohen, Fred E.; Prusiner, Stanley B.

    2009-01-01

    SUMMARY Prion diseases are caused by conversion of a normally folded, nonpathogenic isoform of the prion protein (PrPC) to a misfolded, pathogenic isoform (PrPSc). Prion inoculation experiments in mice expressing homologous PrPC molecules on different genetic backgrounds displayed different incubation times, indicating that the conversion reaction may be influenced by other gene products. To identify genes that contribute to prion pathogenesis, we analyzed prion incubation times in mice in which the gene product was inactivated, knocked out or overexpressed. We tested 20 gene candidates, because their products either colocalize with PrP, are associated with Alzheimer’s disease, are elevated during prion disease, or function in PrP-mediated signaling, PrP glycosylation, or protein maintenance. Whereas some of the candidates tested may have a role in the normal function of PrPC, our data show that many genes previously implicated in prion replication have no discernable effect on the pathogenesis of prion disease. While most genes tested did not significantly affect survival times, ablation of amyloid beta (A4) precursor protein (App) or interleukin 1 receptor, type I (Il1r1), and transgenic overexpression of human superoxide dismutase 1 (SOD1) prolonged incubation times by 13%, 16%, and 19%, respectively. PMID:18559949

  14. Defining the Conformational Features of Anchorless, Poorly Neuroinvasive Prions

    PubMed Central

    Bett, Cyrus; Kurt, Tim D.; Lucero, Melanie; Trejo, Margarita; Rozemuller, Annemieke J.; Kong, Qingzhong; Nilsson, K. Peter R.; Masliah, Eliezer; Oldstone, Michael B.; Sigurdson, Christina J.

    2013-01-01

    Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion. PMID:23637596

  15. Direct Evidence of Generation and Accumulation of ?-Sheet-rich Prion Protein in Scrapie-infected Neuroblastoma Cells with Human IgG1 Antibody Specific for ?-Form Prion Protein*

    PubMed Central

    Kubota, Toshiya; Hamazoe, Yuta; Hashiguchi, Shuhei; Ishibashi, Daisuke; Akasaka, Kazuyuki; Nishida, Noriyuki; Katamine, Shigeru; Sakaguchi, Suehiro; Kuroki, Ryota; Nakashima, Toshihiro; Sugimura, Kazuhisa

    2012-01-01

    We prepared ?-sheet-rich recombinant full-length prion protein (?-form PrP) (Jackson, G. S., Hosszu, L. L., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Waltho, J. P., Clarke, A. R., and Collinge, J. (1999) Science 283, 1935–1937). Using this ?-form PrP and a human single chain Fv-displaying phage library, we have established a human IgG1 antibody specific to ?-form but not ?-form PrP, PRB7 IgG. When prion-infected ScN2a cells were cultured with PRB7 IgG, they generated and accumulated PRB7-binding granules in the cytoplasm with time, consequently becoming apoptotic cells bearing very large PRB7-bound aggregates. The SAF32 antibody recognizing the N-terminal octarepeat region of full-length PrP stained distinct granules in these cells as determined by confocal laser microscopy observation. When the accumulation of proteinase K-resistant PrP was examined in prion-infected ScN2a cells cultured in the presence of PRB7 IgG or SAF32, it was strongly inhibited by SAF32 but not at all by PRB7 IgG. Thus, we demonstrated direct evidence of the generation and accumulation of ?-sheet-rich PrP in ScN2a cells de novo. These results suggest first that PRB7-bound PrP is not responsible for the accumulation of ?-form PrP aggregates, which are rather an end product resulting in the triggering of apoptotic cell death, and second that SAF32-bound PrP lacking the PRB7-recognizing ?-form may represent so-called PrPSc with prion propagation activity. PRB7 is the first human antibody specific to ?-form PrP and has become a powerful tool for the characterization of the biochemical nature of prion and its pathology. PMID:22356913

  16. DECODING THE FUNCTION OF THE N-TERMINAL TAIL OF THE CELLULAR PRION PROTEIN TO INSPIRE NOVEL THERAPEUTIC AVENUES FOR NEURODEGENERATIVE DISEASES.

    PubMed

    Iraci, Nunzio; Stincardini, Claudia; Barreca, Maria Letizia; Biasini, Emiliano

    2014-10-23

    The cellular prion protein (PrP(C)), a cell surface glycoprotein involved in prion disorders, has been shown to mediate the toxicity of several pathological aggregates, including its own misfolded state and some oligomeric assemblies of the amyloid ? peptide, which are thought to be primarily responsible for the synaptic dysfunction characterizing Alzheimer's disease. Thus, elucidating the physiological function of PrP(C), and how it could be corrupted by the interaction with misfolded proteins, may provide important insights to understand the pathological processes of prion and Alzheimer's diseases, and possibly other neurodegenerative disorders. In this manuscript, we review the data supporting a role for PrP(C) at the intersection of different neurodegenerative diseases, discuss potential mechanisms by which this protein could mediate neurotoxic signals, and examine therapeutic approaches that may arise from the identification of PrP(C)-directed compounds. PMID:25456402

  17. Modeling Amyloid-Beta as Homogeneous Dodecamers and in Complex with Cellular Prion Protein

    PubMed Central

    Gallion, Steven L.

    2012-01-01

    Soluble amyloid beta (A?) peptide has been linked to the pathology of Alzheimer’s disease. A variety of soluble oligomers have been observed to be toxic, ranging from dimers to protofibrils. No tertiary structure has been identified as a single biologically relevant form, though many models are comprised of highly ordered ?-sheets. Evidence exists for much less ordered toxic oligomers. The mechanism of toxicity remains highly debated and probably involves multiple pathways. Interaction of A? oligomers with the N-terminus of the cellular form of the prion protein (PrPc) has recently been proposed. The intrinsically disordered nature of this protein and the highly polymorphic nature of A? oligomers make structural resolution of the complex exceptionally challenging. In this study, molecular dynamics simulations are performed for dodecameric assemblies of A? comprised of monomers having a single, short antiparallel ?-hairpin at the C-terminus. The resulting models, devoid of any intermolecular hydrogen bonds, are shown to correlate well with experimental data and are found to be quite stable within the hydrophobic core, whereas the ?-helical N-termini transform to a random coil state. This indicates that highly ordered assemblies are not required for stability and less ordered oligomers are a viable component in the population of soluble oligomers. In addition, a tentative model is proposed for the association of A? dimers with a double deletion mutant of the intrinsically disordered N-terminus of PrPc. This may be useful as a conceptual working model for the binding of higher order oligomers and in the design of further experiments. PMID:23145167

  18. Loss of the cellular prion protein affects the Ca2+ homeostasis in hippocampal CA1 neurons.

    PubMed

    Fuhrmann, Martin; Bittner, Tobias; Mitteregger, Gerda; Haider, Nicole; Moosmang, Sven; Kretzschmar, Hans; Herms, Jochen

    2006-09-01

    Previous neurophysiological studies on prion protein deficient (Prnp(-/-)) mice have revealed a significant reduction of slow afterhyperpolarization currents (sI(AHP)) in hippocampal CA1 pyramidal cells. Here we aim to determine whether loss of PrP(C.) directly affects the potassium channels underlying sI(AHP) or if sI(AHP) is indirectly disturbed by altered intracellular Ca(2+) fluxes. Patch-clamp measurements and confocal Ca(2+) imaging in acute hippocampal slice preparations of Prnp(-/-) mice compared to littermate control mice revealed a reduced Ca(2+) rise in CA1 neurons lacking PrP(C) following a depolarization protocol known to induce sI(AHP). Moreover, we observed a reduced Ca(2+) influx via l-type voltage gated calcium channels (VGCCs). No differences were observed in the protein expression of the pore forming alpha1 subunit of VGCCs Prnp(-/-) mice. Surprisingly, the beta2 subunit, critically involved in the transport of the alpha1 subunit to the plasma membrane, was found to be up-regulated in knock out hippocampal tissue. On mRNA level however, no differences could be detected for the alpha1C, D and beta2-4 subunits. In conclusion our data support the notion that lack of PrP(C.) does not directly affect the potassium channels underlying sI(AHP), but modulates these channels due to its effect on the intracellular free Ca(2+) concentration via a reduced Ca(2+) influx through l-type VGCCs. PMID:16945105

  19. Prion protein functions as a ferrireductase partner for ZIP14 and DMT1.

    PubMed

    Tripathi, Ajai K; Haldar, Swati; Qian, Juan; Beserra, Amber; Suda, Srinivas; Singh, Ajay; Hopfer, Ulrich; Chen, Shu G; Garrick, Michael D; Turner, Jerrold R; Knutson, Mitchell D; Singh, Neena

    2015-07-01

    Excess circulating iron is stored in the liver, and requires reduction of non-Tf-bound iron (NTBI) and transferrin (Tf) iron at the plasma membrane and endosomes, respectively, by ferrireductase (FR) proteins for transport across biological membranes through divalent metal transporters. Here, we report that prion protein (PrP(C)), a ubiquitously expressed glycoprotein most abundant on neuronal cells, functions as a FR partner for divalent-metal transporter-1 (DMT1) and ZIP14. Thus, absence of PrP(C) in PrP-knock-out (PrP(-/-)) mice resulted in markedly reduced liver iron stores, a deficiency that was not corrected by chronic or acute administration of iron by the oral or intraperitoneal routes. Likewise, preferential radiolabeling of circulating NTBI with (59)Fe revealed significantly reduced uptake and storage of NTBI by the liver of PrP(-/-) mice relative to matched PrP(+/+) controls. However, uptake, storage, and utilization of ferritin-bound iron that does not require reduction for uptake were increased in PrP(-/-) mice, indicating a compensatory response to the iron deficiency. Expression of exogenous PrP(C) in HepG2 cells increased uptake and storage of ferric iron (Fe(3+)), not ferrous iron (Fe(2+)), from the medium, supporting the function of PrP(C) as a plasma membrane FR. Coexpression of PrP(C) with ZIP14 and DMT1 in HepG2 cells increased uptake of Fe(3+) significantly, and surprisingly, increased the ratio of N-terminally truncated PrP(C) forms lacking the FR domain relative to full-length PrP(C). Together, these observations indicate that PrP(C) promotes, and possibly regulates, the uptake of NTBI through DMT1 and Zip14 via its FR activity. Implications of these observations for neuronal iron homeostasis under physiological and pathological conditions are discussed. PMID:25862412

  20. Charge neutralization of the central lysine cluster in prion protein (PrP) promotes PrP(Sc)-like folding of recombinant PrP amyloids.

    PubMed

    Groveman, Bradley R; Kraus, Allison; Raymond, Lynne D; Dolan, Michael A; Anson, Kelsie J; Dorward, David W; Caughey, Byron

    2015-01-01

    The structure of the infectious form of prion protein, PrP(Sc), remains unclear. Most pure recombinant prion protein (PrP) amyloids generated in vitro are not infectious and lack the extent of the protease-resistant core and solvent exclusion of infectious PrP(Sc), especially within residues ?90-160. Polyanionic cofactors can enhance infectivity and PrP(Sc)-like characteristics of such fibrils, but the mechanism of this enhancement is unknown. In considering structural models of PrP(Sc) multimers, we identified an obstacle to tight packing that might be overcome with polyanionic cofactors, namely, electrostatic repulsion between four closely spaced cationic lysines within a central lysine cluster of residues 101-110. For example, in our parallel in-register intermolecular ?-sheet model of PrP(Sc), not only would these lysines be clustered within the 101-110 region of the primary sequence, but they would have intermolecular spacings of only ?4.8 Å between stacked ?-strands. We have now performed molecular dynamics simulations predicting that neutralization of the charges on these lysine residues would allow more stable parallel in-register packing in this region. We also show empirically that substitution of these clustered lysine residues with alanines or asparagines results in recombinant PrP amyloid fibrils with extended proteinase-K resistant ?-sheet cores and infrared spectra that are more reminiscent of bona fide PrP(Sc). These findings indicate that charge neutralization at the central lysine cluster is critical for the folding and tight packing of N-proximal residues within PrP amyloid fibrils. This charge neutralization may be a key aspect of the mechanism by which anionic cofactors promote PrP(Sc) formation. PMID:25416779

  1. Endoplasmic reticulum stress induces PRNP prion protein gene expression in breast cancer

    PubMed Central

    2013-01-01

    Introduction High prion protein (PrP) levels are associated with breast, colon and gastric cancer resistance to treatment and with a poor prognosis for the patients. However, little is known about the underlying molecular mechanism(s) regulating human PrP gene (PRNP) expression in cancers. Because endoplasmic reticulum (ER) stress is associated with solid tumors, we investigated a possible regulation of PRNP gene expression by ER stress. Methods Published microarray databases of breast cancer tissues and breast carcinoma cell lines were analyzed for PrP mRNA and ER stress marker immunoglobulin heavy chain binding protein (BiP) levels. Breast cancer tissue microarrays (TMA) were immunostained for BiP and PrP. Breast carcinoma MCF-7, MDA-MB-231, HS578T and HCC1500 cells were treated with three different ER stressors - Brefeldin A, Tunicamycin, Thapsigargin - and levels of PrP mRNA or protein assessed by RT-PCR and Western blot analyses. A human PRNP promoter-luciferase reporter was used to assess transcriptional activation by ER stressors. Site-directed mutagenesis identified the ER stress response elements (ERSE). Chromatin immunoprecipitation (ChIP) analyses were done to identify the ER stress-mediated transcriptional regulators. The role of cleaved activating transcription factor 6? (?ATF6?) and spliced X-box protein-1 (sXBP1) in PRNP gene expression was assessed with over-expression or silencing techniques. The role of PrP protection against ER stress was assessed with PrP siRNA and by using Prnp null cell lines. Results We find that mRNA levels of BiP correlated with PrP transcript levels in breast cancer tissues and breast carcinoma cell lines. PrP mRNA levels were enriched in the basal subtype and were associated with poor prognosis in breast cancer patients. Higher PrP and BiP levels correlated with increasing tumor grade in TMA. ER stress was a positive regulator of PRNP gene transcription in MCF-7 cells and luciferase reporter assays identified one ER stress response element (ERSE) conserved among primates and rodents and three primate-specific ERSEs that regulated PRNP gene expression. Among the various transactivators of the ER stress-regulated unfolded protein response (UPR), ATF6? and XBP1 transactivated PRNP gene expression, but the ability of these varied in different cell types. Functionally, PrP delayed ER stress-induced cell death. Conclusions These results establish PRNP as a novel ER stress-regulated gene that could increase survival in breast cancers. PMID:23497519

  2. Multiple biochemical similarities between infectious and non-infectious aggregates of a prion protein carrying an octapeptide insertion.

    PubMed

    Biasini, Emiliano; Medrano, Andrea Z; Thellung, Stefano; Chiesa, Roberto; Harris, David A

    2008-03-01

    A nine-octapeptide insertion in the prion protein (PrP) gene is associated with an inherited form of human prion disease. Transgenic (Tg) mice that express the mouse homolog of this mutation (designated PG14) spontaneously accumulate in their brains an insoluble and weakly protease-resistant form of the mutant protein. This form (designated PG14(Spon)) is highly neurotoxic, but is not infectious in animal bioassays. In contrast, when Tg(PG14) mice are inoculated with the Rocky Mountain Laboratory (RML) strain of prions, they accumulate a different form of PG14 PrP (designated PG14(RML)) that is highly protease resistant and infectious in animal transmission experiments. We have been interested in characterizing the molecular properties of PG14(Spon) and PG14(RML), with a view to identifying features that determine two, apparently distinct properties of PrP aggregates: their infectivity and their pathogenicity. In this paper, we have subjected PG14(Spon) and PG14(RML) to a panel of assays commonly used to distinguish infectious PrP (PrP(Sc)) from cellular PrP (PrP(C)), including immobilized metal affinity chromatography, precipitation with sodium phosphotungstate, and immunoprecipitation with PrP(C)- and PrP(Sc)-specific antibodies. Surprisingly, we found that aggregates of PG14(Spon) and PG14(RML) behave identically to each other, and to authentic PrP(Sc), in each of these biochemical assays. PG14(Spon) however, in contrast to PG14(RML) and PrP(Sc), was unable to seed the misfolding of PrP(C) in an in vitro protein misfolding cyclic amplification reaction. Collectively, these results suggest that infectious and non-infectious aggregates of PrP share common structural features accounting for their toxicity, and that self-propagation of PrP involves more subtle molecular differences. PMID:18034781

  3. Heterologous Stacking of Prion Protein Peptides Reveals Structural Details of Fibrils and Facilitates Complete Inhibition of Fibril GrowthS?

    PubMed Central

    Boshuizen, Ronald S.; Schulz, Veronica; Morbin, Michela; Mazzoleni, Giulia; Meloen, Rob H.; Langedijk, Johannes P. M.

    2009-01-01

    Fibrils play an important role in the pathogenesis of amyloidosis; however, the underlying mechanisms of the growth process and the structural details of fibrils are poorly understood. Crucial in the fibril formation of prion proteins is the stacking of PrP monomers. We previously proposed that the structure of the prion protein fibril may be similar as a parallel left-handed ?-helix. The ?-helix is composed of spiraling rungs of parallel ?-strands, and in the PrP model residues 105–143 of each PrP monomer can contribute two ?-helical rungs to the growing fibril. Here we report data to support this model. We show that two cyclized human PrP peptides corresponding to residues 105–124 and 125–143, based on two single rungs of the left-handed ?-helical core of the human PrPSc fibril, show spontaneous cooperative fibril growth in vitro by heterologous stacking. Because the structural model must have predictive value, peptides were designed based on the structure rules of the left-handed ?-helical fold that could stack with prion protein peptides to stimulate or to block fibril growth. The stimulator peptide was designed as an optimal left-handed ?-helical fold that can serve as a template for fibril growth initiation. The inhibiting peptide was designed to bind to the exposed rung but frustrate the propagation of the fibril growth. The single inhibitory peptide hardly shows inhibition, but the combination of the inhibitory with the stimulatory peptide showed complete inhibition of the fibril growth of peptide huPrP-(106–126). Moreover, the unique strategy based on stimulatory and inhibitory peptides seems a powerful new approach to study amyloidogenic fibril structures in general and could prove useful for the development of therapeutics. PMID:19304665

  4. The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1.

    PubMed

    Gabus, C; Derrington, E; Leblanc, P; Chnaiderman, J; Dormont, D; Swietnicki, W; Morillas, M; Surewicz, W K; Marc, D; Nandi, P; Darlix, J L

    2001-06-01

    Transmissible spongiform encephalopathies are fatal neurodegenerative diseases associated with the accumulation of a protease-resistant form of the prion protein (PrP). Although PrP is conserved in vertebrates, its function remains to be identified. In vitro PrP binds large nucleic acids causing the formation of nucleoprotein complexes resembling human immunodeficiency virus type 1 (HIV-1) nucleocapsid-RNA complexes and in vivo MuLV replication accelerates the scrapie infectious process, suggesting possible interactions between retroviruses and PrP. Retroviruses, including HIV-1 encode a major nucleic acid binding protein (NC protein) found within the virus where 2000 NC protein molecules coat the dimeric genome. NC is required in virus assembly and infection to chaperone RNA dimerization and packaging and in proviral DNA synthesis by reverse transcriptase (RT). In HIV-1, 5'-leader RNA/NC interactions appear to control these viral processes. This prompted us to compare and contrast the interactions of human and ovine PrP and HIV-1 NCp7 with HIV-1 5'-leader RNA. Results show that PrP has properties characteristic of NCp7 with respect to viral RNA dimerization and proviral DNA synthesis by RT. The NC-like properties of huPrP map to the N-terminal region of huPrP. Interestingly, PrP localizes in the membrane and cytoplasm of PrP-expressing cells. These findings suggest that PrP is a multifunctional protein possibly participating in nucleic acid metabolism. PMID:11278562

  5. Evidence That Bank Vole PrP Is a Universal Acceptor for Prions

    PubMed Central

    Watts, Joel C.; Giles, Kurt; Patel, Smita; Oehler, Abby; DeArmond, Stephen J.; Prusiner, Stanley B.

    2014-01-01

    Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP), we inoculated Tg(M109) and Tg(I109) mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109) and Tg(I109) mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD) subtype MM1, into Tg(M109) mice gave incubation periods of ?200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ?250 days, which shortened to ?150 days upon second passage in Tg(M109) mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109) mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates—including the size of proteinase K–resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability—were remarkably conserved upon serial passage in Tg(M109) mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions. PMID:24699458

  6. Involvement of cellular prion protein in the nociceptive response in mice.

    PubMed

    Meotti, Flavia Carla; Carqueja, Cristiane Lima; Gadotti, Vinícius de Maria; Tasca, Carla I; Walz, Roger; Santos, Adair R S

    2007-06-01

    The role of the cellular prion protein (PrP(c)) in neuronal functioning includes neuronal excitability, cellular adhesion, neurite outgrowth and maintenance. Here we investigated the putative involvement of the PrP(c) function on the nociceptive response using PrP(c) null (Prnp(0/0)) and wild-type (Prnp(+/+)) mice submitted to thermal and chemical models of nociception. PrP(c) null mice were more resistant than wild-type mice to thermal nociception of the tail-flick test. However, no significant difference was found on the hot plate test. In the acetic acid-induced visceral nociception, PrP(c) null mice showed an enhanced response when compared to wild-type mice. However, there was no difference between Prnp(0/0) and wild-type mice on glutamate- and formalin-induced licking behaviour and Freund's Complete Adjuvant (FCA)-induced mechanical allodynia. PrP(c) null mice developed significantly lower paw edema than wild-type mice. In addition, the visceral conditioning stimuli produced by a previous injection of acetic acid (20 days before testing) significantly reduced early and late phases of formalin-induced nociception in wild-type mice. In contrast, the same pre-treatment did not alter the formalin response in PrP(c) null mice. These results indicate a role of PrP(c) in the nociceptive transmission, including the thermal tail-flick test and visceral inflammatory nociception (acetic acid-induced abdominal constriction). Our findings show that PrP(c) is involved with a response mediated by inflammation (paw edema) and by visceral conditioning stimuli. PMID:17433806

  7. Cellular Prion Protein Mediates Impairment of Synaptic Plasticity by Amyloid-? Oligomers

    PubMed Central

    Laurén, Juha; Gimbel, David A.; Nygaard, Haakon B.; Gilbert, John W.; Strittmatter, Stephen M.

    2009-01-01

    A pathological hallmark of Alzheimer’s disease (AD) is an accumulation of insoluble plaque containing the amyloid-? peptide (A?) of 40–42 aa residues1. Prefibrillar, soluble oligomers of A? have been recognized to be early and key intermediates in AD-related synaptic dysfunction2–9. At nanomolar concentrations, soluble A?-oligomers block hippocampal long-term potentiation7, cause dendritic spine retraction from pyramidal cells5,8 and impair rodent spatial memory2. Soluble A?-oligomers have been prepared from chemical syntheses, from transfected cell culture supernatants, from transgenic mouse brain and from human AD brain2,4,7,9. Together, these data imply a high affinity cell surface receptor for soluble A?-oligomers on neurons, one that is central to the pathophysiological process in AD. Here, we identify the cellular Prion Protein (PrPC) as an A?-oligomer receptor by expression cloning. A?-oligomers bind with nanomolar affinity to PrPC, but the interaction does not require the infectious PrPSc conformation. Synaptic responsiveness in hippocampal slices from young adult PrP null mice is normal, but the A?-oligomer blockade of long-term potentiation is absent. Anti-PrP antibodies prevent A?-oligomer binding to PrPC and rescue synaptic plasticity in hippocampal slices from oligomeric ?. Thus, PrPC is a mediator of A?oligomer induced synaptic dysfunction, and PrPC-specific pharmaceuticals may have therapeutic potential for Alzheimer’s disease. PMID:19242475

  8. Amyloid-?-induced Synapse Damage Is Mediated via Cross-linkage of Cellular Prion Proteins

    PubMed Central

    Bate, Clive; Williams, Alun

    2011-01-01

    The cellular prion protein (PrPC), which is highly expressed at synapses, was identified as a receptor for the amyloid-? (A?) oligomers that are associated with dementia in Alzheimer disease. Here, we report that A? oligomers secreted by 7PA2 cells caused synapse damage in cultured neurons via a PrPC-dependent process. Exogenous PrPC added to Prnp knock-out(0/0) neurons was targeted to synapses and significantly increased A?-induced synapse damage. In contrast, the synapse damage induced by a phospholipase A2-activating peptide was independent of PrPC. In Prnp wild-type(+/+) neurons A? oligomers activated synaptic cytoplasmic phospholipase A2 (cPLA2). In these cells, the addition of A? oligomers triggered the translocation of cPLA2 in synapses to cholesterol dense membranes (lipid rafts) where it formed a complex also containing A? and PrPC. In contrast, the addition of A? to Prnp(0/0) neurons did not activate synaptic cPLA2, which remained in the cytoplasm and was not associated with A?. Filtration assays and non-denaturing gels demonstrated that A? oligomers cross-link PrPC. We propose that it is the cross-linkage of PrPC by A? oligomers that triggers abnormal activation of cPLA2 and synapse damage. This hypothesis was supported by our observation that monoclonal antibody mediated cross-linkage of PrPC also activated synaptic cPLA2 and caused synapse damage. PMID:21900234

  9. Assessing the susceptibility of transgenic mice overexpressing deer prion protein to bovine spongiform encephalopathy.

    PubMed

    Vickery, Christopher M; Lockey, Richard; Holder, Thomas M; Thorne, Leigh; Beck, Katy E; Wilson, Christina; Denyer, Margaret; Sheehan, John; Marsh, Sarah; Webb, Paul R; Dexter, Ian; Norman, Angela; Popescu, Emma; Schneider, Amanda; Holden, Paul; Griffiths, Peter C; Plater, Jane M; Dagleish, Mark P; Martin, Stuart; Telling, Glenn C; Simmons, Marion M; Spiropoulos, John

    2014-02-01

    Several transgenic mouse models have been developed which facilitate the transmission of chronic wasting disease (CWD) of cervids and allow prion strain discrimination. The present study was designed to assess the susceptibility of the prototypic mouse line, Tg(CerPrP)1536(+/-), to bovine spongiform encephalopathy (BSE) prions, which have the ability to overcome species barriers. Tg(CerPrP)1536(+/-) mice challenged with red deer-adapted BSE resulted in 90% to 100% attack rates, and BSE from cattle failed to transmit, indicating agent adaptation in the deer. PMID:24257620

  10. Assessing the Susceptibility of Transgenic Mice Overexpressing Deer Prion Protein to Bovine Spongiform Encephalopathy

    PubMed Central

    Vickery, Christopher M.; Lockey, Richard; Holder, Thomas M.; Thorne, Leigh; Beck, Katy E.; Wilson, Christina; Denyer, Margaret; Sheehan, John; Marsh, Sarah; Webb, Paul R.; Dexter, Ian; Norman, Angela; Popescu, Emma; Schneider, Amanda; Holden, Paul; Griffiths, Peter C.; Plater, Jane M.; Dagleish, Mark P.; Martin, Stuart; Telling, Glenn C.; Simmons, Marion M.

    2014-01-01

    Several transgenic mouse models have been developed which facilitate the transmission of chronic wasting disease (CWD) of cervids and allow prion strain discrimination. The present study was designed to assess the susceptibility of the prototypic mouse line, Tg(CerPrP)1536+/?, to bovine spongiform encephalopathy (BSE) prions, which have the ability to overcome species barriers. Tg(CerPrP)1536+/? mice challenged with red deer-adapted BSE resulted in 90% to 100% attack rates, and BSE from cattle failed to transmit, indicating agent adaptation in the deer. PMID:24257620

  11. Strategies for identifying new prions in yeast

    PubMed Central

    MacLea, Kyle S

    2011-01-01

    The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology. PMID:22052351

  12. Abnormal prion protein in the retina of Rocky Mountain elk (Cervus Elaphus Nelsoni)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic wasting disease (CWD), a transmissible spongiform encephalopathy, has been reported in captive and free-ranging mule deer (Odocoileus hemionus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni). An abnormal isoform of a prion pro...

  13. Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells

    Microsoft Academic Search

    K. L. Brown; K. Stewart; D. L. Ritchie; N. A. Mabbott; A. Williams; H. Fraser; W. I. Morrison; M. E. Bruce

    1999-01-01

    The immune system is central in the pathogenesis of scrapie and other transmissible spongiform encephalopathies (TSEs) or 'prion' diseases. After infecting by peripheral (intraperitoneal or oral) routes, most TSE agents replicate in spleen and lymph nodes before neuroinvasion. Characterization of the cells supporting replication in these tissues is essential to understanding early pathogenesis and may indicate potential targets for therapy,

  14. Mouse models for studying the formation and propagation of prions.

    PubMed

    Watts, Joel C; Prusiner, Stanley B

    2014-07-18

    Prions are self-propagating protein conformers that cause a variety of neurodegenerative disorders in humans and animals. Mouse models have played key roles in deciphering the biology of prions and in assessing candidate therapeutics. The development of transgenic mice that form prions spontaneously in the brain has advanced our understanding of sporadic and genetic prion diseases. Furthermore, the realization that many proteins can become prions has necessitated the development of mouse models for assessing the potential transmissibility of common neurodegenerative diseases. As the universe of prion diseases continues to expand, mouse models will remain crucial for interrogating these devastating illnesses. PMID:24860095

  15. MASS SPECTROMETRIC DETECTION OF ATTOMOLE AMOUNTS OF THE PRION PROTEIN, PRP 27-30, BY NANOLC-MS-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At present there are no methods to diagnose Bovine Spongiform Encephalopathy (BSE) in live animals, or to assure a prion-free blood supply; and the result of prion infection is initiation of a neurodegenerative disease, invariably fatal after onset of symptoms. Prions have been shown to be present ...

  16. Identification of anti-prion compounds as efficient inhibitors of polyglutamine protein aggregation in a zebrafish model.

    PubMed

    Schiffer, Niclas W; Broadley, Sarah A; Hirschberger, Thomas; Tavan, Paul; Kretzschmar, Hans A; Giese, Armin; Haass, Christian; Hartl, F Ulrich; Schmid, Bettina

    2007-03-23

    Several neurodegenerative diseases, including Huntington disease (HD), are associated with aberrant folding and aggregation of polyglutamine (polyQ) expansion proteins. Here we established the zebrafish, Danio rerio, as a vertebrate HD model permitting the screening for chemical suppressors of polyQ aggregation and toxicity. Upon expression in zebrafish embryos, polyQ-expanded fragments of huntingtin (htt) accumulated in large SDS-insoluble inclusions, reproducing a key feature of HD pathology. Real time monitoring of inclusion formation in the living zebrafish indicated that inclusions grow by rapid incorporation of soluble htt species. Expression of mutant htt increased the frequency of embryos with abnormal morphology and the occurrence of apoptosis. Strikingly, apoptotic cells were largely devoid of visible aggregates, suggesting that soluble oligomeric precursors may instead be responsible for toxicity. As in nonvertebrate polyQ disease models, the molecular chaperones, Hsp40 and Hsp70, suppressed both polyQ aggregation and toxicity. Using the newly established zebrafish model, two compounds of the N'-benzylidene-benzohydrazide class directed against mammalian prion proved to be potent inhibitors of polyQ aggregation, consistent with a common structural mechanism of aggregation for prion and polyQ disease proteins. PMID:17170113

  17. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP

    PubMed Central

    Sakudo, Akikazu; Onodera, Takashi

    2015-01-01

    Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp?/?) mice. So far, six types of Prnp?/? mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp?/? cell lines established from Prnp?/? mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp?/? cell lines and summarize currently available Prnp?/? cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives. PMID:25642423

  18. Modulation of Prion Formation, Aggregation, and Toxicity by the Actin Cytoskeleton in Yeast

    Microsoft Academic Search

    Elena E. Ganusova; Laura N. Ozolins; Srishti Bhagat; Gary P. Newnam; Renee D. Wegrzyn; Michael Y. Sherman; Yury O. Chernoff

    2006-01-01

    Self-perpetuating protein aggregates transmit prion diseases in mammals and heritable traits in yeast. De novo prion formation can be induced by transient overproduction of the corresponding prion-forming protein or its prion domain. Here, we demonstrate that the yeast prion protein Sup35 interacts with various proteins of the actin cortical cytoskeleton that are involved in endocytosis. Sup35-derived aggregates, generated in the

  19. Acid-induced molten globule state of a prion protein: crucial role of Strand 1-Helix 1-Strand 2 segment.

    PubMed

    Honda, Ryo P; Yamaguchi, Kei-ichi; Kuwata, Kazuo

    2014-10-31

    The conversion of a cellular prion protein (PrP(C)) to its pathogenic isoform (PrP(Sc)) is a critical event in the pathogenesis of prion diseases. Pathogenic conversion is usually associated with the oligomerization process; therefore, the conformational characteristics of the pre-oligomer state may provide insights into the conversion process. Previous studies indicate that PrP(C) is prone to oligomer formation at low pH, but the conformation of the pre-oligomer state remains unknown. In this study, we systematically analyzed the acid-induced conformational changes of PrP(C) and discovered a unique acid-induced molten globule state at pH 2.0 termed the "A-state." We characterized the structure of the A-state using far/near-UV CD, 1-anilino-8-naphthalene sulfonate fluorescence, size exclusion chromatography, and NMR. Deuterium exchange experiments with NMR detection revealed its first unique structure ever reported thus far; i.e. the Strand 1-Helix 1-Strand 2 segment at the N terminus was preferentially unfolded, whereas the Helix 2-Helix 3 segment at the C terminus remained marginally stable. This conformational change could be triggered by the protonation of Asp(144), Asp(147), and Glu(196), followed by disruption of key salt bridges in PrP(C). Moreover, the initial population of the A-state at low pH (pH 2.0-5.0) was well correlated with the rate of the ?-rich oligomer formation, suggesting that the A-state is the pre-oligomer state. Thus, the specific conformation of the A-state would provide crucial insights into the mechanisms of oligomerization and further pathogenic conversion as well as facilitating the design of novel medical chaperones for treating prion diseases. PMID:25217639

  20. Analysis of the [RNQ+] prion reveals stability of amyloid fibers as the key determinant of yeast prion variant propagation.

    PubMed

    Kalastavadi, Tejas; True, Heather L

    2010-07-01

    Variation in pathology of human prion disease is believed to be caused, in part, by distinct conformations of aggregated protein resulting in different prion strains. Several prions also exist in yeast and maintain different self-propagating structures, referred to as prion variants. Investigation of the yeast prion [PSI(+)] has been instrumental in deciphering properties of prion variants and modeling the physical basis of their formation. Here, we describe the generation of specific variants of the [RNQ(+)] prion in yeast transformed with fibers formed in vitro in different conditions. The fibers of the Rnq1p prion-forming domain (PFD) that induce different variants in vivo have distinct biochemical properties. The physical basis of propagation of prion variants has been previously correlated to rates of aggregation and disaggregation. With [RNQ(+)] prion variants, we found that the prion variant does not correlate with the rate of aggregation as anticipated but does correlate with stability. Interestingly, we found that there are differences in the ability of the [RNQ(+)] prion variants to faithfully propagate themselves and to template the aggregation of other proteins. Incorporating the mechanism of variant formation elucidated in this study with that previously proposed for [PSI(+)] variants has provided a framework to separate general characteristics of prion variant properties from those specific to individual prion proteins. PMID:20442412

  1. Identification of I137M and Other Mutations That Modulate Incubation Periods for Two Human Prion Strains

    PubMed Central

    Giles, Kurt; De Nicola, Gian Felice; Patel, Smita; Glidden, David V.; Korth, Carsten; Oehler, Abby; DeArmond, Stephen J.

    2012-01-01

    We report here the transmission of human prions to 18 new transgenic (Tg) mouse lines expressing 8 unique chimeric human/mouse prion proteins (PrP). Extracts from brains of two patients, who died of sporadic Creutzfeldt-Jakob disease (sCJD), contained either sCJD(MM1) or sCJD(VV2) prion strains and were used for inocula. Mice expressing chimeric PrP showed a direct correlation between expression level and incubation period for sCJD(MM1) prions irrespective of whether the transgene encoded methionine (M) or valine (V) at polymorphic residue 129. Tg mice expressing chimeric transgenes encoding V129 were unexpectedly resistant to infection with sCJD(VV2) prions, and when transmission did occur, it was accompanied by a change in strain type. The transmission of sCJD(MM1) prions was modulated by single amino acid reversions of each human PrP residue in the chimeric sequence. Reverting human residue 137 in the chimeric transgene from I to M prolonged the incubation time for sCJD(MM1) prions by more than 100 days; structural analyses suggest a profound change in the orientation of amino acid side chains with the I?M mutation. These findings argue that changing the surface charge in this region of PrP greatly altered the interaction between PrP isoforms during prion replication. Our studies contend that strain-specified replication of prions is modulated by PrP sequence-specific interactions between the prion precursor PrPC and the infectious product PrPSc. PMID:22438549

  2. Prions as adaptive conduits of memory and inheritance

    Microsoft Academic Search

    James Shorter; Susan Lindquist

    2005-01-01

    Changes in protein conformation drive most biological processes, but none have seized the imagination of scientists and the public alike as have the self-replicating conformations of prions. Prions transmit lethal neurodegenerative diseases by means of the food chain. However, self-replicating protein conformations can also constitute molecular memories that transmit genetic information. Here, we showcase definitive evidence for the prion hypothesis

  3. The kinetics of proteinase K digestion of linear prion polymers

    E-print Network

    The kinetics of proteinase K digestion of linear prion polymers Joanna Masel* and Vincent A. A are caused by a protein-only infectious agent, known as a prion. It is not clear how a protein can be capable of replicating itself, and the mechanism remains controversial. One in£uential model hypothesizes that prions

  4. Copper binding sites in the C-terminal domain of mouse prion protein: A hybrid (QM\\/MM) molecular dynamics study

    Microsoft Academic Search

    Maria Carola Colombo; Joost VandeVondele; Sabine Van Doorslaer; Alessandro Laio; Leonardo Guidoni; Ursula Rothlisberger

    2008-01-01

    We present a hybrid QM\\/MM Car-Parri- nello molecular dynamics study of the copper-loaded C-terminal domain of the mouse prion protein. By means of a sta- tistical analysis of copper coordination in known protein structures, we localized the protein regions with the highest propen- sity for copper ion binding. The identified candidate structures were subsequently refined via QM\\/MM simulations. Their EPR

  5. A novel copper(II) coordination at His186 in full-length murine prion protein

    SciTech Connect

    Watanabe, Yasuko [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)] [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Hiraoka, Wakako [Laboratory of Biophysics, School of Science and Technology, Meiji University, Kawasaki 214-8571 (Japan)] [Laboratory of Biophysics, School of Science and Technology, Meiji University, Kawasaki 214-8571 (Japan); Igarashi, Manabu; Ito, Kimihito [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan)] [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Shimoyama, Yuhei [Soft-Matter Physics Laboratory, Graduate School of Emergent Science, Muroran Institute of Technology, Muroran 050-8585 (Japan)] [Soft-Matter Physics Laboratory, Graduate School of Emergent Science, Muroran Institute of Technology, Muroran 050-8585 (Japan); Horiuchi, Motohiro [Laboratory of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)] [Laboratory of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Yamamori, Tohru; Yasui, Hironobu; Kuwabara, Mikinori [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)] [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Inagaki, Fuyuhiko [Laboratory of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 (Japan)] [Laboratory of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Inanami, Osamu, E-mail: inanami@vetmed.hokudai.ac.jp [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)] [Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan)

    2010-04-09

    To explore Cu(II) ion coordination by His{sup 186} in the C-terminal domain of full-length prion protein (moPrP), we utilized the magnetic dipolar interaction between a paramagnetic metal, Cu(II) ion, and a spin probe introduced in the neighborhood of the postulated binding site by the spin labeling technique (SDSL technique). Six moPrP mutants, moPrP(D143C), moPrP(Y148C), moPrP(E151C), moPrP(Y156C), moPrP(T189C), and moPrP(Y156C,H186A), were reacted with a methane thiosulfonate spin probe and a nitroxide residue (R1) was created in the binding site of each one. Line broadening of the ESR spectra was induced in the presence of Cu(II) ions in moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) but not moPrP(D143R1). This line broadening indicated the presence of electron-electron dipolar interaction between Cu(II) and the nitroxide spin probe, suggesting that each interspin distance was within 20 A. The interspin distance ranges between Cu(II) and the spin probes of moPrP(Y148R1), moPrP(Y151R1), moPrP(Y156R1), and moPrP(T189R1) were estimated to be 12.1 A, 18.1 A, 10.7 A, and 8.4 A, respectively. In moPrP(Y156R1,H186A), line broadening between Cu(II) and the spin probe was not observed. These results suggest that a novel Cu(II) binding site is involved in His186 in the Helix2 region of the C-terminal domain of moPrP{sup C}.

  6. Association of the prion protein gene with individual tissue weights in Scottish Blackface sheep.

    PubMed

    Sawalha, R M; Brotherstone, S; Lambe, N R; Villanueva, B

    2008-08-01

    This study investigated associations of prion protein (PrP) genotype with body composition and weight traits of Scottish Blackface ewes. Body composition was predicted using computer tomography (CT) scans to estimate muscle, carcass fat, internal fat, and bone weights. The traits were measured at 4 key seasonal production points (pre-mating, pregnancy, midlactation, and weaning) over 4 production cycles (2 to 5 yr old). There were 2,413 records for each of the CT traits measured on 335 ewes, and 26,649 records for each of the body condition score and BW traits for 2,356 ewes. From 1999 to 2004, animals were genotyped to determine polymorphisms at codons 136, 154, and 171, which are associated with scrapie susceptibility. Four alleles were found in the population (ARR, AHQ, ARQ, and VRQ). The data were analyzed using a linear mixed random regression model assuming that the direct additive genetic effect was a 2nd order Legendre polynomial function of time. The PrP genotype was included in the model as a fixed effect along with other fixed factors with significant effects (P < 0.05). Five separate analyses were carried out for each trait, depending on the method of classifying the PrP genotype. In the first analysis, animals were categorized according to the genotype. Only the 5 most common genotypes (ARR/ARR, ARR/AHQ, ARR/ARQ, AHQ/ARQ, and ARQ/ARQ) were included. In the last 4 analyses, animals were categorized according to the number of each PrP allele carried. For CT traits and body condition score, results showed that the PrP genotype has no association with the overall mean of the traits (averaged over age). For BW, ewes without the ARQ allele were at least 0.5 kg heavier than ARQ homozygous and heterozygous ewes. On the other hand, there was a significant interaction between PrP genotype and age of the ewe (i.e., the effect of PrP genotype was not the same at different ages for 5 out of the 6 traits studied). In general, ARQ carrying ewes mobilized more fat reserves at times of nutrient deficiency, such as during lactation, and gained it back more quickly by the mating season (when nutrients became abundant) than non-ARQ carriers. Therefore, selecting against this allele would have consequences on BW and seasonal mobilization of body reserves. The number of VRQ alleles (the most scrapie susceptible allele) carried was not significantly associated with any of the traits. PMID:18407978

  7. Oxidation of methionine 216 in sheep and elk prion protein is highly dependent upon the amino acid at position 218 but is not important for prion propagation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a sensitive mass spectrometry-based method of quantitating the prions present in elk and sheep. Calibration curves relating the area ratios of the selected analyte peptides and their homologous stable isotope labeled internal standards were prepared. This method was compared to the ELIS...

  8. Methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant of the human prion protein.

    PubMed

    Feng, Boya; Wang, Zonglin; Liu, Ting; Jin, Rui; Wang, Shaobo; Wang, Wei; Xiao, Gengfu; Zhou, Zheng

    2014-12-01

    The D178N mutation of the prion protein (PrP) results in the hereditary prion disease fatal familial insomnia (FFI). Little is known regarding the effects of methionine oxidation on the pathogenesis of D178N-associated FFI. In the present study, we found that the D178N variant was more susceptible to oxidation than wild-type PrP, as indicated by reverse-phase high performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) analysis. Circular dichroism (CD), differential scanning calorimetry (DSC), thioflavin T (ThT) binding assay studies demonstrated that methionine oxidation decreased the structural stability of the D178N variant, and the oxidized D178N variant exhibited a greater propensity to form ?-sheet-rich oligomers and aggregates. Moreover, these aggregates of oxidized D178N PrP were more resistant to proteinase K (PK) digestion. Additionally, using fluorescence confocal microscopy, we detected a high degree of aggregation in D178N-transfected Neuro-2a (N2a) cells after treatment with hydrogen peroxide (H2O2). Furthermore, the oxidation and consequent aggregation of the D178N variant induced greater apoptosis of N2a cells, as monitored using flow cytometry. Collectively, these observations suggest that methionine oxidation accelerates the aggregation and enhances the neurotoxicity of the D178N variant, possibly providing direct evidence to link the pathogenesis of D178N-associated FFI with methionine oxidation. PMID:25281825

  9. Species barriers for chronic wasting disease by in vitro conversion of prion protein

    Microsoft Academic Search

    Li Li; Michael B. Coulthart; Aru Balachandran; Avi Chakrabartty; Neil R. Cashman

    2007-01-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that can affect North American cervids (deer, elk, and moose). Using a novel in vitro conversion system based on incubation of prions with normal brain homogenates, we now report that PrPCWD of elk can readily induce the conversion of normal cervid PrP (PrPC) molecules to a protease-resistant form, but is less

  10. Superparamagnetic Nanoparticle Capture of Prions for Amplification?

    PubMed Central

    Miller, Michael B.; Supattapone, Surachai

    2011-01-01

    Prion diseases are associated with the presence of PrPSc, a disease-associated misfolded conformer of the prion protein. We report that superparamagnetic nanoparticles bind PrPSc molecules efficiently and specifically, permitting magnetic separation of prions from a sample mixture. Captured PrPSc molecules retain the activity to seed protein misfolding cyclic amplification (PMCA) reactions, enabling the rapid concentration of dilute prions to improve detection. Furthermore, superparamagnetic nanoparticles clear contaminated solutions of PrPSc. Our findings suggest that coupling magnetic nanoparticle capture with PMCA could accelerate and improve prion detection. Magnetic nanoparticles may also be useful for developing a nontoxic prion decontamination method for biologically derived products. PMID:21228242

  11. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent.

    PubMed

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-04-01

    The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection. PMID:20154089

  12. PRION CHARACTERIZATION USING CELL BASED APPROACHES

    Microsoft Academic Search

    Vadim Khaychuk

    2012-01-01

    Prions are the causative agents of a group of lethal, neurodegenerative conditions that include sheep scrapie, bovine spongiform encephalopathy (BSE), and human Creutzfeldt-Jakob disease (CJD). Prions are derived from the conversion of a normal, primarily alpha-helical, cellular prion protein (PrPC), to an infectious, beta sheet-rich conformer (PrPSc). Many unresolved issues surround the process of PrP conversion, and we know very

  13. Reduced expression of the presynaptic co-chaperone cysteine string protein alpha (CSP?) does not exacerbate experimentally-induced ME7 prion disease

    PubMed Central

    Davies, Matthew J.; Cooper, Matthew; Perry, V. Hugh; O’Connor, Vincent

    2015-01-01

    Infection of mice with the ME7 prion agent results in well-characterised neuropathological changes, which includes vacuolation, neurodegeneration and synaptic degeneration. Presynaptic dysfunction and degeneration is apparent through the progressive reduction in synaptic vesicle proteins and eventual loss of synapses. Cysteine string protein alpha (CSP?), which regulates refolding pathways at the synapse, exhibits an early decline during chronic neurodegeneration implicating it as a mediator of disease mechanisms. CSP? null mice develop a progressive neuronal dysfunction through disruption of the integrity of presynaptic function. In this study, we investigated whether reduced expression of CSP? would exacerbate ME7 prion disease. Wild type (+/+) and heterozygous (+/?) mice, which express about a ?50% reduction in CSP?, were used as a distinct genetic background on which to impose prion disease. +/+ and +/ ? mice were inoculated with brain homogenate from either a normal mouse brain (NBH) or from the brain of a mouse which displayed clinical signs of prion disease (ME7). Behavioural tests, western blotting and immunohistochemistry, which resolve key elements of synaptic dysfunction, were used to assess the effect of reduced CSP? on disease. Behavioural tests revealed no change in the progression of disease in ME7–CSP? +/? animals compared to ME7–CSP? +/+ animals. In addition, the accumulation of misfolded PrPSc, the diseased associated gliosis or synaptic loss were not different. Thus, the misfolding events that generate synaptic dysfunction and lead to synaptic loss are unlikely to be mediated by a disease associated decrease in the refolding pathways associated with CSP?. PMID:25623034

  14. 3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations

    NASA Astrophysics Data System (ADS)

    Cui, P. X.; Lian, F. L.; Wang, Y.; Wen, Yi; Chu, W. S.; Zhao, H. F.; Zhang, S.; Li, J.; Lin, D. H.; Wu, Z. Y.

    2014-02-01

    Prion-related protein (PrP), a cell-surface copper-binding glycoprotein, is considered to be responsible for a number of transmissible spongiform encephalopathies (TSEs). The structural conversion of PrP from the normal cellular isoform (PrPC) to the post-translationally modified form (PrPSc) is thought to be relevant to Cu2+ binding to histidine residues. Rabbits are one of the few mammalian species that appear to be resistant to TSEs, because of the structural characteristics of the rabbit prion protein (RaPrPC) itself. Here we determined the three-dimensional local structure around the C-terminal high-affinity copper-binding sites using X-ray absorption near-edge structure combined with ab initio calculations in the framework of the multiple-scattering (MS) theory. Result shows that two amino acid resides, Gln97 and Met108, and two histidine residues, His95 and His110, are involved in binding this copper(II) ion. It might help us understand the roles of copper in prion conformation conversions, and the molecular mechanisms of prion-involved diseases.

  15. Phenotyping of Protein-Prion (PrPsc)-accumulating Cells in Lymphoid and Neural Tissues of Naturally Scrapie-affected Sheep by Double-labeling Immunohistochemistry

    Microsoft Academic Search

    Olivier Andréoletti; Patricia Berthon; Etienne Levavasseur; Daniel Marc; Frédéric Lantier; Eoin Monks; Jean-Michel Elsen; François Schelcher

    SUMMARY Transmissible spongiform encephalopathies are fatal neurodegenerative dis- eases characterized by amyloid deposition of protein-prion (PrPsc), the pathogenic isoform of the host cellular protein PrPc, in the immune and central nervous systems. In the absence of definitive data on the nature of the infectious agent, PrPsc immunohistochemistry (IHC) constitutes one of the main methodologies for pathogenesis studies of these diseases.

  16. Accelerated High Fidelity Prion Amplification Within and Across Prion Species Barriers

    Microsoft Academic Search

    Kristi M. Green; Joaquín Castilla; Tanya S. Seward; Dana L. Napier; Jean E. Jewell; Claudio Soto; Glenn C. Telling

    2008-01-01

    Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP), as a substrate for in vitro generation of chronic wasting disease (CWD) prions by protein misfolding cyclic amplification (PMCA). Characterization of this infectivity in Tg(CerPrP) mice demonstrated

  17. Development of monoclonal antibodies against the abnormal prion protein isoform (PrP(res)) associated with chronic wasting disease (CWD).

    PubMed

    Jeong, Hyun-Jeong; Lee, Nak-Hyung; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Seo, Kun-Ho; Kim, Dong-Woon; Kim, Yong-Sun; Choi, In-Soo

    2012-12-01

    Monoclonal antibodies (mAbs) specific for the abnormal prion protein isoform (PrP(res)) are indispensable for diagnosing chronic wasting disease (CWD). In this study, eight mAbs were developed by immunizing PrP knockout mice with recombinant elk PrP and an immunogenic PrP peptide. The reactivity of the mAbs to recombinant PrP and the PrP peptide was measured, and their isotypes were subsequently determined. Among them, four mAbs (B85-05, B85-08, B85-12, and B77-75) were shown by Western blotting to recognize proteinase K-treated brain homogenate derived from an elk suffering from CWD. PMID:23271186

  18. The prion protein regulates beta-amyloid-mediated self-renewal of neural stem cells in vitro.

    PubMed

    Collins, Steven J; Tumpach, Carolin; Li, Qiao-Xin; Lewis, Victoria; Ryan, Timothy M; Roberts, Blaine; Drew, Simon C; Lawson, Victoria A; Haigh, Cathryn L

    2015-01-01

    The beta-amyloid (A?) peptide and the A?-oligomer receptor, prion protein (PrP), both influence neurogenesis. Using in vitro murine neural stem cells (NSCs), we investigated whether A? and PrP interact to modify neurogenesis. A? imparted PrP-dependent changes on NSC self-renewal, with PrP-ablated and wild-type NSCs displaying increased and decreased cell growth, respectively. In contrast, differentiation of A?-treated NSCs into mature cells was unaffected by PrP expression. Such marked PrP-dependent differences in NSC growth responses to A? provides further evidence of biologically significant interactions between these two factors and an important new insight into regulation of NSC self-renewal in vivo. PMID:25884827

  19. Prion protein gene (PRNP) variants and evidence for strong purifying selection in functionally important regions of bovine exon 3

    PubMed Central

    Seabury, Christopher M.; Honeycutt, Rodney L.; Rooney, Alejandro P.; Halbert, Natalie D.; Derr, James N.

    2004-01-01

    Amino acid replacements encoded by the prion protein gene (PRNP) have been associated with transmissible and hereditary spongiform encephalopathies in mammalian species. However, an association between bovine spongiform encephalopathy (BSE) and bovine PRNP exon 3 has not been detected. Moreover, little is currently known regarding the mechanisms of evolution influencing the bovine PRNP gene. Therefore, in this study we evaluated the patterns of nucleotide variation associated with PRNP exon 3 for 36 breeds of domestic cattle and representative samples for 10 additional species of Bovinae. The results of our study indicate that strong purifying selection has intensely constrained PRNP over the long-term evolutionary history of the subfamily Bovinae, especially in regions considered to be of functional, structural, and pathogenic importance in humans as well as other mammals. The driving force behind this intense level of purifying selection remains to be explained. PMID:15477588

  20. From prion diseases to prion-like propagation mechanisms of neurodegenerative diseases.

    PubMed

    Acquatella-Tran Van Ba, Isabelle; Imberdis, Thibaut; Perrier, Véronique

    2013-01-01

    Prion diseases are fatal neurodegenerative sporadic, inherited, or acquired disorders. In humans, Creutzfeldt-Jakob disease is the most studied prion disease. In animals, the most frequent prion diseases are scrapie in sheep and goat, bovine spongiform encephalopathy in cattle, and the emerging chronic wasting disease in wild and captive deer in North America. The hallmark of prion diseases is the deposition in the brain of PrP(Sc), an abnormal ? -sheet-rich form of the cellular prion protein (PrP(C)) (Prusiner 1982). According to the prion hypothesis, PrP(Sc) can trigger the autocatalytic conversion of PrP(C) into PrP(Sc), presumably in the presence of cofactors (lipids and small RNAs) that have been recently identified. In this review, we will come back to the original works that led to the discovery of prions and to the protein-only hypothesis proposed by Dr. Prusiner. We will then describe the recent reports on mammalian synthetic prions and recombinant prions that strongly support the protein-only hypothesis. The new concept of "deformed templating" regarding a new mechanism of PrP(Sc) formation and replication will be exposed. The review will end with a chapter on the prion-like propagation of other neurodegenerative disorders, such as Alzheimer's and Parkinson's disease and tauopathies. PMID:24222767

  1. Prion Hypothesis: The end of the Controversy?

    PubMed Central

    Soto, Claudio

    2010-01-01

    Forty-three years have passed since it was first proposed that a protein could be the sole component of the infectious agent responsible for the enigmatic prion diseases. Many discoveries have strongly supported the prion hypothesis, but only recently has this once heretical hypothesis been widely accepted by the scientific community. In the past 3 years, researchers have achieved the holy grail demonstration that infectious material can be generated in vitro using completely defined components. These breakthroughs have proven that a misfolded protein is the active component of the infectious agent and that the propagation of the disease and its unique features depends on the self-replication of the infectious folding of the prion protein. In spite of these important discoveries, it remains unclear whether another molecule besides the misfolded prion protein might be an essential element of the infectious agent. Future research promises to reveal many more intriguing features about the rogue prions. PMID:21130657

  2. Pathogenesis of prion diseases: current status and future outlook

    Microsoft Academic Search

    Mathias Heikenwalder; Adriano Aguzzi

    2006-01-01

    The prion, a conformational variant of a host protein, is the infectious particle responsible for transmissible spongiform encephalopathy (TSE), a fatal neurodegenerative disease of humans and animals. The principal target of prion pathology is the brain, yet most TSEs also display prion replication at extra-cerebral locations, including secondary lymphoid organs and sites of chronic inflammation. Despite significant progress in our

  3. Detecting and quantifying prions: Mass spectrometry-based approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are novel pathogens that cause a set of rare fatal neurological diseases know as transmissible spongiform encephalopathies. Examples of these diseases include Creutzfeldt-Jakob disease, scrapie and chronic wasting disease. Prions are able to recruit a normal cellular prion protein and convert...

  4. HeritableRemodelingofYeastMulticellularity by an Environmentally Responsive Prion

    E-print Network

    Zhang, Jianzhi

    HeritableRemodelingofYeastMulticellularity by an Environmentally Responsive Prion Daniel L. Holmes.cell.2013.02.026 SUMMARY Prion proteins undergo self-sustaining conforma- tional conversions that heritably is translated into pheno- type. But the breadth of prion influences on biology and their evolutionary

  5. Mechanism of Prion Propagation: Amyloid Growth Occurs by Monomer Addition

    E-print Network

    Vale, Ronald D.

    Mechanism of Prion Propagation: Amyloid Growth Occurs by Monomer Addition Sean R. Collins, Adam yeast prion protein Sup35. Rapid polymerization occurs in the absence of observable intermediates of prion propagation: Amyloid growth occurs by monomer addition. PLoS Biol 2(10): e321. Introduction Many

  6. Pathological prion protein in the tongues of sheep infected with naturally occurring scrapie.

    PubMed

    Casalone, Cristina; Corona, Cristiano; Crescio, Maria Ines; Martucci, Francesca; Mazza, Maria; Ru, Giuseppe; Bozzetta, Elena; Acutis, Pier Luigi; Caramelli, Maria

    2005-05-01

    Tongue involvement by prion spreading was shown to be a common outcome after oral or intracranial experimental challenge with scrapie and transmissible mink encephalopathy sources in rodent models. It is also known that bovine spongiform encephalopathy, which is pathogenic for humans, is experimentally transmissible to sheep and can lead to a disease indistinguishable from scrapie. A recent European Food Safety Authority opinion recommended research into PrPsc accumulation in the tongues of ruminants. We report on the detection of PrPsc in the tongues of seven scrapie-infected sheep by immunohistochemistry and Western blotting. PMID:15827199

  7. The physical basis of how prion conformations determine strain phenotypes

    NASA Astrophysics Data System (ADS)

    Tanaka, Motomasa; Collins, Sean R.; Toyama, Brandon H.; Weissman, Jonathan S.

    2006-08-01

    A principle that has emerged from studies of protein aggregation is that proteins typically can misfold into a range of different aggregated forms. Moreover, the phenotypic and pathological consequences of protein aggregation depend critically on the specific misfolded form. A striking example of this is the prion strain phenomenon, in which prion particles composed of the same protein cause distinct heritable states. Accumulating evidence from yeast prions such as [PSI+] and mammalian prions argues that differences in the prion conformation underlie prion strain variants. Nonetheless, it remains poorly understood why changes in the conformation of misfolded proteins alter their physiological effects. Here we present and experimentally validate an analytical model describing how [PSI+] strain phenotypes arise from the dynamic interaction among the effects of prion dilution, competition for a limited pool of soluble protein, and conformation-dependent differences in prion growth and division rates. Analysis of three distinct prion conformations of yeast Sup35 (the [PSI+] protein determinant) and their in vivo phenotypes reveals that the Sup35 amyloid causing the strongest phenotype surprisingly shows the slowest growth. This slow growth, however, is more than compensated for by an increased brittleness that promotes prion division. The propensity of aggregates to undergo breakage, thereby generating new seeds, probably represents a key determinant of their physiological impact for both infectious (prion) and non-infectious amyloids.

  8. Highly promiscuous nature of prion polymerization.

    PubMed

    Makarava, Natallia; Lee, Cheng-I; Ostapchenko, Valeriy G; Baskakov, Ilia V

    2007-12-14

    The primary structure of the prion protein (PrP) is believed to be the key factor in regulating the species barrier of prion transmission. Because the strength of the species barrier was found to be affected by the prion strain, the extent to which the barrier can indeed be attributed to differences in the PrP primary structures of either donor and acceptor species remains unclear. In this study, we exploited the intrinsic property of PrP to polymerize spontaneously into disease-related amyloid conformations in the absence of a strain-specified template and analyzed polymerization of mouse and hamster full-length recombinant PrPs. Unexpectedly, we found no evidence of species specificity in cross-seeding polymerization assays. Even when both recombinant PrP variants were present in mixtures, preformed mouse or hamster fibrils displayed no selectivity in elongation reactions and consumed equally well both homologous and heterologous substrates. Analysis of individual fibrils revealed that fibrils can elongate in a bidirectional or unidirectional manner. Our work revealed that, in the absence of a cellular environment, post-translational modifications, or strain-specified conformational constraints, PrP fibrils are intrinsically promiscuous and capable of utilizing heterologous PrP variants as a substrate in a highly efficient manner. This study suggests that amyloid structures are capable of accommodating local perturbations arising because of a mismatch in amino acid sequences and highlights the promiscuous nature of the self-propagating activity of amyloid fibrils. PMID:17940285

  9. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion.

    PubMed

    Wang, Xinhe; McGovern, Gillian; Zhang, Yi; Wang, Fei; Zha, Liang; Jeffrey, Martin; Ma, Jiyan

    2015-07-01

    The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / ?g. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 - 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. PMID:26136122

  10. Spreading of a Prion Domain from Cell-to-Cell by Vesicular Transport in Caenorhabditis elegans

    E-print Network

    Morimoto, Richard

    Spreading of a Prion Domain from Cell-to-Cell by Vesicular Transport in Caenorhabditis elegans, 3 Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France Abstract Prion expressing the prion domain NM of the cytosolic yeast prion protein Sup35, in which aggregation and toxicity

  11. Aminonaphthalene 2Cyanoacrylate (ANCA) Probes Fluorescently Discriminate between Amyloid and Prion Plaques in Brain

    E-print Network

    Theodorakis, Emmanuel

    and Prion Plaques in Brain Kevin Cao, Mona Farahi, Marianna Dakanali, Willy M. Chang, Christina J. Sigurdson- (A) peptides associated with AD or from prion (PrPSc ) proteins associated with prion disease (Figure) PrPSc deposits in the corpus callosum of a prion-infected mouse. (C) Ex vivo fluorescence spectra

  12. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion

    PubMed Central

    Wang, Xinhe; McGovern, Gillian; Zhang, Yi; Wang, Fei; Zha, Liang; Jeffrey, Martin; Ma, Jiyan

    2015-01-01

    The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs) is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion) recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50 / ?g. In addition, intraperitoneal (i.p.) inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210 – 220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d) and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs. PMID:26136122

  13. Disease-associated prion protein in neural and lymphoid tissues of mink (Mustela vison) inoculated with transmissible mink encephalopathy.

    PubMed

    Schneider, D A; Harrington, R D; Zhuang, D; Yan, H; Truscott, T C; Dassanayake, R P; O'Rourke, K I

    2012-11-01

    Transmissible spongiform encephalopathies (TSEs) are diagnosed by immunodetection of disease-associated prion protein (PrP(d)). The distribution of PrP(d) within the body varies with the time-course of infection and between species, during interspecies transmission, as well as with prion strain. Mink are susceptible to a form of TSE known as transmissible mink encephalopathy (TME), presumed to arise due to consumption of feed contaminated with a single prion strain of ruminant origin. After extended passage of TME isolates in hamsters, two strains emerge, HY and DY, each of which is associated with unique structural isoforms of PrP(TME) and of which only the HY strain is associated with accumulation of PrP(TME) in lymphoid tissues. Information on the structural nature and lymphoid accumulation of PrP(TME) in mink is limited. In this study, 13 mink were challenged by intracerebral inoculation using late passage TME inoculum, after which brain and lymphoid tissues were collected at preclinical and clinical time points. The distribution and molecular nature of PrP(TME) was investigated by techniques including blotting of paraffin wax-embedded tissue and epitope mapping by western blotting. PrP(TME) was detected readily in the brain and retropharyngeal lymph node during preclinical infection, with delayed progression of accumulation within other lymphoid tissues. For comparison, three mink were inoculated by the oral route and examined during clinical disease. Accumulation of PrP(TME) in these mink was greater and more widespread, including follicles of rectoanal mucosa-associated lymphoid tissue. Western blot analyses revealed that PrP(TME) accumulating in the brain of mink is structurally most similar to that accumulating in the brain of hamsters infected with the DY strain. Collectively, the results of extended passage in mink are consistent with the presence of only a single strain of TME, the DY strain, capable of inducing accumulation of PrP(TME) in the lymphoid tissues of mink but not in hamsters. Thus, mink are a relevant animal model for further study of this unique strain, which ultimately may have been introduced through consumption of a TSE of ruminant origin. PMID:22595634

  14. Viruses and prions of Saccharomyces cerevisiae

    PubMed Central

    Wickner, Reed B.; Fujimura, Tsutomu; Esteban, Rosa

    2014-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses and prions. Studies of the mechanisms of virus and prion replication, virus structure and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for or blocking the propagation of the viruses and prions, and proteins involved in expression of viral components. Here we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast. PMID:23498901

  15. Neurodegenerative Diseases: Expanding the Prion Concept.

    PubMed

    Walker, Lary C; Jucker, Mathias

    2015-07-01

    The prion paradigm has emerged as a unifying molecular principle for the pathogenesis of many age-related neurodegenerative diseases. This paradigm holds that a fundamental cause of specific disorders is the misfolding and seeded aggregation of certain proteins. The concept arose from the discovery that devastating brain diseases called spongiform encephalopathies are transmissible to new hosts by agents consisting solely of a misfolded protein, now known as the prion protein. Accordingly, "prion" was defined as a "proteinaceous infectious particle." As the concept has expanded to include other diseases, many of which are not infectious by any conventional definition, the designation of prions as infectious agents has become problematic. We propose to define prions as "proteinaceous nucleating particles" to highlight the molecular action of the agents, lessen unwarranted apprehension about the transmissibility of noninfectious proteopathies, and promote the wider acceptance of this revolutionary paradigm by the biomedical community. PMID:25840008

  16. Effect of glycans and the glycophosphatidylinositol anchor on strain dependent conformations of scrapie prion protein: improved purifications and infrared spectra.

    PubMed

    Baron, Gerald S; Hughson, Andrew G; Raymond, Gregory J; Offerdahl, Danielle K; Barton, Kelly A; Raymond, Lynne D; Dorward, David W; Caughey, Byron

    2011-05-31

    Mammalian prion diseases involve conversion of normal prion protein, PrP(C), to a pathological aggregated state (PrP(res)). The three-dimensional structure of PrP(res) is not known, but infrared (IR) spectroscopy has indicated high, strain-dependent ?-sheet content. PrP(res) molecules usually contain a glycophosphatidylinositol (GPI) anchor and large Asn-linked glycans, which can also vary with strain. Using IR spectroscopy, we tested the conformational effects of these post-translational modifications by comparing wild-type PrP(res) with GPI- and glycan-deficient PrP(res) produced in GPI-anchorless PrP transgenic mice. These analyses required the development of substantially improved purification protocols. Spectra of both types of PrP(res) revealed conformational differences between the 22L, ME7, and Chandler (RML) murine scrapie strains, most notably in bands attributed to ?-sheets. These PrP(res) spectra were also distinct from those of the hamster 263K scrapie strain. Spectra of wild-type and anchorless 22L PrP(res) were nearly indistinguishable. With ME7 PrP(res), modest differences between the wild-type and anchorless spectra were detected, notably an ?2 cm(-1) shift in an apparent ?-sheet band. Collectively, the data provide evidence that the glycans and anchor do not grossly affect the strain-specific secondary structures of PrP(res), at least relative to the differences observed between strains, but can subtly affect turns and certain ?-sheet components. Recently reported H-D exchange analyses of anchorless PrP(res) preparations strongly suggested the presence of strain-dependent, solvent-inaccessible ?-core structures throughout most of the C-terminal half of PrP(res) molecules, with no remaining ?-helix. Our IR data provide evidence that similar core structures also comprise wild-type PrP(res). PMID:21539311

  17. Synthetic Mammalian Prions

    Microsoft Academic Search

    Giuseppe Legname; Ilia V. Baskakov; Hoang-Oanh B. Nguyen; Detlev Riesner; Fred E. Cohen; Stephen J. DeArmond

    2004-01-01

    Recombinant mouse prion protein (recMoPrP) produced in Escherichia coli was polymerized into amyloid fibrils that represent a subset of beta sheet-rich structures. Fibrils consisting of recMoPrP(89-230) were inoculated intracerebrally into transgenic (Tg) mice expressing MoPrP(89-231). The mice developed neurologic dysfunction between 380 and 660 days after inoculation. Brain extracts showed protease-resistant PrP by Western blotting; these extracts transmitted disease to

  18. Computational Analysis of Protein Sequence and Structure

    E-print Network

    MacCallum, Bob

    , a novel sequence alignment algorithm employing direct comparisons of predicted se* *c- ondary structure Garnier Osguthorpe Robson (secondary structure prediction method) NMR Nuclear magnetic resonance Classification of Proteins (Murzin et al., 1995) SIVA Sequence-derived Information Vector Alignment

  19. Bacterial Colitis Increases Susceptibility to Oral Prion Disease

    PubMed Central

    Sigurdson, Christina J.; Heikenwalder, Mathias; Manco, Giuseppe; Barthel, Manja; Schwarz, Petra; Stecher, Bärbel; Krautler, Nike J.; Hardt, Wolf-Dietrich; Seifert, Burkhardt; MacPherson, Andrew J. S.; Corthesy, Irène; Aguzzi, Adriano

    2010-01-01

    Dietary exposure to prion-contaminated materials has caused kuru and variant Creutzfeldt-Jakob disease in humans, and transmissible spongiform encephalopathies (TSEs) of cattle, mink, and felines. The epidemiology of dietary prion infections suggest that host genetic modifiers, and possibly exogenous cofactors, may play a decisive role in determining disease susceptibility. However, few cofactors influencing prion susceptibility have been identified. Here we investigated whether colitis might represent one such cofactor. We report that moderate colitis caused by an attenuated strain of Salmonella more than doubles the susceptibility of mice to oral prion infection, and modestly accelerates the development of disease after prion challenge. The prion protein was upregulated in intestines and mesenteric lymph nodes of mice with colitis, providing a possible mechanism for the impact of colitis onto prion pathogenesis. Therefore, moderate intestinal inflammation at the time of prion exposure may constitute one of the elusive risk factors underlying the development of TSE. PMID:19072552

  20. Endogenous Proteolytic Cleavage of Normal and Disease-Associated Isoforms of the Human Prion Protein in Neural and Non-Neural Tissues

    PubMed Central

    Jiménez-Huete, Adolfo; Lievens, Patricia M. J.; Vidal, Rubén; Piccardo, Pedro; Ghetti, Bernardino; Tagliavini, Fabrizio; Frangione, Blas; Prelli, Frances

    1998-01-01

    We have investigated the proteolytic cleavage of the cellular (PrPC) and pathological (PrPSc) isoforms of the human prion protein (PrP) in normal and prion-affected brains and in tonsils and platelets from neurologically intact individuals. The various PrP species were resolved after deglycosylation according to their electrophoretic mobility, immunoreactivity, Sarkosyl solubility, and, as a novel approach, resistance to endogenous proteases. First, our data show that PrPC proteolysis in brain originates amino-truncated peptides of 21 to 22 and 18 (C1) kd that are similar in different regions and are not modified by the PrP codon 129 genotype, a polymorphism that affects the expression of prion disorders. Second, this proteolytic cleavage of PrPC in brain is blocked by inhibitors of metalloproteases. Third, differences in PrPC proteolysis, and probably in Asn glycosylation and glycosylphosphatidylinositol anchor composition, exist between neural and non-neural tissues. Fourth, protease-resistant PrPSc cores in sporadic Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker F198S disease brains all have an intact C1 cleavage site (Met111-His112), which precludes disruption of a domain associated with toxicity and fibrillogenesis. Fifth, the profile of endogenous proteolytic PrPSc peptides is characteristic of each disorder studied, thus permitting the molecular classification of these prion diseases without the use of proteinase K and even a recognition of PrPSc heterogeneity within type 2 CJD patients having different codon 129 genotype and neuropathological phenotype. This does not exclude the role of additional factors in phenotypic expression; in particular, differences in glycosylation that may be especially relevant in the new variant CJD. Proteolytic processing of PrP may play an important role in the neurotropism and phenotypic expression of prion diseases, but it does not appear to participate in disease susceptibility. PMID:9811348

  1. Analyzing Protein Sequences Using Signal Analysis Techniques

    Microsoft Academic Search

    Karen M. Bloch; Gonzalo R. Arce

    This chapter discusses the use of frequency and time-frequency signal processing methods for the analysis of protein sequence\\u000a data. The amino acid sequence of a protein may be considered as a twenty symbol alphabet sequence, or it may be considered\\u000a as a sequence of numerical values reflecting various physicochemical aspects of the amino acids such as hydrophobicity, bulkiness,\\u000a or electron-ion

  2. Scrapie-Induced Defects in Learning and Memory of Transgenic Mice Expressing Anchorless Prion Protein Are Associated with Alterations in the Gamma Aminobutyric Acid-Ergic Pathway

    Microsoft Academic Search

    Matthew J. Trifilo; Manuel Sanchez-Alavez; Laura Solforosi; Joie Bernard-Trifilo; Stefan Kunz; Dorian McGavern; Michael B. A. Oldstone

    2008-01-01

    After infection with RML murine scrapie agent, transgenic (tg) mice expressing prion protein (PrP) without its glycophosphatidylinositol (GPI) membrane anchor (GPI\\/ PrP tg mice) continue to make abundant amounts of the abnormally folded disease-associated PrPres but have a normal life span. In contrast, all age-, sex-, and genetically matched mice with a GPI-anchored PrP become moribund and die due to

  3. Calorimetric investigation of copper binding in the N-terminal region of the prion protein at low copper loading: evidence for an entropically favorable first binding event.

    PubMed

    Gogineni, Devi Praneetha; Spuches, Anne M; Burns, Colin S

    2015-01-20

    Although the Cu(2+)-binding sites of the prion protein have been well studied when the protein is fully saturated by Cu(2+), the Cu(2+)-loading mechanism is just beginning to come into view. Because the Cu(2+)-binding modes at low and intermediate Cu(2+) occupancy necessarily represent the highest-affinity binding modes, these are very likely populated under physiological conditions, and it is thus essential to characterize them in order to understand better the biological function of copper-prion interactions. Besides binding-affinity data, almost no other thermodynamic parameters (e.g., ?H and ?S) have been measured, thus leaving undetermined the enthalpic and entropic factors that govern the free energy of Cu(2+) binding to the prion protein. In this study, isothermal titration calorimetry (ITC) was used to quantify the thermodynamic parameters (K, ?G, ?H, and T?S) of Cu(2+) binding to a peptide, PrP(23-28, 57-98), that encompasses the majority of the residues implicated in Cu(2+) binding by full-length PrP. Use of the buffer N-(2-acetomido)-aminoethanesulfonic acid (ACES), which is also a well-characterized Cu(2+) chelator, allowed for the isolation of the two highest affinity binding events. Circular dichroism spectroscopy was used to characterize the different binding modes as a function of added Cu(2+). The Kd values determined by ITC, 7 and 380 nM, are well in line with those reported by others. The first binding event benefits significantly from a positive entropy, whereas the second binding event is enthalpically driven. The thermodynamic values associated with Cu(2+) binding by the A? peptide, which is implicated in Alzheimer's disease, bear striking parallels to those found here for the prion protein. PMID:25541747

  4. Copper deficiency in the young bovine results in dramatic decreases in brain copper concentration but does not alter brain prion protein biology

    Microsoft Academic Search

    L. R. Legleiter; J. W. Spears; H. C. Liu

    2008-01-01

    An Mn for Cu substitution on cellular prion proteins (PrPc) in the brain that results in bio- chemical changes to PrPc has been implicated in the pathogenesis of transmissible spongiform encephal- opathies. Recent research in the mature bovine does not support this theory. The present study tested this hypothesis by using progeny from gestating cows re- ceiving Cu-deficient diets or

  5. Neuropathological features of a case with schizophrenia and prion protein gene P102L mutation before onset of Gerstmann-Sträussler-Scheinker disease

    Microsoft Academic Search

    Kensuke Sasaki; Katsumi Doh-ura; Akiko Furuta; Sachi Nakashima; Yumi Morisada; Jun Tateishi; Toru Iwaki

    2003-01-01

    Gerstmann-Sträussler-Scheinker disease (GSS) is a hereditary transmissible spongiform encephalopathy associated with prion protein gene mutation P102L. The age of onset is roughly restricted to around the sixth decade; however, it is unclear whether the disease-specific pathology of GSS is already evident in the pre-clinical stage. We had a chance to examine an autopsy case with PRNP P102L mutation. The patient

  6. One Octarepeate Expansion to the Human Prion Protein Alters Both the Zn2plus and Cu2plus Coordination Environments within the Octarepeate Domain

    Microsoft Academic Search

    J Shearer; K Rosenkoetter; P Callan; C Pham

    2011-01-01

    The influence of a single octarepeat expansion on the Cu{sup II} and Zn{sup II} coordination environments within the octarepeat domain of the human prion protein is examined. Using X-ray absorption spectroscopy and diethyl pyrocarbonate labeling studies, we find that at low copper concentrations the 'normal' octarepeat domain (four PHGGGWGQ repeats) coordinates Zn{sup II} in an (N\\/O)â coordination environment with two

  7. Monoacylated Cellular Prion Proteins Reduce Amyloid-?-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    PubMed Central

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-? (A?) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by A? oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural A?”, sequestering A? outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the A?-induced activation of cytoplasmic phospholipase A2 (cPLA2) and A?-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to ?-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by A? oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding A? oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  8. Monoacylated Cellular Prion Proteins Reduce Amyloid-?-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage.

    PubMed

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-? (A?) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by A? oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound "natural A?", sequestering A? outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the A?-induced activation of cytoplasmic phospholipase A2 (cPLA2) and A?-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to ?-synuclein, a protein associated with synapse damage in Parkinson's disease. In synaptosomes, the aggregation of PrPC by A? oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding A? oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  9. Accelerated, Spleen-Based Titration of Variant Creutzfeldt-Jakob Disease Infectivity in Transgenic Mice Expressing Human Prion Protein with Sensitivity Comparable to That of Survival Time Bioassay

    PubMed Central

    Halliez, Sophie; Reine, Fabienne; Herzog, Laetitia; Jaumain, Emilie; Haïk, Stéphane; Rezaei, Human; Vilotte, Jean-Luc; Laude, Hubert

    2014-01-01

    ABSTRACT The dietary exposure of the human population to the prions responsible for the bovine spongiform encephalopathy (BSE) epizooty has led to the emergence of variant Creutzfeldt-Jakob disease (vCJD). This fatal, untreatable neurodegenerative disorder is a growing public health concern because the prevalence of the infection seems much greater than the disease incidence and because secondary transmission of vCJD by blood transfusion or use of blood products has occurred. A current limitation in variant CJD risk assessment is the lack of quantitative information on the infectivity of contaminated tissues. To address this limitation, we tested the potential of a transgenic mouse line overexpressing human prion protein (PrP), which was previously reported to propagate vCJD prions. Endpoint titration of vCJD infectivity in different tissues was evaluated by two different methods: (i) the “classical” bioassay, based on the appearance of clinical symptoms and the detection of pathological prion protein in tissues of the inoculated mouse, and (ii) a shortened bioassay based on the detection of the protein in the mouse spleen at defined time points. The two methods proved equally sensitive in quantifying infectivity, even after very-low-dose inoculation of infected material, but the time schedule was shortened from ?2.5 years to ?1 year with the spleen bioassay. Compared to the “gold-standard” RIII model routinely used for endpoint titration of vCJD/BSE prions, either method improved the sensitivity by >2 orders of magnitude and allowed reevaluating the infectious titer of spleen from a vCJD individual at disease end stage to >1,000-fold-higher values. IMPORTANCE Here, we provide key reevaluation of the infectious titer of variant CJD brain and spleen tissues. The highly sensitive, accelerated spleen-based assay should thus constitute a key advance for variant CJD epidemiological and risk assessment purposes and should greatly facilitate future titration studies, including, for example, those aimed at validating decontamination procedures. The overlooked notion that the lymphoid tissue exhibits a higher capacity than the brain to replicate prions even after low-dose infection raises new questions about the molecular and/or cellular determinant(s) involved, a key issue regarding potent silent carriers of variant CJD in the lymphoid tissue. PMID:24850746

  10. Decontamination of prion protein (BSE301V) using a genetically engineered protease.

    PubMed

    Dickinson, J; Murdoch, H; Dennis, M J; Hall, G A; Bott, R; Crabb, W D; Penet, C; Sutton, J M; Raven, N D H

    2009-05-01

    A previous study has demonstrated the potential of alkaline proteases to inactivate bovine spongiform encephalopathy (BSE301V). Here we explored the use of MC3, a genetically engineered variant of Bacillus lentus subtilisin. MC3 was used to digest BSE301V infectious mouse brain homogenate (iMBH). MC3 eliminated all detectable 6H4-immunoreactive material at pH 10 and 12; however, Proteinase K was only partially effective at pH 12. When bioassayed in VM mice, MC3- and Proteinase K-digested iMBH gave respectively 66.6% and 22.7% survival rates. Using a titration series for disease incubation, this equates to a >7log reduction in infectivity for MC3 and >6log reduction for Proteinase K. This study demonstrates the potential for thermostable proteases to be developed as effective inactivation processes for prion agents in healthcare management. PMID:19201054

  11. [Prion biology: update].

    PubMed

    Weber, E L

    1999-01-01

    The word "prion" was created in 1982 to name the etiological agent of the transmissible spongiform encephalopathies (TSE), a group of degenerative diseases affecting central nervous system of man and animals, including bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD). Prions present two isoforms: PrPC, cellular or normal, which exists in all vertebrates and is sensitive to detergents and proteases, and PrPSc, disease associated, partially resistant. The molecular weight of both PrPC and PrPSc is 30-35 kD; after treatment with detergents and proteases PrPSc originates PrP27-30 (27-30 kD). PrPC is also denominated PrPsens, and PrPSc is PrPres. PrPSc and PrP27-30 cause disease. PrPC presents polymorphisms specifically associated with some TSE. The "prion hypothesis" says that PrPSc transmits its characteristic resistance to PrPC through conformational changes, and accumulation of the protein, without involvement of nucleic acids, causes disease. Most of the hypothesis has been demonstrated with transgenic mice, computer models and recombinant proteins, but the existence of strains of the TSE agents has not been explained. The description of similar mechanisms of propagation of protein conformational properties in Saccharomyces cereviseae has extended the meaning of the prion definition. Although the transmission of conformational changes between PrPC and PrPSc was experimentally shown, the pathogenesis of the TSE remains unknown. The relationship between BSE and vCJD is mentioned. PMID:10615684

  12. Nanopore Analysis of Wild-Type and Mutant Prion Protein (PrPC): Single Molecule Discrimination and PrPC Kinetics

    PubMed Central

    Jetha, Nahid N.; Semenchenko, Valentyna; Wishart, David S.; Cashman, Neil R.; Marziali, Andre

    2013-01-01

    Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrPC) in the central nervous system into the infectious isoform (PrPSc). The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrPSc. A number of pathogenic PrPC mutants exist that are characterized by an increased propensity for conversion into PrPSc and that differ from wild-type by only a single amino-acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrPC conversion. In this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the current fluctuations through an organic ?-hemolysin nanometer-scale pore (nanopore) in which a single prion protein has been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrPC, (a PrPC mutant associated with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease), exhibit easily distinguishable current signatures and kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate discrimination between these two proteins at the single molecule level based on the kinetics of a single PrPC capture event. Moreover, we present a four-state model to describe wild-type PrPC kinetics in the pore as a first step in our investigation on characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrPC. These results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences in stability between wild-type and mutant prion proteins at the single molecule level. PMID:23393562

  13. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.

    PubMed

    Singh, Jogender; Udgaonkar, Jayant B

    2013-09-23

    A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural events describing the conformational conversion of monomeric PrP to aggregated PrP. In this study, the sequence of the structural events in the case of amyloid fibril formation by recombinant mouse prion protein at pH7 has been characterized by hydrogen-deuterium exchange and mass spectrometry. The observation that fibrils are substantially more stable to hydrogen-deuterium exchange than is native monomer allows both forms to be quantified during the course of the aggregation reaction. Under the aggregation conditions utilized, native monomeric protein and amyloid fibrils are the only forms of the protein detectable during the course of the fibril formation reaction, suggesting that monomer directly adds on to the fibril template. Conformational conversion is shown to occur in two steps after the binding of monomer to fibril, with helix 1 unfolding only after helices 2 and 3 transform into ?-sheet. Local stability in the ?-sheet core region (residues ~159-225) of the fibrils is shown to be sequence dependent in that it varies along the length of the core, and local stability in protein molecules that are ordered in the structurally heterogeneous sequence segment 109-132 is shown to be similar to that in the core. This new understanding of the structural events during prion protein aggregation has important bearing on our comprehension of the molecular basis of prion pathogenesis. PMID:23811055

  14. Novel compounds lowering the cellular isoform of the human prion protein in cultured human cells

    PubMed Central

    Silber, B. Michael; Gever, Joel R.; Rao, Satish; Li, Zhe; Renslo, Adam R.; Widjaja, Kartika; Wong, Casper; Giles, Kurt; Freyman, Yevgeniy; Elepano, Manuel; Irwin, John J.; Jacobson, Matthew P.; Prusiner, Stanley B.

    2014-01-01

    Purpose Previous studies showed that lowering PrPC concomitantly reduced PrPSc in the brains of mice inoculated with prions. We aimed to develop assays that measure PrPC on the surface of human T98G glioblastoma and IMR32 neuroblastoma cells. Using these assays, we sought to identify chemical hits, confirmed hits, and scaffolds that potently lowered PrPC levels in human brains cells, without lethality, and that could achieve drug concentrations in the brain after oral or intraperitoneal dosing in mice. Methods We utilized HTS ELISA assays to identify small compounds that lower PrPC levels by ?30% on the cell surface of human glioblastoma (T98G) and neuroblastoma (IMR32) cells. Results From 44,578 diverse chemical compounds tested, 138 hits were identified by single point confirmation (SPC) representing 7 chemical scaffolds in T98G cells, and 114 SPC hits representing 6 scaffolds found in IMR32 cells. When the confirmed SPC hits were combined with structurally related analogs, >300 compounds (representing 6 distinct chemical scaffolds) were tested for dose-response (EC50) in both cell lines, only studies in T98G cells identified compounds that reduced PrPC without killing the cells. EC50 values from 32 hits ranged from 65 nM to 4.1 ?M. Twenty-eight were evaluated in vivo in pharmacokinetic studies after a single 10 mg/kg oral or intraperitoneal dose in mice. Our results showed brain concentrations as high as 16.2 ?M, but only after intraperitoneal dosing. Conclusions Our studies identified leads for future studies to determine which compounds might lower PrPC levels in rodent brain, and provide the basis of a therapeutic for fatal disorders caused by PrP prions. PMID:24530226

  15. Fate of Prions in Soil: A Review

    PubMed Central

    Smith, Christen B.; Booth, Clarissa J.; Pedersen, Joel A.

    2011-01-01

    Prions are the etiological agents of transmissible spongiform encephalopathies (TSEs), a class of fatal neurodegenerative diseases affecting humans and other mammals. The pathogenic prion protein is a misfolded form of the host-encoded prion protein and represents the predominant, if not sole, component of the infectious agent. Environmental routes of TSE transmission are implicated in epizootics of sheep scrapie and chronic wasting disease (CWD) of deer, elk, and moose. Soil represents a plausible environmental reservoir of scrapie and CWD agents, which can persist in the environment for years. Attachment to soil particles likely influences the persistence and infectivity of prions in the environment. Effective methods to inactivate TSE agents in soil are currently lacking, and the effects of natural degradation mechanisms on TSE infectivity are largely unknown. An improved understanding of the processes affecting the mobility, persistence, and bioavailability of prions in soil is needed for the management of TSE-contaminated environments. PMID:21520752

  16. Metabotropic Glutamate Receptor 5 is a Co-Receptor for Alzheimer A? Oligomer Bound to Cellular Prion Protein

    PubMed Central

    Um, Ji Won; Kaufman, Adam C.; Kostylev, Mikhail; Heiss, Jacqueline K.; Stagi, Massimiliano; Takahashi, Hideyuki; Kerrisk, Meghan E.; Vortmeyer, Alexander; Wisniewski, Thomas; Koleske, Anthony J.; Gunther, Erik C.; Nygaard, Haakon B.; Strittmatter, Stephen M.

    2013-01-01

    SUMMARY Soluble Amyloid-? oligomers (A?o) trigger Alzheimer’s disease (AD) pathophysiology and bind with high affinity to Cellular Prion Protein (PrPC). At the post-synaptic density (PSD), extracellular A?o bound to lipid-anchored PrPC activates intracellular Fyn kinase to disrupt synapses. Here, we screened transmembrane PSD proteins heterologously for the ability to couple A?o–PrPC with Fyn. Only co-expression of the metabotropic glutamate receptor, mGluR5, allowed PrPC-bound A?o to activate Fyn. PrPC and mGluR5 interact physically, and cytoplasmic Fyn forms a complex with mGluR5. A?o–PrPC generates mGluR5-mediated increases of intracellular calcium in Xenopus oocytes and in neurons, and the later is also driven by human AD brain extracts. In addition, signaling by A?o–PrPC–mGluR5 complexes mediates eEF2 phosphorylation and dendritic spine loss. For mice expressing familial AD transgenes, mGluR5 antagonism reverses deficits in learning, memory and synapse density. Thus, A?o–PrPC complexes at the neuronal surface activate mGluR5 to disrupt neuronal function. PMID:24012003

  17. Prion protein- and cardiac troponin T-marked interstitial cells from the adult myocardium spontaneously develop into beating cardiomyocytes

    PubMed Central

    Omatsu-Kanbe, Mariko; Nishino, Yuka; Nozuchi, Nozomi; Sugihara, Hiroyuki; Matsuura, Hiroshi

    2014-01-01

    Atypically-shaped cardiomyocytes (ACMs) constitute a novel subpopulation of beating heart cells found in the cultures of cardiac myocyte-removed crude fraction cells obtained from adult mouse cardiac ventricles. Although ~500 beating ACMs are observed under microscope in the cell cultures obtained from the hearts of either male or female mice, the origin of these cells in cardiac tissue has yet to be elucidated due to the lack of exclusive markers. In the present study, we demonstrate the efficacy of cellular prion protein (PrP) as a surface marker of ACMs. Cells expressing PrP at the plasma membrane in the culture of the crude fraction cells were found to develop into beating ACMs by themselves or fuse with each other to become larger multinuclear beating ACMs. Combining PrP with a cardiac-specific contractile protein cardiac troponin T (cTnT) allowed us to identify native ACMs in the mouse cardiac ventricles as either clustered or solitary cells. PrP- and cTnT-marked cells were also found in the adult, even aged, human cardiac ventricles. These findings suggest that interstitial cells marked by PrP and cTnT, native ACMs, exhibit life-long survival in the cardiac ventricles of both mice and humans. PMID:25466571

  18. Prion pathogenesis and secondary lymphoid organs (SLO)

    PubMed Central

    Mabbott, Neil A.

    2012-01-01

    Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases. PMID:22895090

  19. Turning yeast sequence into protein function

    SciTech Connect

    Heijne, G. von

    1996-04-01

    The complete genome sequencing of the yeast Saccharomyces Cerevisiae leads us into a new era of potential use for such data base information. Protein engineering studies suggest that genetic selection of overproducing strains may aid the assignment of protein function. Data base management and sequencing software have been developed to scan entire genomes.

  20. Computational Analysis of Protein Sequence and Structure

    E-print Network

    MacCallum, Bob

    alignment algorithm employing direct comparisons of predicted sec- ondary structure and sequence structure prediction method) NMR Nuclear magnetic resonance PDB Protein Data Bank PHD Secondary structure#12;cation of Proteins (Murzin et al., 1995) SIVA Sequence-derived Information Vector Alignment SSAP

  1. Protein solubility: sequence based prediction and experimental

    Microsoft Academic Search

    Pawel Smialowski; Antonio J. Martin-Galiano; Aleksandra Mikolajka; Tobias Girschick; Tad A. Holak; Dmitrij Frishman

    Motivation: Obtaining soluble proteins in sufficient concentrations is a recurring limiting factor in various experimental studies. Solubility is an individual trait of proteins which, under a given set of experi- mental conditions, is determined by their amino acid sequence. Accurate theoretical prediction of solubility from sequence is instru- mental for setting priorities on targets in large-scale proteomics pro- jects. Results:

  2. Quantitative phosphoproteomic analysis of prion-infected neuronal cells

    Microsoft Academic Search

    Wibke Wagner; Paul Ajuh; Johannes Löwer; Silja Wessler

    2010-01-01

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal diseases associated with the conversion of the cellular prion protein (PrPC) to the abnormal prion protein (PrPSc). Since the molecular mechanisms in pathogenesis are widely unclear, we analyzed the global phospho-proteome and detected a differential pattern of tyrosine- and threonine phosphorylated proteins in PrPSc-replicating and pentosan polysulfate (PPS)-rescued N2a cells in

  3. The PIR-International Protein Sequence Database.

    PubMed Central

    Barker, W C; Garavelli, J S; McGarvey, P B; Marzec, C R; Orcutt, B C; Srinivasarao, G Y; Yeh, L S; Ledley, R S; Mewes, H W; Pfeiffer, F; Tsugita, A; Wu, C

    1999-01-01

    The Protein Information Resource (PIR; http://www-nbrf.georgetown. edu/pir/) supports research on molecular evolution, functional genomics, and computational biology by maintaining a comprehensive, non-redundant, well-organized and freely available protein sequence database. Since 1988 the database has been maintained collaboratively by PIR-International, an international association of data collection centers cooperating to develop this resource during a period of explosive growth in new sequence data and new computer technologies. The PIR Protein Sequence Database entries are classified into superfamilies, families and homology domains, for which sequence alignments are available. Full-scale family classification supports comparative genomics research, aids sequence annotation, assists database organization and improves database integrity. The PIR WWW server supports direct on-line sequence similarity searches, information retrieval, and knowledge discovery by providing the Protein Sequence Database and other supplementary databases. Sequence entries are extensively cross-referenced and hypertext-linked to major nucleic acid, literature, genome, structure, sequence alignment and family databases. The weekly release of the Protein Sequence Database can be accessed through the PIR Web site. The quarterly release of the database is freely available from our anonymous FTP server and is also available on CD-ROM with the accompanying ATLAS database search program. PMID:9847137

  4. Prion Disease Although rare, prion diseases are transmissible neurodegenerative disorders characterized

    E-print Network

    Giri, Ranjit K.

    and negligence of testing cows for BSE that enter human food chain. Under special situations, like bio-terrorism, prion from various sources can pose a serious threat to both human health, to cattle industries (dairy is composed of post translationaly modified form (PrPSc ) of normal prion protein(PrPC ) (Figure 01). Normal

  5. Axonal and Transynaptic Spread of Prions

    PubMed Central

    Shearin, Harold

    2014-01-01

    ABSTRACT Natural transmission of prion diseases depends upon the spread of prions from the nervous system to excretory or secretory tissues, but the mechanism of prion transport in axons and into peripheral tissue is unresolved. Here, we examined the temporal and spatial movement of prions from the brain stem along cranial nerves into skeletal muscle as a model of axonal transport and transynaptic spread. The disease-specific isoform of the prion protein, PrPSc, was observed in nerve fibers of the tongue approximately 2 weeks prior to PrPSc deposition in skeletal muscle. Initially, PrPSc deposits had a small punctate pattern on the edge of muscle cells that colocalized with synaptophysin, a marker for the neuromuscular junction (NMJ), in >50% of the cells. At later time points PrPSc was widely distributed in muscle cells, but <10% of prion-infected cells exhibited PrPSc deposition at the NMJ, suggesting additional prion replication and dissemination within muscle cells. In contrast to the NMJ, PrPSc was not associated with synaptophysin in nerve fibers but was found to colocalize with LAMP-1 and cathepsin D during early stages of axonal spread. We propose that PrPSc-bound endosomes can lead to membrane recycling in which PrPSc is directed to the synapse, where it either moves across the NMJ into the postsynaptic muscle cell or induces PrPSc formation on muscle cells across the NMJ. IMPORTANCE Prion diseases are transmissible and fatal neurodegenerative diseases in which prion dissemination to excretory or secretory tissues is necessary for natural disease transmission. Despite the importance of this pathway, the cellular mechanism of prion transport in axons and into peripheral tissue is unresolved. This study demonstrates anterograde spread of prions within nerve fibers prior to infection of peripheral synapses (i.e., neuromuscular junction) and infection of peripheral tissues (i.e., muscle cells). Within nerve fibers prions were associated with the endosomal-lysosomal pathway prior to entry into muscle cells. Since early prion spread is anterograde and endosome-lysosomal movement within axons is primarily retrograde, these findings suggest that endosome-bound prions may have an alternate fate that directs prions to the peripheral synapse. PMID:24850738

  6. Protein Sequencing with Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ziady, Assem G.; Kinter, Michael

    The recent introduction of electrospray ionization techniques that are suitable for peptides and whole proteins has allowed for the design of mass spectrometric protocols that provide accurate sequence information for proteins. The advantages gained by these approaches over traditional Edman Degradation sequencing include faster analysis and femtomole, sometimes attomole, sensitivity. The ability to efficiently identify proteins has allowed investigators to conduct studies on their differential expression or modification in response to various treatments or disease states. In this chapter, we discuss the use of electrospray tandem mass spectrometry, a technique whereby protein-derived peptides are subjected to fragmentation in the gas phase, revealing sequence information for the protein. This powerful technique has been instrumental for the study of proteins and markers associated with various disorders, including heart disease, cancer, and cystic fibrosis. We use the study of protein expression in cystic fibrosis as an example.

  7. Grass plants bind, retain, uptake, and transport infectious prions.

    PubMed

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. PMID:25981035

  8. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    SciTech Connect

    Medori, R.; Tritschler, H.J. (Universita di Bologna (Italy))

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.

  9. A systems approach to prion disease

    PubMed Central

    Hwang, Daehee; Lee, Inyoul Y; Yoo, Hyuntae; Gehlenborg, Nils; Cho, Ji-Hoon; Petritis, Brianne; Baxter, David; Pitstick, Rose; Young, Rebecca; Spicer, Doug; Price, Nathan D; Hohmann, John G; DeArmond, Stephen J; Carlson, George A; Hood, Leroy E

    2009-01-01

    Prions cause transmissible neurodegenerative diseases and replicate by conformational conversion of normal benign forms of prion protein (PrPC) to disease-causing PrPSc isoforms. A systems approach to disease postulates that disease arises from perturbation of biological networks in the relevant organ. We tracked global gene expression in the brains of eight distinct mouse strain–prion strain combinations throughout the progression of the disease to capture the effects of prion strain, host genetics, and PrP concentration on disease incubation time. Subtractive analyses exploiting various aspects of prion biology and infection identified a core of 333 differentially expressed genes (DEGs) that appeared central to prion disease. DEGs were mapped into functional pathways and networks reflecting defined neuropathological events and PrPSc replication and accumulation, enabling the identification of novel modules and modules that may be involved in genetic effects on incubation time and in prion strain specificity. Our systems analysis provides a comprehensive basis for developing models for prion replication and disease, and suggests some possible therapeutic approaches. PMID:19308092

  10. Tracking protein aggregate interactions

    PubMed Central

    Bartz, Jason C; Nilsson, K Peter R

    2011-01-01

    Amyloid fibrils share a structural motif consisting of highly ordered ?-sheets aligned perpendicular to the fibril axis.1, 2 At each fibril end, ?-sheets provide a template for recruiting and converting monomers.3 Different amyloid fibrils often co-occur in the same individual, yet whether a protein aggregate aids or inhibits the assembly of a heterologous protein is unclear. In prion disease, diverse prion aggregate structures, known as strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences.4–7 Here we explore the interactions reported to occur when two distinct prion strains occur together in the central nervous system. PMID:21597336

  11. Prion Protein Gene Variability in Spanish Goats. Inference through Susceptibility to Classical Scrapie Strains and Pathogenic Distribution of Peripheral PrPsc

    PubMed Central

    Acín, Cristina; Martín-Burriel, Inmaculada; Monleón, Eva; Lyahyai, Jaber; Pitarch, José Luis; Serrano, Carmen; Monzón, Marta; Zaragoza, Pilar; Badiola, Juan José

    2013-01-01

    Classical scrapie is a neurological disorder of the central nervous system (CNS) characterized by the accumulation of an abnormal, partially protease resistant prion protein (PrPsc) in the CNS and in some peripheral tissues in domestic small ruminants. Whereas the pathological changes and genetic susceptibility of ovine scrapie are well known, caprine scrapie has been less well studied. We report here a pathological study of 13 scrapie-affected goats diagnosed in Spain during the last 9 years. We used immunohistochemical and biochemical techniques to discriminate between classical and atypical scrapie and bovine spongiform encephalopathy (BSE). All the animals displayed PrPsc distribution patterns and western blot characteristics compatible with classical scrapie. In addition, we determined the complete open reading frame sequence of the PRNP in these scrapie-affected animals. The polymorphisms observed were compared with those of the herd mates (n?=?665) and with the frequencies of healthy herds (n?=?581) of native Spanish goats (Retinta, Pirenaica and Moncaina) and other worldwide breeds reared in Spain (Saanen, Alpine and crossbreed). In total, sixteen polymorphic sites were identified, including the known amino acid substitutions at codons G37V, G127S, M137I, I142M, H143R, R151H, R154H, R211Q, Q222K, G232W, and P240S, and new polymorphisms at codons G74D, M112T, R139S, L141F and Q215R. In addition, the known 42, 138 and 179 silent mutations were detected, and one new one is reported at codon 122. The genetic differences observed in the population studied have been attributed to breed and most of the novel polymorphic codons show frequencies lower than 5%. This work provides the first basis of polymorphic distribution of PRNP in native and worldwide goat breeds reared in Spain. PMID:23580248

  12. Neutrality and evolvability of designed protein sequences

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Arnab; Biswas, Parbati

    2010-07-01

    The effect of foldability on protein’s evolvability is analyzed by a two-prong approach consisting of a self-consistent mean-field theory and Monte Carlo simulations. Theory and simulation models representing protein sequences with binary patterning of amino acid residues compatible with a particular foldability criteria are used. This generalized foldability criterion is derived using the high temperature cumulant expansion approximating the free energy of folding. The effect of cumulative point mutations on these designed proteins is studied under neutral condition. The robustness, protein’s ability to tolerate random point mutations is determined with a selective pressure of stability (??G) for the theory designed sequences, which are found to be more robust than that of Monte Carlo and mean-field-biased Monte Carlo generated sequences. The results show that this foldability criterion selects viable protein sequences more effectively compared to the Monte Carlo method, which has a marked effect on how the selective pressure shapes the evolutionary sequence space. These observations may impact de novo sequence design and its applications in protein engineering.

  13. Conformational variation between allelic variants of cell-surface ovine prion protein

    PubMed Central

    2004-01-01

    The distribution of prion infectivity and PrPSc between peripheral lymphoid tissues suggests their possible haematogenic spread during the progression of natural scrapie in susceptible sheep. Since ovine PBMCs (peripheral blood mononuclear cells) express PrPC, they have the potential to carry or harbour disease-associated forms of PrP. To detect the possible presence of disease-associated PrP on the surface of blood cells, an understanding is required of the conformations that normal ovine cell-surface PrPC may adopt. In the present study, we have used monoclonal antibodies that recognize epitopes in either the N- or C-terminal portions of PrP to probe the conformations of PrPC on ovine PBMCs by flow cytometry. Although PBMCs from scrapie-susceptible and -resistant genotypes of sheep expressed similar levels of cell-surface PrPC, as judged by their reactivity with N-terminal-specific anti-PrP monoclonal antibodies, there was considerable genotypic heterogeneity in the region between helix-1 and residue 171. Cells from PrP-VRQ (V136R154Q171) sheep showed uniform reactivity with monoclonal antibodies that bound to epitopes around helix-1, whereas cells from PrP-ARQ (A136R154Q171) and PrP-ARR (A136R154R171) sheep showed variable binding. The region between ?-strand-2 and residue 171, which includes a YYR motif, was buried or obscured in cell-surface PrPC on PBMCs from scrapie-susceptible and -resistant sheep. However, an epitope of PrPC that is influenced by residue 171 was more exposed on PBMCs from PrP-VRQ sheep than on PBMCs from the PrP-ARQ genotype. Our results highlight conformational variation between scrapie-susceptible and -resistant forms of cell-surface PrPC and also between allelic variants of susceptible genotypes. PMID:15070397

  14. Specificity of the J-protein Sis1 in the propagation of 3 yeast prions

    E-print Network

    Craig, Elizabeth A

    complexes upon Sis1 depletion. We sug- gest that a common set of molecular chaperones, the J-protein Sis1 reliant on the function of molecular chaperones, proteins that normally function to prevent protein and the J-protein (Hsp40):Hsp70 chaperone machinery, with its associ- ated nucleotide exchange factors (3

  15. The Structure of Human Prions: From Biology to Structural Models — Considerations and Pitfalls

    PubMed Central

    Acevedo-Morantes, Claudia Y.; Wille, Holger

    2014-01-01

    Prion diseases are a family of transmissible, progressive, and uniformly fatal neurodegenerative disorders that affect humans and animals. Although cross-species transmissions of prions are usually limited by an apparent “species barrier”, the spread of a prion disease to humans by ingestion of contaminated food, or via other routes of exposure, indicates that animal prions can pose a significant public health risk. The infectious agent responsible for the transmission of prion diseases is a misfolded conformer of the prion protein, PrPSc, a pathogenic isoform of the host-encoded, cellular prion protein, PrPC. The detailed mechanisms of prion conversion and replication, as well as the high-resolution structure of PrPSc, are unknown. This review will discuss the general background related to prion biology and assess the structural models proposed to date, while highlighting the experimental challenges of elucidating the structure of PrPSc. PMID:25333467

  16. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the ? -amyloid Protein Precursor in Developing Hamster Brain

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the ? protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the ? -protein precursor (? -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and ? -PP mRNAs. The increases in PrP and ? -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and ? -PP mRNA levels. Increased PrP and ? -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and ? -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  17. Epigenetic Dominance of Prion Conformers

    PubMed Central

    Saijo, Eri; Kang, Hae-Eun; Bian, Jifeng; Bowling, Kristi G.; Browning, Shawn; Kim, Sehun; Hunter, Nora; Telling, Glenn C.

    2013-01-01

    Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP) primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg) mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A) at (OvPrP-A136) infected with SSBP/1 scrapie prions propagated a relatively stable (S) prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V) at 136 (OvPrP-V136) infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U), diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb) PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to the otherwise unfavorable U conformer. This epigenetic mechanism thus expands the range of selectable conformations that can be adopted by PrP, and therefore the variety of options for strain propagation. PMID:24204258

  18. PEST sequences in calmodulin-binding proteins

    Microsoft Academic Search

    Junor A. Barnes; Aldrin V. Gomes

    1995-01-01

    Many short-lived proteins which are devoid of proteolytic activity contain PEST sequences which are segments along the polypeptide chain that are rich in proline (P), glutamate (E), serine (S) and threonine (T). These designated PEST sequences are believed to be putative intramolecular signals for rapid proteolytic degradation. Calmodulin is a ubiquitous, 17kDa, acidic Ca2+-binding protein which plays an important role

  19. Using Mass Spectrometry to Diagnose Prion diseases: Can we do that?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions (PrPSc) are infectious proteins. They are able to convert a normal cellular protein (PrPC) into a prion and, thereby, propagate an infection. We have used mass spectrometry to quantitate the prions present in infected hamsters, mice, and sheep. Calibration curves relating the area ratios of t...

  20. Observation of Highly Flexible Residues in Amyloid Fibrils of the HET-s Prion

    E-print Network

    Riek, Roland

    Observation of Highly Flexible Residues in Amyloid Fibrils of the HET-s Prion Ansgar B. Siemer@nmr.phys.chem.ethz.ch Abstract: We report the observation of undetected (until now) residues of the prion protein fragment HET- s to different parts of the same molecule. Introduction Prion proteins are associated with neurodegenerative

  1. A processed pseudogene contributes to apparent mule deer prion gene heterogeneity

    Microsoft Academic Search

    Kelly A Brayton; Katherine I O'Rourke; Amy K Lyda; Michael W Miller; Donald P Knowles

    2004-01-01

    Pathogenesis and transmission of the prion disorders (transmissible spongiform encephalopathies, TSEs) are mediated by a modified isoform of the prion protein (PrP). Prion protein gene (PRNP) alleles associated with relative susceptibility to TSE have been identified in sheep, humans and possibly elk. Comparable data have not been derived for mule deer, a species susceptible to the TSE chronic wasting disease

  2. Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures

    E-print Network

    Lindquist, Susan

    Yeast prions constitute a “protein-only” mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI+], is governed by a conformational change in ...

  3. CONTRAlign: Discriminative Training for Protein Sequence Alignment

    E-print Network

    Batzoglou, Serafim

    and fully automatic framework for parameter learning and protein pairwise sequence alignment using pair conditional random fields. When learn- ing a substitution matrix and gap penalties from as few as 20 exam- ple (SAP [4] and LSQman [5]) alignment tools to guide sequence alignment construction. When homologous

  4. CONTRAlign: Discriminative Training for Protein Sequence Alignment

    E-print Network

    Li, Fei-Fei

    , an extensible and fully automatic framework for parameter learning and protein pairwise sequence alignment using pair conditional random fields. When learn- ing a substitution matrix and gap penalties from as few-based (FUGUE [3]) and structural (SAP [4] and LSQman [5]) alignment tools to guide sequence alignment

  5. Coomassie brilliant blue R-250 as a new surface-enhanced Raman scattering probe for prion protein through a dual-aptamer mechanism.

    PubMed

    Hu, Ping Ping; Liu, Hui; Zhan, Lei; Zheng, Lin Ling; Huang, Cheng Zhi

    2015-07-01

    Surface-enhanced Raman scattering (SERS) spectra, which can provide large information about trace amount of chemical and biological species have been widely performed as a well-established tool in complex biological system. In this work, coomassie brilliant blue (R-250) with high affinity to proteins and high Raman activity was employed as a Raman reporter to probe prion protein (PrP) through a dual-aptamer mechanism, and thus an original strategy for PrP determination was proposed, which showed great potential to turn on the SERS response through specific recognition of anti-prion aptamers towards the target protein. Aptamers (Apt1 and Apt 2) recognizing distinct epitopes of PrP with high affinity were first conjugated to Ag@Si NPs, and Ag@Si-PrP/R-250-Ag@Si conjugates were obtained in the presence of PrP/R-250, inducing dramatically enhanced Raman signal. SERS responses enhanced with increasing amount of PrP and a linear equation of ISERS=6729.7+3091.2 cPrP was obtained in the range of 3.0-12.0×10(-9)M with the determination coefficient of 0.988. The proposed strategy is simple, rapid, and high specificity to probe protein-aptamer recognition in the solution. PMID:25882405

  6. The prion gene complex encoding PrP C and Doppel: insights from mutational analysis

    Microsoft Academic Search

    Peter Mastrangelo; David Westaway

    2001-01-01

    The prion protein gene, Prnp, encodes PrPSc, the major structural component of prions, infectious pathogens causing a number of disorders including scrapie and bovine spongiform encephalopathy (or BSE). Missense mutations in the human Prnp gene cause inherited prion diseases such as familial Creutzfeldt–Jakob disease. In uninfected animals Prnp encodes a glycophosphatidylinositol (GPI)-anchored protein denoted PrPC and in prion infections PrPC

  7. PRION DISEASES OF HUMANS AND ANIMALS: Their Causes and Molecular Basis

    Microsoft Academic Search

    John Collinge; MRC Prion Unit

    2001-01-01

    n Abstract Priori diseases are transmissible neurodegenerative conditions that in- clude Creutzfeldt-Jakob disease (CJD) in humans and bovine spongiform encephalopa- thy (BSE) and scrapie in animals. Prions appear to be composed principally or entirely of abnormal isoforms of a host-encoded glycoprotein, prion protein. Prion propagation involves recruitment of host cellular prion protein, composed primarily of a-helical structure, into a disease

  8. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation

    PubMed Central

    Malinovska, Liliana; Palm, Sandra; Gibson, Kimberley; Verbavatz, Jean-Marc; Alberti, Simon

    2015-01-01

    Many protein-misfolding diseases are caused by proteins carrying prion-like domains. These proteins show sequence similarity to yeast prion proteins, which can interconvert between an intrinsically disordered and an aggregated prion state. The natural presence of prions in yeast has provided important insight into disease mechanisms and cellular proteostasis. However, little is known about prions in other organisms, and it is not yet clear whether the findings in yeast can be generalized. Using bioinformatics tools, we show that Dictyostelium discoideum has the highest content of prion-like proteins of all organisms investigated to date, suggesting that its proteome has a high overall aggregation propensity. To study mechanisms regulating these proteins, we analyze the behavior of several well-characterized prion-like proteins, such as an expanded version of human huntingtin exon 1 (Q103) and the prion domain of the yeast prion protein Sup35 (NM), in D. discoideum. We find that these proteins remain soluble and are innocuous to D. discoideum, in contrast to other organisms, where they form cytotoxic cytosolic aggregates. However, when exposed to conditions that compromise molecular chaperones, these proteins aggregate and become cytotoxic. We show that the disaggregase Hsp101, a molecular chaperone of the Hsp100 family, dissolves heat-induced aggregates and promotes thermotolerance. Furthermore, prion-like proteins accumulate in the nucleus, where they are targeted by the ubiquitin–proteasome system. Our data suggest that D. discoideum has undergone specific adaptations that increase the proteostatic capacity of this organism and allow for an efficient regulation of its prion-like proteome. PMID:25941378

  9. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation.

    PubMed

    Malinovska, Liliana; Palm, Sandra; Gibson, Kimberley; Verbavatz, Jean-Marc; Alberti, Simon

    2015-05-19

    Many protein-misfolding diseases are caused by proteins carrying prion-like domains. These proteins show sequence similarity to yeast prion proteins, which can interconvert between an intrinsically disordered and an aggregated prion state. The natural presence of prions in yeast has provided important insight into disease mechanisms and cellular proteostasis. However, little is known about prions in other organisms, and it is not yet clear whether the findings in yeast can be generalized. Using bioinformatics tools, we show that Dictyostelium discoideum has the highest content of prion-like proteins of all organisms investigated to date, suggesting that its proteome has a high overall aggregation propensity. To study mechanisms regulating these proteins, we analyze the behavior of several well-characterized prion-like proteins, such as an expanded version of human huntingtin exon 1 (Q103) and the prion domain of the yeast prion protein Sup35 (NM), in D. discoideum. We find that these proteins remain soluble and are innocuous to D. discoideum, in contrast to other organisms, where they form cytotoxic cytosolic aggregates. However, when exposed to conditions that compromise molecular chaperones, these proteins aggregate and become cytotoxic. We show that the disaggregase Hsp101, a molecular chaperone of the Hsp100 family, dissolves heat-induced aggregates and promotes thermotolerance. Furthermore, prion-like proteins accumulate in the nucleus, where they are targeted by the ubiquitin-proteasome system. Our data suggest that D. discoideum has undergone specific adaptations that increase the proteostatic capacity of this organism and allow for an efficient regulation of its prion-like proteome. PMID:25941378

  10. Opposing Effects of Glutamine and Asparagine Govern Prion Formation by Intrinsically Disordered Proteins

    E-print Network

    Halfmann, Randal

    Sequences rich in glutamine (Q) and asparagine (N) residues often fail to fold at the monomer level. This, coupled to their unusual hydrogen-bonding abilities, provides the driving force to switch between disordered monomers ...

  11. Quantitative and qualitative analysis of cellular prion protein (PrP(C)) expression in bovine somatic tissues.

    PubMed

    Peralta, Oscar A; Eyestone, Willard H

    2009-01-01

    The host encoded cellular prion protein (PrP(C)) is an N-linked glycoprotein tethered to the cell membrane by a glycophosphatidylinositol (GPI) anchor. Under certain conditions, PrP(C) can undergo conversion into a conformationally-altered isoform (PrP(Sc)) widely believed to be the pathogenic agent of transmissible spongiform encephalopathies (TSEs). Understanding the tissue-specific expression of PrP(C) is crucial considering that cells expressing high levels of PrP(C) bear a risk for conversion and accumulation of PrP(Sc). In the present study, fifteen bovine somatic tissues were analyzed for PrP(C) expression by quantitative western blot and immunohistochemistry. Quantitative western blot analysis revealed highest expression of PrP(C) in cerebellum, obex and spinal cord. Intermediate levels were detected in thymus, intestine, nerve, heart and spleen, and lower levels in lung, muscle, kidney, lymph node, skin, pancreas and liver. Immunohistochemical analysis detected intense cellular-specific PrP(C) staining in neurons, thymocytes and lymphocytes. PrP(C) was also detected in the enteric wall, pancreatic islets of langerhans, myocardium, pulmonary alveolar sacs, renal glomeruli and dermal epithelial cells. This study demonstrated the quantitatively varied, wide-spread, tissue- and cell-specific expression pattern of PrP(C) in bovine somatic tissues. The importance of this study is to lay the foundation for understanding the tissue-specific expression of PrP(C) and to consider the potential participation of more bovine tissues in the transmission of BSE infection. PMID:19806026

  12. Associations between lamb survival and prion protein genotype: analysis of data for ten sheep breeds in Great Britain

    PubMed Central

    Gubbins, Simon; Cook, Charlotte J; Hyder, Kieran; Boulton, Kay; Davis, Carol; Thomas, Eurion; Haresign, Will; Bishop, Stephen C; Villanueva, Beatriz; Eglin, Rachel D

    2009-01-01

    Background Selective breeding programmes, based on prion protein (PrP) genotype, have been introduced throughout the European Union to reduce the risk of sheep transmissible spongiform encephalopathies (TSEs). These programmes could have negative consequences on other important traits, such as fitness and production traits, if the PrP gene has pleiotropic effects or is in linkage disequilibrium with genes affecting these traits. This paper presents the results of an investigation into associations between lamb survival and PrP genotype in ten mainstream sheep breeds in Great Britain (GB). In addition, the reasons for lamb deaths were examined in order to identify any associations between these and PrP genotype. Results Survival times from birth to weaning were analysed for over 38000 lambs (2427 dead and 36096 live lambs) from 128 flocks using Cox proportional hazard models for each breed, including additive animal genetic effects. No significant associations between PrP genotype and lamb survival were identified, except in the Charollais breed for which there was a higher risk of mortality in lambs of the ARR/VRQ genotype compared with those of the ARR/ARR genotype. Significant effects of birth weight, litter size, sex, age of dam and year of birth on survival were also identified. For all breeds the reasons for death changed significantly with age; however, no significant associations between reason for death and PrP genotype were found for any of the breeds. Conclusion This study found no evidence to suggest that a selective breeding programme based on PrP genotype will have a detrimental effect on lamb survival. The only significant effect of PrP genotype identified was likely to be of little consequence because an increased risk of mortality was associated with a genotype that is selected against in current breeding strategies. PMID:19159456

  13. Repeat Sequence Proteins as Matrices for Nanocomposites

    SciTech Connect

    Drummy, L.; Koerner, H; Phillips, D; McAuliffe, J; Kumar, M; Farmer, B; Vaia, R; Naik, R

    2009-01-01

    Recombinant protein-inorganic nanocomposites comprised of exfoliated Na+ montmorillonite (MMT) in a recombinant protein matrix based on silk-like and elastin-like amino acid motifs (silk elastin-like protein (SELP)) were formed via a solution blending process. Charged residues along the protein backbone are shown to dominate long-range interactions, whereas the SELP repeat sequence leads to local protein/MMT compatibility. Up to a 50% increase in room temperature modulus and a comparable decrease in high temperature coefficient of thermal expansion occur for cast films containing 2-10 wt.% MMT.

  14. Prion genetics: new rules for a new kind of gene.

    PubMed

    Wickner, Reed B; Edskes, Herman K; Ross, Eric D; Pierce, Michael M; Baxa, Ulrich; Brachmann, Andreas; Shewmaker, Frank

    2004-01-01

    Just as nucleic acids can carry out enzymatic reactions, proteins can be genes. These heritable infectious proteins (prions) follow unique genetic rules that enable their identification: reversible curing, inducible "spontaneous generation," and phenotype surprises. Most prions are based on self-propagating amyloids, depend heavily on chaperones, show strain phenomena and, like other infectious elements, show species barriers to transmission. A recently identified prion is based on obligatory self-activation of an enzyme in trans. Although prions can be detrimental, they may also be beneficial to their hosts. PMID:15355224

  15. Which Came First, Protein Sequence or Structure?

    NSDL National Science Digital Library

    Mehran Kardar (Massachusetts Institute of Technology; Department of Physics)

    1996-08-02

    Access to the article is free, however registration and sign-in are required. The sequence of amino acids in a protein determines how it will eventually fold into its three-dimensional structure. One way to understand how this works is by considering the protein's "foldability"--that is, the likelihood of folding into a useful structure. Another approach, however, is that taken in the report by Li et al. (p. 666) and discussed in the Perspective by Kardar. Here, the authors consider the "designability" of proteins--the number of sequences that uniquely fold into a particular structure.

  16. ANNIE: integrated de novo protein sequence annotation

    PubMed Central

    Ooi, Hong Sain; Kwo, Chia Yee; Wildpaner, Michael; Sirota, Fernanda L.; Eisenhaber, Birgit; Maurer-Stroh, Sebastian; Wong, Wing Cheong; Schleiffer, Alexander; Eisenhaber, Frank; Schneider, Georg

    2009-01-01

    Function prediction of proteins with computational sequence analysis requires the use of dozens of prediction tools with a bewildering range of input and output formats. Each of these tools focuses on a narrow aspect and researchers are having difficulty obtaining an integrated picture. ANNIE is the result of years of close interaction between computational biologists and computer scientists and automates an essential part of this sequence analytic process. It brings together over 20 function prediction algorithms that have proven sufficiently reliable and indispensable in daily sequence analytic work and are meant to give scientists a quick overview of possible functional assignments of sequence segments in the query proteins. The results are displayed in an integrated manner using an innovative AJAX-based sequence viewer. ANNIE is available online at: http://annie.bii.a-star.edu.sg. This website is free and open to all users and there is no login requirement. PMID:19389726

  17. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions

    Microsoft Academic Search

    Hiroshi Gomi; Takashi Yokoyama; Kazushi Fujimoto; Toshio Ikeda; Akira Katoh; Takeshi Itoh; Shigeyoshi Itohara

    1995-01-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein specifically expressed in astrocytes in the CNS. To examine the function of GFAP in vivo, the Gfap gene was disrupted by gene targeting in embryonic stem cells. Mice homozygous for the mutation were completely devoid of GFAP but exhibited normal development and showed no obvious anatomical ab normalities in the

  18. Molecular Modeling of Prion Transmission to Humans

    PubMed Central

    Levavasseur, Etienne; Privat, Nicolas; Martin, Juan-Carlos Espinosa; Simoneau, Steve; Baron, Thierry; Flan, Benoit; Torres, Juan-Maria; Haïk, Stéphane

    2014-01-01

    Using different prion strains, such as the variant Creutzfeldt-Jakob disease agent and the atypical bovine spongiform encephalopathy agents, and using transgenic mice expressing human or bovine prion protein, we assessed the reliability of protein misfolding cyclic amplification (PMCA) to model interspecies and genetic barriers to prion transmission. We compared our PMCA results with in vivo transmission data characterized by attack rates, i.e., the percentage of inoculated mice that developed the disease. Using 19 seed/substrate combinations, we observed that a significant PMCA amplification was only obtained when the mouse line used as substrate is susceptible to the corresponding strain. Our results suggest that PMCA provides a useful tool to study genetic barriers to transmission and to study the zoonotic potential of emerging prion strains. PMID:25279820

  19. Influence of prion variant and yeast strain variation on prion-molecular chaperone requirements

    PubMed Central

    Hines, Justin K; Higurashi, Takashi; Srinivasan, Mathangi

    2011-01-01

    Prions of budding yeast serve as a tractable model of amyloid behavior. Here we address the issue of the effect of yeast strain variation on prion stability, focusing also on the effect of amyloid conformation and the involvement of the co-chaperone Sis1, an essential J-protein partner of Hsp70. We found, despite an initial report to the contrary, that yeast strain background has little effect on the requirement for particular Sis1 domains for stable propagation of the prion [RNQ+], if the level of Sis1 expression is controlled. On the other hand, some variation in prion behavior was observed between yeast strains, in particular, the stability of certain [PSI+] variants. Future examination of such yeast strain-specific phenomena may provide useful insights into the basis of prion/chaperone dynamics. PMID:22156732

  20. Asymptomatic deer excrete infectious prions in faeces.

    PubMed

    Tamgüney, Gültekin; Miller, Michael W; Wolfe, Lisa L; Sirochman, Tracey M; Glidden, David V; Palmer, Christina; Lemus, Azucena; DeArmond, Stephen J; Prusiner, Stanley B

    2009-09-24

    Infectious prion diseases-scrapie of sheep and chronic wasting disease (CWD) of several species in the deer family-are transmitted naturally within affected host populations. Although several possible sources of contagion have been identified in excretions and secretions from symptomatic animals, the biological importance of these sources in sustaining epidemics remains unclear. Here we show that asymptomatic CWD-infected mule deer (Odocoileus hemionus) excrete CWD prions in their faeces long before they develop clinical signs of prion disease. Intracerebral inoculation of irradiated deer faeces into transgenic mice overexpressing cervid prion protein (PrP) revealed infectivity in 14 of 15 faecal samples collected from five deer at 7-11 months before the onset of neurological disease. Although prion concentrations in deer faeces were considerably lower than in brain tissue from the same deer collected at the end of the disease, the estimated total infectious dose excreted in faeces by an infected deer over the disease course may approximate the total contained in a brain. Prolonged faecal prion excretion by infected deer provides a plausible natural mechanism that might explain the high incidence and efficient horizontal transmission of CWD within deer herds, as well as prion transmission among other susceptible cervids. PMID:19741608

  1. Simultaneous Alignment and Folding of Protein Sequences

    PubMed Central

    Waldispühl, Jérôme; O'Donnell, Charles W.; Will, Sebastian; Devadas, Srinivas; Backofen, Rolf

    2014-01-01

    Abstract Accurate comparative analysis tools for low-homology proteins remains a difficult challenge in computational biology, especially sequence alignment and consensus folding problems. We present partiFold-Align, the first algorithm for simultaneous alignment and consensus folding of unaligned protein sequences; the algorithm's complexity is polynomial in time and space. Algorithmically, partiFold-Align exploits sparsity in the set of super-secondary structure pairings and alignment candidates to achieve an effectively cubic running time for simultaneous pairwise alignment and folding. We demonstrate the efficacy of these techniques on transmembrane ?-barrel proteins, an important yet difficult class of proteins with few known three-dimensional structures. Testing against structurally derived sequence alignments, partiFold-Align significantly outperforms state-of-the-art pairwise and multiple sequence alignment tools in the most difficult low-sequence homology case. It also improves secondary structure prediction where current approaches fail. Importantly, partiFold-Align requires no prior training. These general techniques are widely applicable to many more protein families (partiFold-Align is available at http://partifold.csail.mit.edu/). PMID:24766258

  2. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease

    Microsoft Academic Search

    Carsten Korth; Barnaby C. H. May; Fred E. Cohen

    2001-01-01

    Prion diseases in humans and animals are invariably fatal. Prions are composed of a disease-causing isoform (PrPSc) of the normal host prion protein (PrPC) and replicate by stimulating the conver- sion of PrPC into nascent PrPSc. We report here that tricyclic derivatives of acridine and phenothiazine exhibit half-maximal inhibition of PrPSc formation at effective concentrations (EC50) between 0.3 mM and

  3. Detecting Protein Function and Protein-Protein Interactions from Genome Sequences

    Microsoft Academic Search

    Edward M. Marcotte; Matteo Pellegrini; Ho-Leung Ng; Danny W. Rice; Todd O. Yeates; David Eisenberg

    1999-01-01

    A computational method is proposed for inferring protein interactions from genome sequences on the basis of the observation that some pairs of interacting proteins have homologs in another organism fused into a single protein chain. Searching sequences from many genomes revealed 6809 such putative protein- protein interactions in Escherichia coli and 45,502 in yeast. Many members of these pairs were

  4. INHIBITION OF PROTEASE-RESISTANT PRION PROTEIN FORMATION IN A TRANSFORMED DEER CELL LINE INFECTED WITH CHRONIC WASTING DISEASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected wi...

  5. Inhibition of protease-resistant prion protein formation in a transformed deer cell line infected with chronic wasting disease

    Microsoft Academic Search

    Gregory J. Raymond; Emily A. Olsen; Kil Sun Lee; Lynne D. Raymond; P. Kruger Bryant III; Gerald S. Baron; Winslow S. Caughey; David A. Kocisko; Linda E. McHolland; Cynthia Favara; Jan P. M. Langeveld; Zijderveld van F. G; Richard T. Mayer; Michael W. Miller; Elizabeth S. Williams; Byron Caughey

    2006-01-01

    Chronic wasting disease (CWD) is an emerging transmissible spongiform encephalopathy (prion disease) of North American cervids, i.e., mule deer, white-tailed deer, and elk (wapiti). To facilitate in vitro studies of CWD, we have developed a transformed deer cell line that is persistently infected with CWD. Primary cultures derived from uninfected mule deer brain tissue were transformed by transfection with a

  6. Detection of the disease-associated isoform of the prion protein in formalin-fixed tissues by Western blot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clinical signs of prion disease are not pathognomonic and include a variety of differential diagnoses. Specific immune responses have not been detected in affected organisms, serological tests to obtain evidence for the presence of the infectious agent are not available, and nucleic acid-based detec...

  7. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent.

    PubMed

    Bessen, R A; Marsh, R F

    1992-04-01

    Transmissible mink encephalopathy (TME) has been transmitted to Syrian golden hamsters, and two strains of the causative agent, HYPER (HY) and DROWSY (DY), have been identified that have different biological properties. During scrapie, a TME-like disease, an endogenous cellular protein, the prion protein (PrPC), is modified (to PrPSc) and accumulates in the brain. PrPSc is partially resistant to proteases and is claimed to be an essential component of the infectious agent. Purification and analysis of PrP from hamsters infected with the HY and DY TME agent strains revealed differences in properties of PrPTME sedimentation in N-lauroylsarcosine, sensitivity to digestion with proteinase K, and migration in polyacrylamide gels. PrPC and HY PrPTME can be distinguished on the basis of their relative solubilities in detergent and protease sensitivities. PrPTME from DY-infected brain tissue shared solubility characteristics of PrP from both uninfected and HY-infected tissue. Limited protease digestion of PrPTME revealed strain-specific migration patterns upon polyacrylamide gel electrophoresis. Prolonged proteinase K treatment or N-linked deglycosylation of PrPTME did not eliminate such differences but demonstrated the PrPTME from DY-infected brain was more sensitive to protease digestion than HY PrPTME. Antigenic mapping of PrPTME with antibodies raised against synthetic peptides revealed strain-specific differences in immunoreactivity in a region of the amino-terminal end of PrPTME containing amino acid residues 89 to 103. These findings indicate that PrPTME from the two agent strains, although originating from the same host, differ in composition, conformation, or both. We conclude that PrPTME from the HY and DY strains undergo different posttranslational modifications that could explain differences in the biochemical properties of PrPTME from the two sources. Whether these strain-specific posttranslational events are directly responsible for the distinct biological properties of the HY and DY agent strains remains to be determined. PMID:1347795

  8. Mercury BLASTP: Accelerating Protein Sequence Alignment

    PubMed Central

    Jacob, Arpith; Lancaster, Joseph; Buhler, Jeremy; Harris, Brandon; Chamberlain, Roger D.

    2008-01-01

    Large-scale protein sequence comparison is an important but compute-intensive task in molecular biology. BLASTP is the most popular tool for comparative analysis of protein sequences. In recent years, an exponential increase in the size of protein sequence databases has required either exponentially more running time or a cluster of machines to keep pace. To address this problem, we have designed and built a high-performance FPGA-accelerated version of BLASTP, Mercury BLASTP. In this paper, we describe the architecture of the portions of the application that are accelerated in the FPGA, and we also describe the integration of these FPGA-accelerated portions with the existing BLASTP software. We have implemented Mercury BLASTP on a commodity workstation with two Xilinx Virtex-II 6000 FPGAs. We show that the new design runs 11-15 times faster than software BLASTP on a modern CPU while delivering close to 99% identical results. PMID:19492068

  9. MRI characteristics of sporadic CJD with valine homozygosity at codon 129 of the prion protein gene and PrPSc type 2 in Japan.

    PubMed

    Fukushima, R; Shiga, Y; Nakamura, M; Fujimori, J; Kitamoto, T; Yoshida, Y

    2004-03-01

    Two Japanese sporadic Creutzfeld-Jakob disease (sCJD) patients with valine homozygosity at codon 129 of the prion protein gene and protease-resistant prion protein (PrP(Sc)) type 2 (VV2) are described. In contrast with Western countries, this type of sCJD is very rare in Japan. In 123 sCJD cases, only two were recognised as VV2 by the Japanese CJD surveillance committee. The clinical symptoms and pathological findings of the patients were similar to those of European and US patients. The noteworthy finding of diffusion weighted MRI (DWI) was that an abnormal high intensity covered a wide range of the thalamus including the dorsomedial nucleus, the pulvinar, and the ventral anterior, lateral, and posterolateral nuclei. This thalamic pattern has not been recognised in sCJD with methionine homozygosity and PrP(Sc) type 1 (MM1) or methionine/valine heterozygosity and PrP(Sc) type 1 (MV1) which comprises the vast majority of sCJD. This finding may be characteristic to VV2 and may distinguish it from MM1, MV1, and variant CJD. DWI can provide a very important clue for the antemortem diagnosis of VV2 subjects. PMID:14966171

  10. Prion extraction methods: comparison of bead beating, ultrasonic disruption and repeated freeze-thaw methodologies for the recovery of functional renilla-prion fusion protein from bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular DNA technology allows for production of mammalian proteins in bacteria at sufficient quantities for downstream use and analysis. Variation in design and engineering of DNA expression vectors imparts selective alterations resulting in the generation of fusion proteins with intrinsic report...

  11. Establishment of a cell line persistently infected with chronic wasting disease prions.

    PubMed

    Kim, Hyo-Jin; Tark, Dong-Seob; Lee, Yoon-Hee; Kim, Min-Jeong; Lee, Won-Yong; Cho, In-Soo; Sohn, Hyun-Joo; Yokoyama, Takashi

    2012-10-01

    Elk prion protein (PrP(C)) has been confirmed to be capable of rendering rabbit epithelial RK13 cells permissive to temporal infection by chronic wasting disease (CWD) prions. The present study satisfactorily generated persistently CWD prion-affected RK13 cells (RKC1-11) using elk PrP(C) expressing cells (elkRK13) that were generated via the lentiviral expression system with high efficiency. The elkRK13 cells have been shown to be permissive to accumulation of abnormal isoforms of prion protein (PrP(Sc)) resulting from CWD prions up to 97 serial passages thus far. This novel prion-affected cell line will help facilitate investigation of the molecular basis of CWD prion pathogenesis and confirmation of CWD prion infectivity in vitro. PMID:22673102

  12. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    Microsoft Academic Search

    David Eisenberg; Edward M. Marcotte; Matteo Pellegrini; Michael J. Thompson; Todd O. Yeates

    2002-01-01

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they

  13. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions.

    PubMed

    Caughey, Byron; Baron, Gerald S; Chesebro, Bruce; Jeffrey, Martin

    2009-01-01

    The prion (infectious protein) concept has evolved with the discovery of new self-propagating protein states in organisms as diverse as mammals and fungi. The infectious agent of the mammalian transmissible spongiform encephalopathies (TSE) has long been considered the prototypical prion, and recent cell-free propagation and biophysical analyses of TSE infectivity have now firmly established its prion credentials. Other disease-associated protein aggregates, such as some amyloids, can also have prion-like characteristics under certain experimental conditions. However, most amyloids appear to lack the natural transmissibility of TSE prions. One feature that distinguishes the latter from the former is the glycophosphatidylinositol membrane anchor on prion protein, the molecule that is corrupted in TSE diseases. The presence of this anchor profoundly affects TSE pathogenesis, which involves major membrane distortions in the brain, and may be a key reason for the greater neurovirulence of TSE prions relative to many other autocatalytic protein aggregates. PMID:19231987

  14. Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease

    E-print Network

    Lindquist, Susan

    Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease Andrew D 1, 2008 (received for review April 24, 2008) Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways

  15. Identification of an Intracellular Site of Prion Conversion Zrinka Marijanovic1

    E-print Network

    Paris-Sud XI, Université de

    Identification of an Intracellular Site of Prion Conversion Zrinka Marijanovic1 , Anna Caputo1 Napoli `Federico II', Naples, Italy Abstract Prion diseases are fatal, neurodegenerative disorders of the cellular prion protein (PrPC ), denoted PrPSc , which represents the major component of infectious scrapie

  16. fluctuating structures A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly

    E-print Network

    Lindquist, Susan

    fluctuating structures A natively unfolded yeast prion monomer adopts an ensemble of collapsed reprints, see: Notes: #12;A natively unfolded yeast prion monomer adopts an ensemble of collapsed Lindquist, December 22, 2006 (sent for review December 5, 2006) The yeast prion protein Sup35

  17. Z .Biophysical Chemistry 88 2000 47 59 Designing drugs to stop the formation of prion

    E-print Network

    Z .Biophysical Chemistry 88 2000 47 59 Designing drugs to stop the formation of prion aggregates neurodegenerative diseases, including Alzheimer's disease and the prion diseases. Therapeutics to block amyloid the existence of an entity known as protein X. 2000 Elsevier Science B.V. All rights reserved. Keywords: Prion

  18. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    PubMed

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae. PMID:23764836

  19. Loss of Octarepeats in Two Processed Prion Pseudogenes in the Red Squirrel, Sciurus vulgaris

    Microsoft Academic Search

    Ole MadsenTimothy; Timothy T. Kortum; Marlinda Hupkes; Wouter Kohlen; Teun van Rheede; Wilfried W. de Jong

    2010-01-01

    The N-terminal region of the mammalian prion protein (PrP) contains an ‘octapeptide’ repeat which is involved in copper binding.\\u000a This eight- or nine-residue peptide is repeated four to seven times, depending on the species, and polymorphisms in repeat\\u000a number do occur. Alleles with three repeats are very rare in humans and goats, and deduced PrP sequences with two repeats\\u000a have

  20. Functional genomics approach for identification of molecular processes underlying neurodegenerative disorders in prion diseases.

    PubMed

    Basu, Urmila; Guan, Le Luo; Moore, Stephen S

    2012-08-01

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious neurodegenerative disorders leading to death. These include Cresutzfeldt-Jakob disease (CJD), familial, sporadic and variant CJD and kuru in humans; and animal TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) of mule deer and elk, and transmissible mink encephalopathy. All these TSEs share common pathological features such as accumulation of mis-folded prion proteins in the central nervous system leading to cellular dysfunction and cell death. It is important to characterize the molecular pathways and events leading to prion induced neurodegeneration. Here we discuss the impact of the functional genomics approaches including microarrays, subtractive hybridization and microRNA profiling in elucidating transcriptional cascades at different stages of disease. Many of these transcriptional changes have been observed in multiple neurodegenerative diseases which may aid in identification of biomarkers for disease. A comprehensive characterization of expression profiles implicated in neurodegenerative disorders will undoubtedly advance our understanding on neuropathology and dysfunction during prion disease and other neurodegenerative disorders. We also present an outlook on the future work which may focus on analysis of structural genetic variation, genome and transcriptome sequencing using next generation sequencing with an integrated approach on animal and human TSE related studies. PMID:23372423

  1. Associations of polymorphisms of the ovine prion protein gene with growth, carcass, and computerized tomography traits in Scottish Blackface lambs.

    PubMed

    Sawalha, R M; Brotherstone, S; Man, W Y N; Conington, J; Bünger, L; Simm, G; Villanueva, B

    2007-03-01

    The objective of this study was to investigate and estimate the associations of the ovine prion protein (PrP) genotypes with a wide range of performance traits in Scottish Blackface lambs. Performance records of up to 7,138 sheep of known PrP genotypes born from 1999 to 2004 in 2 experimental farms were utilized. Performance traits studied were BW at birth, marking (when the sheep were identified with permanent ear tags at an average age of 52 d), and weaning (average age of 107 d); slaughter traits (BW at slaughter, slaughter age, carcass weight, and carcass conformation); ultrasonic muscle and fat depths; and computerized tomography-predicted carcass composition and carcass yield at weaning. Different linear mixed models, including random, direct animal effect, and up to 3 maternal effects (genetic, permanent, and temporary environmental) were used for the different traits. The PrP genotype was included in the model as a fixed effect, along with other fixed factors with significant effects (P < 0.05). Five separate analyses were carried out for each trait, differing in the method of PrP genotypic classification. The first analysis was based on classifying the sheep into categories according to all 9 available PrP genotypes. In the other 4 analyses, sheep were categorized according to the number of each PrP allele carried. Results showed that there were no significant differences between PrP genotypes for any of the performance traits studied when all 9 genotypes were compared (first analysis). Similarly, performance of the lambs did not significantly differ between genotypes with different numbers of ARR copies. However, there were significant variations in a few traits with respect to the number of ARQ, AHQ, and VRQ alleles carried. Heterozygous lambs for the AHQ or the ARQ allele were significantly heavier at some ages than lambs of the other genotypes. Lambs carrying the VRQ allele required approximately 10 d longer finishing time (P = 0.01) and yielded carcasses approximately 0.5 kg heavier (P = 0.03) compared with noncarriers. The few significant associations found do not have a negative influence on performance when selecting against the most susceptible PrP allele (VRQ) or in favor of the most resistant one (ARR). Overall, there were no major associations of PrP genotypes with most lamb performance traits in Scottish Blackface sheep. PMID:17040947

  2. De Novo Prion Aggregates Trigger Autophagy in Skeletal Muscle

    PubMed Central

    Joshi-Barr, Shivanjali; Bett, Cyrus; Chiang, Wei-Chieh; Trejo, Margarita; Goebel, Hans H.; Sikorska, Beata; Liberski, Pawel; Raeber, Alex; Lin, Jonathan H.; Masliah, Eliezer

    2014-01-01

    ABSTRACT In certain sporadic, familial, and infectious prion diseases, the prion protein misfolds and aggregates in skeletal muscle in addition to the brain and spinal cord. In myocytes, prion aggregates accumulate intracellularly, yet little is known about clearance pathways. Here we investigated the clearance of prion aggregates in muscle of transgenic mice that develop prion disease de novo. In addition to neurodegeneration, aged mice developed a degenerative myopathy, with scattered myocytes containing ubiquitinated, intracellular prion inclusions that were adjacent to myocytes lacking inclusions. Myocytes also showed elevated levels of the endoplasmic reticulum chaperone Grp78/BiP, suggestive of impaired protein degradation and endoplasmic reticulum stress. Additionally, autophagy was induced, as indicated by increased levels of beclin-1 and LC3-II. In C2C12 myoblasts, inhibition of autophagosome maturation or lysosomal degradation led to enhanced prion aggregation, consistent with a role for autophagy in prion aggregate clearance. Taken together, these findings suggest that the induction of autophagy may be a central strategy for prion aggregate clearance in myocytes. IMPORTANCE PMID:24307586

  3. The PIR-International Protein Sequence Database.

    PubMed Central

    Barker, W C; Garavelli, J S; Haft, D H; Hunt, L T; Marzec, C R; Orcutt, B C; Srinivasarao, G Y; Yeh, L S; Ledley, R S; Mewes, H W; Pfeiffer, F; Tsugita, A

    1998-01-01

    From its origin the Protein Information Resource (http://www-nbrf. georgetown.edu/pir/) has supported research on evolution and computational biology by designing and compiling a comprehensive, quality controlled, and well-organized protein sequence database. The database has been produced and updated on a regular schedule since 1984. Since 1988 it has been maintained collaboratively by the PIR-International, an association of data collection centers engaged in international cooperation for the development of this research resource during a period of explosive acquisition of new data. As of June 1997, essentially all sequence entries have been classified into families, allowing the efficient application of methods to propagate and standardize annotation among related sequences. The databases are available through the Internet by the World-Wide Web and FTP, or on CD-ROM and magnetic media. PMID:9399794

  4. Curcumin binds to the alpha-helical intermediate and to the amyloid form of prion protein - a new mechanism for the inhibition of PrP(Sc) accumulation.

    PubMed

    Hafner-Bratkovic, Iva; Gaspersic, Jernej; Smid, Lojze M; Bresjanac, Mara; Jerala, Roman

    2008-03-01

    Conversion of the native, predominantly alpha-helical conformation of prion protein (PrP) into the beta-stranded conformation is characteristic for the transmissible spongiform encephalopathies such as Creutzfeld-Jakob disease. Curcumin, an extended planar molecule and a dietary polyphenol, inhibits in vitro conversion of PrP and formation of protease resistant PrP in neuroblastoma cell lines. Curcumin recognizes the converted beta-form of the PrP both as oligomers and fibrils but not the native form. Curcumin binds to the prion fibrils in the left-handed chiral arrangement as determined by circular dichroism. We show that curcumin labels the plaques of the brain sections of variant Creutzfeld-Jakob disease cases and stains the same structures as antibodies against the PrP. In contrast to thioflavin T, curcumin also binds to the alpha-helical intermediate of PrP present at acidic pH at stoichiometry of 1 : 1. Congo red competes with curcumin for binding to the alpha-intermediate as well as to the beta-form of PrP but is toxic and binds also to the native form of PrP. We therefore show that the partially unfolded structural intermediate of the PrP can be targeted by non-toxic compound of natural origin. PMID:17996023

  5. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission.

    PubMed

    Angers, Rachel; Christiansen, Jeffrey; Nalls, Amy V; Kang, Hae-Eun; Hunter, Nora; Hoover, Edward; Mathiason, Candace K; Sheetz, Michael; Telling, Glenn C

    2014-07-29

    Understanding the molecular parameters governing prion propagation is crucial for controlling these lethal, proteinaceous, and infectious neurodegenerative diseases. To explore the effects of prion protein (PrP) sequence and structural variations on intra- and interspecies transmission, we integrated studies in deer, a species naturally susceptible to chronic wasting disease (CWD), a burgeoning, contagious epidemic of uncertain origin and zoonotic potential, with structural and transgenic (Tg) mouse modeling and cell-free prion amplification. CWD properties were faithfully maintained in deer following passage through Tg mice expressing cognate PrP, and the influences of naturally occurring PrP polymorphisms on CWD susceptibility were accurately reproduced in Tg mice or cell-free systems. Although Tg mice also recapitulated susceptibility of deer to sheep prions, polymorphisms that provided protection against CWD had distinct and varied influences. Whereas substitutions at residues 95 and 96 in the unstructured region affected CWD propagation, their protective effects were overridden during replication of sheep prions in Tg mice and, in the case of residue 96, deer. The inhibitory effects on sheep prions of glutamate at residue 226 in elk PrP, compared with glutamine in deer PrP, and the protective effects of the phenylalanine for serine substitution at the adjacent residue 225, coincided with structural rearrangements in the globular domain affecting interaction between ?-helix 3 and the loop between ?2 and ?-helix 2. These structure-function analyses are consistent with previous structural investigations and confirm a role for plasticity of this tertiary structural epitope in the control of PrP conversion and strain propagation. PMID:25034251

  6. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission

    PubMed Central

    Angers, Rachel; Christiansen, Jeffrey; Nalls, Amy V.; Kang, Hae-Eun; Hunter, Nora; Hoover, Edward; Mathiason, Candace K.; Sheetz, Michael; Telling, Glenn C.

    2014-01-01

    Understanding the molecular parameters governing prion propagation is crucial for controlling these lethal, proteinaceous, and infectious neurodegenerative diseases. To explore the effects of prion protein (PrP) sequence and structural variations on intra- and interspecies transmission, we integrated studies in deer, a species naturally susceptible to chronic wasting disease (CWD), a burgeoning, contagious epidemic of uncertain origin and zoonotic potential, with structural and transgenic (Tg) mouse modeling and cell-free prion amplification. CWD properties were faithfully maintained in deer following passage through Tg mice expressing cognate PrP, and the influences of naturally occurring PrP polymorphisms on CWD susceptibility were accurately reproduced in Tg mice or cell-free systems. Although Tg mice also recapitulated susceptibility of deer to sheep prions, polymorphisms that provided protection against CWD had distinct and varied influences. Whereas substitutions at residues 95 and 96 in the unstructured region affected CWD propagation, their protective effects were overridden during replication of sheep prions in Tg mice and, in the case of residue 96, deer. The inhibitory effects on sheep prions of glutamate at residue 226 in elk PrP, compared with glutamine in deer PrP, and the protective effects of the phenylalanine for serine substitution at the adjacent residue 225, coincided with structural rearrangements in the globular domain affecting interaction between ?-helix 3 and the loop between ?2 and ?-helix 2. These structure–function analyses are consistent with previous structural investigations and confirm a role for plasticity of this tertiary structural epitope in the control of PrP conversion and strain propagation. PMID:25034251

  7. Discovery and characterization of prions in Saccharomyces cerevisiae

    E-print Network

    Halfmann, Randal A. (Randal Arthur)

    2011-01-01

    Some protein aggregates can perpetuate themselves in a self-templating protein-misfolding reaction. These aggregates, or prions, are the infectious agents behind diseases like Kuru and mad-cow disease. In yeast, however, ...

  8. Chemical and biophysical insights into the propagation of prion strains

    Microsoft Academic Search

    Jeppe Falsig; K. Peter R. Nilsson; Tuomas P. J. Knowles; Adriano Aguzzi

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs) are lethal infectious neurodegenerative diseases. TSEs are caused by prions, infectious agents lacking informational nucleic acids, and possibly identical with higher?order aggregates of the cellular glycolipoprotein PrP. Prion strains are derived from TSE isolates that, even after inoculation into genetically identical hosts, cause disease with distinct patterns of protein aggregate deposition, incubation times, morphology of the

  9. Detection and survival of prion agents in aquatic environments

    Microsoft Academic Search

    C. Maluquer de Motes; M. J. Cano; J. M. Torres; M. Pumarola; R. Girones

    2008-01-01

    Environmental contamination is considered a potential mechanism of transmission of prion diseases. Sheep scrapie and cervid chronic wasting diseases (CWD) epizootics are thought to be maintained by natural horizontal transmission through the environment. Here, we describe a method for the detection of prion proteins (PrPres) in aquatic environments. The procedure is based on a glycine buffer-mediated extraction, sonication, and an

  10. Prion gene haplotypes of U.S. cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Bovine spongiform encephalopathy (BSE) is a fatal neurological disorder characterized by abnormal deposits of a protease-resistant isoform of the prion protein. Characterizing linkage disequilibrium (LD) and haplotype networks within the bovine prion gene (PRNP) is important for 1) test...

  11. Use of residue pairs in protein sequence-sequence and sequence-structure alignments.

    PubMed Central

    Jung, J.; Lee, B.

    2000-01-01

    Two new sets of scoring matrices are introduced: H2 for the protein sequence comparison and T2 for the protein sequence-structure correlation. Each element of H2 or T2 measures the frequency with which a pair of amino acid types in one protein, k-residues apart in the sequence, is aligned with another pair of residues, of given amino acid types (for H2) or in given structural states (for T2), in other structurally homologous proteins. There are four types, corresponding to the k-values of 1 to 4, for both H2 and T2. These matrices were set up using a large number of structurally homologous protein pairs, with little sequence homology between the pair, that were recently generated using the structure comparison program SHEBA. The two scoring matrices were incorporated into the main body of the sequence alignment program SSEARCH in the FASTA package and tested in a fold recognition setting in which a set of 107 test sequences were aligned to each of a panel of 3,539 domains that represent all known protein structures. Six procedures were tested; the straight Smith-Waterman (SW) and FASTA procedures, which used the Blosum62 single residue type substitution matrix; BLAST and PSI-BLAST procedures, which also used the Blosum62 matrix; PASH, which used Blosum62 and H2 matrices; and PASSC, which used Blosum62, H2, and T2 matrices. All procedures gave similar results when the probe and target sequences had greater than 30% sequence identity. However, when the sequence identity was below 30%, a similar structure could be found for more sequences using PASSC than using any other procedure. PASH and PSI-BLAST gave the next best results. PMID:10975579

  12. Diagnosis of human prion disease

    Microsoft Academic Search

    Jiri G. Safar; Michael D. Geschwind; Camille Deering; Svetlana Didorenko; Mamta Sattavat; Henry Sanchez; Ana Serban; Martin Vey; Henry Baron; Kurt Giles; Bruce L. Miller; Stephen J. Dearmond

    2005-01-01

    With the discovery of the prion protein (PrP), immunodiagnostic procedures were applied to diagnose Creutzfeldt-Jakob disease (CJD). Before development of the conformation-dependent immunoassay (CDI), all immunoassays for the disease-causing PrP isoform (PrPSc) used limited proteolysis to digest the precursor cellular PrP (PrPC). Because the CDI is the only immunoassay that measures both the protease-resistant and protease-sensitive forms of PrPSc, we

  13. The Prion Protein Modulates A-type K+ Currents Mediated by Kv4.2 Complexes through Dipeptidyl Aminopeptidase-like Protein 6*

    PubMed Central

    Mercer, Robert C. C.; Ma, Li; Watts, Joel C.; Strome, Robert; Wohlgemuth, Serene; Yang, Jing; Cashman, Neil R.; Coulthart, Michael B.; Schmitt-Ulms, Gerold; Jhamandas, Jack H.; Westaway, David

    2013-01-01

    Widely expressed in the adult central nervous system, the cellular prion protein (PrPC) is implicated in a variety of processes, including neuronal excitability. Dipeptidyl aminopeptidase-like protein 6 (DPP6) was first identified as a PrPC interactor using in vivo formaldehyde cross-linking of wild type (WT) mouse brain. This finding was confirmed in three cell lines and, because DPP6 directs the functional assembly of K+ channels, we assessed the impact of WT and mutant PrPC upon Kv4.2-based cell surface macromolecular complexes. Whereas a Gerstmann-Sträussler-Scheinker disease version of PrP with eight extra octarepeats was a loss of function both for complex formation and for modulation of Kv4.2 channels, WT PrPC, in a DPP6-dependent manner, modulated Kv4.2 channel properties, causing an increase in peak amplitude, a rightward shift of the voltage-dependent steady-state inactivation curve, a slower inactivation, and a faster recovery from steady-state inactivation. Thus, the net impact of wt PrPC was one of enhancement, which plays a critical role in the down-regulation of neuronal membrane excitability and is associated with a decreased susceptibility to seizures. Insofar as previous work has established a requirement for WT PrPC in the A?-dependent modulation of excitability in cholinergic basal forebrain neurons, our findings implicate PrPC regulation of Kv4.2 channels as a mechanism contributing to the effects of oligomeric A? upon neuronal excitability and viability. PMID:24225951

  14. Integrative visual analysis of protein sequence mutations

    PubMed Central

    2014-01-01

    Background An important aspect of studying the relationship between protein sequence, structure and function is the molecular characterization of the effect of protein mutations. To understand the functional impact of amino acid changes, the multiple biological properties of protein residues have to be considered together. Results Here, we present a novel visual approach for analyzing residue mutations. It combines different biological visualizations and integrates them with molecular data derived from external resources. To show various aspects of the biological information on different scales, our approach includes one-dimensional sequence views, three-dimensional protein structure views and two-dimensional views of residue interaction networks as well as aggregated views. The views are linked tightly and synchronized to reduce the cognitive load of the user when switching between them. In particular, the protein mutations are mapped onto the views together with further functional and structural information. We also assess the impact of individual amino acid changes by the detailed analysis and visualization of the involved residue interactions. We demonstrate the effectiveness of our approach and the developed software on the data provided for the BioVis 2013 data contest. Conclusions Our visual approach and software greatly facilitate the integrative and interactive analysis of protein mutations based on complementary visualizations. The different data views offered to the user are enriched with information about molecular properties of amino acid residues and further biological knowledge. PMID:25237389

  15. Prion diseases as transmissible zoonotic diseases.

    PubMed

    Lee, Jeongmin; Kim, Su Yeon; Hwang, Kyu Jam; Ju, Young Ran; Woo, Hee-Jong

    2013-02-01

    Prion diseases, also called transmissible spongiform encephalopathies (TSEs), lead to neurological dysfunction in animals and are fatal. Infectious prion proteins are causative agents of many mammalian TSEs, including scrapie (in sheep), chronic wasting disease (in deer and elk), bovine spongiform encephalopathy (BSE; in cattle), and Creutzfeldt-Jakob disease (CJD; in humans). BSE, better known as mad cow disease, is among the many recently discovered zoonotic diseases. BSE cases were first reported in the United Kingdom in 1986. Variant CJD (vCJD) is a disease that was first detected in 1996, which affects humans and is linked to the BSE epidemic in cattle. vCJD is presumed to be caused by consumption of contaminated meat and other food products derived from affected cattle. The BSE epidemic peaked in 1992 and decreased thereafter; this decline is continuing sharply owing to intensive surveillance and screening programs in the Western world. However, there are still new outbreaks and/or progression of prion diseases, including atypical BSE, and iatrogenic CJD and vCJD via organ transplantation and blood transfusion. This paper summarizes studies on prions, particularly on prion molecular mechanisms, BSE, vCJD, and diagnostic procedures. Risk perception and communication policies of the European Union for the prevention of prion diseases are also addressed to provide recommendations for appropriate government policies in Korea. PMID:24159531

  16. Anti-Prion Activity of Brilliant Blue G

    PubMed Central

    Murayama, Yuichi; Okada, Hiroyuki; Imamura, Morikazu; Shimizu, Yoshihisa; Hashimoto, Makoto; Mohri, Shirou; Yokoyama, Takashi; Kitani, Hiroshi

    2012-01-01

    Background Prion diseases are fatal neurodegenerative disorders with no effective therapy currently available. Accumulating evidence has implicated over-activation of P2X7 ionotropic purinergic receptor (P2X7R) in the progression of neuronal loss in several neurodegenerative diseases. This has led to the speculation that simultaneous blockade of this receptor and prion replication can be an effective therapeutic strategy for prion diseases. We have focused on Brilliant Blue G (BBG), a well-known P2X7R antagonist, possessing a chemical structure expected to confer anti-prion activity and examined its inhibitory effect on the accumulation of pathogenic isoforms of prion protein (PrPres) in a cellular and a mouse model of prion disease in order to determine its therapeutic potential. Principal Findings BBG prevented PrPres accumulation in infected MG20 microglial and N2a neural cells at 50% inhibitory concentrations of 14.6 and 3.2 µM, respectively. Administration of BBG in vivo also reduced PrPres accumulation in the brains of mice with prion disease. However, it did not appear to alleviate the disease progression compared to the vehicle-treated controls, implying a complex role of P2X7R on the neuronal degeneration in prion diseases. Significance These results provide novel insights into the pathophysiology of prion diseases and have important implications for the treatment. PMID:22693582

  17. Chronic wasting disease prion trafficking via the autonomic nervous system.

    PubMed

    Seelig, Davis M; Mason, Gary L; Telling, Glenn C; Hoover, Edward A

    2011-09-01

    Chronic wasting disease (CWD) is a fatal spongiform encephalopathy that is efficiently transmitted among members of the mammalian family Cervidae, including deer, elk, and moose. Typical of prion diseases, CWD is characterized by the conversion of the native protease-sensitive protein PrP(C) to a protease-resistant isoform, denoted PrP(RES). In native species, spread of the disease likely results from the ingestion of prion-containing excreta, including urine, saliva, or feces. Although cervid prion protein-expressing transgenic [Tg(CerPrP)] mice have been shown to be effective surrogates of natural CWD, uncertainties remain regarding the mechanisms by which CWD prions traffic in vivo, including the manner by which CWD prions traffic from the gastrointestinal tract to the central nervous system. We used elk prion protein-expressing transgenic [Tg(CerPrP-E)] mice, infected by three different routes of inoculation, and tissue-based IHC to elucidate that centripetal and centrifugal CWD prion transit pathways involve cells and fibers of the autonomic nervous systems, including the enteric nervous system and central autonomic network. Moreover, we identified CWD PrP(RES) associated with the cell bodies and processes of enteric glial cells within the enteric nervous system of CWD-infected Tg(CerPrP-E) mice. The present findings demonstrate the importance of the peripheral and central autonomic networks in CWD neuroinvasion and neuropathogenesis and suggest that enteroglial cells may facilitate the shedding of prions via the intestinal tract. PMID:21777560

  18. Discover protein sequence signatures from protein-protein interaction data

    E-print Network

    Fang, Jianwen; Haasl, R. J.; Dong, Yinghua; Lushington, Gerald H.

    2005-11-23

    Background: The development of high-throughput technologies such as yeast two- hybrid systems and mass spectrometry technologies has made it possible to generate large protein-protein interaction ( PPI) datasets. Mining ...

  19. Enhanced Virulence of Sheep-Passaged Bovine Spongiform Encephalopathy Agent Is Revealed by Decreased Polymorphism Barriers in Prion Protein Conversion Studies

    PubMed Central

    Priem, Jan; Langeveld, Jan P. M.; van Keulen, Lucien J. M.; van Zijderveld, Fred G.; Andreoletti, Olivier

    2014-01-01

    ABSTRACT Bovine spongiform encephalopathy (BSE) can be efficiently transmitted to small ruminants (sheep and goats) with certain prion protein (PrP) genotypes. Polymorphisms in PrP of both the host and donor influence the transmission efficiency of transmissible spongiform encephalopathies (TSEs) in general. These polymorphisms in PrP also modulate the PrP conversion underlying TSE agent replication. Here we demonstrate that single-round protein misfolding cyclic amplification (PMCA) can be used to assess species and polymorphism barriers at the molecular level. We assessed those within and between the ovine and bovine species in vitro using a variety of natural scrapie and experimentally generated cross-species BSE agents. These BSE agents include ovBSE-ARQ isolates (BSE derived from sheep having the ARQ/ARQ PrP genotype), and two unique BSE-derived variants: BSE passaged in VRQ/VRQ sheep and a cow BSE agent isolate generated by back-transmission of ovBSE-ARQ into its original host. PMCA allowed us to quantitatively determine PrP conversion profiles that correlated with known in vivo transmissibility and susceptibility in the two ruminant species in which strain-specific molecular signatures, like its molecular weight after protease digestion, were maintained. Furthermore, both BSE agent isolates from ARQ and VRQ sheep demonstrated a surprising transmission profile in which efficient transmissions to both sheep and bovine variants was combined. Finally, all data support the notion that ARQ-derived sheep BSE points to a significant increase in virulence compared to all other tested scrapie- and BSE-derived variants reflected by the increased conversion efficiencies of previously inefficient convertible PrP variants (including the so-called “resistant” sheep ARR variant). IMPORTANCE Prion diseases such as scrapie in sheep and goats, BSE in cattle, and Creutzfeldt-Jakob disease (CJD) in humans are fatal neurodegenerative diseases caused by prions. BSE is known to be transmissible to a variety of hosts, including sheep and humans. Based on the typical BSE agent strain signatures and epidemiological data, the occurrence of a novel variant of CJD in humans was linked to BSE occurrence in the United Kingdom. Measures, including genetic selection of sheep toward less susceptible PrP genotypes, have been implemented to lower the risk of BSE transmission into sheep, since the disease could potentially spread into a natural reservoir. In this study, we demonstrated using molecular PrP conversion studies that when BSE is first transmitted through sheep, the host range is modified significantly and the PrP converting potency increased, allowing the ovine BSE to transmit more efficiently than cow BSE into supposedly less susceptible hosts. PMID:24371051

  20. Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein.

    PubMed

    Wilson, Rona; Plinston, Chris; Hunter, Nora; Casalone, Cristina; Corona, Cristiano; Tagliavini, Fabrizio; Suardi, Silvia; Ruggerone, Margherita; Moda, Fabio; Graziano, Silvia; Sbriccoli, Marco; Cardone, Franco; Pocchiari, Maurizio; Ingrosso, Loredana; Baron, Thierry; Richt, Juergen; Andreoletti, Olivier; Simmons, Marion; Lockey, Richard; Manson, Jean C; Barron, Rona M

    2012-07-01

    The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans. PMID:22495232

  1. One Octarepeate Expansion to the Human Prion Protein Alters Both the Zn2+ and Cu2+ Coordination Environments Within the Octarepeate Domain

    PubMed Central

    Shearer, Jason; Rosenkoetter, Kyle E.; Callan, Paige E.; Pham, Chi

    2011-01-01

    The influence of a single octarepeat expansion on the CuII and ZnII coordination environment within the octarepeat domain of the human prion protein is examined. Using X-ray absorption spectroscopy and diethyl pyrocarbonate labeling studies we find that at low copper concentrations the “normal” octarepeat domain (4 PHGGGWGQ repeats) coordinates ZnII in an (N/O)6 coordination environment with two histidine residues and CuII in a redox inactive (N/O)4 coordination environment using 1 imidazole residue. Expansion of the octarepeat region by one repeat (5 PHGGGWGQ repeats) yields a 3 histidine (N/O)6 coordination environment for ZnII and a 2 histidine (N/O)4 coordination environment for CuII at low copper concentrations. This CuII-((N/O)2-histidine2) coordination motif is redox active and capable of generating H2O2 under reducing aerobic conditions. PMID:21250682

  2. One octarepeate expansion to the human prion protein alters both the Zn2+ and Cu2+ coordination environments within the octarepeate domain.

    PubMed

    Shearer, Jason; Rosenkoetter, Kyle E; Callan, Paige E; Pham, Chi

    2011-02-21

    The influence of a single octarepeat expansion on the Cu(II) and Zn(II) coordination environments within the octarepeat domain of the human prion protein is examined. Using X-ray absorption spectroscopy and diethyl pyrocarbonate labeling studies, we find that at low copper concentrations the "normal" octarepeat domain (four PHGGGWGQ repeats) coordinates Zn(II) in an (N/O)(6) coordination environment with two histidine residues and Cu(II) in a redox-inactive (N/O)(4) coordination environment using one imidazole residue. Expansion of the octarepeat region by one repeat (five PHGGGWGQ repeats) yields a three-histidine (N/O)(6) coordination environment for Zn(II) and a two-histidine (N/O)(4) coordination environment for Cu(II) at low copper concentrations. This Cu(II)[(N/O)(2)-histidine(2)] coordination motif is redox-active and capable of generating H(2)O(2) under reducing aerobic conditions. PMID:21250682

  3. SONICATION INDUCED INTERMEDIATE IN PRION CONVERSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vivo conversion of cellular prion protein (PrPC) to its abnormal pathogenic isoform (PrPres)is associated with conformational transition of a-helices into B-sheets. Protein misfolding cyclic amplification(PMCA)probably closely mimics this conversion in vitro. This technique involves sonication an...

  4. Modulation of Prion Formation, Aggregation, and Toxicity by the Actin Cytoskeleton in Yeast

    PubMed Central

    Ganusova, Elena E.; Ozolins, Laura N.; Bhagat, Srishti; Newnam, Gary P.; Wegrzyn, Renee D.; Sherman, Michael Y.; Chernoff, Yury O.

    2006-01-01

    Self-perpetuating protein aggregates transmit prion diseases in mammals and heritable traits in yeast. De novo prion formation can be induced by transient overproduction of the corresponding prion-forming protein or its prion domain. Here, we demonstrate that the yeast prion protein Sup35 interacts with various proteins of the actin cortical cytoskeleton that are involved in endocytosis. Sup35-derived aggregates, generated in the process of prion induction, are associated with the components of the endocytic/vacuolar pathway. Mutational alterations of the cortical actin cytoskeleton decrease aggregation of overproduced Sup35 and de novo prion induction and increase prion-related toxicity in yeast. Deletion of the gene coding for the actin assembly protein Sla2 is lethal in cells containing the prion isoforms of both Sup35 and Rnq1 proteins simultaneously. Our data are consistent with a model in which cytoskeletal structures provide a scaffold for generation of large aggregates, resembling mammalian aggresomes. These aggregates promote prion formation. Moreover, it appears that the actin cytoskeleton also plays a certain role in counteracting the toxicity of the overproduced potentially aggregating proteins. PMID:16382152

  5. Sequence comparison and protein structure prediction.

    PubMed

    Dunbrack, Roland L

    2006-06-01

    Sequence comparison is a major step in the prediction of protein structure from existing templates in the Protein Data Bank. The identification of potentially remote homologues to be used as templates for modeling target sequences of unknown structure and their accurate alignment remain challenges, despite many years of study. The most recent advances have been in combining as many sources of information as possible--including amino acid variation in the form of profiles or hidden Markov models for both the target and template families, known and predicted secondary structures of the template and target, respectively, the combination of structure alignment for distant homologues and sequence alignment for close homologues to build better profiles, and the anchoring of certain regions of the alignment based on existing biological data. Newer technologies have been applied to the problem, including the use of support vector machines to tackle the fold classification problem for a target sequence and the alignment of hidden Markov models. Finally, using the consensus of many fold recognition methods, whether based on profile-profile alignments, threading or other approaches, continues to be one of the most successful strategies for both recognition and alignment of remote homologues. Although there is still room for improvement in identification and alignment methods, additional progress may come from model building and refinement methods that can compensate for large structural changes between remotely related targets and templates, as well as for regions of misalignment. PMID:16713709

  6. Orientation of aromatic residues in amyloid cores: Structural insights into prion fiber diversity

    PubMed Central

    Reymer, Anna; Frederick, Kendra K.; Rocha, Sandra; Beke-Somfai, Tamás; Kitts, Catherine C.; Lindquist, Susan; Nordén, Bengt

    2014-01-01

    Structural conversion of one given protein sequence into different amyloid states, resulting in distinct phenotypes, is one of the most intriguing phenomena of protein biology. Despite great efforts the structural origin of prion diversity remains elusive, mainly because amyloids are insoluble yet noncrystalline and therefore not easily amenable to traditional structural-biology methods. We investigate two different phenotypic prion strains, weak and strong, of yeast translation termination factor Sup35 with respect to angular orientation of tyrosines using polarized light spectroscopy. By applying a combination of alignment methods the degree of fiber orientation can be assessed, which allows a relatively accurate determination of the aromatic ring angles. Surprisingly, the strains show identical average orientations of the tyrosines, which are evenly spread through the amyloid core. Small variations between the two strains are related to the local environment of a fraction of tyrosines outside the core, potentially reflecting differences in fibril packing. PMID:25404291

  7. Prion gene haplotypes of U.S. cattle

    PubMed Central

    Clawson, Michael L; Heaton, Michael P; Keele, John W; Smith, Timothy PL; Harhay, Gregory P; Laegreid, William W

    2006-01-01

    Background Bovine spongiform encephalopathy (BSE) is a fatal neurological disorder characterized by abnormal deposits of a protease-resistant isoform of the prion protein. Characterizing linkage disequilibrium (LD) and haplotype networks within the bovine prion gene (PRNP) is important for 1) testing rare or common PRNP variation for an association with BSE and 2) interpreting any association of PRNP alleles with BSE susceptibility. The objective of this study was to identify polymorphisms and haplotypes within PRNP from the promoter region through the 3'UTR in a diverse sample of U.S. cattle genomes. Results A 25.2-kb genomic region containing PRNP was sequenced from 192 diverse U.S. beef and dairy cattle. Sequence analyses identified 388 total polymorphisms, of which 287 have not previously been reported. The polymorphism alleles define PRNP by regions of high and low LD. High LD is present between alleles in the promoter region through exon 2 (6.7 kb). PRNP alleles within the majority of intron 2, the entire coding sequence and the untranslated region of exon 3 are in low LD (18.0 kb). Two haplotype networks, one representing the region of high LD and the other the region of low LD yielded nineteen different combinations that represent haplotypes spanning PRNP. The haplotype combinations are tagged by 19 polymorphisms (htSNPS) which characterize variation within and across PRNP. Conclusion The number of polymorphisms in the prion gene region of U.S. cattle is nearly four times greater than previously described. These polymorphisms define PRNP haplotypes that may influence BSE susceptibility in cattle. PMID:17092337

  8. Efficacy of Novel Acridine Derivatives in the Inhibition of hPrP90-231 Prion Protein Fragment Toxicity

    Microsoft Academic Search

    Valentina VillaMichele; Michele Tonelli; Stefano Thellung; Alessandro Corsaro; Bruno Tasso; Federica Novelli; Caterina Canu; Albiana Pino; Katia Chiovitti; Domenico Paludi; Claudio Russo; Anna Sparatore; Antonio Aceto; Vito Boido; Fabio Sparatore; Tullio Florio

    2011-01-01

    Quinacrine is one of the few molecules tested to treat patients affected by prion diseases, although the clinical outcome\\u000a is largely unsatisfactory. To identify novel derivatives with higher neuroprotective activity, we evaluated the effects of\\u000a a small library of acridine derivatives. The 6-chloro-2-methoxyacridine derivatives bearing on position 9 a quinolizidin-1-ylamino\\u000a (Q1, Q2) or a quinolizidin-1-ylalkylamino residue (Q3, Q4, Q6, Q7),

  9. MitoProteome: mitochondrial protein sequence database and annotation system

    Microsoft Academic Search

    Dawn Cotter; Purnima Guda; Eoin Fahy; Shankar Subramaniam

    2004-01-01

    MitoProteome is an object-relational mitochondrial protein sequence database and annotation system. The initial release contains 847 human mitochon- drial protein sequences, derived from public sequence databases and mass spectrometric analy- sis of highly purified human heart mitochondria. Each sequence is manually annotated with primary function, subfunction and subcellular location, and extensively annotated in an automated process with data extracted from

  10. PSSARD: Protein sequence-structure analysis relational database

    Microsoft Academic Search

    Kunchur Guruprasad; K. Srikanth; A. V. N. Babu

    2005-01-01

    We have implemented a relational database comprising a representative dataset of amino acid sequences and their associated secondary structure. The representative amino acid sequences were selected according to the PDB_SELECT program by choosing proteins corresponding to protein crystal structure data deposited in the protein data bank that share less than 25% overall pair-wise sequence identity. The secondary structure was extracted

  11. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  12. Prion disease tempo determined by host-dependent substrate reduction

    PubMed Central

    Mays, Charles E.; Kim, Chae; Haldiman, Tracy; van der Merwe, Jacques; Lau, Agnes; Yang, Jing; Grams, Jennifer; Di Bari, Michele A.; Nonno, Romolo; Telling, Glenn C.; Kong, Qingzhong; Langeveld, Jan; McKenzie, Debbie; Westaway, David; Safar, Jiri G.

    2014-01-01

    The symptoms of prion infection can take years or decades to manifest following the initial exposure. Molecular markers of prion disease include accumulation of the misfolded prion protein (PrPSc), which is derived from its cellular precursor (PrPC), as well as downregulation of the PrP-like Shadoo (Sho) glycoprotein. Given the overlapping cellular environments for PrPC and Sho, we inferred that PrPC levels might also be altered as part of a host response during prion infection. Using rodent models, we found that, in addition to changes in PrPC glycosylation and proteolytic processing, net reductions in PrPC occur in a wide range of prion diseases, including sheep scrapie, human Creutzfeldt-Jakob disease, and cervid chronic wasting disease. The reduction in PrPC results in decreased prion replication, as measured by the protein misfolding cyclic amplification technique for generating PrPSc in vitro. While PrPC downregulation is not discernible in animals with unusually short incubation periods and high PrPC expression, slowly evolving prion infections exhibit downregulation of the PrPC substrate required for new PrPSc synthesis and as a receptor for pathogenic signaling. Our data reveal PrPC downregulation as a previously unappreciated element of disease pathogenesis that defines the extensive, presymptomatic period for many prion strains. PMID:24430187

  13. PRION INFECTION OF MUCOSAL TISSUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the site(s) of prion agent shedding in chronic wasting disease (CWD), we examined the distribution of the prion agent in mucosal tissue from ruminants and rodents with experimental prion disease. We chose the tongue as a peripheral target of prion infection since is a densely innervat...

  14. Sequencing proteins and DNA, Frederick SangerSite: DNA Interactive (www.dnai.org)

    NSDL National Science Digital Library

    2008-10-06

    Interviewee: Frederick Sanger DNAi Location:Manipulation>Techniques>sorting and sequencing Sequencing proteins and DNA Frederick Sanger talks about the differences between sequencing proteins and sequencing DNA.

  15. Prion Disease and the Innate Immune System

    PubMed Central

    Bradford, Barry M.; Mabbott, Neil A.

    2012-01-01

    Prion diseases or transmissible spongiform encephalopathies are a unique category of infectious protein-misfolding neurodegenerative disorders. Hypothesized to be caused by misfolding of the cellular prion protein these disorders possess an infectious quality that thrives in immune-competent hosts. While much has been discovered about the routing and critical components involved in the peripheral pathogenesis of these agents there are still many aspects to be discovered. Research into this area has been extensive as it represents a major target for therapeutic intervention within this group of diseases. The main focus of pathological damage in these diseases occurs within the central nervous system. Cells of the innate immune system have been proven to be critical players in the initial pathogenesis of prion disease, and may have a role in the pathological progression of disease. Understanding how prions interact with the host innate immune system may provide us with natural pathways and mechanisms to combat these diseases prior to their neuroinvasive stage. We present here a review of the current knowledge regarding the role of the innate immune system in prion pathogenesis. PMID:23342365

  16. STITCHER: Dynamic assembly of likely amyloid and prion beta-structures from secondary structure predictions

    E-print Network

    Bryan, Allen W.

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational ...

  17. An emerging role of the cellular prion protein as a modulator of a morphogenetic program underlying epithelial-to-mesenchymal transition

    PubMed Central

    Mehrabian, Mohadeseh; Ehsani, Sepehr; Schmitt-Ulms, Gerold

    2014-01-01

    Knowledge of phenotypic changes the cellular prion protein (PrPC) contributes to may provide novel avenues for understanding its function. Here we consider data from functional knockout/down studies and protein–protein interaction analyses from the perspective of PrP's relationship to its ancestral ZIP metal ion transporting proteins. When approached in this manner, a role of PrPC as a modulator of a complex morphogenetic program that underlies epithelial-to-mesenchymal transition (EMT) emerges. To execute EMT, cells have to master the challenge to shift from cell-cell to cell-substrate modes of adherence. During this process, cell-cell junctions stabilized by E-cadherins are replaced by focal adhesions that mediate cell-substrate contacts. A similar reprogramming occurs during distinct organogenesis events that have been shown to rely on ZIP transporters. A model is presented that sees ZIP transporters, and possibly also PrPC, affect this balance of adherence modes at both the transcriptional and post-translational levels. PMID:25453033

  18. Amyloid-? and Proinflammatory Cytokines Utilize a Prion Protein-Dependent Pathway to Activate NADPH Oxidase and Induce Cofilin-Actin Rods in Hippocampal Neurons

    PubMed Central

    Kane, Sarah J.; Shaw, Alisa E.; Brown, David R.; Pulford, Bruce; Zabel, Mark D.; Lambeth, J. David; Bamburg, James R.

    2014-01-01

    Neurites of neurons under acute or chronic stress form bundles of filaments (rods) containing 1?1 cofilin?actin, which impair transport and synaptic function. Rods contain disulfide cross-linked cofilin and are induced by treatments resulting in oxidative stress. Rods form rapidly (5–30 min) in >80% of cultured hippocampal or cortical neurons treated with excitotoxic levels of glutamate or energy depleted (hypoxia/ischemia or mitochondrial inhibitors). In contrast, slow rod formation (50% of maximum response in ?6 h) occurs in a subpopulation (?20%) of hippocampal neurons upon exposure to soluble human amyloid-? dimer/trimer (A?d/t) at subnanomolar concentrations. Here we show that proinflammatory cytokines (TNF?, IL-1?, IL-6) also induce rods at the same rate and within the same neuronal population as A?d/t. Neurons from prion (PrPC)-null mice form rods in response to glutamate or antimycin A, but not in response to proinflammatory cytokines or A?d/t. Two pathways inducing rod formation were confirmed by demonstrating that NADPH-oxidase (NOX) activity is required for prion-dependent rod formation, but not for rods induced by glutamate or energy depletion. Surprisingly, overexpression of PrPC is by itself sufficient to induce rods in over 40% of hippocampal neurons through the NOX-dependent pathway. Persistence of PrPC-dependent rods requires the continuous activity of NOX. Removing inducers or inhibiting NOX activity in cells containing PrPC-dependent rods causes rod disappearance with a half-life of about 36 min. Cofilin-actin rods provide a mechanism for synapse loss bridging the amyloid and cytokine hypotheses for Alzheimer disease, and may explain how functionally diverse A?-binding membrane proteins induce synaptic dysfunction. PMID:24760020

  19. Cross-talk between the octarepeat domain and the fifth binding site of prion protein driven by the interaction of copper(II) with the N-terminus.

    PubMed

    Di Natale, Giuseppe; Turi, Ildikó; Pappalardo, Giuseppe; Sóvágó, Imre; Rizzarelli, Enrico

    2015-03-01

    Prion diseases are a group of neurodegenerative diseases based on the conformational conversion of the normal form of the prion protein (PrP(C)) to the disease-related scrapie isoform (PrP(Sc)). Copper(II) coordination to PrP(C) has attracted considerable interest for almost 20?years, mainly due to the possibility that such an interaction would be an important event for the physiological function of PrP(C). In this work, we report the copper(II) coordination features of the peptide fragment Ac(PEG11)3PrP(60-114) [Ac = acetyl] as a model for the whole N-terminus of the PrP(C) metal-binding domain. We studied the complexation properties of the peptide by means of potentiometric, UV/Vis, circular dichroism and electrospray ionisation mass spectrometry techniques. The results revealed that the preferred histidyl binding sites largely depend on the pH and copper(II)/peptide ratio. Formation of macrochelate species occurs up to a 2:1 metal/peptide ratio in the physiological pH range and simultaneously involves the histidyl residues present both inside and outside the octarepeat domain. However, at increased copper(II)/peptide ratios amide-bound species form, especially within the octarepeat domain. On the contrary, at basic pH the amide-bound species predominate at any copper/peptide ratio and are formed preferably with the binding sites of His96 and His111, which is similar to the metal-binding-affinity order observed in our previous studies. PMID:25649151

  20. The ribosome-associated complex antagonizes prion formation in yeast.

    PubMed

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in ?zuo1 strains. Consistent with this finding, ?zuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome. PMID:25739058