Science.gov

Sample records for probing quadrupolar nuclei

  1. Probing Quadrupolar Nuclei by Solid-State NMR Spectroscopy: Recent Advances

    SciTech Connect

    Fernandez, Christian; Pruski, Marek

    2011-06-08

    Solid-state nuclear magnetic resonance (NMR) of quadrupolar nuclei has recently undergone remarkable development of capabilities for obtaining structural and dynamic information at the molecular level. This review summarizes the key achievements attained during the last couple of decades in solid-state NMR of both integer spin and half-integer spin quadrupolar nuclei. We provide a concise description of the first- and second-order quadrupolar interactions, and their effect on the static and magic angle spinning (MAS) spectra. Methods are explained for efficient excitation of single- and multiple-quantum coherences, and acquisition of spectra under low- and high-resolution conditions. Most of all, we present a coherent, comparative description of the high-resolution methods for half-integer quadrupolar nuclei, including double rotation (DOR), dynamic angle spinning (DAS), multiple-quantum magic angle spinning (MQMAS), and satellite transition magic angle spinning (STMAS). Also highlighted are methods for processing and analysis of the spectra. Finally, we review methods for probing the heteronuclear and homonuclear correlations between the quadrupolar nuclei and their quadrupolar or spin-1/2 neighbors.

  2. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Mueller, K. T.

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines, causing crowding and overlap in NMR spectra. Magic-angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  3. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    SciTech Connect

    Mueller, K.T. California Univ., Berkeley, CA . Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  4. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGESBeta

    Perras, Frédéric A.

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities. Two-dimensional

  5. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    SciTech Connect

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  6. Population transfer HMQC for half-integer quadrupolar nuclei

    SciTech Connect

    Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng E-mail: jean-paul.amoureux@univ-lille1.fr; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul E-mail: jean-paul.amoureux@univ-lille1.fr

    2015-03-07

    This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., {sup 27}Al-{sup 17}O). In this case, the build-up is strongly affected by relaxation for small T{sub 2}′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO{sub 4}-14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the {sup 31}P-({sup 27}Al) experiments.

  7. Population transfer HMQC for half-integer quadrupolar nuclei.

    PubMed

    Wang, Qiang; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Xu, Jun; Hu, Bingwen; Feng, Ningdong; Chen, Qun; Amoureux, Jean-Paul; Deng, Feng

    2015-03-01

    This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., (27)Al-(17)O). In this case, the build-up is strongly affected by relaxation for small T2' and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO4-14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the (31)P-{(27)Al} experiments. PMID:25747074

  8. Spin squeezing in a quadrupolar nuclei NMR system.

    PubMed

    Auccaise, R; Araujo-Ferreira, A G; Sarthour, R S; Oliveira, I S; Bonagamba, T J; Roditi, I

    2015-01-30

    We have produced and characterized spin-squeezed states at a temperature of 26 °C in a nuclear magnetic resonance quadrupolar system. The experiment was carried out on 133Cs nuclei of spin I=7/2 in a sample of lyotropic liquid crystal. The source of spin squeezing was identified as the interaction between the quadrupole moment of the nuclei and the electric field gradients present within the molecules. We use the spin angular momentum representation to describe formally the nonlinear operators that produce the spin squeezing on a Hilbert space of dimension 2I+1=8. The quantitative and qualitative characterization of this spin-squeezing phenomenon is expressed by a squeezing parameter and squeezing angle developed for the two-mode Bose-Einstein condensate system, as well as by the Wigner quasiprobability distribution function. The generality of the present experimental scheme points to potential applications in solid-state physics. PMID:25679893

  9. PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization

    DOE PAGESBeta

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2015-08-04

    In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. Thismore » is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.« less

  10. PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization

    SciTech Connect

    Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek

    2015-08-04

    In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. This is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.

  11. PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization.

    PubMed

    Perras, Frédéric A; Kobayashi, Takeshi; Pruski, Marek

    2015-09-21

    We show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from (1)H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the (1)H channel. This is of particular importance in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced (1)H polarization is desired to obtain the highest sensitivity. PMID:26266874

  12. New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei.

    PubMed

    Ashbrook, Sharon E; Sneddon, Scott

    2014-11-01

    Solid-state nuclear magnetic resonance (NMR) spectroscopy has long been established as offering unique atomic-scale and element-specific insight into the structure, disorder, and dynamics of materials. NMR spectra of quadrupolar nuclei (I > (1)/2) are often perceived as being challenging to acquire and to interpret because of the presence of anisotropic broadening arising from the interaction of the electric field gradient and the nuclear electric quadrupole moment, which broadens the spectral lines, often over several megahertz. Despite the vast amount of information contained in the spectral line shapes, the problems with sensitivity and resolution have, until very recently, limited the application of NMR spectroscopy of quadrupolar nuclei in the solid state. In this Perspective, we provide a brief overview of the quadrupolar interaction, describe some of the basic experimental approaches used for acquiring high-resolution NMR spectra, and discuss the information that these spectra can provide. We then describe some interesting recent examples to showcase some of the more exciting and challenging new applications of NMR spectra of quadrupolar nuclei in the fields of energy materials, microporous materials, Earth sciences, and biomaterials. Finally, we consider the possible directions that this highly informative technique may take in the future. PMID:25296129

  13. NMR of group 2 element quadrupolar nuclei and some applications in materials science and biology

    NASA Astrophysics Data System (ADS)

    Li, Xiaohua

    1999-11-01

    For many years, NMR has provided an easy access for chemists to perform structural and kinetic studies on a whole variety of systems. To a great extent, these investigations have been restricted to non-quadrupolar nuclei. The study of quadrupolar nuclei (I > 1/2) offers the potential to gain insight into important problems in material science and biology. In addition to the large quadrupole moment associated with the spin active nuclei of interest, several of the most interesting species also possess an extremely low natural abundance. My recent research focuses on 87Sr NMR, which has been cited by earlier workers as being limited to only ionic species. Several strontium-containing compounds have been synthesized and characterized by single crystal x-ray diffraction. 87Sr NMR signals were determined for these compounds in a series of aprotic polar solvents. The chemical shift variation was found to be consistent with linen free energy relationship, which can be very useful in helping to elucidate mechanism, in predicting reaction rates, and the extent of reaction at equilibrium, and in discovering under what conditions a change in mechanism occurs. Control over symmetry of the compound was found to be the key to obtain the good NMR signals. One application of the new technique that has been developed was in the area of material science. An observation relative to sol-gel derived ionic conductors (La0.8Sr0.2Co0.8Fe0.2O 3.2) was that films often formed cracks upon pyrolysis. By careful examination of the sol-gel process by 87Sr NMR, a model for the structure of the sol was developed. Through the relaxation rate study of the strontium sites, the polymerization mechanism was determined to be predominantly bimolecular within the concentration region studied. The kinetic study of the fast cation exchange between two strontium sites indicated that the inhomogeneity of the polymeric network lads to the film cracking during pyrolysis. As a consequence of understanding the

  14. Line shapes in CP/MAS NMR spectra of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-02-01

    Cross polarization (CP) from 1H to quadrupolar nuclei with S = 3/2 has been carried out under magic-angle-spinning (MAS) conditions for powder samples of Na 2B 4O 7·10H 2O and H 3BO 3. The line shapes in the CP/MAS NMR spectra are different from those in the spectra measured with the single pulse sequence combined with 1H dipolar decoupling. Furthermore, the line shapes are found to be dependent on the measuring conditions such as the pulse amplitude for the quadrupolar nuclei. The spin-locking experiments demonstrate that line shapes in CP/MAS NMR spectra are largely dependent on the spin-locking efficiency.

  15. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    SciTech Connect

    Urban, Jeffry Todd

    2004-12-21

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  16. High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Rovnyank, David; Sun, Boqin; Griffin, Robert G.

    1996-02-01

    We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shifts are determined by the sum of resonance offset (chemical shift) and second-order quadrupolar effects. The two-pulse sequence described here is shown to provide a higher and more uniform excitation of multiple-quantum coherence than the three-pulse sequence used previously.

  17. High-Resolution NMR of Quadrupolar Nuclei in the Solid State

    SciTech Connect

    Gann, Sheryl Lee

    1995-11-30

    This dissertation describes recent developments in solid state nuclear magnetic resonance (NMR), for the most part involving the use of dynamic-angle spinning (DAS) NMR to study quadrupolar nuclei. Chapter 1 introduces some of the basic concepts and theory that will be referred to in later chapters, such as the density operator, product operators, rotations, coherence transfer pathways, phase cycling, and the various nuclear spin interactions, including the quadrupolar interaction. Chapter 2 describes the theory behind motional averaging experiments, including DAS, which is a technique where a sample is spun sequentially about two axis oriented at different angles with respect to the external magnetic field such that the chemical shift and quadrupolar anisotropy are averaged to zero. Work done on various rubidium-87 salts is presented as a demonstration of DAS. Chapter 3 explains how to remove sidebands from DAS and magic-angle spinning (MAS) experiments, which result from the time-dependence of the Hamiltonian under sample spinning conditions, using rotor-synchronized {pi}-pulses. Data from these experiments, known as DAH-180 and MAH-180, respectively, are presented for both rubidium and lead salts. In addition, the applicability of this technique to double rotation (DOR) experiments is discussed. Chapter 4 concerns the addition of cross-polarization to DAS (CPDAS). The theory behind spin locking and cross polarizing quadrupolar nuclei is explained and a method of avoiding the resulting problems by performing cross polarization at 0{sup o} (parallel) with respect to the magnetic field is presented. Experimental results are shown for a sodium-23 compound, sodium pyruvate, and for oxygen-17 labeled L-akmine. In Chapter 5, a method for broadening the Hartmann-Hahn matching condition under MAS, called variable effective field cross-polarization (VEFCI?), is presented, along with experimental work on adamantane and polycarbonate.

  18. Off-resonance effects on 2D NMR nutation spectra of I = 3/2 quadrupolar nuclei in static samples.

    PubMed

    Xia, Y; Deng, F; Ye, C

    1995-12-01

    The off-resonance effects on 2D NMR nutation of I = 3/2 quadrupolar nuclei are demonstrated with perturbation theory and numerical calculation in static samples. The off-resonant (delta omega) rf field (omega 1) enlarges a nutation frequency and consequently increases the measurement range of nuclear quadrupolar interaction parameters. When omega e > omega Qmax, and arctg(omega 1/delta omega) = +/- 54.7 degrees (magic angle), the satellite lines (produced by coherence transfers) in a nutation spectrum are superimposed with the line of central transition, and hence the nutation spectrum is simplified and its sensitivity is enhanced. The nuclear quadrupolar interaction parameters of 23Na nuclei in Na omega molecular sieve are obtained using 2D NMR nutation. PMID:9053113

  19. Signal enhancement of J-HMQC experiments in solid-state NMR involving half-integer quadrupolar nuclei.

    PubMed

    Wang, Qiang; Trébosc, Julien; Li, Yixuan; Xu, Jun; Hu, Bingwen; Feng, Ningdong; Chen, Qun; Lafon, Oliver; Amoureux, Jean-Paul; Deng, Feng

    2013-07-28

    We show that for half-integer quadrupolar nuclei, the manipulation of the satellite transitions can accelerate and enhance coherence transfer to other isotopes. This novel strategy is demonstrated to improve the sensitivity of (31)P-{(27)Al} J-HMQC experiments for a layered aluminophosphate Mu-4. PMID:23770976

  20. From crystalline to glassy gallium fluoride materials: an NMR study of 69Ga and 71Ga quadrupolar nuclei.

    PubMed

    Bureau, B; Silly, G; Buzaré, J Y; Legein, C; Massiot, D

    1999-11-01

    Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2-ZnF2-GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (nuQ up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum. PMID:10670905

  1. From crystalline to glassy gallium fluoride materials: an NMR study of 69Ga and 71Ga quadrupolar nuclei.

    PubMed

    Bureau, B; Silly, G; Buzaré, J Y; Legein, C; Massiot, D

    1999-09-01

    Owing to the implementation of acquisition techniques specific for nuclei with very large quadrupolar interaction (full shifted echo and variable offset cumulative spectra (VOCS)), NMR spectra of 69Ga and 71Ga are obtained in crystallised (PbGaF5, Pb3Ga2F12, Pb9Ga2F24 and CsZnGaF6) and glassy (PbF2-ZnF2-GaF3) gallium fluorides. Simulations of both static (full echo or VOCS) and 15 kHz MAS spectra allow to obtain consistent determinations of isotropic chemical shifts and very large quadrupolar parameters (nu(Q) up to 14 MHz). In the crystalline compounds whose structures are unknown, the number and the local symmetry of the different gallium sites are tentatively worked out. For the glassy systems, a continuous Czjzek's distribution of the NMR quadrupolar parameters accounts for the particular shape of the NMR spectrum. PMID:10499664

  2. Simulation of NMR powder line shapes of quadrupolar nuclei with half-integer spin at low-symmetry sites

    SciTech Connect

    Power, W.P.; Wasylishen, R.E. ); Mooibroek, S. Ltd., Milton, Ontario ); Pettitt, B.A.; Danchura, W. )

    1990-01-25

    At crystallographic sites of low symmetry it is possible for the interactions governing the NMR powder line shape of half-integer spin quadrupolar nuclei to have different orientation dependences. In such cases, it is found that the NMR line shape is sensitive to the relative orientation of the quadrupolar (Q) and chemical shielding (CS) tensors. An analysis of the {sup 133}Cs NMR powder pattern of cesium chromate illustrates the importance of considering such orientation effects. For systems where second-order quadrupolar interactions influence the central (m{sub I} = 1/2 {leftrightarrow} 1/2) transition, the line shape arising from this transition also depends critically on the relative orientation of the Q and CS tensors. It is anticipated that such effects will be important for pin n/2 nuclei (n = 3,5,7, or 9) with large chemical shift ranges and quadrupole moments larger than that of {sup 133}Cs (e.g., {sup 17}O, {sup 51}V, {sup 59}Co, and {sup 63}Cu).

  3. Bis-pyridinium quadrupolar derivatives. High Stokes shift selective probes for bio-imaging

    NASA Astrophysics Data System (ADS)

    Salice, Patrizio; Versari, Silvia; Bradamante, Silvia; Meinardi, Francesco; Macchi, Giorgio; Pagani, Giorgio A.; Beverina, Luca

    2013-11-01

    We describe the design, synthesis and characterization of five high Stokes shift quadrupolar heteroaryl compounds suitable as fluorescent probes in bio-imaging. In particular, we characterize the photophysical properties and the intracellular localization in Human Umbilical Vein Endothelial Cells (HUVEC) and Human Mesenchymal Stem Cells (HMSCs) for each dye. We show that, amongst all of the investigated derivatives, the 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]- N-methylpyrrole salt is the best candidates as selective mitochondrial tracker. Finally, we recorded the full emission spectrum of the most performing - exclusively mitochondrial selective - fluorescent probe directly from HUVEC stained cells. The emission spectrum collected from the stained mitochondria shows a remarkably more pronounced vibronic structure with respect to the emission of the free fluorophore in solution.

  4. SCAM-STMAS: satellite-transition MAS NMR of quadrupolar nuclei with self-compensation for magic-angle misset

    NASA Astrophysics Data System (ADS)

    Ashbrook, Sharon E.; Wimperis, Stephen

    2003-06-01

    Several methods are available for the acquisition of high-resolution solid-state NMR spectra of quadrupolar nuclei with half-integer spin quantum number. Satellite-transition MAS (STMAS) offers an approach that employs only conventional MAS hardware and can yield substantial signal enhancements over the widely used multiple-quantum MAS (MQMAS) experiment. However, the presence of the first-order quadrupolar interaction in the satellite transitions imposes the requirement of a high degree of accuracy in the setting of the magic angle on the NMR probehead. The first-order quadrupolar interaction is only fully removed if the sample spinning angle, χ, equals cos-1(1/ 3) exactly and rotor synchronization is performed. The required level of accuracy is difficult to achieve experimentally, particularly when the quadrupolar interaction is large. If the magic angle is not set correctly, the first-order splitting is reintroduced and the spectral resolution is severely compromised. Recently, we have demonstrated a novel STMAS method (SCAM-STMAS) that is self-compensated for angle missets of up to ±1° via coherence transfer between the two different satellite transitions ST +( mI=+3/2↔+1/2) and ST -( mI=-1/2↔-3/2) midway through the t1 period. In this work we describe in more detail the implementation of SCAM-STMAS and demonstrate its wider utility through 23Na ( I=3/2), 87Rb ( I=3/2), 27Al ( I=5/2), and 59Co ( I=7/2) NMR. We discuss linewidths in SCAM-STMAS and the limits over which angle-misset compensation is achieved and we demonstrate that SCAM-STMAS is more tolerant of temporary spinning rate fluctuations than STMAS, resulting in less " t1 noise" in the two-dimensional spectrum. In addition, alternative correlation experiments, for example involving the use of double-quantum coherences, that similarly display self-compensation for angle misset are investigated. The use of SCAM-STMAS is also considered in systems where other high-order interactions, such as third

  5. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups

    NASA Astrophysics Data System (ADS)

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V.; Düwel, Stephan; Durst, Markus; Schulte, Rolf F.; Menzel, Marion I.

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., 79Br-13C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-13C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T1 shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar 14N adjacent to the 13C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the 13C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a 15N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.

  6. Enhancing MQMAS of low-gamma nuclei by using a high B(1) field balanced probe circuit.

    PubMed

    Gan, Zhehong; Gor'kov, Peter L; Brey, William W; Sideris, Paul J; Grey, Clare P

    2009-09-01

    A balanced probe circuit is used to generate high B(1) magnetic field for sensitivity enhancement of multiple-quantum magic-angle spinning (MQMAS) experiment applied to low-gamma quadrupolar nuclei. Electrical balancing of the sample coil can cut the peak voltage by a half, therefore improving the power handling when generating a two-fold higher B(1) field. Experimental results, illustrated here with (25)Mg data for two layered double hydroxides, show that the MQMAS efficiency increases more than linearly with the B(1) field strength. The multiplicative enhancements from high B(0) and B(1) fields and an optimized MQMAS pulse sequence provide the critically needed sensitivity for acquiring MQMAS spectra of low-gamma quadrupolar nuclei such as (25)Mg at natural abundance. PMID:19595617

  7. 19F-decoupling of half-integer spin quadrupolar nuclei in solid-state NMR: application of frequency-swept decoupling methods.

    PubMed

    Chandran, C Vinod; Hempel, Günter; Bräuniger, Thomas

    2011-09-01

    In solid-state NMR studies of minerals and ion conductors, quadrupolar nuclei like (7)Li, (23)Na or (133)Cs are frequently situated in close proximity to fluorine, so that application of (19)F decoupling is beneficial for spectral resolution. Here, we compare the decoupling efficiency of various multi-pulse decoupling sequences by acquiring (19)F-decoupled (23)Na-NMR spectra of cryolite (Na(3)AlF(6)). Whereas the MAS spectrum is only marginally affected by application of (19)F decoupling, the 3Q-filtered (23)Na signal is very sensitive to it, as the de-phasing caused by the dipolar interaction between sodium and fluorine is three-fold magnified. Experimentally, we find that at moderate MAS speeds, the decoupling efficiencies of the frequency-swept decoupling schemes SW(f)-TPPM and SW(f)-SPINAL are significantly better than the conventional TPPM and SPINAL sequences. The frequency-swept sequences are therefore the methods of choice for efficient decoupling of quadrupolar nuclei with half-integer spin from fluorine. PMID:21856132

  8. Quadrupolar transients, cosine correlation functions, and two-dimensional exchange spectra of non-selectively excited spin-3/2 nuclei: A 7Li NMR study of the superionic conductor lithium indium phosphate

    NASA Astrophysics Data System (ADS)

    Storek, M.; Böhmer, R.

    2015-11-01

    Cos-cos stimulated echoes of non-selectively excited spin-3/2 nuclei were not exploited in studies of slow motional processes in solids and solid-like samples, so far. Based on a theoretical analysis of the quadrupolar transients which hitherto obviously precluded the application of such echoes, their utility is demonstrated for the example of 7Li NMR on the polycrystalline fast ion conductor lithium indium phosphate. Quadrupolar transients can adversely affect the shape of two- and three-pulse echo spectra and strategies are successfully tested that mitigate their impact. Furthermore, by means of suitably adapted cos-cos echo sequences an effective suppression of central-line contributions to the NMR spectra is achieved. By combining cos-cos and sin-sin datasets static two-dimensional exchange spectra were recorded that display quadrupolarly modulated off-diagonal intensity indicative of ionic motion.

  9. Dynamic effects in MAS and MQMAS NMR spectra of half-integer quadrupolar nuclei: calculations and an application to the double perovskite cryolite.

    PubMed

    Kotecha, Mrignayani; Chaudhuri, Santanu; Grey, Clare P; Frydman, Lucio

    2005-11-30

    Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite. PMID:16305261

  10. Probing the Physics of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2004-01-01

    As a result of a number of large multiwavelength monitoring campaigns that have taken place since the late 1980s, there are now several very large data sets on bright variable active galactic nuclei (AGNs) that are well-sampled in time and can be used to probe the physics of the AGN continuum source and the broad-line emitting region. Most of these data sets have been underutilized, as the emphasis thus far has been primarily on reverberation-mapping issues alone. Broader attempts at analysis have been made on some of the earlier IUE data sets (e.g., data from the 1989 campaign on NGC5 548) , but much of this analysis needs to be revisited now that improved versions of the data are now available from final archive processing. We propose to use the multiwavelength monitoring data that have been accumulated to undertake more thorough investigations of the AGN continuum and broad emission lines, including a more detailed study of line-profile variability, making use of constraints imposed by the reverberation results.

  11. Electromagnetic probes of nucleons and nuclei

    SciTech Connect

    Arnold, R.G.

    1985-12-01

    A brief review is given of recent experimental results from high energy electron and muon scattering on nuclear targets. Electron-proton elastic scattering at SLAC, the A-dependence of deep inelastic scattering at SLAC and CERN, and recent electron scattering experiments in the new program Nuclear Physics at SLAC are described. Some planned future experiments using high energy electrons and muons to probe nuclear targets are outlined. 30 refs., 10 figs.

  12. A repetitive probe for FISH analysis of bovine interphase nuclei

    PubMed Central

    Slimane, Wafa; Vaiman, Daniel; Godard, Sophie; Vaiman, Anne; Cribiu, Edmond; Renard, Jean-Paul

    2000-01-01

    The purpose of this study was to generate repetitive DNA sequence probes for the analysis of interphase nuclei by fluorescent in situ hybridisation (FISH). Such probes are useful for the diagnosis of chromosomal abnormalities in bovine preimplanted embryos. Of the seven probes (E1A, E4A, Ba, H1A, W18, W22, W5) that were generated and partially sequenced, five corresponded to previously described Bos taurus repetitive DNA (E1A, E4A, Ba, W18, W5), one probe (W22) shared no homology with other DNA sequences and one (H1A) displayed a significant homology with Rattus norvegicus mRNA for secretin receptor transmembrane domain 3. Fluorescent in situ hybridisation was performed on metaphase bovine fibroblast cells and showed that five of the seven probes hybridised most centromeres (E1A, E4A, Ba, W18, W22), one labelled the arms of all chromosomes (W5) and the H1A probe was specific to three chromosomes (ch14, ch20, and ch25). Moreover, FISH with H1A resulted in interpretable signals on interphase nuclei in 88% of the cases, while the other probes yielded only dispersed overlapping signals. PMID:14736403

  13. Probing collectivity in the vicinity of neutron deficient Pb nuclei

    SciTech Connect

    Grahn, T.; Page, R. D.; Petts, A.; Dewald, A.; Jolie, J.; Melon, B.; Pissulla, Th.; Hornillos, M. B. Gomez; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nyman, M.; Rahkila, P.; Saren, J.; Scholey, C.; Sorri, J.; Uusitalo, J.

    2008-05-12

    A series of recoil distance Doppler-shift lifetime measurements have been carried out to probe collectivity and configuration mixing of different shapes in the vicinity of neutron mid-shell Pb nuclei. Lifetime measurements of {sup 186}Pb and {sup 194}Po, the first ever utilizing the recoil-decay tagging method, probed the collectivity of coexisting prolate and oblate shapes in this region. Futher lifetime measurements of excited states in {sup 180}Hg, {sup 182}Hg and {sup 196}Po have been carried out.

  14. Probing the Evolution of the Shell Structures in Exotic Nuclei

    SciTech Connect

    De Angelis, Giacomo

    2008-11-11

    Magic numbers are a key feature in finite Fermion systems since they are strongly related to the underlying mean field. The size of the shell gaps and their evolution far from stability can be linked to the shape and symmetry of the nuclear mean field. Moreover the study of nuclei with large neutron/proton ratio allow to probe the density dependence of the effective interaction. Changes of the nuclear density and size in nuclei with increasing N/Z ratios are expected to lead to different nuclear symmetries and excitations. In this contribution I will discuss some selected examples which show the big potential of stable beams and of binary reactions for the study of the properties of the neutron-rich nuclear many body systems.

  15. Probing the central regions of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lohfink, Anne Maria

    Active Galactic Nuclei (AGN) are one of the key players in the Universe. Their energy output can strongly affect the growth of their host galaxy and can promote or suppress star formation on galactic scales. Most of the processes that determine the power of an AGN as well as the form in which that power is released take place in the immediate surroundings of its supermassive black hole, a region that is still not entirely understood. A comprehension of these inner regions is, however, crucial to any ultimate understanding of the AGN's vast influence. This dissertation explores these close-in environments of the black hole using two approaches: X-ray spectroscopy and variability studies. We begin by summarizing our current understanding of why AGN play such a significant role in galaxy formation. This is followed by a discussion of why X-ray spectroscopy is one of the best means to investigate them. We point out that, in particular, the X-ray reflection spectrum is interesting as it can directly probe parameters such as the black hole spin or the inclination of the accretion disk. Since the reflection spectrum is a broad band component, that usually only contributes a fraction of the total observed X-ray flux, the entire X-ray spectrum requires careful modeling. To perform such modeling and gain access to the parameters of the reflection spectrum, we first select a target in which the spectral decomposition is simplified by the absence of absorption - the Seyfert 1 galaxy Fairall 9. We apply a multi-epoch fitting method that uses more than one spectrum at a time to get the best possible results on the parameters of the reflection spectrum that are invariant on human timescales. This technique enables us to tightly constrain the reflection parameters and leads us to conclude that Fairall 9 most likely possesses a composite soft X-ray excess, consisting of blurred reflection and a separate component such as Comptonization. The reflection spectrum also provides a way

  16. Probe of Triple Shape Coexistence In Neutron Deficient Polonium Nuclei

    SciTech Connect

    Wiseman, D. R.; Page, R. D.; Darby, I. G.; Andreyev, A. N.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Jones, P.; Julin, R.; Juutinen, S.; Kettunen, H.; Leino, M.; Leppaenen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Saren, J.; Scholey, C.; Uusitalo, J.; Sandzelius, M.

    2006-04-26

    {gamma}-ray transitions in the neutron deficient 190,197Po nuclei have been identified. The yrast band of 190Po has been extended up to a spin and parity of 14+ and is found to display similar systematic behaviour to isotones 186Hg and 188Pb above the 4+ level, thus confirming its prolate nature. In 197Po the band built upon the 13/2+ isomer has been extended up to a spin and parity of 33/2+, while the non-yrast side-band has been observed for the first time. The behaviour of 197Po is found to be similar to that of the nearby even-mass isotopes, which is consistent with the model in which the i13/2 neutron is weakly coupled to the states in the even-even core.

  17. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  18. Probing the Active Galactic Nuclei using optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Vivek, M.

    Variability studies offer one of the best tools for understanding the physical conditions present in regions close to the central engine in an AGN. We probed the various properties of AGN through time variability studies of spectral lines in the optical wavelengths using the 2m telescope in IUCAA Girawali observatory. The absorption line variability studies are mainly concentrated in understanding the nature of outflows in quasars. Quasar outflows have a huge impact on the evolution of central supermassive blackholes, their host galaxies and the surrounding intergalactic medium. Studying the variability in these Broad Absorption Lines (BALs) can help us understand the structure, evolution, and basic physical properties of these outflows. We conducted a repeated Low ionization BAL monitoring program with 27 LoBALs (Low Ionization BALs) at z 0.3-2.1 covering timescales from 3.22 to 7.69 years in the quasar rest frame. We see a variety of phenomena, including some BALs that either appeared or disappeared completely and some BALs which do not vary over the observation period. In one case, the excited fine structure lines have changed dramatically. One source shows signatures of radiative acceleration. Here, we present the results from this program. Emission line studies are concentrated in understanding the peculiar characteristics of a dual-AGN source SDSS J092712.64+294344.0.

  19. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    SciTech Connect

    Wang, Shuanhu

    1997-09-17

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  20. GDR as a Probe of the Collective Motion in Nuclei at High Spins, Temperatures or Isospins

    SciTech Connect

    Maj, Adam

    2008-11-11

    The gamma-decay of the Giant Dipole Resonance (GDR), the high-frequency collective vibration of protons against neutrons, has been proven to be a basic probe for the shapes of hot nuclei, especially to study the effective shape evolution caused by the collective rotation of a nucleus. In this context an interesting question arises: what is the nuclear shape at extreme values of spin or temperatures, close to the limit impose by another collective motion--fission, and how evolves the giant dipole collective vibrations as a function of isospin. Short overview of the results from the experiments aimed to answer these questions are presented and possible perspectives of these type of studies for exotic nuclei to be obtained with the novel gamma-calorimeter PARIS and soon available intense radioactive beams are discussed.

  1. NMR quadrupolar system described as Bose-Einstein-condensate-like system

    SciTech Connect

    Auccaise, R.; Oliveira, I. S.; Sarthour, R. S.; Teles, J.; Bonagamba, T. J.; Azevedo, E. R. de

    2009-04-14

    This paper presents a description of nuclear magnetic resonance (NMR) of quadrupolar systems using the Holstein-Primakoff (HP) formalism and its analogy with a Bose-Einstein condensate (BEC) system. Two nuclear spin systems constituted of quadrupolar nuclei I=3/2 ({sup 23}Na) and I=7/2 ({sup 133}Cs) in lyotropic liquid crystals were used for experimental demonstrations. Specifically, we derived the conditions necessary for accomplishing the analogy, executed the proper experiments, and compared with quantum mechanical prediction for a Bose system. The NMR description in the HP representation could be applied in the future as a workbench for BEC-like systems, where the statistical properties may be obtained using the intermediate statistic, first established by Gentile. The description can be applied for any quadrupolar systems, including new developed solid-state NMR GaAS nanodevices.

  2. Solid Effect Between Quadrupolar Transitions in Dilute Cu-Pd Alloys

    NASA Astrophysics Data System (ADS)

    Konzelmann, K.; Majer, G.; Seeger, A.

    1996-06-01

    The paper investigates the Dynamic Solid Effect (DSE) in Nuclear Quadrupole Double Reso-nance (NQDOR) on a system (dilute alloys of CuPd with 8, 42, 210, or 1000 at.ppm Pd) chosen for its simplicity and the possibility to test the theoretical concepts on which the experimental tech-niques (in particular the so-called Berthier-Minier technique for exhibiting the DSE) are based. NQDOR allows to observe the transitions between the Cu nuclear energy levels split by the quadrupolar interaction with the electric field gradients generated by nearby Pd atoms even in dilute alloys, in which the fraction of Cu nuclei experiencing a given field gradient is very small. The DSE permits transitions at frequencies corresponding to the sums or differences of quadrupolar level splittings at neighbouring nuclei and thus gives access to information on the spatial correlation of nuclei accessible to NQDOR studies. The DSE information is shown to be in full accord with the conclusions drawn earlier, on the basis of line-intensity arguments, on the assignment of quadrupo-lar transitions to the first four shells of Cu nuclei surrounding isolated Pd atoms but, in addition, allows to identify the low-frequency NQDOR lines associated with Cu nuclei in the fifth and sixth shells.

  3. THE ELECTRON ION COLLIDER. A HIGH LUMINOSITY PROBE OF THE PARTONIC SUBSTRUCTURE OF NUCLEONS AND NUCLEI.

    SciTech Connect

    EDITED BY M.S. DAVIS

    2002-02-01

    By the end of this decade, the advancement of current and planned research into the fundamental structure of matter will require a new facility, the Electron Ion Collider (EIC). The EIC will collide high-energy beams of polarized electrons from polarized protons and neutrons, and unpolarized beams of electrons off atomic nuclei with unprecedented intensity. Research at the EIC will lead to a detailed understanding of the structure of the proton, neutron, and atomic nuclei as described by Quantum Chromo-Dynamics (QCD), the accepted theory of the strong interaction. The EIC will establish quantitative answers to important questions by delivering dramatically increased precision over existing and planned experiments and by providing completely new experimental capabilities. Indeed, the EIC will probe QCD in a manner not possible previously. This document presents the scientific case for the design, construction and operation of the EIC. While realization of the EIC requires a significant advance in the development of efficient means of producing powerful beams of energetic electrons, an important consideration for choosing the site of the EIC is the planned upgrade to the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The upgrade planned for RHIC will fully meet the requirements for the ion beam for the EIC, providing a distinct advantage in terms of cost, schedule and the final operation.

  4. Fragmentation of spherical radioactive heavy nuclei as a novel probe of transient effects in fission

    SciTech Connect

    Schmitt, C.; Schmidt, K.-H.; Kelic, A.; Heinz, A.; Jurado, B.

    2010-06-15

    Peripheral collisions with radioactive heavy-ion beams at relativistic energies are discussed as an innovative approach for probing the transient regime experienced by fissile systems evolving toward quasiequilibrium and thereby studying the viscous nature of nuclear matter. A dedicated experiment using the advanced technical installations of GSI, Darmstadt, made it possible to realize ideal conditions for the investigation of relaxation effects in a metastable well. Combined with a highly sensitive experimental signature, it provides a measure of the transient effects with respect to the flux over the fission barrier. Within a two-step reaction process, 45 proton-rich unstable spherical isotopes between At and Th produced by projectile-fragmentation of a stable {sup 238}U beam have been used as secondary projectiles which impinge on lead target nuclei. The fragmentation of the radioactive projectiles results in nearly spherical compound nuclei that span a wide range in excitation energy and fissility. The decay of these excited systems by fission is studied with a dedicated setup which, together with the inverse kinematics of the reaction, permits the detection of both fission products in coincidence and the determination of their atomic numbers with high resolution. The information on the nuclear charges of the two fragments is used to sort the data according to the initial excitation energy and fissility of the compound nucleus. The width of the fission-fragment nuclear charge distribution is shown to be specifically sensitive to presaddle transient effects and is used to establish a clock for the passage of the saddle point. The comparison of the experimental results with model calculations points to a fission delay tau{sub trans} of (3.3+-0.7)x10{sup -21} s for initially spherical compound nuclei, independent of excitation energy and fissility. This value suggests a nuclear dissipation strength beta at small deformation of (4.5+-0.5)x10{sup 21} s{sup -1}. The

  5. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  6. Probing the circumgalactic medium of active galactic nuclei with background quasars

    NASA Astrophysics Data System (ADS)

    Kacprzak, Glenn G.; Churchill, Christopher W.; Murphy, Michael T.; Cooke, Jeff

    2015-01-01

    We performed a detailed study of the extended cool gas, traced by Mg II absorption [Wr(2796) ≥ 0.3 Å], surrounding 14 narrow-line active galactic nuclei (AGNs) at 0.12 ≤ z ≤ 0.22 using background quasar sightlines. The background quasars probe the AGNs at projected distances of 60 ≤ D ≤ 265 kpc. We find that, between 100 ≤ D ≤ 200 kpc, AGNs appear to have lower Mg II gas covering fractions (0.09^{+0.18}_{-0.08}) than quasars (0.47^{+0.16}_{-0.15}) and possibly lower than inactive field galaxies (0.25^{+0.11}_{-0.09}). We do not find a statistically significant azimuthal angle dependence for the Mg IIcovering fraction around AGNs, though the data hint at one. We also study the `down-the-barrel' outflow properties of the AGNs themselves and detect intrinsic Na ID absorption in 8/8 systems and intrinsic Mg II absorption in 2/2 systems, demonstrating that the AGNs have significant reservoirs of cool gas. We find that 6/8 Na ID and 2/2 Mg II intrinsic systems contain blueshifted absorption with Δv > 50 km s-1, indicating outflowing gas. The 2/2 intrinsic Mg II systems have outflow velocities a factor of ˜4 higher than the Na ID outflow velocities. Our results are consistent with AGN-driven outflows destroying the cool gas within their haloes, which dramatically decreases their cool gas covering fraction, while starburst-driven winds are expelling cool gas into their circumgalactic media (CGM). This picture appears contrary to quasar-quasar pair studies which show that the quasar CGM contains significant amounts of cool gas whereas intrinsic gas found `down-the-barrel' of quasars reveals no cool gas. We discuss how these results are complementary and provide support for the AGN unified model.

  7. Infrared emission from tidal disruption events - probing the pc-scale dust content around galactic nuclei

    NASA Astrophysics Data System (ADS)

    Lu, Wenbin; Kumar, Pawan; Evans, Neal J.

    2016-05-01

    Recent UV-optical surveys have been successful in finding tidal disruption events (TDEs), in which a star is tidally disrupted by a supermassive black hole (BH). These TDEs release a huge amount of radiation energy Erad ˜ 1051-1052 erg into the circum-nuclear medium. If the medium is dusty, most of the radiation energy will be absorbed by dust grains within ˜1 pc from the BH and re-radiated in the infrared. We calculate the dust emission light curve from a 1D radiative transfer model, taking into account the time-dependent heating, cooling and sublimation of dust grains. We show that the dust emission peaks at 3-10 μm and has typical luminosities between 1042 and 1043 erg s-1 (with sky covering factor of dusty clouds ranging from 0.1 to 1). This is detectable by current generation of telescopes. In the near future, James Webb Space Telescope will be able to perform photometric and spectroscopic measurements, in which silicate or polycyclic aromatic hydrocarbon features may be found. Dust grains are non-spherical and may be aligned with the magnetic field, so the dust emission may be significantly polarized. Observations at rest-frame wavelength ≥ 2 μm have only been reported from two TDE candidates, SDSS J0952+2143 and SwiftJ1644+57. Although consistent with the dust emission from TDEs, the mid-infrared fluxes of the two events may be from other sources. Long-term monitoring is needed to draw a firm conclusion. We also point out two nearby TDE candidates (ASASSN-14ae and -14li) where the dust emission may be currently detectable. Detection of dust infrared emission from TDEs would provide information regarding the dust content and its distribution in the central pc of non-active galactic nuclei, which is hard to probe otherwise.

  8. The innermost dusty structure in active galactic nuclei as probed by the Keck interferometer

    NASA Astrophysics Data System (ADS)

    Kishimoto, M.; Hönig, S. F.; Antonucci, R.; Barvainis, R.; Kotani, T.; Tristram, K. R. W.; Weigelt, G.; Levin, K.

    2011-03-01

    We are now exploring the inner region of type 1 active galactic nuclei (AGNs) with the Keck interferometer in the near-infrared. Adding to the four targets previously studied, we report measurements of the K-band (2.2 μm) visibilities for four more targets, namely AKN120, IC 4329A, Mrk6, and the radio-loud QSO 3C 273 at z = 0.158. The observed visibilities are quite high for all the targets, which we interpret as an indication of the partial resolution of the dust sublimation region. The effective ring radii derived from the observed visibilities scale approximately with L1/2, where L is the AGN luminosity. Comparing the radii with those from independent optical-infrared reverberation measurements, these data support our previous claim that the interferometric ring radius is either roughly equal to or slightly larger than the reverberation radius. We interpret the ratio of these two radii for a given L as an approximate probe of the radial distribution of the inner accreting material. We show tentative evidence that this inner radial structure might be closely related to the radio-loudness of the central engine. Finally, we re-observed the brightest Seyfert 1 galaxy NGC 4151. Its marginally higher visibility at a shorter projected baseline, compared to our previous measurements obtained one year before, further supports the partial resolution of the inner structure. We did not detect any significant change in the implied emission size when the K-band flux was brightened by a factor of 1.5 over a time interval of one year.

  9. On the microscopic fluctuations driving the NMR relaxation of quadrupolar ions in water

    SciTech Connect

    Carof, Antoine; Salanne, Mathieu; Rotenberg, Benjamin; Charpentier, Thibault

    2015-11-21

    Nuclear Magnetic Resonance (NMR) relaxation is sensitive to the local structure and dynamics around the probed nuclei. The Electric Field Gradient (EFG) is the key microscopic quantity to understand the NMR relaxation of quadrupolar ions, such as {sup 7}Li{sup +}, {sup 23}Na{sup +}, {sup 25}Mg{sup 2+}, {sup 35}Cl{sup −}, {sup 39}K{sup +}, or {sup 133}Cs{sup +}. Using molecular dynamics simulations, we investigate the statistical and dynamical properties of the EFG experienced by alkaline, alkaline Earth, and chloride ions at infinite dilution in water. Specifically, we analyze the effect of the ionic charge and size on the distribution of the EFG tensor and on the multi-step decay of its auto-correlation function. The main contribution to the NMR relaxation time arises from the slowest mode, with a characteristic time on the picosecond time scale. The first solvation shell of the ion plays a dominant role in the fluctuations of the EFG, all the more that the ion radius is small and its charge is large. We propose an analysis based on a simplified charge distribution around the ion, which demonstrates that the auto-correlation of the EFG, hence the NMR relaxation time, reflects primarily the collective translational motion of water molecules in the first solvation shell of the cations. Our findings provide a microscopic route to the quantitative interpretation of NMR relaxation measurements and open the way to the design of improved analytical theories for NMR relaxation for small ionic solutes, which should focus on water density fluctuations around the ion.

  10. K isomers in 254No: probing single-particle energies and pairing strengths in the heaviest nuclei.

    PubMed

    Tandel, S K; Khoo, T L; Seweryniak, D; Mukherjee, G; Ahmad, I; Back, B; Blinstrup, R; Carpenter, M P; Chapman, J; Chowdhury, P; Davids, C N; Hecht, A A; Heinz, A; Ikin, P; Janssens, R V F; Kondev, F G; Lauritsen, T; Lister, C J; Moore, E F; Peterson, D; Reiter, P; Tandel, U S; Wang, X; Zhu, S

    2006-08-25

    We have identified two isomers in 254No, built on two- and four-quasiparticle excitations, with quantum numbers K pi = 8- and (14+), as well as a low-energy 2-quasiparticle Kpi = 3+ state. The occurrence of isomers establishes that K is a good quantum number and therefore that the nucleus has an axial prolate shape. The 2-quasiparticle states probe the energies of the proton levels that govern the stability of superheavy nuclei, test 2-quasiparticle energies from theory, and thereby check their predictions of magic gaps. PMID:17026297

  11. FISH analysis of the arrangement of chromosomes in interphase nuclei using telomeric, centromeric, and DNA painting probes

    NASA Astrophysics Data System (ADS)

    Monajembashi, Shamci; Schmitt, Eberhard; Dittmar, Heike; Greulich, Karl-Otto

    1999-01-01

    Fluorescence in situ hybridization is used to study the arrangement of chromosomes in interphase nuclei of unsynchronized human lymphocytes. DNA probes specific for telomeric DNA, centromeric (alpha) -satellite DNA and whole chromosomes 2, 7, 9 and X are employed. It is demonstrated that the shape of the chromosome territories is variable in cycling cells, for example, close to the metaphase chromosome homologues are arranged pairwise. Furthermore, the relative arrangement of chromosome homologues to each other is not spatially defined. Also, the relative orientation of centromeres and telomeres within a chromosome domain is variable.

  12. Resonant Auger for the detection of quadrupolar transitions

    SciTech Connect

    Danger, J.; Le Fevre, P.; Chandesris, D.; Magnan, H.; Jupille, J.; Bourgeois, S.; Eickhoff, T.; Drube, W.

    2003-01-24

    Quadrupolar transitions can play an important role in X-ray absorption spectroscopy, especially when it is used for magnetic measurements, like in X-ray Magnetic Circular Dichroism or Resonant Magnetic Scattering. We show here that resonantly excited Ti KL2,3L2,3 Auger spectra of TiO2 (110) carry a clear signature of quadrupolar transitions from the 1s to localized eg and t2g d-like states. The quadrupolar nature of the observed additional spectator lines are clearly demonstrated by their angular dependence, and their intensity is used to locate and quantify the quadrupolar transitions in the absorption spectrum.

  13. Quadrupolar Spin Orders in FeSe

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Nevidomskyy, Andriy

    Motivated by the absence of long-range magnetic order and the strong spin fluctuations observed in the Fe-based superconductor FeSe, we study spin-1 model on a square lattice up to next-nearest neighbor Heisenberg and biquadratic spin exchanges. The zero-temperature variational phase diagram gives the conventional antiferromagnetic order and also more exotic quadrupolar spin phases. These quadrupolar phases do not host long-range magnetic order and preserve time-reversal symmetry, but break the spin SU(2) symmetry. In particular, we observe a robust ferroquadrupolar order (FQ) in immediate proximity to the columnar AFM phase. We envision that FeSe may be positioned within the FQ phase close to the phase boundary. Using the flavor-wave technique, we calculate the structure factor inside the FQ phase and find a Goldstone mode emerging from Q = (0 , 0) , which however bears zero spectral weight at ω = 0 due to time reversal symmetry. At the same time, we observe strong spin fluctuations near (π , 0) / (0 , π) , which agrees with the recent neutron scattering experiments. Further, we calculate the higher order interactions between the (π , 0) and (0 , π) spin fluctuations inside the FQ phase, which may shed light on the C4 symmetry breaking in the nematic phase of FeSe.

  14. Nonclassical correlation in NMR quadrupolar systems

    SciTech Connect

    Soares-Pinto, D. O.; Auccaise, R.; Azevedo, E. R. de; Bonagamba, T. J.; Celeri, L. C.; Maziero, J.; Serra, R. M.; Fanchini, F. F.

    2010-06-15

    The existence of quantum correlation (as revealed by quantum discord), other than entanglement and its role in quantum-information processing (QIP), is a current subject for discussion. In particular, it has been suggested that this nonclassical correlation may provide computational speedup for some quantum algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been successfully used as a test bench for many QIP implementations, although it has also been continuously criticized for not presenting entanglement in most of the systems used so far. In this paper, we report a theoretical and experimental study on the dynamics of quantum and classical correlations in an NMR quadrupolar system. We present a method for computing the correlations from experimental NMR deviation-density matrices and show that, given the action of the nuclear-spin environment, the relaxation produces a monotonic time decay in the correlations. Although the experimental realizations were performed in a specific quadrupolar system, the main results presented here can be applied to whichever system uses a deviation-density matrix formalism.

  15. Symmetry Energy and Surface Clustering in Nuclei; Probing the Asymmetric Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Abdullah, Nooraihan; Nasir Usmani, Qamar; Anwar, Khairul; Sauli, Zaliman

    We investigate the properties of asymmetric nuclear matter (ANM) which is consistent with clustering at low densities of nuclear matter. Due to clustering, the equation of state of asymmetric nuclear matter demonstrates peculiar properties. It is shown that the ground of ANM has two separate phases of normal nuclear matter and neutron matter for N > Z. This situation is at variance with the conventional picture of uniform distribution of neutrons and protons for ANM. Thus, this leads to an excellent understanding of the symmetry energy data of Wada et al. [1] in the density range of 0.048-0.032 fm-3. It is shown that inclusion of clustering at the nuclear surface is essential to explain about nuclei near the neutron drip line. The research incorporates 2149 nuclei [2] with N,Z ≥ 8.

  16. Quantum simulation of interaction blockade in a two-site Bose-Hubbard system with solid quadrupolar crystal

    NASA Astrophysics Data System (ADS)

    Nie, Xinfang; Li, Jun; Cui, Jiangyu; Luo, Zhihuang; Huang, Jiahao; Chen, Hongwei; Lee, Chaohong; Peng, Xinhua; Du, Jiangfeng

    2015-05-01

    The Bose-Hubbard model provides an excellent platform for exploring exotic quantum coherence. Interaction blockade is an important fundamental phenomenon in the two-site Bose-Hubbard system (BHS), which gives a full quantum description for the atomic Bose-Josephson junction. Using the analogy between the two-site BHS and the quadrupolar nuclear magnetic resonance (NMR) crystal, we experimentally simulate a two-site Bose-Hubbard system in a NMR quantum simulator composed of the quadrupolar spin-3/2 sodium nuclei of a NaNO3 single crystal, and observe the interesting phenomenon of interaction blockade via adiabatic dynamics control. To our best knowledge, this is the first experimental implementation of the quantum simulation of the interaction blockade using quadrupolar nuclear system. Our work exhibits important applications of quadrupolar NMR in the quantum information science, i.e. a spin-3/2 system can be used as a full 2-qubit su(4) system, if the quadrupole moment is not fully averaged out by fast tumbling in the liquid phase.

  17. Probing nuclei by deeply penetrating and peripherally interacting Hadron: Bridging low and high-energy processes

    SciTech Connect

    Eliseev, S. M.

    2013-08-15

    The search for signals of new phenomenon is an important trend in the contemporary strong interaction physics. The nuclear J/{psi} suppressions are considered as like candidates for the signals of unusual events, e.g. quark-gluon plasma. They were explained in the framework of Glauber approximation. On the contrary, we show that new experimental data on the total cross section of K{sup +}-nucleus interaction at intermediate energies cannot be described by the novel well-elaborated Glauber model. This may indicate a unique event in ground state nuclei (in-medium effect)

  18. Probing resonances in deformed nuclei by using the complex-scaled Green's function method

    NASA Astrophysics Data System (ADS)

    Shi, Xin-Xing; Shi, Min; Niu, Zhong-Ming; Heng, Tai-Hua; Guo, Jian-You

    2016-08-01

    Resonance plays a key role in the formation of many physical phenomena. The complex-scaled Green's function method provides a powerful tool for exploring resonance. In this paper, we combine this method with the theory describing deformed nuclei with the formalism presented. Taking 45S as an example, we elaborate numerical details and demonstrate how to determine the resonance parameters. The results are compared with those obtained by the complex scaling method and the coupled-channel method and satisfactory agreement is obtained. In particular, the present scheme focuses on the advantages of the complex scaling method and the Green's function method and is more suitable for the exploration of resonance.

  19. Development of a deformation-tunable quadrupolar microcavity

    NASA Astrophysics Data System (ADS)

    Yang, Juhee; Moon, Songky; Lee, Sang-Bum; Lee, Jai-Hyung; An, Kyungwon; Shim, Jeong-Bo; Lee, Hai-Woong; Kim, Sang-Wook

    2006-08-01

    We have developed a technique for realizing a two-dimensional quadrupolar microcavity with its deformation variable from 0% to 20% continuously. We employed a microjet ejected from a noncircular orifice in order to generate a stationary column with modulated quadrupolar deformation in its cross section. Wavelength redshifts of low-order cavity modes due to shape deformation were measured and were found to be in good agreement with the wave calculation for the same deformation, indicating that the observed deformation is quadrupolar in nature.

  20. Nucleosomal structure at hyperacetylated loci probed in nuclei by DNA-histone crosslinking.

    PubMed Central

    Ebralidse, K K; Hebbes, T R; Clayton, A L; Thorne, A W; Crane-Robinson, C

    1993-01-01

    Chemically induced histone-DNA crosslinking in nuclei is used to monitor structural changes in chromosomal domains containing hyperacetylated histones. Core particles harbouring the crosslinks are immunofractionated with antibodies specific for acetylated histones. Crosslinking is revealed by gel separation of tryptic peptides from core histones that carry 32P-labelled residual nucleotide. The large number of DNA-histone crosslinks retained indicates that acetylated core histone tails are not totally displaced from the DNA. Changes in the patterns of crosslinked peptides imply a restructuring of hyperacetylated histone-DNA interactions at several points within the nucleosome. This demonstrates that a distinct conformational state is adopted in acetylated nucleosomes, known to be concentrated at transcriptionally active loci. Images PMID:8233821

  1. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    SciTech Connect

    Mercado, Luis

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q2 = 0.62 GeV2. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (GsE,M ) to the nucleon electromagnetic form factors. A value of APV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in GsE + 0.517GsM = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q2 = 0.009 GeV2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.

  2. Magnetic alignment and quadrupolar/paramagnetic cross-correlation in complexes of Na with LnDOTP5-

    NASA Astrophysics Data System (ADS)

    Eliav, Uzi; Chandra shekar, S.; Ling, Wen; Navon, Gil; Jerschow, Alexej

    2012-03-01

    The observation of a double-quantum filtered signal of quadrupolar nuclei (e.g. 23Na) in solution has been traditionally interpreted as a sign for anisotropic reorientational motion. Ling and Jerschow (2007) [23] have found that a 23Na double-quantum signal is observed also in solutions of TmDOTPNa5. Interference effects between the quadrupolar and the paramagnetic interactions have been reported to lead to the appearance of double-quantum coherences even in the absence of a residual quadrupolar interaction. In addition, such processes lead to differential linebroadening effects between the satellite transitions, akin to effects that are well known for dipolar-CSA cross-correlation. Here, we report experiments on sodium in the presence of LnDOTP compounds, where it is shown that these cross-correlation effects correlate well with the pseudo-contact shift. In addition, anisotropic g-values of the lanthanide compounds in question, can also lead to alignment within the magnetic field, and consequently to the appearance of line splitting and double-quantum coherences. The two competing effects are demonstrated and it is concluded that both cross-correlated relaxation and alignment in the magnetic field must be at work in the systems described here.

  3. Probing Spectroscopic Variability of Galaxies and Narrow-Line Active Galactic Nuclei in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Yip, C. W.; Connolly, A. J.; Vanden Berk, D. E.; Scranton, R.; Krughoff, S.; Szalay, A. S.; Dobos, L.; Tremonti, C.; Taghizadeh-Popp, M.; Budavári, T.; Csabai, I.; Wyse, R. F. G.; Ivezić, Ž.

    2009-06-01

    Under the unified model for active galactic nuclei (AGNs), narrow-line (Type 2) AGNs are, in fact, broad-line (Type 1) AGNs but each with a heavily obscured accretion disk. We would therefore expect the optical continuum emission from Type 2 AGNs to be composed mainly of stellar light and nonvariable on the timescales of months to years. In this work we probe the spectroscopic variability of galaxies and narrow-line AGNs using the multiepoch data in the Sloan Digital Sky Survey Data Release 6. The sample contains 18,435 sources for which there exist pairs of spectroscopic observations (with a maximum separation in time of ~700 days) covering a wavelength range of 3900-8900 Å. To obtain a reliable repeatability measurement between each spectral pair, we consider a number of techniques for spectrophotometric calibration resulting in an improved spectrophotometric calibration of a factor of 2. From these data we find no obvious continuum and emission-line variability in the narrow-line AGNs on average—the spectroscopic variability of the continuum is 0.07 ± 0.26 mag in the g band and, for the emission-line ratios log10([N II]/Hα) and log10([O III]/Hβ), the variability is 0.02 ± 0.03 dex and 0.06 ± 0.08 dex, respectively. From the continuum variability measurement we set an upper limit on the ratio between the flux of the varying spectral component, presumably related to AGN activities, and that of the host galaxy to be ~30%. We provide the corresponding upper limits for other spectral classes, including those from the BPT diagram, eClass galaxy classification, stars, and quasars.

  4. Quantum phases of quadrupolar Fermi gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Bhongale, Satyan; Mathey, Ludwig; Zhao, Erhai; Yellin, Susanne; Lemeshko, Mikhail

    2013-05-01

    We introduce a new platform for quantum simulation of many-body systems based on nonspherical atoms or molecules with zero dipole moment but possessing a significant value of electric quadrupole moment. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and opens up a perspective to create topological superfluid. Quadrupolar species, such as metastable alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse and are readily available in experiment at high densities.

  5. Quantum Phases of Quadrupolar Fermi Gases in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Bhongale, S. G.; Mathey, L.; Zhao, Erhai; Yelin, S. F.; Lemeshko, Mikhail

    2013-04-01

    We introduce a new platform for quantum simulation of many-body systems based on nonspherical atoms or molecules with zero dipole moments but possessing a significant value of electric quadrupole moments. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and opens up a perspective to create a topological superfluid. Quadrupolar species, such as metastable alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse and are readily available in experiment at high densities.

  6. Quadrupolar, Triple [Delta]-Function Potential in One Dimension

    ERIC Educational Resources Information Center

    Patil, S. H.

    2009-01-01

    The energy and parity eigenstates for quadrupolar, triple [delta]-function potential are analysed. Using the analytical solutions in specific domains, simple expressions are obtained for even- and odd-parity bound-state energies. The Heisenberg uncertainty product is observed to have a minimum for a specific strength of the potential. The…

  7. Radiofrequency quadrupolar NMR stark spectroscopy: steady state response calibration and tensorial mapping.

    PubMed

    Tarasek, Matthew R; Kempf, James G

    2010-10-01

    Radiofrequency electric (E) fields oscillating at twice the usual NMR frequency (2ω(0)) can induce double-quantum transitions in quadrupolar nuclei, an NMR Stark effect. Characterization of such is of interest to aid understanding of electrostatic effects in NMR spectra. Calibration of Stark responses to an applied electric field may also be used to assess native fields within molecules and materials. We present high-field (14.1 T), room-temperature NMR experiments to calibrate the 2ω(0) Stark response in crystalline GaAs. This system presents an important test of current techniques and conditions, as historical studies at low field (500-900 mT) and low temperature (77 K) provide a basis for comparison. Our measurements of steady state response reveal the quadrupolar Stark tuning rate for (69)Ga in this material. The value, β(Q) = (11.5 ± 0.1) × 10(12) m(-1), is 3.6 times larger than the most-reliable prior result. In the process, we also uncovered a previously unobserved double-quantum steady state coherence. It appears as a completely separable dispersive signal component in quadrature-detected presaturation spectra versus offset from 2ω(0). The new component may eventually afford an independent route to calibrating β(Q). Finally, we demonstrated exceptional agreement with theory of the orientation-dependent Stark response for rotation of the sample relative to B(0) over a range of 90° and for E-field amplitudes from 30-180 V/cm. PMID:20839890

  8. Quantum phases of quadrupolar Fermi gases in optical lattices.

    PubMed

    Bhongale, S G; Mathey, L; Zhao, Erhai; Yelin, S F; Lemeshko, Mikhail

    2013-04-12

    We introduce a new platform for quantum simulation of many-body systems based on nonspherical atoms or molecules with zero dipole moments but possessing a significant value of electric quadrupole moments. We consider a quadrupolar Fermi gas trapped in a 2D square optical lattice, and show that the peculiar symmetry and broad tunability of the quadrupole-quadrupole interaction results in a rich phase diagram encompassing unconventional BCS and charge density wave phases, and opens up a perspective to create a topological superfluid. Quadrupolar species, such as metastable alkaline-earth atoms and homonuclear molecules, are stable against chemical reactions and collapse and are readily available in experiment at high densities. PMID:25167282

  9. Nick translation of HeLa cell nuclei as a probe for locating DNase I-sensitive nucleosomes

    SciTech Connect

    Javaherian, K.; Fasman, G.D.

    1984-03-10

    The technique of nick translation of nuclei has been used in HeLa cells to label DNase I-sensitive regions. Micrococcal nuclease digestion of the nick translated nuclei was followed by a low ionic strength gel electrophoresis system which separates different types of mononucleosomes. The major label was observed in the vicinity of high mobility group protein containing mononucleosomes. However, further analysis revealed that the particle does not sediment in the position of mononucleosomes on a sucrose gradient. Two alternative explanations are discussed as the possible source of this particle. It is either a high mobility group protein containing nucleosome in some unfolded conformation or the labeled particle originates from discrete DNA fragments, wrapped around some nonhistone proteins, located in a highly DNase I-sensitive region, which is resistant to micrococcal nuclease digestion. 36 references, 7 figures.

  10. DFT-D study of 14N nuclear quadrupolar interactions in tetra-n-alkyl ammonium halide crystals.

    PubMed

    Dib, Eddy; Alonso, Bruno; Mineva, Tzonka

    2014-05-15

    The density functional theory-based method with periodic boundary conditions and addition of a pair-wised empirical correction for the London dispersion energy (DFT-D) was used to study the NMR quadrupolar interaction (coupling constant CQ and asymmetry parameter ηQ) of (14)N nuclei in a homologous series of tetra-n-alkylammonium halides (C(x)H(2x+1))4N(+)X(-) (x = 1-4), (X = Br, I). These (14)N quadrupolar properties are particularly challenging for the DFT-D computations because of their very high sensitivity to tiny geometrical changes, being negligible for other spectral property calculations as, for example, NMR (14)N chemical shift. In addition, the polarization effect of the halide anions in the considered crystal mesophases combines with interactions of van der Waals type between cations and anions. Comparing experimental and theoretical results, the performance of PBE-D functional is preferred over that of B3LYP-D. The results demonstrated a good transferability of the empirical parameters in the London dispersion formula for crystals with two or more carbons per alkyl group in the cations, whereas the empirical corrections in the tetramethylammonium halides appeared to be inappropriate for the quadrupolar interaction calculation. This is attributed to the enhanced cation-anion attraction, which causes a strong polarization at the nitrogen site. Our results demonstrated that the (14)N CQ and ηQ are predominantly affected by the molecular structures of the cations, adapted to the symmetry of the anion arrangements. The long-range polarization effect of the surrounding anions at the target nitrogen site becomes more important for cells with lower spatial symmetry. PMID:24758512

  11. In vivo observation of quadrupolar splitting in (39)K magnetic resonance spectroscopy of human muscle tissue.

    PubMed

    Rösler, M B; Nagel, A M; Umathum, R; Bachert, P; Benkhedah, N

    2016-04-01

    The purpose of this work was to explore the origin of oscillations of the T(*)2 decay curve of (39)K observed in studies of (39)K magnetic resonance imaging of the human thigh. In addition to their magnetic dipole moment, spin-3/2 nuclei possess an electric quadrupole moment. Its interaction with non-vanishing electrical field gradients leads to oscillations in the free induction decay and to splitting of the resonance. All measurements were performed on a 7T whole-body MRI scanner (MAGNETOM 7T, Siemens AG, Erlangen, Germany) with customer-built coils. According to the theory of quadrupolar splitting, a model with three Lorentzian-shaped peaks is appropriate for (39)K NMR spectra of the thigh and calf. The frequency shifts of the satellites depend on the angle between the calf and the static magnetic field. When the leg is oriented parallel to the static magnetic field, the satellites are shifted by about 200 Hz. In the thigh, rank-2 double quantum coherences arising from anisotropic quadrupolar interaction are observed by double-quantum filtration with magic-angle excitation. In addition to the spectra, an image of the thigh with a nominal resolution of (16 × 16 × 32) mm(3) was acquired with this filtering technique in 1:17 h. From the line width of the resonances, (39)K transverse relaxation time constants T(*)2, fast  = (0.51 ± 0.01) ms and T(*)2, slow  = (6.21 ± 0.05) ms for the head were determined. In the thigh, the left and right satellite, both corresponding to the short component of the transverse relaxation time constant, take the following values: T(*)2, fast  = (1.56 ± 0.03) ms and T(*)2, fast  = (1.42 ± 0.03) ms. The centre line, which corresponds to the slow component, is T(*)2, slow  = (9.67 ± 0.04) ms. The acquisition time of the spectra was approximately 10 min. Our results agree well with a non-vanishing electrical field gradient interacting with (39)K nuclei in the intracellular space of

  12. Rotation and shape changes in {sup 151}Tb and {sup 196}Pb: Probes of nuclear structure and tunneling process in warm nuclei. I. Experimental analysis

    SciTech Connect

    Leoni, S.; Bracco, A.; Camera, F.; Corsi, A.; Crespi, F. C. L.; Montanari, D.; Pignanelli, M.; Benzoni, G.; Blasi, N.; Million, B.; Vigezzi, E.; Wieland, O.; Mason, P.; Matsuo, M.; Shimizu, Y. R.; Curien, D.; Duchene, G.; Robin, J.; Bednarczyk, P.; Kmiecik, M.

    2009-06-15

    The {gamma} decay associated with the warm rotation of the superdeformed nuclei {sup 151}Tb and {sup 196}Pb has been measured with the Euroball IV array. Several experimental quantities are presented, putting strong constraints on the decay dynamics in the superdeformed well. The data are successfully reproduced using a Monte Carlo simulation of the {gamma} decay based on microscopically calculated energy levels, E2 decay probabilities, collective mass parameters, and potential energy barriers between the wells associated with normal and super deformation. This allows one to test the basic ingredients of the physical process, such as the strength of the two-body residual interaction and the potential barriers as a function of spin and excitation energy. We also show that the data probe the E1 strength function, indicating an enhancement around 1-2 MeV {gamma} rays, which might be related to octupole vibrations.

  13. Quadrupolar Kondo effect in uranium heavy-electron materials?

    NASA Technical Reports Server (NTRS)

    Cox, D. L.

    1987-01-01

    The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.

  14. On the relationship between quadrupolar magnetic field and collisionless reconnection

    SciTech Connect

    Smets, R. Belmont, G.; Aunai, N.; Boniface, C.

    2014-06-15

    Using hybrid simulations, we investigate the onset of fast reconnection between two cylindrical magnetic shells initially close to each other. This initial state mimics the plasma structure in High Energy Density Plasmas induced by a laser-target interaction and the associated self-generated magnetic field. We clearly observe that the classical quadrupolar structure of the out-of-plane magnetic field appears prior to the reconnection onset. Furthermore, a parametric study reveals that, with a non-coplanar initial magnetic topology, the reconnection onset is delayed and possibly suppressed. The relation between the out-of-plane magnetic field and the out-of-plane electric field is discussed.

  15. Influence of the Nuclear Electric Quadrupolar Interaction on the Coherence Time of Hole and Electron Spins Confined in Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hackmann, J.; Glasenapp, Ph.; Greilich, A.; Bayer, M.; Anders, F. B.

    2015-11-01

    The real-time spin dynamics and the spin noise spectra are calculated for p and n -charged quantum dots within an anisotropic central spin model extended by additional nuclear electric quadrupolar interactions and augmented by experimental data. Using realistic estimates for the distribution of coupling constants including an anisotropy parameter, we show that the characteristic long time scale is of the same order for electron and hole spins strongly determined by the quadrupolar interactions even though the analytical form of the spin decay differs significantly consistent with our measurements. The low frequency part of the electron spin noise spectrum is approximately 1 /3 smaller than those for hole spins as a consequence of the spectral sum rule and the different spectral shapes. This is confirmed by our experimental spectra measured on both types of quantum dot ensembles in the low power limit of the probe laser.

  16. Population and decay of superdeformed nuclei probed by discrete and quasi-continuum γ-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Lopez-Martens, A.; Lauritsen, T.; Leoni, S.; Døssing, T.; Khoo, T. L.; Siem, S.

    2016-07-01

    Nuclear superdeformation at high spin was discovered a little over 30 years ago. Since then, a large body of data has been collected on the subject and many new and interesting phenomena have been discovered. In particular, the way superdeformed states are populated and depopulated offers a unique laboratory to study rotational motion as a function of excitation energy and the evolution of nuclear structure over a large interval in energy and spin. This article focuses on the experimental techniques and methods developed to study the quasicontinuous spectra of gamma rays emitted by rapidly rotating superdeformed nuclei and presents the results regarding rotational damping, the transition from ordered to chaotic motion and quantum tunnelling in a complex environment.

  17. High-field QCPMG NMR of large quadrupolar patterns using resistive magnets.

    PubMed

    Hung, Ivan; Shetty, Kiran; Ellis, Paul D; Brey, William W; Gan, Zhehong

    2009-12-01

    Spectroscopy in a high magnetic field reduces second-order quadrupolar shift while increasing chemical shift. It changes the scale between quadrupolar and chemical shift of half-integer quadrupolar spins. The application of QCPMG multiple echo for acquiring large quadrupolar pattern under the high magnetic field of a 25 T resistive magnet is presented for acquiring large quadrupolar patterns. It shows that temporal field fluctuations and spatial homogeneity of the Keck magnet at the NHMFL contribute about +/- 20 ppm in line broadening. NMR patterns which have breadths of hundreds to thousands of kilohertz can be efficiently recorded using a combination of QCPMG and magnetic field stepping with negligible hindrance from the inhomogeneity and field fluctuations of powered magnets. PMID:19913391

  18. 2H 2O quadrupolar splitting used to measure water exchange in erythrocytes

    NASA Astrophysics Data System (ADS)

    Kuchel, Philip W.; Naumann, Christoph

    2008-05-01

    The 2H NMR resonance from HDO (D = 2H) in human red blood cells (RBCs) suspended in gelatin that was held stretched in a special apparatus was distinct from the two signals that were symmetrically arranged on either side of it, which were assigned to extracellular HDO. The large extracellular splitting is due to the interaction of the electric quadrupole moment of the 2H nuclei with the electric field gradient tensor of the stretched, partially aligned gelatin. Lack of resolved splitting of the intracellular resonance indicated greatly diminished or absent ordering of the HDO inside RBCs. The separate resonances enabled the application of a saturation transfer method to estimate the rate constants of transmembrane exchange of water in RBCs. However both the theory and the practical applications needed modifications because even in the absence of RBCs the HDO resonances were maximally suppressed when the saturating radio-frequency radiation was applied exactly at the central frequency between the two resonances of the quadrupolar HDO doublet. More statistically robust estimates of the exchange rate constants were obtained by applying two-dimensional exchange spectroscopy (2D EXSY), with back-transformation analysis. A monotonic dependence of the estimates of the efflux rate constants on the mixing time, tmix, used in the 2D EXSY experiment were seen. Extrapolation to tmix = 0, gave an estimate of the efflux rate constant at 15 °C of 31.5 ± 2.2 s -1 while at 25 °C it was ˜50 s -1. These values are close to, but less than, those estimated by an NMR relaxation-enhancement method that uses Mn 2+ doping of the extracellular medium. The basis for this difference is thought to include the high viscosity of the extracellular gel. At the abstract level of quantum mechanics we have used the quadrupolar Hamiltonian to provide chemical shift separation between signals from spin populations across cell membranes; this is the first time, to our knowledge, that this has been

  19. Population and coherence transfer induced by double frequency sweeps in half-integer quadrupolar spin systems.

    PubMed

    Iuga, D; Schäfer, H; Verhagen, R; Kentgens, A P

    2000-12-01

    We have recently shown that the sensitivity of single- and multiple-quantum NMR experiments of half-integer (N/2) quadrupolar nuclei can be increased significantly by introducing so-called double frequency sweeps (DFS) in various pulse schemes. These sweeps consist of two sidebands generated by an amplitude modulation of the RF carrier. Using a time-dependent amplitude modulation the sidebands can be swept through a certain frequency range. Inspired by the work of Vega and Naor (J. Chem. Phys. 75, 75 (1981)), this is used to manipulate +/-(m - 1) <--> +/-m (3/2 < or = m < or = N/2) satellite transitions in half-integer spin systems simultaneously. For (23)Na (I = 3/2) and (27)Al (I = 5/2) spins in single crystals it proved possible to transfer the populations of the outer +/-m spin levels to the inner +/-1/2 spin levels. A detailed analysis shows that the efficiency of this process is a function of the adiabaticity with which the various spin transitions are passed during the sweep. In powders these sweep parameters have to be optimized to satisfy the appropriate conditions for a maximum of spins in the powder distribution. The effects of sweep rate, sweep range, and RF field strength are investigated both numerically and experimentally. Using a DFS as a preparation period leads to significantly enhanced central transition powder spectra under both static and MAS conditions, compared to single pulse excitation. DFSs prove to be very efficient tools not only for population transfer, but also for coherence transfer. This can be exploited for the multiple- to single-quantum transfer in MQMAS experiments. It is demonstrated, theoretically and experimentally, that DFSs are capable of transferring both quintuple-quantum and triple-quantum coherence into single-quantum coherence in I = 5/2 spin systems. This leads to a significant enhancement in signal-to-noise ratio and strongly reduces the RF power requirement compared to pulsed MQMAS experiments, thus extending their

  20. X-ray decay lines from heavy nuclei in supernova remnants as a probe of the r-process origin and the birth periods of magnetars

    NASA Astrophysics Data System (ADS)

    Ripley, Justin L.; Metzger, Brian D.; Arcones, Almudena; Martínez-Pinedo, Gabriel

    2014-03-01

    The origin of rapid neutron capture (r-process) nuclei remains one of the longest standing mysteries in nuclear astrophysics. Core collapse supernovae (SNe) and neutron star binary mergers are likely r-process sites, but little evidence yet exists for their in situ formation in such environments. Motivated by the advent of sensitive new or planned X-ray telescopes such as the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Large Observatory for X-ray Timing (LOFT), we revisit the prospects for the detection of X-ray decay lines from r-process nuclei in young or nearby supernova remnants. For all remnants planned to be observed by NuSTAR (and several others), we conclude that r-process nuclei are detectable only if the remnant possesses a large overabundance O ≳ 10^3 relative to the average yield per SN. Prospects are better for the next Galactic SN (assumed age of 3 yr and distance of 10 kpc), for which an average r-process yield is detectable via the 10.7 (9.2) keV line complexes of 194Os by LOFT at 6σ (5σ) confidence; the 27.3 keV line complex of 125Sb is detectable by NuSTAR at 2σ for O ≳ 2. We also consider X-rays lines from the remnants of Galactic magnetars, motivated by the much higher r-process yields of the magnetorotationally driven SNe predicted to birth magnetars. The ˜3.6-3.9 keV lines of 126Sn are potentially detectable in the remnants of the magnetars 1E1547.0-5408 and 1E2259+586 by LOFT for an assumed r-process yield predicted by recent simulations. The (non-)detection of these lines can thus probe whether magnetars are indeed born with millisecond periods. Finally, we consider a blind survey of the Galactic plane with LOFT for r-process lines from the most recent binary neutron star merger remnant, concluding that a detection is unlikely without additional information on the merger location.

  1. The Percus-Yevick approximation for quadrupolar molecular fluids

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra; Mohan Singh, Braj; Ram, Jokhan

    2009-03-01

    The Percus-Yevick integral equation theory has been solved to study the equilibrium and structural properties of quadrupolar Gay-Berne fluids. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 have been considered. Molecules with length-to-breadth ratios 3.0 and 4.0 have been considered and results are reported for different densities, temperatures, and quadrupole moments. The values of pair correlation functions have been compared with the available computer simulation results.

  2. The Percus-Yevick approximation for quadrupolar molecular fluids.

    PubMed

    Singh, Ram Chandra; Singh, Braj Mohan; Ram, Jokhan

    2009-03-18

    The Percus-Yevick integral equation theory has been solved to study the equilibrium and structural properties of quadrupolar Gay-Berne fluids. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 have been considered. Molecules with length-to-breadth ratios 3.0 and 4.0 have been considered and results are reported for different densities, temperatures, and quadrupole moments. The values of pair correlation functions have been compared with the available computer simulation results. PMID:21693907

  3. Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Amoureux, J. P.; Delevoye, L.; Steuernagel, S.; Gan, Z.; Ganapathy, S.; Montagne, L.

    2005-02-01

    Gan and Kwak recently proposed a soft-pulse added mixing (SPAM) idea in the classical two-pulse multiple-quantum magic-angle spinning scheme. In the SPAM method, a soft π/2 pulse is added after the second hard-pulse (conversion pulse) and all coherence orders in between them are constructively used to obtain the signal. We, here, further extend this idea to distributed samples where the signal mainly results from echo pathways and that from anti-echo pathways dies out after a few t1 increments. We show that, with a combination of SPAM and collection of fewer anti-echoes, an enhancement of the signal to noise ratio by a factor of ca. 3 may be obtained over the z-filtered version. This may prove to be useful even for samples with long T2' relaxation times.

  4. Simple model for coupled magnetic and quadrupolar instabilities in uranium heavy-fermion materials

    SciTech Connect

    Libero, V.L. ); Cox, D.L. )

    1993-08-01

    We present a mean-field calculation of the phase diagram of a simple model of localized moments, in the hexagonal uranium heavy-fermion compounds. The model considers a non-Kramers quadrupolar doublet ground state magnetically coupled with a singlet excited state, favoring in-plane van Vleck magnetism, as has been conjectured for UPt[sub 3]. The Hamiltonian that defines the model is Heisenberg-like in both magnetic and quadrupolar moments. No Kondo-effect physics is included in the calculations. Among our main results are (i) for zero intersite quadrupolar coupling, the magnetic order is achieved by a first-order transition above a critical intersite magnetic coupling value, which becomes second order at higher coupling strengths (ii) for finite intersite quadrupolar coupling, at temperatures below a second-order quadrupolar ordering transition, the minimal magnetic coupling value is increased, but (a) the magnetic ordering temperature is enhanced above this value, and (b) the ordering of first- and second-order transitions in the phase diagram is reversed. By considering the general structure of the Ginsburg-Landau free energy, we argue that the Kondo effect will not modify the shape of the phase diagram, but will modify the quantitative values at which transitions occur.

  5. Rotation and shape changes in {sup 151}Tb and {sup 196}Pb: Probes of nuclear structure and tunneling process in warm nuclei. II. Microscopic Monte Carlo simulation

    SciTech Connect

    Leoni, S.; Bracco, A.; Camera, F.; Corsi, A.; Crespi, F. C. L.; Montanari, D.; Pignanelli, M.; Benzoni, G.; Blasi, N.; Million, B.; Vigezzi, E.; Wieland, O.; Mason, P.; Matsuo, M.; Shimizu, Y. R.; Curien, D.; Duchene, G.; Robin, J.; Bednarczyk, P.; Kmiecik, M.

    2009-06-15

    A Monte Carlo simulation of the {gamma} decay of superdeformed nuclei has been developed. It is based on microscopic calculations for the energy levels, E2 decay probabilities, collective mass parameters, and potential energy barriers. The use of microscopically calculated quantities largely reduces the parameters of the simulation, allowing one to focus on the basic ingredients of the physical processes. Calculations are performed for the warm rotating superdeformed nuclei {sup 151}Tb and {sup 196}Pb, for which high statistics Euroball IV data are available. The dependence on the simulation parameters is investigated, together with the basic features of the microscopic calculations.

  6. Efficient Excited-State Symmetry Breaking in a Cationic Quadrupolar System Bearing Diphenylamino Donors.

    PubMed

    Carlotti, Benedetta; Benassi, Enrico; Fortuna, Cosimo G; Barone, Vincenzo; Spalletti, Anna; Elisei, Fausto

    2016-01-01

    We report a joint experimental and theoretical investigation of a quadrupolar D-π-A(+) -π-D system, the electron donors being diphenylamino groups and the electron acceptor being a methylpyridinium, in comparison with the dipolar D-π-A(+) system. The emission spectra of the two compounds overlap in all the investigated solvents. This finding could be rationalized by TD-DFT calculations: the LUMO-HOMO molecular orbitals involved in the emission transition are localized on the same branch of the quadrupolar structure that becomes the fluorescent portion, corresponding to that of the single-arm compound. Excited-state symmetry breaking has been rarely observed for quadrupolar systems showing negative solvatochromism and is here surprisingly revealed, even in low polarity solvents. Femtosecond transient absorption measurements revealed that an efficient photoinduced intramolecular charge transfer takes place in the quadrupolar chromophore, more efficient than in its dipolar analogue. This result is promising in view of the application of these compounds as novel two-photon absorbing materials. PMID:26510394

  7. The polarized interface between quadrupolar insulators: Maxwell stress tensor, surface tension, and potential

    NASA Astrophysics Data System (ADS)

    Slavchov, Radomir I.; Dimitrova, Iglika M.; Ivanov, Tzanko

    2015-10-01

    The quadrupolar Maxwell electrostatic equations predict several qualitatively different results compared to Poisson's classical equation in their description of the properties of a dielectric interface. All interfaces between dielectrics possess surface dipole moment which results in a measurable surface potential jump. The surface dipole moment is conjugated to the bulk quadrupole moment density (the quadrupolarization) similarly to Gauss's relation between surface charge and bulk polarization. However, the classical macroscopic Maxwell equations completely neglect the quadrupolarization of the medium. Therefore, the electrostatic potential distribution near an interface of intrinsic dipole moment can be correctly described only within the quadrupolar macroscopic equations of electrostatics. They predict that near the polarized interface a diffuse dipole layer exists, which bears many similarities to the diffuse charge layer near a charged surface, in agreement with existing molecular dynamics simulation data. It turns out that when the quadrupole terms are kept in the multipole expansion of the laws of electrostatics, the solutions for the potential and the electric field are continuous functions at the surface. A well-defined surface electric field exists, interacting with the adsorbed dipoles. This allows for a macroscopic description of the surface dipole-surface dipole and the surface dipole-bulk quadrupole interactions. They are shown to have considerable contribution to the interfacial tension—of the order of tens of mN/m! To evaluate it, the Maxwell stress tensor in quadrupolar medium is deduced, including the electric field gradient action on the quadrupoles, as well as quadrupolar image force and quadrupolar electrostriction. The dependence of the interfacial tension on the external normal electric field (the dielectrocapillary curve) is predicted and the dielectric susceptibility of the dipolar double layer is related to the quadrupolarizabilities of

  8. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei.

    PubMed

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta; Schmitt, Eberhard; Hausmann, Michael

    2016-07-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with at least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3d-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. PMID:27237093

  9. Generalized parton distributions in nuclei

    SciTech Connect

    Vadim Guzey

    2009-12-01

    Generalized parton distributions (GPDs) of nuclei describe the distribution of quarks and gluons in nuclei probed in hard exclusive reactions, such as e.g. deeply virtual Compton scattering (DVCS). Nuclear GPDs and nuclear DVCS allow us to study new aspects of many traditional nuclear effects (nuclear shadowing, EMC effect, medium modifications of the bound nucleons) as well as to access novel nuclear effects. In my talk, I review recent theoretical progress in the area of nuclear GPDs.

  10. Probing the Order-to-Chaos Region in Superdeformed {sup 151}Tb and {sup 196}Pb Nuclei with Continuum {gamma} Transitions

    SciTech Connect

    Leoni, S.; Benzoni, G.; Blasi, N.; Bracco, A.; Brambilla, S.; Camera, F.; Corsi, A.; Crespi, F. C. L.; Million, B.; Montanari, D.; Pignanelli, M.; Vigezzi, E.; Wieland, O.; Mason, P.; Matsuo, M.; Shimizu, Y. R.; Curien, D.; Duchene, G.; Robin, J.; Bednarczyk, P.

    2008-10-03

    The {gamma} decay associated with the warm rotation of the superdeformed nuclei {sup 151}Tb and {sup 196}Pb has been measured with the EUROBALL IV array. Several independent quantities provide a stringent test of the population and decay dynamics in the superdeformed well. A Monte Carlo simulation of the {gamma} decay based on microscopic calculations gives remarkable agreement with the data only assuming a large enhancement of the B(E1) strength for 1-2 MeV {gamma} rays, which may be related to the evidence for octupole vibrations in both mass regions.

  11. Probing of compact baryonic configurations in nuclei in A(p,p¯)X reactions and antiproton formation length in nuclear matter

    NASA Astrophysics Data System (ADS)

    Kiselev, Yu. T.; Sheinkman, V. A.; Akindinov, A. V.; Chumakov, M. M.; Martemyanov, A. N.; Smirnitsky, V. A.; Terekhov, Yu. V.; Paryev, E. Ya.

    2012-05-01

    Inclusive cross sections σA=Ed3σ(X,Pt2)/d3p of antiproton and negative pion production on Be, Al, Cu, and Ta targets hit by 10-GeV protons were measured at the laboratory angles of 10.5∘ and 59∘. Antiproton cross sections were obtained in both kinematically allowed and kinematically forbidden regions for antiproton production on a free nucleon. The antiproton cross-section ratio as a function of the longitudinal variable X exhibits three separate plateaus, which gives evidence for the existence of compact baryon configurations in nuclei—small-distance scaled objects of nuclear structure. The comparability of the measured cross-section ratios with those obtained in the inclusive electron scattering off nuclei suggests weak antiproton absorption in nuclei. Observed behavior of the cross-section ratios is interpreted in the framework of a model considering the hadron production as a fragmentation of quarks (antiquarks) into hadrons. It has been established that the antiproton formation length in nuclear matter can reach the magnitude of 4.5 fm.

  12. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs

    PubMed Central

    Botzem, Tim; McNeil, Robert P. G.; Mol, Jan-Michael; Schuh, Dieter; Bougeard, Dominique; Bluhm, Hendrik

    2016-01-01

    Understanding the decoherence of electron spins in semiconductors due to their interaction with nuclear spins is of fundamental interest as they realize the central spin model and of practical importance for using them as qubits. Interesting effects arise from the quadrupolar interaction of nuclear spins with electric field gradients, which have been shown to suppress diffusive nuclear spin dynamics and might thus enhance electron spin coherence. Here we show experimentally that for gate-defined GaAs quantum dots, quadrupolar broadening of the nuclear Larmor precession reduces electron spin coherence by causing faster decorrelation of transverse nuclear fields. However, this effect disappears for appropriate field directions. Furthermore, we observe an additional modulation of coherence attributed to an anisotropic electronic g-tensor. These results complete our understanding of dephasing in gated quantum dots and point to mitigation strategies. They may also help to unravel unexplained behaviour in self-assembled quantum dots and III–V nanowires. PMID:27079269

  13. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs

    NASA Astrophysics Data System (ADS)

    Botzem, Tim; McNeil, Robert P. G.; Mol, Jan-Michael; Schuh, Dieter; Bougeard, Dominique; Bluhm, Hendrik

    2016-04-01

    Understanding the decoherence of electron spins in semiconductors due to their interaction with nuclear spins is of fundamental interest as they realize the central spin model and of practical importance for using them as qubits. Interesting effects arise from the quadrupolar interaction of nuclear spins with electric field gradients, which have been shown to suppress diffusive nuclear spin dynamics and might thus enhance electron spin coherence. Here we show experimentally that for gate-defined GaAs quantum dots, quadrupolar broadening of the nuclear Larmor precession reduces electron spin coherence by causing faster decorrelation of transverse nuclear fields. However, this effect disappears for appropriate field directions. Furthermore, we observe an additional modulation of coherence attributed to an anisotropic electronic g-tensor. These results complete our understanding of dephasing in gated quantum dots and point to mitigation strategies. They may also help to unravel unexplained behaviour in self-assembled quantum dots and III-V nanowires.

  14. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs.

    PubMed

    Botzem, Tim; McNeil, Robert P G; Mol, Jan-Michael; Schuh, Dieter; Bougeard, Dominique; Bluhm, Hendrik

    2016-01-01

    Understanding the decoherence of electron spins in semiconductors due to their interaction with nuclear spins is of fundamental interest as they realize the central spin model and of practical importance for using them as qubits. Interesting effects arise from the quadrupolar interaction of nuclear spins with electric field gradients, which have been shown to suppress diffusive nuclear spin dynamics and might thus enhance electron spin coherence. Here we show experimentally that for gate-defined GaAs quantum dots, quadrupolar broadening of the nuclear Larmor precession reduces electron spin coherence by causing faster decorrelation of transverse nuclear fields. However, this effect disappears for appropriate field directions. Furthermore, we observe an additional modulation of coherence attributed to an anisotropic electronic g-tensor. These results complete our understanding of dephasing in gated quantum dots and point to mitigation strategies. They may also help to unravel unexplained behaviour in self-assembled quantum dots and III-V nanowires. PMID:27079269

  15. Indirect measurement of N-14 quadrupolar coupling for NH3 intercalated in potassium graphite

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Fronko, R. M.; Resing, H. A.

    1987-01-01

    A method for indirect measurement of the nuclear quadrupolar coupling was developed and applied to NH3 molecules in the graphite intercalation compound K(NH3)4.3C24, which has a layered structure with alternating carbon and intercalant layers. Three triplets were observed in the H-1 NMR spectra of the compound. The value of the N-14 quadrupolar coupling constant of NH3 (3.7 MHz), determined indirectly from the H-1 NMR spectra, was intermediate between the gas value of 4.1 MHz and the solid-state value of 3.2 MHz. The method was also used to deduce the (H-1)-(H-1) and (N-14)-(H-1) dipolar interactions, the H-1 chemical shifts, and the molecular orientations and motions of NH3.

  16. Second harmonic generation from small gold metallic particles: from the dipolar to the quadrupolar response.

    PubMed

    Nappa, J; Russier-Antoine, I; Benichou, E; Jonin, Ch; Brevet, P F

    2006-11-14

    Hyper Raleigh scattering, a common technique to investigate the second harmonic light scattered from a liquid suspension of molecular compounds and to determine their quadratic hyperpolarizability, has been used for aqueous suspensions of gold nanoparticles, the diameter of which ranges from 20 up to 150 nm. The hyper Rayleigh signal intensity was recorded as a function of the angle of polarization of the incident fundamental wave. For the particles with a diameter smaller than 50 nm, the response is dominated by the dipolar contribution arising from the deviation of the particle shape from that of a perfect sphere. For larger diameter particles, retardation effects in the interaction of the electromagnetic fields with the particles cannot be neglected any longer and the response deviates from the pure dipolar response, exhibiting a strong quadrupolar contribution. It is then shown that in order to quantify the relative magnitude of these two dipolar and quadrupolar contributions, a weighting parameter zeta(V) which equals unity for a pure quadrupolar contribution and vanishes for a pure dipolar response, can be introduced. PMID:17115784

  17. Using tensor light shifts to measure and cancel a cell's quadrupolar frequency shift

    NASA Astrophysics Data System (ADS)

    Peck, S. K.; Lane, N.; Ang, D. G.; Hunter, L. R.

    2016-02-01

    We have developed a technique that uses the tensor light shift to measure and cancel the frequency shift produced by the quadrupolar anisotropy of a vapor cell. We demonstrate the technique on the 6 S1 /2 ,F =4 level of Cs using the D1 transition. The method extends our ability to study quadrupolar wall interactions beyond diamagnetic atoms. We have deduced the twist angle per wall adhesion for cesium on an alkene coating to be θCs -alkene=1.4 mrad . This value is about 37 times larger than the twist angle observed in 131Xe, suggesting that it is not produced by the interaction of the nuclear quadrupole moment with a collisional electric-field gradient. Alternative mechanisms that may be responsible for the observed quadrupolar frequency shifts are discussed. By canceling the cell-induced quadrupole shift we have extended our cells' effective spin-relaxation times by as much as a factor of 2. This cancellation improves magnetometer sensitivity in highly anisotropic cells and could reduce systematic uncertainties in some precision measurements.

  18. Quantum phases of quadrupolar Fermi gases in coupled one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Min; Lahrz, M.; Mathey, L.

    2014-01-01

    Following the recent proposal to create quadrupolar gases [Bhongale et al., Phys. Rev. Lett. 110, 155301 (2013), 10.1103/PhysRevLett.110.155301], we investigate what quantum phases can be created in these systems in one dimension. We consider a geometry of two coupled one-dimensional (1D) systems, and derive the quantum phase diagram of ultracold fermionic atoms interacting via quadrupole-quadrupole interactions within a Tomonaga-Luttinger-liquid framework. We map out the phase diagram as a function of the distance between the two tubes and the angle between the direction of the tubes and the quadrupolar moments. The latter can be controlled by an external field. We show that there are two magic angles θB,1c and θB,2c between 0 and π /2, where the intratube quadrupolar interactions vanish and change signs. Adopting a pseudospin language with regard to the two 1D systems, the system undergoes a spin-gap transition and displays a zigzag density pattern, above θB,2c and below θB,1c. Between the two magic angles, we show that polarized triplet superfluidity and a planar spin-density-wave order compete with each other. The latter corresponds to a bond-order solid in higher dimensions. We demonstrate that this order can be further stabilized by applying a commensurate periodic potential along the tubes.

  19. Solution deuterium NMR quadrupolar relaxation study of heme mobility in myoglobin

    SciTech Connect

    Johnson, R.D.; La Mar, G.N.; Smith, K.M.; Parish, D.W.; Langry, K.C. )

    1989-01-18

    NMR spectroscopy has been used to monitor the quadrupolar relaxation and motional dynamics of {sup 2}H selectively incorporated into skeletal and side chain positions of the heme in sperm whale myoglobin. The hyperfine shifts of the heme resonances in paramagnetic states of myoglobin allow resolution of the signals of interest, and paramagnetic contributions to the observed line widths are shown to be insignificant. The {sup 2}H line widths for the skeletal positions of deuterohemin-reconstituted myoglobin yield a correlation time identical with that of overall protein tumbling (9 ns at 30{degree}C) and hence reflect an immobile heme group. The {sup 2}H NMR line widths of heme methyl groups exhibit motional narrowing indicative of very rapid internal rotation. Hence the methyl rotation is effectively decoupled from the overall protein tumbling, and the residual quadrupolar line width can be used directly to determine the protein tumbling rate. The {sup 2}H NMR lines from heme vinyl groups were found narrower than those from the heme skeleton. However, the range of quadrupolar coupling constants for sp{sup 2} hybridized C-{sup 2}H bonds does not permit an unequivocal interpretation in terms of mobility. 48 refs., 4 figs.

  20. Cosmogenic nuclei

    NASA Technical Reports Server (NTRS)

    Raisbeck, G. M.

    1986-01-01

    Cosmogenic nuclei, nuclides formed by nuclear interactions of galactic and solar cosmic rays with extraterrestrial or terrestrial matter are discussed. Long lived radioactive cosmogenic isotopes are focused upon. Their uses in dating, as tracers of the interactions of cosmic rays with matter, and in obtaining information on the variation of primary cosmic ray flux in the past are discussed.

  1. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    . -- Asymmetric nuclear matter properties within the Brueckner theory / W. Zuo et al. -- Study of giant dipole resonance in continuum relativistic random phase approximation / D. Yang et al. -- Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor / B. Qi et al. -- Continuum properties of the Hartree-Fock mean field with finite-range interactions / H. S. Than et al. -- A study of pairing interaction in a separable form / Y. Tian et al. -- Microscopic study of the inelastic [symbol]+[symbol]C scattering / D. C. Cuong, D. T. Khoa -- Probing the high density behavior of the symmetry energy / F. Zhang et al. -- Microscopic calculations based on a Skyrme functional plus the pairing contribution / J. Li et al. -- In-medium cross sections in Dirac-Brueckner-Hartree-Fock approach / L. Peiyan et al. -- The effect of the tensor force on single-particle states and on the isotope shift / W. Zou et al. -- [symbol]Ne excited states two-proton decay / M. De Napoli et al. -- The isomeric ratio and angular momentum of fragment [symbol]Xe in photofission of heavy nuclei / T. D. Thiep et al. -- Search for correlated two-nucleon systems in [symbol]Li and [symbol]He nuclei via one-nucleon exchange reaction / N. T. Khai et al. -- Summary talk of ISPUN07 / N. Alamanos.

  2. New Experimental Insight into the Nature of Metal-Metal Bonds in Digallium Compounds: J Coupling between Quadrupolar Nuclei.

    PubMed

    Kobera, Libor; Southern, Scott A; Rao, Gyandshwar Kumar; Richeson, Darrin S; Bryce, David L

    2016-07-01

    Multiple bonding between atoms is of ongoing fundamental and applied interest. Here, we report a multinuclear ((1) H, (13) C, and (71) Ga) solid-state magnetic resonance spectroscopic study of digallium compounds which have been proposed, albeit somewhat controversially, to contain single, double, and triple Ga-Ga bonds. Of particular relevance to the nature of these bonds, we have carried out two-dimensional (71) Ga J/D-resolved NMR experiments which provide a direct measurement of J((71) Ga,(71) Ga) spin-spin coupling constants across the gallium-gallium bonds. When placed in the context of clear-cut experimental data for analogous singly, doubly, and triply bonded carbon spin pairs or boron spin pairs, the (71) Ga NMR data clearly support the notion of a different bonding paradigm in the gallium systems. Our findings are consistent with an increasing role across the purported gallane-gallene-gallyne series for classical and/or slipped π-type bonding orbitals. PMID:27276691

  3. Quadrupolar second-harmonic generation by helical beams and vectorial vortices with radial or azimuthal polarization

    NASA Astrophysics Data System (ADS)

    Mandujano, Miguel G.; Maytorena, Jesús A.

    2013-08-01

    We study the optical second-harmonic radiation (SHG) generated by scattering from a homogeneous centrosymmetric thin composite material illuminated by higher-order Gaussian laser beams. The induced second-order source polarization is taken as of quadrupolar type (E·∇)E, which depends on the inhomogeneity of the incident electric field E. This nonlinear source has the same form as that responsible of the SH signal observed in a composite made of Si nanocrystals embedded uniformly in a SiO2 matrix and that calculated for a thin disordered array of nanospheres. We calculate the SH radiation angular patterns generated by several incident combinations of spatial modes and states of polarizations. In particular, excitation with radially and azimuthally polarized doughnut modes and helical beams carrying orbital angular momentum with linear or circular polarization are considered. We found that this quadrupolar SHG depends sensitively on the transverse structure and polarization of the driving field. The response to ∇E introduces a factor E(E·K) in the Fourier component of the SH scattering amplitude, absent in electric-dipole-allowed SHG, that can give additional nodal lines or rings in the SH angular patterns, changes of the state of polarization, or additional azimuthal phases in the harmonic radiation. For circularly polarized beams with helical phase wave front, we found a selection rule according to which the nonlinear scattering of an optical vortex with charge lω and spin σ=±1 induces a SH vortex field with a spin-dependent charge doubling l2ω=2lω+σ. These features may be useful to identify SHG processes of quadrupolar nature and suggest a way to produce scattered SH radiation with a desired angular pattern and state of polarization.

  4. Directed Transformation from Quadrupolar to Dipolar Nematic Colloids by an In-Plane Electric Field

    NASA Astrophysics Data System (ADS)

    Tagashira, Kenji; Asakura, Keita; Yoshida, Hiroyuki; Ozaki, Masanori

    2013-02-01

    We demonstrate direction-controlled transformation from quadrupolar to dipolar nematic colloids using an in-plane electric field. When the electric field is applied in the direction perpendicular to the rubbing direction, a splay-bend wall is induced, which traps colloidal particles. Above the applied electric field of 0.14 V/µm, a Saturn-ring defect shrinks into a hedgehog defect due to the symmetric reorientation of the liquid crystal molecules around the particle. The direction of the shrinking is determined by the pretilt angle of the liquid crystal and the field direction near the edge of the electrode.

  5. Electric field gradient in nanostructured SnO2 studied by means of PAC spectroscopy using 111Cd or 181Ta as probe nuclei

    NASA Astrophysics Data System (ADS)

    Ramos, Juliana Marques; Martucci, Thiago; Carbonari, Artur Wilson; de Souza Costa, Messias; Saxena, Rajendra Narain; Vianden, Reiner

    2013-05-01

    Electric quadrupole interactions were studied in pure and Mn-doped powder samples and thin films of SnO2 using perturbed γγ angular correlation spectroscopy (PAC). The powder samples were prepared by Sol gel method and the thin film were prepared on the Si (100) substrate by sputtering technique using Sn in the oxygen atmosphere. The samples were characterized by x-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. The thickness of the film was 100 nm. The average particle size of the SnO2 powder samples was determined to be smaller than 60 nm. The radioactive 111In and 181Hf tracers were introduced in the powder samples during the sol gel chemical process. Radioactive 111In was implanted on the SnO2 thin films using the University of Bonn ion implanter (BONIS). PAC measurements were carried out in a four BaF2 detector spectrometer in the temperature range of 77-973 K for samples annealed at different temperatures. The PAC results for both nuclear probes show the presence of two electric quadrupole interactions. The major fractions in both cases correspond to the substitutional sites in the rutile phase of SnO2. The results are compared with previous PAC measurements.

  6. SUBMILLIMETER H{sub 2}O MASER IN CIRCINUS GALAXY-A NEW PROBE FOR THE CIRCUMNUCLEAR REGION OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Hagiwara, Yoshiaki; Miyoshi, Makoto; Doi, Akihiro; Horiuchi, Shinji

    2013-05-10

    We present the first detection of extragalactic submillimeter H{sub 2}O maser in the 321 GHz transition toward the center of Circinus galaxy, the nearby Type 2 Seyfert using the Atacama Large Millimeter/Submillimeter Array. We find that Doppler features of the detected 321 GHz H{sub 2}O maser straddle the systemic velocity of the galaxy as seen in the spectrum of the known 22 GHz H{sub 2}O maser in the galaxy. By comparing the velocities of the maser features in both transitions, it can be deduced that the 321 GHz maser occurs in a region similar to that of the 22 GHz maser, where the sub-parsec-scale distribution of the 22 GHz maser was revealed by earlier very long baseline interferometry observations. The detected maser features remain unresolved at the synthesized beam of {approx}0.''66 ({approx}15 pc) and coincide with the 321 GHz continuum peak within small uncertainties. We also present a tentative detection of the highest velocity feature (redshifts up to {approx}635 km s{sup -1}) in the galaxy. If this high-velocity feature arises from a Keplerian rotating disk well established in this galaxy, it is located at a radius of {approx}0.018 pc ({approx}1.2 Multiplication-Sign 10{sup 5} Schwarzschild radii), which might probe molecular material closest to the central engine.

  7. 5f delocalization-induced suppression of quadrupolar order in U(Pd1-xPtx)₃

    DOE PAGESBeta

    Walker, H. C.; Le, M. D.; McEwen, K. A.; Bleckmann, M.; Süllow, S.; Mazzoli, C.; Wilkins, S. B.; Fort, D.

    2011-12-27

    We present bulk magnetic and transport measurements and x-ray resonant scattering measurements on U(Pd1-xPtx)₃ for x=0.005 and 0.01, which demonstrate the high sensitivity of the quadrupolar order in the canonical antiferroquadrupolar ordered system UPd₃ to doping with platinum. Bulk measurements for x=0.005 reveal behavior similar to that seen in UPd₃, albeit at a lower temperature, and x-ray resonant scattering provides evidence of quadrupolar order described by the Qxy order parameter. In contrast, bulk measurements reveal only an indistinct transition in x=0.01, consistent with the observation of short-range quadrupolar order in our x-ray resonant scattering results.

  8. Spin and quadrupolar orders in the spin-1 bilinear-biquadratic model for iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Luo, Cheng; Datta, Trinanjan; Yao, Dao-Xin

    2016-06-01

    Motivated by the recent experimental and theoretical progress of the magnetic properties in iron-based superconductors, we provide a comprehensive analysis of the extended spin-1 bilinear-biquadratic (BBQ) model on the square lattice. Using a variational approach at the mean-field level, we identify the existence of various magnetic phases, including conventional spin dipolar orders (ferro- and antiferromagnet), novel quadrupolar orders (spin nematic), and mixed dipolar-quadrupolar orders. In contrast to the regular Heisenberg model, the elementary excitations of the spin-1 BBQ model are described by the SU(3) flavor-wave theory. By fitting the experimental spin-wave dispersion, we determine the refined exchange couplings corresponding to the collinear antiferromagnetic iron pnictides. We also present the dynamic structure factors of both spin dipolar and quadrupolar components with connections to the future experiments.

  9. Exotic Nuclei

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}

    2010-01-01

    Current experimental developments on the study of exotic nuclei far from the valley of stability are discussed. I start with general aspects related to the production of radioactive beams followed by the description of some of the experimental tools and specialized techniques for studies in reaction spectroscopy, nuclear structure research and nuclear applications with examples from selected topical areas with which I have been involved. I discuss some of the common challenges faced in Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beam (RIB) science.

  10. Molecular engineering of nanoscale quadrupolar chromophores for two-photon absorption

    NASA Astrophysics Data System (ADS)

    Porres, Laurent; Mongin, Olivier; Blanchard-Desce, Mireille H.; Ventelon, Lionel; Barzoukas, Marguerite; Moreaux, Laurent; Pons, Thomas; Mertz, Jerome

    2003-02-01

    Our aim has been the design of optimized NLO-phores with very high two-photon absorption (TPA) cross-sections (s2) in the red-NIR region, while maintaining high linear transparency and high fluorescence quantum yield. Our molecular engineering strategy is based on the push-push or pull-pull functionalization of semi-rigid nanoscale conjugated systems. The central building blocks were selected as rigid units that may assist quadrupolar intramolecular charge transfer by acting either as a (weak) donor or acceptor core. Quadrupolar molecules derived either from a phenyl unit, a rigidified biphenyl moiety or a fused bithiophene unit have been considered. Conjugated oligomers made of phenylene-vinylene and/or phenylene-ethynylene units were selected as connecting spacers between the core and the electroactive end groups to ensure effective electronic conjugation while maintaining suitable transparency/fluorescence. The TPA cross-sections were determined by investigating the two-photon-excited fluorescence properties using a Ti:sapphire laser delivering fs pulses. Both the nature of the end groups and of the core moiety play an important role in determining the TPA spectra. In addition, by adjusting the length and nature of the conjugated extensor, both amplification and spectral tuning of TPA cross-sections can be achieved. As a result, push-push fluorophores which demonstrate giant TPA cross-sections (up to 3000 GM) in the visible red, high fluorescence quantum yields and good transparency in the visible range have been obtained.

  11. A NON-RADIAL ERUPTION IN A QUADRUPOLAR MAGNETIC CONFIGURATION WITH A CORONAL NULL

    SciTech Connect

    Sun Xudong; Hoeksema, J. Todd; Liu Yang; Hayashi, Keiji; Chen Qingrong

    2012-10-01

    We report one of the several homologous non-radial eruptions from NOAA active region (AR) 11158 that are strongly modulated by the local magnetic field as observed with the Solar Dynamic Observatory. A small bipole emerged in the sunspot complex and subsequently created a quadrupolar flux system. Nonlinear force-free field extrapolation from vector magnetograms reveals its energetic nature: the fast-shearing bipole accumulated {approx}2 Multiplication-Sign 10{sup 31} erg free energy (10% of AR total) over just one day despite its relatively small magnetic flux (5% of AR total). During the eruption, the ejected plasma followed a highly inclined trajectory, over 60 Degree-Sign with respect to the radial direction, forming a jet-like, inverted-Y-shaped structure in its wake. Field extrapolation suggests complicated magnetic connectivity with a coronal null point, which is favorable of reconnection between different flux components in the quadrupolar system. Indeed, multiple pairs of flare ribbons brightened simultaneously, and coronal reconnection signatures appeared near the inferred null. Part of the magnetic setting resembles that of a blowout-type jet; the observed inverted-Y structure likely outlines the open field lines along the separatrix surface. Owing to the asymmetrical photospheric flux distribution, the confining magnetic pressure decreases much faster horizontally than upward. This special field geometry likely guided the non-radial eruption during its initial stage.

  12. From bipolar to quadrupolar - The collimation processes of the Cepheus A outflow

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Verdes-Montenegro, Lourdes; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    Results of new K-band observations of the (1, 1) and (2, 2) ammonia lines toward Cepheus A are reported. The lines are mapped with approximately 2 arcsec of angular resolution and 0.3 km/s of velocity resolution. A sensitivity of 10 mJy has been achieved. The observations reveal details of the spatial and kinematics structure of the ambient high-density gas. It is suggested that the interstellar high-density gas is diverting and redirecting the outflow in the sense that the quadrupolar structure of the molecular outflow is produced by the interaction with the ammonia condensationss, with Cep A-1 and Cep A-3 splitting in two halves, respectively the blue- and redshifted lobes of an east-west bipolar molecular outflow.

  13. Structure and orientational ordering in a fluid of elongated quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra

    2013-01-01

    A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic-nematic transition in a system of fluids of elongated molecules interacting via the Gay-Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein-Zernike equation using the Percus-Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic-nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.

  14. Interaction of Strain and Nuclear Spins in Silicon: Quadrupolar Effects on Ionized Donors

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Hrubesch, Florian M.; Künzl, Markus; Becker, Hans-Werner; Itoh, Kohei M.; Stutzmann, Martin; Hoehne, Felix; Dreher, Lukas; Brandt, Martin S.

    2015-07-01

    The nuclear spins of ionized donors in silicon have become an interesting quantum resource due to their very long coherence times. Their perfect isolation, however, comes at a price, since the absence of the donor electron makes the nuclear spin difficult to control. We demonstrate that the quadrupolar interaction allows us to effectively tune the nuclear magnetic resonance of ionized arsenic donors in silicon via strain and determine the two nonzero elements of the S tensor linking strain and electric field gradients in this material to S11=1.5 ×1022 V /m2 and S44=6 ×1022 V /m2 . We find a stronger benefit of dynamical decoupling on the coherence properties of transitions subject to first-order quadrupole shifts than on those subject to only second-order shifts and discuss applications of quadrupole physics including mechanical driving of magnetic resonance, cooling of mechanical resonators, and strain-mediated spin coupling.

  15. Low temperature transport properties of the quadrupolar Kondo lattice system PrTi2Al20

    NASA Astrophysics Data System (ADS)

    Sakai, Akito; Nakatsuji, Satoru

    2013-08-01

    We have investigated the low temperature transport properties of the cubic Γ3 compound PrTi2Al20. This is a quadrupolar Kondo lattice system where the nongmagnetic quadrupoles, which form a long-range order at low temperatures, have strong hybridization with the conduction electrons. A sharp drop of the resistivity due to a ferroquadrupole ordering is observed at T Q = 2.0 K. The T 2 dependence of the resistivity and the large Sommerfeld coefficient γ above T Q suggest the formation of a heavy-fermion state. The temperature dependence of the resistivity below T Q does not show a power law but exponential law behavior, indicating the emergence of an anisotropy gap Δ in the collective mode associated with the ferroquadrupole order below T Q. The Fisher-Langer relation holds around T Q, suggesting the higher order scattering processes than those in Born approximation are not dominant for this ferroquadrupole ordering.

  16. Method to determine the optimal layer number for the quadrupolar fiber coil

    NASA Astrophysics Data System (ADS)

    Gao, Zhongxing; Zhang, Yonggang; Gao, Wei

    2014-08-01

    For a high precision interferometric fiber optic gyroscope (IFOG) under temperature control, a short start-up time and small temperature drift are important for its applications. The start-up time and the temperature drift of IFOG with the same fiber length but with a different fiber coil layer number are investigated and compared. Simulation by finite difference time domain method is done to illustrate the existence of optimal layer number for the fiber coil wound by the quadrupolar method. Theoretical analysis is then provided and a closed-form formulation is given to calculate the optimal layer number of the fiber coil, which can effectively reduce both the start-up time and temperature drift of IFOG. Our study is meaningful in improving the thermal performance of the fiber coil.

  17. Two-Photon Absorption and Fluorescence with Quadrupolar and Branched CHROMOPHORES—EFFECT of Structure and Branching

    NASA Astrophysics Data System (ADS)

    Porrès, Laurent; Mongin, Olivier; Katan, Claudine; Charlot, Marina; Bhatthula, Bharath Kumar Goud; Jouikov, Viatcheslav; Pons, Thomas; Mertz, Jerome; Blanchard-Desce, Mireille

    The photophysical and two-photon absorption (TPA) properties of three homologous quadrupolar and one related three-branched chromophores were investigated. Design of the quadrupoles is based on the symmetrical functionalization of a biphenyl core. Modulation of the nonlinear absorptivity/transparency/photostability trade-off can be achieved by playing with the twist angle of the core and on the spacers (phenylene-vinylene versus phenylene-ethynylene). The quadrupolar chromophores combine high TPA cross-sections, high fluorescence quantum yield and solvent sensitive photoluminescence properties. The branched structure exhibits spectrally broadened TPA in the NIR region (up to 3660 GM at 740 nm measured in the femtosecond regime) but reduced sensitivity to the environment.

  18. Quadrupolar and polar anisotropy in end-grafted α-helical poly(γ-benzyl-L-glutamate) on solid substrates

    NASA Astrophysics Data System (ADS)

    Chang, Ying Chih; Frank, Curtis W.; Forstmann, Gerd G.; Johannsmann, Diethelm

    1999-10-01

    Using grazing incidence reflectance Fourier transform infrared spectroscopy (GIR-FTIR) and electro-optic (EO) measurements, we have determined the degree of quadrupolar and polar anisotropy in end-grafted α-helical poly(γ-benzyl-L-glutamate) (PBLG) chains. The results are compared to data obtained on spin-cast and on Langmuir-Blodgett-Kuhn (LBK) films. End-grafted films were prepared by a vapor-deposition-polymerization (VDP) scheme and have thicknesses of up to 70 nm. The quadrupolar order of VDP films, as estimated by the nematic order parameter S, is higher than in spin-cast and LBK films. This result indicates a preferentially perpendicular alignment of PBLG chains in VDP films. Furthermore, after the removal of the physisorbed chains from the grafted films by intensive washing with solvent, the quadrupolar order is lowered while the polar order increases significantly, suggesting that the physisorbed chains might form anti-parallel pairs with the surface-grafted chains.

  19. SIMPRE1.2: Considering the hyperfine and quadrupolar couplings and the nuclear spin bath decoherence.

    PubMed

    Cardona-Serra, Salvador; Escalera-Moreno, Luis; Baldoví, José J; Gaita-Ariño, Alejandro; Clemente-Juan, Juan M; Coronado, Eugenio

    2016-05-15

    SIMPRE is a fortran77 code which uses an effective electrostatic model of point charges to predict the magnetic behavior of rare-earth-based mononuclear complexes. In this article, we present SIMPRE1.2, which now takes into account two further phenomena. First, SIMPRE now considers the hyperfine and quadrupolar interactions within the rare-earth ion, resulting in a more complete and realistic set of energy levels and wave functions. Second, and to widen SIMPRE's predictive capabilities regarding potential molecular spin qubits, it now includes a routine that calculates an upper-bound estimate of the decoherence time considering only the dipolar coupling between the electron spin and the surrounding nuclear spin bath. Additionally, SIMPRE now allows the user to introduce the crystal field parameters manually. Thus, we are able to demonstrate the new features using as examples (i) a Gd-based mononuclear complex known for its properties both as a single ion magnet and as a coherent qubit and (ii) an Er-based mononuclear complex. © 2016 Wiley Periodicals, Inc. PMID:26833799

  20. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil

    PubMed Central

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-01-01

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance. PMID:27455257

  1. Modeling for IFOG Vibration Error Based on the Strain Distribution of Quadrupolar Fiber Coil.

    PubMed

    Gao, Zhongxing; Zhang, Yonggang; Zhang, Yunhao

    2016-01-01

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environment, especially in vibrational environment, is necessary for its practical applications. This paper presents a mathematical model for IFOG to theoretically compute the short-term rate errors caused by mechanical vibration. The computational procedures are mainly based on the strain distribution of quadrupolar fiber coil measured by stress analyzer. The definition of asymmetry of strain distribution (ASD) is given in the paper to evaluate the winding quality of the coil. The established model reveals that the high ASD and the variable fiber elastic modulus in large strain situation are two dominant reasons that give rise to nonreciprocity phase shift in IFOG under vibration. Furthermore, theoretical analysis and computational results indicate that vibration errors of both open-loop and closed-loop IFOG increase with the raise of vibrational amplitude, vibrational frequency and ASD. Finally, an estimation of vibration-induced IFOG errors in aircraft is done according to the proposed model. Our work is meaningful in designing IFOG coils to achieve a better anti-vibration performance. PMID:27455257

  2. Electrical Nuclear Quadrupolar Interaction of ZINC-67 in a Single Crystal of Zinc.

    NASA Astrophysics Data System (ADS)

    Goyette, Jacques

    The nuclear quadrupolar coupling of ('67)Zn in a single crystal of zinc has been studied using the techniques of nuclear acoustic resonance (NAR) and nuclear magnetic resonance (NMR) at low temperatures. NAR, which is an attractive way of doing resonance experiments, is analogous to NMR except in the fact that we use phonons instead of photons to induce transitions thereby avoiding the skin -depth problems met when we do NMR in single metallic crystal. While our NAR experiments were unfruitful mainly due to the large magnetoresistance effects shown by zinc at low temperatures, we were able to circumvent these problems in our NMR experiments by using a time-sharing spectrometer which did not require modulation of the magnetic field. This way, we studied the I(,z) = 1/2 to I(,z) = -1/2 magnetic resonance transition of the I = 5/2 ground state of ('67)Zn in a single crystal of zinc metal as a function of crystal orientation in a magnetic field of 72 kilogauss. The small frequency deviation versus crystal orientation has been used to evaluate the electric quadrupole interaction e('2)qQ/h as 12.19(2) Mhz, the isotropic Knight shift as 0.236(6)% and the anisotropic Knight shift as 0.013(2)% at 4.2(DEGREES)K.

  3. A Fluorescent Polymer Probe with High Selectivity toward Vascular Endothelial Cells for and beyond Noninvasive Two-Photon Intravital Imaging of Brain Vasculature.

    PubMed

    Mettra, B; Appaix, F; Olesiak-Banska, J; Le Bahers, T; Leung, A; Matczyszyn, K; Samoc, M; van der Sanden, B; Monnereau, C; Andraud, C

    2016-07-13

    A chromophore-engineering strategy that relies on the introduction of a ground-state distortion in a quadrupolar chromophore was used to obtain a quasi-quadrupolar chromophore with red emission and large two-photon absorption (2PA) cross-section in polar solvents. This molecule was functionalized with water-solubilizing polymer chains. It constitutes not only a remarkable contrast agent for intravital two-photon microscopy of the functional cerebral vasculature in a minimally invasive configuration but presents intriguing endothelial staining ability that makes it a valuable probe for premortem histological staining. PMID:27267494

  4. Satellite transitions acquired in real time by magic angle spinning (STARTMAS): ``Ultrafast'' high-resolution MAS NMR spectroscopy of spin I =3/2 nuclei

    NASA Astrophysics Data System (ADS)

    Thrippleton, Michael J.; Ball, Thomas J.; Wimperis, Stephen

    2008-01-01

    The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I =3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.

  5. Formation of a White-Light Jet Within a Quadrupolar Magnetic Configuration

    NASA Astrophysics Data System (ADS)

    Filippov, Boris; Koutchmy, Serge; Tavabi, Ehsan

    2013-08-01

    We analyze multi-wavelength and multi-viewpoint observations of a large-scale event viewed on 7 April 2011, originating from an active-region complex. The activity leads to a white-light jet being formed in the outer corona. The topology and evolution of the coronal structures were imaged in high resolution using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In addition, large field-of-view images of the corona were obtained using the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) telescope onboard the PRoject for Onboard Autonomy (PROBA2) microsatellite, providing evidence for the connectivity of the coronal structures with outer coronal features that were imaged with the Large Angle Spectrometric Coronagraph (LASCO) C2 on the S olar and Heliospheric Observatory (SOHO). The data sets reveal an Eiffel-tower type jet configuration extending into a narrow jet in the outer corona. The event starts from the growth of a dark area in the central part of the structure. The darkening was also observed in projection on the disk by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft from a different point of view. We assume that the dark volume in the corona descends from a coronal cavity of a flux rope that moved up higher in the corona but still failed to erupt. The quadrupolar magnetic configuration corresponds to a saddle-like shape of the dark volume and provides a possibility for the plasma to escape along the open field lines into the outer corona, forming the white-light jet.

  6. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings.

    PubMed

    Eliav, U; Haimovich, A; Goldbourt, A

    2016-01-14

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling of the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental (7)Li-(13)C distances in a complex of lithium, glycine, and water. Discussion

  7. REDOR Solid-State NMR as a Probe of the Membrane Locations of Membrane-Associated Peptides and Proteins†

    PubMed Central

    Jia, Lihui; Liang, Shuang; Sackett, Kelly; Xie, Li; Ghosh, Ujjayini; Weliky, David P.

    2015-01-01

    Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein 13CO nuclei and membrane lipid or cholesterol 2H and 31P nuclei. Specific 13CO labeling is used to enable unambiguous assignment and 2H labeling covers a small region of the lipid or cholesterol molecule. The 13CO-31P and 13CO-2H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz 2H π pulses is robust with respect to the 2H quadrupolar anisotropy. The 2H T1’s are comparable to the longer dephasing times (τ’s) and this leads to exponential rather than sigmoidal REDOR buildups. The 13CO-2H buildups are well-fitted to A × (1 − e−γτ) where A and γ are fitting parameters that are correlated as the fraction of molecules (A) with effective 13CO-2H coupling d = 3γ/2. The REDOR approach is applied to probe the membrane locations of the “fusion peptide” regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel β sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C- α helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the β and α fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that

  8. REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins

    NASA Astrophysics Data System (ADS)

    Jia, Lihui; Liang, Shuang; Sackett, Kelly; Xie, Li; Ghosh, Ujjayini; Weliky, David P.

    2015-04-01

    Rotational-echo double-resonance (REDOR) solid-state NMR is applied to probe the membrane locations of specific residues of membrane proteins. Couplings are measured between protein 13CO nuclei and membrane lipid or cholesterol 2H and 31P nuclei. Specific 13CO labeling is used to enable unambiguous assignment and 2H labeling covers a small region of the lipid or cholesterol molecule. The 13CO-31P and 13CO-2H REDOR respectively probe proximity to the membrane headgroup region and proximity to specific insertion depths within the membrane hydrocarbon core. One strength of the REDOR approach is use of chemically-native proteins and membrane components. The conventional REDOR pulse sequence with 100 kHz 2H π pulses is robust with respect to the 2H quadrupolar anisotropy. The 2H T1's are comparable to the longer dephasing times (τ's) and this leads to exponential rather than sigmoidal REDOR buildups. The 13CO-2H buildups are well-fitted to A × (1 - e-γτ) where A and γ are fitting parameters that are correlated as the fraction of molecules (A) with effective 13CO-2H coupling d = 3γ/2. The REDOR approach is applied to probe the membrane locations of the "fusion peptide" regions of the HIV gp41 and influenza virus hemagglutinin proteins which both catalyze joining of the viral and host cell membranes during initial infection of the cell. The HIV fusion peptide forms an intermolecular antiparallel β sheet and the REDOR data support major deeply-inserted and minor shallowly-inserted molecular populations. A significant fraction of the influenza fusion peptide molecules form a tight hairpin with antiparallel N- and C-α helices and the REDOR data support a single peptide population with a deeply-inserted N-helix. The shared feature of deep insertion of the β and α fusion peptide structures may be relevant for fusion catalysis via the resultant local perturbation of the membrane bilayer. Future applications of the REDOR approach may include samples that contain cell

  9. 5f delocalization-induced suppression of quadrupolar order in U(Pd1-xPtx)₃

    SciTech Connect

    Walker, H. C.; Le, M. D.; McEwen, K. A.; Bleckmann, M.; Süllow, S.; Mazzoli, C.; Wilkins, S. B.; Fort, D.

    2011-12-27

    We present bulk magnetic and transport measurements and x-ray resonant scattering measurements on U(Pd1-xPtx)₃ for x=0.005 and 0.01, which demonstrate the high sensitivity of the quadrupolar order in the canonical antiferroquadrupolar ordered system UPd₃ to doping with platinum. Bulk measurements for x=0.005 reveal behavior similar to that seen in UPd₃, albeit at a lower temperature, and x-ray resonant scattering provides evidence of quadrupolar order described by the Qxy order parameter. In contrast, bulk measurements reveal only an indistinct transition in x=0.01, consistent with the observation of short-range quadrupolar order in our x-ray resonant scattering results.

  10. (39)K NMR of solid potassium salts at 21 T: effect of quadrupolar and chemical shift tensors.

    PubMed

    Moudrakovski, Igor L; Ripmeester, John A

    2007-01-25

    39K Solid State NMR spectra (static and magic angle spinning (MAS)) on a set of potassium salts measured at 21.14 T show that the chemical shift range for K(+) ions in diamagnetic salts is well in excess of 100 ppm contrary to previous assumptions that it was quite small. Inequivalent potassium sites in crystals can be resolved through differences in chemical shifts, with chemically similar sites showing differences of over 10 ppm. The quadrupolar coupling constants obtained from MAS and solid echo experiments on powders cover the range from zero for potassium in cubic environments in halides to over 3 MHz for the highly asymmetric sites in K2CO3. Although the quadrupolar effects generally dominate the 39K spectra, in several instances, we have observed subtle but significant contributions of chemical shift anisotropy with values up to 45 ppm, a first such observation. Careful analysis of static and MAS spectra allows the observation of the various chemical shift and quadrupole coupling tensor components as well as their relative orientations, thereby demonstrating that high-field 39K NMR spectroscopy in the solid state has a substantial sensitivity to the local environment with parameters that will be of considerable value in materials characterization and electronic structure studies. PMID:17228903

  11. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  12. Probe assembly

    SciTech Connect

    Avera, C.J.

    1981-01-06

    A hand-held probe assembly, suitable for monitoring a radioactive fibrinogen tracer, is disclosed comprising a substantially cylindrically shaped probe handle having an open end. The probe handle is adapted to be interconnected with electrical circuitry for monitoring radioactivity that is sensed or detected by the probe assembly. Mounted within the probe handle is a probe body assembly that includes a cylindrically shaped probe body inserted through the open end of the probe handle. The probe body includes a photomultiplier tube that is electrically connected with a male connector positioned at the rearward end of the probe body. Mounted at the opposite end of the probe body is a probe head which supports an optical coupler therewithin. The probe head is interconnected with a probe cap which supports a detecting crystal. The probe body assembly, which consists of the probe body, the probe head, and the probe cap is supported within the probe handle by means of a pair of compressible o-rings which permit the probe assembly to be freely rotatable, preferably through 360*, within the probe handle and removable therefrom without requiring any disassembly.

  13. Efficient rotational echo double resonance recoupling of a spin-1/2 and a quadrupolar spin at high spinning rates and weak irradiation fields

    NASA Astrophysics Data System (ADS)

    Nimerovsky, Evgeny; Goldbourt, Amir

    2010-09-01

    A modification of the rotational echo (adiabatic passage) double resonance experiments, which allows recoupling of the dipolar interaction between a spin-1/2 and a half integer quadrupolar spin is proposed. We demonstrate efficient and uniform recoupling at high spinning rates ( ν r), low radio-frequency (RF) irradiation fields ( ν1), and high values of the quadrupolar interaction ( ν q) that correspond to values of α=ν12/νqνr, the adiabaticity parameter, which are down to less than 10% of the traditional adiabaticity limit for a spin-5/2 (α = 0.55). The low-alpha rotational echo double resonance curve is obtained when the pulse on the quadrupolar nucleus is extended to full two rotor periods and beyond. For protons (spin-1/2) and aluminum (spin-5/2) species in the zeolite SAPO-42, a dephasing curve, which is significantly better than the regular REAPDOR experiment (pulse length of one-third of the rotor period) is obtained for a spinning rate of 13 kHz and RF fields down to 10 and even 6 kHz. Under these conditions, α is estimated to be approximately 0.05 based on an average quadrupolar coupling in zeolites. Extensive simulations support our observations suggesting the method to be robust under a large range of experimental values.

  14. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  15. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    PubMed

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations. PMID:20202872

  16. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  17. Scattering Of Light Nuclei

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  18. Response of hot nuclei

    SciTech Connect

    Broglia, R.A.

    1986-01-01

    The dipole giant resonance is reviewed, as it is the only vibration which has been experimentally identified in the decay of hot nuclei. The mechanism of exciting the resonance and the mode of the resonance are described. The methods used to calculate the vibrations from the shell model are discussed, including the Hartree-Fock approximation and random phase approximation. Nuclei formed by compound nuclear reactions, which possess high excitation energy and angular momentum, are considered. It is argued that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. It is also considered possible that the discussion of the dipole giant resonance may be extended to the gamma decay of the isovector quadrupole vibration. 26 refs., 18 figs. (LEW)

  19. On quadrupole vibrations in nearly spherical nuclei

    NASA Astrophysics Data System (ADS)

    Yates, S. W.

    2012-09-01

    A new understanding of low-lying quadrupole vibrations in nuclei is emerging through lifetime measurements performed with fast neutrons at the accelerator laboratory of the University of Kentucky in combination with high-sensitivity measurements with other probes. In the stable cadmium nuclei, which have long been considered to be the best examples of vibrational behavior, we find that many E2 transition probabilities are well below harmonic vibrator expectations, and the B(E2)s cannot be explained with calculations incorporating configuration mixing between vibrational phonon states and intruder excitations. These data place severe limits on the collective models, and it is suggested that the low-lying levels of the Cd isotopes may not be of vibrational origin. An additional example of an apparent quadrupole vibrational nucleus, 62Ni, is considered.

  20. Nuclei at HERA and heavy ion physics

    SciTech Connect

    Gavin, S.; Strikman, M.

    1995-12-31

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk.

  1. Super-heavy nuclei

    NASA Astrophysics Data System (ADS)

    Hofmann, Sigurd

    2015-11-01

    Scientifically based searches for elements beyond uranium started after the discovery of the neutron. Neutrons captured by uranium nuclei and subsequent {β }- decay, similarly as most of the elements were produced in nature, was the successful method applied. However, as a first result, Hahn and Strassmann discovered nuclear fission indicating a limit for the existence of nuclei at an increasing number of protons. Eventually, the nuclear shell model allowed for a more accurate calculation of binding energies, half-lives and decay modes of the heaviest nuclei. Theoreticians predicted a region of increased stability at proton number Z = 126, later shifted to 114, and neutron number N = 184. These nuclei receive their stability from closed shells for the protons and neutrons. Later, increased stability was also predicted for deformed nuclei at Z = 108 and N = 162. In this review I will report on experimental work performed on research to produce and identify these super-heavy nuclei (SHN). Intensive heavy ion beams, sophisticated target technology, efficient electromagnetic ion separators, and sensitive detector arrays were the prerequisites for discovery of 12 new elements during the last 40 years. The results are described and compared with theoretical predictions and interpretations. An outlook is given on further improvement of experimental facilities which will be needed for exploration of the extension and structure of the island of SHN, in particular for searching for isotopes with longer half-lives predicted to be located in the south east of the island, for new elements, and last not least, for surprises which, naturally, emerge unexpectedly.

  2. Structure of Light Neutron-rich Nuclei Studied with Transfer Reactions

    SciTech Connect

    Wuosmaa, A. H.

    2015-01-01

    Transfer reactions have been used for many years to understand the shell structure of nuclei. Recent studies with rare-isotope beams extend this work and make it possible to probe the evolution of shell structure far beyond the valley of stability, requiring measurements in inverse kinematics. We present a novel technical approach to measurements in inverse kinematics, and apply this method to different transfer reactions, each of which probes different properties of light, neutron-rich nuclei.

  3. Superdeformed oblate superheavy nuclei

    SciTech Connect

    Jachimowicz, P.; Kowal, M.; Skalski, J.

    2011-05-15

    We study stability of superdeformed oblate (SDO) superheavy Z{>=}120 nuclei predicted by systematic microscopic-macroscopic calculations in 12D deformation space and confirmed by the Hartree-Fock calculations with the SLy6 force. We include into consideration high-K isomers that very likely form at the SDO shape. Although half-lives T{sub 1/2} < or approx. 10{sup -5} s are calculated or estimated for even-even spin-zero systems, decay hindrances known for high-K isomers suggest that some SDO superheavy nuclei may be detectable by the present experimental technique.

  4. Hadrons in Nuclei

    SciTech Connect

    Mosel, Ulrich

    2004-08-30

    Changes of hadronic properties in dense nuclear matter as predicted by theory have usually been investigated by means of relativistic heavy-ion reactions. In this talk I show that observable consequences of such changes can also be seen in more elementary reactions on nuclei. Particular emphasis is put on a discussion of photonuclear reactions; examples are the dilepton production at {approx_equal} 1 GeV and the hadron production in nuclei at 10-20 GeV photon energies. The observable effects are expected to be as large as in relativistic heavy-ion collisions and can be more directly related to the underlying hadronic changes.

  5. The Mutual Impedance Probe (RPC-MIP) onboard ROSETTA

    NASA Astrophysics Data System (ADS)

    Henri, Pierre; Lebreton, Jean-Pierre; Béghin, Christian; Décréau, Pierrette; Grard, Réjean; Hamelin, Michel; Mazelle, Christian; Randriamboarison, Orélien; Schmidt, Walter; Winterhalter, Daniel; Aouad, Youcef; Lagoutte, Dominique; Vallières, Xavier

    2014-05-01

    The ROSETTA mission will reach the comet 67P/Churyumov-Gerasimenko in August 2014 and enable, for the first time, the in situ survey of a comet activity during along orbit. On board the ROSETTA orbiter, the Mutual Impedance Probe (MIP) is one of the instruments of the Rosetta Plasma Consortium (RPC) that aims at monitoring the cometary plasma environment. MIP is a quadrupolar probe that measures the frequency response of the coupling impedance between two emitting and two receiving dipoles. The electron density and temperature are derived from the resonance peak and the interference pattern of the mutual impedance spectrum. We will describe this instrument and discuss the preliminary results obtained during the third ROSETTA Earth flyby to show its expected capabilities. The RPC switch ON for the post-hibernation recommissioning is planned at the end of March. The health status of the instrument will be discussed.

  6. The "Príncipes de Asturias" nebula: a new quadrupolar planetary nebula from the IPHAS survey

    NASA Astrophysics Data System (ADS)

    Mampaso, A.; Corradi, R. L. M.; Viironen, K.; Leisy, P.; Greimel, R.; Drew, J. E.; Barlow, M. J.; Frew, D. J.; Irwin, J.; Morris, R. A. H.; Parker, Q. A.; Phillipps, S.; Rodríguez-Flores, E. R.; Zijlstra, A. A.

    2006-10-01

    Context: .The Isaac Newton Telescope Photometric Hα Survey (IPHAS) is currently mapping the Northern Galactic plane reaching to r'=20 mag with typically 1primeprime resolution. Hundreds of Planetary Nebulae (PNe), both point-like and resolved, are expected to be discovered. We report on the discovery of the first new PN from this survey: it is an unusual object located at a large galactocentric distance and has a very low oxygen abundance. Aims: .Detecting and studying new PNe will lead to improved estimates of the population size, binary fraction and lifetimes, and yield new insights into the chemistry of the interstellar medium at large galactocentric distances. Methods: .Compact nebulae are searched for in the IPHAS photometric catalogue, selecting those candidates with a strong Hα excess in the r'-Hα vs. r'-i' colour-colour diagram. Searches for extended nebulae are by visual inspection of the mosaics of continuum-subtracted Hα images at a spatial sampling of 5×5 arcsec^2. Follow-up spectroscopy enables confirmation of the PNe, and their physico-chemical study. Results: .The first planetary nebula discovered via IPHAS imagery shows an intricate morphology: there is an inner ring surrounding the central star, bright inner lobes with an enhanced waist, and very faint lobular extensions reaching up to more than 100''. We classify it as a quadrupolar PN, a rather unusual class of planetary showing two pairs of misaligned lobes. From long-slit spectroscopy we derive T_e[ Nii] =12 800±1000 K, Ne = 390±40 cm-3, and chemical abundances typical of Peimbert's type I nebulae (He/H =0.13, N/O =1.8) with an oxygen abundance of 12+log(O/H)=8.17±0.15. A kinematic distance of 7.0+4.5-3.0 kpc is derived, implying an unusually large size of >4 pc for the nebula. The photometry of the central star indicates the presence of a relatively cool companion. This, and the evidence for a dense circumstellar disk and quadrupolar morphology, all of which are rare among PNe, support

  7. Quark structure of nuclei

    SciTech Connect

    Blankenbecler, R.

    1981-01-01

    A brief review is given of selected topics involved in the relativistic quark structure of nuclei such as the infinite momentum variables, scaling variables, counting rules, forward-backward variables, thermodynamic-like limit, QCD effects, higher quark bags, confinement, and many unanswered questions.

  8. Transfer involving deformed nuclei

    SciTech Connect

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs.

  9. Physics with Polarized Nuclei.

    ERIC Educational Resources Information Center

    Thompson, William J.; Clegg, Thomas B.

    1979-01-01

    Discusses recent advances in polarization techniques, specifically those dealing with polarization of atomic nuclei, and how polarized beams and targets are produced. These techniques have greatly increased the scope of possible studies, and provided the tools for testing fundamental symmetries and the spin dependence of nuclear forces. (GA)

  10. Octupole collectivity in nuclei

    NASA Astrophysics Data System (ADS)

    Butler, P. A.

    2016-07-01

    The experimental and theoretical evidence for octupole collectivity in nuclei is reviewed. Recent theoretical advances, covering a wide spectrum from mean-field theory to algebraic and cluster approaches, are discussed. The status of experimental data on the behaviour of energy levels and electric dipole and electric octupole transition moments is reviewed. Finally, an outlook is given on future prospects for this field.

  11. Short-Distance Structure of Nuclei

    SciTech Connect

    Douglas Higinbotham, Eliazer Piasetzky, Stephen Wood

    2011-06-01

    One of Jefferson Lab's original missions was to further our understanding of the short-distance structure of nuclei. In particular, to understand what happens when two or more nucleons within a nucleus have strongly overlapping wave-functions; a phenomena commonly referred to as short-range correlations. Herein, we review the results of the (e,e'), (e,e'p) and (e,e'pN) reactions that have been used at Jefferson Lab to probe this short-distance structure as well as provide an outlook for future experiments.

  12. The decay of hot nuclei

    SciTech Connect

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  13. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  14. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  15. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  16. EASY-GOING deconvolution: Combining accurate simulation and evolutionary algorithms for fast deconvolution of solid-state quadrupolar NMR spectra

    NASA Astrophysics Data System (ADS)

    Grimminck, Dennis L. A. G.; Polman, Ben J. W.; Kentgens, Arno P. M.; Leo Meerts, W.

    2011-08-01

    A fast and accurate fit program is presented for deconvolution of one-dimensional solid-state quadrupolar NMR spectra of powdered materials. Computational costs of the synthesis of theoretical spectra are reduced by the use of libraries containing simulated time/frequency domain data. These libraries are calculated once and with the use of second-party simulation software readily available in the NMR community, to ensure a maximum flexibility and accuracy with respect to experimental conditions. EASY-GOING deconvolution ( EGdeconv) is equipped with evolutionary algorithms that provide robust many-parameter fitting and offers efficient parallellised computing. The program supports quantification of relative chemical site abundances and (dis)order in the solid-state by incorporation of (extended) Czjzek and order parameter models. To illustrate EGdeconv's current capabilities, we provide three case studies. Given the program's simple concept it allows a straightforward extension to include other NMR interactions. The program is available as is for 64-bit Linux operating systems.

  17. Magnetic dipolar and quadrupolar transitions in two-electron atoms under exponential-cosine-screened Coulomb potential

    SciTech Connect

    Modesto-Costa, Lucas; Canuto, Sylvio; Mukherjee, Prasanta K.

    2015-03-15

    A detailed investigation of the magnetic dipolar and quadrupolar excitation energies and transition probabilities of helium isoelectronic He, Be{sup 2+}, C{sup 4+}, and O{sup 6+} have been performed under exponential cosine screened Coulomb potential generated in a plasma environment. The low-lying excited states 1s{sup 2}:{sup 1}S{sup e} → 1sns:{sup 3}S{sup e}{sub 0}, and 1snp:{sup 3}P{sup o}{sub 2} (n = 2, 3, 4, and 5) are considered. The variational time-dependent coupled Hartree-Fock scheme has been used. The effect of the confinement produced by the potential on the structural properties is investigated for increasing coupling strength of the plasma. It is noted that there is a gradual destabilization of the energy of the system with the reduction of the ionization potential and the number of excited states. The effect of the screening enhancement on the excitation energies and transition probabilities has also been investigated and the results compared with those available for the free systems and under the simple screened Coulomb potential.

  18. AN ENVELOPE DISRUPTED BY A QUADRUPOLAR OUTFLOW IN THE PRE-PLANETARY NEBULA IRAS 19475+3119

    SciTech Connect

    Hsu, Ming-Chien; Lee, Chin-Fei E-mail: cflee@asiaa.sinica.edu.tw

    2011-07-20

    IRAS 19475+3119 is a quadrupolar pre-planetary nebula (PPN), with two bipolar lobes, one in the east-west (E-W) direction and one in the southeast-northwest (SE-NW) direction. We have observed it in CO J = 2-1 with the Submillimeter Array at {approx}1'' resolution. The E-W bipolar lobe is known to trace a bipolar outflow and it is detected at high velocity. The SE-NW bipolar lobe appears at low velocity, and could trace a bipolar outflow moving in the plane of the sky. Two compact clumps are seen at low velocity around the common waist of the two bipolar lobes, spatially coincident with the two emission peaks in the NIR, tracing dense envelope material. They are found to trace the two limb-brightened edges of a slowly expanding torus-like circumstellar envelope produced in the late asymptotic giant branch phase. This torus-like envelope originally could be either a torus or a spherical shell, and it appears as it is now because of the two pairs of cavities along the two bipolar lobes. Thus, the envelope appears to be disrupted by the two bipolar outflows in the PPN phase.

  19. A study of isotropic-nematic transition of quadrupolar Gay-Berne fluid using density-functional theory approach

    NASA Astrophysics Data System (ADS)

    Singh, Ram Chandra; Ram, Jokhan

    2011-11-01

    The effects of quadrupole moments on the isotropic-nematic (IN) phase transitions are studied using the density-functional theory (DFT) for a Gay-Berne (GB) fluid for a range of length-to-breadth parameters ? in the reduced temperature range ? . The pair-correlation functions of the isotropic phase, which enter into the DFT as input parameters are found by solving the Percus-Yevick integral equation theory. The method used involves an expansion of angle-dependent functions appearing in the integral equations in terms of spherical harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of harmonic coefficients which involve l indices up to less than or equal to 6 are considered. The numerical accuracy of the results depends on the number of spherical harmonic coefficients considered for each orientation-dependent function. As the length-to-breadth ratio of quadrupolar GB molecules is increased, the IN transition is seen to move to lower density (and pressure) at a given temperature. It has been observed that the DFT is good to study the IN transitions in such fluids. The theoretical results have also been compared with the computer simulation results wherever they are available.

  20. A two excited state model to explain the peculiar photobehaviour of a flexible quadrupolar D-π-D anthracene derivative.

    PubMed

    Carlotti, B; Cesaretti, A; Gentili, P L; Marrocchi, A; Elisei, F; Spalletti, A

    2016-08-17

    The peculiar photobehaviour of a symmetrical arylenevinylene anthracene derivative bearing mild electron donors (alkoxy groups) at the sides of its structure has been fully comprehended through this study. An investigation into the effect of solvent polarity and temperature on the stationary fluorescence spectrum allowed a clear dual emission to be revealed. A further valuable insight was obtained, thanks to the employment of ultrafast spectroscopies. Fluorescence up-conversion measurements and the Time Resolved Area Normalised Spectra analysis provided a clear-cut proof of the presence of two distinct fluorescent states ((1)A* and (1)B*), with (1)A* being responsible for the steady-state emission in highly polar and viscous media. Femtosecond transient absorption spectra were acquired in several organic solvents of different polarity and viscosity. Interestingly, the lifetime of (1)A* was found to be dependent on solvent viscosity whereas the lifetime of (1)B* showed a trend which matches the change in solvent polarity. Indeed, the Density functional theory calculations predicted a structural rearrangement in the fully relaxed lowest excited singlet state. The (1)A* → (1)B* transition is thus likely accompanied by large amplitude motions of the molecular structure, with the (1)B* state also exhibiting a small intramolecular charge transfer character. The investigated flexible quadrupolar D-π-D system arouses therefore great interest as a novel material for applications in organic electronics and photonics. PMID:27499254

  1. Distance Probes of Dark Energy

    DOE PAGESBeta

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; Allen, S. W.; Baltay, C.; Cahn, R. N.; D' Andrea, C. B.; Dalal, N.; Dawson, K. S.; Denney, K. D.; et al

    2015-03-15

    We present the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). This document summarizes the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays.

  2. Effect of gamma radiation on membrane fluidity of MOLT-4 nuclei

    SciTech Connect

    McClain, D.E.; Trypus, C.A.; May, L.

    1990-01-01

    These experiments measured the effect of gamma radiation on the nuclear envelope using doxyl-fatty acid spin-label probes. Nuclei were isolated from cultured MOLT-4 cells, a radiation-sensitive human T-cell lymphocyte. Membrane fluidity was measured from the electron paramagnetic resonance spectra of the probes. MOLT-4 cells were grown under standard conditions, and suspension were exposed to CO radiation at room temperature. The spectra of 5-doxylstearic acid in the nuclei were those of a strongly immobilized label. A difference in the membrane fluidity was detected in a series of experiments comparing labeled irradiated and nonirradiated nuclei. The change in fluidity was measured by comparing the changes in the order parameter, S, of the spin label in irradiated nuclei with those in control nuclei.

  3. Space Shuttle ice nuclei

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Cicerone, R. J.

    1982-01-01

    Estimates are made showing that, as a consequence of rocket activity in the earth's upper atmosphere in the Shuttle era, average ice nuclei concentrations in the upper atmosphere could increase by a factor of two, and that an aluminum dust layer weighing up to 1000 tons might eventually form in the lower atmosphere. The concentrations of Space Shuttle ice nuclei (SSIN) in the upper troposphere and lower stratosphere were estimated by taking into account the composition of the particles, the extent of surface poisoning, and the size of the particles. Calculated stratospheric size distributions at 20 km with Space Shuttle particulate injection, calculated SSIN concentrations at 10 and 20 km altitude corresponding to different water vapor/ice supersaturations, and predicted SSIN concentrations in the lower stratosphere and upper troposphere are shown.

  4. Nuclei in Astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2016-06-01

    This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclearphysics methods for studying cosmic objects and properties of the Universe. The results of investigations in nuclear reactions, induced by radioactive nuclear beams, make it possible to analyze the nucleosynthesis scenario in the region of light elements in a new manner.

  5. Exotic phenomena in nuclei

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans; Roth, Robert

    2006-10-01

    In the Fermionic Molecular Dynamics (FMD) model the nuclear many-body system is described using Slater determinants with Gaussian wave-packets as single-particle states. The flexibility of the FMD wave functions allows for a consistent description of shell model like structures, deformed states, cluster structures as well as halos. An effective interaction derived from the realistic Argonne V18 interaction using the Unitary Correlation Operator Method is used for all nuclei. Results for nuclei in the p-shell will be presented. Halo features are present in the Helium isotopes, cluster structures are studied in Beryllium and Carbon isotopes. The interplay between shell structure and cluster structures in the ground and the Hoyle state in ^12C will be discussed.

  6. Finding the true spin-lattice relaxation time for half-integral nuclei with non-zero quadrupole couplings

    NASA Astrophysics Data System (ADS)

    Yesinowski, James P.

    2015-03-01

    Measuring true spin-lattice relaxation times T1 of half-integral quadrupolar nuclei having non-zero nuclear quadrupole coupling constants (NQCCs) presents challenges due to the presence of satellite-transitions (STs) that may lie outside the excitation bandwidth of the central transition (CT). This leads to complications in establishing well-defined initial conditions for the population differences in these multi-level systems. In addition, experiments involving magic-angle spinning (MAS) can introduce spin exchange due to zero-crossings of the ST and CT (or possibly rotational resonance recoupling in the case of multiple sites) and greatly altered initial conditions as well. An extensive comparison of pulse sequences that have been previously used to measure T1 in such systems is reported, using the 71Ga (I = 3/2) NMR of a Ge-doped h-GaN n-type semiconductor sample as the test case. The T1 values were measured at the peak maximum of the Knight shift distribution. Analytical expressions for magnetization-recovery of the CT appropriate to the pulse sequences tested were used, involving contributions from both a magnetic relaxation mechanism (rate constant W) and a quadrupolar one (rate constants W1 and W2, approximately equal in this case). An asynchronous train of high-power saturating pulses under MAS that is able to completely saturate both CT and STs is found to be the most reliable and accurate method for obtaining the "true T1", defined here as (2W + 2W1,2)-1. All other methods studied yielded poor agreement with this "true T1" value or even resulted in gross errors, for reasons that are analyzed in detail. These methods involved a synchronous train of saturating pulses under MAS, an inversion-recovery sequence under MAS or static conditions, and a saturating comb of pulses on a static sample. Although the present results were obtained on a sample where the magnetic relaxation mechanism dominated the quadrupolar one, the asynchronous saturating pulse train

  7. Pairing forces in nuclei

    SciTech Connect

    Chasman, R.R.

    1996-12-31

    In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.

  8. Precision measurement of the mass difference between light nuclei and anti-nuclei

    NASA Astrophysics Data System (ADS)

    Alice Collaboration; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmed, I.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, S.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.

    2015-10-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

  9. Properties of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Rahe, J.; Vanysek, V.; Weissman, P. R.

    1994-01-01

    Active long- and short-period comets contribute about 20 to 30 % of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10(sup 15) to 10(sup 18) g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 10(sup 2) to 10(sup 4) N m(sup -2). Density estimates range between 0.2 and 1.2 g cm(sup -3) but are very poorly determined, if at all. As comets age they develop nonvolitile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 10(sup 12) to 10(sup 13) comets surrounding the solar system and extending to interstellar distances. The likely source for short-period comets is the Kuiper belt. a ring of perhaps 10(sup 8) to 10(sup 10) remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long-period comets from the Oort cloud which have been perturbed into short-period orbits.

  10. Electroproduction of Strange Nuclei

    SciTech Connect

    E.V. Hungerford

    2002-06-01

    The advent of high-energy, CW-beams of electrons now allows electro-production and precision studies of nuclei containing hyperons. Previously, the injection of strangeness into a nucleus was accomplished using secondary beams of mesons, where beam quality and target thickness limited the missing mass resolution. We review here the theoretical description of the (e, e'K+) reaction mechanism, and discuss the first experiment demonstrating that this reaction can be used to precisely study the spectra of light hypernuclei. Future experiments based on similar techniques, are expected to attain even better resolutions and rates.

  11. Total photoabsorption in nuclei

    SciTech Connect

    Bianchi, N.

    1992-06-01

    The Frascati-Genova collaboration proposes to measure the total photonuclear cross section on a wide range of nuclei between 500 MeV and 2 GeV, to obtain informations on the interaction of baryon resonances with nucleons and on the onset of the shadowing effect. The experiment could be performed in the Hall B as soon as the tagging facility will be ready and before the end of the installation of the CLAS spectrometer. The requirements for the photon beam, like maximum energy, intensity and beam definition, are not so strong so that the experiment would also be a good first test of the tagged photon facility.

  12. Quark distributions in nuclei

    SciTech Connect

    Catara, F.; Sambataro, M. Italy Dipartimento di Fisica dell'Universita, 95129 Catania )

    1992-08-01

    By making use of a mapping procedure recently proposed, we construct the nucleon image of the one-body quark density operator in the framework of the nonrelativistic quark model of the nucleons. We evaluate the expectation value of this operator in the ground state of the doubly magic nuclei {sup 4}He, {sup 16}O, and {sup 40}Ca described within the nuclear shell model. We analyze the role of quark exchanges between nucleons. We also investigate the effect on the quark density of short-range correlations in the nuclear wave functions as well as of variations in the nucleon size.

  13. Detection of subsurface ice and water deposits on Mars with a mutual impedance probe

    NASA Astrophysics Data System (ADS)

    Trautner, Roland; Grard, Réjean; Hamelin, Michel

    2003-10-01

    A mutual impedance probe, also called quadrupolar probe or permittivitymeter, measures the complex permittivity of materials with a spatial resolution comparable to the average separation between its four sensors. This instrument is ideally suited for the detection of subsurface water deposits at shallow depths on Mars, since water mixtures are generally characterized by relatively large dielectric constant and conductivity. Permittivitymeters have been developed for commercial and space applications. An instrument identical to that which will land on Titan in 2004 has been tested with success in the field, and the results obtained on humid sand and in dry snow are presented. The possible applications of mutual impedance probes to the localization of water on Mars are discussed.

  14. Quantifying the Sensitivity of Multipolar (Dipolar, Quadrupolar, and Octapolar) Surface Plasmon Resonances in Silver Nanoparticles: The Effect of Size, Composition, and Surface Coating.

    PubMed

    Bastús, Neus G; Piella, Jordi; Puntes, Víctor

    2016-01-12

    The effect of composition, size, and surface coating on the sensitivity of localized multipolar surface plasmon resonances has been spectroscopically investigated in high-quality silver colloidal solutions with precisely controlled sizes from 10 to 220 nm and well-defined surface chemistry. Surface plasmon resonance modes have been intensively characterized, identifying the size-dependence of dipolar, quadrupolar, and octapolar modes. Modifications of the NP's surface chemistry revealed the higher sensitivity of large sizes, long molecules, thiol groups, and low-order resonance modes. We also extend this study to gold nanoparticles, aiming to compare the sensitivity of both materials, quantifying the higher sensitivity of silver. PMID:26649600

  15. A theoretical framework for dichroism and the resonance-enhanced scattering of x-rays by magnetic materials: II. Quadrupolar absorption events

    NASA Astrophysics Data System (ADS)

    Lovesey, Stephen W.

    1996-12-01

    Previous work with the resonant scattering length that is based on an atomic model and dipolar absorption events is extended to encompass quadrupolar absorption events. The scattering length is the common element in calculations of the attenuation coefficient, dichroism and the cross-sections for elastic and inelastic resonance-enhanced scattering of x-rays by magnetic materials. Both jj-coupling and Russell - Saunders coupling schemes for the atomic electrons are utilized; included are tables of relevant Racah unit-tensor operators for the valence shell 0953-8984/8/50/025/img1.

  16. Exotic nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2012-07-01

    Recently the academic community has marked several anniversaries connected with discoveries that played a significant role in the development of astrophysical investigations. The year 2009 was proclaimed by the United Nations the International Year of Astronomy. This was associated with the 400th anniversary of Galileo Galilei's discovery of the optical telescope, which marked the beginning of regular research in the field of astronomy. An important contribution to not only the development of physics of the microcosm, but also to the understanding of processes occurring in the Universe, was the discovery of the atomic nucleus made by E. Rutherford 100 years ago. Since then the investigations in the fields of physics of particles and atomic nuclei have helped to understand many processes in the microcosm. Exactly 80 years ago, K. Yanski used a radio-telescope in order to receive the radiation from cosmic objects for the first time, and at the present time this research area of physics is the most efficient method for studying the properties of the Universe. Finally, the April 12, 1961 (50 years ago) launching of the first sputnik into space with a human being onboard, the Russian cosmonaut Yuri Gagarin, marked the beginning of exploration of the Universe with the direct participation of man. All these achievements considerably extended our ideas about the Universe. This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclear-physics methods for studying cosmic objects and properties of the Universe. The results of

  17. Probing clustering in excited alpha-conjugate nuclei

    NASA Astrophysics Data System (ADS)

    Borderie, B.; Raduta, Ad. R.; Ademard, G.; Rivet, M. F.; De Filippo, E.; Geraci, E.; Le Neindre, N.; Alba, R.; Amorini, F.; Cardella, G.; Chatterjee, M.; Guinet, D.; Lautesse, P.; La Guidara, E.; Lanzalone, G.; Lanzano, G.; Lombardo, I.; Lopez, O.; Maiolino, C.; Pagano, A.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Russotto, P.; Wieleczko, J. P.

    2016-04-01

    The fragmentation of quasi-projectiles from the nuclear reaction 40Ca+12C at 25 MeV per nucleon bombarding energy was used to produce α-emission sources. From a careful selection of these sources provided by a complete detection and from comparisons with models of sequential and simultaneous decays, evidence in favor of α-particle clustering from excited 16O, 20Ne and 24Mg is reported.

  18. Probing active galactic nuclei with H2O megamasers.

    PubMed Central

    Moran, J; Greenhill, L; Herrnstein, J; Diamond, P; Miyoshi, M; Nakai, N; Inque, M

    1995-01-01

    We describe the characteristics of the rapidly rotating molecular disk in the nucleus of the mildly active galaxy NGC4258. The morphology and kinematics of the disk are delineated by the point-like watervapor emission sources at 1.35-cm wavelength. High angular resolution [200 microas where as is arcsec, corresponding to 0.006 parsec (pc) at 6.4 million pc] and high spectral resolution (0.2 km.s-1 or nu/Deltanu = 1.4 x 10(6)) with the Very-Long-Baseline Array allow precise definition of the disk. The disk is very thin, but slightly warped, and is viewed nearly edge-on. The masers show that the disk is in nearly perfect Keplerian rotation within the observable range of radii of 0.13-0.26 pc. The approximately random deviations from the Keplerian rotation curve among the high-velocity masers are approximately 3.5 km.s-1 (rms). These deviations may be due to the masers lying off the midline by about +/-4 degrees or variations in the inclination of the disk by +/-4 degrees. Lack of systematic deviations indicates that the disk has a mass of <4 x 10(6) solar mass (M[symbol: see text]). The gravitational binding mass is 3.5 x 10(7) M[symbol: see text], which must lie within the inner radius of the disk and requires that the mass density be >4 x 10(9) M[symbol: see text].pc-3. If the central mass were in the form of a star cluster with a density distribution such as a Plummer model, then the central mass density would be 4 x 10(12) M[symbol: see text].pc-3. The lifetime of such a cluster would be short with respect to the age of the galaxy [Maoz, E. (1995) Astrophys. J. Lett. 447, L91-L94]. Therefore, the central mass may be a black hole. The disk as traced by the systemic velocity features is unresolved in the vertical direction, indicating that its scale height is <0.0003 pc (hence the ratio of thickness to radius, H/R, is <0.0025). For a disk in hydrostatic equilibrium the quadrature sum of the sound speed and Alfven velocity is <2.5 km.s-1, so that the temperature of the disk must be <1000 K and the toroidal magnetic field component must be <250 mG. If the molecular mass density in the disk is 10(10) cm-3, then the disk mass is approximately 10(4) M[symbol: see text], and the disk is marginally stable as defined by the Toomre stability parameter Q (Q = 6 at the inner edge and 1 at the outer edge). The inward drift velocity is predicted to be <0.007 km.s-1, for a viscosity parameter of 0.1, and the accretion rate is <7 x 10(-5) M[symbol: see text].yr-1. At this value the accretion would be sufficient to power the nuclear x-ray source of 4 x 10(40) ergs-1 (1 erg = 0.1 microJ). The volume of individual maser components may be as large as 10(46) cm3, based on the velocity gradients, which is sufficient to supply the observed luminosity. The pump power undoubtedly comes from the nucleus, perhaps in the form of x-rays. The warp may allow the pump radiation to penetrate the disk obliquely [Neufeld, D. A. & Maloney, P. R. (1995) Astrophys. J. Lett. 447, L17-L19]. A total of 15 H2O megamasers have been identified out of >250 galaxies searched. Galaxy NGC4258 may be the only case where conditions are optimal to reveal a well-defined nuclear disk. Future measurement of proper motions and accelerations for NGC4258 will yield an accurate distance and a more precise definition of the dynamics of the disk Images Fig. 6 PMID:11607612

  19. Coulomb chronometry to probe the decay mechanism of hot nuclei

    NASA Astrophysics Data System (ADS)

    Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration

    2015-12-01

    In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.

  20. Exotic Quadrupolar Phenomena in Non-Kramers Doublet Systems — The Cases of PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V, Ti) —

    NASA Astrophysics Data System (ADS)

    Onimaru, Takahiro; Kusunose, Hiroaki

    2016-08-01

    This paper reviews experimental evidence and the related theoretical background on exotic phenomena arising from local quadrupolar degrees of freedom. Recent extensive studies on praseodymium-based cubic systems, PrT2X20, have revealed that the active quadrupoles in the non-Kramers doublet ground state play a vital role in exhibiting quadrupole orders and superconductivity with underlying peculiar normal paramagnetic electronic states. We focus on four prototype compounds of PrT2X20 (T = Ir, Rh, X = Zn; T = V, Ti, X = Al). Detailed comprehensive comparisons of these compounds have revealed a universal feature of the non-Fermi liquid state emerging from a lattice quadrupolar Kondo effect, and the commonality and individuality of the quadrupolar and superconducting phases. It may be possible to develop a new class of heavy-fermion systems beyond the classic view of heavy fermions on the basis of a concrete understanding of these phenomena.

  1. IBA in deformed nuclei

    SciTech Connect

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for /sup 168/Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong ..beta.. ..-->.. ..gamma.. transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the ..beta.. ..-->.. ..gamma.. transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ..delta..K=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics.

  2. Isolation of nuclei from yeast.

    PubMed

    Bhargava, M M; Halvorson, H O

    1971-05-01

    A method for isolation of nuclei from Saccharomyces cervisiae in high yield is described. The DNA/protein ratio of the isolated nuclei is 10 times higher than that of whole cells. Examination of these nuclei in phase and electron microscopes has shown them to be round bodies having a double membrane, microtubules, and a dark crescent at one end. The optimum conditions for extraction and resolution of histones of these nuclei on acrylamide gels have been investigated. The nuclei have an active RNA polymerase (E.C. 2.7.7.6) and are able to synthesize RNA in vitro. They are also readily stainable with Giemsa's, Feulgen's, and acridine orange methods. PMID:19866769

  3. Quarks in Few Body Nuclei

    NASA Astrophysics Data System (ADS)

    Holt, Roy J.

    2016-03-01

    Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  4. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  5. Modulation of Symmetry-Breaking Intramolecular Charge-Transfer Dynamics Assisted by Pendant Side Chains in π-Linkers in Quadrupolar Diketopyrrolopyrrole Derivatives.

    PubMed

    Kim, Woojae; Sung, Jooyoung; Grzybowski, Marek; Gryko, Daniel T; Kim, Dongho

    2016-08-01

    The effect of the length of pendant side chains in centrosymmetric quadrupolar molecules on dynamics of their most perplexing photophysical phenomenon, i.e., symmetry-breaking intramolecular charge transfer, has been discovered. Unexpectedly, considerable influence of length of these pendant side chains in π-linkers arose as a structural factor enabling the control of the degree of fluorescence solvatochromism. The symmetry-breaking intramolecular charge-transfer dynamics has been described on quadrupolar diketopyrrolopyrrole derivatives possessing fluorene moieties as π-linkers and diarylamino groups as electron donors. On the basis of the evolution of transient fluorescence spectra obtained by a femtosecond broadband fluorescence up-conversion spectroscopy, it was found that the relative contribution of diffusive solvation and torsional relaxation in overall spectral relaxation can be modulated by the length of pendant side chain in π-linkers. Consequently, we demonstrated that this modulation plays a significant role in determining the photophysical properties of diketopyrrolopyrroles in a polar medium. PMID:27455383

  6. Multiwavelength Monitoring of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    2001-01-01

    By intensive monitoring of AGN variability over a large range in wavelength, we can probe the structure and physics of active galactic nuclei on microarcsecond angular scales. For example, multi-wavelength variability data allow us (a) to establish causal relationships between variations in different wavebands, and thus determine which physical processes are primary and which spectral changes are induced by variations at other wavelengths, and (b) through reverberation mapping of the UV/optical emission lines, to determine the structure and kinematics of the line-emitting region, and thus accurately determine the central masses in AGNs. Multiwavelength monitoring is resource-intensive, and is difficult to implement with general-purpose facilities. As a result, virtually all programs undertaken to date have been either sparsely sampled, or short in duration, or both. The potentially high return on this type of investigation, however, argues for dedicated facilities for multiwavelength monitoring programs.

  7. Theoretical studies of hadrons and nuclei

    SciTech Connect

    COTANCH, STEPHEN R

    2007-03-20

    This report details final research results obtained during the 9 year period from June 1, 1997 through July 15, 2006. The research project, entitled Theoretical Studies of Hadrons and Nuclei , was supported by grant DE-FG02-97ER41048 between North Carolina State University [NCSU] and the U. S. Department of Energy [DOE]. In compliance with grant requirements the Principal Investigator [PI], Professor Stephen R. Cotanch, conducted a theoretical research program investigating hadrons and nuclei and devoted to this program 50% of his time during the academic year and 100% of his time in the summer. Highlights of new, significant research results are briefly summarized in the following three sections corresponding to the respective sub-programs of this project (hadron structure, probing hadrons and hadron systems electromagnetically, and many-body studies). Recent progress is also discussed in a recent renewal/supplemental grant proposal submitted to DOE. Finally, full detailed descriptions of completed work can be found in the publications listed at the end of this report.

  8. Extended Locus of Regular Nuclei

    SciTech Connect

    Amon, L.; Casten, R. F.

    2007-04-23

    A new family of IBM Hamiltonians, characterized by certain parameter values, was found about 15 years ago by Alhassid and Whelan to display almost regular dynamics, and yet these solutions to the IBM do not belong to any of the known dynamical symmetry limits (vibrational, rotational and {gamma} - unstable). Rather, they comprise an 'Arc of Regularity' cutting through the interior of the symmetry triangle from U(5) to SU(3) where suddenly there is a decrease in chaoticity and a significant increase in regularity. A few years ago, the first set of nuclei lying along this arc was discovered. The purpose of the present work is to search more broadly in the nuclear chart at all nuclei from Z = 40 - 100 for other examples of such 'regular' nuclei. Using a unique signature for such nuclei involving energy differences of certain excited states, we have identified an additional set of 12 nuclei lying near or along the arc. Some of these nuclei are known to have low-lying intruder states and therefore care must be taken, however, in judging their structure. The regularity exhibited by nuclei near the arc presumably reflects the validity or partial validity of some new, as yet unknown, quantum number describing these systems and giving the regularity found for them.

  9. Shape coexistence in atomic nuclei

    SciTech Connect

    Heyde, Kris; Wood, John L.

    2011-10-01

    Shape coexistence in nuclei appears to be unique in the realm of finite many-body quantum systems. It differs from the various geometrical arrangements that sometimes occur in a molecule in that in a molecule the various arrangements are of the widely separated atomic nuclei. In nuclei the various ''arrangements'' of nucleons involve (sets of) energy eigenstates with different electric quadrupole properties such as moments and transition rates, and different distributions of proton pairs and neutron pairs with respect to their Fermi energies. Sometimes two such structures will ''invert'' as a function of the nucleon number, resulting in a sudden and dramatic change in ground-state properties in neighboring isotopes and isotones. In the first part of this review the theoretical status of coexistence in nuclei is summarized. Two approaches, namely, microscopic shell-model descriptions and mean-field descriptions, are emphasized. The second part of this review presents systematic data, for both even- and odd-mass nuclei, selected to illustrate the various ways in which coexistence is observed in nuclei. The last part of this review looks to future developments and the issue of the universality of coexistence in nuclei. Surprises continue to be discovered. With the major advances in reaching to extremes of proton-neutron number, and the anticipated new ''rare isotope beam'' facilities, guidelines for search and discovery are discussed.

  10. Gluon density in nuclei

    SciTech Connect

    Ayala, A.L.; Ducati, M.B.G.; Levin, E.M.

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  11. Coupled-channels study of fine structure in the {alpha} decay of well deformed nuclei

    SciTech Connect

    Ni Dongdong; Ren Zhongzhou

    2011-06-15

    We formulate a theoretical model for the {alpha} decay of well-deformed even-even nuclei based on the coupled-channel Schroedinger equation. The {alpha}-decay half-lives and fine structures observed in {alpha} decay are well described by the five-channel microscopic calculations. Since the branching ratios to high-spin states are hard to understand in the traditional {alpha}-decay theories, this success could be important to interpret future observations of heavier nuclei. It is also found that the {alpha} transition to high-spin states is a powerful tool to probe the energy spectrum and deformation of daughter nuclei.

  12. Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Kondo, Y.

    2016-06-01

    Large acceptance spectrometers at in-flight RI separators have played significant roles in investigating the structure of exotic nuclei. Such spectrometers are in particular useful for probing unbound states of exotic nuclei, using invariant mass spectroscopy with reactions at intermediate and high energies. We discuss here the key characteristic features of such spectrometers, by introducing the recently commissioned SAMURAI facility at the RIBF, RIKEN. We also investigate the issue of cross talk in the detection of multiple neutrons, which has become crucial for exploring further unbound states and nuclei beyond the neutron drip line. Finally we discuss future perspectives for large acceptance spectrometers at the new-generation RI-beam facilities.

  13. Stem cell mechanics: Auxetic nuclei

    NASA Astrophysics Data System (ADS)

    Wang, Ning

    2014-06-01

    The nuclei of naive mouse embryonic stem cells that are transitioning towards differentiation expand when the cells are stretched and contract when they are compressed. What drives this auxetic phenotype is, however, unclear.

  14. Alpha Condensates in Atomic Nuclei

    SciTech Connect

    Suzuki, Y.; Matsumura, H.

    2005-11-21

    Recent issues on Bose-Einstein condensation (BEC) of {alpha}-particles in nuclei are reviewed. A candidate of condensates is discussed for some states in 12C and 16O by defining the amount of {alpha} condensation.

  15. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. The nature of comet nuclei

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Walker, Russell G.

    1992-01-01

    The icy-conglomerate model of comet nuclei has dominated all others since its introduction. It provided a basis for understanding the non-gravitational motions of comets which had perplexed dynamicists up to that time, and provided a focus for understanding cometary composition and origin. The image of comets as dirty snowballs was quickly adopted. Comet nuclei including their trail mass loss rates and refractory to volatile mass ratios are described.

  17. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  18. The Subsurface Structure and Density of Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Lamy, P. L.; Herique, A.; Toth, I.

    2015-12-01

    Little is known about the internal structure and density of cometary nuclei. Indirect evidences available so far are not compelling and these questions essentially remain a matter of speculation. It is therefore important to fully exploit the potential sources of information and this is particularly the case of radar observations which have the capability to probe the first few meters of cometary nuclei when they come sufficiently close to Earth. We review the available results and find that proper data are available for eight nuclei yielding their geometric radar albedo and the dielectric permittivity of their subsurface assuming that the scattering of the radar beam is predominantly specular. The range of permittivity is quite broad, extending from 1.7 to 3.1 although a more realistic interval is probably 2 to 3.1 implying pronounced diversity in the subsurface properties of cometary nuclei. A novel interpretation of these results is performed based on the calculation of the dielectric permittivity of various samples of three-phase mixtures of ice, dust and vacuum using two mixing formulas and on the introduction of ternary diagrams where the three axes correspond to the volumetric fraction of the three phases. The derived values of the permittivity supplemented by a general constraint on the dust-to-ice mass ratio define restricted regions in the ternary diagrams broadly imposing that the ice fraction lies in the range 0.1 to 0.2, the dust fraction in the range 0.2 to 0.5, and the porosity in the range 35 % to 75 %. The density of the subsurface of the considered eight nuclei is only constrained to the broad range 500 to 2000 kg m-3 due to the poorly known density of the dust phase. However, the results unambiguously reveal considerable variation among cometary nuclei of the structure and properties of their subsurface layers.

  19. Space-fractional Schrödinger equation for a quadrupolar triple Dirac-δ potential: Central Dirac-δ well and barrier cases

    NASA Astrophysics Data System (ADS)

    Tare, Jeffrey D.; Esguerra, Jose Perico H.

    2015-01-01

    We solve the space-fractional Schrödinger equation for a quadrupolar triple Dirac-δ (QTD-δ) potential for all energies using the momentum-space approach. For the E < 0 solution, we consider two cases, i.e., when the strengths of the potential are V0 > 0 (QTD-δ potential with central Dirac-δ well) and V0 < 0 (QTD-δ potential with central Dirac-δ barrier) and derive expressions satisfied by the bound-state energy. For all fractional orders α considered, we find that there is one eigenenergy when V0 > 0, and there are two eigenenergies when V0 < 0. We also obtain both bound- and scattering-state (E > 0) wave functions and express them in terms of Fox's H-function.

  20. Alkaline earth chloride hydrates: chlorine quadrupolar and chemical shift tensors by solid-state NMR spectroscopy and plane wave pseudopotential calculations.

    PubMed

    Bryce, David L; Bultz, Elijah B

    2007-01-01

    A series of alkaline earth chloride hydrates has been studied by solid-state (35/37)Cl NMR spectroscopy in order to characterize the chlorine electric field gradient (EFG) and chemical shift (CS) tensors and to relate these observables to the structure around the chloride ions. Chlorine-35/37 NMR spectra of solid powdered samples of pseudopolymorphs (hydrates) of magnesium chloride (MgCl(2).6H(2)O), calcium chloride (CaCl(2).2H(2)O), strontium chloride (SrCl(2), SrCl(2).2H(2)O, and SrCl(2).6H(2)O), and barium chloride (BaCl(2).2H(2)O) have been acquired under stationary and magic-angle spinning conditions in magnetic fields of 11.75 and 21.1 T. Powder X-ray diffraction was used as an additional tool to confirm the purity and identity of the samples. Chlorine-35 quadrupolar coupling constants (C(Q)) range from essentially zero in cubic anhydrous SrCl(2) to 4.26+/-0.03 MHz in calcium chloride dihydrate. CS tensor spans, Omega, are between 40 and 72 ppm, for example, Omega= 45+/-20 ppm for SrCl(2).6H(2)O. Plane wave-pseudopotential density functional theory, as implemented in the CASTEP program, was employed to model the extended solid lattices of these materials for the calculation of their chlorine EFG and nuclear magnetic shielding tensors, and allowed for the assignment of the two-site chlorine NMR spectra of barium chloride dihydrate. This work builds upon our current understanding of the relationship between chlorine NMR interaction tensors and the local molecular and electronic structure, and highlights the particular sensitivity of quadrupolar nucleus solid-state NMR spectroscopy to the differences between various pseudopolymorphic structures in the case of strontium chloride. PMID:17385204

  1. Study of nuclear matter density distributions using hadronic probes

    SciTech Connect

    Kohama, Akihisa; Iida, Kei; Oyamatsu, Kazuhiro

    2011-05-06

    We briefly review our formula for a proton-nucleus total reaction cross section, {sigma}{sub R}, constructed in the black-sphere approximation of nuclei, in which a nucleus is viewed as a 'black' sphere of radius 'a'. Some years ago, using the Glauber model, one of the authors (A.K.) and his collaborators performed numerical simulations to examine the possibility to probe the nuclear matter density distributions of neutron-rich unstable nuclei from proton elastic scatterings 'model-independently'. The present study is another attempt to seek a 'model-independent' framework for systematically analyzing scattering data for studying the matter density distributions of atomic nuclei.

  2. Cavitation inception from bubble nuclei.

    PubMed

    Mørch, K A

    2015-10-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  3. Improving the Mass-Limited Performance of Routine NMR Probes using Coupled Coils.

    PubMed

    Marsden, Brian; Lim, Victor; Taber, Bob; Zens, Albert

    2016-07-01

    We report a method to convert, on demand, a general use dual-broadband probe to a high performance mass-limited probe for both high band and low band nuclei. This technology uses magnetic coupling of inductors to achieve this capability. The method offers a cost effective way of increasing the performance of routine NMR probes without having to change probes or increase the overall foot print of the spectrometer. PMID:27155588

  4. Improving the Mass-Limited Performance of Routine NMR Probes using Coupled Coils

    NASA Astrophysics Data System (ADS)

    Marsden, Brian; Lim, Victor; Taber, Bob; Zens, Albert

    2016-07-01

    We report a method to convert, on demand, a general use dual-broadband probe to a high performance mass-limited probe for both high band and low band nuclei. This technology uses magnetic coupling of inductors to achieve this capability. The method offers a cost effective way of increasing the performance of routine NMR probes without having to change probes or increase the overall foot print of the spectrometer.

  5. Photodissociation of neutron deficient nuclei

    NASA Astrophysics Data System (ADS)

    Sonnabend, K.; Babilon, M.; Hasper, J.; Müller, S.; Zarza, M.; Zilges, A.

    2006-03-01

    The knowledge of the cross sections for photodissociation reactions like e.g. (γ, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained.

  6. Polarized EMC Effect in Nuclei

    SciTech Connect

    Ian Cloet; A. W. Thomas; W. Bentz

    2006-06-05

    The discovery of the EMC effect and the proton spin crisis by the European Muon Collaboration are two of the standout experiments of the last 25 years. It is therefore surprising that there has been no experimental and little theoretical investigation of the spin structure functions of atomic nuclei. To address this we present results for the spin-dependent structure functions of nuclei. The quark degrees of freedom in nuclei are accessed via the convolution formalism. Where the nucleon bound state is obtained by solving the relativistic Faddeev equation, and a relativistic shell model is used to model the atomic nucleus. We find the important result that the medium modifications to the polarized structure functions are about twice that of the unpolarized case.

  7. Assigning {gamma} deformation from fine structure in exotic nuclei

    SciTech Connect

    Ferreira, L. S.; Maglione, E.; Arumugam, P.

    2011-10-28

    The nonadiabatic quasiparticle model for triaxial shapes is used to perform calculations for decay of {sup 141}Ho, the only known odd-Z even-N deformed nucleus for which fine structure in proton emission from both ground and isomeric states has been observed. All experimental data corresponding to this unique case namely, the rotational spectra of parent and daughter nuclei, decay widths and branching ratios for ground and isomeric states, could be well explained with a strong triaxial deformation {gamma}{approx}20. The recent experimental observation of fine structure decay from the isomeric state, can be explained only with an assignment of I{sup {pi}} = 3/2{sup +} as the decaying state, in contradiction with the previous assignment, of I{sup {pi}} 1/2{sup +}, based on adiabatic calculations. This study reveals that proton emission measurements could be a precise tool to probe triaxial deformations and other structural properties of exotic nuclei beyond the proton dripline.

  8. Level densities of heaviest nuclei

    NASA Astrophysics Data System (ADS)

    Bezbakh, A. N.; Shneidman, T. M.; Adamian, G. G.; Antonenko, N. V.

    2014-06-01

    The intrinsic level densities of superheavy nuclei in the α-decay chains of 296,298,300120 are calculated using the single-particle spectra obtained with the modified two-center shell model. The role of the shell and pairing effects on the level density as well as their quenching with excitation energy are studied. The extracted level density parameter is expressed as a function of mass number, ground-state shell correction, and excitation energy. The results are compared with the phenomenological values of level density parameters used to calculate the survival of excited heavy nuclei.

  9. Colored models for anomalous nuclei

    SciTech Connect

    Watson, P.J.S.; Saly, R.; Romo, W.J.; Sundaresan, M.K.; Campbell, B.; Elias, V.

    1983-04-01

    There seems to be good experimental evidence that anomalous nuclei are produced in heavy-ion collisions; they are anomalous in that they have an abnormally short mean free path, for example, in nuclear emulsions. Here we consider the possibility that anomalous nuclei are combinations of a colored anomalous particle fragment (based on theories with spontaneous breakdown of color symmetry) with ordinary nucleons. Phenomenological implications of various possible models in which the anomalous particle fragment is considered to be a colored particle with the color symmetry SU(3)/sub c/ explicitly broken are given.

  10. Neutron scattering on deformed nuclei

    NASA Astrophysics Data System (ADS)

    Hansen, L. F.; Haight, R. C.; Pohl, B. A.; Wong, C.; Lagrange, Ch.

    1985-01-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9Be, C, 181Ta, 232Th, 238U, and 239Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune, and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonably good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP.

  11. Octupole shapes in heavy nuclei

    SciTech Connect

    Ahmad, I.

    1994-08-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets.

  12. Scaling of the F_2 structure function in nuclei and quark distributions at x>1

    SciTech Connect

    Fomin, N; Arrington, J; Gaskell, D; Daniel, A; Seely, J; Asaturyan, R; Benmokhtar, F; Boeglin, W; Boillat, B; Bosted, P; Bruell, A; Bukhari, M.H.S.; Christy, M E; Chudakov, E; Clasie, B; Connell, S H; Dalton, M M; Dutta, D; Ent, R; El Fassi, L; Fenker, H; Filippone, B W; Garrow, K; Hill, C; Holt, R J; Horn, T; Jones, M K; Jourdan, J; Kalantarians, N; Keppel, C E; Kiselev, D; Kotulla, M; Lindgren, R; Lung, A F; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Miyoshi, T; Mkrtchyan, H; Navasardyan, T; Niculescu, G; Okayasu, Y; Opper, A K; Perdrisat, C; Potterveld, D H; Punjabi, V; Qian, X; Reimer, P E; Roche, J; Rodriguez, V M; Rondon, O; Schulte, E; Segbefia, E; Slifer, K; Smith, G R; Solvignon, P; Tadevosyan, V; Tajima, S; Tang, L; Testa, G; Tvaskis, V; Vulcan, W F; Wasko, C; Wesselmann, F R; Wood, S A; Wright, J; Zheng, X

    2010-11-01

    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for $x>1$, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in ^2H and ^3He, but nearly identical for all heavier nuclei.

  13. Exotic nuclei and nuclear forces

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2013-01-01

    I overview new aspects of the structure of exotic nuclei as compared to stable nuclei, focusing on several characteristic effects of nuclear forces. The shell structure of nuclei has been proposed by Mayer and Jensen, and has been considered to be kept valid basically for all nuclei, with well-known magic numbers, 2, 8, 20, 28, 50, …. Nuclear forces were shown, very recently, to change this paradigm. It will be presented that the evolution of shell structure occurs in various ways as more neutrons and/or protons are added, and I will present basic points of this shell evolution in terms of the monopole interaction of nuclear forces. I will discuss three types of nuclear forces. The first one is the tensor force. The tensor force is one of the most fundamental nuclear forces, but its first-order effect on the shell structure has been clarified only recently in studies on exotic nuclei. The tensor force can change the spin-orbit splitting depending on the occupation of specific orbits. This results in changes of the shell structure in many nuclei, and consequently some of Mayer-Jensen's magic numbers are lost and new ones emerge, in certain nuclei. This mechanism can be understood in an intuitive way, meaning that the effect is general and robust. The second type of nuclear forces is central force. I will show a general but unknown property of the central force in the shell-model Hamiltonian that can describe nuclear properties in a good agreement with experiment. I will then demonstrate how it can be incorporated into a simple model of the central force, and will discuss how this force works in the shell evolution. Actually, by combining this central force with the tensor force, one can understand and foresee how the same proton-neutron interaction drives the shell evolution, for examples such as Sn/Sb isotopes, N = 20 nuclei and Ni/Cu isotopes. The distribution of single-particle strength is discussed also in comparison to (e,e‧p) experiment on 48Ca. The shell

  14. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    SciTech Connect

    Petrovici, A.; Andrei, O.

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  15. Electromagnetic structure of light nuclei

    DOE PAGESBeta

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  16. Proton Distribution in Heavy Nuclei

    DOE R&D Accomplishments Database

    Johnson, M. H; Teller, E.

    1953-11-13

    It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

  17. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-08-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  18. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  19. Transitional nuclei near shell closures

    SciTech Connect

    Mukherjee, G.

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  20. International Symposium on Exotic Nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.; Cherepanov, E. A.

    Methods of production of light exotic nuclei and study of their ptoperties -- Superheavy elements. Syhnthesis and properties -- Nuclear fission -- Nuclear reactions -- rare processes, decay and nuclear structure -- Experimental set-ups and future projects -- Radioactive beams. Production and research programmes -- Public relations.

  1. CLOUD CONDENSATION NUCLEI MEASUREMENTS WITHIN CLOUDS

    EPA Science Inventory

    Measurements of the spectra of cloud condensation nuclei (CCN) within and near the boundaries of clouds are presented. Some of the in-cloud measurements excluded the nuclei within cloud droplets (interstitial CCN) while others included all nuclei inside the cloud (total CCN). The...

  2. Contribution of pollen to atmospheric ice nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Hader, J.; Wright, T.; McMeeking, G. R.

    2013-12-01

    Primary biological aerosol particles (PBAP) contribute to the concentrations of ice nuclei (IN) in the atmosphere. Laboratory studies have shown that pollen grains, a subset of PBAP, can serve as immersion mode ice nuclei at temperatures ranging from -9 to -25 deg C. At the peak of the pollen season pollen concentrations can reach surface-level concentrations exceeding 1 per liter of air. Furthermore, previous studies have suggested that the ice nucleating ability of some types of pollen is derived from non-proteinaceous macromolecules, which may become dispersed by the rupturing of the pollen sac during wetting and drying cycles. If true, this mechanism is expected to produce highly elevated IN concentrations at temperatures warmer than -25 deg C. Here we test this hypothesis by measuring ambient IN concentrations from the beginning to the end of the 2013 pollen season in Raleigh, North Carolina. Raleigh is surrounded by a dense mixed hardwood forest composed primarily of oak, hickory, and pine species. Air samples were collected using a swirling aerosol collector twice per week and the solution was analyzed for ice nuclei activity using a droplet freezing assay setup. Rainwater samples were collected during rain events at the peak of the pollen season and analyzed with the drop freezing assay to compare the potentially enhanced IN concentrations measured near the ground with IN concentrations found aloft. Raw freezing spectra were used to probe the freezing activity of both abundant and rare IN contained in sample liquids by analysis of drops that had varying degrees of preconcentration and size (~50 to ~650 μm). Extreme value statistics is used to collapse the raw freezing data into a single ice nuclei spectrum, defined as number of ice nuclei per volume of air as a function of temperature, that spans ~6 orders of magnitude in IN concentration. For a selected number of samples, concentrations of biological and non-biological ambient aerosol and particles are

  3. Launching of Active Galactic Nuclei Jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  4. Rapid targeting of plasmid DNA to zebrafish embryo nuclei by the nuclear localization signal of SV40 T antigen.

    PubMed

    Collas, P; Aleström, P

    1997-03-01

    Binding SV40 T antigen nuclear localization signals (NLSs) to plasmid DNA promotes transgene expression following injection of DNA-NLS complexes into the cytoplasm of zebrafish eggs. We now demonstrate that NLS peptides mediate import of DNA from the cytoplasm into embryo nuclei, under conditions in which naked DNA is not imported. Plasmid DNA was localized by polymerase chain reaction (PCR) in isolated nuclei, and relative amounts were quantified by densitometry. Binding DNA to NLSs, but not to nuclear-import-deficient peptides, promoted rapid targeting of DNA-NLS complexes to nuclei, and transport across the nuclear envelope. Import of DNA-NLS complexes was competed by co-injected albumin-NLS conjugates. NLS, but not reverse NLS, was detected on blots of nuclei probed with 32P-labeled DNA. The results suggest that NLS-mediated DNA transfer into nuclei may constitute a valuable tool for several gene transfer applications. PMID:9116870

  5. Pairing in hot rotating nuclei

    SciTech Connect

    Hung, N. Quang; Dang, N. Dinh

    2008-12-15

    Nuclear pairing properties are studied within an approach that includes the quasiparticle-number fluctuation (QNF) and coupling to the quasiparticle-pair vibrations at finite temperature and angular momentum. The formalism is developed to describe noncollective rotations about the symmetry axis. The numerical calculations are performed within a doubly folded equidistant multilevel model as well as several realistic nuclei. The results obtained for the pairing gap, total energy, and heat capacity show that the QNF smoothes out the sharp SN phase transition and leads to the appearance of a thermally assisted pairing gap in rotating nuclei at finite temperature. The corrections due to the dynamic coupling to SCQRPA vibrations and particle-number projection are analyzed. The effect of backbending of the momentum of inertia as a function of squared angular velocity is also discussed.

  6. Superheavy nuclei and fission barriers

    NASA Astrophysics Data System (ADS)

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.

  7. Direct Reactions with Exotic Nuclei

    SciTech Connect

    Baur, G.; Typel, S.

    2005-10-14

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.

  8. PREFACE: Correlation Dynamics in Nuclei

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Otsuka, Takaharu; Ichimura, Munetake

    2005-01-01

    The International Symposium on `Correlation Dynamics in Nuclei' was held at the Sanjo Kaikan, the University of Tokyo, from the 31 January to 4 February 2005. This symposium was organized on the occasion of the 50th anniversary of the Configuration Mixing theory of Arima and Horie. The symposium was hosted by the University of Tokyo, and supported by the Inoue Foundation for Science, the Japan Atomic Energy Research Institute and the Ministry of Education, Culture, Sports, Science and Technology. The purpose of the symposium was to discuss theoretical and experimental developments and future prospects in physics of correlation dynamics in nuclei, including topics such as effective interactions, shell model studies of configuration mixing and spin-isospin modes in nuclei. It was shown in many ways and angles that the Arima-Horie theory has been a starting point of a variety of developments of the studies in these fields over many decades. The developments have been enhanced by the expansion of computational capabilities and the progress in accelerators, detectors and radioactive beam facilities. We enjoyed 28 excellent and lively invited talks and 30 oral presentations in the symposium with about 90 participants. A special session was dedicated to celebrate the 80th birthday of Professor Igal Talmi, who made invaluable and pioneering works in the shell model theory. Finally, we would like to thank all the speakers and the participants as well as the other organizers for their contributions which made the symposium very successful.

  9. NUCLEI AT HIGH ANGULAR MOMENTUM

    SciTech Connect

    Diamond, R.M.; Stephens, F.S.

    1980-06-01

    It appears that most nuclei show a compromise between purely collective and purely non-collective behavior at very high spins.non~collective behavior in nuclei has been seen only as high as 36 or 37{bar h}, at which point a more collective structure seems to develop. The concepts underlying the study of high angular momentum states are discussed. The factors that limit angular momentum in nuclei are considered. The currently emerging state of physics of very high spin states is reviewed. The detailed calculations currently made for high spin states are described, focusing not on the calculations themselves, but on the physical input to them and results that come out. Production of high-spin states using heavy-ion reactions is reviewed. Studies of {gamma}-rays de-exciting the evaporation residues from heavy-ion reactions are covered. Two types of {gamma} rays occur: those that cool the nucleus to or toward the yrast line, called "statistical," and those that are more or less parallel to the yrast line and remove the angular momentum, called "yrast~like." Collective rotation, in simplest form the motion of a deformed nucleus around an axis perpendicular to its symmetry axis, is also covered.

  10. Structure functions for light nuclei

    SciTech Connect

    S.A. Kulagin, R. Petti

    2010-11-01

    We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei including 2H, 3He, 4He, 9Be, 12C and 14N. In order to verify the consistency of available data, we calculate the \\chi^2 deviation between different data sets. We find a good agreement between the results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment with respect to previous data for nuclei heavier than 3He. We also discuss the extraction of the neutron/proton structure function ratio F2n/F2p from the nuclear ratios 3He/2H and 2H/1H. Our analysis shows that the E03-103 data on 3He/2H require a renormalization of about 3% in order to be consistent with the F2n/F2p ratio obtained from the NMC experiment. After such a renormalization, the 3He data from the E03-103 data and HERMES experiments are in a good agreement. Finally, we present a detailed comparison between data and model calculations, which include a description of the nuclear binding, Fermi motion and off-shell corrections to the structure functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections. Overall, a good agreement with the available data for all nuclei is obtained.

  11. Neurotransmitter map of the asymmetric dorsal habenular nuclei of zebrafish

    PubMed Central

    deCarvalho, Tagide N.; Subedi, Abhignya; Rock, Jason; Harfe, Brian D.; Thisse, Christine; Thisse, Bernard; Halpern, Marnie E.; Hong, Elim

    2014-01-01

    The role of the habenular nuclei in modulating fear and reward pathways has sparked a renewed interest in this conserved forebrain region. The bilaterally paired habenular nuclei, each consisting of a medial/dorsal and lateral/ventral nucleus, can be further divided into discrete subdomains whose neuronal populations, precise connectivity and specific functions are not well understood. An added complexity is that the left and right habenulae show pronounced morphological differences in many non-mammalian species. Notably, the dorsal habenulae of larval zebrafish provide a vertebrate genetic model to probe the development and functional significance of brain asymmetry. Previous reports have described a number of genes that are expressed in the zebrafish habenulae, either in bilaterally symmetric patterns or more extensively on one side of the brain than the other. The goal of our study was to generate a comprehensive map of the zebrafish dorsal habenular nuclei, by delineating the relationship between gene expression domains, comparing the extent of left-right asymmetry at larval and adult stages, and identifying potentially functional subnuclear regions as defined by neurotransmitter phenotype. While many aspects of habenular organization appear conserved with rodents, the zebrafish habenulae also possess unique properties that may underlie lateralization of their functions. PMID:24753112

  12. Observation of the Second-Order Quadrupolar Interaction as a Dominating NMR Relaxation Mechanism in Liquids: The Ultraslow Regime of Motion.

    PubMed

    Shen, Jiahui; Terskikh, Victor; Wu, Gang

    2016-09-01

    We report variable-temperature (VT) (17)O NMR spectra of [5-(17)O]-d-glucose in an aqueous solution and in glycerol at 14.1 and 21.1 T. The VT (17)O NMR data cover a wide range of motion for which the molecular rotational correlation time (τc) of glucose changes more than 5 orders of magnitude. The observed line width of the (17)O NMR signal for [5-(17)O]-d-glucose displays a maximum at ω0τc ≈ 1 and a minimum at ω0τc ≈ 150, where ω0 is the angular Larmor frequency of (17)O. Under the ultraslow motion condition (i.e., ω0τc > 150), the line width of the observed (17)O NMR signal increases drastically with τc, suggesting that the second-order quadrupolar interaction becomes the predominant relaxation mechanism. While this relaxation mechanism has long been predicted by theory, the current study reports the first experimental observation of such a phenomenon. The implications of this new relaxation mechanism on the spectral resolution limit in liquid-state NMR spectroscopy for half-integer spins are discussed. PMID:27525537

  13. Monoclonal antibody that preferentially binds polylysine, polyarginine, and histones and selectively decorates nuclei and chromosomes.

    PubMed Central

    Morgan, J L; Dennis, D D

    1984-01-01

    A monoclonal antibody, designated J-57, selectively and uniformly decorates the interphase nuclei and mitotic chromosomes of a variety of eucaryotic cells as determined by indirect immunofluorescence. As determined by enzyme-linked immunosorbent assay, however, this monoclonal antibody is not monospecific. It reacts weakly with cytochrome c, RNase A, and brain tubulin. By these tests monoclonal antibody J-57 has broad cross-reactivity similar to that of antisera directed against polylysine. The differential reactions of this monoclonal antibody suggest that it may be a useful immunohistochemical probe for nuclei and chromosomes in whole cells. Images PMID:6490815

  14. Physical characteristics of mouse sperm nuclei.

    PubMed Central

    Wyrobek, A J; Meistrich, M L; Furrer, R; Bruce, W R

    1976-01-01

    The nuclei of epididymal sperm, isolated from C57BL/6J and CBA/J inbred mice by their resistance to trypsin digestion, retain the shape differences of the intact sperm head. Various physical characteristics of these nuclei were measured and compared. The measurement of the projected dimensions of nuclei showed that the CBA nuclei are 13.5% longer than C57BL/6 nuclei (8.64 +/- 0.02 mum compared with 7.61 +/- 0.02 mum), 0.8% narrower (3.51 +/- 0.01 vs. 3.54 +/-0.01 mum) with 6.8% more area (22.34 +/- 0.10 vs. 20.91 +/- 0.09 mum2). However, the volumes of the nuclei as based on reconstructing calibrated electronmicrographs of serial sections of the nuclei indicated that CBA are about 7% smaller than C57BL/6 nuclei (3.72 +/- 0.08 vs. 4.01 +/- 0.03 mum3). The buoyant density of the CBA nuclei is 1.435 +/- 0.002 g/cm3 compared with 1.433 +/- 0.002 g/cm3 for the C57BL/6 nuclei as determined on linear CsCl and Renografin-76 density gradients and confirmed by a technique utilizing physiological tonicities. Therefore, the average mass of the CBA nuclei is less than that of the C57BL/6 nuclei (5.34 +/- 0.12 vs. 5.75 +/- 0.05 pg). The sedimentation velocities at unit gravity of nuclei from 11 inbred strains differ over a range of more than 6% with CBA nuclei sedimenting about 2.0% more slowly than C57BL/6 nuclei. We show that for these nuclei the sedimentation velocity can be related to their buoyant density, volume and a sedimentation shape factor. Within the errors of our measurements of these various characteristics, it was found that C57BL/6 and CBA nuclei have similar sedimentation shape factors. Therefore, the difference in sedimentation velocity between these nuclei appears to be primarily a result of differences in volume. The possible applications of these techniques to the physical separation of sperm are evaluated in the discussion. Images FIGURE 1 PMID:938720

  15. Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems.

    PubMed

    Woessner, D E; Bansal, N

    1998-07-01

    Anisotropic nuclear quadrupole interactions can produce residual quadrupole splitting in the NMR spectra of rapidly moving quadrupolar nuclei in incompletely disordered aqueous heterogeneous systems. Such systems may include hydrated sodium nuclei in biological tissue and biopolymer gels. To describe the NMR signals from such samples, we use a domain model in which each domain is characterized by a quadrupole frequency and a residence time of the nucleus. We show that the signals from each domain after one pulse, the quadrupole echo sequence, and the various multiple quantum filters (MQFs) can be expressed as a linear combination of five different phase coherences. To simulate the effect of various distributions (Pake powder pattern, Gaussian, etc.) of quadrupole frequencies for different domains on the NMR signal, we have written the computer program CORVUS. CORVUS also includes the effects of exchange between different domains using diffusion and random jump models. The results of computer simulations show that the Gaussian and Pake powder pattern quadrupole frequency distributions produce very different phase coherences and observable NMR signals when the exchange rate (1/taue) between different domains is slow. When 1/taue is similar to the root mean square quadrupole frequency (final sigma), the signals from the two distributions are similar. When 1/taue is an order of magnitude greater than final sigma, there is no apparent evidence of quadrupole splitting in the shape of the signal following one pulse, but the residual effects of the quadrupole splitting make a significant contribution to the fast transverse relaxation rate. Therefore, in this case, it is inappropriate to use the observed biexponential relaxation rates to obtain a single correlation time. The quadrupole echo and the various MQF signals contain an echo from the satellite transitions in the presence of quadrupole splitting. The peak of this echo is very sensitive to 1/taue. The time domain

  16. Structure functions for light nuclei

    SciTech Connect

    Kulagin, S. A.; Petti, R.

    2010-11-15

    We discuss the nuclear EMC effect with particular emphasis on recent data for light nuclei including {sup 2}H, {sup 3}He, {sup 4}He, {sup 9}Be, {sup 12}C, and {sup 14}N. In order to verify the consistency of available data, we calculate the {chi}{sup 2} deviation between different data sets. We find a good agreement between the results from the NMC, SLAC E139, and HERMES experiments. However, our analysis indicates an overall normalization offset of about 2% in the data from the recent JLab E03-103 experiment with respect to previous data for nuclei heavier than {sup 3}He. We also discuss the extraction of the neutron/proton structure function ratio F{sub 2}{sup n}/F{sub 2}{sup p} from the nuclear ratios {sup 3}He/{sup 2}H and {sup 2}H/{sup 1}H. Our analysis shows that the E03-103 data on {sup 3}He/{sup 2}H require a renormalization of about 3% in order to be consistent with the F{sub 2}{sup n}/F{sub 2}{sup p} ratio obtained from the NMC experiment. After such a renormalization, the {sup 3}He data from the E03-103 and HERMES experiments are in a good agreement. Finally, we present a detailed comparison between data and model calculations, which include a description of the nuclear binding, Fermi motion, and off-shell corrections to the structure functions of bound proton and neutron, as well as the nuclear pion and shadowing corrections. Overall, a good agreement with the available data for all nuclei is obtained.

  17. The rotation of comet nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1982-01-01

    Spin-vector research on cometary nuclei is reviewed with emphasis on the actual determination of rotation period and spin-axis orientation. The rotation periods of 47 comets are compared with those of 41 asteroids with diameters of not more than 40 km. It is shown that the median periods for the comets is 15.0 hr as compared with 6.8 hr for the asteroids and that the preliminary distribution curve for the logarithms of the comet periods is not Gaussian and is flatter than the corresponding curve for the asteroids. Slow accumulation at low relative velocities is suggested as the cause of the longer comet rotation periods.

  18. Short Range Correlations in Nuclei

    SciTech Connect

    L. B. Weinstein

    2006-11-01

    Short range correlations (SRC) are an extremely important part of nuclear structure. They are responsible for the high momentum part of the nuclear wavefunction. Instantaneous densities can significantly exceed the average neutron star density. Recent (e,e[prime]) measurements at Jefferson Lab have shown that SRC are universal in nuclei from deuterium to gold, that the probability of two-nucleon SRC is 5-25%, and that the probability of three-nucleon SRC is less than 1%. Recent (e,e[prime]pn) measurements have measured the SRC probabilities as a function of proton momentum and have measured the joint NN momentum distributions.

  19. Superdeformation in the mercury nuclei

    SciTech Connect

    Janssens, R.V.F.; Carpenter, M.P.; Fernandez, P.B.; Moore, E.F.; Ahmad, I.; Khoo, T.L.; Wolfs, F.L.H. ); Drigert, M.W. ); Ye, D.; Beard, K.B.; Garg, U.; Reviol, W. ); Bearden, I.G.; Benet, P.; Daly, P.J.; Grabowski, Z.W. )

    1990-01-01

    We shall first summarize the present experimental situation concerning {sup 192}Hg, the nucleus regarded as the analog of {sup 152}Dy for this superdeformation (SD) region in that gaps are calculated to occur at large deformation for Z = 80 and N = 112. Proton and neutron excitations out of the {sup 192}Hg core will then be reviewed with particular emphasis on {sup 191}Hg and {sup 193}Tl. The presentation will conclude with a brief discussion on limits of the SD region for neutron deficient Hg nuclei. 26 refs., 10 figs.

  20. Review of metastable states in heavy nuclei.

    PubMed

    Dracoulis, G D; Walker, P M; Kondev, F G

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with [Formula: see text]. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances. PMID:27243336

  1. Mirror nuclei constraint in nuclear mass formula

    SciTech Connect

    Wang Ning; Liang Zuoying; Liu Min; Wu, Xizhen

    2010-10-15

    The macroscopic-microscopic mass formula is further improved by considering mirror nuclei constraint. The rms deviation with respect to 2149 measured nuclear masses is reduced to 0.441 MeV. The shell corrections, the deformations of nuclei, the neutron and proton drip lines, and the shell gaps are also investigated to test the model. The rms deviation of {alpha}-decay energies of 46 superheavy nuclei is reduced to 0.263 MeV. The predicted central position of the superheavy island could lie around N=176{approx}178 and Z=116{approx}120 according to the shell corrections of nuclei.

  2. Review of metastable states in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  3. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  4. Mass-23 nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Fraser, P. R.; Amos, K.; Canton, L.; Karataglidis, S.; Svenne, J. P.; van der Kniff, D.

    2015-09-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22Na puzzle of ONe white dwarf novae, where the abundance of 22Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22Ne, a necessary step in studying the mass-23 nuclei mentioned above.

  5. The structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Gao, H.

    2002-04-01

    In the last several years, tremendous advances both in experiment and theory have been made in understanding the structure of light nuclei. The experimental advances have benefited greatly from the new, high intensity CW machine (CEBAF) at Jefferson Lab and new experimental techniques utilizing polarization degrees of freedom at various laboratories. Tremendous progress has also been made in nuclear few-body theory, from a successful standard model of nuclear physics based on modern two-nucleon potentials as well as modern three-nucleon forces to the exact three-body calculation extended into the continuum by solving the corresponding Faddeev equations. In this talk, I will review recent experimental progress in understanding the structure of light nuclei focusing on the results of deuteron elastic form factors, deuteron tensor polarization, deuteron photodisintegration, and that of the 3He magnetic form factor. I will also highlight some recent results on the experimental search for the three-nucleon force, the short-range nucleon-nucleon correlation, and the nucleon structure study using a polarized 3He target as an effective neutron target. To summarize, I will provide some future outlook on this subject in the light of the upcoming BLAST program at the MIT-Bates Laboratory and the possible future 12 GeV upgrade at the Jefferson Lab.

  6. Selfconsistent calculations for hyperdeformed nuclei

    SciTech Connect

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D.

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  7. Cobalt Polyoxometalate Co4V2W18O68(10-): A Critical Investigation of Its Synthesis, Purity, and Observed (51)V Quadrupolar NMR.

    PubMed

    Folkman, Scott J; Kirner, Joel T; Finke, Richard G

    2016-06-01

    The vanadium-containing cobalt polyoxometalate (Co-POM) Co4V2W18O68(10-) (hereafter Co4V2W18) has been reported to be a stable, homogeneous water-oxidation catalyst, one with a claimed record turnover frequency that is also reportedly 200-fold faster than its phosphorus congener, Co4P2W18O68(10-). The claimed superior water-oxidation catalysis activity of the vanadium congener, Co4V2W18, rests squarely on the reported synthesis of Co4V2W18, its purity, and its stability in both the solid-state and in solution. Attempts to repeat the preparation of Co4V2W18 by either of two literature syntheses, along with the other studies reported herein, led to the discovery of multiple, convoluted problems in the prior literature of Co4V2W18. The three most serious of those problems proved to be the prior misunderstanding of the quadrupolar (herein (51)V) NMR peak widths in complexes that also contain paramagnetic metals such as Co(II), the incorrect assignment of a -506.8 ppm (51)V NMR to Co4V2W18, and then the use of that -506.8 peak to argue for the stability of Co4V2W18 in solution. The results are reported in a somewhat historical, "story" fashion en route to elucidating and fully supporting the 11 insights and take-home messages listed in the Summary and Conclusions section. PMID:27159211

  8. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  9. MC generator HARDPING: Nuclear effects in hard interactions of leptons and hadrons with nuclei

    NASA Astrophysics Data System (ADS)

    Berdnikov, Ya. A.; Ivanov, A. E.; Kim, V. T.; Suetin, D. P.

    2016-01-01

    Hadron and lepton production in hard interaction of high-energy particles with nuclei are considered in context of developing of Monte Carlo generator HARDPING (Hard Probe Interaction Generator). Such effects as energy losses and multiple re-scattering initial and produced hadrons and their constituents are taken into account. These effects are implemented in current version of generator HARDPING. Data of experiments HERMES on hadron production in lepton-nuclei collisions and E866 on muon pair production in proton-nuclei collisions were described with current version of generator HARDPING. Predictions from recent version HARPING 3.0 for lepton pairs production at proton beam energy I20 GeV are presented.

  10. Chromosome-specific DNA Repeat Probes

    SciTech Connect

    Baumgartner, Adolf; Weier, Jingly Fung; Weier, Heinz-Ulrich G.

    2006-03-16

    In research as well as in clinical applications, fluorescence in situ hybridization (FISH) has gained increasing popularity as a highly sensitive technique to study cytogenetic changes. Today, hundreds of commercially available DNA probes serve the basic needs of the biomedical research community. Widespread applications, however, are often limited by the lack of appropriately labeled, specific nucleic acid probes. We describe two approaches for an expeditious preparation of chromosome-specific DNAs and the subsequent probe labeling with reporter molecules of choice. The described techniques allow the preparation of highly specific DNA repeat probes suitable for enumeration of chromosomes in interphase cell nuclei or tissue sections. In addition, there is no need for chromosome enrichment by flow cytometry and sorting or molecular cloning. Our PCR-based method uses either bacterial artificial chromosomes or human genomic DNA as templates with {alpha}-satellite-specific primers. Here we demonstrate the production of fluorochrome-labeled DNA repeat probes specific for human chromosomes 17 and 18 in just a few days without the need for highly specialized equipment and without the limitation to only a few fluorochrome labels.

  11. Scaling of the F{sub 2} Structure Function in Nuclei and Quark Distributions at x>1

    SciTech Connect

    Fomin, N.; Arrington, J.; El Fassi, L.; Holt, R. J.; Potterveld, D. H.; Reimer, P. E.; Schulte, E.; Solvignon, P.; Day, D. B.; Dalton, M. M.; Hill, C.; Lindgren, R.; McKee, P.; Rondon, O.; Slifer, K.; Tajima, S.; Wasko, C.; Wright, J.; Gaskell, D.; Bosted, P.

    2010-11-19

    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x>1, which is sensitive to short-range contributions to the nuclear wave function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the ''superfast'' quarks probed at x>1. The falloff at x>1 is noticeably stronger in {sup 2}H and {sup 3}He, but nearly identical for all heavier nuclei.

  12. Scaling of the F{sub 2} structure function in nuclei and quark distributions at x {gt} 1.

    SciTech Connect

    Fomin, N.; Arrington, J.; Day, D. B.; Gaskell, D.; Daniel, A.; El Fassi, L.; Holt, R. J.; Potterveld, D. H.; Schulte, E.; Solvignon, P.; Zheng, X.

    2010-11-01

    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x > 1, which is sensitive to short-range contributions to the nuclear wave function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the 'superfast' quarks probed at x > 1. The falloff at x > 1 is noticeably stronger in {sup 2}H and {sup 3}He, but nearly identical for all heavier nuclei.

  13. Visualization of actin filaments and monomers in somatic cell nuclei.

    PubMed

    Belin, Brittany J; Cimini, Beth A; Blackburn, Elizabeth H; Mullins, R Dyche

    2013-04-01

    In addition to its long-studied presence in the cytoplasm, actin is also found in the nuclei of eukaryotic cells. The function and form (monomer, filament, or noncanonical oligomer) of nuclear actin are hotly debated, and its localization and dynamics are largely unknown. To determine the distribution of nuclear actin in live somatic cells and evaluate its potential functions, we constructed and validated fluorescent nuclear actin probes. Monomeric actin probes concentrate in nuclear speckles, suggesting an interaction of monomers with RNA-processing factors. Filamentous actin probes recognize discrete structures with submicron lengths that are excluded from chromatin-rich regions. In time-lapse movies, these actin filament structures exhibit one of two types of mobility: 1) diffusive, with an average diffusion coefficient of 0.06-0.08 μm(2)/s, or (2) subdiffusive, with a mobility coefficient of 0.015 μm(2)/s. Individual filament trajectories exhibit features of particles moving within a viscoelastic mesh. The small size of nuclear actin filaments is inconsistent with a role in micron-scale intranuclear transport, and their localization suggests that they do not participate directly in chromatin-based processes. Our results instead suggest that actin filaments form part of a large, viscoelastic structure in the nucleoplasm and may act as scaffolds that help organize nuclear contents. PMID:23447706

  14. Structure of A=6 Nuclei:

    NASA Astrophysics Data System (ADS)

    Abbas, Afsar

    It is commonly believed that (α-d) and 3He-3H) represent equivalent states of 6Li. It is shown here that this is not correct. These two are actually orthogonal to each other. It is shown here that these two with very different shapes and forms actually co-exist for the ground state of 6Li. This shape co-existence is the same as similar phenomenon in heavy nuclei. The puzzling anomaly of extremely small branching ratio for beta delayed deuteron emission in 6He is explained here. In addition the anomalously large branching ratio for beta delayed triton emission in 8He is explained. The cluster structure of the ground state and of the low-lying states of 6He, 6Li and 6Be is clarified.

  15. Single Pion production from Nuclei

    SciTech Connect

    Singh, S. K.; Athar, M. Sajjad; Ahmed, S.

    2007-12-21

    We have studied charged current one pion production induced by {nu}{sub {mu}}({nu}-bar{sub {mu}}) from some nuclei. The calculations have been done for the incoherent pion production processes from these nuclear targets in the {delta} dominance model and take into account the effect of Pauli blocking, Fermi motion and renormalization of {delta} properties in the nuclear medium. The effect of final state interactions of pions has also been taken into account. The numerical results have been compared with the recent results from the MiniBooNE experiment for the charged current 1{pi} production, and also with some of the older experiments in Freon and Freon-Propane from CERN.

  16. The Physics of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1997-01-01

    The recent developments in cometary studies suggest rather low mean densities and weak structures for the nuclei. They appear to be accumulations of fairly discrete units loosely bound together, as deduced from the observations of Comet Shoemaker-Levy 9 during its encounter with Jupiter. The compressive strengths deduced from comet splitting by Opik and Sekanina are extremely low. These values are confirmed by theory developed here. assuming that Comet P/Holmes had a companion that collided with it in 1892. There follows a short discussion that suggests that the mean densities of comets should increase with comet dimensions. The place of origin of short-period comets may relate to these properties.

  17. Chemical composition of cometary nuclei

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1982-01-01

    Observational evidence pertaining to the origin and composition of cometary material is reviewed. Arguments favoring the undifferentiated character of the icy conglomerate are summarized. Theoretical descriptions of the sublimation of a cometary nucleus and the velocity field of the expanding gas are presented and compared with observations. The nature of cometary dust and the atomic abundances of H, C, N, O, and S in the volatile fraction are examined, and data on the dust and volatile fractions are combined to derive elemental abundances. It is shown that O, N, and S in cometary nuclei appear to have essentially cosmic abundances but that both H and C are drastically depleted with respect to the cosmic abundances. The apparent depletion of C by a factor of more than three is discussed. It is suggested that the missing carbon might be hidden in the dust fraction in the form of heavy organic molecules or might have remained in either the primeval solar nebula or interstellar space.

  18. Radiative muon capture in nuclei

    SciTech Connect

    Doebeli, M.; Doser, M.; van Elmbt, L.; Schaad, M.W.; Truoel, P.; Bay, A.; Perroud, J.P.; Imazato, J.; Ishikawa, T.

    1988-04-01

    The energy spectra of photons following negative muon absorption in /sup 12/C, /sup 16/O, /sup 27/Al, /sup 40/Ca, /sup nat/Fe, /sup 165/Ho, and /sup 209/Bi have been measured with two NaI spectrometers. The branching ratios for the emission of high energy photons give information on the induced pseudoscalar coupling constant g/sub P/ in nuclear matter. The data for light nuclei are in agreement with the theoretical calculations using the nucleonic value of g/sub P/approx. =7g/sub A/ predicted by the partially conserved axial vector current hypothesis, while significantly lower values of g/sub P/ are required to fit the data of the heavier elements with presently existing theoretical predictions. Disregarding the remaining theoretical uncertainties, these results can be interpreted as a further indication of the renormalization of the nucleonic form factors inside the nucleus.

  19. Theory of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Shields, G. A.

    1986-01-01

    The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.

  20. Clusterization and Deformation in Heavy Nuclei

    SciTech Connect

    Algora, A.; Cseh, J.; Darai, J.; Hess, P.O.; Antonenko, N.V.; Jolos, R.V.; Scheid, W.

    2005-11-21

    The deformation-dependence of clusterization in heavy nuclei is investigated. In particular, allowed and forbidden cluster-configurations are determined for the ground, superdeformed, and hyperdeformed states of some nuclei, based on a microscopic (effective SU(3)) selection rule. The stability of the different cluster configurations from the viewpoint of the binding energy and the dinuclear system model (DNS) is also investigated.

  1. Study of Nuclear Moments on Exotic Nuclei

    SciTech Connect

    Ishihara, Masayasu

    2010-04-30

    Nuclear moments have been measured for a few tens of light unstable nuclei located very far from the line of stability using beta-NMR methods and spin-polarized RI beams. The obtained values of those moments provided indispensable information to reveal/disentangle unique properties of exotic nuclei.

  2. Thalamic nuclei after human blunt head injury.

    PubMed

    Maxwell, William L; MacKinnon, Mary Anne; Smith, Douglas H; McIntosh, Tracy K; Graham, David I

    2006-05-01

    Paraffin-embedded blocks from the thalamus of 9 control patients, 9 moderately disabled, 12 severely disabled, and 10 vegetative head-injured patients assessed using the Glasgow Outcome Scale and identified from the Department of Neuropathology archive. Neurons, astrocytes, macrophages, and activated microglia were differentiated by Luxol fast blue/cresyl violet, GFAP, CD68, and CR3/43 staining and stereological techniques used to estimate cell number in a 28-microm-thick coronal section. Counts were made in subnuclei of the mediodorsal, lateral posterior, and ventral posterior nuclei, the intralaminar nuclei, and the related internal lamina. Neuronal loss occurred from mediodorsal parvocellularis, rostral center medial, central lateral and paracentral nuclei in moderately disabled patients; and from mediodorsal magnocellularis, caudal center medial, rhomboid, and parafascicular nuclei in severely disabled patients; and all of the above and the centre median nucleus in vegetative patients. Neuronal loss occurred primarily from cognitive and executive function nuclei, a lesser loss from somatosensory nuclei and the least loss from limbic motor nuclei. There was an increase in the number of reactive astrocytes, activated microglia, and macrophages with increasing severity of injury. The study provides novel quantitative evidence for differential neuronal loss, with survival after human head injury, from thalamic nuclei associated with different aspects of cortical activation. PMID:16772871

  3. Proton-Rich Nuclei in Nuclear Astrophysics

    SciTech Connect

    Rehm, K. E.

    2007-11-30

    The stable isotopes which we observe on Earth are to a large extent, produced in nature via a 'detour' through unstable nuclei. The reaction path leading through proton-rich nuclei is the so-called rapid proton capture process, where, starting from carbon, nitrogen and oxygen through successive capture or protons and alphas, followed by beta decays, nuclei up to the mass 100 region can be produced. In order to understand the reaction paths and the conditions at various astrophysical sites (e.g. Novae and X-ray bursts) cross sections, masses and half-lives of unstable nuclei have to be measured. In this contribution recent results involving proton-rich nuclei are discussed.

  4. Proton-rich nuclei in nuclear astrophysics.

    SciTech Connect

    Rehm, K. E.; Physics

    2007-01-01

    The stable isotopes which we observe on Earth are to a large extent, produced in nature via a 'detour' through unstable nuclei. The reaction path leading through proton-rich nuclei is the so-called rapid proton capture process, where, starting from carbon, nitrogen and oxygen through successive capture or protons and alphas, followed by beta decays, nuclei up to the mass 100 region can be produced. In order to understand the reaction paths and the conditions at various astrophysical sites (e.g. Novae and X-ray bursts) cross sections, masses and half-lives of unstable nuclei have to be measured. In this contribution recent results involving proton-rich nuclei are discussed.

  5. Nuclei embedded in an electron gas

    SciTech Connect

    Buervenich, Thomas J.; Mishustin, Igor N.; Greiner, Walter

    2007-09-15

    The properties of nuclei embedded in an electron gas are studied within the relativistic mean-field approach. These studies are relevant for nuclear properties in astrophysical environments such as neutron-star crusts and supernova explosions. The electron gas is treated as a constant background in the Wigner-Seitz cell approximation. We investigate the stability of nuclei with respect to {alpha} and {beta} decay. Furthermore, the influence of the electronic background on spontaneous fission of heavy and superheavy nuclei is analyzed. We find that the presence of the electrons leads to stabilizing effects for both {alpha} decay and spontaneous fission at high electron densities. Furthermore, the screening effect shifts the proton dripline to more proton-rich nuclei, and the stability line with respect to {beta}-decay is shifted to more neutron-rich nuclei. Implications for the creation and survival of very heavy nuclear systems are discussed.

  6. Spectroscopy of Neutron-rich Pu Nuclei

    SciTech Connect

    Chowdhury, P.; Hota, S.; Lakshmi, S.; Tandel, S. K.; Harrington, T.; Jackson, E.; Moran, K.; Shirwadkar, U.; Ahmad, I.; Carpenter, M. P.; Greene, J.; Hoffman, C. R.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Seweryniak, D.; Stefanescu, I.

    2011-10-28

    Spectroscopic studies of nuclei in the A{approx}250, Z{approx}100 region provide critical input to theoretical models that attempt to describe the structure and stability of the heaviest elements. We report here on new spectroscopic studies in the N = 150,151 nuclei {sup 244,245}Pu. (Z = 94). Excitations in these nuclei on the neutron-rich side of the valley of stability, accessed via inelastic and transfer reactions, complement fusion-evaporation studies of Z{>=}100 nuclei. States in {sup 244,245}Pu were populated using {sup 47}Ti and {sup 208}Pb beams incident on a {sup 244}Pu target, with delayed and prompt gamma rays detected by the Gammasphere array. The new results are discussed in the context of emerging systematics of one- and two-quasiparticle excitations in N{>=}150 nuclei.

  7. Magnetic nanostructures: radioactive probes and recent developments

    NASA Astrophysics Data System (ADS)

    Prandolini, M. J.

    2006-05-01

    The miniaturization of magnetic sensors and storage devices down to the nano-scale leads to drastic changes in magnetic phenomena compared with the same devices with a larger size. Excited-nuclear-probe (radioactive probe) techniques are ideal for investigating these new magnetic nanostructures. By observing the magnetic hyperfine fields (and in some cases the electric-field-gradients (EFGs)) at the nuclei of radioactive probes, microscopic information about the magnetic environment of the probes is acquired. The magnetic hyperfine field is particularly sensitive to the s-spin polarization of the conduction electrons and to the orbital magnetic moment of the probe atom. Three methods of inserting radioactive probes into magnetic nanostructures are presented; neutron activation, recoil implantation and 'soft-landing', followed by descriptions of their application to selected examples. In some cases, these methods offer the simultaneous creation and observation of new magnetic materials at the atomic scale. This review focuses firstly on the induced magnetism in noble-metal spacer layers between either ferromagnetic (FM) or FM/antiferromagnetic (AFM) layers in a trilayer structure. Using the method of low-temperature nuclear orientation, the s-spin polarization of noble-metal probes was measured and was found to be very sensitive to the magnetic properties at both the FM and AFM interfaces. Secondly, the recoil implantation of radioactive Fe probes into rare-earth hosts and d-band alloys and subsequent measurement using time-differential perturbed angular distribution offer the possibility of controlling the chemical composition and number of nearest-neighbours. This method was used to prepare local 3d-magnetic clusters in a non-magnetic matrix and to observe their magnetic behaviour. Finally, non-magnetic radioactive probes were 'soft-landed' onto Ni surfaces and extremely lattice-expanded ultrathin Ni films. By measuring the magnetic hyperfine fields and EFGs at

  8. Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during ageing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Zhang, Lei; Sun, Xin

    2014-01-10

    In this manuscript, we quantitatively calculated the thermodynamic properties of critical nuclei of Cr precipitates in FeCr alloys. The concentration profiles of the critical nuclei and nucleation energy barriers were predicted by the constrained shrinking dimer dynamics (CSDD) method. It is found that Cr concentration distribution in the critical nuclei strongly depend on the overall Cr concentration as well as temperature. The critical nuclei are non-classical because the concentration in the nuclei is smaller than the thermodynamic equilibrium value. These results are in agreement with atomic probe observation. The growth kinetics of both classical and non-classical nuclei was investigated by the phase field approach. The simulations of critical nucleus evolution showed a number of interesting phenomena: 1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; 2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics. 3) a critical classical nucleus grows faster at the earlier growth stage than the non-classical nucleus. All of these results demonstrate that it is critical to introduce the correct critical nuclei in order to correctly capture the kinetics of precipitation.

  9. Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during ageing

    NASA Astrophysics Data System (ADS)

    Li, Yulan; Hu, Shenyang; Zhang, Lei; Sun, Xin

    2014-03-01

    In this manuscript, we have quantitatively calculated the thermodynamic properties of the critical nuclei of Cr precipitates in FeCr alloys. The concentration profiles of the critical nuclei and nucleation energy barriers were predicted by the constrained shrinking dimer dynamics method. It is found that Cr concentration distribution in the critical nuclei strongly depends on the overall Cr concentration as well as on the temperature. The critical nuclei are non-classical because the concentration in the nuclei is smaller than the thermodynamic equilibrium value. These results are in agreement with atomic probe observation. The growth kinetics of both classical and non-classical nuclei was investigated by the phase-field approach. The simulations of critical nucleus evolution showed a number of interesting phenomena: (1) a critical classical nucleus first shrinks toward its non-classical nucleus and then grows; (2) a non-classical nucleus has much slower growth kinetics at its earlier growth stage compared to the diffusion-controlled growth kinetics and (3) a critical classical nucleus grows faster at the earlier growth stage than does a non-classical nucleus. All of these results demonstrate that it is critical to introduce the correct critical nuclei in order to correctly capture the kinetics of precipitation.

  10. Dipole oscillation modes in light α -clustering nuclei

    NASA Astrophysics Data System (ADS)

    He, W. B.; Ma, Y. G.; Cao, X. G.; Cai, X. Z.; Zhang, G. Q.

    2016-07-01

    The α cluster states are discussed in a model frame of extended quantum molecular dynamics. Different α cluster structures are studied in detail, such as 8Be two-α cluster structure, 12C triangle structure, 12 chain structure, 16O chain structure, 16O kite structure, and 16O square structure. The properties studied include the width of wave packets for different α clusters, momentum distribution, and the binding energy among α clusters. We also discuss how the α cluster degree of freedom affects nuclear collective vibrations. The cluster configurations in 12C and 16O are found to have corresponding characteristic spectra of giant dipole resonance (GDR), and the coherences of different α clusters' dipole oscillations are described in detail. The geometrical and dynamical symmetries of α -clustering configurations are responsible for the number and centroid energies of peaks of GDR spectra. Therefore, the GDR can be regarded as an effective probe to diagnose different α cluster configurations in light nuclei.

  11. A NEW COSMOLOGICAL DISTANCE MEASURE USING ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Watson, D.; Denney, K. D.; Vestergaard, M.; Davis, T. M.

    2011-10-20

    Accurate distances to celestial objects are key to establishing the age and energy density of the universe and the nature of dark energy. A distance measure using active galactic nuclei (AGNs) has been sought for more than 40 years, as they are extremely luminous and can be observed at very large distances. We report here the discovery of an accurate luminosity distance measure using AGNs. We use the tight relationship between the luminosity of an AGN and the radius of its broad-line region established via reverberation mapping to determine the luminosity distances to a sample of 38 AGNs. All reliable distance measures up to now have been limited to moderate redshift-AGNs will, for the first time, allow distances to be estimated to z {approx} 4, where variations of dark energy and alternate gravity theories can be probed.

  12. Transition probabilities and static moments in transitional nuclei

    SciTech Connect

    Wolf, A.; Casten, R.F.

    1988-01-01

    Electromagnetic transition probabilities and static moments of excited nuclear states are known to be good probes of nuclear structure. Therefore, a systematic analysis of the large amount of existing experimental data for these observables is expected to provide valuable information about the respective isotopes. It is the purpose of this talk to show that a combined analysis of static magnetic moments of 2/sub 1//sup +/ states and B(E2) transition probabilities for even-even nuclei can be used to obtain effective numbers of valence nucleons. This kind of information is of particular interest in cases where subshell closures are found. For example, it is well known that for the transitional nuclei in the A = 150 region the Z = 64 subshell is active when the number of neutrons N < 90, but disappears for N greater than or equal to 90. A similar situation exists in the A = 100 region, where the Z = 38 subshell is active for N less than or equal to 58. In the following sections we present the method by which effective numbers of valence protons and neutrons can be deduced from B(E2) and g-factor data, and show applications of this method to the A = 150 and A = 100 transitional regions. Part of these results were recently published.

  13. RADIO VARIABILITY IN SEYFERT NUCLEI

    SciTech Connect

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2009-09-20

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability ({approx}38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central {approx}0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet

  14. Star formation around active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1987-01-01

    Active galactic nuclei (Seyfert nuclei and their relatives) and intense star formation can both deliver substantial amounts of energy to the vicinity of a galactic nucleus. Many luminous nuclei have energetics dominated by one of these mechanisms, but detailed observations show that some have a mixture. Seeing both phenomena at once raises several interesting questions: (1) Is this a general property of some kinds of nuclei? How many AGNs have surround starbursts, and vice versa? (2) As in 1, how many undiscovered AGNs or starbursts are hidden by a more luminous instance of the other? (3) Does one cause the other, and by what means, or do both reflect common influences such as potential well shape or level of gas flow? (4) Can surrounding star formation tell us anything about the central active nuclei, such as lifetimes, kinetic energy output, or mechanical disturbance of the ISM? These are important points in the understanding of activity and star formation in galactic nuclei. Unfortunately, the observational ways of addressing them are as yet not well formulated. Some preliminary studies are reported, aimed at clarifying the issues involved in study of the relationships between stellar and nonstellar excitement in galactic nuclei.

  15. Thermal evolution of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Prialnik, D.

    2014-07-01

    Thermal modeling of comet nuclei and similar objects involves the solution of conservation equations for energy and masses of the various components over time. For simplicity, the body is generally, but not necessarily, assumed to be of spherical shape. The processes included in such calculations are heat transfer, gas flow, dust drag, phase transitions, internal heating by various sources, internal structure alterations, surface sublimation. Physical properties --- such as the thermal conductivity, permeability, material strength, and porous structure --- are assumed, based on the best available estimates from laboratory experiments and space-mission results. Calculations employ various numerical procedures and require significant computational power, data analysis, and often sophisticated methods of graphical presentation. They start with a body of given size, mass, and composition, as well as a given orbit. The results yield properties and activity patterns that can be confronted with observations. Initial parameters may be adjusted until agreement is achieved. A glimpse into the internal structure of the object, which is inaccessible to direct observation, is thus obtained. The last decade, since the extensive overview of the subject was published (Modeling the structure and activity of comet nuclei, Prialnik, D.; Benkhoff, J.; Podolak, M., in Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver, eds., University of Arizona Press, Tucson, p.359-387), thermal modeling has significantly advanced. This was prompted both by new properties and phenomena gleaned from observations, one example being main-belt comets, and the continual increase in computational power and performance. Progress was made on two fronts. On the computational side, multi-dimensional models have been developed, adaptive-grid and moving-boundaries techniques have been adopted, and long-term evolutionary calculations have become possible, even spanning the lifetime of the Solar System. On

  16. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross

  17. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  18. Coupled-cluster computations of atomic nuclei.

    PubMed

    Hagen, G; Papenbrock, T; Hjorth-Jensen, M; Dean, D J

    2014-09-01

    In the past decade, coupled-cluster theory has seen a renaissance in nuclear physics, with computations of neutron-rich and medium-mass nuclei. The method is efficient for nuclei with product-state references, and it describes many aspects of weakly bound and unbound nuclei. This report reviews the technical and conceptual developments of this method in nuclear physics, and the results of coupled-cluster calculations for nucleonic matter, and for exotic isotopes of helium, oxygen, calcium, and some of their neighbors. PMID:25222372

  19. Critical Symmetry and Supersymmetry in Nuclei

    SciTech Connect

    Iachello, Francesco

    2006-04-26

    The role of dynamic symmetries and supersymmetries in nuclei is reviewed. The concept of critical symmetry, appropriate to describe bosonic systems (even-even nuclei) at the critical point of a phase transition, is introduced, and the symmetry, E(5), at the critical point of spherical to {gamma}-unstable shape phase transition, is discussed. The recently introduced concept of critical supersymmetry, appropriate to describe mixed systems of bosons and fermions (odd-even nuclei) at the critical point of a phase transition is presented. The case of a j=3/2 particle at the critical point of spherical to {gamma}-unstable transition, called E(5/4), is discussed.

  20. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  1. Molecular outflows in starburst nuclei

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-08-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disk with mid-plane density n0 ˜ 200-1000 cm-3 and scale height z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that a SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  2. Neurotransmitters of the suprachiasmatic nuclei

    PubMed Central

    Reghunandanan, Vallath; Reghunandanan, Rajalaxmy

    2006-01-01

    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working. PMID:16480518

  3. Chemical complexity in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Martin-Pintado, Jesus

    2007-12-01

    In recent years our knowledge of the chemical complexity in the nuclei of galaxies has dramatically changed. Recent observations of the nucleus of the Milky Way, of the starburst galaxy NGC253 and of the ultraluminous infrared galaxy (ULIRG) Arp220 have shown large abundance of complex organic molecules believed to be formed on grains. The Galactic center appears to be the largest repository of complex organic molecule like aldehydes and alcohols in the galaxy. We also measure large abundance of methanol in starburst galaxies and in ULIRGs suggesting that complex organic molecules are also efficiently produced in the central region of galaxies with strong star formation activity. From the systematic observational studies of molecular abundance in regions dominated by different heating processes like shocks, UV radiation, X-rays and cosmic rays in the center of the Milky Way, we are opening the possibility of using chemistry as a diagnostic tool to study the highly obscured regions of galactic centers. The templates found in the nucleus of the Milky Way will be used to establish the main mechanisms driving the heating and the chemistry of the molecular clouds in galaxies with different type of activity. The role of grain chemistry in the chemical complexity observed in the center of galaxies will be also briefly discussed.

  4. Hunting η-bound nuclei

    NASA Astrophysics Data System (ADS)

    Machner, H.

    2010-09-01

    The η meson can be bound to atomic nuclei. Experimental search is discussed in the form of final state interaction for the reactions dp → 3Heη and dd → 4Heη. For the latter case tensor polarized deuterons were used in order to extract the s-wave strength. For both reactions complex scattering lengths are deduced: a3Heη = [± (10.7 ± 0.8+0.1-0.5) + i. (1.5 ± 2.6 +1.0-0.9)] fm and a4Heη = [±(3.1 ±0.5) + i. (0 ±0.5)] fm. In a two-nucleon transfer reaction under quasi-free conditions, p27 Al → 3HeX, was investigated. The system X can be the bound 25Mgotimesη at rest. When a possible decay of an intermediate N* (1535) is required, a highly significant bump shows up in the missing mass spectrum. The data give for a bound state a binding energy of 13.3 ±1.6 MeV and a width of σ = 4.4±1.3 MeV.

  5. Unbound Resonances in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Havens, Elizabeth; Finck, Joseph; Gueye, Paul; Thoennessen, Michael; MoNA Collaboration

    2014-09-01

    Currently there has been no comprehensive study undertaken to compile experimental results from neutron unbound spectroscopy using invariant mass measurements, gamma resolutions, and half-lives. At Central Michigan University, Hampton University, and the NSCL, a project was initiated to catalog all unbound resonances in light nuclei (Z = 1-12). Unbound resonances were characterized by having a confirmed neutron decay branch and/or an energy level greater than the neutron binding energy listed for that isotope according to either the National Nuclear Data Center's Evaluated Nuclear Structure Files or Experimental Unevaluated Nuclear Data List and the referred journals therein. Unbound resonances will be presented for twelve elements: H, He, Li, Be, B, C, N, O, Fl, Ne, Na, and Mg. The isotopes in which unbound resonances occur will be identified, along with unbound energy levels for these isotopes. If known, each unbound resonance's gamma resolution, half-life, method of production and journal reference were also determined and a selection of these will be presented.

  6. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  7. Heat pipe cooled probe

    NASA Technical Reports Server (NTRS)

    Camarda, C. J. (Inventor); Couch, L. M.

    1984-01-01

    The basic heat pipe principle is employed to provide a self-contained passively cooled probe that may be placed into a high temperature environment. The probe consists of an evaporator region of a heat pipe and a sensing instrument. Heat is absorbed as the working fluid evaporates in the probe. The vapor is transported to the vapor space of the condenser region. Heat is dissipated from the condenser region and fins causing condensation of the working fluid, which returns to the probe by gravity and the capillary action of the wick. Working fluid, wick and condenser configurations and structure materials can be selected to maintain the probe within an acceptable temperature range.

  8. A comparison of calculated NMR shielding probes.

    PubMed

    Martin, Ned H; Loveless, David M; Wade, Dustin C

    2004-12-01

    In a strong magnetic field, covalently bonded hydrogen nuclei located over the plane of an anisotropic pi bond-containing functional group experience magnetic shielding (or deshielding) that results from the combined effect of the magnetic anisotropy of the functional group and other nearby covalent bonds plus other intramolecular shielding effects. These effects can now be calculated with reasonable accuracy using ab initio methods. We have investigated several computational probes of the magnetic shielding surface near anisotropic functional groups and compared the results to previous reports of experimental observations in example structures. GIAO-HF in Gaussian 03 was employed to calculate isotropic shielding values and to predict the net NMR shielding increment for several computational probes: methane, diatomic hydrogen, a hydrogen atom, a helium atom, or a ghost atom, each held in various positions over simple test molecules (ethene, ethyne, benzene and HCN) that contain the functional groups studied. Also, the effect of performing single point calculations versus constrained geometry-optimized calculations was examined. In addition, the effect of the angle of the orientation of the probe molecule (in the case of CH(4) and H(2)) relative to the pi bond in the test molecule was studied. Finally, the atomic charges in the molecular probes (CH(4) and H(2)) were computed to investigate the nature of the interaction of the probe with the test molecule. The optimal, most economical computational results were obtained using single point calculations of a diatomic hydrogen probe oriented perpendicular to the surface (or axis) of the test molecule. PMID:15530824

  9. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  10. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  11. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  12. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  13. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  14. From Nucleons To Nuclei To Fusion Reactions

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W

    2012-02-15

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  15. Few-Body Universality in Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Hammer, H.-W.

    2016-03-01

    Few-body systems with resonant S-wave interactions show universal properties which are independent of the interaction at short distances. These properties include a geometric spectrum of three- and higher-body bound states and universal correlations between few-body observables. They can be observed on a wide range of scales from hadrons and nuclei to ultracold atoms. In this contribution, we focus on few-body universality in halo nuclei which can be considered as effective few-body systems consisting of halo nucleons and a core. This concept provides a unifying framework for halo nuclei with calculable corrections. Recent progress in this field with an emphasis on the possibility of finding Efimov states in halo nuclei is discussed.

  16. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  17. Very elongated nuclei near A = 194

    SciTech Connect

    Becker, J.A.; Henry, E.A.; Yates, S.W.; Wang, T.F.; Kuhnert, A. ); Brinkman, M.J.; Cizewski, J.A. ); Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.; Azaiez, F.; Korten, W.; Draper, J.E. )

    1990-10-01

    A {gamma}-ray cascade in {sup 191}Hg of 12 members with average energy spacing 37 keV and Q{sub t} {equals} 18(3)eb was reported by Moore, and coworkers in 1989. This was the first report of very elongated nuclei (superdeformation) in this mass region. Since then, some 25 {gamma}-ray cascades have been observed in 11 (slightly neutron deficient) Hg, Pb and Tl nuclei. The bands have similar dynamic moments-of-inertia. Some nuclei exhibit multiple bands, and the backbending phenomena has been observed. Level spins can be obtained from comparison of transition energies to rotational model formulas. Selected bands (in different nuclei) have equal transition energies (within 0.1%). Alignment in integer multiples of {h bar} has been observed. Properties of these bands will be described. 27 refs., 3 figs.

  18. Superheavy Nuclei - Clusters of Matter and Antimatter

    SciTech Connect

    Greiner, Walter; Buervenich, Thomas J.

    2005-03-31

    The extension of the periodic system into various new areas is investigated. Experiments for the synthesis of superheavy elements and the predictions of magic numbers with modern meson field theories are reviewed. Different channels of nuclear decay are discussed including cluster radioactivity, cold fission and cold multifragmentation Furthermore, we present the vacuum for the e+-e- field of QED and show how it is modified for baryons in nuclear environment. Then we discuss the possibility of producing new types of nuclear systems by implanting an antibaryon into ordinary nuclei. The structure of nuclei containing one antiproton or antilambda is investigated within the framework of a relativistic mean-field model. Self-consistent calculations predict very enhanced binding and considerable compression in such systems as compared with normal nuclei. We present arguments that the life time of such nuclei with respect to the antibaryon annihilation might be long enough for their observation. A perspective for future research is given.

  19. True ternary fission of superheavy nuclei

    SciTech Connect

    Zagrebaev, V. I.; Karpov, A. V.; Greiner, Walter

    2010-04-15

    True ternary fission with formation of a heavy third fragment is quite possible for superheavy nuclei because of the strong shell effects leading to a three-body clusterization with the two doubly magic tinlike cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tinlike clusters with appropriate kinematics in low-energy collisions of medium-mass nuclei with actinide targets. The three-body quasi-fission process could be even more pronounced for giant nuclear systems formed in collisions of heavy actinide nuclei. In this case a three-body clusterization might be proved experimentally by the detection of two coincident leadlike fragments in low-energy U + U collisions.

  20. The Heavy Nuclei Explorer (HNX) Mission

    NASA Technical Reports Server (NTRS)

    Binns, W. R.

    2001-01-01

    The Heavy Nuclei eXplorer (HNX) mission was recently selected by NASA for a Small Explorer (SMEX) Mission Concept Study to begin in 2001. The primary scientific objectives of HNX are to measure the age of the galactic cosmic rays (GCR) since nucleosynthesis, determine the injection mechanism for the GCR accelerator (Volatility or FIP), and study the mix of nucleosynthetic processes that contribute to the source of GCRs. The experimental goal of HNX is to measure the elemental abundances of all individual stable nuclei from neon through the actinides and possibly beyond. HNX is composed of two instruments: ECCO, which measures elemental abundances of nuclei with Z(sup 3)72, and ENTICE, which measures elemental abundances of nuclei with 10(f)Z(f)82. We will discuss the mission and the science that can be addressed by HNX.

  1. Perspectives of production of superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Bezbakh, A. N.; Sargsyan, V. V.; Scheid, W.

    2016-07-01

    Possible ways of production of superheavies are discussed. Impact of nuclear structure on the production of superheavy nuclei in complete fusion reactions is discussed. The proton shell closure at Z = 120 is discussed.

  2. Where Should the Nuclei Be Located?

    ERIC Educational Resources Information Center

    Ying Liu; Yue Liu; Drew, Michael G. B.

    2005-01-01

    The approach of determining the nature of the electron wave function via orbital representations qualitatively and via numerical calculations quantitatively is demonstrated. The angular part of the wave function provides suitable representation of the positions of the nuclei.

  3. Understanding nuclei in the upper sd - shell

    SciTech Connect

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  4. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  5. Cosmic Ray Nuclei (CRN) detector investigation

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Muller, Dietrich; Lheureux, Jacques; Swordy, Simon

    1991-01-01

    The Cosmic Ray Nuclei (CRN) detector was designed to measure elemental composition and energy spectra of cosmic radiation nuclei ranging from lithium to iron. CRN was flown as part of Spacelab 2 in 1985, and consisted of three basic components: a gas Cerenkov counter, a transition radiation detector, and plastic scintillators. The results of the experiment indicate that the relative abundance of elements in this range, traveling at near relativistic velocities, is similar to those reported at lower energy.

  6. Synthesis of superheavy nuclei: Obstacles and opportunities

    NASA Astrophysics Data System (ADS)

    Zagrebaev, V. I.; Karpov, A. V.; Greiner, Walter

    2015-01-01

    There are only 3 methods for the production of heavy and superheavy (SH) nuclei, namely, fusion reactions, a sequence of neutron capture and beta(-) decay and multinucleon transfer reactions. Low values of the fusion cross sections and very short half-lives of nuclei with Z<120 put obstacles in synthesis of new elements. At the same time, an important area of SH isotopes located between those produced in the cold and hot fusion reactions remains unstudied yet. This gap could be filled in fusion reactions of 48Ca with available lighter isotopes of Pu, Am, and Cm. New neutron-enriched isotopes of SH elements may be produced with the use of a 48Ca beam if a 250Cm target would be prepared. In this case we get a real chance to reach the island of stability owing to a possible beta(+) decay of 291114 and 287112 nuclei formed in this reaction with a cross section of about 0.8 pb. A macroscopic amount of the long-living SH nuclei located at the island of stability may be produced by using the pulsed nuclear reactors of the next generation only if the neutron fluence per pulse will be increased by about three orders of magnitude. Multinucleon transfer processes look quite promising for the production and study of neutron-rich heavy nuclei located in upper part of the nuclear map not reachable by other reaction mechanisms. Reactions with actinide beams and targets are of special interest for synthesis of new neutron-enriched transfermium nuclei and not-yet-known nuclei with closed neutron shell N=126 having the largest impact on the astrophysical r-process. The estimated cross sections for the production of these nuclei allows one to plan such experiments at currently available accelerators.

  7. Reaction cross sections of unstable nuclei

    SciTech Connect

    Ozawa, Akira

    2006-11-02

    Experimental studies on reaction cross sections are reviewed. The recent developments of radioactive nuclear beams have enabled us to measure reaction cross-sections for unstable nuclei. Using Glauber-model analysis, effective nuclear matter density distributions of unstable nuclei can be studied. Recent measurements in RIBLL at IMP and RIPS at RIKEN are introduced. The effective matter density distributions for 14-18C are also mentioned.

  8. Reaction theories for exotic nuclei

    SciTech Connect

    Bonaccorso, Angela

    2012-11-20

    This contribution discusses two important dynamical effects in the scattering of exotic beams. The first part deals proton breakup. The Coulomb interactions between the core and the target and the proton and the target are treated to all orders, including also the full multipole expansion of the Coulomb potential. The dynamics of proton Coulomb breakup is compared to that of an equivalent neutron of larger binding energy in order to elucidate the differences with the well understood neutron breakup mechanism. With respect to nuclear breakup it is found that a proton behaves exactly as a neutron of larger binding energy. The extra 'effective energy' is due to the combined core-target Coulomb barrier. In Coulomb breakup we distinguish the effect of the core-target Coulomb potential (called recoil effect), with respect to which the proton behaves again as a more bound neutron, from the direct proton-target Coulomb potential. The latter gives cross sections about an order of magnitude larger than the recoil term. The two effects give rise to complicated interferences in the parallel momentum distributions. They are instead easily separable in the proton angular distributions which are therefore suggested as a very useful observable for future experimental studies. The second part has to do with the dynamics of one-neutron and one-proton removal from unstable nuclei with large asymmetry {Delta}S S{sub n}-S{sub p} in the separation energies and incident energies below 80 MeV/nucleon. Strong non-sudden effects are observed in the case of deeply-bound-nucleon removal. The corresponding parallel momentum distributions exhibit an abrupt cutoff at high momentum that corresponds to an energy threshold occurring when the incident energy per particle is of comparable magnitude as the nucleon separation energy.

  9. Properties of the hypothetical spherical superheavy nuclei

    SciTech Connect

    Smolanczuk, R. |

    1997-08-01

    Theoretical results on the ground-state properties of the hypothetical spherical superheavy atomic nuclei are presented and discussed. Even-even isotopes of elements Z=104{minus}120 are considered. Certain conclusions are also drawn for odd-A and odd-odd superheavy nuclei. Results obtained earlier for even-even deformed superheavy nuclei with Z=104{minus}114 are given for completeness. Equilibrium deformation, nuclear mass, {alpha}-decay energy, {alpha}-decay half-life, dynamical fission barrier, as well as spontaneous-fission half-life are considered. {beta}-stability of superheavy nuclei is also discussed. The calculations are based on the macroscopic-microscopic model. A multidimensional deformation space describing axially symmetric nuclear shapes is used in the analysis of masses and decay properties of superheavy nuclei. We determined the boundaries of the region of superheavy nuclei which are expected to live long enough to be detected after the synthesis in a present-day experimental setup. {copyright} {ital 1997} {ital The American Physical Society}

  10. Major new sources of biological ice nuclei

    NASA Astrophysics Data System (ADS)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  11. Hard probes of short-range nucleon-nucleon correlations

    SciTech Connect

    J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian

    2012-10-01

    The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.

  12. Estimating Genomic Distance from DNA Sequence Location in Cell Nuclei by a Random Walk Model

    NASA Astrophysics Data System (ADS)

    van den Engh, Ger; Sachs, Rainer; Trask, Barbara J.

    1992-09-01

    The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.

  13. Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model

    SciTech Connect

    Engh, G. van den; Trask, B.J. ); Sachs, R. )

    1992-09-04

    The folding of chromatin in interphase cell nuclei was studied by fluorescent in situ hybridization with pairs of unique DNA sequence probes. The sites of DNA sequences separated by 100 to 2000 kilobase pairs (kbp) are distributed in interphase chromatin according to a random walk model. This model provides the basis for calculating the spacing of sequences along the linear DNA molecule from interphase distance measurements. An interphase mapping strategy based on this model was tested with 13 probes from a 4-megabase pair (Mbp) region of chromosome 4 containing the Huntington disease locus. The results confirmed the locations of the probes and showed that the remaining gap in the published maps of this region is negligible in size. Interphase distance measurements should facilitate construction of chromosome maps with an average marker density of one per 100 kbp, approximately ten times greater than that achieved by hybridization to metaphase chromosomes.

  14. 76 FR 63702 - In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of Fire, aka Conspiracy of Cells of Fire, aka Synomosia of Pyrinon Tis Fotias, aka Thessaloniki-Athens Fire Nuclei... January 23, 2003, I hereby determine that the organization known as Conspiracy of Fire Nuclei, also...

  15. Functional probes for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio; Akiyama, Kotone; Hamada, Masayuki; Eguchi, Toyoaki; An, Toshu; Fujikawa, Yasunori; Sakurai, Toshio

    2008-03-01

    Inspite of importance of the probe in scanning probe microscopy (SPM), little attention was paid for the SPM probes for most of the measurements of SPM. We developed sharp metal-tip cantilevers with a typical curvature radius better than 5nm using focused ion beam (FIB) suitable for Kelvin probe force microscopy (KFM)^1. We obtained atomically resolved KFM images with an energy resolution less than 3meV with the probe^2. We also developed a glass-coated tungsten tip for synchrotron radiation-scanning tunneling microscopy with the FIB method^3 and obtained elementally resolved images in a resolution less than 20nm^4. We are now developing a precise atomic force microscope (AFM) lithography^5 with the FIB-milled tip attached to a quartz tuning fork controlled by noncontact AFM. We will present recent results of our AFM lithography, such as an Au line with a width of 20˜30 nm and characters drawn with Au nano dots on a Si surface. 1 K. Akiyama et al., RSI 76, 033705 (2005) 2 T. Eguchi, K. Akiyama et al., PRL 93, 266102 (2004) 3 K. Akiyama et al., RSI 76, 083711 (2005) 4 T. Eguchi, K. Akiyama et al., APL 89, 243119 (2006) 5 K. Akiyama et al., JP 61, 22 (2007).

  16. Periodontal probing: a review.

    PubMed

    Al Shayeb, Kwthar Nassar A; Turner, Wendy; Gillam, David G

    2014-08-01

    Periodontal probes are the main instruments that are used to assess the status of the periodontium, either for screening purposes or to evaluate periodontal changes throughout the treatment process. With increased knowledge and understanding of periodontal disease, the probes have evolved from a unidimensional manual shape into a more sophisticated computerised instrument. This is due to the need to increase the accuracy and reproducibility of readings and to improve efficiency (time, effort, money). Each probe has characteristic features that makes it unique and, in some cases, specific and limited to use. The aim of this paper is to present a brief introduction to periodontal disease and the methodology of measuring it, followed by probing limitations. The paper will also discuss the methodology of reducing probing error, examiner calibration and probing reproducibility. PMID:25198634

  17. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  18. 8Be and 9B nuclei in dissociation of relativistic 10B and 11C nuclei

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Progress in the study of nuclear clustering in the relativistic 10B and 11C nuclei dissociation in nuclear track emulsion is presented. The contribution of the unbound 8Be and 9B nuclei to their structure is determined on the basis of measurements of the emission angles of relativistic He and H fragments.

  19. 8Be and 9B nuclei in dissociation of relativistic 10C and 11C nuclei

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-05-01

    Progress in the study of nuclear clustering in the relativistic 10C and 11C nuclei dissociation in nuclear track emulsion is presented. The contribution of the unbound 8Be and 9B nuclei to their structure is determined on the basis of measurements of the emission angles of relativistic He and H fragments.

  20. Transition (LINER/HII) nuclei as evolved Composite (Seyfert 2/Starburst) nuclei

    NASA Astrophysics Data System (ADS)

    Storchi-Bergmann, Thaisa; Brandt, C. H.; Cid Fernandes, R.; Schmitt, H. R.; González Delgado, R.

    2004-11-01

    We compare the circumnuclear stellar population and environmental properies of Seyfert and Composite (Seyfert + Starburst) nuclei with those of LINERs and LINER/HII transition galaxies (TOs), and discuss evidence for evolution from Seyfert/Composite to LINER/TO nuclei.

  1. Titan Probe navigation analysis

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Wood, L. J.

    1986-01-01

    In the proposed Cassini mission, a combined Saturn Orbiter/Titan Probe spacecraft will be launched from the Space Shuttle to arrive at Saturn around 2002, by means of a delta-VEGA trajectory. After Saturn-orbit insertion and a pericrone raise maneuver, the probe will be released to enter the Titan atmosphere and impact onto its surface. During its descent phase and impact onto Titan, the probe will maintain radio contact with the orbiter. Since the Titan-probe experimental phase lasts for only about four hours, probe-orbiter geometry and probe-delivery accuracy are critical to successful completion of this part of the mission. From a preliminary navigation analysis for probe delivery accuracy, it seems feasible to deliver the probe within 50 km (1-sigma value) of the desired aim-point in the Titan B-plane. The covariance study, however, clearly indicates the need for optical data, in addition to radio metric data. A Monte Carlo study indicates that a Delta-V capability of 98 m/sec for trajectory correction maneuvers will be sufficient to cover 99 percent of all contingencies during the segment from Saturn-orbit insertion to Titan-probe release.

  2. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I

  3. TOPICAL REVIEW: Shapes and collectivity of exotic nuclei via low-energy Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Görgen, Andreas

    2010-10-01

    The way in which an atomic nucleus responds to excitations, whether by promoting individual nucleons into higher shells or by collective rotation or vibration, reveals many details of the underlying nuclear structure. The response of the nucleus is closely related to its macroscopic shape. Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei, allowing the measurement of static and dynamic electromagnetic moments as a probe of the nuclear wavefunctions. Owing to the availability of radioactive heavy-ion beams with energies near the Coulomb barrier, it is now possible to study the shape and collectivity of short-lived nuclei far from β stability (the so-called exotic nuclei), providing a particularly stringent test of modern theoretical nuclear structure models. This review gives an introduction to the experimental techniques related to low-energy Coulomb excitation with radioactive ion beams and summarizes the results that were obtained over the last 10 years for a wide variety of exotic nuclei at various laboratories employing the isotope separation on-line technique.

  4. Compact Nuclei in Galaxies at Moderate Redshift

    NASA Astrophysics Data System (ADS)

    Sarajedini, Vicki Lynn

    The purpose of this study is to understand the space density and properties of active galaxies to z ≃ 0.8. We have investigated the frequency and nature of unresolved nuclei in galaxies at moderate redshift as indicators of nuclear activity such as Active Galactic Nuclei (AGN) or starbursts. Candidates are selected by fitting imaged galaxies with multi-component models using maximum likelihood estimate techniques to determine the best model fit. We select those galaxies requiring an unresolved, point source component in the galaxy nucleus, in addition to a disk and/or bulge component, to adequately model the galaxy light. We have searched 70 WFPC2 images primarily from the Medium Deep Survey for galaxies containing compact nuclei. In our survey of 1033 galaxies, the fraction containing an unresolved nuclear component ≥3% of the total galaxy light is 16±3% corrected for incompleteness and 9±1% for nuclei ≥5% of the galaxy light. Most of the nuclei are ~<20% of the total galaxy light. The majority of the host galaxies are spirals with little or no bulge component. The V-I colors of the nuclei are compared with synthetic colors for Seyferts and starburst nuclei to help differentiate between AGNs and starbursts in our sample. Spectroscopic redshifts have been obtained for 35 of our AGN/starburst candidates and photometric redshifts are estimated to an accuracy of σz≃0.1 for the remaining sample. We present the upper limit luminosity function (LF) for low-luminosity AGN (LLAGN) in two redshift bins to z = 0.8. We detect mild number density evolution of the form φ∝ (1+z)1.9 for nuclei at -18 ~

  5. Probing oxidative degradation in polymers using {sup 17}O NMR spectroscopy

    SciTech Connect

    Alam, T.M.; Click, C.A.; Assink, R.A.

    1997-09-01

    Understanding the mechanism of oxidative degradation remains an important goal in being able to predict the aging process in polymer materials. Nuclear magnetic resonance (NMR) spectroscopy has previously been utilized to investigate polymer degradation, including both proton ({sup 1}H) and carbon ({sup 13}C) studies. These previous NMR studies, as well as other spectroscopic investigations, are complicated by the almost overwhelming signal arising from the native undegraded polymer. This makes the identification and quantification of degradation species at small concentrations difficult. In this note we discuss recent investigation into the use of oxygen ({sup 17}O) NMR spectroscopy to probe the oxidative degradation process in polymers at a molecular level. Due to the low natural abundance (0.037%) and a nuclear spin of I=5/2 possessing an appreciable quadrupolar moment, the use of {sup 17}O NMR in polymer investigations has been limited. By utilizing synthetically enriched oxygen gas during the accelerated aging process, both the difficulties of low natural abundance and background interference signals are eliminated. For enriched samples {sup 17}O NMR spectra now provide a unique probe since all of the observed NMR resonances are the direct result of oxidative degradation.

  6. Stability and production of superheavy nuclei

    SciTech Connect

    Moeller, P. |; Nix, J.R.

    1997-12-31

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond {sup 208}Pb, that is, at proton number Z = 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation.

  7. Radio frequency-compensated Langmuir probe with auxiliary double probes

    SciTech Connect

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-15

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas.

  8. Radio frequency-compensated Langmuir probe with auxiliary double probes.

    PubMed

    Oh, Se-Jin; Oh, Seung-Ju; Chung, Chin-Wook

    2010-09-01

    A radio frequency (rf) compensation design using auxiliary double probes connected in parallel with a main measurement probe was developed for Langmuir probe diagnostics. This probe structure can reduce the sheath impedance of the main probe. In our probe design, the sheath capacitance of the probe can be increased and its sheath resistance can be decreased with increasing dc bias differential voltage between the auxiliary double probes. The I-V characteristic curve and electron energy distribution functions measured by our probe system had sufficient rf compensation performance in inductively coupled plasmas. PMID:20886976

  9. Probing nuclear bubble configuration by the π- / π+ ratio in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan

    2016-05-01

    It is theoretically and experimentally argued that there may exist bubble or toroid-shaped configurations in some nucleus systems. Based on the isospin-dependent transport model of nucleus-nucleus collisions, here we propose a method to probe the bubble configuration in the nucleus. That is, one could use the value of the π- / π+ ratio especially its kinetic energy distribution in head-on collision at intermediate energies to probe whether there is bubble configuration or not in projectile and target nuclei. Due to different maximum compressions and the effect of symmetry energy, the value of the π- / π+ ratio in the collision of bubble nuclei is evidently larger than that in the collision of normal nuclei.

  10. Shape-based nuclei area of digitized pap smear images

    NASA Astrophysics Data System (ADS)

    Muhimmah, Izzati; Kurniawan, Rahadian

    2012-04-01

    Nuclei of the epithelial of Pap smear cells are important risk indicator of cervical cancers. Pathologist uses the changing of the area of the nuclei to determine whether cells are normal or abnormal. It means that having correct measurement of the area of nuclei is important on the pap smears assessment. Our paper present a novel approach to analyze the shape of nuclei in pap smear images and measuring the area of nuclei. We conducted a study to measure the area of nuclei automatically by calculating the number of pixels contained in each of the segmented nuclei. For comparison, we performed measurements of nuclei area using the ellipse area approximation. The result of the t-test confirmed that there were similarity between elliptical area approximation and automatic segmented nuclei-area at 0.5% level of significance.

  11. Simulations of molecular dynamics in solid-state NMR spectra of spin-1 nuclei including effects of CSA- and EFG-terms up to second order.

    PubMed

    Larsen, Flemming H

    2007-04-01

    By numerical simulations MAS and QCPMG methods for acquiring spectra of spin-1 nuclei were compared in order to determine the most sensitive experiment for analysis of molecular dynamics. To comply with the large quadrupolar constants for 14N and the CSA reported for 6Li both of these interactions are included up to second order. For 2H and 6Li both QCPMG and single-pulse MAS experiments were suitable for dynamics studies whereas the single-pulse MAS experiment were the method of choice for investigation of 14N dynamics for C(Q)'s larger than 750kHz at 14.1T. This property prohibits excitation of the 14N lineshape using either single hard or softer composite rf-pulses. Focusing on 14N it was demonstrated that the centerband lineshape is sensitive toward both off-MAS and CSA effects. In addition, excitation by real-time pulses showed that proper lineshapes corresponding to a site with a C(Q) of 3MHz may be excited by a very short pulse. PMID:17418539

  12. Quantum Monte Carlo calculations of light nuclei.

    SciTech Connect

    Pieper, S. C.; Physics

    2008-01-01

    Variational Monte Carlo and Green's function Monte Carlo are powerful tools for cal- culations of properties of light nuclei using realistic two-nucleon (NN) and three-nucleon (NNN) potentials. Recently the GFMC method has been extended to multiple states with the same quantum numbers. The combination of the Argonne v18 two-nucleon and Illinois-2 three-nucleon potentials gives a good prediction of many energies of nuclei up to 12 C. A number of other recent results are presented: comparison of binding energies with those obtained by the no-core shell model; the incompatibility of modern nuclear Hamiltonians with a bound tetra-neutron; difficulties in computing RMS radii of very weakly bound nuclei, such as 6He; center-of-mass effects on spectroscopic factors; and the possible use of an artificial external well in calculations of neutron-rich isotopes.

  13. Quantum Monte Carlo calculations of light nuclei

    SciTech Connect

    Pieper, S.C.

    1998-12-01

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H,{sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed. {copyright} {ital 1998 American Institute of Physics.}

  14. Quantum Monte Carlo calculations of light nuclei

    SciTech Connect

    Pieper, Steven C.

    1998-12-21

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H,{sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed.

  15. Quantum Monte Carlo calculations of light nuclei.

    SciTech Connect

    Pieper, S. C.

    1998-08-25

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H, {sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed.

  16. The scattering of fast nucleons from nuclei

    SciTech Connect

    Kerman, A. K.; McManus, H.; Thaler, R. M.

    2000-04-10

    The formal theory of the scattering of high-energy nucleons by nuclei is developed in terms of the nucleon nucleon scattering amplitude. The most important approximations necessary to make numerical calculation feasible are then examined. The optical model potential is derived on this basis and compared with the optical model parameters found from experiment. The elastic scattering and polarization of nucleons from light nuclei is predicted and compared with experiment. The effect of nuclear correlations is discussed. The polarization of inelastically scattered nucleons is discussed and predictions compared with experiments. To within the validity of the approximations the experimental data on the scattering of nucleons from nuclei at energies above {approx}100 Mev appears to be consistent with the theory. (c) 2000 Academic Press, Inc.

  17. Pair correlations in neutron-rich nuclei

    SciTech Connect

    Esbensen, H.

    1995-08-01

    We started a program to study the ground-state properties of heavy, neutron-rich nuclei using the Hartree-Fock-Bogolyubov (HFB) approximation. This appears at present to be the most realistic approach for heavy nuclei that contain many loosely bound valence neutrons. The two-neutron density obtained in this approach can be decomposed into two components, one associated with the mean field and one associated with the pairing field. The latter has a structure that is quite similar to the pair-density obtained by diagonalizing the Hamiltonian for a two-neutron halo, which was studied earlier. This allows comparison of the HFB solutions against numerically exact solutions for two-neutron halos. This work is in progress. We intend to apply the HFB method to predict the ground-state properties of heavier, more neutron-rich nuclei that may be produced at future radioactive beam facilities.

  18. Fission barriers of compound superheavy nuclei.

    PubMed

    Pei, J C; Nazarewicz, W; Sheikh, J A; Kerman, A K

    2009-05-15

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. In this work, we investigate the isentropic fission barriers by means of the self-consistent nuclear density functional theory. The relationship between isothermal and isentropic descriptions is demonstrated. Calculations have been carried out for 264Fm, 272Ds, ;{278}112, ;{292}114, and ;{312}124. For nuclei around ;{278}112 produced in "cold-fusion" reactions, we predict a more rapid decrease of fission barriers with excitation energy as compared to the nuclei around ;{292}114 synthesized in "hot-fusion" experiments. This is explained in terms of the difference between the ground-state and saddle-point temperatures. The effect of the particle gas is found to be negligible in the range of temperatures studied. PMID:19518948

  19. Structure and spectroscopy of transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    2001-11-09

    The stability of the superheavy elements depends on the shell corrections which are governed by the single-particle spectra. Ideally one would like to experimentally determine the single-particle levels in the superheavy nuclei but the production of only a few atoms of these nuclides precludes such measurements. One therefore has to identify single-particle levels in the heaviest nuclei which are available in at least nanoCurie amounts. They have studied the structure of such heavy nuclei in the Z=98 region and identified many single-particle states. In particular, they have studied the structure of {sup 251}Cf and {sup 249}Bk by measuring the radiations emitted in the {alpha} decay of {sup 255}Fm and {sup 253}Es. These single-particle spectra can be used to test theoretical models for superheavy elements.

  20. Alpha-cluster model of atomic nuclei

    NASA Astrophysics Data System (ADS)

    Sosin, Zbigniew; Błocki, Jan; Kallunkathariyil, Jinesh; Łukasik, Jerzy; Pawłowski, Piotr

    2016-05-01

    The description of a nuclear system in its ground state and at low excitations based on the equation of state (EoS) around normal density is presented. In the expansion of the EoS around the saturation point, additional spin polarization terms are taken into account. These terms, together with the standard symmetry term, are responsible for the appearance of the α-like clusters in the ground-state configurations of the N = Z even-even nuclei. At the nuclear surface these clusters can be identified as alpha particles. A correction for the surface effects is introduced for atomic nuclei. Taking into account an additional interaction between clusters the binding energies and sizes of the considered nuclei are very accurately described. The limits of the EoS parameters are established from the properties of the α, 3He and t particles.

  1. Ambartsumyan's concept of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Khachikian, E. Ye.

    2010-01-01

    As Victor Ambartsumyan, himself, noted, the concept of active galactic nuclei occupies a special place among his scientific ideas. It was proposed more than half a century ago and was recognized by the U.S. National Academy of Sciences as revolutionary, on a copernican scale. However, by no means all of its propositions were accepted at once by large parts of the astronomy community. Nevertheless, as the American astrophysicist A. R. Sandage has written, “today, not one astronomer would deny the mystery surrounding the nuclei of galaxies or that the first to recognize the rich reward held in this treasury was Viktor Ambartsumian.” The purpose of this article is to acquaint the reader with the major stages in the formation and development of the concept of active galactic nuclei and with some of the work on this topic done at the Byurakan and other astrophysical observatories throughout the world.

  2. Exploration of High-Dimensional Nuclei Data

    SciTech Connect

    Fuentes, Fernando; Kettani, Houssain; Ostrouchov, George; Stoitsov, Mario; Nam, Hai Ah

    2010-01-01

    Density Functional Theory (DFT) provides the theoretical foundation for a self-consistent mean-field description of the nucleus in terms of one-body densities and currents. The idea is to construct a functional whose input is the proton and neutron densities and currents, and whose output yields the ground-state energy and other properties of the nucleus. Extensive computations of ground-state energies and other observable properties of several thousand nuclei are required in order to find a universal functional that covers the entire chart of nuclei. The analysis looks for hidden relationships between observables to determine a functional that can reliably predict nuclear properties in regions where no experimental data exist. Using methods for dimension reduction and visualization tools, it is hypothesized that the deformation of the neutrons is related to other characteristics of the nuclei. The discovered relationships with the deformation of the neutrons take us a step closer toward the universal functional.

  3. Is Fusion Inhibited for Weakly Bound Nuclei?

    SciTech Connect

    Takahashi, J.; Munhoz, M.; Szanto, E.M.; Carlin, N.; Added, N.; Suaide, A.A.; de Moura, M.M.; Liguori Neto, R.; Szanto de Toledo, A.; Canto, L.F.

    1997-01-01

    Complete fusion of light radioactive nuclei is predicted to be hindered at near-barrier energies. This feature is investigated in the case of the least bound stable nuclei. Evaporation residues resulting from the {sup 6,7}Li+{sup 9}Be and {sup 6,7}Li+{sup 12}C fusion reactions have been measured in order to study common features in reactions involving light weakly bound nuclei. The experimental excitation functions revealed that the fusion cross section is significantly smaller than the total reaction cross section and also smaller than the fusion cross section expected from the available systematics. A clear correlation between the fusion probability and nucleon (cluster) separation energy has been established.The results suggest that the breakup process has a strong influence on the hindrance of the fusion cross section. {copyright} {ital 1996} {ital The American Physical Society}

  4. Formative Assessment Probes

    ERIC Educational Resources Information Center

    Eberle, Francis; Keeley, Page

    2008-01-01

    Formative assessment probes can be effective tools to help teachers build a bridge between students' initial ideas and scientific ones. In this article, the authors describe how using two formative assessment probes can help teachers determine the extent to which students make similar connections between developing a concept of matter and a…

  5. Magnetically driven filament probe.

    PubMed

    Schmid, A; Herrmann, A; Rohde, V; Maraschek, M; Müller, H W

    2007-05-01

    A radially movable probe has been developed for studies of filamentary transport in ASDEX Upgrade during edge localized modes (ELMs) by means of Langmuir tips and magnetic pickup coils. The probe is permanently installed at the low field side in the ASDEX Upgrade vacuum vessel and is not subject to limitations in probe size, as, for example, probes on a shared manipulator are. The probe is moved by a magnetic drive, which allows for easy installation in the vessel, and has moderate machine requirements, as it will only require an electric feedthrough and an external power supply. The drive gives a linear motion with a radial range of 5 cm within 50 ms, where range and velocity can be largely scaled according to experimental requirements. The probe has been installed in the outer midplane of the ASDEX Upgrade vessel, where ELM filaments are expected to have their maximum amplitude. Filaments are coherent substructures within an ELM, carrying a fraction of the ELM released energy towards the wall. The new probe allows to measure the structure of these filaments, in particular, parameters such as filament rotation (by time delay measurements) and size (by peak width analysis). Activating the drive moves the probe from a safe position behind the limiter to a position in front of the limiters, i.e., exposes the Langmuir pins to the scrape-off layer plasma. PMID:17552815

  6. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  7. [C ii] emission from galactic nuclei in the presence of X-rays

    NASA Astrophysics Data System (ADS)

    Langer, W. D.; Pineda, J. L.

    2015-08-01

    Context. The luminosity of [C ii] is used as a probe of the star formation rate in galaxies, but the correlation breaks down in some active galactic nuclei (AGNs). Models of the [C ii] emission from galactic nuclei do not include the influence of X-rays on the carbon ionization balance, which may be a factor in reducing the [C ii] luminosity. Aims: We aim to determine the properties of the ionized carbon and its distribution among highly ionized states in the interstellar gas in galactic nuclei under the influence of X-ray sources. We calculate the [C ii] luminosity in galactic nuclei under the influence of bright sources of soft X-rays. Methods: We solve the balance equation of the ionization states of carbon as a function of X-ray flux, electron, atomic hydrogen, and molecular hydrogen density. These are input to models of [C ii] emission from the interstellar medium (ISM) in galactic nuclei representing conditions in the Galactic central molecular zone and a higher density AGN model. The behavior of the [C ii] luminosity is calculated as a function of the X-ray luminosity. We also solve the distribution of the ionization states of oxygen and nitrogen in highly ionized regions. Results: We find that the dense warm ionized medium (WIM) and dense photon dominated regions (PDRs) dominate the [C ii] emission when no X-rays are present. The X-rays in galactic nuclei can affect strongly the C+ abundance in the WIM, converting some fraction to C2+ and higher ionization states and thus reducing its [C ii] luminosity. For an X-ray luminosity L(X-ray) ≳ 1043 erg s-1 the [C ii] luminosity can be suppressed by a factor of a few, and for very strong sources, L(X-ray) >1044 erg s-1 such as found for many AGNs, the [C ii] luminosity is significantly depressed. Comparison of the model with several extragalactic sources shows that the [C ii] to far-infrared ratio declines for L(X-ray) ≳ 1043 erg s-1, in reasonable agreement with our model. Conclusions: We conclude that X

  8. Competition in rotation-alignment between high-j neutrons and protons in transfermium nuclei

    SciTech Connect

    Al-Khudair, Falih; Long Guilu; Sun Yang

    2009-03-15

    The study of rotation-alignment of quasiparticles probes sensitively the properties of high-j intruder orbits. The distribution of very-high-j orbits, which are consequences of the fundamental spin-orbit interaction, links with the important question of single-particle levels in superheavy nuclei. With the deformed single-particle states generated by the standard Nilsson potential, we perform Projected Shell Model calculations for transfermium nuclei where detailed spectroscopy experiments are currently possible. Specifically, we study the systematical behavior of rotation-alignment and associated band-crossing phenomenon in Cf, Fm, and No isotopes. Neutrons and protons from the high-j orbits are found to compete strongly in rotation-alignment, which gives rise to testable effects. Observation of these effects will provide direct information on the single-particle states in the heaviest nuclear mass region.

  9. Circumferential pressure probe

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K. (Inventor); Moore, Thomas C. (Inventor); Fantl, Andrew J. (Inventor)

    1989-01-01

    A probe for measuring circumferential pressure inside a body cavity is disclosed. In the preferred embodiment, a urodynamic pressure measurement probe for evaluating human urinary sphincter function is disclosed. Along the length of the probe are disposed a multiplicity of deformable wall sensors which typically comprise support tube sections with flexible side wall areas. These are arranged along the length of the probe in two areas, one just proximal to the tip for the sensing of fluid pressure inside the bladder, and five in the sensing section which is positioned within the urethra at the point at which the urinary sphincter constricts to control the flow of urine. The remainder of the length of the probe comprises multiple rigid support tube sections interspersed with flexible support tube sections in the form of bellows to provide flexibility.

  10. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  11. Relativistic Mean Field description of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Gambhir, Y. K.

    1994-03-01

    The Relativistic Mean Field (RMF) approach which essentially is an extension of the original σ — ω model of Walecka, has been applied to exotic nuclei as an illustration. We consider nuclei near Z = 34 in the very interesting 2p-1f region. The calculated binding energies, root mean square radii, deformations and other observables are very satisfactory and are in accordance with the experiment (where available) and also with the available empirical studies. Large deformations and shape co-existence are obtained for several cases.

  12. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  13. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  14. Exotic nuclei with open heavy flavor mesons

    SciTech Connect

    Yasui, Shigehiro; Sudoh, Kazutaka

    2009-08-01

    We propose stable exotic nuclei bound with D and B mesons with respect to heavy quark symmetry. We indicate that an approximate degeneracy of D(B) and D*(B*) mesons plays an important role, and discuss the stability of DN and BN bound states. We find the binding energies 1.4 MeV and 9.4 MeV for each state in the J{sup P}=1/2{sup -} with the I=0 channel. We discuss also possible existence of exotic nuclei DNN and BNN.

  15. Exotic rotations and triaxiality in Nd nuclei

    NASA Astrophysics Data System (ADS)

    Petrache, C. M.

    2015-11-01

    We have recently studied the Nd nuclei up to very high spins and identified a multitude of bands which are interpreted as the manifestation of a nucleus with stable triaxial shape, presenting various types of collective motion: tilted axis and principal axis rotation, wobbling motion, chiral bands. Seniority isomers built on nearly spherical shapes up to very high spins, surrounded by coexisting triaxial bands, have also been observed. The new results obtained from the systematics of the high-spin bands of Nd nuclei are discussed.

  16. Clathrate hydrates in cometary nuclei and porosity

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1988-01-01

    Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.

  17. {gamma}-vibrational states in superheavy nuclei

    SciTech Connect

    Sun Yang; Long Guilu; Al-Khudair, Falih; Sheikh, Javid A.

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  18. {alpha} Decay of Deformed Actinide Nuclei

    SciTech Connect

    Stewart, T.L.; Kermode, M.W.; Beachey, D.J.; Rowley, N.; Grant, I.S.; Kruppa, A.T.

    1996-07-01

    {alpha} decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semiclassical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which is essentially constant for all even-even actinide nuclei. These same amplitudes also give good results for the known anisotropic {alpha}-particle emission of the favored decays of odd nuclei in the same mass region. {copyright} {ital 1996 The American Physical Society.}

  19. Scattering of slow neutrons by bound nuclei

    NASA Astrophysics Data System (ADS)

    Nowak, Ernst

    1982-09-01

    The T-operator for scattering of slow neutrons by a system of bound nuclei is calculated up to quadratic terms in the scattering length. Binding effects as well as effects of multiple scattering have to be included in order to avoid inconsistencies. For the discussion of binding effects one can adopt methods developed by Dietze and Nowak [1] for treating scattering by an elastically bound nucleus. In particular the case of coherent elastic scattering is discussed: we show how the corrections can be expressed in terms of correlation functions and that binding effects are most important for scattering by light nuclei.

  20. Structure of neutron-rich nuclei

    SciTech Connect

    Nazarewicz, W. ||

    1997-11-01

    One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The new data on exotic nuclei are expected to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure of neutron-rich nuclei are discussed from a theoretical perspective.

  1. Pioneer Jupiter orbiter probe mission 1980, probe description

    NASA Technical Reports Server (NTRS)

    Defrees, R. E.

    1974-01-01

    The adaptation of the Saturn-Uranus Atmospheric Entry Probe (SUAEP) to a Jupiter entry probe is summarized. This report is extracted from a comprehensive study of Jovian missions, atmospheric model definitions and probe subsystem alternatives.

  2. Probing neutron rich matter with parity violation

    NASA Astrophysics Data System (ADS)

    Horowitz, Charles

    2016-03-01

    Many compact and energetic astrophysical systems are made of neutron rich matter. In contrast, most terrestrial nuclei involve approximately symmetric nuclear matter with more equal numbers of neutrons and protons. However, heavy nuclei have a surface region that contains many extra neutrons. Precision measurements of this neutron rich skin can determine properties of neutron rich matter. Parity violating electron scattering provides a uniquely clean probe of neutrons, because the weak charge of a neutron is much larger than that of a proton. We describe first results and future plans for the Jefferson Laboratory experiment PREX that measures the thickness of the neutron skin in 208Pb. Another JLAB experiment CREX will measure the neutron radius of 48Ca and test recent microscopic calculations of this neutron rich 48 nucleon system. Finally, we show how measuring parity violation at multiple momentum transfers can determine not just the neutron radius but the full radial structure of the neutron density in 48Ca. A neutron star is eighteen orders of magnitude larger than a nucleus (km vs fm) but both the star and the neutron rich nuclear skin are made of the same neutrons, with the same strong interactions, and the same equation of state. A large pressure pushes neutrons out against surface tension and gives a thick neutron skin. Therefore, PREX will constrain the equation of state of neutron rich matter and improve predictions for the structure of neutron stars. Supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  3. Transfer-induced fission of superheavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Sargsyan, V. V.; Scheid, W.

    2010-07-15

    Possibilities of transfer-induced fission of new isotopes of superheavy nuclei with charge numbers 103-108 are studied for the first time in the reactions {sup 48}Ca+{sup 244,246,248}Cm at energies near the corresponding Coulomb barriers. The predicted cross sections are found to be measurable with the detection of three-body final states.

  4. Form Factors and Radii of Light Nuclei

    SciTech Connect

    Sick, Ingo

    2015-09-15

    We discuss the determination of electromagnetic form factors from the world data on electron–nucleus scattering for nuclei Z ≤ 3, with particular emphasis on the derivation of the moments required for comparison with measurements from electronic/muonic atoms and isotope shifts.

  5. The mass function of Seyfert 1 nuclei

    NASA Technical Reports Server (NTRS)

    Padovani, P.; Burg, R.; Edelson, R. A.

    1990-01-01

    The first mass function of Seyfert 1 nuclei is derived from optical spectra of the complete CfA sample of Seyfert galaxies by estimating the mass for each object from a dynamical relation. An independent estimate is also derived using a complete infrared-selected sample. The two mass functions are indistinguishable. The mean mass of Seyfert 1 nuclei is about 2 x 10 to the 7th solar masses, and the integrated mass density is about 6 x 10 to the 11th solar masses/cu Gpc. This is approximately two orders of magnitude less than the value inferred from the energetics associated with quasar counts. A careful analysis of the various parameters and assumptions involved suggests that this large difference is not due to systematic errors in the determinations. Therefore, the bulk of mass related to the accretion processes connected with past quasar activity does not reside in Seyfert 1 nuclei. Instead, the remnants of past activity must be present in a much larger number of galaxies, and a one-to-one relation between distant and local active galactic nuclei seems then to be excluded.

  6. Shadowing in Compton scattering on nuclei

    SciTech Connect

    Kopeliovich, B. Z.; Schmidt, Ivan; Siddikov, M.

    2010-05-01

    We evaluate the shadowing effect in deeply virtual and real Compton scattering on nuclei in the framework of the color dipole model. We rely on the soft photon wave function derived in the instanton vacuum model and employ the impact parameter dependent phenomenological elastic dipole amplitude. Both the effects of quark and the gluon shadowing are taken into account.

  7. Form Factors and Radii of Light Nuclei

    NASA Astrophysics Data System (ADS)

    Sick, Ingo

    2015-09-01

    We discuss the determination of electromagnetic form factors from the world data on electron-nucleus scattering for nuclei Z ≤ 3, with particular emphasis on the derivation of the moments required for comparison with measurements from electronic/muonic atoms and isotope shifts.

  8. Nuclear Data on Unstable Nuclei for Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, Michael; Bardayan, Daniel; Blackmon, Jeffery; Nesaraja, Caroline; Lingerfelt, Eric; Scott, Jason; Hix, W. Raphael; Chae, Kyungyuk; Ma, Zhanwen; Guidry, Michael; Kozub, Raymond; Sharp, Jacob; Meyer, Richard

    2004-10-01

    The sequence of nuclear reactions occurring in supernova explosions is believed to involve thousands of neutron-rich nuclei, and a knowledge of the properties of these nuclei is essential to calculating the element synthesis in these cataclysmic events. Similarly, information on proton-rich nuclei is needed to understand nova explosions occurring on the surfaces of white dwarf stars and X-ray bursts occurring on the surfaces of neutron stars. Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) and elsewhere have prompted the evaluation of a number of reactions involving unstable nuclei needed for stellar explosion studies. Recent evaluation efforts will be presented. To ensure that the latest relevant experimental and theoretical nuclear physics results are rapidly incorporated into astrophysical models, we have created a new computational infrastructure for nuclear astrophysics data. Available on-line at www.nucastrodata.org, a simple point-and-click interface guides users to convert evaluated nuclear reaction and structure information as input into thermonuclear reaction rates in a variety of output formats. It also enables users to combine a new reaction rate with an existing library, as well as to create, merge, store, document, and share custom libraries. Future capabilities will include tools to carry out data evaluations and to calculate and visualize the synthesis of elements in astrophysical environments. The site www.nucastrodata.org also features a comprehensive set of links (over 60 so far) to nuclear datasets around the world which are important for nuclear astrophysics studies.

  9. Focus: DNA probes

    SciTech Connect

    Not Available

    1986-11-01

    Progress in the development of DNA probes for the identification and quantitation of specific genetic sequences in biological samples is reviewed. Current research efforts in the development of DNA probes for the diagnosis of a wide variety of bacterial, viral, and other infectious diseases, such as herpes simplex and cytomegalovirus, and inherited genetic diseases such as cystic fibrosis and sickle cell anemia are discussed. Progress in development of DNA probe assays for cancer diagnosis, detection of Salmonella food poisoning, tissue typing (detection of histocompatibility antigens), mutagen screening, and animal diseases, among other applications is included.

  10. ALEX neutral beam probe

    SciTech Connect

    Pourrezaei, K.

    1982-01-01

    A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade was designed.

  11. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2007-07-03

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  12. Foldable polymers as probes

    DOEpatents

    Li, Alexander D. Q.; Wang, Wei

    2009-07-07

    Disclosed herein are novel probes, which can be used to detect and identify target molecules of interest in a sample. The disclosed probes can be used to monitor conformational changes induced by molecular recognition events in addition to providing signaling the presence and/or identity of a target molecule. Methods, including solid phase synthesis techniques, for making probe molecules that exhibit changes in their optical properties upon target molecule binding are described in the disclosure. Also disclosed herein are novel chromophore moieties, which have tailored fluorescent emission spectra.

  13. Chemical sensing flow probe

    DOEpatents

    Laguna, George R.; Peter, Frank J.; Butler, Michael A.

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  14. Chemical sensing flow probe

    DOEpatents

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  15. BEAM CONTROL PROBE

    DOEpatents

    Chesterman, A.W.

    1959-03-17

    A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

  16. The formation and decay of superheavy nuclei produced in 48Ca-induced reactions

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Balasubramaniam, M.; Gupta, Raj K.; Münzenberg, G.; Scheid, W.

    2003-04-01

    The formation of superheavy nuclei in 48Ca+232Th, 238U, 242,244Pu and 248Cm reactions and their subsequent decay are studied within the quantum mechanical fragmentation theory (QMFT) and the QMFT-based preformed cluster decay model (PCM) of Gupta and collaborators. According to QMFT, all these 48Ca-induced reactions are cold fusion reactions with relative excitation energies larger than those for the Pb-induced cold fusion reactions and smaller than those for the lighter beam, i.e. Mg, Si or S-induced hot fusion reactions. The same reactions were first suggested by Gupta et al in 1977 on the basis of QMFT, and this study re-establishes the same result. In fact, for such heavy isotopes of Z = 110 to 116, 50Ca is shown to be a better beam for cold fusion, but 50Ca is a radioactive nucleus. The alpha-decay half-lives of these nuclei after 3n and/or 4n evaporations, i.e. of the evaporation residues of these compound systems, calculated on PCM compare reasonably well with the experiments published by the Dubna group and another recent calculation. As expected for such rare decays, PCM calculations show that the alpha-preformation factors are small, ~10-8 to 10-10. The possible competition of alpha-decays with heavy cluster emissions from these superheavy nuclei is also probed from the point of view of searching for new nuclear structure information and possible future experiments with such exotic nuclei. The decay half-lives for some clusters are in fact shown to be lower than the limits of experiments for nuclei with enough available atoms.

  17. Physics of Exotic Nuclei at RIBF

    NASA Astrophysics Data System (ADS)

    Sakurai, Hiroyoshi

    2014-09-01

    ``Exotic nuclei'' far from the stability line are unique objects of many-body quantum system, where ratios of neutron number to proton number are much larger or much smaller than those of nuclei found in nature. Their exotic properties and phenomena emerge from their large isospin asymmetry, and even affect scenarios of nucleosynthesis in the universe. Efforts have been made to produce and investigate such exotic nuclei at the accelerator facilities in the world. One of the facilities, the Radioactive Isotope Beam Factory (RIBF) facility at RIKEN, Japan has delivered intense radioactive isotope (RI) beams since 2007. In US, the Facility for Rare Isotope Beams is being constructed to start around 2020. To access nuclei far from the stability line, especially neutron-rich nuclei, the RIBF facility is highly optimized for inflight production of fission fragments via a U beam. The Super-conducting Ring Cyclotron delivers a 345 MeV/u U beam. The U nuclide is converted at a target to fission fragments. An inflight separator BigRIPS was designed to collect about 50% of fission fragments produced at the target and separate nuclei of interest. The RI beams produced at BigRIPS are then delivered to several experimental devices. Large-scale international collaborations have been formed at three spectrometers to conduct unique programs for the investigation of decay properties single particle orbits, collective motions, nucleon correlation, and the equation-of-state of asymmetric nuclear matter. Nuclear binding energy will be measured at a newly constructed ring for the r-process path, and charge distribution of exotic nuclei will be examined at a unique setup of an RI target section in an electron storage ring. Ultra slow RI beams available at a gas catcher system will be utilized for table-top and high precision measurements. In this talk, I would give a facility overview of RIBF, and introduce objectives at RIBF. Special emphasis would be given to selected recent highlights

  18. Functional Probes for Scanning Probe Microscopy

    NASA Astrophysics Data System (ADS)

    Akiyama, Kotone; Eguchi, Toyoaki; An, Toshu; Fujikawa, Yasunori; Hasegawa, Yukio; Sakurai, Toshio

    2007-03-01

    For superior performance of scanning probe microscopy, we are working to fabricate functional probes. For Kelvin probe force microscopy, we fabricated a metal-tip cantilever by attaching a thin metal wire to a regular Si cantilever and milling it by focused ion beam (FIB)^1. By using the W tip with a curvature radius of 3.5 nm, we obtained the potential profile of Ge/Si(105) surface in atomic resolution with the energy resolution better than 3 meV^2. For synchrotron-radiation-light-irradiated scanning tunneling microscopy which aims at atomically resolved elemental analysis, we fabricated a glass-coated W tip using FIB^3. It is found that the glass coating blocks the unwanted secondary electrons, which come from large area of the sample, by a factor of 40 with respect to the case no coating. Using the tip to detect the electrons emitted just below the tip, we obtained element specific images with a spatial resolution better than 20 nm under the photo irradiation whose energy is just above the adsorption edge of the element^4. 1 K. Akiyama et al., RSI 76, 033705 (2005) 2 T. Eguchi, K. Akiyama et al., PRL 93, 266102 (2004) 3 K. Akiyama et al., RSI 76, 083711 (2005) 4 T. Eguchi, K. Akiyama et al., APL, in press

  19. Nucleosomal organization of chromatin in sperm nuclei of the bivalve mollusc Aulacomya ater.

    PubMed

    Olivares, C; Ruiz, S

    1991-03-13

    The sperm nuclei of Aulacomya ater, family Mitylidae, contain three proteins (X, Aa5 and Aa6) which are specific to this cell type coexisting with a set of five somatic-type histones. Information about the chromatin structure resulting from this kind of association is scarce. Therefore, we have probed the structure of this sperm chromatin through digestion with micrococcal nuclease in combination with salt fractionation. The data obtained have allowed us to propose a nucleosomal arrangement for this chromatin. However, two types of nucleosomes would be present in agreement with their protein components. PMID:1861676

  20. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  1. Ice Nuclei Production in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  2. Distance probes of dark energy

    NASA Astrophysics Data System (ADS)

    Kim, A. G.; Padmanabhan, N.; Aldering, G.; Allen, S. W.; Baltay, C.; Cahn, R. N.; D'Andrea, C. B.; Dalal, N.; Dawson, K. S.; Denney, K. D.; Eisenstein, D. J.; Finley, D. A.; Freedman, W. L.; Ho, S.; Holz, D. E.; Kasen, D.; Kent, S. M.; Kessler, R.; Kuhlmann, S.; Linder, E. V.; Martini, P.; Nugent, P. E.; Perlmutter, S.; Peterson, B. M.; Riess, A. G.; Rubin, D.; Sako, M.; Suntzeff, N. V.; Suzuki, N.; Thomas, R. C.; Wood-Vasey, W. M.; Woosley, S. E.

    2015-03-01

    This document presents the results from the Distances subgroup of the Cosmic Frontier Community Planning Study (Snowmass 2013). We summarize the current state of the field as well as future prospects and challenges. In addition to the established probes using Type Ia supernovae and baryon acoustic oscillations, we also consider prospective methods based on clusters, active galactic nuclei, gravitational wave sirens and strong lensing time delays. We note that these three elements together make a comprehensive DOE SN program, with a well- sequenced combination of R&D, construction, operations and analysis projects. The DOE SN researchers will be involved in several of these at any given time, since the precision SN cosmology measurement requires an in-depth understanding and use of SN data from all the redshift ranges simultaneously. A future Stage IV space-based SNe project would be the simplest way to match, at high redshift, these precision measurements of Type Ia supernovae at low redshift -measurements needed to provide the same systematics control over the entire redshift range from z ∼ 0.01 to z ∼ 2 . With modest investments in spectroscopic capabilities and a small fraction of mission time, WFIRST-AFTA could be upgraded [Editor's note: and has been upgraded in the current baseline; see Footnote2] to become this project, and would be complementary to the lensing programs of LSST/EUCLID. However, given the timescales and many difficulties of a space mission, there is now a need to explore vigorously a ground-based alternative to fill this important missing element in the DOE program. In particular, an R&D effort to explore the potential of novel ground-based techniques, combining near-IR technology with OH sky-line suppression, could make it possible to accomplish the precision measurements for SNe from SCP, DES, and LSST, complementing and strengthening these currently approved DOE projects.

  3. Somatic S-phase pairing of homologous chromosome 3 in interphase nuclei of human peripheral blood lymphocytes

    NASA Astrophysics Data System (ADS)

    Monajembashi, Shamci; Rapp, Alexander; Hausmann, Michael; Dittmar, Heike; Greulich, Karl-Otto

    2000-12-01

    Distances of homologous centromeres and telomeres of human chromosomes were interactively measure din relation to the nuclear diameter. In total about 2000 cell nuclei were acquired by fluorescence microscopy. Here the results are presented for two color fluorescence in situ hybridization (FISH) applied to lymphocyte cell nuclei using commercially available DNA probes for chromosome 3 centromere and 3p- telomere. In 89 cell nuclei (66%) of the homologous centromeres had a distance Dc smaller than 15 percent of the nuclear diameter (dn). For these per definition classified 'paired' centromeres an increased frequency of small distances of homologous telomeres (Dt) was found. Stimulated S-phase cell nuclei were identified by incorporation of bromodeoxyuridine and simultaneous fluorescence labeling by anti-BrdU antibodies. In this case only the centromeres were FISH labeled. Of 301 cell nuclei about 187 (62%) were stimulated and among them 77 (41%) were paired according to the above mentioned criterion (Dc<0,15 dn). These results indicate that proliferating blood lymphocytes show a considerable tendency to centromere pairing. Assuming that the chromosome arm is probably localized between centromere and telomere with a homologous chromatin density, it may be concluded from the data that somatic pairing of whole chromosomes occurs preferentially during S-phase of the cell nucleus.

  4. Tête à Tête of Tomato Yellow Leaf Curl Virus and Tomato Yellow Leaf Curl Sardinia Virus in Single Nuclei

    PubMed Central

    Morilla, Gabriel; Krenz, Björn; Jeske, Holger; Bejarano, Eduardo R.; Wege, Christina

    2004-01-01

    Since 1997 two distinct geminivirus species, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato yellow leaf curl virus (TYLCV), have caused a similar yellow leaf curl disease in tomato, coexisted in the fields of southern Spain, and very frequently doubly infected single plants. Tomatoes as well as experimental test plants (e.g., Nicotiana benthamiana) showed enhanced symptoms upon mixed infections under greenhouse conditions. Viral DNA accumulated to a similar extent in singly and doubly infected plants. In situ tissue hybridization showed TYLCSV and TYLCV DNAs to be confined to the phloem in both hosts, irrespective of whether they were inoculated individually or in combination. The number of infected nuclei in singly or doubly infected plants was determined by in situ hybridization of purified nuclei. The percentage of nuclei containing viral DNA (i.e., 1.4% in tomato or 6% in N. benthamiana) was the same in plants infected with either TYLCSV, TYLCV, or both. In situ hybridization of doubly infected plants, with probes that discriminate between both DNAs, revealed that at least one-fifth of infected nuclei harbored DNAs from both virus species. Such a high number of coinfected nuclei may explain why recombination between different geminivirus DNAs occurs frequently. The impact of these findings for epidemiology and for resistance breeding concerning tomato yellow leaf curl diseases is discussed. PMID:15367638

  5. Technology for Entry Probes

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Arnold, James; Venkatapathy, Ethiraj; Kolawa, Elizabeth; Munk, Michelle; Wercinski, Paul; Laub, Bernard

    2005-01-01

    A viewgraph describing technologies for entry probes is presented. The topics include: 1) Entry Phase; 2) Descent Phase; 3) Long duration atmospheric observations; 4) Survivability at high temperatures; and 5) Summary.

  6. An Ultrasonographic Periodontal Probe

    NASA Astrophysics Data System (ADS)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-01

    Periodontal disease, commonly known as gum disease, affects millions of people. The current method of detecting periodontal pocket depth is painful, invasive, and inaccurate. As an alternative to manual probing, an ultrasonographic periodontal probe is being developed to use ultrasound echo waveforms to measure periodontal pocket depth, which is the main measure of periodontal disease. Wavelet transforms and pattern classification techniques are implemented in artificial intelligence routines that can automatically detect pocket depth. The main pattern classification technique used here, called a binary classification algorithm, compares test objects with only two possible pocket depth measurements at a time and relies on dimensionality reduction for the final determination. This method correctly identifies up to 90% of the ultrasonographic probe measurements within the manual probe's tolerance.

  7. The History of Tidal Disruption Events in Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Aharon, Danor; Mastrobuono Battisti, Alessandra; Perets, Hagai B.

    2016-06-01

    The tidal disruption of a star by a massive black hole (MBH) is thought to produce a transient luminous event. Such tidal disruption events (TDEs) may play an important role in the detection and characterization of MBHs, and in probing the properties and dynamics of their nuclear stellar cluster (NSC) hosts. Previous studies estimated the recent rates of TDEs in the local universe. However, the long-term evolution of the rates throughout the history of the universe has been little explored. Here we consider TDE history, using evolutionary models for the evolution of galactic nuclei. We use a 1D Fokker–Planck approach to explore the evolution of MBH-hosting NSCs, and obtain the disruption rates of stars during their evolution. We complement these with an analysis of TDE history based on N-body simulation data, and find them to be comparable. We consider NSCs that are built up from close-in star formation (SF) or from far-out SF/cluster-dispersal, a few pc from the MBH. We also explore cases where primordial NSCs exist and later evolve through additional SF/cluster-dispersal processes. We study the dependence of the TDE history on the type of galaxy, as well as the dependence on the MBH mass. These provide several scenarios, with a continuous increase of the TDE rates over time for cases of far-out SF and a more complex behavior for the close-in SF cases. Finally, we integrate the TDE histories of the various scenarios to provide a total TDE history of the universe, which can be potentially probed with future large surveys (e.g., LSST).

  8. Reflections on Electric Probes

    NASA Astrophysics Data System (ADS)

    Braithwaite, Nicholas

    2007-10-01

    One of the more immediate temptations for an experimental plasma physicist is to insert some kind of refractory, conducting material into a plasma, as a simple means of probing its charge composition. Irvine Langmuir tried it in the 1920s and was one of the first to develop an electrical probe method in his early work on electrical discharge plasmas. There are now numerous variations on the theme including planar, cylindrical and spherical geometry with single, double and triple probes. There are also probes that resonate, propagate and reciprocate. Some probes are electrostatic and others are electromagnetic; some are effectively wireless; most absorb but some emit. All types can be used in steady and transient plasmas, while special schemes have been devised for RF plasmas, using passive and active compensation. Magnetised plasmas pose further challenges. Each configuration is accompanied by assumptions that constrain both their applicability and the analytical methods that translate the measured currents and voltages variously into charge densities, space potentials, particle fluxes, energy distributions and measures of collisionality. This talk will take a broad look at the options and opportunities for electric probes, principally in the environment of non-equilibrium plasma.

  9. New magic nuclei and neutron-proton pairing

    SciTech Connect

    Boboshin, I. N.

    2008-07-15

    Special features of new magic nuclei and their connection with the shell structure are considered. The mechanism of neutron-proton pairing is proposed as a basis for the formation of new magic nuclei. A law of nucleon pairing is introduced. Spin-parity values are explained for a number of odd-odd nuclei.

  10. Aneuploidies level in sperm nuclei in patients with infertility.

    PubMed

    Alchinbayev, Mirzakarim Karimovich; Aralbayeva, Araylyim Nugmanovna; Tuleyeva, Lazzat Namatullaevna; Duysenbayeva, Svetlana Melsovna; Makazhanov, Marat Abzalovich

    2016-09-01

    Male infertility is a relevant social and medical problem. Male infertility is mostly caused by genetic disorders. The purpose of the study was to analyze the correlation of chromosome aberrations, as well as DNA fragmentation and various manifestations of spermatogenesis disorder. Sperm samples of 58 males with infertility and 23 conditionally healthy males were studied. All patients diagnosed with asthenozoospermia, teratozoospermia, oligoasthenozoospermia and oligoteratozoospermia underwent subsequent analysis of sperm DNA fragmentation. Sperm DNA fragmentation was examined with sperm chromatin dispersion test (sperm chromatin dispersion, Spermprocessor, India) with an Axioscope 40 fluorescent microscope. Fluorescence in situ hybridization with fluorescent probes (Vysis Multi Vysion PGT, Abbot Molecular) was used to study chromosome abnormalities in sperm nuclei with regard to X and Y chromosomes, as well as to chromosomes 18 and 21. It was found that the development of pathospermia was characterized by genetic discontinuity, which manifests as DNA fragmentation and disjunction of chromosomes in meiosis with spermatogenesis. It was also found that the prevailing type of pathospermia in men with infertility was oligozoospermia. In addition, this group also had the highest rate of numerical chromosome abnormalities. This was caused by the degeneration of spermatozoids with aneuploidies in chromosomes. PMID:27269280

  11. Observation of spatial propagation of amyloid assembly from single nuclei

    PubMed Central

    Knowles, Tuomas P. J.; White, Duncan A.; Abate, Adam R.; Agresti, Jeremy J.; Cohen, Samuel I. A.; Sperling, Ralph A.; De Genst, Erwin J.; Dobson, Christopher M.; Weitz, David A.

    2011-01-01

    The crucial early stages of amyloid growth, in which normally soluble proteins are converted into fibrillar nanostructures, are challenging to study using conventional techniques yet are critical to the protein aggregation phenomena implicated in many common pathologies. As with all nucleation and growth phenomena, it is difficult to track individual nuclei in traditional macroscopic experiments, which probe the overall temporal evolution of the sample, but do not yield detailed information on the primary nucleation step as they mix independent stochastic events into an ensemble measurement. To overcome this limitation, we have developed microdroplet assays enabling us to detect single primary nucleation events and to monitor their subsequent spatial as well as temporal evolution, both of which we find to be determined by secondary nucleation phenomena. By deforming the droplets to high aspect ratio, we visualize in real-time propagating waves of protein assembly emanating from discrete primary nucleation sites. We show that, in contrast to classical gelation phenomena, the primary nucleation step is characterized by a striking dependence on system size, and the filamentous protein self-assembly process involves a highly nonuniform spatial distribution of aggregates. These findings deviate markedly from the current picture of amyloid growth and uncover a general driving force, originating from confinement, which, together with biological quality control mechanisms, helps proteins remain soluble and therefore functional in nature. PMID:21876182

  12. Model for resonant plasma probe.

    SciTech Connect

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  13. Collective properties of drip-line nuclei

    SciTech Connect

    Hamamoto, I.; Sagawa, H.

    1996-12-31

    Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.

  14. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  15. Fission Products Evaluation for the Selected Nuclei

    SciTech Connect

    Lee, Y.D.; Chang, J.H.

    2005-05-24

    The neutron cross sections of 19 selected high-priority nuclei were evaluated in the fast energy region. The calculation was compared with the CSISRS experimental data and the ENDF files. Evaluation procedures included an optical-model parameter search, followed by complete nuclear reaction model calculations with parameters validated against experimental data. A spherical and deformed optical model, MSC and MSD, pre-equilibrium exiton, and Hauser-Feshbach with a width fluctuation were used in the EMPIRE code. A considerable improvement was achieved for most of the nuclei cases. The results were merged with the resonance parameters (adopted in ENDF/B-VI.8). The final files were submitted to ENDF/B-VII for review.

  16. Effective Field Theory for Lattice Nuclei

    NASA Astrophysics Data System (ADS)

    Barnea, N.; Contessi, L.; Gazit, D.; Pederiva, F.; van Kolck, U.

    2015-02-01

    We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron, and triton LQCD energies at mπ≈800 MeV , we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6 ground states.

  17. Thermodynamics of pairing transition in hot nuclei

    NASA Astrophysics Data System (ADS)

    Liu, Lang; Zhang, Zhen-Hua; Zhao, Peng-Wei

    2015-10-01

    The pairing correlations in hot nuclei 162Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The thermodynamical quantities are evaluated by the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. An S-shaped heat capacity curve as a function of temperature has been obtained. The properties of hot nuclei, such as entropy and level density are studied in terms of defined seniority component. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.

  18. Effective field theory for lattice nuclei.

    PubMed

    Barnea, N; Contessi, L; Gazit, D; Pederiva, F; van Kolck, U

    2015-02-01

    We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in LQCD simulations carried out at pion masses heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron, and triton LQCD energies at m_{π}≈800  MeV, we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and mass-6 ground states. PMID:25699436

  19. Shell model for warm rotating nuclei

    SciTech Connect

    Matsuo, M.; Yoshida, K.; Dossing, T.

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  20. Kondo effect in charm and bottom nuclei

    NASA Astrophysics Data System (ADS)

    Yasui, Shigehiro

    2016-06-01

    The Kondo effect for isospin-exchange interaction between a D ¯, B meson and a valence nucleon in charm and bottom atomic nuclei including the discrete energy levels for valence nucleons is discussed. To investigate the binding energy by the Kondo effect, I introduce the mean-field approach for the bound state of the D ¯, B meson in charm and bottom nuclei. Assuming a simple model, I examine the validity of the mean-field approximation by comparing the results with the exact solutions. The effect of the quantum fluctuation is estimated beyond the mean-field approximation. The competition between the Kondo effect and the other correlations in valence nucleons, the isospin symmetry breaking and the nucleon pairings, are discussed.

  1. Starbursts in Low Luminosity Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Cid Fernandes, Roberto

    2005-05-01

    Low Luminosity Active Galactic Nuclei (LLAGN), which comprise low-ionization nuclear emission-line regions (LINERs) and transition-type objects (TOs), represent the most common type of nuclear activity. Here, we search for spectroscopic signatures of starbursts and post-starbursts in LLAGN, and investigate their relationship to the ionization mechanism in LLAGN. The method used is based on the stellar population synthesis of the circumnuclear optical continuum of these galaxies. We have found that intermediate-age populations (108-109 yr) are very common in weak-[O I] LLAGN, but that very young stars (≤107 yr) contribute very little to the central optical continuum of these objects. However, ˜ 1 Gyr ago these nuclei harboured starbursts of size ˜ 100 pc and masses 107-108 M⊙. Meanwhile, most of the strong-[O I] LLAGN have predominantly old stellar populations.

  2. Reverberation mapping of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, Bradley M.

    1993-01-01

    The broad emission lines in the spectra of active galactic nuclei respond to variations in the luminosity of the central continuum source with a delay due to light-travel time effects within the emission-line region. It is therefore possible through the process of 'reverberation mapping' to determine the geometry and kinematics of the emission-line region by careful monitoring of the continuum variations and the resulting emission-line response. In this review, I will discuss progress in application of the reverberation mapping technique. I will describe the underlying assumptions and limitations of the method, discuss how the results obtained to date are changing our understanding of active nuclei, and outline several new questions that might be addressed through further reverberation mapping programs.

  3. How do nuclei really vibrate or rotate

    SciTech Connect

    Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.

    1983-01-01

    By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated.

  4. SEARCH FOR NUCLEI CONTAINING TWO STRANGE QUARKS.

    SciTech Connect

    MAY,M.

    1997-10-13

    This paper discusses a search for nuclei containing two strange quarks performed at Brookhaven National Laboratory. The goals and approach of experiment E885 are reviewed. Preliminary missing mass spectra for a subset of the data are presented, showing sensitivity for {Xi} hypernuclei and H particle searches. Existence of an angular correlation between pions in the sequential decay of {Lambda}{Lambda} hypernuclei is suggested on theoretical grounds.

  5. On Closed Shells in Nuclei. II

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1949-04-01

    Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.

  6. Green's function calculations of light nuclei

    NASA Astrophysics Data System (ADS)

    Sun, ZhongHao; Wu, Qiang; Xu, FuRong

    2016-09-01

    The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.

  7. Accretion disk thermal instability in galactic nuclei

    NASA Technical Reports Server (NTRS)

    Mineshige, S.; Shields, G. A.

    1990-01-01

    The nonlinear evolution and spatial propagation of the thermal instability in accretion disks in galactic nuclei are investigated. Integrations of the vertical structure of the disks are described for different alpha prescriptions, and the thermal stability is examined. Global time-dependent calculations of the unstable disks are performed which show that there are two distinct types of behavior according to the assumed prescription for the viscosity parameter: the 'purr' type and the 'roar' type. The roar type is analyzed in some detail.

  8. Gamma rays from active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    1990-01-01

    The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.

  9. Soft radiative strength in warm nuclei

    SciTech Connect

    Becker, J A; Bernstein, L A; Garrett, P E; Nelson, R O; Schiller, A; Voinov, A; Agvaanluvsan, U; Algin, E; Belgya, T; Chankova, R; Guttormsen, M; Mitchell, G E; Rekstad, J; Siem, S

    2004-03-08

    Unresolved transitions in the nuclear {gamma}-ray cascade produced in the decay of excited nuclei are best described by statistical concepts: a continuous radiative strength function (RSF) and level density yield mean values of transition matrix elements. Data on the soft (E{sub {gamma}} < 3-4 MeV) RSF for transitions between warm states (i.e. states several MeV above the yrast line) have, however, remained elusive.

  10. Complex fragment emission from hot compound nuclei

    SciTech Connect

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs.

  11. Fusion and Breakup of Weakly Bound Nuclei

    SciTech Connect

    Gomes, P. R. S.; Lubian, J.; Padron, I.; Crema, E.; Chamon, L. C.; Hussein, M. S.; Canto, L. F.

    2006-08-14

    We discuss the influence of the breakup process of weakly bound nuclei on the fusion cross section. The complete fusion for heavy targets is found to be suppressed due to the incomplete fusion following the breakup, whereas this effect is negligible for light targets. The total fusion cross sections for stable projectiles are not affected by the breakup process, whereas it is suppressed for halo projectiles. The non capture breakup is the dominant process at sub-barrier energies.

  12. Convective heat flow probe

    DOEpatents

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  13. Convective heat flow probe

    DOEpatents

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  14. Surgical force detection probe

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Roberts, Paul; Scott, Charles; Prass, Richard

    1991-01-01

    The development progress of a precision electro-mechanical instrument which allows the detection and documentation of the forces and moment applied to human tissue during surgery (under actual operation room conditions), is reported. The pen-shaped prototype probe which measures 1/2 inch in diameter and 7 inches in length was fabricated using an aerodynamic balance. The aerodynamic balance, a standard wind tunnel force and moment sensing transducer, measures the forces and the moments transmitted through the surgeon's hand to the human tissue during surgery. The prototype probe which was fabricated as a development tool was tested successfully. The final version of the surgical force detection probe will be designed based on additional laboratory tests in order to establish the full scale loads. It is expected that the final product will require a simplified aerodynamic balance with two or three force components and one moment component with lighter full scale loads. A signal conditioner was fabricated to process and display the outputs from the prototype probe. This unit will be interfaced with a PC-based data system to provide automatic data acquisition, data processing, and graphics display. The expected overall accuracy of the probe is better than one percent full scale.

  15. Ice Nuclei Measurements From AMAZE-08

    NASA Astrophysics Data System (ADS)

    Prenni, A. J.; Petters, M. D.; Demott, P. J.; Kreidenweis, S. M.

    2008-12-01

    The Amazon Basin is the largest intact tropical forest in the world, covering four million square kilometers. With large emissions of gases and particulate matter, this ecosystem plays an important role in the global atmosphere. Assessing gaseous and particulate emissions from the Amazon Basin and the climatic effects of these emissions has been the focus of several major field campaigns. However, until recently there have been no measurements aimed at characterizing ice nuclei (IN) in this region. Such measurements are critical for understanding cloud and precipitation processes. In this paper, we present recent ice nuclei measurements from the AMazonian Aerosol characteriZation Experiment 2008 (AMAZE-08). These data were collected during the rainy season at the Instituto Nacional de Pesquisas da Amazonia TT34 tower northeast of Manaus, Brazil. Results are presented for ice nuclei number concentration and elemental composition collected using the Colorado State University Continuous Flow ice thermal Diffusion Chamber (CFDC). The data suggest that, like many regions of the world, IN concentrations are largely controlled by the presence of desert dust, in this case transported from Africa. However, carbonaceous particles also made up a significant fraction of IN. Based on complementary aerosol composition measurements, we consider possible sources of this carbonaceous fraction.

  16. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  17. Formation of Slow Heavy Mesons in Nuclei

    NASA Astrophysics Data System (ADS)

    Hirenzaki, Satoru

    2009-10-01

    Meson - nucleus systems such as mesic atoms and mesic nuclei have been studied systematically for a long time. The binding energies and widths of these bound states provide us unique and valuable information on the meson-nucleus interactions. In addition, the measurements of light vector meson spectra in nucleus as the invariant mass of lepton pairs have also provided interesting information. So far, the properties of relatively light mesons have been studied well both theoretically and experimentally. In this contribution, to extend our studies to a domain of heavier mesons, we would like to report recent research activities on the formation of heavy mesons in nuclei with small momenta. We think it is very interesting to consider the in-medium properties of heavier mesons including heavy quark contents. As a first step to heavier mesons, we will report our studies on formation of slow phi meson in nuclei. In-medium properties of phi meson have been studied theoretically, which have close relation to K and K-bar meson properties in medium because of the strong coupling of phi to K and K-bar. The study of QCD sum rule and the data taken at KEK suggested 3 percent mass reduction of phi at the normal nuclear density, while the phi meson selfenergy calculated in some effective models indicated a significantly smaller attractive potential for phi. We will show the calculated spectra for some reactions.

  18. Multi-K nuclei and kaon condensation

    SciTech Connect

    Gazda, D.; Mares, J.; Friedman, E.; Gal, A.

    2008-04-15

    We extend previous relativistic mean-field (RMF) calculations of multi-K nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting K separation energy B{sub K}, as well as the associated nuclear and K-meson densities, saturate with the number {kappa} of K mesons for {kappa}>{kappa}{sub sat}{approx}10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because B{sub K} generally does not exceed 200 MeV, it is argued that multi-K nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and K{sup 0} mesons, or protons and K{sup -} mesons, and study their properties.

  19. Fission Barriers of Compound Superheavy Nuclei

    SciTech Connect

    Pei, Junchen; Nazarewicz, Witold; Sheikh, J. A.; Kerman, A. K.

    2009-01-01

    The dependence of fission barriers on the excitation energy of the compound nucleus impacts the survival probability of superheavy nuclei synthesized in heavy-ion fusion reactions. We study the temperature-dependent fission barriers by means of the self-consistent nuclear density functional theory. The equivalence of isothermal and isentropic descriptions is demonstrated. The effect of the particle gas is found to be negligible in the range of temperatures studied. Calculations have been carried out for ^{264}Fm, ^{272}Ds, ^{278}112, ^{292}114, and ^{312}124. For nuclei around ^{278}112 produced in "cold fusion" reactions, we predict a more rapid decrease of fission barriers with temperature as compared to the nuclei around ^{292}114 synthesized in "hot fusion" experiments. This is explained in terms of the difference between the ground-state and fission-barrier temperatures. Our calculations are consistent with the long survival probabilities of the superheavy elements produced in Dubna with the ^{48}Ca beam.

  20. Few-Body Models of Light Nuclei

    NASA Astrophysics Data System (ADS)

    Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.

    2015-06-01

    Experiments confirm a variety of cluster structures in many light nuclei. The observation of nuclear halos at drip-lines has accentuated the question of the degrees of freedom for bound and low-lying continuum states. In these cases the many-body dynamics of nuclear structure may be well approximated by few-body cluster models that often suggest conceptually simple approaches explaining successfully many features of light nuclei. Thus few-body cluster models have been successfully used for description of the nuclear structure of weakly bound halo nuclei and their emergent cluster degrees of freedom. They have attractive features supplying in a most transparent way the asymptotic behavior and continuum properties of weakly bound systems. Such models assume a separation in internal cluster (core) degrees of freedom and the relative motion of few-body constituents. Such separation is only an approximation, and low-lying states appear where the core cannot be considered as inert system and additional degrees of freedom connected to excited core states have to be taken into account. For fixed total angular momentum a coupling to excited core states having different spins involves additional partial waves into the consideration. This allows to account for some emergent (collective) core degrees of freedom and gives a more realistic description of nuclear properties. It is an analogue to increasing the number of shells within the framework of shell-model approaches. Some examples from recent nuclear structure exploration within few-body halo cluster models are presented.

  1. The influence of s states near threshold on the structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Hoffman, Calem

    2015-10-01

    A recent work identified the role of neutron s states, and their proximity to the neutron separation threshold, on the ordering of the 1s1 / 2 and 0d5 / 2 single-particle levels in light nuclei. A simple Woods-Saxon potential was used to reproduce the systematic data available for these two levels with great success by accounting for the s state binding energy. This talk will explore other noticeable trends in light nuclei involving neutron s states and utilizing simple potential models determine the role binding energy plays. The trends and calculations will aim to provide descriptions of data and predictions of yet to be found two-particle two-hole excited states in N = 8 and 10 nuclei ranging from Z = 4-9, as well as the energies of mirror states in neutron deficient Al and Na isotopes. Results will be compared with state-of-the-art calculations. Possible future measurements capable of probing these predictions will be discussed as well. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357.

  2. Pressure measuring probe

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr. (Inventor)

    1988-01-01

    The invention is a probe for measuring changes in pressure in a high velocity fluid stream over and adjacent to the surface of an object. The probe is formed of an exterior housing having a closed pressure chamber in which a piezoelectric pressure transducer is mounted. An open connector tube having a probe tip passes a portion of the fluid stream into the closed pressure chamber; any change of pressure within, which requires a settling-time to appear in the closed pressure chamber, is inversely proportional to the cross-sectional area of the connector tube. A cooling chamber formed around the pressure chamber is connected to a source of cooling fluid by means of inlet and outlet tubes.

  3. Multispectral imaging probe

    SciTech Connect

    Sandison, David R.; Platzbecker, Mark R.; Descour, Michael R.; Armour, David L.; Craig, Marcus J.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector.

  4. Multispectral imaging probe

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Descour, M.R.; Armour, D.L.; Craig, M.J.; Richards-Kortum, R.

    1999-07-27

    A multispectral imaging probe delivers a range of wavelengths of excitation light to a target and collects a range of expressed light wavelengths. The multispectral imaging probe is adapted for mobile use and use in confined spaces, and is sealed against the effects of hostile environments. The multispectral imaging probe comprises a housing that defines a sealed volume that is substantially sealed from the surrounding environment. A beam splitting device mounts within the sealed volume. Excitation light is directed to the beam splitting device, which directs the excitation light to a target. Expressed light from the target reaches the beam splitting device along a path coaxial with the path traveled by the excitation light from the beam splitting device to the target. The beam splitting device directs expressed light to a collection subsystem for delivery to a detector. 8 figs.

  5. Interaction of eta mesons with nuclei.

    PubMed

    Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status

  6. Interaction of eta mesons with nuclei

    NASA Astrophysics Data System (ADS)

    Kelkar, N. G.; Khemchandani, K. P.; Upadhyay, N. J.; Jain, B. K.

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π+n → ηp, pd → 3Heη, p 6Li → 7Be η and γ 3He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations. The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ⩽ ℜe aηN ⩽ 1.03 fm and 0.16 ⩽ ℑm aηN ⩽ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as ^3_{\\eta} He and ^{25}_{\\eta} Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall

  7. Comparison between radial sensitivity of different strongly interacting probes

    SciTech Connect

    Friedman, E.; Gils, H.J.; Rebel, H.

    1982-03-01

    We investigate the radial sensitivity of different strongly interacting probes to neutron density distributions in nuclei. The experiments considered are elastic scattering of 104 MeV ..cap alpha.. particles, of 1 GeV protons, of 130 MeV pions and also shifts and widths of pionic atom levels. The Fourier-Bessel method is used, thus avoiding any prior assumption on the neutron densities. The enable statistically meaningful comparisons between the different experiments, ''pseudodata'' are used, which are based on the real data.

  8. Intermediate energy semileptonic probes of the hadronic neutral current

    SciTech Connect

    Musolf, M.J. ||; Donnelly, T.W.; Dubach, J.; Pollock, S.J. |; Kowalski, S.; Beise, E.J. |

    1993-06-01

    The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed.

  9. Pioneer III Probe

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Looking more like surgeons, these technicians wearing 'cleanroom' attire inspect the Pioneer III probe before shipping it to Cape Canaveral, Florida. Pioneer III was launched on December 6, 1958 aboard a Juno II rocket at the Atlantic Missile Range, Cape Canaveral, Florida. The mission objectives were to measure the radiation intensity of the Van Allen radiation belt, test long range communication systems, the launch vehicle and other subsystems. The Juno II failed to reach proper orbital escape velocity. The probe re-entered the Earth's atmosphere on December 7th ending its brief mission.

  10. Probing the Relativistic Jets of Active Galactic Nuclei with Multiwavelength Monitoring

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Aller, Margo

    2005-01-01

    The work completed includes the analysis of observations obtained during Cycle 7 (March 2002-February 2003) of the Rossi X-ray Timing Explorer (RXTE). The project was part of a longer-term, continuing program to study the X-ray emission process in blazars and radio galaxies in collaboration with Dr. Ian McHardy (U. of Southampton, UK) and Prof. Thomas Balonek (Colgate U.). The goals of the program are to study the X-ray emission mechanism in blazars and radio galaxies and the relation of the X-ray emission to changes in the relativistic jet. The program includes contemporaneous brightness and linear polarization monitoring at radio and optical wavelengths, total and polarized intensity imaging at at 43 GHz with a resolution of 0.1 milliarcseconds with the VLBA, and well-sampled X-ray light curves obtained from a series of approved RXTE programs. The objects studied in the time period covered by the grant were 3C 120, 3C 279, PKS 1510-089, and 3C 273, all with radio jets containing bright knots that appear to move at superluminal speeds. During RXTE Cycle 7, the project was awarded RXTE time to monitor PKS 1510-089 two times per week, 3C 273 and 3C 279 three times per week, and 3C 120 four times per week. In addition, 3C273 and 3C 279 were observed several times per day during a ten-day period in April 2002. The X-ray data, including those from earlier cycles, were compared with radio measurements obtained in the centimeter-wave band by the monitoring program of Drs. Margo and Hugh Aller at the University of Michigan Radio Astronomy Observatory, monthly imaging observations with the VLBA at 43 GHz, and optical observations obtained at several telescopes around the world.

  11. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    NASA Astrophysics Data System (ADS)

    Krause, Marina; te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  12. Case-specific, breakpoint-spanning DNA probes for analysis of single interphase cells.

    PubMed

    Lersch, R A; Fung, J; Munné, S; Pedersen, R A; Weier, H U

    2000-01-01

    Balanced reciprocal translocations are known to interfere with homolog pairing in meiosis. Many individuals carrying such chromosomal abnormalities suffer from reduced fertility or spontaneous abortions and seek help in the form of assisted reproductive technology. Although most translocations are relatively easy to detect in metaphase cells, the majority of embryonic cells biopsied in the course of in vitro fertilization (IVF) procedures are in interphase. These nuclei are, thus, unsuitable for analysis by chromosome banding or painting using fluorescence in situ hybridization (FISH). Our assay, based on FISH detection of breakpoint-spanning DNA probes, identifies translocations in interphase nuclei by microscopic inspection of hybridization domains. Probes are selected that span the breakpoint regions on normal homologs. The probes should hybridize to several hundred kilobases of DNA flanking the breakpoint. The two breakpoint-spanning DNA probes for the translocation chromosomes are labeled in separate colors (e.g., red and green). The translocation event producing two fused red/green hybridization domains can then be detected in interphase cell nuclei using a fluorescence microscope. We applied this scheme to analyze somatic and germ cells from 21 translocation patients, each with distinct breakpoints. Here, we summarize our experience and provide a description of strategies, cost estimates, as well as typical time frames. PMID:11142758

  13. Numerical simulations of the cascades of the nuclei {sup 152,154,156}Dy with self-consistent collective strength functions

    SciTech Connect

    Khoo, T.L.; Lauritsen, T.; Martin, V.; Egido, J.L.

    1995-08-01

    Mean-field theories predict phase transitions in nuclei, such as a transition from collective to oblate shapes. However, fluctuations in the finite nucleus smear out the transition, and it is an interesting problem in mesoscopic physics to search for a remnant signature of the phase transition. Temperature-dependent Hartree-Fock theory predicts that the collective-to-oblate phase transition boundaries occur in a domain that can be favorably probed in experiments in {sup 152,154,156}Dy. These calculations were motivated by our past measurements of the quasicontinuum E2 spectra in these nuclei.

  14. Pseudorapidity configurations in collisions between gold nuclei and track-emulsion nuclei

    SciTech Connect

    Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V. Navotny, V. S. Chudakov, V. M.

    2010-07-15

    A method of parametrically invariant quantities is developed for studying pseudorapidity configurations in nucleus-nucleus collisions involving a large number of secondary particles. In simple models where the spectrum of pseudorapidities depends on three parameters, the shape of the spectrum may differ strongly from the shape of pseudorapidity configurations in individual events. Pseudorapidity configurations in collisions between gold nuclei of energy 10.6 GeV per nucleon and track-emulsion nuclei are contrasted against those in random stars calculated theoretically. An investigation of pseudorapidity configurations in individual events is an efficient method for verifying theoretical models.

  15. Cervical Neoplasia Probe Control

    Energy Science and Technology Software Center (ESTSC)

    1997-01-24

    This software, which consists of a main executive and several subroutines, performs control of the optics, image acquisition, and Digital Signal Processing (DSP) of this image, of an optical based medical instrument that performs fluoresence detection of precancerous lesions (neoplasia) of the human cervix. The hardware portion of this medical instrument is known by the same name Cervical Neoplasia Probe (CNP)

  16. Endocavity Ultrasound Probe Manipulators.

    PubMed

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2013-06-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  17. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  18. The Phoenix Pluto Probe

    NASA Technical Reports Server (NTRS)

    Gunning, George R.; Spapperi, Jeff; Wilkinson, Jeffrey P.; Eldred, Jim; Labij, Dennis; Strinni, Meredith

    1990-01-01

    A design proposal for an unmanned probe to Pluto is presented. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  19. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  20. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  1. Experimenting with Temperature Probes.

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    1989-01-01

    Presented are four activities which are designed to familiarize children with the multiple uses of computers and help them learn about heat and temperature using temperature probes. Included are the tempering effect of water, heat capacity, caloric content of foods, and weather. Hardware and software are discussed. (CW)

  2. Endocavity Ultrasound Probe Manipulators

    PubMed Central

    Stoianovici, Dan; Kim, Chunwoo; Schäfer, Felix; Huang, Chien-Ming; Zuo, Yihe; Petrisor, Doru; Han, Misop

    2014-01-01

    We developed two similar structure manipulators for medical endocavity ultrasound probes with 3 and 4 degrees of freedom (DoF). These robots allow scanning with ultrasound for 3-D imaging and enable robot-assisted image-guided procedures. Both robots use remote center of motion kinematics, characteristic of medical robots. The 4-DoF robot provides unrestricted manipulation of the endocavity probe. With the 3-DoF robot the insertion motion of the probe must be adjusted manually, but the device is simpler and may also be used to manipulate external-body probes. The robots enabled a novel surgical approach of using intraoperative image-based navigation during robot-assisted laparoscopic prostatectomy (RALP), performed with concurrent use of two robotic systems (Tandem, T-RALP). Thus far, a clinical trial for evaluation of safety and feasibility has been performed successfully on 46 patients. This paper describes the architecture and design of the robots, the two prototypes, control features related to safety, preclinical experiments, and the T-RALP procedure. PMID:24795525

  3. Monitoring UVR induced damage in single cells and isolated nuclei using SR-FTIR microspectroscopy and 3D confocal Raman imaging.

    PubMed

    Lipiec, Ewelina; Bambery, Keith R; Heraud, Philip; Kwiatek, Wojciech M; McNaughton, Don; Tobin, Mark J; Vogel, Christian; Wood, Bayden R

    2014-09-01

    SR-FTIR in combination with Principal Component Analysis (PCA) was applied to investigate macromolecular changes in a population of melanocytes and their extracted nuclei induced by environmentally relevant fluxes of UVR (Ultraviolet Radiation). Living cells and isolated cellular nuclei were investigated post-irradiation for three different irradiation dosages (130, 1505, 15,052 Jm(-2) UVR, weighted) after either 24 or 48 hours of incubation. DNA conformational changes were observed in cells exposed to an artificial UVR solar-simulator source as evidenced by a shift in the DNA asymmetric phosphodiester vibration from 1236 cm(-1) to 1242 cm(-1) in the case of the exposed cells and from 1225 cm(-1) to 1242 cm(-1) for irradiated nuclei. PCA Scores plots revealed distinct clustering of spectra from irradiated cells and nuclei from non-irradiated controls in response to the range of applied UVR radiation doses. 3D Raman confocal imaging in combination with k-means cluster analysis was applied to study the effect of the UVR radiation exposure on cellular nuclei. Chemical changes associated with apoptosis were detected and included intra-nuclear lipid deposition along with chromatin condensation. The results reported here demonstrate the utility of SR-FTIR and Raman spectroscopy to probe in situ DNA damage in cell nuclei resulting from UVR exposure. These results are in agreement with the increasing body of evidence that lipid accumulation is a characteristic of aggressive cancer cells, and are involved in the production of membranes for rapid cell proliferation. PMID:24995477

  4. Mechanosensitive membrane probes.

    PubMed

    Dal Molin, Marta; Verolet, Quentin; Soleimanpour, Saeideh; Matile, Stefan

    2015-04-13

    This article assembles pertinent insights behind the concept of planarizable push-pull probes. As a response to the planarization of their polarized ground state, a red shift of their excitation maximum is expected to report on either the disorder, the tension, or the potential of biomembranes. The combination of chromophore planarization and polarization contributes to various, usually more complex processes in nature. Examples include the color change of crabs or lobsters during cooking or the chemistry of vision, particularly color vision. The summary of lessons from nature is followed by an overview of mechanosensitive organic materials. Although often twisted and sometimes also polarized, their change of color under pressure usually originates from changes in their crystal packing. Intriguing exceptions include the planarization of several elegantly twisted phenylethynyl oligomers and polymers. Also mechanosensitive probes in plastics usually respond to stretching by disassembly. True ground-state planarization in response to molecular recognition is best exemplified with the binding of thoughtfully twisted cationic polythiophenes to single- and double-stranded oligonucleotides. Molecular rotors, en vogue as viscosity sensors in cells, operate by deplanarization of the first excited state. Pertinent recent examples are described, focusing on λ-ratiometry and intracellular targeting. Complementary to planarization of the ground state with twisted push-pull probes, molecular rotors report on environmental changes with quenching or shifts in emission rather than absorption. The labeling of mechanosensitive channels is discussed as a bioengineering approach to bypass the challenge to create molecular mechanosensitivity and use biological systems instead to sense membrane tension. With planarizable push-pull probes, this challenge is met not with twistome screening, but with "fluorescent flippers," a new concept to insert large and bright monomers into oligomeric

  5. The superdeformation phenomenon in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Vivien, J. P.

    After the discovery of discrete rotational bands corresponding to superdeformed nuclei with spin around 60h, the study of the structure of these nuclei over the last five years has witnessed a significant expansion in physical understanding with the emergence of new phenomena and in a technical development with the construction of sophisticated apparatus to examine these nuclei. On the eve of the approaching operation of news detectors such as EUROGAM resulting from a French-British collaboration,or the American GAMMASPHERE, this article discusses the present state of knowledge on superdeformation and exposes the theoretical basis as well as recent experimental results in the field. Avec la découverte de bandes de rotations discrètes correspondant à des noyaux superdéformés ayant des moments angulaires avoisinant 60h, l'étude de la structure de ces noyaux connait depuis les cinq dernières années un essor important tant sur le plan de la physique avec l'apparition de phénomènes nouveaux que sur le plan de la technique avec le développement d'appareillages sophistiqués pour scruter ces noyaux. A la veille de l'entrée en fonction de nouveaux détecteurs comme EUROGAM issu d'une collaboration Franco-Britannique ou GAMMASPHERE résultant des efforts des laboratoires Americains, cet article fait le point des connaissances actuelles sur la superdéformation et relate les acquis théoriques ainsi que les resultats expérimentaux accumulés récemment dans ce domaine.

  6. Nuclei at extreme conditions. A relativistic study

    SciTech Connect

    Afanasjev, Anatoli

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  7. The Structure of Nuclei Far from Stability

    SciTech Connect

    Zganjar, E.F.

    1999-02-25

    From among a number of important nuclear structure results that have emerged from our research program during the past few years, two stand out as being of extra significance. These are: (a) the identification of a diabatic coexisting structure in {sup 187}Au which arises solely from differences in proton occupation of adjacent oscillator shells, and (b) the realization of a method for estimating EO strength in nuclei and the resulting prediction that the de-excitation of superdeformed bands may proceed, in some cases, by strong EO transitions.

  8. Self-Consistency Effects In Superheavy Nuclei

    SciTech Connect

    Afanasjev, A.V.; Frauendorf, S.

    2005-04-05

    The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean field theory. Large depression leads to the shell gaps at the proton Z = 120 and neutron N = 172 numbers, while flatter density distribution favors N = 184 for neutrons and leads to the appearance of a Z 126 shell gap and to the decrease of the size of the Z = 120 shell gap. The correlations between the magic shell gaps and the magnitude of central depression are discussed for relativistic and non-relativistic mean field theories.

  9. Cloud condensation nuclei near marine stratus

    NASA Technical Reports Server (NTRS)

    Hudson, James G.; Frisbie, Paul R.

    1991-01-01

    Extensive airborne measurements of cloud condensation nucleus (CCN) spectra and concentrations of total particles, or condensation nuclei (CN), below, in, and above the stratus cloud decks off the southern California coast point to important aerosol-cloud interactions. Consistently low CCN concentrations below cloud appear to be due to cloud scavenging processes which include Brownian coagulation, nucleation, coalescence, and drizzle. The higher CCN and CN concentrations above cloud are associated with ambient ozone concentrations which suggest a link with continental, probably anthropogenic, sources, even at distances of 500 km from the California coast.

  10. Search for Hyperdeformation in Light Xe Nuclei

    NASA Astrophysics Data System (ADS)

    Nyako, B. M.; Papp, F.; Gal, J.; Molnar, J.; Timar, J.; Algora, A.; Dombradi, Zs.; Kalinka, G.; Zolnai, L.; Juhasz, K.; Singh, A. K.; Huebel, H.; Al-Khatib, A.; Bringel, P.; Buerger, A.; Neusser, A.; Schoenwasser, G.; Herskind, B.; Hagemann, G. B.; Hansen, C. R.; Sletten, G.; Scheurer, J. N.; Hannachi, F.; Kmiecik, M.; Maj, A.; Styczen, J.; Zuber, K.; Hauschild, K.; Korichi, A.; Lopez-Martens, A.; Roccaz, J.; Siem, S.; Bednarczyk, P.; Byrski, Th.; Curien, D.; Dorvaux, O.; Duchene, G.; Gall, B.; Khalfallah, F.; Piqueras, I.; Robin, J.; Patel, S. B.; Evans, A. O.; Rainovski, G.; Airoldi, A.; Benzoni, G.; Bracco, A.; Camera, F.; Million, B.; Mason, P.; Paleni, A.; Sacchi, R.; Wieland, O.; La Rana, G.; Moro, R.; Petrache, C. M.; Petrache, D.; de Angelis, G.; Fallon, P.; Lee, I.-Y.; Lisle, J. C.; Cederwall, B.; Lagergren, K.; Lieder, R. M.; Podsvirova, E.; Gast, W.; Jaeger, H.; Redon, N.; Goergen, A.

    2005-04-01

    The ultimate search for hyperdeformation (HD) at high spins with the EUROBALL spectrometer was performed for 126Ba as a hyper long (HLHD) experiment. The DIAMANT ancillary detector was used to tag γ -rays in coincidence with the emitted light charged particles. Using γ -energy correlation methods, the particle--xn-γ data have been analysed to search for hyperdeformed structures in the corresponding residual nuclei. Data in coincidence with one α particle indicate the presence of normal deformed collective bands up to very high spins and the possible occurrence of HD-like ridge structures in 122Xe.

  11. Quantum Monte Carlo calculations for light nuclei.

    SciTech Connect

    Wiringa, R. B.

    1998-10-23

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 40 different (J{pi}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  12. Exploring the Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Volya, Alexander

    In this presentation the Continuum Shell Model (CSM) approach is advertised as a powerful theoretical tool for studying physics of unstable nuclei. The approach is illustrated using 17O as an example, which is followed by a brief presentation of the general CSM formalism. The successes of the CSM are highlighted and references are provided throughout the text. As an example, the CSM is applied perturbatively to 20O allowing one to explore the effects of continuum on positions of weakly bound states and low-lying resonances, as well as to discern some effects of threshold discontinuity.

  13. The surface geometry of exotic nuclei

    SciTech Connect

    Carlson, B. V.; Baldini-Neto, E.; Hirata, D.; Peru-Desenfants, S.; Berger, J.-F.; Chamon, L. C.

    2007-02-12

    We analyze the surface geometry of the spherical even-even Ca, Ni, Sn and Pb nuclei using two approaches: The relativistic Dirac-Hartree-Bogoliubov one with several parameter sets and the non-relativistic Hartree-Fock-Bogoliubov one with the Gogny force. The proton and neutron density distributions are fitted to two-parameter Fermi density distributions to obtain the half-density radii and diffuseness parameters. Those parameters allow us to determine the nature of the neutron skins predicted by the models. The calculations are compared with existing experimental data.

  14. Fusion and reactions of exotic nuclei

    NASA Astrophysics Data System (ADS)

    Martel, I.; Aguilera, E. F.; Acosta, L.; Sánchez-Benítez, A. M.; Wolski, R.

    2011-10-01

    Close to the drip lines, the scattering cross sections of halo nuclei show a different behaviour as compared to the tightly bound projectiles of the stability line. Several experiments carried out in the last decade have been dedicated to investigate the competition between transfer, breakup and fusion channels at energies around and below the Coulomb barrier. The rather complex scenario gives rise to conflicting conclusions concerning the effect of breakup and transfer on reaction dynamics and the sub-barrier fusion process. In this work we discuss recent experimental findings in fusion and reactions of 6He halo nucleus at energies around the Coulomb barrier.

  15. Signatures for quark clustering in nuclei

    SciTech Connect

    Carlson, C.E.; Lassila, K.E.

    1994-04-01

    As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster.

  16. Rotational spacings in superdeformed bands of nuclei

    SciTech Connect

    Chasman, R.R.; Farhan, A.

    1995-08-01

    An unexpected result of the experimental investigation of superdeformed rotational bands is the observation of near-identical dynamic moments of inertia in different nuclei. This phenomenon was also noted in normally deformed rotational bands. A priori, the BCS method is suspect at I = 0 for the treatment of superdeformed nuclear shapes because the single-particle level density near the nuclear surface is small. If it were large, there would be no superdeformed minimum. At high spin, pairing correlations are further weakened, and the BCS method becomes even worse.

  17. Collective excitation spectra of transitional even nuclei

    SciTech Connect

    Quentin, P. Paris-11 Univ., 91 - Orsay . Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse); Deloncle, I.; Libert, J. . Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse); Sauvage, J. . Inst. de Physique Nucleaire)

    1990-11-06

    This talk is dealing with the nuclear low energy collective motion as described in the context of microscopic versions of the Bohr Hamiltonian. Two different ways of building microscopically Bohr collective Hamiltonians will be sketched; one within the framework of the Generator Coordinate Method, the other using the Adiabatic Time-Dependent Hartree-Fock-Boholyubov approximation. A sample of recent results will be presented which pertains to the description of transitional even nuclei and to the newly revisited phenomenon of superdeformation at low spin.

  18. Propagation of heavy cosmic-ray nuclei

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1984-01-01

    Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range Z = 3-83. Details of the application of 'matrix methods' above a few hundred MeV/nucleon, a new treatment of electron capture decay, and a new table of cosmic ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed.

  19. Heavy-particle radioactivity of superheavy nuclei.

    PubMed

    Poenaru, D N; Gherghescu, R A; Greiner, W

    2011-08-01

    The concept of heavy-particle radioactivity (HPR) is changed to allow emitted particles with Z(e) > 28 from parents with Z > 110 and daughter around (208)Pb. Calculations for superheavy (SH) nuclei with Z = 104-124 are showing a trend toward shorter half-lives and larger branching ratio relative to α decay for heavier SHs. It is possible to find regions in which HPR is stronger than alpha decay. The new mass table AME11 and the theoretical KTUY05 and FRDM95 masses are used to determine the released energy. For 124 we found isotopes with half-lives in the range of ns to ps. PMID:21902317

  20. Effective field theory for deformed atomic nuclei

    NASA Astrophysics Data System (ADS)

    Papenbrock, T.; Weidenmüller, H. A.

    2016-05-01

    We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  1. Effective field theory for deformed atomic nuclei

    DOE PAGESBeta

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2016-04-13

    In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  2. Electron capture on iron group nuclei

    SciTech Connect

    Dean, D.J.; Chatterjee, L.; Strayer, M.R.; Dean, D.J.; Chatterjee, L.; Langanke, K.; Chatterjee, L.; Radha, P.B.

    1998-07-01

    We present Gamow-Teller strength distributions from shell model Monte Carlo studies of fp-shell nuclei that may play an important role in the precollapse evolution of supernovas. We then use these strength distributions to calculate the electron-capture cross sections and rates in the zero-momentum transfer limit. We also discuss the thermal behavior of the cross sections. We find large differences in these cross sections and rates when compared to the naive single-particle estimates. These differences need to be taken into account for improved modeling of the early stages of type-II supernova evolution. thinsp {copyright} {ital 1998} {ital The American Physical Society}

  3. Nuclear data on unstable nuclei for astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, Michael S.; Meyer, Richard A.; Bardayan, Daniel W.; Blackmon, Jeffery C.; Chae, Kyungyuk; Guidry, Michael W.; Hix, W. Raphael; Kozub, R. L.; Lingerfelt, Eric J.; Ma, Zhanwen; Scott, Jason P.

    2004-12-01

    Recent measurements with radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF) have prompted the evaluation of a number of reactions involving unstable nuclei needed for stellar explosion studies. We discuss these evaluations, as well as the development of a new computational infrastructure to enable the rapid incorporation of the latest nuclear physics results in astrophysics models. This infrastructure includes programs that simplify the generation of reaction rates, manage rate databases, and visualize reaction rates, all hosted at a new website http://www.nucastrodata.org.

  4. Reactions and structure of exotic nuclei

    SciTech Connect

    Esbensen, H.

    1993-08-01

    Radioactive beam experiments have made it possible to study the structure of light neutron rich nuclei. A characteristic feature is a large dipole strength near threshold. An excellent example is the loosely bound nucleus ``Li for which Coulomb dissociation plays a dominant role in breakup reactions on a high Z target. I will describe a three-body model and apply it to calculate the dipole response of {sup 11}Li and the momentum distributions for the three-body breakup reaction: {sup 11}Li {yields} {sup 9}Li+n+n, and comparisons will be made to recent three-body coincidence measurements.

  5. Invariant mass spectroscopy of halo nuclei

    SciTech Connect

    Nakamura, Takashi

    2008-11-11

    We have applied the invariant mass spectroscopy to explore the low-lying exited states of halo nuclei at intermediate energies around 70 MeV/nucleon at RIKEN. As examples, we show here the results of Coulomb breakup study for {sup 11}Li using the Pb target, as well as breakup reactions of {sup 14}Be with p and C targets. The former study revealed a strong Coulomb breakup cross section reflecting the large enhancement of E1 strength at low excitation energies (soft E1 excitation). The latter revealed the observation of the first 2{sup +} state in {sup 14}Be.

  6. Enhanced subbarrier fusion for proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Lay, J. A.; Vitturi, A.

    2014-02-01

    In this Brief Report we use a simple model to describe the dynamical effects of break-up processes in the subbarrier fusion involving weakly bound nuclei. We model two similar cases involving either a neutron or a proton halo nucleus, both schematically coupled to the break-up channels. We find that the decrease of the Coulomb barrier in the proton break-up channel leads, ceteris paribus, to a larger enhancement of the subbarrier fusion probabilities with respect to the neutron halo case.

  7. Flux of light antimatter nuclei near Earth

    SciTech Connect

    Baret, B.; Barrau, A.; Buenerd, M.; Derome, L.; Duperray, R.; Protasov, K.; Vratogna, S.; Maurin, D.

    2006-07-11

    The fluxes of light antinuclei A{<=} 4 induced near earth by Cosmic Ray (CR) interactions with the interstellar matter (ISM) in the Galaxy are calculated in a phenomenological framework. The hadronic production cross-section for antinucleons is based on a recent parametrization of a wide set of accelerator data. The production of light nuclei is calculated using coalescence models. The non annihilating inelastic scattering process for the antideuterons is discussed and taken into account for the first time via a more realistic procedure than used so far for antiprotons.

  8. EDITORIAL: Probing the nanoworld Probing the nanoworld

    NASA Astrophysics Data System (ADS)

    Miles, Mervyn

    2009-10-01

    In nanotechnology, it is the unique properties arising from nanometre-scale structures that lead not only to their technological importance but also to a better understanding of the underlying science. Over the last twenty years, material properties at the nanoscale have been dominated by the properties of carbon in the form of the C60 molecule, single- and multi-wall carbon nanotubes, nanodiamonds, and recently graphene. During this period, research published in the journal Nanotechnology has revealed the amazing mechanical properties of such materials as well as their remarkable electronic properties with the promise of new devices. Furthermore, nanoparticles, nanotubes, nanorods, and nanowires from metals and dielectrics have been characterized for their electronic, mechanical, optical, chemical and catalytic properties. Scanning probe microscopy (SPM) has become the main characterization technique and atomic force microscopy (AFM) the most frequently used SPM. Over the past twenty years, SPM techniques that were previously experimental in nature have become routine. At the same time, investigations using AFM continue to yield impressive results that demonstrate the great potential of this powerful imaging tool, particularly in close to physiological conditions. In this special issue a collaboration of researchers in Europe report the use of AFM to provide high-resolution topographical images of individual carbon nanotubes immobilized on various biological membranes, including a nuclear membrane for the first time (Lamprecht C et al 2009 Nanotechnology 20 434001). Other SPM developments such as high-speed AFM appear to be making a transition from specialist laboratories to the mainstream, and perhaps the same may be said for non-contact AFM. Looking to the future, characterisation techniques involving SPM and spectroscopy, such as tip-enhanced Raman spectroscopy, could emerge as everyday methods. In all these advanced techniques, routinely available probes will

  9. Designer Nuclei--Making Atoms that Barely Exist

    ERIC Educational Resources Information Center

    Jones, Kate L.; Nazarewicz, Witold

    2010-01-01

    The physics of nuclei is not a democratic field. It has to be said, some nuclei are just more interesting than others. And some are more useful than others, either to explain the origins of the elements, or the nature of matter itself, or for uses in medicine and other applied fields. The trick is to work out which nuclei are going to be the most…

  10. Systematics of light nuclei in a relativistic model

    SciTech Connect

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs.

  11. Monte Carlo Simulation of Heavy Nuclei Photofission at Intermediate Energies

    SciTech Connect

    Andrade-II, E.; Freitas, E.; Garcia, F.; Tavares, O. A. P.; Duarte, S. B.

    2009-06-03

    A detailed description of photofission process at intermediate energies (200 to 1000 MeV) is presented. The study of the reaction is performed by a Monte Carlo method which allows the investigation of properties of residual nuclei and fissioning nuclei. The information obtained indicate that multifragmentation is negligible at the photon energies studied here, and that the symmetrical fission is dominant. Energy and mass distributions of residual and fissioning nuclei were calculated.

  12. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  13. Molecular probes for cardiovascular imaging.

    PubMed

    Liang, Grace; Nguyen, Patricia K

    2016-08-01

    Molecular probes provide imaging signal and contrast for the visualization, characterization, and measurement of biological processes at the molecular level. These probes can be designed to target the cell or tissue of interest and must be retained at the imaging site until they can be detected by the appropriate imaging modality. In this article, we will discuss the basic design of molecular probes, differences among the various types of probes, and general strategies for their evaluation of cardiovascular disease. PMID:27189171

  14. From Kuiper Belt to Comet: The Shapes of the Nuclei

    NASA Astrophysics Data System (ADS)

    Jewitt, D.; Sheppard, S.; Fernandez, Y.

    2003-05-01

    It is widely believed that escaped objects from the Kuiper Belt are the source of both the Centaurs and the nuclei of the Jupiter Family Comets (JFCs). If the JFC nuclei are produced by collisional breakup of parent objects in the Kuiper Belt, then it is reasonable to expect that their shape distribution should be consistent with those of fragments produced in disintegrative laboratory experiments, or with the small main-belt asteroids (which are produced collisionally). We test this idea using a sample of eleven well-observed cometary nuclei. Our main result is that the nuclei are, on average, much more elongated than either the collisionally produced small main-belt asteroids or the fragments created in laboratory impact experiments. Several interpretations of this systematic shape difference are possible (including the obvious one that the JFC nuclei are not, after all, produced collisionally in the Kuiper Belt). Our preferred explanation, however, is that the asphericities of the nuclei have been modified by one or more processes of mass loss. An implication of this interpretation is that the JFC nuclei in our sample are highly evolved, having lost a major part of their original mass. In turn, this implies that the angular momenta of the nuclei are also non-primordial: the JFC nuclei are highly physically evolved objects. We will discuss the evidence supporting these conclusions. This work has been recently published in Astronomical Journal, 125, 3366-3377 (2003).

  15. The Size Distribution of Jupiter-Family Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Lowry, Stephen C.

    2003-01-01

    Introduction: We are continuing our program to determine the size distribution of cometary nuclei. We have compiled a catalog of 105 measurements of 57 cometary nuclei, drawn from the general literature, from our own program of CCD photometry of distant cometary nuclei (Lowry and Weissman), and from unpublished observations by colleagues. We model the cumulative size distribution of the nuclei as a power law. Previous determinations of the size distribution slope do not agree. Fernandez et al. found a slope of alpha = 2.65+/-0.25 whereas Lowry et al. and Weissman and Lowry each found a slope of alpha = 1.60+/-0.10.

  16. Shape coexistence and triaxiality in nuclei near 80Zr

    NASA Astrophysics Data System (ADS)

    Zheng, S. J.; Xu, F. R.; Shen, S. F.; Liu, H. L.; Wyss, R.; Yan, Y. P.

    2014-12-01

    Total-Routhian-surface calculations have been performed to investigate the shape evolutions of A ˜80 nuclei: Zr-8480,Sr-8076 , and Mo,8684 . Shape coexistences of spherical, prolate, and oblate deformations have been found in these nuclei. Particularly for the nuclei 80Sr and 82Zr , the energy differences between two shape-coexisting states are less than 220 keV. At high spins, the g9 /2 shell plays an important role in shape evolutions. It has been found that the alignment of the g9 /2 quasiparticles drives nuclei to be triaxial.

  17. Theoretical studies of proton emission from drip-line nuclei

    SciTech Connect

    Ferreira, L. S.; Maglione, E.; Ring, P.

    2011-11-30

    In this work, we discuss proton radioactivity from spherical nuclei in a modern perspective, based on a fully self--consistent relativistic density functional calculation with fundamental interactions.

  18. Mechanism of heavy ion fusion to superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Adamian, Gurgen G.; Antonenko, Nikolai V.; Scheid, Werner

    2011-10-01

    This article reviews different models for the description of fusion of heavy ions to superheavy nuclei by using adiabatic and diabatic potentials. The dynamics of fusion is basically different in the two types of models for fusion: In the adiabatic models the nuclei melt together, whereas in the diabatic models the nuclei transfer nucleons between each other up to the instant when the compound nucleus is formed. As final result we state that diabatic potentials seem more appropriate for the description of fusion of heavy nuclei than adiabatic potentials.

  19. Clusters and Halos in Light Nuclei

    NASA Astrophysics Data System (ADS)

    Neff, Thomas; Feldmeier, Hans

    2009-08-01

    The structure of light nuclei in the p- and sd-shell features exotic phenomena like halos and clustering. In the Fermionic Molecular Dynamics (FMD) approach we aim at a consistent microscopic description of well bound nuclei and of loosely bound exotic systems. This is possible due to the flexibility of the single-particle basis states using Gaussian wave-packets localized in phase space. Many-body basis states are Slater determinants projected on parity, angular and total linear momentum. The structure of 12C is discussed. Here the ground state band can be well described within a shell model picture but excited states above the three-α threshold, including the famous Hoyle state, show a pronounced cluster structure. As another example we study the structure of the Neon isotopes 17-22Ne. In 17Ne we find a large s2 occupation related to a large charge radius. The charge radius decreases for 18Ne but gets again very large for 19Ne and 20Ne which is explained by significant admixtures of 3He and 4He cluster components into to the ground state wave functions.

  20. Anisotropic multicluster model in light nuclei

    NASA Astrophysics Data System (ADS)

    Gijón, A.; Gálvez, F. J.; Arias de Saavedra, F.; Buendía, E.

    2016-06-01

    Multicluster models consider that the nucleons can be moving around different centers in the nuclei. These models have been widely used to describe light nuclei but always considering that the mean field is composed of isotropic harmonic oscillators with different centers. In this work, we propose an extension of these models by using anisotropic harmonic oscillators. The strengths of these oscillators, the distance among the different centers and the disposition of the nucleons inside every cluster are free parameters which have been fixed using the variational criterion. All the one-body and two-body matrix elements have been analytically calculated. Only a numerical integration on the Euler angles is needed to carry out the projection on the values of the total spin of the state and its third component. We have studied the ground state and the first excited states of 8Be, 12C and 10Be getting good results for the energies. The disposition of the nucleons in the different clusters have also been analyzed by using projection on the different Cartesian planes getting much more information than when the radial one-body density is used.

  1. Halo Nuclei: Stepping Stones Across the Dripline

    NASA Astrophysics Data System (ADS)

    Simon, Haik

    2013-08-01

    The availability of intense secondary beams in conjunction with efficient detection setups allows for a production and study of the most extreme nuclear systems, in terms of asymmetry of proton and neutron number, in the continuum. They can be produced via transfer and knockout reactions, depending on beam energies, with beams of nuclei close to the driplines, exhibiting exotic properties themselves, as seeds. These nuclear open quantum systems far from the valley of beta stability challenge nuclear structure theory being as well as reaction theory that tries to describe their production mechanisms. Due to their strong clustering they exhibit a rather clean few-body character. From experiments momentum distributions, relative energy spectra, and spin alignment during the reaction can be determined, which leads to the observation of energy and angular correlations as well as dependent quantities like e.g. the profile function denoting a momentum width in dependence of relative energy. They are determined from momentum vectors of fragments and gamma radiation leaving the reaction zone. The link to intrinsic properties of these unbound systems has to be explored by gathering precise knowledge of the properties of the seed nuclei and compare them to the structures observed in the continuum. In this paper I will exemplify the above-mentioned methods, and apply them particularly to light systems like 10He, 10-13Li, and neutron-rich Beryllium systems. Furthermore, perspectives for the 7H and heavy Oxygen systems are discussed.

  2. STELLAR TRANSITS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Beky, Bence; Kocsis, Bence E-mail: bkocsis@cfa.harvard.edu

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 10{sup 6} solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or {approx}10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  3. Sextic potential for \\gamma -rigid prolate nuclei

    NASA Astrophysics Data System (ADS)

    Buganu, P.; Budaca, R.

    2015-10-01

    The equation of the Bohr-Mottelson Hamiltonian with a sextic oscillator potential is solved for γ -rigid prolate nuclei. The associated shape phase space is reduced to three variables which are exactly separated. The angular equation has the spherical harmonic functions as solutions, while the β equation is converted to the quasi-exactly solvable case of the sextic oscillator potential with a centrifugal barrier. The energies and the corresponding wave functions are given in closed form and depend, up to a scaling factor, on a single parameter. The {0}+ and {2}+ states are exactly determined, having an important role in the assignment of some ambiguous states for the experimental β bands. Due to the special properties of the sextic potential, the model can simulate, by varying the free parameter, a shape phase transition from a harmonic to an anharmonic prolate β -soft rotor crossing through a critical point. Numerical applications are performed for 39 nuclei: {}98-108Ru, {}{100,102}Mo, {}116-130Xe, {}{132,134}Ce, {}146-150Nd, {}{150,152}Sm, {}{152,154}Gd, {}{154,156}Dy, 172Os, {}180-196Pt, 190Hg and 222Ra. The best candidates for the critical point are found to be 104Ru and {}{120,126}Xe, followed closely by 128Xe, 172Os, 196Pt and 148Nd.

  4. Spin Modes in Nuclei and Nuclear Forces

    SciTech Connect

    Suzuki, Toshio; Otsuka, Takaharu

    2011-05-06

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in {sup 12}C and {sup 14}C and an anomalous M1 transition in {sup 17}C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by {Delta} excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  5. Stellar Transits in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Béky, Bence; Kocsis, Bence

    2013-01-01

    Supermassive black holes (SMBHs) are typically surrounded by a dense stellar population in galactic nuclei. Stars crossing the line of site in active galactic nuclei (AGNs) produce a characteristic transit light curve, just like extrasolar planets do when they transit their host star. We examine the possibility of finding such AGN transits in deep optical, UV, and X-ray surveys. We calculate transit light curves using the Novikov-Thorne thin accretion disk model, including general relativistic effects. Based on the expected properties of stellar cusps, we find that around 106 solar mass SMBHs, transits of red giants are most common for stars on close orbits with transit durations of a few weeks and orbital periods of a few years. We find that detecting AGN transits requires repeated observations of thousands of low-mass AGNs to 1% photometric accuracy in optical, or ~10% in UV bands or soft X-ray. It may be possible to identify stellar transits in the Pan-STARRS and LSST optical and the eROSITA X-ray surveys. Such observations could be used to constrain black hole mass, spin, inclination, and accretion rate. Transit rates and durations could give valuable information on the circumnuclear stellar clusters as well. Transit light curves could be used to image accretion disks with unprecedented resolution, allowing us to resolve the SMBH silhouette in distant AGNs.

  6. Charming Mesons with Baryons and Nuclei

    NASA Astrophysics Data System (ADS)

    Tolos, Laura

    2013-11-01

    The properties of charmed mesons in nuclear matter and nuclei are reviewed. Different frameworks are discussed paying a special attention to unitarized coupled-channel approaches which incorporate heavy-quark spin symmetry. Several charmed baryon states with negative parity are generated dynamically by the s-wave interaction between pseudoscalar and vector meson multiplets with 1/2+ and 3/2+ baryons. These states are compared to experimental data. Moreover, the properties of open-charm mesons in matter are analyzed. The in-medium solution accounts for Pauli blocking effects, and for the meson self-energies in a self-consistent manner. The behavior in the nuclear medium of the rich spectrum of dynamically-generated baryon states is studied as well as their influence in the self-energy and, hence, the spectral function of open charm. The possible experimental signatures of the in-medium properties of open charm are finally addressed, such as the formation of charmed nuclei, in connection with the future FAIR facility.

  7. Connections between asteroids and cometary nuclei

    NASA Astrophysics Data System (ADS)

    Toth, Imre

    We review the recent progress in the exploration of the interrelations between primitive small bodies of the solar system which are preserved the pristine material in their interior: cometary nuclei, Transneptunian Objects, Centaurs, and primitive asteroids, and they are considered as primordial objects. In addition, we discuss the properties of the asteroid-comet transition objects which have really enigmatic behavior. The comets have most primitive, accessible material in the solar system but we do not know what is hidden below the evolved surface layers. Comets must become dormant but we do not know whether the ice is exhausted or sublimation is inhibited (blocked by quenching mechanisms). There must be many dormant comets masquerading as asteroids but we do not know to identify these bodies unless via serendipitous discovery observations. Indeed, there are some asteroids which temporarily show comet-like activity. These are among the Damocloids (C/2001 OG108 (LONEOS)), main belt asteroids (7968 Elst-Pizarro = 133P/E-P) and Near-Earth objects (4015 Wilson-Harrington = 107P/W-H). The important questions are: where is the pristine material in the cometary nuclei and in the asteroid-comet transition objects, do comets lose their ice or seal it in? Both the large survey projects and in-situ space missions will help to answer these questions in the near future.

  8. Spin Modes in Nuclei and Nuclear Forces

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Otsuka, Takaharu

    2011-05-01

    Spin modes in stable and unstable exotic nuclei are studied and important roles of tensor and three-body forces on nuclear structure are discussed. New shell model Hamiltonians, which have proper tensor components, are shown to explain shell evolutions toward drip-lines and spin properties of both stable and exotic nuclei, for example, Gamow-Teller transitions in 12C and 14C and an anomalous M1 transition in 17C. The importance and the necessity of the repulsive monopole corrections in isospin T = 1 channel to the microscopic two-body interactions are pointed out. The corrections are shown to lead to the proper shell evolutions in neutron-rich isotopes. The three-body force, in particular the Fujita-Miyazawa force induced by Δ excitations, is pointed out to be responsible for the repulsive corrections among the valence neutrons. The important roles of the three-body force on the energies and transitions in exotic oxygen and calcium isotopes are demonstrated.

  9. The doubling of stellar black hole nuclei

    NASA Astrophysics Data System (ADS)

    Kazandjian, Mher V.; Touma, J. R.

    2013-04-01

    It is strongly believed that Andromeda's double nucleus signals a disc of stars revolving around its central supermassive black hole on eccentric Keplerian orbits with nearly aligned apsides. A self-consistent stellar dynamical origin for such apparently long-lived alignment has so far been lacking, with indications that cluster self-gravity is capable of sustaining such lopsided configurations if and when stimulated by external perturbations. Here, we present results of N-body simulations which show unstable counter-rotating stellar clusters around supermassive black holes saturating into uniformly precessing lopsided nuclei. The double nucleus in our featured experiment decomposes naturally into a thick eccentric disc of apo-apse aligned stars which is embedded in a lighter triaxial cluster. The eccentric disc reproduces key features of Keplerian disc models of Andromeda's double nucleus; the triaxial cluster has a distinctive kinematic signature which is evident in Hubble Space Telescope observations of Andromeda's double nucleus, and has been difficult to reproduce with Keplerian discs alone. Our simulations demonstrate how the combination of an eccentric disc and a triaxial cluster arises naturally when a star cluster accreted over a preexisting and counter-rotating disc of stars drives disc and cluster into a mutually destabilizing dance. Such accretion events are inherent to standard galaxy formation scenarios. They are here shown to double stellar black hole nuclei as they feed them.

  10. A Multidimensional Study of Hadronization in Nuclei

    NASA Astrophysics Data System (ADS)

    Miles, Nathan; Deconinck, Wouter; Kordosky, Mike

    2013-10-01

    At the present moment there doest not exist a universal event generator in high energy neutrino physics and this is where GENIE (Generates Events for Neutrino Interaction Experiments) is currently being implemented. The aim for GENIE is to become and extensive canonical Monte Carlo (MC) event generator for a wide range of neutrino interactions and in order to achieve this GENIE must be repeatedly verified with experimental data collected from neutrino interaction experiments conducted around the world. This paper focuses on comparing data obtained in a multidimensional study of hadronization in nuclei done by the HERMES collaboration with a reproduction of a similar experiment via GENIE. The experiment was a simulation of colliding a beam of electron neutrinos at 27.6 GeV with carbon-12 and deuterium nuclei and then observing the dependence of hadron multiplicity ratios, RAh, of carbon to deuterium for ν, the energy transferred to the struck valence or sea quark by the virtual boson, and z, the fractional energy carried by the hadron produced as a result of exciting the valence or sea quark out of the nucleon. The dependence of the multiplicity ratios were analyzed for 8 different particles, π+, π-, π0, K+, K-, K0, p+, and p-. NSF grant and the College of William and Mary Physics Department.

  11. VAMPIR describes shape coexistence in nuclei

    SciTech Connect

    Faessler, A.

    1993-12-31

    The measurements of shape coexistence of the Vanderbilt-Oak Ridge-LSU-Georgia-Tech-Group is shortly reviewed for the Hg isotopes and the mass 70 region. Then this contribution concentrates on the description of shape coexistence with the help of refined self-consistent fields plus correlations. The basic approach is VAMPIR which starts from an angular momentum, proton and neutron number and parity projected Hartree-Fock-Bogoliubov quasi-particle Slater determinant. VAMPIR stands for Variation After Mean field Projection In Realistic models spaces. Minimization of orthogonalized projected HFB states yields also shape coexistence exited states of the same symmetries. Those states can then be diagonalized to include correlations (excited VAMPIR=EV). One can even improve on EV by adding in a second step to VAMPIR a second projected HFB-Slater determinant with unknown Bogoliubov transformation coefficients. The energy is now minimized by varying the mixing coefficients of the two Slater determinants and the Bogoliubov transformation in the second state. This can be continued step by step always using the previously fixed HFB-Slater determinants and determining only one in addition and the mixing coefficients of all the projected HFB-Slater determinants. The method is tested in sd-shell nuclei and applied in the A=70 region to the Ge and Se isotopes, where the Vanderbilt-Oak Ridge-group found a large number of different shapes in nuclei.

  12. Heavy ion beam probing

    SciTech Connect

    Hickok, R L

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included.

  13. Molecular inversion probe assay.

    PubMed

    Absalan, Farnaz; Ronaghi, Mostafa

    2007-01-01

    We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach. PMID:18025701

  14. Fast Langmuir probe sweeping circuit

    SciTech Connect

    Milnes, K.A.; Ehlers, K.W.; Leung, K.N.; Owren, H.M.; Williams, M.D.

    1980-06-01

    An inexpensive, simple, and fast Langmuir probe sweeping circuit is presented. This sweeper completes a probe trace in 1.4 ms and has a maximum probe current capability of 5 A. It is suitable for pulsemode plasma operation with density greater than 10/sup 12/ ions/cm/sup 3/.

  15. Scanning Probe Microscopy and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    1994-09-01

    Preface; List of acronyms; Introduction; Part I. Experimental Methods and Theoretical Background of Scanning Probe Microscopy and Spectroscopy: 1. Scanning tunnelling microscopy; 2. Scanning force microscopy; 3. Related scanning probe techniques; Part II. Applications of Scanning Probe Microscopy and Spectroscopy: 4. Condensed matter physics; 5. Chemistry; 6. Organic materials; 7. Metrology and standards; 8. Nanotechnology; References; Index.

  16. Properties of Broezel static probe

    NASA Astrophysics Data System (ADS)

    Gašparovič, Peter; Semrád, Karol; Cúttová, Miroslava

    2016-03-01

    The properties of flat static probe designed by Broezel and used in sailplanes are investigated for its planned use in low speed tunnel. Both the numerical CFD model and experiment in low speed wind tunnel confirm yaw insensitivity of the static pressure measured by the probe. The results indicate that the probe is sufficiently accurate for its planned use in wind tunnel measurements.

  17. Droplet monitoring probe

    NASA Technical Reports Server (NTRS)

    Baughman, J. R.; Thys, P. C.

    1973-01-01

    A droplet monitoring system is disclosed for analysis of mixed-phase fluid flow in development of gas turbines. The system uses a probe comprising two electrical wires spaced a known distance apart and connected at one end to means for establishing a dc potential between the wires. A drop in the fluid stream momentarily contacting both wires simultaneously causes and electrical signal which is amplified, detected and counted.

  18. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  19. Cosmological probes of gravity

    NASA Astrophysics Data System (ADS)

    Rassat, Anais Marie Melanie

    This Thesis is concerned with two cosmological probes of linear gravity. The first relates to Large Scale Structure (LSS) in the Universe, probed by galaxy surveys. The second to temperature anisotropics of the Cosmic Microwave Background (CMB), probed by the Wilkinson Microwave Anisotropy Map (WMAP). Both probe the matter and dark energy distributions in the Universe and can be used to test general relativity. The first part of this Thesis (Chapters 2 to 4) is concerned with the analysis of galaxy clustering in redshift space. The second part (Chapters 5 to 7) is concerned with the Integrated Sachs-Wolfe (ISW) effect using LSS-CMB cross-correlations. Chapter 1 introduces the cosmological theory and overviews the subsequent chapters. Chapter 2 gives a review of recent results from the 2 Micron All-Sky Survey (2MASS) and its Redshift Survey (2MRS). It includes work published in Erdogdu (a) et al. (2006) and Erdogdu (b) et al. (2006). Chapter 3 quantifies the clustering of 2MRS galaxies in redshift space. Chapter 4 uses results from Chapter 3 to constrain cosmological parameters. A selection of work from Chapters 3 and 4 will shortly become available in Rassat et al. (2008), entitled 'Redshift Space Analysis of 2MRS'. Chapter 5 overviews the late-time Integrated Sachs-Wolfe effect (ISW) and cross- correlations between the LSS and the CMB. Chapter 6 is also published in Rassat et al. (2007), entitled "Cross-correlation of 2MASS and WMAP3: Implications for the Integrated Sachs-Wolfe effect". It investigates a detection of the ISW effect and correlations which may affect statistical isotropy in the CMB ('Axis of Evil'). Chapter 7 uses the ISW effect to forecast constraints on dark energy parameters and general modifications of general relativity for the next generation of galaxy surveys, particularly the Dark UNiverse Explorer (DUNE) and the Dark Energy Survey (DES). Chapter 8 presents the overall conclusions of this Thesis. Chapter 9 discusses possible extensions to

  20. Ultrafast scanning probe microscopy

    SciTech Connect

    Botkin, D.; Weiss, S.; Ogletree, D.F.; Salmeron, M.; Chemla, D.S.

    1994-01-01

    The authors have developed a general technique which combines the temporal resolution of ultrafast laser spectroscopy with the spatial resolution of scanned probe microscopy (SPM). Using this technique with scanning tunneling microscopy (STM), they have obtained simultaneous 2 ps time resolution and 50 {angstrom} spatial resolution. This improves the time resolution currently attainable with STM by nine orders of magnitude. The potential of this powerful technique for studying ultrafast dynamical phenomena on surfaces with atomic resolution is discussed.