Science.gov

Sample records for probing zeolite internal

  1. Probing zeolite internal structures using very low temperature {sup 129}Xe NMR

    SciTech Connect

    Labouriau, A.; Crawford, S.N.; Earl, W.L.; Pietrass, T.; Weber, W.A.; Panjabi, G.; Gates, B.C.

    1998-08-01

    In recent years, probing pore structure with {sup 129}Xe NMR has received a bad reputation. This is due to the fact that the method is more complex than was originally suggested so the data is somewhat difficult to interpret. The authors find that the use of a wide temperature range (40--350 K) allows them to interpret {sup 129}Xe chemical shifts in terms of van der Waals attraction between the xenon atom and oxygen in zeolite walls. Using rather simple models from the literature, they can extract useful pore size information as well as the van der Waals potential energy.

  2. Probing zeolite syntheses to determine natural occurances of zeolites

    NASA Astrophysics Data System (ADS)

    Chen, H.; Song, S.; Fang, J.

    2003-12-01

    In this study, zeolites were synthesized from different glasses to probe the occurrence of zeolites in nature. The experiments were carried out with synthetic glass systems of Na2O.Al2O3.nSiO2, CaO.Al2O3.nSiO2, xNa2O.(1-x)CaO.Al2O3.nSiO2 and xNa2O.(1-x)K2O.Al2O3.6SiO2 in alkaline solutions of NaOH, KOH, Na2CO3, NH4OH, NaOH (+) NaCl and NaOH (+) KOH at temperatures ranging from 110›J to 210›J and with autogeneous pressures in the autoclaves. Synthetic products were examined by an X-ray powder diffractometer, a scanning electron microscopy with an energy dispersive spectrometer, and an electron microprobe. The minerals synthesized included zeolites, i.e., thomsonite, gismondine, amicite, garronite, gobbinsite, analcime, phillipsite, merlinoite, chabazite and mordenite; artificial synthetic zeolites, and feldspars. Chemical analyses indicated that the composition of synthetic zeolites is profoundly influenced by the composition of the initial glasses, especially the SiO2/Al2O3 ratios and cations. On the other hand, the influence of Na+ and K+ have over the formation of zeolites in solution, other ions, such as CO32- were involved in the preventing of the formation of Ca-zeolites. Comparing the experimental results with natural occurrences suggests that thomsonite, gismondine and amicite are usually found in ultrabasic and basic rocks; garronite and gobbinsite in basic to intermediate rocks; analcime, phillipsite, and chabazite in basic to acid rocks; merlinoite in high-potassium rocks; and mordenite in acid rocks. In addition, Ca-zeolites including thomsonite, gismondine and garronite are favored in fresh water environments, and alkali zeolites including gobbinsite, phillipsite, and analcime are most abundant in saline lake and deep sea conditions.

  3. Probing the dynamics of instability in zeolitic materials

    NASA Astrophysics Data System (ADS)

    Greaves, Neville; Meneau, Florian

    2004-08-01

    Zeolites collapse under modest pressure or temperature, their microporous structures transforming into glasses of conventional density. Using in situ synchrotron radiation diffraction methods we show how pressure and temperature-induced amorphization are equivalent processes and that these are mirrored by changes in the local structure of charge compensating cations. Evidence for a low density amorphous phase and a high density amorphous phase present during zeolite collapse emerges from small angle scattering experiments. Combining powder diffraction with increasing temperature or pressure, we find that the thermobaric characteristics for zeolite collapse have negative d T/d P slopes, consistent with increasing density during amorphization. However, this is not confined to a single melting curve but, instead, the regime extends over a significant region of T-P space. Moreover, zeolite amorphization involves depressurization and cavitation effects which can be used to set empirical boundaries for the stability of the low density amorphous phase. Within the region of zeolite instability the pressure or temperature of amorphization is found to be governed by the rate at which the stress is introduced—the more rapid this is, the higher the pressure or temperature the zeolite structure survives to. The temperature dependence of the rate of collapse is Arrhenian, suggesting that the initial low density amorphous phase has the characteristics of a superstrong liquid in contrast to the fragility of a conventionally melt quenched glass. Possibilities for creating 'perfect glasses' from the collapse of microporous crystals are discussed.

  4. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    SciTech Connect

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia; Ristanović, Zoran; Kovarik, Libor; Arey, Bruce W.; Lercher, Johannes A.; Bare, Simon R.; Weckhuysen, Bert M.

    2015-07-02

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Ultimately, using a nearest-neighbour statistical analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.

  5. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    PubMed Central

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia; Ristanović, Zoran; Kovarik, Libor; Arey, Bruce W.; Lercher, Johannes A.; Bare, Simon R.; Weckhuysen, Bert M.

    2015-01-01

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Using a nearest-neighbour statistical analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming. PMID:26133270

  6. Probing the structure of complex solids using a distributed computing approach-Applications in zeolite science

    SciTech Connect

    French, Samuel A.; Coates, Rosie; Lewis, Dewi W.; Catlow, C. Richard A.

    2011-06-15

    We demonstrate the viability of distributed computing techniques employing idle desktop computers in investigating complex structural problems in solids. Through the use of a combined Monte Carlo and energy minimisation method, we show how a large parameter space can be effectively scanned. By controlling the generation and running of different configurations through a database engine, we are able to not only analyse the data 'on the fly' but also direct the running of jobs and the algorithms for generating further structures. As an exemplar case, we probe the distribution of Al and extra-framework cations in the structure of the zeolite Mordenite. We compare our computed unit cells with experiment and find that whilst there is excellent correlation between computed and experimentally derived unit cell volumes, cation positioning and short-range Al ordering (i.e. near neighbour environment), there remains some discrepancy in the distribution of Al throughout the framework. We also show that stability-structure correlations only become apparent once a sufficiently large sample is used. - Graphical Abstract: Aluminium distributions in zeolites are determined using e-science methods. Highlights: > Use of e-science methods to search configurationally space. > Automated control of space searching. > Identify key structural features conveying stability. > Improved correlation of computed structures with experimental data.

  7. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography.

    PubMed

    Perea, Daniel E; Arslan, Ilke; Liu, Jia; Ristanović, Zoran; Kovarik, Libor; Arey, Bruce W; Lercher, Johannes A; Bare, Simon R; Weckhuysen, Bert M

    2015-01-01

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Using a nearest-neighbour statistical analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al-Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming. PMID:26133270

  8. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    NASA Astrophysics Data System (ADS)

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia; Ristanović, Zoran; Kovarik, Libor; Arey, Bruce W.; Lercher, Johannes A.; Bare, Simon R.; Weckhuysen, Bert M.

    2015-07-01

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Using a nearest-neighbour statistical analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al-Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.

  9. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography

    DOE PAGESBeta

    Perea, Daniel E.; Arslan, Ilke; Liu, Jia; Ristanović, Zoran; Kovarik, Libor; Arey, Bruce W.; Lercher, Johannes A.; Bare, Simon R.; Weckhuysen, Bert M.

    2015-07-02

    Zeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods. Here we report, using the powerful atomic-scale analysis technique known as atom probe tomography, the quantitative spatial distribution of individual aluminium atoms, including their three-dimensional extent of segregation. Ultimately, using a nearest-neighbour statisticalmore » analysis, we precisely determine the short-range distribution of aluminium over the different T-sites and determine the most probable Al–Al neighbouring distance within parent and steamed ZSM-5 crystals, as well as assess the long-range redistribution of aluminium upon zeolite steaming.« less

  10. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission of New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission of New Minerals and Mineral Names. In a working definition of a zeolite mineral used for review, interrupted tetrahedral framework structures are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundance in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr.-Ba: chabazite-Ca.-Na.-K; clinoptilolite-K, -Na, -Ca: dachiardite-Ca, -Na; erionite-K, -Ca: faujasite-Na, -Ca, -Na: paulingite-K. -Ca; phillipsite-Na, -Ca, -Ka; stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data. IZA structure-type symbols, space-group symmetry; unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species, and three of doubtful status. Herschelite, leonhardite, svetlozarite, and wellsite are discredited as mineral species names. Obsolete and

  11. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  12. Internal load management in eutrophic, anoxic environments. The role of natural zeolite.

    NASA Astrophysics Data System (ADS)

    Gianni, Areti; Zacharias, Ierotheos

    2015-04-01

    During the last decades, the increase of the nutrient and organic load inflows in the coastal zone increased the number of the anoxic environments. Inputs' control constitutes one of the basic practices for the eutrophic/anoxic aquatic ecosystems management. However, the induced changes at the ecosystem characteristics resulting from the trophic state alteration, and anoxic conditions prevalence, render the ecosystem's restoration difficult if not impossible. Bottom water anoxia accelerates PO43-, NH4+ and S2- recycling and accumulation from organic matter decomposition. This, toxic layer is a permanent menace for the balance of the entire ecosystem, as it can supply PO43-, NH4+ and S2- to the surface layers altering their qualitative character and threatening the welfare of fishes and other aquatic organisms. Having as objective the water basins' internal load control and based on practices are used in eutrophic environments' restoration, this study is referred to the role of the natural zeolite in eutrophic/anoxic ecosystems management. For the first time are presented, results from S2- removal experiments using the zeolitic mineral mordenite, [(Na2, Ca, K2)4 (H2O)28] [Al8Si40O96]. Four different sets of experiments were conducted, in order to examine zeolite's removal capacity of S2- in aquatic solutions, under a wide range of physicochemical parameters. More specific: a) the effect of initial pH on the removal process, b) the removal process kinetics, c) the removal process isotherms and d) the effect of salinity on the removal process were studied. Natural zeolite has the ability to neutralize the pH of aqueous solutions, thus all the experiments were practically performed at pH 7. Initially sulfides concentration range from 1 to 10mg/l. Zeolite's removal capability appeared to be directly depended on the S2- initial concentration. For initial concentration of 1mg/l, the removal rate reached up to 90% after 24h. The maximum zeolite removal capacity was

  13. Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules. 2. Dealuminated Y-type zeolites

    SciTech Connect

    Karge, H.G.; Dondur, V. ); Weitkamp, J. )

    1991-01-10

    The acidity of dealuminated hydrogen forms of Y-type zeolites (Si/Al = 2.4-8.6) is determined by temperature-programmed desorption of ammonia or pyridine, which is monitored through a mass spectrometer. Four types of acidic sites are indicated by ammonia, viz., weak Broensted and/or Lewis centers and medium and strong Broensted and strong Lewis sites. In contrast, pyridine, after sample activation at 675 K, probed only two types of sites, i.e., medium and strong Broensted sites. This difference is ascribed to different accessibility of sites for the two probe molecules. From the desorption spectra (i) the fractional coverage of the various sites, (ii) the most frequent energies of activation, {anti E}{sub d}, for desorption, and (iii) the probability functions of the activation energies are derived by using a previously described method of evaluation.

  14. Modelling active sites for the Beckmann rearrangement reaction in boron-containing zeolites and their interaction with probe molecules.

    PubMed

    Lezcano-González, Inés; Vidal-Moya, Alejandro; Boronat, Mercedes; Blasco, Teresa; Corma, Avelino

    2010-06-28

    Theoretical calculations and in situ solid state NMR spectroscopy have been combined to get insight on the nature of the active sites for the Beckmann rearrangement reaction in borosilicate zeolites. The interaction of a B site in zeolite Beta with a series of probe molecules (ammonia, pyridine, acetone and water) has been modelled and the (15)N and (11)B NMR isotropic chemical shift of the resulting complexes calculated and compared with experimental in situ NMR results. This approach has allowed validation of the methodology to model the adsorption on a zeolite boron site of molecules of varying basicity which are either protonated or non-protonated. The limitation is that theoretical calculations overestimate the effect of molecular adsorption through hydrogen bonds on the calculated isotropic (11)B NMR chemical shift.Theoretical and experimental results on the adsorption of acetophenone and cyclohexanone oximes on zeolite B-Beta indicate that Brønsted acid sites protonate the oximes, changing the boron coordination from trigonal to tetrahedral. Comparison of theoretical and experimental (15)N NMR chemical shifts of the adsorbed amides (acetanilide and epsilon-caprolactam) indicates that they are non-protonated, and the (11)B NMR spectra show that, as expected, boron remains in trigonal coordination with an isotropic delta(11)B(exp) which differs from the calculated value delta(11)B(calc). PMID:20454729

  15. Electron and energy transfer as probes of interparticle ion-exchange reactions in zeolite Y

    SciTech Connect

    Brigham, E.S.; Snowden, P.T.; Kim, Y.I.; Mallouk, T.E. )

    1993-08-19

    Photoinduced electron transfer and energy transfer reactions of tris(2,2[prime]-bipyridyl)ruthenium(II) (Ru(bpy)[sub 3][sup 2+]) with methylviologen (MV[sup 2+]) and tris(2,2[prime]-bipyridyl)osmium(II) (Os(bpy)[sub 3][sup 2+]) ion-exchanged onto/into separate zeolite Y particles were studied by emission spectroscopy. The kinetics of interparticle exchange were probed by observing the quenching of the MLCT excited state of-Ru(bpy)[sub 3][sup 2+] by mobile MV[sup 2+] or OS(bpy)[sub 3][sup 2+] ions. The exchange reactions occur on time scales of seconds to hours, depending on the ionic strength of the surrounding medium. The time-dependent luminescence data were fitted to a dispersed kinetics model, from which average rate constants for the exchange reactions could be extracted. Time constants for interparticle exchange of MV[sup 2+] and Os(bpy)[sub 3][sup 2+] ions, in the range 10[sup 3]-10[sup 5] s at electrolyte concentrations of 0.1-3 mM, are significantly longer than the time scales (10[sup [minus]7]-10[sup 1] s) of most electrochemical and photochemical intrazeolitic reactions involving these and similar electroactive ions. These results argue for reaction mechanisms that invoke intrazeolite electron transfer, rather than exchange of electroactive ions followed by solution-phase electron transfer, in these systems. 25 refs., 6 figs., 1 tab.

  16. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    PubMed

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation. PMID:27485276

  17. Coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography

    DOE PAGESBeta

    Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D. A. Matthijs; Meirer, Florian; Bare, Simon R.; Weckhuysen, Bert M.

    2016-08-03

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less

  18. Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1998-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is alloowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemical symbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely in Si:Al ratio except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration and over-hydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of zeolite. Newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba; chabazite-Ca, -Na, -K; clinoptilolite-K, -Na, -Ca; dechiardite-Ca, -Na; erionite-Na, -K, -Ca,; faujasite-Na, -Ca, -Mg; ferrierite-Mg, -K, -Na; gmelinite-Na, -Ca, -K; heulandite-Ca, -Na, -K, -Sr; levyne-Ca, -Na; paulingite-K, -Ca; phillipsite-Na, -Ca, -K stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral

  19. Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on new Minerals and Mineral names

    USGS Publications Warehouse

    Coombs, D.S.; Alberti, A.; Armbruster, T.; Artioli, G.; Colella, C.; Galli, E.; Grice, Joel D.; Liebau, F.; Mandarino, J.A.; Minato, H.; Nickel, E.H.; Passaglia, E.; Peacor, D.R.; Quartieri, S.; Rinaldi, R.; Ross, M.; Sheppard, R.A.; Tillmanns, E.; Vezzalini, G.

    1997-01-01

    This report embodies recommendations on zeolite nomenclature approved by the International Mineralogical Association, Commission on New Minerals and Mineral Names. In a working definition of a zeolite mineral used for this review, structures containing an interrupted framework of tetrahedra are accepted where other zeolitic properties prevail, and complete substitution by elements other than Si and Al is allowed. Separate species are recognized in topologically distinctive compositional series in which different extra-framework cations are the most abundant in atomic proportions. To name these, the appropriate chemicalsymbol is attached by a hyphen to the series name as a suffix, except for the names harmotome, pollucite and wairakite in the phillipsite and analcime series. Differences in space-group symmetry and in order-disorder relationships in zeolites having the same topologically distinctive framework do not in general provide adequate grounds for recognition of separate species. Zeolite species are not to be distinguished solely on the ratio Si:Al except for heulandite (Si:Al < 4.0) and clinoptilolite (Si:Al ??? 4.0). Dehydration, partial hydration, and overhydration are not sufficient grounds for the recognition of separate species of zeolites. Use of the term 'ideal formula' should be avoided in referring to a simplified or averaged formula of a zeolite. newly recognized species in compositional series are as follows: brewsterite-Sr, -Ba, chabazite-Ca, -Na, -K, clinoptilolite-K, -Na, -Ca, dachiardite-Ca, -Na, erionite-Na, erionite-Na, -K, -Ca, faujasite-Na, -Ca, -Mg, ferrierite-Mg, -K, -Na, gmelinite-Na, -Ca, -K, heulandite-Ca, -Na, -K, -Sr, levyne-Ca, -Na, paulingite-K, -Ca, phillipsite-Na, -Ca, -K, and stilbite-Ca, -Na. Key references, type locality, origin of name, chemical data, IZA structure-type symbols, space-group symmetry, unit-cell dimensions, and comments on structure are listed for 13 compositional series, 82 accepted zeolite mineral species

  20. Monte Carlo Simulations Probing the Adsorptive Separation of Hydrogen Sulfide/Methane Mixtures Using All-Silica Zeolites.

    PubMed

    Shah, Mansi S; Tsapatsis, Michael; Siepmann, J Ilja

    2015-11-10

    Selective removal of hydrogen sulfide (H2S) from sour natural gas mixtures is one of the key challenges facing the natural gas industry. Adsorption and pervaporation processes utilizing nanoporous materials, such as zeolites, can be alternatives to highly energy-intensive amine-based absorption processes. In this work, the adsorption behavior of binary mixtures containing H2S and methane (CH4) in seven different all-silica zeolite frameworks (CHA, DDR, FER, IFR, MFI, MOR, and MWW) is investigated using Gibbs ensemble Monte Carlo simulations at two temperatures (298 and 343 K) and pressures ranging from 1 to 50 bar. The simulations demonstrate high selectivities that, with the exception of MOR, increase with increasing H2S concentration due to favorable sorbate-sorbate interactions. The simulations indicate significant inaccuracies of predictions using unary adsorption data and ideal adsorbed solution theory. In addition, the adsorption of binary H2S/H2O mixtures in MFI is considered to probe whether the presence of H2S induces coadsorption and reduces the hydrophobic character of all-silica zeolites. The simulations show preferential adsorption of H2S from moist gases with a selectivity of about 18 over H2O. PMID:26473306

  1. Aluminum-phosphate binder formation in zeolites as probed with X-ray absorption microscopy.

    PubMed

    van der Bij, Hendrik E; Cicmil, Dimitrije; Wang, Jian; Meirer, Florian; de Groot, Frank M F; Weckhuysen, Bert M

    2014-12-24

    In this work, three industrially relevant zeolites with framework topologies of MOR, FAU and FER have been explored on their ability to form an AlPO4 phase by reaction of a phosphate precursor with expelled framework aluminum. A detailed study was performed on zeolite H-mordenite, using in situ STXM and soft X-ray absorption tomography, complemented with (27)Al and (31)P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, XRD, FT-IR spectroscopy, and N2 physisorption. Extraframework aluminum was extracted from steam-dealuminated H-mordenite and shown to dominantly consist of amorphous AlO(OH). It was found that phosphoric acid readily reacts with the AlO(OH) phase in dealuminated H-mordenite and forms an extraframework amorphous AlPO4 phase. It was found that while AlPO4 crystallizes outside of the zeolitic channel system forming AlPO4 islands, AlPO4 that remains inside tends to stay more amorphous. In the case of ultrastable zeolite Y the FAU framework collapsed during phosphatation, due to extraction of framework aluminum from the lattice. However, using milder phosphatation conditions an extraframework AlPO4 α-cristobalite/tridymite phase could also be produced within the FAU framework. Finally, in steamed zeolite ferrierite with FER topology the extraframework aluminum species were trapped and therefore not accessible for phosphoric acid; hence, no AlPO4 phase could be formed within the structure. Therefore, the parameters to be taken into account in AlPO4 synthesis are the framework Si/Al ratio, stability of framework aluminum, pore dimensionality and accessibility of extraframework aluminum species. PMID:25415849

  2. Interaction of hydrogen with extraframework cations in zeolite hosts probed by inelastic neutron scattering spectroscopy.

    PubMed

    Eckert, Juergen; Trouw, Frans R; Mojet, Barbara; Forster, Paul; Lobo, Raul

    2010-01-01

    The hindered rotations of molecular hydrogen adsorbed at low loadings into a number of partially ion-exchanged zeolites A, Y and X have been studied at low temperatures with the use of inelastic neutron scattering (INS) techniques. The factors that determine the sorption sites and strength of the interaction with the host material are found to be a complex combination of the type, charge and size of the cations, their coordination to the host framework, and accessibility to the hydrogen molecule as well as the relative acidity of the framework, and lead to important criteria for the development of more effective hybrid materials for hydrogen storage. The highest barriers to rotation were found for the undercoordinated, exposed Li+ cations in LiA and in LiX. Interaction with the extra framework Cu2+ and Zn2+ cations in zeolite A is found to be noticeably stronger than with the neutral Zn- or Cu- containing clusters in metal-organic framework compounds. Our observation that binding of hydrogen in these charged frameworks is strongly enhanced relative to those that are neutral suggests an important approach to improvement of porous materials as ambient temperature hydrogen storage media. PMID:20352810

  3. Physical characterization of the state of motion of the phenalenyl spin probe in cation-exchanged faujasite zeolite supercages with pulsed EPR

    NASA Astrophysics Data System (ADS)

    Doetschman, D. C.; Dwyer, D. W.; Fox, J. D.; Frederick, C. K.; Scull, S.; Thomas, G. D.; Utterback, S. G.; Wei, J.

    1994-08-01

    The molecular motion of the phenalenyl (PNL) spin probe in the supercages of cation-exchanged X and Y zeolites (faujasites) has been physically characterized by pulsed and continuous wave (CW) electron paramagnetic resonance (EPR). Both X and Y zeolites, whose cation sites were exchanged with the alkali metal ions, Li +, Na +, K +, Rb + and Cs + were examined. There is a good correspondence between the temperature dependences of the PNL electron spin phase memory time and the CW EPR spectra. Both display evidence of a thermal activation from a stationary, non-rotating molecular state to a low-temperature state of in-plane rotation (Das et al., Chem Phys. 143 (1990) 253). The rate of in-plane rotation is an activated process, with E* | / R=1289 |+- 35 K and 1462 ± 47 K in NaX and KX zeolites, respectively. The rotation appears to be about an axis along which the half-filled, non-bonding π orbital interacts with the exchanged cation in the supercage. Both CW and pulsed EPR also show a higher temperature activation from the in-plane rotating state to an effectively isoptropic state of rotation of PNL in which the PNL-cation bond is thought to be broken, with E* ⊥ / R=2050 ± 110 K, 1956 ± 46K, 1335 ± 97 K in LiX, NaX and KX zeolites, respectively. The strength of the PNL-cation bonding decreases with increasing cation atomic number as indicated by E* ⊥ and the peripheral repulsion (crowding) of PNL increases with cation size as indicated E* |. There are qualitative indications that the binding of PNL to the cations in the Y zeolite is stronger than in the X zeolite.

  4. Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I.; Karmakar, Shilpi; Biniwale, Rajesh; Papadopoulos, George K.

    2013-01-01

    The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses.

  5. Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments.

    PubMed

    Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I; Karmakar, Shilpi; Biniwale, Rajesh; Papadopoulos, George K

    2013-01-21

    The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses. PMID:23343292

  6. Distribution of metal and adsorbed guest species in zeolites

    SciTech Connect

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  7. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  8. Internal surface modification of zeolite MFI particles and membranes for gas separation

    NASA Astrophysics Data System (ADS)

    Kassaee, Mohamad H.

    Zeolites are a well-known class of crystalline oxide materials with tunable compositions and nanoporous structures, and have been used extensively in catalysis, adsorption, and ion exchange. The zeolite MFI is one of the well-studied zeolites because it has a pore size and structure suitable for separation or chemical conversion of many industrially important molecules. I synthesized MFI membranes with [h0h] out-of-plane orientation on α-alumina supports. The membranes were modified by the same procedures as used for MFI particles and with 1-butanol, 3-amino-1-propanol, 2-[(2-aminoethyl)amino]ethanol, and benzenemethanol. The existence of functional groups in the pores of the zeolite was confirmed by PA-FTIR measurements. Permeation measurements of H2, N2, CO2, CH 4, and SF6, were performed at room temperature before and after modification. Permeation of n-butane, and i-butane were measured before and after modification with 1-butanol. For all of the studied gases, gas permeances decreased by 1-2 orders of magnitude compared to bare MFI membranes for modified membranes. This is a strong indication that the organic species in the MFI framework are interacting with or blocking the gas molecule transport through the MFI pores. The CO2/CH 4 permeation selectivity was close to the Knudsen selectivity (0.6) for the membranes before modification. CO2/CH4 selectivity increased for MFI/benzenemethanol modified membrane (1.0), whereas it decreased for the MFI/2-[(2-aminoethyl)amino]ethanol modified membrane (0.5). MFI/benzenemethanol crystals were shown to have a highest sorption capacity for CH4, whereas, MFI/2-[(2-aminoethyl)amino]ethanol crystals were shown to have a highest sorption capacity for CO2 over all other studied molecules Higher sorption of CH4 in MFI/benzenemethanol and higher sorption of CO2 in MFI/2-[(2-aminoethyl)amino]ethanol and their strong binding to the modified membrane are likely the reasons for observing higher and lower CO2/CH4 permeation

  9. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

  10. Effect of internal noise on the oscillation of N{sub 2}O decomposition over Cu-ZSM-5 zeolites using a stochastic description

    SciTech Connect

    Liu, Fuliang; Li, Yaping Sun, Xiaoming

    2014-01-28

    When considering stochastic oscillations of heterogeneous catalyst systems, most researches have focused on the surface of a metal or its oxide catalysts, but there have been few studies on porous catalysts. In this work, the effects of internal noise on oscillations of N{sub 2}O decomposition over Cu-ZSM-5 zeolites are investigated, using the chemical Langevin equation and a mesoscopic stochastic model. Considering that Cu-ZSM-5 particles are finely divided particles, the number of Cu ions (N{sub s}) is proportional to the particle size at a certain Cu/Al, and the internal noise is inversely proportional to N{sub s}. Stochastic oscillations can be observed outside the deterministic oscillatory region. Furthermore, the performance of the oscillation characterized by the signal-to-noise ratio has a maximum within the optimal size range of 4–8 nm. This suggests that a nanometer-sized zeolite may be best for oscillations.

  11. Floating Potential Probe Deployed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    2001-01-01

    In the spring and summer of 2000, at the request of the International Space Station (ISS) Program Office, a Plasma Contactor Unit Tiger Team was set up to investigate the threat of the ISS arcing in the event of a plasma contactor outage. Modeling and ground tests done under that effort showed that it is possible for the external structure of the ISS to become electrically charged to as much as -160 V under some conditions. Much of this work was done in anticipation of the deployment of the first large ISS solar array in November 2000. It was recognized that, with this deployment, the power system would be energized to its full voltage and that the predicted charging would pose an immediate threat to crewmembers involved in extravehicular activities (EVA's), as well as long-term damage to the station structure, were the ISS plasma contactors to be turned off or stop functioning. The Floating Potential Probe was conceived, designed, built, and deployed in record time by a crack team of scientists and engineers led by the NASA Glenn Research Center in response to ISS concerns about crew safety.

  12. High stability zone zeolites in octane catalysts - New products from Union Carbide Corporation and Katalistiks International, Inc

    SciTech Connect

    Rabo, J.A.; Pellet, R.J.; Magee, J.S.; Mitchell, B.R.; Moore, J.W.; Letzsch, W.S.; Upson, L.L.; Magnusson, J.E.

    1986-01-01

    The ability of zeolite cracking catalysts to moderate the research octane number and, to lesser extent, the motor octane number of FCC gasoline has been known for well over ten years. Considerable effort has been made during this period to understand the mechanism of the catalytic reactions involved. This paper discusses the following: 1) Silicon Enriched Framework Y Zeolites (SEF-Y) when compared with aluminum deficient faujasites exhibit both increased thermal and hydrothermal stability. Collapse temperatures as measured by DTA are at least 200/sup 0/C higher for the enriched framework materials. 2) The increased stability afforded by the Framework Silicon Enrichment process is believed to be due to the drastically reduced number of defects compared with dealuminated structures. 3) High Stability Zone Zeolite catalysts containing SEF-Y exhibit less non-selective cracking resulting in both improved gasoline and coke selectivity while maintaining octane levels at least as high as dealuminated species. 4) The improved selectivity is believed due to the much reduced silica/alumina and alumina ''debris'' present in the SEF-Y compared with dealuminated structures.

  13. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    SciTech Connect

    Jelinek, R. |

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. {sup 27}Al and {sup 23}Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework {sup 27}Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na{sup +} cations are directly involved in adsorption processes and reactions in zeolite cavities.

  14. Probing the interior of synaptic vesicles with internalized nanoparticles

    NASA Astrophysics Data System (ADS)

    Gadd, Jennifer C.; Budzinski, Kristi L.; Chan, Yang-Hsiang; Ye, Fangmao; Chiu, Daniel T.

    2012-03-01

    Synaptic vesicles are subcellular organelles that are found in the synaptic bouton and are responsible for the propagation of signals between neurons. Synaptic vesicles undergo endo- and exocytosis with the neuronal membrane to load and release neurotransmitters. Here we discuss how we utilize this property to load nanoparticles as a means of probing the interior of synaptic vesicles. To probe the intravesicular region of synaptic vesicles, we have developed a highly sensitive pH-sensing polymer dot. We feel the robust nature of the pH-sensing polymer dot will provide insight into the dynamics of proton loading into synaptic vesicles.

  15. Early Results from the Floating Potential Probe on the International Space Station

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Ferguson, Dale C.

    2001-01-01

    This viewgraph presentation provides information on the Floating Potential Probe (FPP) on the International Space Station (ISS). The FPP measures the body voltage (electric potential) of the, and the measurements are then transmitted to Earth.

  16. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.

    PubMed

    Herman, Daniel A; Gallimore, Alec D

    2008-01-01

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8 x 10(12) cm(-3) on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates. PMID:18248026

  17. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system

    SciTech Connect

    Herman, Daniel A.; Gallimore, Alec D.

    2008-01-15

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8x10{sup 12} cm{sup -3} on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates.

  18. Quantifying defects in zeolites and zeolite membranes

    NASA Astrophysics Data System (ADS)

    Hammond, Karl Daniel

    Zeolites are crystalline aluminosilicates that are frequently used as catalysts to transform chemical feedstocks into more useful materials in a size- or shape-selective fashion; they are one of the earliest forms of nanotechnology. Zeolites can also be used, especially in the form of zeolite membranes (layers of zeolite on a support), to separate mixtures based on the size of the molecules. Recent advances have also created the possibility of using zeolites as alkaline catalysts, in addition to their traditional applications as acid catalysts and catalytic supports. Transport and catalysis in zeolites are greatly affected by physical and chemical defects. Such defects can be undesirable (in the case of zeolite membranes), or desirable (in the case of nitrogen-doped alkaline zeolites). Studying zeolites at the relevant length scales requires indirect experimental methods such as vapor adsorption or atomic-scale modeling such as electronic structure calculations. This dissertation explores both experimental and theoretical characterization of zeolites and zeolite membranes. Physical defects, important in membrane permeation, are studied using physical adsorption experiments and models of membrane transport. The results indicate that zeolite membranes can be modeled as a zeolite powder on top of a support---a "supported powder," so to speak---for the purposes of adsorption. Mesoporosity that might be expected based on permeation and confocal microscopy measurements is not observed. Chemical defects---substitutions of nitrogen for oxygen---are studied using quantum mechanical models that predict spectroscopic properties. These models provide a method for simulating the 29Si NMR spectra of nitrogendefected zeolites. They also demonstrate that nitrogen substitutes into the zeolite framework (not just on the surface) under the proper reaction conditions. The results of these studies will be valuable to experimentalists and theorists alike in our efforts to understand the

  19. Photothermal radiometry probing of scars in the internal surface of a thin metal tube.

    PubMed

    Li, P Z; Zhou, G Y

    1992-07-01

    The principle and equipment of photothermal radiometry probing of scars in the internal surface of a thin metal tube are described. By measuring the amplitude frequency characteristics of the photothermal signal, we calculated the depth of the scars in the internal surface of a sample. PMID:20725353

  20. A probe into reasons for international migration in Fujian Province.

    PubMed

    Zhu, G

    1990-01-01

    In this paper, the author discusses the extent of international migration from China's Fujian Province and considers the reasons behind the migration. The most recent estimates place China's overseas population at 22.1 million, 19 million (88%) of which are concentrated in Southeast Asia. According to the author's calculations, at least 7 million of the Chinese overseas population are of Fujian descent. Indonesia alone holds some 3.3 million Fujianese. Malaysia, Singapore, and the Philippines account for most of the remaining Fujianese overseas population. Having established the extent of international migration from the Fujian Province, the author attempts to establish the reasons behind it. The author first considers the historical origins of Fujianese international migration, from its early states (end century B.C.-17th century) to modern times *18-early 20th century) to the current period (1949-present). The author then examines the reasons behind the migration, primarily the social environment and individual behavior. Finally, the author provides categories of international migration, stressing that these categories often overlap or coincide. Most of the early migration was "spontaneous" -- essentially, an unplanned occurrence. During the modern period, most migration was "forced" by the contract labor system instituted by colonialists. Political and social upheaval also prompted "provoked" international migration. And following the Chinese Revolution, "free" migration allowed many to return home or to join relative abroad. PMID:12284987

  1. Etchable plasmonic nanoparticle probes to image and quantify cellular internalization

    PubMed Central

    Braun, Gary B.; Friman, Tomas; Pang, Hong-Bo; Pallaoro, Alessia; de Mendoza, Tatiana Hurtado; Willmore, Anne-Mari A.; Kotamraju, Venkata Ramana; Mann, Aman P.; She, Zhi-Gang; Sugahara, Kazuki N.; Reich, Norbert O.; Teesalu, Tambet; Ruoslahti, Erkki

    2014-01-01

    There is considerable interest in using nanoparticles as labels or to deliver drugs and other bioactive compounds to cells in vitro and in vivo. Fluorescent imaging, commonly used to study internalization and subcellular localization of nanoparticles, does not allow unequivocal distinction between cell surface-bound and internalized particles, since there is no methodology to turn particles ‘off.’ We have developed a simple technique to rapidly remove silver nanoparticles outside living cells leaving only the internalized pool for imaging or quantification. The silver nanoparticle (AgNP) etching is based on the sensitivity of Ag to a hexacyanoferrate/thiosulfate redox-based destain solution. In demonstration of the technique we present a new class of multicolored plasmonic nanoprobes comprising dye-labeled AgNPs that are exceptionally bright and photostable, carry peptides as model targeting ligands, can be etched rapidly and with minimal toxicity in mice and that show tumour uptake in vivo. PMID:24907927

  2. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays

    PubMed Central

    Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J. L.; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download. PMID:26863543

  3. Probing the internal composition of neutron stars with gravitational waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolás

    2015-11-01

    Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4 M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to

  4. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  5. Probing the Internal Composition of Neutron Stars with Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2016-03-01

    Gravitational waves from neutron star binaries carry information about the equation of state of supranuclear matter through a parameter called tidal deformability. This parameter measures the quadrupole deformation of a neutron star in the presence of an external field. Its measurability has been assessed in a number of studies, concluding it could provide important information about the equation of state of neutron star matter. In this talk, I will describe a complimentary approach to the problem of equation of state determination, one which focuses on how information from gravitational waves can be translated in ways that could be of direct benefit to nuclear physicists. Specifically, I will talk about what gravitational waves can tell us about the internal composition of neutron stars, information that is directly applicable to equation of state modeling. I will also briefly discuss the importance of spin-induced precession in the quality of information extracted. We acknowledge support from the Onassis Foundation, NSF CAREER Grant PHY-1250636, NSF Award PHY-1306702, and NSF CAREER Grant PHY-1055103.

  6. ZEOLITES: EFFECTIVE WATER PURIFIERS

    EPA Science Inventory

    Zeolites are known for their adsorption, ion exchange and catalytic properties. Various natural zeolites are used as odor and moisture adsorbents and water softeners. Due to their acidic nature, synthetic zeolites are commonly employed as solid acid catalysts in petrochemical ind...

  7. Synthesis of NaY zeolite on preformed kaolinite spheres. Evolution of zeolite content and textural properties with the reaction time

    SciTech Connect

    Basaldella, E.I.; Bonetto, R.; Tara, J.C. )

    1993-04-01

    The synthesis of NaY zeolite was carried out on fired kaolinite microspheres. Changes in porosity, chemical composition, and crystallinity of the solid show zeolite growth on both internal and external microsphere surfaces. It was also observed that, as a consequence of the alkaline treatment, the SiO[sub 2]/Al[sub 2]O[sub 3] ratio in the solid diminishes prior to the appearance of the zeolite, but increases when the zeolite begins to crystallize.

  8. Flexibility mechanisms in ideal zeolite frameworks.

    PubMed

    Treacy, M M J; Dawson, C J; Kapko, V; Rivin, I

    2014-02-13

    Zeolites are microporous crystalline aluminosilicate materials whose atomic structures can be usefully modelled in purely mechanical terms as stress-free periodic trusses constructed from rigid corner-connected SiO4 and AlO4 tetrahedra. When modelled this way, all of the known synthesized zeolite frameworks exhibit a range of densities, known as the flexibility window, over which they satisfy the framework mechanical constraints. Within the flexibility window internal stresses are accommodated by force-free coordinated rotations of the tetrahedra about their apices (oxygen atoms). We use rigidity theory to explore the folding mechanisms within the flexibility window, and derive an expression for the configurational entropic density throughout the flexibility window. By comparison with the structures of pure silica zeolite materials, we conclude that configurational entropy associated with the flexibility modes is not a dominant thermodynamic term in most bulk zeolite crystals. Nevertheless, the presence of a flexibility window in an idealized hypothetical tetrahedral framework may be thermodynamically important at the nucleation stage of zeolite formation, suggesting that flexibility is a strong indicator that the topology is realizable as a zeolite. Only a small fraction of the vast number of hypothetical zeolites that are known exhibit flexibility. The absence of a flexibility window may explain why so few hypothetical frameworks are realized in nature. PMID:24379426

  9. Zeolite catalysis: technology

    SciTech Connect

    Heinemann, H.

    1980-07-01

    Zeolites have been used as catalysts in industry since the early nineteen sixties. The great majority of commercial applications employ one of three zeolite types: zeolite Y; Mordenite; ZSM-5. By far the largest use of zeolites is in catalytic cracking, and to a lesser extent in hydrocracking. This paper reviews the rapid development of zeolite catalysis and its application in industries such as: the production of gasoline by catalytic cracking of petroleum; isomerization of C/sub 5/ and C/sub 6/ paraffin hydrocarbons; alkylation of aromatics with olefins; xylene isomerization; and conversion of methanol to gasoline.

  10. Electron transfers in a TiO2-containing MOR zeolite: synthesis of the nanoassemblies and application using a probe chromophore molecule.

    PubMed

    Legrand, A; Moissette, A; Hureau, M; Casale, S; Massiani, P; Vezin, H; Mamede, A S; Batonneau-Gener, I

    2014-07-14

    New assemblies constituted by a microporous matrix of mordenite (MOR) zeolite on which TiO2 nanoclusters are deposited were synthesized using ionic oxalate complexes and TiCl3 titanium precursors. The samples were used to investigate the transfer of electrons produced by spontaneous or photo-induced ionization of a guest molecule (t-stilbene, t-St) occluded in the porous volume towards the conduction band of a conductive material placed nearby, in the pores or at least close to their entrance. The reaction mechanisms were compared in these Ti-rich solids and in a Ti-free mordenite sample. The characterization by XRD, N2 physisorption, TEM, XPS and DRIFT spectroscopy of the supramolecular TiO2/MOR systems before t-St adsorption showed the preservation of the crystalline structure after Ti addition and thermal activation treatments. They also revealed that titanium is mainly located at the external surface of the zeolite grains, in the form of highly dispersed and/or aggregated anatase. After incorporation of the guest molecule in the new assemblies, diffuse reflectance UV-visible and EPR spectroscopies indicate that the electron transfer processes are similar with and without TiO2 but strongly stabilized t-St˙(+) radicals are detected in the TiO2-MOR samples whereas such species were never detected earlier in TiO2-free mordenite using these techniques. The stabilization process is found to be more efficient in the sample prepared with TiCl3 as the precursor than with titanium oxalates. It is proposed that the proximity of TiO2 with the formed t-St˙(+) radicals provokes the stabilization of the radical through capture of the ejected electron by the semi-conductor and that confinement effects can also play a role. PMID:24866869

  11. Zeolite Crystal Growth in Microgravity and on Earth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP), a NASA-sponsored Research Partnership Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Shown here are zeolite crystals (top) grown in a ground control experiment and grown in microgravity on the USML-2 mission (bottom). Zeolite experiments have also been conducted aboard the International Space Station.

  12. Toroidal Field Profile Measurements of SSPX Spheromaks Using the Transient Internal Probe

    NASA Astrophysics Data System (ADS)

    Holcomb, Christopher; Jarboe, Thomas; Mattick, A. T.; Hill, David; McLean, Harry; Wood, Reg; Hyundae, Kim

    2001-10-01

    The Sustained Spheromak Physics Experiment has been producing temperatures in excess of 100 eV which often have a peaked pressure profile. This occurs while the coaxial gun continues to feed current at the edge to hold the field roughly constant or in a slow, controlled decay. The Transient Internal Probe (TIP) diagnostic is now installed on SSPX and is being used to make field profile measurements during this hot driven phase. The diagnostic consists of a cylindrical verdet glass that is launched through SSPX at over 1.5 km/s. While in transit, it is illuminated from the front by an argon laser. After passing through the probe the light is retro-reflected to an ellipsometer where it is analyzed for polarization rotation due to the magnetic field at the probe. As of this writing, we are testing the diagnostic with plasma to adjust alignment, signal levels, and system timing; internal field profile measurements are expected later this summer, with the data being incorporated into MHD reconstruction of the current profile to help determine the beta and stability of the spheromak plasma. ^a University of Washington, Seattle WA, 98195 This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  13. Beryllosilicate frameworks and zeolites.

    PubMed

    Armstrong, Jennifer A; Weller, Mark T

    2010-11-10

    Using inspiration derived from studying naturally occurring minerals, a series of framework beryllosilicates have been synthesized under hydrothermal conditions. These include two new zeolite topologies, a unique layered beryllosilicate, and beryllosilicate analogues of numerous aluminosilicate zeolites. Materials with the structure of the rare zeolite mineral nabesite have been synthesized for the first time, including both sodium and potassium derivatives. The structural chemistry of these beryllosilicates frameworks is discussed with reference to the networks of linked tetrahedra, which include the first instance of pentagonal, two-dimensional Cairo-tiling of silicate tetrahedra in one of the new zeolite topologies, their porosity, and their thermal stability. PMID:20949941

  14. Probing internal structure of {Lambda}(1405) in meson-baryon dynamics with chiral symmetry

    SciTech Connect

    Sekihara, Takayasu; Hyodo, Tetsuo; Jido, Daisuke

    2011-10-21

    The internal structure of the resonant {Lambda}(1405) state is investigated based on meson-baryon coupled-channels chiral dynamics, by evaluating density distributions obtained from the form factors of the {Lambda}(1405) state. The form factors are extracted from current-coupled scattering amplitudes in which the current is coupled to the constituent hadrons inside {Lambda}(1405). Using several probe interactions and channel decomposition, we find that the resonant {Lambda}(1405) state is dominantly composed of widely spread K-bar around N, with a small fraction of the escaping {pi}{Sigma} component.

  15. Development of internal magnetic probe for current density profile measurement in Versatile Experiment Spherical Torus

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, J. W.; Jung, B. K.; Chung, K. J.; Hwang, Y. S.

    2014-11-01

    An internal magnetic probe using Hall sensors to measure a current density profile directly with perturbation of less than 10% to the plasma current is successfully operated for the first time in Versatile Experiment Spherical Torus (VEST). An appropriate Hall sensor is chosen to produce sufficient signals for VEST magnetic field while maintaining the small size of 10 mm in outer diameter. Temperature around the Hall sensor in a typical VEST plasma is regulated by blown air of 2 bars. First measurement of 60 kA VEST ohmic discharge shows a reasonable agreement with the total plasma current measured by Rogowski coil in VEST.

  16. Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size.

    PubMed

    Haemmerich, Dieter; Chachati, Louay; Wright, Andrew S; Mahvi, David M; Lee, Fred T; Webster, John G

    2003-04-01

    Radiofrequency (RF) ablation is a minimally invasive method for treatment of primary and metastatic liver tumors. One of the currently commercially available devices employs an internally cooled 17-gauge needle probe. Within the probe, cool water is circulated during ablation, which cools tissue close to the probe resulting in larger lesions. We evaluated the effect of different cooling water temperatures on lesion size. We created a finite-element method model, simulated 12 min impedance-controlled ablation and determined temperature distribution for three water temperatures. Lesion diameters in the model were 33.8, 33.4, and 32.8 mm for water temperatures of 5 degrees C, 15 degrees C, and 25 degrees C, respectively. We solved a simplified model geometry analytically and present dependence of lesion diameter on cooling temperature. We further performed ex vivo experiments in fresh bovine liver. We created four lesions for each water temperature, with the same water temperatures as used in the finite-element method (FEM) model. Average lesion diameters were 28.3, 30, and 29.5 mm for water temperatures of 5 degrees C, 15 degrees C, and 25 degrees C, respectively. Water temperature did not have a significant effect on lesion size in the ex vivo experiments (p = 0.76), the FEM model, and the analytical solution. PMID:12723061

  17. Molecular simulations and experimental studies of zeolites

    NASA Astrophysics Data System (ADS)

    Moloy, Eric C.

    Zeolites are microporous aluminosilicate tetrahedral framework materials that have symmetric cages and channels with open-diameters between 0.2 and 2.0 nm. Zeolites are used extensively in the petrochemical industries for both their microporosity and their catalytic properties. The role of water is paramount to the formation, structure, and stability of these materials. Zeolites frequently have extra-framework cations, and as a result, are important ion-exchange materials. Zeolites also play important roles as molecular sieves and catalysts. For all that is known about zeolites, much remains a mystery. How, for example, can the well established metastability of these structures be explained? What is the role of water with respect to the formation, stabilization, and dynamical properties? This dissertation addresses these questions mainly from a modeling perspective, but also with some experimental work as well. The first discussion addresses a special class of zeolites: pure-silica zeolites. Experimental enthalpy of formation data are combined with molecular modeling to address zeolitic metastability. Molecular modeling is used to calculate internal surface areas, and a linear relationship between formation enthalpy and internal surface areas is clearly established, producing an internal surface energy of approximately 93 mJ/m2. Nitrate bearing sodalite and cancrinite have formed under the caustic chemical conditions of some nuclear waste processing centers in the United States. These phases have fouled expensive process equipment, and are the primary constituents of the resilient heels in the bottom of storage tanks. Molecular modeling, including molecular mechanics, molecular dynamics, and density functional theory, is used to simulate these materials with respect to structure and dynamical properties. Some new, very interesting results are extracted from the simulation of anhydrous Na6[Si6Al 6O24] sodalite---most importantly, the identification of two distinct

  18. 7th International Workshop on Microbeam Probes of Cellular Radiation Response

    SciTech Connect

    Brenner, David J.

    2009-07-21

    The extended abstracts that follow present a summary of the Proceedings of the 7th International Workshop: Microbeam Probes of Cellular Radiation Response, held at Columbia University’s Kellogg Center in New York City on March 15–17, 2006. These International Workshops on Microbeam Probes of Cellular Radiation Response have been held regularly since 1993 (1–5). Since the first workshop, there has been a rapid growth (see Fig. 1) in the number of centers developing microbeams for radiobiological research, and worldwide there are currently about 30 microbeams in operation or under development. Single-cell/single-particle microbeam systems can deliver beams of different ionizing radiations with a spatial resolution of a few micrometers down to a few tenths of a micrometer. Microbeams can be used to addressquestions relating to the effects of low doses of radiation (a single radiation track traversing a cell or group of cells), to probe subcellular targets (e.g. nucleus or cytoplasm), and to address questions regarding the propagation of information about DNA damage (for example, the radiation-induced bystander effect). Much of the recent research using microbeams has been to study low-dose effects and ‘‘non-targeted’’ responses such as bystander effects, genomic instability and adaptive responses. This Workshop provided a forum to assess the current state of microbeam technology and current biological applications and to discuss future directions for development, both technological and biological. Over 100 participants reviewed the current state of microbeam research worldwide and reported on new technological developments in the fields of both physics and biology.

  19. Study of Molecular-Shape Selectivity of Zeolites by Gas Chromatography

    ERIC Educational Resources Information Center

    Chao, Pei-Yu; Chuang, Yao-Yuan; Ho, Grace Hsiuying; Chuang, Shiow-Huey; Tsai, Tseng-Chang; Lee, Chi-Young; Tsai, Shang-Tien; Huang, Jun-Fu

    2008-01-01

    A sorption experiment using a gas chromatograph is described that can help students understand the "molecular-shape selectivity" behavior of zeolites in the subnano regime. Hexane isomers are used as probe molecules to demonstrate the sorption phenomena. In the experiment, a zeolite adsorbs certain hexane isomers with molecular sizes smaller than…

  20. Zeolites: Exploring Molecular Channels

    SciTech Connect

    Arslan, Ilke; Derewinski, Mirek

    2015-05-22

    Synthetic zeolites contain microscopic channels, sort of like a sponge. They have many uses, such as helping laundry detergent lather, absorbing liquid in kitty litter, and as catalysts to produce fuel. Of the hundreds of types of zeolites, only about 15 are used for catalysis. PNNL catalysis scientists Ilke Arslan and Mirek Derewinksi are studying these zeolites to understand what make them special. By exploring the mystery of these microscopic channels, their fundamental findings will help design better catalysts for applications such as biofuel production.

  1. ZEOLITE CHARACTERIZATION TESTING

    SciTech Connect

    Jacobs, W; Herbert Nigg, H

    2007-09-13

    The Savannah River Site isolates tritium from its process streams for eventual recycling. This is done by catalyzing the formation of tritiated water (from process streams) and then sorbing that water on a 3A zeolite (molsieve) bed. The tritium is recovered by regenerating the saturated bed into a Mg-based water cracking unit. The process described has been in use for about 15 years. Recently chloride stress corrosion cracking (SCC) was noted in the system piping. This has resulted in the need to replace the corroded piping and associated molecular sieve beds. The source of chlorine has been debated and one possible source is the zeolite itself. Since new materials are being purchased for recently fabricated beds, a more comprehensive analysis protocol for characterizing zeolite has been developed. Tests on archived samples indicate the potential for mobile chloride species to be generated in the zeolite beds.

  2. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  3. Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements

    SciTech Connect

    Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Lepilliez, Mathieu; Cid, Emmanuel

    2014-05-15

    Internal solitary waves (ISWs) are large amplitude stable waves propagating in regions of high density gradients such as the ocean pycnocline. Their dynamics has often been investigated in two-dimensional approaches, however, their three-dimensional evolution is still poorly known. Experiments have been conducted in the large stratified water tank of CNRM-GAME to study the generation of ISWs in two academic configurations inspired by oceanic regimes. First, ultrasonic probes are used to measure the interfacial displacement in the two configurations. In the primary generation case for which the two layers are of constant density, the generation of ISWs is investigated in two series of experiments with varying amplitude and forcing frequency. In the secondary generation case for which the lower layer is stratified, the generation of ISWs from the impact of an internal wave beam on the pycnocline and their subsequent dynamics is studied. The dynamics of ISWs in these two regimes accords well with analytical approaches and numerical simulations performed in analogous configurations. Then, recent developments of a stereo correlation technique are used to describe the three-dimensional structure of propagating ISWs. In the primary generation configuration, small transverse effects are observed in the course of the ISW propagation. In the secondary generation configuration, larger transverse structures are observed in the interfacial waves dynamics. The interaction between interfacial troughs and internal waves propagating in the lower stratified layer are a possible cause for the generation of these structures. The magnitude of these transverse structures is quantified with a nondimensional parameter in the two configurations. They are twice as large in the secondary generation case as in the primary generation case.

  4. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M.; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P.

    2014-08-19

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  5. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Hayashi, Hideki; Banerjee, Rahul; Park, Kyo Sung; Wang, Bo; Cote, Adrien P

    2012-11-20

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  6. Preparation of functionalized zeolitic frameworks

    DOEpatents

    Yaghi, Omar M; Furukawa, Hiroyasu; Wang, Bo

    2013-07-09

    The disclosure provides zeolitic frameworks for gas separation, gas storage, catalysis and sensors. More particularly the disclosure provides zeolitic frameworks (ZIFs). The ZIF of the disclosure comprises any number of transition metals or a homogenous transition metal composition.

  7. Rapid synthesis of beta zeolites

    SciTech Connect

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  8. Fabrication and operation of GRIN probes for in vivo fluorescence cellular imaging of internal organs in small animals

    PubMed Central

    Kim, Jun Ki; Lee, Woei Ming; Kim, Pilhan; Choi, Myunghwan; Jung, Keehoon; Kim, Seonghoon; Yun, Seok Hyun

    2013-01-01

    Intravital fluorescence microscopy has emerged as a powerful technique to visualize cellular processes in vivo. However, the size of the objective lenses has limited physical accessibility to various tissue sites in the internal organs of small animals. The use of small-diameter probes using graded-index (GRIN) lenses expands the capabilities of conventional intravital microscopes into minimally invasive internal organs imaging. In this protocol, we describe the detailed steps for the fabrication of front- and side-view GRIN probes and the integration and operation of the probes in a confocal microscope for visualizing fluorescent cells and microvasculature in various murine organs. We further present longitudinal imaging of immune cells in renal allografts and the tumor development in the colon. The fabrication and integration can be completed in 5–7 hours, and a typical in vivo imaging session takes 1–2 hours. PMID:22767088

  9. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  10. Multiresolution internal template cleaning: an application to the Wilkinson Microwave Anisotropy Probe 7-yr polarization data

    NASA Astrophysics Data System (ADS)

    Fernández-Cobos, R.; Vielva, P.; Barreiro, R. B.; Martínez-González, E.

    2012-03-01

    The cosmic microwave background (CMB) radiation data obtained by different experiments contain, besides the desired signal, a superposition of microwave sky contributions. Using a wavelet decomposition on the sphere, we present a fast and robust method to recover the CMB signal from microwave maps. We present an application to the Wilkinson Microwave Anisotropy Probe (WMAP) polarization data, which shows its good performance, particularly in very polluted regions of the sky. The applied wavelet has the advantages that it requires little computational time in its calculations, it is adapted to the HEALPIX pixelization scheme and it offers the possibility of multiresolution analysis. The decomposition is implemented as part of a fully internal template fitting method, minimizing the variance of the resulting map at each scale. Using a χ2 characterization of the noise, we find that the residuals of the cleaned maps are compatible with those expected from the instrumental noise. The maps are also comparable to those obtained from the WMAP team, but in our case we do not make use of external data sets. In addition, at low resolution, our cleaned maps present a lower level of noise. The E-mode power spectrum ? is computed at high and low resolutions, and a cross-power spectrum ? is also calculated from the foreground reduced maps of temperature given by WMAP and our cleaned maps of polarization at high resolution. These spectra are consistent with the power spectra supplied by the WMAP team. We detect the E-mode acoustic peak at ℓ˜ 400, as predicted by the standard ΛCDM model. The B-mode power spectrum ? is compatible with zero.

  11. Dealumination of zeolite {beta} via dicarboxylic acid treatment

    SciTech Connect

    Apelian, M.R.; Fung, A.S.; Kennedy, G.J.; Degnan, T.F.

    1996-10-10

    It is demonstrated that zeolite {beta} and zeolite {beta} containing catalysts can be dealuminated to very low acidity levels using a novel oxalic acid treatment without reducing zeolite integrity. The effect of the oxalic acid treatment has been studied over a wide range of treatment conditions for both silica-bound and unbound zeolite {beta} catalysts. Greater than 90% dealumination is observed with a concomitant reduction in n-hexane-cracking activity as measured by the alpha ({alpha}) test. Removal of framework aluminum occurs via a two-step hyrolysis/chelation mechanism, with the oxalic acid acting both as an acid and as a chelating agent. Framework aluminum removal is accompanied by the formation of internal silanol groups. Water soluble aluminum oxalates are present in the extracted solutions. Silanol groups are annealed with extended oxalic acid treatment. Oxalic acid treatment results in a unique contraction of the zeolite {beta} lattice structure not observed for mineral acid treated or steamed zeolite {beta} catalysts. 15 refs., 11 figs., 5 tabs.

  12. Zeolite exposure and associated pneumoconiosis

    SciTech Connect

    Casey, K.R.; Shigeoka, J.W.; Rom, W.N.; Moatamed, F.

    1985-06-01

    Naturally occurring zeolite minerals are aluminum silicates widespread in the earth's crust. Several of these minerals have fibrous forms and have been implicated as a possible cause of benign and malignant diseases of the lung and pleura in Turkey. This report describes a patient, living in an area of Nevada rich in zeolites, who presented with idiopathic pleural thickening and pulmonary fibrosis associated with extensive pulmonary deposition of zeolites.

  13. Disilane-modified mordenite zeolites

    SciTech Connect

    Yan, Y.; Vansant, E.F. )

    1990-03-22

    The effective pore size of H-mordenite zeolite can be decreased by implantation of disilyl compounds. Chemisorption of disilane at high temperature results in denser packing of the implanted entities on the external surface. This in turn enhances the pore narrowing effect. After hydrolysis-dehydration, the external surface of the disilanated zeolite can be reactivated by partial rehydration; thus a successive modification of the zeolite surface is possible.

  14. Improved zeolitic isocracking catalysts

    SciTech Connect

    Dahlberg, A.J.; Habib, M.M.; Moore, R.O.; Law, D.V.; Convery, L.J.

    1995-09-01

    Chevron Research Company introduced the first low pressure, low temperature catalytic hydrocracking process--ISOCRACKING--in 1959. Within the last four years, Chevron has developed and commercialized three new zeolitic ISOCRACKING catalysts. ICR 209 is Chevron`s latest noble metal ISOCRACKING catalyst. It offers improved liquid yield stability, longer life, and superior polynuclear aromatics control compared to its predecessor. ICR 209`s high hydrogenation activity generates the highest yields of superior quality jet fuel of any zeolitic ISOCRACKING catalyst. The second new ISOCRACKING catalyst, ICR 208, is a base metal catalyst which combines high liquid selectivity and high light naphtha octane in hydrocrackers operating for maximum naphtha production. ICR 210 is another new base metal catalyst which offers higher liquid yields and longer life than ICR 208 by virtue of a higher hydrogenation-to-acidity ratio. Both ICR 208 and ICR 210 have been formulated to provide higher liquid yield throughout the cycle and longer cycle length than conventional base metal/zeolite catalysts. This paper will discuss the pilot plant and commercial performances of these new ISOCRACKING catalysts.

  15. Field tests of probes for detecting internal corrosion of natural gas transmission pipelines

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S.; Kane, Russell D.; Meidinger, Brian

    2005-01-01

    A field study was conducted to evaluate the use of electrochemical corrosion rate (ECR) probes for detecting corrosion in environments similar to those found in natural gas transmission pipelines. Results and interpretation will be reported from four different field tests. Flange and flush-mount probes were used in four different environments at a gas-gathering site and one environment but two different orientations at a natural gas plant. These sites were selected to represent normal and upset conditions in a gas transmission pipeline. The environments consisted of 2 different levels of humidified natural gas/organic/water mixtures removed from natural gas, and the environments at the 6 and 12 o'clock positions of a natural gas pipeline carrying 2-phase gas/liquid flow. Data are also presented comparing the ECR probe data to that for coupons used to determine corrosion rate and to detect the presence of microbiologically influenced corrosion (MIC).

  16. Zeolite vitrification demonstration program: characterization of radioactive vitrified zeolite materials

    SciTech Connect

    Barner, J O; Daniel, J L; Marshall, R K

    1984-01-01

    The leach behavior of radioactive vitrified zeolite material was studied as part of the Three Mile Island (TMI) Zeolite Vitrification Program conducted by Pacific Northwest Laboratory (PNL). Experimental procedures, test results, and discussions of the results are presented. The leach behavior of material from three canisters of vitrified zeolite is discussed in terms of the normalized weight loss of the glass-formers and the normalized activity loss of the fission products cesium and strontium. The leach behavior of the radioactive vitrified zeolite material is also compared to the leach behavior of MCC 76-68 reference glass. The effects of changes in the surface microstructure of the vitrified zeolite that occurred during leaching are also presented. 3 references, 23 figures, 10 tables.

  17. Cellular internalization of a membrane binding two-photon probe by a complex of anionic diblock copolymer and cationic surfactant

    NASA Astrophysics Data System (ADS)

    Nag, Okhil Kumar; Woo, Han Young; Chen, Wei R.

    2012-03-01

    We report a two-photon (TP) absorbing molecular probe 1,4-bis(4'-(N,N-bis(6''-(N,N,N-trimethylammonium)hexyl)amino)-styryl)benzene tetrabromide (C1) and its interaction with cells upon encapsulation with polymeric vesicles. Two-photon microscopy (TPM) revealed that the free C1 specifically could bind to the plasma membrane and shows bright TP emission. However, C1 encapsulated with polymeric vesicles internalized into the cytosol. In addition, fluorescence quantum efficiency and TP cross section of encapsulated C1 enhanced by 2-fold. These results not only show useful guidelines for the development of efficient TP probes, but also underscore the possibility of using this type of nanostructure for intracellular delivery of the bioactive therapeutics.

  18. Thermal behavior of natural zeolites

    SciTech Connect

    Bish, D.L.

    1993-09-01

    Thermal behavior of natural zeolites impacts their application and identification and varies significantly from zeolite to zeolite. Zeolites evolve H{sub 2}0 upon heating, but recent data show that distinct ``types`` of water (e.g., loosely bound or tightly bound zeolitic water) do not exist. Rather water is bound primarily to extra-framework cations with a continuum of energies, giving rise to pseudocontinuous loss of water accompanied by a dynamic interaction between remaining H{sub 2}0 molecules and extra-framework cations. These interactions in the channels of zeolites give rise to dehydration dependent on the extra-framework cation, in addition to temperature and water vapor pressure. The dehydration reaction and the extra-framework cation also affect the thermal expansion/contraction. Most zeolites undergo dehydration-induced contractions that may be anisotropic, although minor thermal expansion can be seen with some zeolites. Such contractions can be partially or completely irreversible if they involve modifications of the tetrahedral framework and/or if rehydration is sluggish. Thermally induced structural modifications are also driven initially by dehydration and the concomitant contraction and migration of extra-framework cations. Contraction is accommodated by rotations of structural units and tetrahedral cation-oxygen linkages may break. Thermal reactions that involve breaking of tetrahedral cation-oxygen bonds markedly irreversible and may be kinetically limited, producing large differences between short- and long-term heating.

  19. Adsorption sites in zeolites A and X probed by competitive adsorption of H{sub 2} with N{sub 2} or O{sub 2}: Implications for N{sub 2}/O{sub 2} separation

    SciTech Connect

    Eckert, J.; Trouw, F.; Bug, A.L.R.

    1998-08-01

    The authors determine details of the adsorption of O{sub 2} or N{sub 2} in Li{sup +} exchanged zeolites by way of their effect on coadsorbed H{sub 2} molecules using inelastic neutron scattering (INS) techniques. The results clearly show, for example, the absence of type III cations in Li-A and the expected stronger binding of N{sub 2} (compared with O{sub 2}) and thereby provide insight into the relative efficacy of Li-X for O{sub 2}/N{sub 2} separation.

  20. Adamantanes from petroleum, with zeolites

    SciTech Connect

    Rollmann, L.D.; Green, L.A.; Bradway, R.A.

    1995-12-31

    Experiments with zeolite Beta and zeolite {Upsilon} demonstrate that adamantane and methyl adamantanes can be isolated very effectively from modern refinery streams by mild hydrocracking over Pt- and Pd-containing large pore zeolites. Yield depends importantly on individual refinery crude source and process configuration. Heavy crudes and refineries with conventional hydrocracking and FCC feed hydrotreater facilities are particularly desirable, and an ideal feed for adamantane isolation in such a situation is the 150{degrees}-250{degrees}C fraction of the hydrocracker (HDC) recycle stream. When Pt- or Pd-containing zeolite Beta was used with such a stream, temperatures of some 250{degrees}C and pressures below 3.5 mPa (500 psig) sufficed to remove selectively well over 90% of the non-adamantane hydrocarbon, with little conversion of adamantanes. High selectivity for adamantanes is attributed in large part to size-selective exclusion of these molecules from the pores of zeolite Beta.

  1. Electric Field Penetration in Au/Nb:SrTiO3 Schottky Junctions Probed by Bias-Dependent Internal Photoemission

    SciTech Connect

    Hikita, Y.

    2011-08-15

    Electric field penetration into the metallic side of a Schottky junction is in principle a universal phenomenon, the magnitude of which increases with the semiconductor permittivity. Here, we quantitatively probe this effect using bias-dependent internal photoemission spectroscopy at the Schottky junction between a large dielectric permittivity semiconductor SrTiO{sub 3} and gold. A clear linear reduction of the barrier height with increasing interface electric field was observed, highlighting the importance of field penetration into the gold. The interfacial permittivity of SrTiO{sub 3} at the interface is reduced from the bulk value, reflecting intrinsic suppression at the interface.

  2. Role of endocytosis in the internalization of spermidine-C(2)-BODIPY, a highly fluorescent probe of polyamine transport.

    PubMed Central

    Soulet, Denis; Covassin, Laurence; Kaouass, Mohammadi; Charest-Gaudreault, René; Audette, Marie; Poulin, Richard

    2002-01-01

    The mechanism of transmembrane polyamine internalization in mammalian cells remains unknown. A novel fluorescent spermidine conjugate [Spd-C(2)-BODIPY; N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)-N'-(S -[spermidine-(N(4)-ethyl)]thioacetyl)ethylenediamine] was synthesized from N(4)-(mercaptoethyl)spermidine by a simple, one-step coupling procedure. In Chinese-hamster ovary (CHO) cells, Spd-C(2)-BODIPY accumulation was inhibited by exogenous putrescine, spermidine and spermine, was subject to feedback transport inhibition and was up-regulated by prior polyamine depletion achieved with a biosynthetic inhibitor. Probe internalization was decreased by about 85% in a polyamine-transport-deficient CHO mutant cell line. Using confocal laser scanning fluorescence microscopy, internalized Spd-C(2)-BODIPY was concentrated in vesicle-like structures similar to the recycling endosomes observed with fluorescent transferrin, which partly co-localized with the polyamine probe. In yeast, Spd-C(2)-BODIPY uptake was stringently dependent on receptor-mediated endocytosis, as determined with a mutant defective in early- endosome formation. On the other hand, Spd-C(2)-BODIPY did not mimic the substrate behaviour of natural polyamines in yeast, as shown by the lack of correlation of its uptake characteristics with the phenotypes of mutants defective in either polyamine transport or biosynthesis. These data suggest that endocytosis might be an integral part of the mechanism of polyamine transport in mammalian cells, and that the mammalian and yeast transport systems use qualitatively different transport mechanisms. However, the current data do not rule out the possibility that sequestration of the probe into vesicular structures might be secondary to its prior uptake via a "classical" plasma membrane carrier. Spd-C(2)-BODIPY, a highly sensitive probe of polyamine transport with biochemical parameters qualitatively similar to those of natural polyamines in

  3. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  4. Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy

    PubMed Central

    Oreopoulos, John; Yip, Christopher M.

    2009-01-01

    Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. PMID:19254557

  5. Properties and applications of zeolites.

    PubMed

    Rhodes, Christopher J

    2010-01-01

    Zeolites are aluminosilicate solids bearing a negatively charged honeycomb framework of micropores into which molecules may be adsorbed for environmental decontamination, and to catalyse chemical reactions. They are central to green-chemistry since the necessity for organic solvents is minimised. Proton-exchanged (H) zeolites are extensively employed in the petrochemical industry for cracking crude oil fractions into fuels and chemical feedstocks for other industrial processes. Due to their ability to perform cation-exchange, in which the cations that are originally present to counterbalance the framework negative charge may be exchanged out of the zeolite by cations present in aqueous solution, zeolites are useful as industrial water-softeners, in the removal of radioactive Cs+ and Sr2+ cations from liquid nuclear waste and in the removal of toxic heavy metal cations from groundwaters and run-off waters. Surfactant-modified zeolites (SMZ) find particular application in the co-removal of both toxic anions and organic pollutants. Toxic anions such as arsenite, arsenate, chromate, cyanide and radioactive iodide can also be removed by adsorption into zeolites that have been previously loaded with co-precipitating metal cations such as Ag+ and Pb2+ which form practically insoluble complexes that are contained within the zeolite matrix. PMID:21047018

  6. Dehydration of cyclohexanol as a test reaction for zeolite acidity

    SciTech Connect

    Karge, H.G.; Kosters, H.; Wada, Y.

    1984-01-01

    Dehydration of cyclohexanol was investigated using a fixed-bed continuous flow reactor with acidic mordenite-type, clinoptilolite-type, and faujasite-type (Y) zeolites as catalysts. The surface acidity of the catalysts employed was studied by IR using pyridine or 2,6-di-tert. butylpyridine as probe molecules. A correlation between the acidity and the rates of dehydration was clearly shown.

  7. Synthetic Zeolites and Other Microporous Oxide Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Sherman, John D.

    1999-03-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.

  8. Removal of radionuclides using zeolites

    SciTech Connect

    Reddy, R.G.; Cai, Z.

    1996-10-01

    Adsorption of uranium(VI) from aqueous solutions on natural zeolites, i.e., chabazite, clinoptilolite, erionite and mordenite, was investigated. The influence of time and pH of the solution were studied. The results showed that uranium(VI) species are strongly adsorbed on the zeolites between pH 6 to 9. The amount of uranium adsorption is strongly dependent on pH and, to some extent, on the type of zeolites. For pH {ge} 6 and at 25 C, more than 92% of uranium from solution was removed in 10 minutes. Adsorption mechanism of uranium is discussed.

  9. Water uptake of internally mixed ammonium sulfate and dicarboxylic acid particles probed by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2013-05-01

    Tropospheric aerosols are usually mixtures of inorganic and organic compounds in variable proportions, and the relative amount of organic fraction can influence the hygroscopic properties of the particles. Infrared spectra of submicrometer internally mixed dry particles of ammonium sulfate (AS) with various dicarboxylic acids (oxalic, malonic, maleic, glutaric and pimelic) have been measured in an aerosol flow tube at several solute mass ratios. The spectra show a notable broadening in the bandwidth of sulfate ion ν3 vibrational band near 1115 cm-1 with respect to pure AS. We attribute these perturbations, that are biggest at AS/organic acid mass ratio near unity, to intermolecular interactions between inorganic ions and organic acid molecules in the internally mixed solids. The water uptake behavior of internally mixed particles has been measured by recording the infrared integrated absorbance of liquid water as a function of relative humidity (RH). The amount of water present in the particles prior to deliquescence correlates partially with the water solubilities of the dicarboxylic acids, and also with the relative magnitudes of intermolecular interactions in the internally mixed dry solids. Phase change of ammonium sulfate in the internally mixed particles with RH has been spectrally monitored, and it is shown that water uptaken before full deliquescence produces structural changes in the particles that are revealed by their vibrational spectra.

  10. Morpho-chemical characterization and surface properties of carcinogenic zeolite fibers.

    PubMed

    Mattioli, Michele; Giordani, Matteo; Dogan, Meral; Cangiotti, Michela; Avella, Giuseppe; Giorgi, Rodorico; Dogan, A Umran; Ottaviani, Maria Francesca

    2016-04-01

    Erionite belonging to the zeolite family is a human health-hazard, since it was demonstrated to be carcinogenic. Conversely, offretite family zeolites were suspected carcinogenic. Mineralogical, morphological, chemical, and surface characterizations were performed on two erionites (GF1, MD8) and one offretite (BV12) fibrous samples and, for comparison, one scolecite (SC1) sample. The specific surface area analysis indicated a larger availability of surface sites for the adsorption onto GF1, while SC1 shows the lowest one and the presence of large pores in the poorly fibrous zeolite aggregates. Selected spin probes revealed a high adsorption capacity of GF1 compared to the other zeolites, but the polar/charged interacting sites were well distributed, intercalated by less polar sites (Si-O-Si). MD8 surface is less homogeneous and the polar/charged sites are more interacting and closer to each other compared to GF1. The interacting ability of BV12 surface is much lower than that found for GF1 and MD8 and the probes are trapped in small pores into the fibrous aggregates. In comparison with the other zeolites, the non-carcinogenic SC1 shows a poor interacting ability and a lower surface polarity. These results helped to clarify the chemical properties and the surface interacting ability of these zeolite fibers which may be related to their carcinogenicity. PMID:26707973

  11. Mesostructured zeolites: bridging the gap between zeolites and MCM-41.

    PubMed

    Prasomsri, Teerawit; Jiao, Wenqian; Weng, Steve Z; Garcia Martinez, Javier

    2015-05-28

    Surfactant-templating is one of the most versatile and useful techniques to implement mesoporous systems into solid materials. Various strategies based on various interactions between surfactants and solid precursors have been explored to produce new structures. Zeolites are invaluable as size- and shape-selective solid acid catalysts. Nevertheless, their micropores impose limitations on the mass transport of bulky feed and/or product molecules. Many studies have attempted to address this by utilizing surfactant-assisting technology to alleviate the diffusion constraints. However, most efforts have failed due to micro/mesopore phase separation. Recently, a new technique combining the uses of cationic surfactants and mild basic solutions was introduced to synthesise mesostructured zeolites. These materials sustain the unique characteristics of zeolites (i.e., strong acidity, crystallinity, microporosity, and hydrothermal stability), including tunable mesopore sizes and degrees of mesoporosity. The mesostructured zeolites are now commercially available through Rive Technology, and show superior performance in VGO cracking. This feature article provides an overview of recent explorations in the introduction of mesoporosity into zeolites using surfactant-templating techniques. Various porous materials, preparation methods, physical and catalytic properties of mesostructured zeolites will be discussed. PMID:25866848

  12. International Thematic Probe: The Influence of Relative Age on Learner Attainment and Development

    ERIC Educational Resources Information Center

    Sharp, Caroline; George, Nalia; Sargent, Claire; O'Donnell, Sharon; Heron, Maureen

    2009-01-01

    This rapid review of research evidence was commissioned by the Qualifications and Curriculum Authority (QCA) to investigate the issue of relative age in the international context. The review findings are drawn from 18 research studies published from 2000 to 2008 and carried out in Australia, Chile, the United Kingdom and the USA together with…

  13. Chemical interactions in multimetal/zeolite catalysts

    SciTech Connect

    Sachtler, W.M.H.

    1992-12-21

    Research is proposed on two groups of zeolite based catalysts that contain two transition elements. In one group both metals are fully reduced, in the other group one element is left as a positive ion; it can act as a chemical anchor'', or as a catalyst promoter for the reduced metal. The objective is to explore the potential of such materials for designing superior catalysts for synthesis and conversion of hydrocarbons and other energy carriers. ENDOR, EXAFS, CO-FTIR and TPD will be used to identify the interaction of Mn[sup 2+] ions with Rh[sub n] particles in the same zeolite cage. EXAFS at the Kedge of Fe and Pd, FTIR and Moessbauer spectroscopy will be used to characterize Fe ions and alloyed Fe atoms in PdFe/NaHY. The catalysts will be probed with CO hydrogenation and conversion of hydrocarbons. Methods Which proved successful in our study of Y supported bimetal systems will be applied to identify the state of Pt and Cu in ZSM-5, a catalyst system holding large promise for NO abatement, even in the presence of oxygen.

  14. Copper-containing zeolite catalysts

    DOEpatents

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  15. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  16. Overview of Solar Seismology: Oscillations as Probes of Internal Structure and Dynamics in the Sun

    NASA Technical Reports Server (NTRS)

    Toomre, J.

    1984-01-01

    The physical nature of solar oscillations is reviewed. The nomenclature of the subject and the techniques used to interpret the oscillations are discussed. Many of the acoustic and gravity waves that can be observed in the atmosphere of the Sun are actually resonant or standing modes of the interior; precise measurements of the frequencies of such modes allow deductions of the internal structure and dynamics of this star. The scientific objectives of such studies of solar seismic disturbances, or of solar seismology, are outlined. The reasons why it would be very beneficial to carry out further observations of solar oscillations both from ground based networks and from space will be discussed.

  17. Study of intradrystalline diffusion in zeolites communication 3. Kinetics of adsorption of trans-2-butene by NaA and NaMgA zeolites

    SciTech Connect

    Broddak, R.; Dubinin, M.M.; Falko, L.A.; Gorlov, V.A.; Kuhlmann, B.; Scholner, E.; Voloshchuk, A.M.

    1985-09-10

    This article studies the kinetics of adsorption of trans-2-butene by NaA zeolite with a varying crystal size, microcrystalline granulated NaA zeolite using granules of different sizes, and microcrystalline powdered Na/sub 8/Mg/sub 2/A zeolite. It is shown that the rate of adsorption is determined by the intracrystalline diffusion and that the effect of transfer in the transport pores and the final rate of dissipation of the heat of adsorption can be neglected. In adsorption of trans-2-butene by Na/sub 8/Mg/sub 2/A zeolite with a stepwise change in the pressure of the adsorbate, the kinetic curves are satisfactorily described by an internal diffusion equation for the kinetics of isothermal adsorption. The kinetics of adsorption were studied at 303 degrees K from the one-component vapor phase on a vacuum adsorption setup using quartz spring balance.

  18. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    PubMed

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals. PMID:27128828

  19. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  20. Probing a 2-Aminobenzimidazole Library for Binding to RNA Internal Loops via Two-Dimensional Combinatorial Screening

    PubMed Central

    Velegapudi, Sai Pradeep; Pushechnikov, Alexei; Labuda, Lucas P.; French, Jonathan M.; Disney, Matthew D.

    2012-01-01

    There are many potential RNA drug targets in bacterial, viral, and the human transcriptomes. However, there are few small molecules that modulate RNA function. This is due, in part, to a lack of fundamental understanding about RNA-ligand interactions including the types of small molecules that bind to RNA structural elements and the RNA structural elements that bind to small molecules. In an effort to better understand RNA-ligand interactions, we diversified the 2-aminobenzimidazole core (2AB) and probed the resulting library for binding to a library of RNA internal loops. We chose the 2AB core for these studies because it is a privileged scaffold for binding RNA based on previous reports. These studies identified that N-methyl pyrrolidine, imidazole, and propylamine diversity elements at the R1 position increase binding to internal loops; variability at the R2 position is well tolerated. The preferred RNA loop space was also determined for five ligands using a statistical approach and identified trends that lead to selective recognition. PMID:22958065

  1. Probing a 2-aminobenzimidazole library for binding to RNA internal loops via two-dimensional combinatorial screening.

    PubMed

    Velagapudi, Sai Pradeep; Pushechnikov, Alexei; Labuda, Lucas P; French, Jonathan M; Disney, Matthew D

    2012-11-16

    There are many potential RNA drug targets in bacterial, viral, and human transcriptomes. However, there are few small molecules that modulate RNA function. This is due, in part, to a lack of fundamental understanding about RNA-ligand interactions including the types of small molecules that bind to RNA structural elements and the RNA structural elements that bind to small molecules. In an effort to better understand RNA-ligand interactions, we diversified the 2-aminobenzimidazole core (2AB) and probed the resulting library for binding to a library of RNA internal loops. We chose the 2AB core for these studies because it is a privileged scaffold for binding RNA based on previous reports. These studies identified that N-methyl pyrrolidine, imidazole, and propylamine diversity elements at the R1 position increase binding to internal loops; variability at the R2 position is well tolerated. The preferred RNA loop space was also determined for five ligands using a statistical approach and identified trends that lead to selective recognition. PMID:22958065

  2. Influence of starting zeolite on synthesis of RUT type zeolite by interzeolite conversion method

    NASA Astrophysics Data System (ADS)

    Itakura, Masaya; Ota, Kai; Shibata, Shohei; Inoue, Takayuki; Ide, Yusuke; Sadakane, Masahiro; Sano, Tsuneji

    2011-01-01

    In this study, hydrothermal conversions of *BEA and FAU type zeolites using various structure-directing agents were carried out. Highly crystalline and pure RUT type zeolites were obtained from both zeolites in the presence of tetramethylammonium hydroxide. There were no major differences between the characteristics of the RUT type zeolites obtained from the two starting zeolites. However, the Si/Al ratio and the crystallization rate of the RUT type zeolites were strongly dependent on both the framework structure and the Si/Al ratio of the starting zeolite. That is, the crystallization rate of the RUT type zeolite from the *BEA type zeolite did not depend on the Si/Al ratio of the starting *BEA type zeolite, whereas the crystallization rate of the RUT type zeolite from the FAU type zeolite was dependent on the Si/Al ratio of the starting FAU type zeolite. This suggests that the chemical structure and the concentration of locally ordered aluminosilicate species produced by the decomposition/dissolution of the starting zeolite can be altered by changing the framework structure of the zeolite.

  3. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation

    PubMed Central

    Lopes, Marlene A; Abrahim-Vieira, Bárbara; Oliveira, Claudia; Fonte, Pedro; Souza, Alessandra M T; Lira, Tammy; Sequeira, Joana A D; Rodrigues, Carlos R; Cabral, Lúcio M; Sarmento, Bruno; Seiça, Raquel; Veiga, Francisco; Ribeiro, António J

    2015-01-01

    Alginate–dextran sulfate-based particles obtained by emulsification/internal gelation technology can be considered suitable carriers for oral insulin delivery. A rational study focused on the emulsification and particle recovery steps was developed in order to reduce particles to the nanosize range while keeping insulin bioactivity. There was a decrease in size when ultrasonication was used during emulsification, which was more pronounced when a cosurfactant was added. Ultrasonication add-on after particle recovery decreased aggregation and led to a narrower nanoscale particle-size distribution. Insulin encapsulation efficiency was 99.3%±0.5%, attributed to the strong pH-stabilizing electrostatic effect between insulin and nanoparticle matrix polymers. Interactions between these polymers and insulin were predicted using molecular modeling studies through quantum mechanics calculations that allowed for prediction of the interaction model. In vitro release studies indicated well-preserved integrity of nanoparticles in simulated gastric fluid. Circular dichroism spectroscopy proved conformational stability of insulin and Fourier transform infrared spectroscopy technique showed rearrangements of insulin structure during processing. Moreover, in vivo biological activity in diabetic rats revealed no statistical difference when compared to nonencapsulated insulin, demonstrating retention of insulin activity. Our results demonstrate that alginate–dextran sulfate-based nanoparticles efficiently stabilize the loaded protein structure, presenting good physical properties for oral delivery of insulin. PMID:26425087

  4. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation.

    PubMed

    Lopes, Marlene A; Abrahim-Vieira, Bárbara; Oliveira, Claudia; Fonte, Pedro; Souza, Alessandra M T; Lira, Tammy; Sequeira, Joana A D; Rodrigues, Carlos R; Cabral, Lúcio M; Sarmento, Bruno; Seiça, Raquel; Veiga, Francisco; Ribeiro, António J

    2015-01-01

    Alginate-dextran sulfate-based particles obtained by emulsification/internal gelation technology can be considered suitable carriers for oral insulin delivery. A rational study focused on the emulsification and particle recovery steps was developed in order to reduce particles to the nanosize range while keeping insulin bioactivity. There was a decrease in size when ultrasonication was used during emulsification, which was more pronounced when a cosurfactant was added. Ultrasonication add-on after particle recovery decreased aggregation and led to a narrower nanoscale particle-size distribution. Insulin encapsulation efficiency was 99.3%±0.5%, attributed to the strong pH-stabilizing electrostatic effect between insulin and nanoparticle matrix polymers. Interactions between these polymers and insulin were predicted using molecular modeling studies through quantum mechanics calculations that allowed for prediction of the interaction model. In vitro release studies indicated well-preserved integrity of nanoparticles in simulated gastric fluid. Circular dichroism spectroscopy proved conformational stability of insulin and Fourier transform infrared spectroscopy technique showed rearrangements of insulin structure during processing. Moreover, in vivo biological activity in diabetic rats revealed no statistical difference when compared to nonencapsulated insulin, demonstrating retention of insulin activity. Our results demonstrate that alginate-dextran sulfate-based nanoparticles efficiently stabilize the loaded protein structure, presenting good physical properties for oral delivery of insulin. PMID:26425087

  5. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na[sub 2]O added as NAOH instead of Na[sub 2]CO[sub 3] to avoid severe foaming due to CO[sub 2] evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  6. Reclaiming silver from silver zeolite

    SciTech Connect

    Reimann, G.A.

    1991-10-01

    Silver zeolite is used to capture radioiodines from air cleaning systems in some nuclear facilities at the Idaho National Engineering Laboratory. It may become radioactively contaminated and/or poisoned by hydrocarbon vapors, which diminishes its capacity for iodine. Silver zeolite contains up to 38 wt% silver. A pyrometallurgical process was developed to reclaim the silver before disposing of the unserviceable zeolite as a radioactive waste. A flux was formulated to convert the refractory aluminosilicate zeolite structure into a low-melting fluid slag, with Na{sub 2}O added as NAOH instead of Na{sub 2}CO{sub 3} to avoid severe foaming due to CO{sub 2} evolution. A propane-fired furnace was built to smelt 45 kg charges at 1300C in a carbon-bonded silicon carbide crucible. A total of 218 kg (7000 tr oz) of silver was reclaimed from 1050 kg of unserviceable zeolite. Silver recoveries of 97% were achieved, and the radioisotopes were fixed as stable silicates in a vitreous slag that was disposed of as a low level waste. Recovered silver was refined using oxygen and cast into 100 tr oz bars assaying 99.8+% silver and showing no radioactive contamination.

  7. Template-free nanosized faujasite-type zeolites

    NASA Astrophysics Data System (ADS)

    Awala, Hussein; Gilson, Jean-Pierre; Retoux, Richard; Boullay, Philippe; Goupil, Jean-Michel; Valtchev, Valentin; Mintova, Svetlana

    2015-04-01

    Nanosized faujasite (FAU) crystals have great potential as catalysts or adsorbents to more efficiently process present and forthcoming synthetic and renewable feedstocks in oil refining, petrochemistry and fine chemistry. Here, we report the rational design of template-free nanosized FAU zeolites with exceptional properties, including extremely small crystallites (10-15 nm) with a narrow particle size distribution, high crystalline yields (above 80%), micropore volumes (0.30 cm3 g-1) comparable to their conventional counterparts (micrometre-sized crystals), Si/Al ratios adjustable between 1.1 and 2.1 (zeolites X or Y) and excellent thermal stability leading to superior catalytic performance in the dealkylation of a bulky molecule, 1,3,5-triisopropylbenzene, probing sites mostly located on the external surface of the nanosized crystals. Another important feature is their excellent colloidal stability, which facilitates a uniform dispersion on supports for applications in catalysis, sorption and thin-to-thick coatings.

  8. Inelastic X-ray Scattering Studies of Zeolite Collapse

    SciTech Connect

    Greaves, G. Neville; Kargl, Florian; Ward, David; Holliman, Peter; Meneau, Florian

    2009-01-29

    In situ inelastic x-ray scattering (IXS) experiments have been used to probe heterogeneity and deformability in zeolte Y as this thermally collapses to a high density amorphous (HDA) aluminosilicate phase. The Landau-Placzek ratio R{sub LP} falls slowly as amorphisation advances, increasing in the later stages of collapse clearly showing how homogeneity improves non-linearly--behaviour linked closely with the decline in molar volume V{sub Molar}. The Brillouin frequency {omega}{sub Q} also decreases with amorphisation in a similar fashion, signifying a non-uniform decrease in the speed of sound v{sub l}. All of these changes with zeolite amorphisation infer formation of an intermediate low density amorphous (LDA) phase. This low entropy or 'perfect glass' has mechanical properties which are closer to the zeolite rather to the HDA glass--notably a very small value of Poisson's Ratio signifying unusually low resistance to deformation.

  9. Ceres’ impact craters: probes of near-surface internal structure and composition

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Raymond, Carol; Park, Ryan; Schenk, Paul; McCord, Tom; Reddy, Vishnu; King, Scott; Sykes, Mark; Russell, Chris

    2015-11-01

    Dawn Framing Camera images of Ceres have revealed the existence of a heavily cratered surface. Shape models derived from these images indicate that most (though not all) large craters are quite deep: up to 6 km for craters larger than 100 km in diameter. The retention of deep craters is not consistent with a simple differentiated internal structure consisting of an outer layer composed solely of pure water ice (covered with a rocky lag) overlying a rocky core. Here we use finite element simulations to show that, for Ceres’ relatively warm surface temperatures, the timescale required to completely flatten a crater 60-km in diameter (or greater) is less than 100 Myr, assuming a relatively pure outer ice layer (for ice grain sizes ≤ 1 cm). Preserving substantial topography requires that the viscosity of Ceres’ outer-most layer (25-50 km thick) is substantially greater than that of pure water ice. A factor of ten increase in viscosity can be achieved by assuming the layer is a 50/50 ice-rock mixture by volume; however, our simulations show that such an increase is insufficient to prevent substantial relaxation over timescales of 1 Gyr. Only particulate volume fractions greater than 50% provide an increase in viscosity sufficient to prevent large-scale, rapid relaxation. Such volume fractions suggest an outer layer composed of frozen soil/regolith (i.e., more rock than ice by volume), a very salt-rich layer, or both. Notably, while most basins appear quite deep, a few relatively shallow basins have been observed (e.g., Coniraya), suggesting that relaxation may be occurring over very long timescales (e.g., 4 Ga), that Ceres’ interior is compositionally and spatial heterogeneous, and/or that temporal evolution of the interior structure and composition has occurred. If these shallow basins are in fact the result of relaxation, it places an upper limit on the viscosity of Ceres’ outer-most interior layer, implying at least some low-viscosity material is present

  10. Zeolite synthesis: an energetic perspective.

    PubMed

    Zwijnenburg, Martijn A; Bromley, Stefan T

    2010-11-21

    Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis. PMID:20938518

  11. Metallo-hydrazone complexes immobilized in zeolite Y: Synthesis, identification and acid violet-1 degradation

    NASA Astrophysics Data System (ADS)

    Ahmed, Ayman H.; Thabet, M. S.

    2011-12-01

    Copper(II), cobalt(II) and nickel(II) complexes of hydrazone ligand (SAPH) derived from salicylaldehyde and phenylhydrazine have been encapsulated in zeolite-Y super cages via ship-in-a-bottle synthesis. Detailed characterization of the intrazeolitic complexes were performed by elemental analysis, spectral (FT-IR, UV-Vis.) studies, magnetic measurements and X-ray diffraction. Furthers, surface texture and thermal analysis (TG, DTG, DTA) have provided further evidence for successful immobilization of the metal complexes inside zeolite Y. Investigation of the stereochemistry of these incorporated chelates pointed out that, SAPH ligand is capable to coordinate with the central metal through the (C dbnd N), phenolic (OH) and (NH) groups forming polynuclear structures. The involvement of zeolite oxygen in coordination was postulated in the hybrid materials. The intrazeolitic copper, cobalt and nickel-SAPH complexes have distorted tetrahedral, octahedral and square-pyramidal configurations, respectively. The zeolite encapsulated complexes are thermally stable up to 800 °C except Cu(II) sample which is thermally stable up to midpoint 428 °C. The assessment of the catalytic activity was performed by the use of the photo-degradation of acid violet-1 dye as a probe reaction in presence of H 2O 2 as an oxidant. Decolorization of acid violet-1 dye was examined under the same conditions whereas the unpromoted zeolite and Cu II, Co II, Ni II-hydrazone complexes supported on zeolite showed 13% and 76%, 53%, 43% color removal, respectively. The results revealed that, the zeolite encapsulated Cu(II) complex generally exhibited better catalytic efficiency (76%) compared with other investigated zeolite encapsulated metal-hydrazone samples.

  12. CASSIOPE Enhanced Polar Outflow Probe (e-POP) Small Satellite Mission: Space Plasma Observations and International Collaborations

    NASA Astrophysics Data System (ADS)

    Yau, A. W.; James, H. G.

    2009-06-01

    In-situ observation of the micro-scale characteristics of plasma acceleration and related outflow processes is a primary scientific target of the Canadian Enhanced Polar Outflow Probe (e-POP) small satellite mission. The e-POP instrument payload will include imaging plasma and neutral particle sensors, magnetometers, dual-frequency GPS receivers, CCD cameras, a radio wave receiver and a beacon transmitter. The imaging plasma sensors will measure particle distributions and the magnetometers will measure field-aligned currents on the time scale of 10 ms and spatial scale of ~100 m. The CCD cameras will perform auroral imaging on the time scale of 100 ms and at spatial (pixel) resolution up to 0.4 km. The GPS and radio-wave receivers will perform near real-time imaging studies of the ionosphere in conjunction with ground-based radars, and the beacon transmitter in conjunction with ground receiving stations. The e-POP payload will be flown on the Canadian CASSIOPE small satellite, which is scheduled for launch in late 2008 into a polar orbit (325×1500 km, 80° inclination). International collaboration is an important and integral part of the e-POP mission strategy. Two of the 8 e-POP science instruments will be contributed by JAXA/ISAS, Japan, and Naval Research Laboratory, USA, respectively. Many of the planned e-POP investigations will entail coordinated observations using Canadian as well as foreign ground facilities, including magnetic and optical observatories, radars and heaters, such as the HAARP facility in Alaska, the EISCAT radar, and the NSF Antarctic facility. International collaboration in these investigations is expected to significantly enhance the science returns of the e-POP mission.

  13. Metal immobilization in soils using synthetic zeolites.

    PubMed

    Oste, Leonard A; Lexmond, Theo M; Van Riemsdijk, Willem H

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca. PMID:12026084

  14. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  15. Synthesis and testing of nanosized zeolite Y

    NASA Astrophysics Data System (ADS)

    Karami, Davood

    This work focuses on the synthesis and testing of nanosized zeolite Y. The synthesis formulations of faujasite-type structure of zeolite Y prepared in nanosized form are described. The synthetic zeolite Y is the most widely employed for the preparation of fluid catalytic cracking (FCC) catalysts. The synthesis of zeolite Y is very complicated process. The mean particle size of zeolite Y is 1800 nm. The major challenge of this work involved reducing this average particle size to less than 500 nm. The preliminary experiments were conducted to obtain the pure zeolite Y using the soluble silicates as a silica source. This was achieved by applying the experimental design approach to study the effects of many parameters. The ageing time turned out to be the most significant variable affecting product purity. Based on the preliminary results, a detailed investigation was carried out to determine the effects of silica-alumina precursor preparations on zeolite Y synthesis. Aluminosilicate precursors were prepared by gelling and precipitation of soluble silicate. The as-prepared precursors were used for the hydrothermal synthesis of zeolite Y. The procedure of the precipitation of soluble silicate yielded pure zeolite Y at the conventional synthesis conditions. The extent of purity of zeolite Y depends on the surface areas of aluminosilicate precursors. A novel approach to zeolite Y synthesis was employed for the preparation of the pure nanosized zeolite Y. This was achieved by applying the method of impregnation of precipitated silica. This novel method of impregnation for zeolite Y preparation allows eliminating the vigorous agitation step required for the preparation of a homogeneous silica solution, thereby simplifying the synthesis of zeolite Y in one single vessel. In case of the synthesis of nanosized zeolite Y, the effect of varying the organic templates on the formation of nanosized particles of zeolite Y was investigated, while all other reaction parameters were

  16. Internalization of RGD peptide conjugates of near-infrared fluorescent probes in different cell lines occurs via different integrin receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bloch, S.; Xu, B.; Ye, Y.; Liang, K.; Achilefu, S.

    2006-02-01

    Expression of integrin α vβ 3 is upregulated in a number of cancers including colon, pancreas, lung and breast. Previous studies demonstrated that near infrared (NIR) fluorescent probes designed to target α vβ 3 accumulated both in vitro and in vivo in α vβ 3-positive tumor cells. To evaluate the selectivity of some NIR-labeled RGD peptides for α vβ 3, the molecular probes were incubated in different cells, including the α vβ 3-positive U87 and A549 cells, and α vβ 3-negative HT29 cells. Whereas the RGD compounds tested internalized in the A549 cells, their uptake by the HT29 cell line, which is positive for α vβ 5 and α vβ 6, was low. The uptake of these probes in U87 depended on the structural features of the compounds. Further studies with functional blocking antibodies showed that the internalization in the α vβ 3-positive cells may be mediated by different integrin receptor subtypes. The preliminary results suggest that the internalization of linear RGD peptides is mediated by the α vβ 3 heterodimer but rearrangement of the peptide sequence could alter the selectivity of the molecular probes for different integrin subunits in the dimeric α and β proteins. Thus, a careful choice of RGD peptides can be used to monitor the functional status of different integrins in cells and tissues.

  17. Hydrogen Selective Exfoliated Zeolite Membranes

    SciTech Connect

    Tsapatsis, Michael; Daoutidis, Prodromos; Elyassi, Bahman; Lima, Fernando; Iyer, Aparna; Agrawal, Kumar; Sabnis, Sanket

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  18. Carbon-13 NMR spectroscopy study of L-zeolite- and silica-supported platinum catalysts

    SciTech Connect

    Sharma, S.B.; Laska, T.E.; Balaraman, P.; Root, T.W.; Dumesic, J.A.

    1994-12-01

    NMR studies of CO adsorbed on small Pt particles show evidence of changes in the metallic nature of these particles with size. Large particles on silica or the exterior of zeolite crystallites have conduction-band electrons that cause a Knight shift for adsorbed CO. Small particles in zeolite cavities are diamagnetic clusters, and yield spectra for linear and bridging carbonyls similar to those of transition-metal cluster compounds. {sup 13}C NMR of CO offers a simple probe of metal dispersion and particle size for these Pt catalysts and other noble metal systems. 29 refs., 7 figs., 2 tabs.

  19. UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  20. Single- and dual-fiber fluorescence probes: application to oil-film measurements in an internal combustion engine.

    PubMed

    Ghandhi, J B

    2000-10-20

    Single- and dual-fiber fluorescence probes have been utilized to study oil-film behavior in a firing Diesel engine. A detailed analysis of the response characteristics of these probes was performed, and universal response curves have been generated through identification of the appropriate nondimensional parameters. For single-fiber probes a single curve was obtained, and for dual-fiber probes families of curves were identified based on three geometric dimensionless parameters. The complementary response characteristics of the single- and dual-fiber probes allows determination of the oil distribution within the piston-liner gap. The dual-fiber probe is not sensitive at small distances. Thus its signal originates solely from the piston surface, whereas the single-fiber probe is most sensitive at small distances and hence to the wall oil film. The engine data from the dual-fiber probe confirmed the presence of an oil film on the piston and provided a means of quantifying the transport of this oil within the engine. PMID:18354541

  1. Observed Coupling Between the International Space Station PCU Plasma and a FPMU Langmuir Probe Facilitated by the Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Hartman, William; Koontz, Steven L.

    2010-01-01

    Electrical charging of the International Space Station (ISS) is a matter of serious concern resulting from the possibility of vehicle arcing and electrical shock hazard to crew during extravehicular activity (EVA). A Plasma Contactor Unit (PCU) was developed and integrated into ISS in order to control the ISS floating potential, thereby, minimize vehicle charging and associated hazards. One of the principle factors affecting ISS electrical charging is the ionosphere plasma state (i.e., electron temperature and density). To support ISS electrical charging studies a Floating Potential Monitoring Unit (FPMU) is also integrated into ISS in order to measure the ionosphere properties using Langmuir probes (LP). The FPMU was located on the Starboard side of ISS. The PCU is located near the center of ISS with its plasma exhaust pointed to port. From its integration on ISS in 2006 through November of 2009, the FPMU data exhibited nominal characteristics during PCU operation. On November 21, 2009 the FPMU was relocated from the Starboard location to a new Port location. After relocation significant enhanced noise was observed in both the LP current-voltage sweeps and the derived electron temperature data. The enhanced noise only occurred when the PCU was in discharge and at unique and repeatable locations of the ISS orbit. The cause of this enhanced noise was investigated. It was found that there is coupling occurring between the PCU plasma and the FPMU LP. In this paper we shall 1) present the on-orbit data and the presence of enhanced noise, 2) demonstrate that the coupling of the PCU plasma and the FPMU measurements is geomagnetically organized, 3) show that coupling of the PCU plasma and the FPMU is primarily due to and driven by particle-wave interaction and 4) show that the ionosphere conditions are adequate for Alfven waves to be generated by the PCU plasma.

  2. Atom probe tomography study of internal interfaces in Cu2ZnSnSe4 thin-films

    NASA Astrophysics Data System (ADS)

    Schwarz, T.; Cojocaru-Mirédin, O.; Choi, P.; Mousel, M.; Redinger, A.; Siebentritt, S.; Raabe, D.

    2015-09-01

    We report on atom probe tomography studies of the composition at internal interfaces in Cu2ZnSnSe4 thin-films. For Cu2ZnSnSe4 precursors, which are deposited at 320 °C under Zn-rich conditions, grain boundaries are found to be enriched with Cu irrespective of whether Cu-poor or Cu-rich growth conditions are chosen. Cu2ZnSnSe4 grains are found to be Cu-poor and excess Cu atoms are found to be accumulated at grain boundaries. In addition, nanometer-sized ZnSe grains are detected at or near grain boundaries. The compositions at grain boundaries show different trends after annealing at 500 °C. Grain boundaries in the annealed absorber films, which are free of impurities, are Cu-, Sn-, and Se-depleted and Zn-enriched. This is attributed to dissolution of ZnSe at the Cu-enriched grain boundaries during annealing. Furthermore, some of the grain boundaries of the absorbers are enriched with Na and K atoms, stemming from the soda-lime glass substrate. Such grain boundaries show no or only small changes in composition of the matrix elements. Na and K impurities are also partly segregated at some of the Cu2ZnSnSe4/ZnSe interfaces in the absorber, whereas for the precursors, only Na was detected at such phase boundaries possibly due to a higher diffusivity of Na compared to K. Possible effects of the detected compositional fluctuations on cell performance are discussed.

  3. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-03-31

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. New results indicated that good quality highly ordered nanoporous silica host can be synthesized in the presence of zeolite Y seed precursor depending on the amount of precursor added. Preliminary research on the catalytic performance of the materials is underway. Probe acid catalyzed reactions, such as the cracking of cumene is currently being conducted. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of ZeoliteY/Nanoporous host composite catalysts of improved structural and

  4. Magnetic self-assembled zeolite clusters for sensitive detection and rapid removal of mercury(II).

    PubMed

    Yin, Meili; Li, Zhenhua; Liu, Zhen; Yang, Xinjian; Ren, Jinsong

    2012-01-01

    We reported here the fabrication of a hierarchical mesoporous zeolite nanocomposite using 20 nm crystalline domins of zeolite L as building "bricks" by a simple and general one-step synthetic approach. By taking advantages of the large pore volumes, superparamagnetic iron oxide nanocrystals could be encapsulated into the nanocomposite conveniently for further facilitate separation and detection. In addition, by covalent coupling of fluorescent receptor (rhodamine-hydrazine), the combination of well-defined inorganic nanomaterials and organic receptors could be applied to selective detection of Hg(2+). Importantly, the unique adsorption capacity enabled by the hierarchical mesoporous zeolite and the efficient removal ability form complex multiphase systems by the magnetic characteristic made this multifunctional nanomaterial an excellent probe for detection, adsorption, and removal of Hg(2+) from waste aqueous solution. PMID:22126125

  5. Synthesis of ‘unfeasible’ zeolites

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Wheatley, Paul S.; Navarro, Marta; Roth, Wieslaw J.; Položij, Miroslav; Mayoral, Alvaro; Eliášová, Pavla; Nachtigall, Petr; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are porous aluminosilicate materials that have found applications in many different technologies. However, although simulations suggest that there are millions of possible zeolite topologies, only a little over 200 zeolite frameworks of all compositions are currently known, of which about 50 are pure silica materials. This is known as the zeolite conundrum—why have so few of all the possible structures been made? Several criteria have been formulated to explain why most zeolites are unfeasible synthesis targets. Here we demonstrate the synthesis of two such ‘unfeasible’ zeolites, IPC-9 and IPC-10, through the assembly-disassembly-organization-reassembly mechanism. These new high-silica zeolites have rare characteristics, such as windows that comprise odd-membered rings. Their synthesis opens up the possibility of preparing other zeolites that have not been accessible by traditional solvothermal synthetic methods. We envisage that these findings may lead to a step change in the number and types of zeolites available for future applications.

  6. Increased thermal conductivity monolithic zeolite structures

    DOEpatents

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  7. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-03-21

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of polymer-SBA15 nanocomposites will be conducted by changing the amount and chemistry of the zeolitic precursors added; and (4) Investigation on the catalytic properties of the materials using probe catalytic reactions (such as cumene cracking), followed by catalytic testing for heavy oil conversion.

  8. Zeolites Remove Sulfur From Fuels

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  9. Paramagnetic complexes of 9,10-anthraquinone on zeolite surfaces and their thermal transformations

    NASA Astrophysics Data System (ADS)

    Fionov, A. V.; Nekhaev, A. I.; Shchapin, I. Yu.; Maksimov, A. L.; Lunin, V. V.

    2013-12-01

    The concentration of one-electron transfer sites on the surface of H-ZSM-5, H-Y, H-mordenite, and H-β zeolites was measured by EPR using 9,10-antrhraquinone as a probe. It has been found that the hyperfine structure from four protons typical for one-centered complexes of anthraquinone with one acidic site was observed in the EPR spectra after anthraquinone interaction with a zeolite surface in the temperature range of 373 to 423 K. It has been established that an elevated temperature of 473 K promoted the decomposition of the adsorbed anthraquinone and the disappearance of the hyperfine structure. It has been shown that the thermal instability of anthraquinone adsorbed on zeolites changed in the series H-β > H-Y > H-ZSM-5 ˜ H-mordenite; the coke-forming ability of zeolites with regard to n-decane at 443 K changed in a similar manner. It has been established that the presence of air promoted coke-forming processes upon interaction between n-decane and zeolites.

  10. Zeolite-like liquid crystals

    PubMed Central

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  11. Zeolite-like liquid crystals

    NASA Astrophysics Data System (ADS)

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-10-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension.

  12. Zeolite-like liquid crystals.

    PubMed

    Poppe, Silvio; Lehmann, Anne; Scholte, Alexander; Prehm, Marko; Zeng, Xiangbing; Ungar, Goran; Tschierske, Carsten

    2015-01-01

    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension. PMID:26486751

  13. Visible emission from Ag+ exchanged SOD zeolites

    NASA Astrophysics Data System (ADS)

    Lin, H.; Imakita, K.; Fujii, M.; Prokof'ev, V. Yu.; Gordina, N. E.; Saïd, B.; Galarneau, A.

    2015-09-01

    Broad visible emissions dominant at green or red have been observed for the thermally-treated Ag+ exchanged SOD zeolites, determined by the Ag+ loading contents and the excitation wavelengths. Contrary to the notable reversible green/red dominant emission evolution in the Ag+ exchanged LTA zeolites upon hydration/dehydration in air (or water vapor)/vacuum, emission spectra of the Ag+ exchanged SOD zeolites are insensitive to the environmental change. This is most probably due to the difficult H2O permeation in SOD zeolites in comparison with LTA zeolites. By combining the environment dependent emission spectra of the Ag+ exchanged LTA and SOD zeolites, we proposed the following emission mechanisms for Ag+ exchanged LTA and SOD zeolites: the green emission is due to the transition from ligand-to-metal (framework O2- --> Ag+) charge transfer state to the ground state and the red emission is due to the transition from the metal-metal (Ag+-Ag+) charge transfer state to the ground state. The insensitive environment dependent emission characteristics of Ag+ exchanged SOD zeolites may have potential applications as robust phosphors.

  14. Cracking process with catalyst of combined zeolites

    SciTech Connect

    Gladrow, E. M.; Winter, W. E.

    1981-09-01

    A hydrocarbon cracking catalyst comprises an ultrastable y-type crystalline zeolite, a small pore crystalline zeolite such as mordenite, an inorganic oxide matrix and, optionally, a porous inert component. The cracking catalyst has a high activity and selectivity for the production of high octane naphtha fractions from higher boiling point hydrocarbonaceous oils. Catalytic cracking processes utilizing the catalyst are also provided.

  15. Probing the structure of metal-substituted molecular sieves by solid-state NMR

    SciTech Connect

    Labouriau, A.; Crawford, S.N.; Ott, K.; Earl, W.L.

    1998-08-01

    Paramagnetic metal ions exert large influences on the NMR spectra of neighboring nuclei. The authors are using these effects to probe metal sites in zeolites and AlPO{sub 4} molecular sieves. In particular, they are studying [Co]-AlPO{sub 4}-5 because similar cobalt substituted AlPO{sub 4} sieves are reported in the literature. They have extended that work to probe the titanium zeolite TS-1 by comparing spectra of normal TS-1 to samples where the titanium has been reduced to the paramagnetic Ti{sup 3+}. This promises to be a useful technique for determining framework substitution in many zeolite systems.

  16. UTILITY OF ZEOLITES IN ARSENIC REMOVAL FROM WATER

    EPA Science Inventory

    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  17. Synthetic zeolites and other microporous oxide molecular sieves.

    PubMed

    Sherman, J D

    1999-03-30

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow "tailoring" of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  18. Synthetic zeolites and other microporous oxide molecular sieves

    PubMed Central

    Sherman, John D.

    1999-01-01

    Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol. PMID:10097059

  19. Polymerized nanotube structures new zeolites?

    NASA Astrophysics Data System (ADS)

    Chernozatonskii, Leonid A.

    1998-11-01

    Polymers of single-wall carbon nanotubes - possible new zeolites - are modeled by molecular mechanics (MM2 calculation method). The polymerization at issue occurs by bonding of 6 sp 3 atomic pairs in each nanotube unit cell with similar atomic pairs located on 6 neighboring tubes like 2+2 cycloaddition in a rhombic two-dimensional C 60 polymer. It is shown these bonding in armchair ( n, n) SWNT ropes ( n=6, 8, 10, 12) changes positive radial curvature of tube segments to a negative one.

  20. Zeolites: Can they be synthesized by design

    SciTech Connect

    Davis, M.E. )

    1994-09-01

    Zeolites and zeolite-like molecular sieves are crystalline oxides that have high surface-to-volume ratios and are able to recognize, discriminate, and organize molecules with differences of < 1 [angstrom]. The close connection between the atomic structure and macroscopic properties of these materials has led to uses in molecular recognition. For example, zeolites and zeolite-like molecular sieves can reveal marvelous molecular recognition specificity and sensitivity that can be applied to catalysis, separations technology, and chemical sensing. Additionally, they can serve as hosts to organize guest atoms and molecules that endow composite materials with optoelectric and electrochemical properties. Because of the high level of structural control necessary to create high-performance materials with zeolites or zeolite-like molecular sieves, the design and synthesis of these solids with specific architectures and properties are highly desired. Although this lofty goal is still elusive, advances have been made to allow the serious consideration of designing molecular sieves. Here, the author covers two aspects of this ongoing effort. First, he discusses the feasibility of designing pore architectures through the use of organic structure-directing agents. Second, he explores the possibility of creating zeolites through ''Lego chemistry.''

  1. High-Throughput Screening for Internalizing Antibodies by Homogeneous Fluorescence Imaging of a pH-Activated Probe

    PubMed Central

    Riedl, Thilo; van Boxtel, Egon; Bosch, Martijn; Parren, Paul W. H. I.; Gerritsen, Arnout F.

    2016-01-01

    Antibody-drug conjugates (ADCs) represent a rapidly growing class of biotherapeutics that deliver drugs specifically to target cells by binding of the antibody component to surface receptors. The majority of ADCs require receptor internalization depending on intrinsic features of the specific ADC-antigen interaction. The development of potent ADCs would greatly benefit from the identification of efficiently internalizing antibodies at early stages of discovery. We developed a highly sensitive and rapid antibody internalization assay using an indirect Cypher5E label. The pH-activated CypHer5E label becomes fluorescent upon internalization into the acidic environment of endocytic organelles, whereas background fluorescence of noninternalized CypHer5E is minimal. The pH-dependency of the CypHer5E signal enables robust discrimination of antibody internalization from surface binding. The favorable signal-over-background ratio allows a homogeneous assay design with high-throughput fluorescence imaging in 384- and 1536-well formats. The biophysical readout of the primary internalization event substantially shortens incubation times compared to killing assays using toxin internalization. The assay was validated with tumor-relevant targets, including receptor tyrosine kinases (EGFR and HER2) and a class II cytokine receptor (TF) expressed by A431, AU565, and SKOV-3 cells and transient expression systems (CHO-S). Our method enables functional screening of large antibody libraries to identify therapeutic antibody candidates with internalization characteristics favorable for the development of ADCs. PMID:26518032

  2. The role of zeolite in the Fischer-Tropsch synthesis over cobalt-zeolite catalysts

    NASA Astrophysics Data System (ADS)

    Sineva, L. V.; Asalieva, E. Yu; Mordkovich, V. Z.

    2015-11-01

    The review deals with the specifics of the Fischer-Tropsch synthesis for the one-stage syncrude production from CO and H2 in the presence of cobalt-zeolite catalytic systems. Different types of bifunctional catalysts (hybrid, composite) combining a Fischer-Tropsch catalyst and zeolite are reviewed. Special attention focuses on the mechanisms of transformations of hydrocarbons produced in the Fischer-Tropsch process on zeolite acid sites under the synthesis conditions. The bibliography includes 142 references.

  3. Total internal reflection plasmonic scattering-based fluorescence-free nanoimmunosensor probe for ultra-sensitive detection of cancer antigen 125.

    PubMed

    Chakkarapani, Suresh Kumar; Zhang, Peng; Ahn, Sujin; Kang, Seong Ho

    2016-07-15

    Highly sensitive detection of cancer antigen 125 (CA125) on nanoarray chips was carried out by means of total internal reflection (TIR) microscopy based on fluorescent labeling (i.e., TIR fluorescence microscopy; TIRFM) and fluorescent-free labeling (TIR scattering microscopy; TIRSM). TIR plasmonic scattering of nanoparticles (NPs) as a fluorescence-free immunosensor probe potentially superior to fluorescent probes was applied to quantify CA125 on a nanoarray chip. NP-labeled CA125 (NP-CA125) was immunoreacted on chips, and the TIR scattering illumination of NP-CA125 allowed quantitative TIRSM measurement of wavelength-dependent plasmonic scattering detection of CA125. In addition, Alexafluor 488-labeled CA125 was immunoreacted on the same chips for comparison of detection sensitivity. TIRSM showed less photobleaching and higher photostability and detection sensitivity than TIRFM, as well as a lower limit of detection (LOD), 0.0018U/mL. This LOD was ~144 times lower than that of previously reported detection methods. These results demonstrated that the wavelength-dependent TIR plasmon NPs can be used as an enhanced nanoimmunosensor probe, providing ultra-sensitive fluorescence-free biomolecule detection to enable earliest-stage disease diagnosis. PMID:26913504

  4. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    SciTech Connect

    Sarah C. Larson; Vicki H. Grassian

    2006-12-31

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO{sub x}) and ammonia (NH{sub 3}) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO{sub 2} was observed at room temperature in the presence of NH{sub 3} as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO{sub 2} reduction with NH{sub 3} relative to nanocrystalline NaY.

  5. Selective catalytic reduction of NO{sub 2} with urea in nanocrystalline NaY zeolite

    SciTech Connect

    Gonghu Li; Conrad A. Jones; Vicki H. Grassian; Sarah C. Larsen

    2005-09-10

    In this study, the selective catalytic reduction (SCR) of NO{sub 2} with urea in nanocrystalline NaY zeolite was investigated with in situ transmission Fourier transform infrared (FTIR) spectroscopy and solid-state nuclear magnetic resonance spectroscopy. At T=473 K, the reaction rate for urea-SCR of NO{sub 2} in nanocrystalline NaY zeolite was significantly greater than that in commercial NaY zeolite with a larger crystal size. In addition, a dramatic decrease in the concentration of undesirable surface species, including biuret and cyanuric acid, was observed in nanocrystalline NaY compared with commercial NaY after urea-SCR of NO{sub 2} at T=473 K. The increased reactivity for urea-SCR of NO{sub 2} was attributed to silanol groups and extra-framework aluminum species located on the external surface of nanocrystalline NaY. Specifically, NOx storage as nitrate and nitrite on the internal zeolite surface was coupled to reactive deNOx sites on the external surface. Isotopic labeling combined with IR analysis suggest that NN bond formation involved both an N-atom originating from NO{sub 2} and an N-atom originating from urea. This is the first clear example demonstrating that the increased external surface area (up to 40% of total surface area) of nanocrystalline zeolites can be used as a reactive surface with unique active sites for catalysis.

  6. Tethered Hsp90 Inhibitors Carrying Optical or Radioiodinated Probes Reveal Selective Internalization of Ectopic Hsp90 in Malignant Breast Tumor Cells

    PubMed Central

    Barrott, Jared J.; Hughes, Philip F.; Osada, Takuya; Yang, Xiao-Yi; Hartman, Zachary C.; Loiselle, David R.; Spector, Neil L.; Neckers, Len; Rajaram, Narasimhan; Hu, Fangyao; Ramanujam, Nimmi; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Lyerly, H. Kim; Haystead, Timothy A.

    2013-01-01

    Summary Hsp90 inhibitors have demonstrated unusual selectivity for tumor cells despite its ubiquitous expression. This phenomenon has remained unexplained but could be influenced by ectopically expressed Hsp90 in tumors. We have synthesized novel Hsp90 inhibitors that can carry optical or radioiodinated probes via a PEG tether. We show that these tethered inhibitors selectively recognize cells expressing ectopic Hsp90 and become internalized. The internalization process is blocked by Hsp90 antibodies, suggesting that active cycling of the protein is occurring at the plasma membrane. In mice, we show exquisite accumulation of the fluor-tethered versions within breast tumors at very sensitive levels. Cell-based assays with the radiolabeled version showed picomolar detection in cells that express ectopic Hsp90. Our findings show that fluor-tethered or radiolabeled inhibitors targeting ectopic Hsp90 can be used to detect breast cancer malignancies through non-invasive imaging. PMID:24035283

  7. Pulsed laser deposition of zeolitic membranes

    SciTech Connect

    Peachey, N.M.; Dye, R.C.; Ries, P.D.

    1995-02-01

    The pulsed laser deposition of zeolites to form zeolitic thin films is described. Films were grown using both mordenite and faujasite targets and were deposited on various substrates. The optimal films were obtained when the target and substrate were separated by 5 cm. These films are comprised of small crystallites embedded in an amorphous matrix. Transmission electron microscopy reveals that the amorphous material is largely porous and that the pores appear to be close to the same size as the parent zeolite. Zeolotic thin films are of interest for sensor, gas separation, and catalytic applications.

  8. Ammonia removal from wastewaters using natural Australian zeolite. 1: Characterization of the zeolite

    SciTech Connect

    Cooney, E.L.; Booker, N.A.; Shallcross, D.C.; Stevens, G.W.

    1999-09-01

    This study considered the potential of a natural Australian zeolite, clinoptilolite, to remove ammonium from water. Ammonium-exchange capacity and rates of adsorption are critical to the assessment of the feasibility of the zeolite for application to continuous wastewater treatment. A laboratory study was undertaken, using pure solutions, to investigate the equilibria and kinetic characteristics of ammonium exchange in the zeolite. Binary equilibrium experiments provided information on the adsorption characteristics of the zeolite in terms of ammonia capacity at varying solution concentrations. These experiments also revealed that the highest ammonium removal efficiency was achieved when the zeolite`s exchange sites were converted to the sodium form. Multicomponent equilibrium experiments were carried out to determine the effects of competing cations on the ammonium-exchange capacity of the zeolite. The laboratory study indicated the zeolite`s selectivity for ammonium ions over other cations typically present in sewage (calcium, magnesium, and potassium), and provided information relevant to the design and operation of a continuous process.

  9. An analytic determination of beta poloidal and internal inductance in an elongated tokamak from magnetic probe measurements

    SciTech Connect

    Sorci, J.M.

    1992-02-01

    Analytic calculations of the magnetic fields available to magnetic diagnostics are performed for tokamaks with circular and elliptical cross sections. The explicit dependence of the magnetic fields on the poloidal beta and internal inductances is sought. For tokamaks with circular cross sections, Shafranov`s results are reproduced and extended. To first order in the inverse aspect ratio expansion of the magnetic fields, only a specific combination of beta poloidal and internal inductance is found to be measurable. To second order in the expansion, the measurements of beta poloidal and the internal inductance are demonstrated to be separable but excessively sensitive to experimental error. For tokamaks with elliptical cross sections, magnetic measurements are found to determine beta poloidal and the internal inductance separately. A second harmonic component of the zeroth order field in combination with the dc harmonic of the zeroth order field specifies the internal inductance. The internal inductance in hand, measurement of the first order, first harmonic component of the magnetic field then determined beta poloidal. The degeneracy implicit in Shafranov`s result (i.e. that only a combination of beta poloidal and internal inductance is measurable for a circular plasma cross section) reasserts itself as the elliptic results are collapsed to their circular limits.

  10. An analytic determination of beta poloidal and internal inductance in an elongated tokamak from magnetic probe measurements

    SciTech Connect

    Sorci, J.M.

    1992-02-01

    Analytic calculations of the magnetic fields available to magnetic diagnostics are performed for tokamaks with circular and elliptical cross sections. The explicit dependence of the magnetic fields on the poloidal beta and internal inductances is sought. For tokamaks with circular cross sections, Shafranov's results are reproduced and extended. To first order in the inverse aspect ratio expansion of the magnetic fields, only a specific combination of beta poloidal and internal inductance is found to be measurable. To second order in the expansion, the measurements of beta poloidal and the internal inductance are demonstrated to be separable but excessively sensitive to experimental error. For tokamaks with elliptical cross sections, magnetic measurements are found to determine beta poloidal and the internal inductance separately. A second harmonic component of the zeroth order field in combination with the dc harmonic of the zeroth order field specifies the internal inductance. The internal inductance in hand, measurement of the first order, first harmonic component of the magnetic field then determined beta poloidal. The degeneracy implicit in Shafranov's result (i.e. that only a combination of beta poloidal and internal inductance is measurable for a circular plasma cross section) reasserts itself as the elliptic results are collapsed to their circular limits.

  11. Mechanism of dehydroxylation of naturally occurring high-silica zeolites involving the formation of Lewis acid sites

    SciTech Connect

    Kazanskii, V.B.

    1987-11-01

    Using low-temperature adsorbed dihydrogen and carbon monoxide as molecular probes, the dehydroxylation of the hydrogen forms of the zeolites Y, and ZSM-5 has been studied. The high stability of the high-silica zeolites to dealumination and their difference from faujasites has been established as being due not only to the strength of their Broensted acid sites but also to the nature of their Lewis acid sites. The chemical properties of the Lewis acid sites and their possible role in catalytic reactions are discussed.

  12. Probing atomic positions of adsorbed ammonia molecules in zeolite.

    PubMed

    Ye, Lin; Lo, Benedict T W; Qu, Jin; Wilkinson, Ian; Hughes, Tim; Murray, Claire A; Tang, Chiu C; Tsang, Shik Chi Edman

    2016-02-25

    Atomic positions and interactions between adsorbed guest molecules, such as ammonia in H-ZSM-5 microporous solids, are for the first time revealed by making use of the change in the periodical scattering parameter using in situ synchrotron powder X-ray diffraction combined with refinement within experimental errors. PMID:26833032

  13. Synthesis and characterization of nitrogen substituted zeolites

    NASA Astrophysics Data System (ADS)

    Dogan, Fulya

    The interest in basic solid materials, particularly for basic zeolites has considerably increased in the last two decades because of their potential use in catalysis and separation. Basic zeolites have most often been obtained by ion-exchange or impregnation with alkali metal cations or grafting of organic bases onto zeolite pore walls. Such materials often suffer from instability and/or pore blockage, because none of these approaches places basic sites directly into the zeolite framework. Recently zeolitic materials have been made with some of the bridging oxygen atoms in Si--O--Si and/or Si--O--Al linkages replaced by NH groups, i.e. by substitution of framework oxygen by nitrogen. As a result, the basic strength of the framework increases due to the lower electronegativity of nitrogen with respect to oxygen. In this study, solid base catalysts are obtained by nitrogen substitution of the faujasite type of zeolites under ammonia flow at high temperatures. The efficiency of the reaction is tested by using zeolites with different aluminum contents and extraframework cations and varying the reaction conditions such as ammonia flow rate, reaction temperature and duration. The characterization studies show that high levels of nitrogen substitution can be achieved while maintaining porosity, particularly for NaY and low-aluminum HY zeolites, without a significant loss in the crystallinity. 27Al and 29 Si MAS NMR experiments performed on the nitrogen substituted zeolites show dealumination of the framework and preferential substitution for Si--OH--Al sites at the early stages of the reaction (temperatures at 750--800 °C). No preference is seen for reactions performed at higher temperatures and longer reaction times (e.g., 850 °C and 48 h). X-ray PDF analysis performed on the modified zeolites show that the Si-N distance in the 1st shell is longer than Si-O bond distance and Si-Si/Al bond distance of the Si-O/N-Si/Al linkage decreases, as an indication of a decrease in

  14. Thermodynamic modeling of natural zeolite stability

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1997-06-01

    Zeolites occur in a variety of geologic environments and are used in numerous agricultural, commercial, and environmental applications. It is desirable to understand their stability both to predict future stability and to evaluate the geochemical conditions resulting in their formation. The use of estimated thermodynamic data for measured zeolite compositions allows thermodynamic modeling of stability relationships among zeolites in different geologic environments (diagenetic, saline and alkaline lakes, acid rock hydrothermal, basic rock, deep sea sediments). This modeling shows that the relative cation abundances in both the aqueous and solid phases, the aqueous silica activity, and temperature are important factors in determining the stable zeolite species. Siliceous zeolites (e.g., clinoptilolite, mordenite, erionite) present in saline and alkaline lakes or diagenetic deposits formed at elevated silica activities. Aluminous zeolites (e.g., natrolite, mesolite/scolecite, thomsonite) formed in basic rocks in association with reduced silica activities. Likewise, phillipsite formation is favored by reduced aqueous silica activities. The presence of erionite, chabazite, and phillipsite are indicative of environments with elevated potassium concentrations. Elevated temperature, calcic water conditions, and reduced silica activity help to enhance the laumontite and wairakite stability fields. Analcime stability increases with increased temperature and aqueous Na concentration, and/or with decreased silica activity.

  15. The zeolite deposits of Greece

    USGS Publications Warehouse

    Stamatakis, M.G.; Hall, A.; Hein, J.R.

    1996-01-01

    Zeolites are present in altered pyroclastic rocks at many localities in Greece, and large deposits of potential economic interest are present in three areas: (1) the Evros region of the province of Thrace in the north-eastern part of the Greek mainland; (2) the islands of Kimolos and Poliegos in the western Aegean; and (3) the island of Samos in the eastern Aegean Sea. The deposits in Thrace are of Eocene-Oligocene age and are rich in heulandite and/or clinoptilolite. Those of Kimolos and Poliegos are mainly Quaternary and are rich in mordenite. Those of Samos are Miocene, and are rich in clinoptilolite and/or analcime. The deposits in Thrace are believed to have formed in an open hydrological system by the action of meteoric water, and those of the western Aegean islands in a similar way but under conditions of high heat flow, whereas the deposits in Samos were formed in a saline-alkaline lake.

  16. The interactions of methyl tert-butyl ether on high silica zeolites: a combined experimental and computational study.

    PubMed

    Sacchetto, V; Gatti, G; Paul, G; Braschi, I; Berlier, G; Cossi, M; Marchese, L; Bagatin, R; Bisio, C

    2013-08-28

    In this work, the interactions of methyl tert-butyl ether (MTBE) on different dealuminated high silica zeolites were studied by means of both experimental and computational approaches. Zeolites with different textural and surface features were selected as adsorbents and the effect of their physico-chemical properties (i.e. pore size architecture and type and amount of surface OH sites) on sorption capacity were studied. High silica mordenite (MOR) and Y zeolites (both with a SiO2/Al2O3 ratio of 200) and ZSM-5 solid (SiO2/Al2O3 ratio of 500) were selected as model sorbents. By combining FTIR and SS-NMR (both (1)H and (13)C CPMAS NMR) spectroscopy it was possible to follow accurately the MTBE adsorption process on highly defective MOR characterized by a high concentration of surface SiOH groups. The adsorption process is found to occur in different steps and to involve isolated silanol sites, weakly interacting silanols, and the siloxane network of the zeolite, respectively. H-bonding and van der Waals interactions occurring between the mordenite surface and MTBE molecules were modeled by DFT calculations using a large cluster of the MOR structure where two adjacent side-pockets were fused in a large micropore to simulate a dealumination process leading to silanol groups. This is the locus where MTBE molecules are more strongly bound and stabilized. FTIR spectroscopy and gravimetric measurements allowed determination of the interaction strength and sorption capacities of all three zeolites. In the case of both Y and MOR zeolites, medium-weak H-bonding with isolated silanols (both on internal and external zeolite surfaces) and van der Waals interactions are responsible for MTBE adsorption, whereas ZSM-5, in which a negligible amount of surface silanol species is present, displays a much lower amount of adsorbed MTBE retained mainly through van der Waals interactions with zeolite siloxane network. PMID:23860729

  17. ZnO modified ZSM-5 and Y zeolites fabricated by atomic layer deposition for propane conversion.

    PubMed

    Gong, Ting; Qin, Lijun; Lu, Jian; Feng, Hao

    2016-01-01

    ZnO modified ZSM-5 and Y zeolites are synthesized by performing atomic layer deposition (ALD) of ZnO to HZSM-5 and HY using diethyl zinc and water as the precursors. The surface area and pore volume of ZSM-5 and Y zeolites are progressively reduced with the increasing number of ZnO ALD cycles. XRD and SEM characterization methods show that highly dispersed ZnO species are deposited on the internal and external surfaces of both zeolites. The ZnO species deposited on ZSM-5 are in an amorphous form while nano-crystallites of ZnO are present on Y zeolites after performing ≥2 cycles of ZnO ALD. XPS and TPR characterization methods reveal that isolated Zn(OH)(+) species are predominantly formed on both zeolites after the first cycle of ZnO ALD and the ZnO clusters gradually grow larger with the increasing number of ALD cycles. The type and strength of acid sites on the parent and the ALD ZnO modified zeolites are studied by FTIR spectra of adsorbed pyridine. Incorporation of ZnO into Y zeolite by ALD completely eliminates the Brønsted acid sites and increases the number of strong Lewis acid sites. Similar effects are obtained on ALD ZnO modified ZSM-5 except that the Brønsted acid sites are only partially removed. Catalytic properties of the ALD ZnO modified zeolites are evaluated in propane conversion. Introduction of ZnO species significantly improves the activities of both zeolites. Propylene is the major reaction product on ALD ZnO modified Y zeolite while high selectivities to aromatics are achieved on ALD ZnO modified ZSM-5. These results suggest that ZnO species merely promote the dehydrogenation reaction while the subsequent oligomerization and cyclization reactions require Brønsted acid sites. For both zeolites the catalyst fabricated by only 1 or 2 cycles of ZnO ALD performs better than those fabricated by multiple cycles of ALD, indicating that isolated Zn(OH)(+) species are more effective for the conversion of propane to propylene and aromatics. PMID

  18. 11. EASTERN END OF ZEOLITE BUILDING. NOTE DIAL TO LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EASTERN END OF ZEOLITE BUILDING. NOTE DIAL TO LEFT OF CLOCK GAUGING TOTAL ZEOLITE INFLUENT IN MILLIONS OF GALLONS PER DAY. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  19. Measuring the internal energies of species emitted from hypervelocity nanoprojectile impacts on surfaces using recalibrated benzylpyridinium probe ions

    NASA Astrophysics Data System (ADS)

    DeBord, J. Daniel; Verkhoturov, Stanislav V.; Perez, Lisa M.; North, Simon W.; Hall, Michael B.; Schweikert, Emile A.

    2013-06-01

    We present herein a framework for measuring the internal energy distributions of vibrationally excited molecular ions emitted from hypervelocity nanoprojectile impacts on organic surfaces. The experimental portion of this framework is based on the measurement of lifetime distributions of "thermometer" benzylpyridinium ions dissociated within a time of flight mass spectrometer. The theoretical component comprises re-evaluation of the fragmentation energetics of benzylpyridinium ions at the coupled-cluster singles and doubles with perturbative triples level. Vibrational frequencies for the ground and transition states of select molecules are reported, allowing for a full description of vibrational excitations of these molecules via Rice-Ramsperger-Kassel-Marcus unimolecular fragmentation theory. Ultimately, this approach is used to evaluate the internal energy distributions from the measured lifetime distributions. The average internal energies of benzylpyridinium ions measured from 440 keV Au400+4 impacts are found to be relatively low (˜0.24 eV/atom) when compared with keV atomic bombardment of surfaces (1-2 eV/atom).

  20. Design and fabrication of zeolite macro- and micromembranes

    NASA Astrophysics Data System (ADS)

    Chau, Lik Hang Joseph

    2001-07-01

    The chemical nature of the support surface influences zeolite nucleation, crystal growth and elm adhesion. It had been demonstrated that chemical modification of support surface can significantly alter the zeolite film and has a good potential for large-scale applications for zeolite membrane production. The incorporation of titanium and vanadium metal ions into the structural framework of MFI zeolite imparts the material with catalytic properties. The effects of silica and metal (i.e., Ti and V) content, template concentration and temperature on the zeolite membrane growth and morphology were investigated. Single-gas permeation experiments were conducted for noble gases (He and Ar), inorganic gases (H2, N2, SF6) and hydrocarbons (methane, n-C4, i-C4) to determine the separation performance of these membranes. Using a new fabrication method based on microelectronic fabrication and zeolite thin film technologies, complex microchannel geometry and network (<5 mum), as well as zeolite arrays (<10 mum) were successfully fabricated onto highly orientated supported zeolite films. The zeolite micropatterns were stable even after repeated thermal cycling between 303 K and 873 K for prolonged periods of time. This work also demonstrates that zeolites (i.e., Sil-1, ZSM-5 and TS-1) can be employed as catalyst, membrane or structural materials in miniature chemical devices. Traditional semiconductor fabrication technology was employed in micromachining the device architecture. Four strategies for the manufacture of zeolite catalytic microreactors were discussed: zeolite powder coating, uniform zeolite film growth, localized zeolite growth, and etching of zeolite-silicon composite film growth inhibitors. Silicalite-1 was also prepared as free-standing membrane for zeolite membrane microseparators.

  1. Toehold-mediated internal control to probe the near-field interaction between the metallic nanoparticle and the fluorophore

    NASA Astrophysics Data System (ADS)

    Ang, Y. S.; Yung, L. Y. L.

    2014-10-01

    Metallic nanoparticles (MNPs) are known to alter the emission of vicinal fluorophores through the near-field interaction, leading to either fluorescence quenching or enhancement. Much ambiguity remains in the experimental outcome of such a near-field interaction, particularly for bulk colloidal solution. It is hypothesized that the strong far-field interference from the inner filter effect of the MNPs could mask the true near-field MNP-fluorophore interaction significantly. Thus, in this work, a reliable internal control capable of decoupling the near-field interaction from far-field interference is established by the use of the DNA toehold concept to mediate the in situ assembly and disassembly of the MNP-fluorophore conjugate. A model gold nanoparticle (AuNP)-Cy3 system is used to investigate our proposed toehold-mediated internal control system. The maximum fluorescence enhancement is obtained for large-sized AuNP (58 nm) separated from Cy3 at an intermediate distance of 6.8 nm, while fluorescence quenching is observed for smaller-sized AuNP (11 nm and 23 nm), which is in agreement with the theoretical values reported in the literature. This work shows that the toehold-mediated internal control design can serve as a central system for evaluating the near-field interaction of other MNP-fluorophore combinations and facilitate the rational design of specific MNP-fluorophore systems for various applications.Metallic nanoparticles (MNPs) are known to alter the emission of vicinal fluorophores through the near-field interaction, leading to either fluorescence quenching or enhancement. Much ambiguity remains in the experimental outcome of such a near-field interaction, particularly for bulk colloidal solution. It is hypothesized that the strong far-field interference from the inner filter effect of the MNPs could mask the true near-field MNP-fluorophore interaction significantly. Thus, in this work, a reliable internal control capable of decoupling the near

  2. Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy.

    PubMed

    Brabants, G; Lieben, S; Breynaert, E; Reichel, E K; Taulelle, F; Martens, J A; Jakoby, B; Kirschhock, C E A

    2016-04-01

    Hitherto zeolite formation has not been fully understood. Although electrochemical impedance spectroscopy has proven to be a versatile tool for characterizing ionic solutions, it was never used for monitoring zeolite growth. We show here that EIS can quantitatively monitor zeolite formation, especially during crucial early steps where other methods fall short. PMID:27020096

  3. Italian zeolitized rocks of technological interest

    NASA Astrophysics Data System (ADS)

    de'Gennaro, M.; Langella, A.

    1996-09-01

    Large areas of Italian territory are covered by thick and widespread deposits of zeolite-bearing volcaniclastic products. The main zeolites are phillipsite and chabazite spread over the whole peninsula, and clinoptilolite recorded only in Sardinia. A trachytic to phonolitic glassy precursor accounts for the formation of the former zeolites characterized by low Si/Al ratios (?3.00), while clinoptilolite is related to more acidic volcanism. The genesis of most of these zeolitized deposits is linked to pyroclastic flow emplacement mechanisms characterized by quite high temperatures and by the presence of abundant fluids. The main utilization of these materials has been and still is as dimension stones in the building industry. Currently, limited amounts are also employed in animal farming (dietary supplement, pet litter and manure deodorizer) and in agriculture as soil improvement and slow-release fertilizers. New fields of application have been proposed for these products on account of their easy availability, very low cost, their high-grade zeolites (50 70%), and good technological features such as high cation exchange capacities and adsorption properties.

  4. Zeolites as catalysts in oil refining.

    PubMed

    Primo, Ana; Garcia, Hermenegildo

    2014-11-21

    Oil is nowadays the main energy source and this prevalent position most probably will continue in the next decades. This situation is largely due to the degree of maturity that has been achieved in oil refining and petrochemistry as a consequence of the large effort in research and innovation. The remarkable efficiency of oil refining is largely based on the use of zeolites as catalysts. The use of zeolites as catalysts in refining and petrochemistry has been considered as one of the major accomplishments in the chemistry of the XXth century. In this tutorial review, the introductory part describes the main features of zeolites in connection with their use as solid acids. The main body of the review describes important refining processes in which zeolites are used including light naphtha isomerization, olefin alkylation, reforming, cracking and hydrocracking. The final section contains our view on future developments in the field such as the increase in the quality of the transportation fuels and the coprocessing of increasing percentage of biofuels together with oil streams. This review is intended to provide the rudiments of zeolite science applied to refining catalysis. PMID:24671148

  5. Probing the internal dynamics of reverse micelles formed in highly compressible solvents: Aerosol-OT in near-critical propane

    SciTech Connect

    Zhang, J.; Bright, F.V.

    1992-10-29

    In normal liquids, the rate of water reorganization within the interior of AOT (sodium bis(2-ethylhexyl) sulfosuccinate or Aerosol-OT) reverse micelles in a strong function of water loading and temperature. In this report, we discuss our most recent efforts to understand the internal dynamics of reverse micelles maintained in highly compressible solvents (near-critical propane). By using steady-state and time-resolved fluorescence spectroscopy, we report the first evidence for pressure-assisted control of the rate of solvent relaxation within the core region of a reverse micelle maintained in a highly compressible fluid. Three factors are taken into account in this study: amount of water loading, temperature, and bulk fluid density. The key conclusion is that the continuous phase density can influence the rate of solvent reorientation within the interior of AOT micelles formed in near-critical propane. 58 refs., 10 figs., 3 tabs.

  6. Evaluation of internal potential distribution and carrier extraction properties of organic solar cells through Kelvin probe and time-of-flight measurements

    SciTech Connect

    Tanaka, Yuya; Oda, Keisuke; Nakayama, Yasuo; Noguchi, Yutaka Ishii, Hisao; Takahashi, Jun-ichi; Tokairin, Hiroshi

    2014-09-21

    The carrier extraction property of a prototypical small molecule organic solar cell (OSC) composed of copper phthalocyanine (CuPc), C⁶⁰, and bathocuproine (BCP) was studied on the basis of the internal potential distribution and carrier dynamics in the device. The internal potential distribution in the OSC structure at the interfaces and in the bulk region was determined by the Kelvin probe method. Significant potential gradients were found in the CuPc film on indium tin oxide and in the C⁶⁰ film on CuPc, consistent with charge transfer through the contacts. Moreover, surface potential of the BCP layer grew linearly with increasing film thickness with a slope of ca. 35 mV/nm (giant surface potential: GSP), which indicated spontaneous orientation polarization in the film. The potential gradient and GSP significantly changed the built-in potential of the device. Current–voltage and modified time-of-flight measurements revealed that the BCP layer worked as an electron injection and extraction layer despite the wide energy gap. These results were discussed based on the contributions of GSP and the gap states in the BCP layer.

  7. Probe assembly

    SciTech Connect

    Avera, C.J.

    1981-01-06

    A hand-held probe assembly, suitable for monitoring a radioactive fibrinogen tracer, is disclosed comprising a substantially cylindrically shaped probe handle having an open end. The probe handle is adapted to be interconnected with electrical circuitry for monitoring radioactivity that is sensed or detected by the probe assembly. Mounted within the probe handle is a probe body assembly that includes a cylindrically shaped probe body inserted through the open end of the probe handle. The probe body includes a photomultiplier tube that is electrically connected with a male connector positioned at the rearward end of the probe body. Mounted at the opposite end of the probe body is a probe head which supports an optical coupler therewithin. The probe head is interconnected with a probe cap which supports a detecting crystal. The probe body assembly, which consists of the probe body, the probe head, and the probe cap is supported within the probe handle by means of a pair of compressible o-rings which permit the probe assembly to be freely rotatable, preferably through 360*, within the probe handle and removable therefrom without requiring any disassembly.

  8. Characterization of activated states of ruthenium-containing zeolite NaHY

    SciTech Connect

    Sheu, Shie-Ping; Karge, H.G.; Schloegl, R.

    1997-06-01

    As has been proven earlier, ruthenium-containing NaHY zeolites are able to catalyze the decomposition of ammonia at temperatures from 300 to 450{degrees}C. In such catalysts, ruthenium cations are still present, even after heat treatment in high vacuum at 400{degrees}C; they can be detected using ammonia and/or pyridine as probes for Fourier transform IR spectroscopy. They reside both in supercages and in sodalite cages. Various intermediates of the decomposition of the Ru(NH{sub 3}){sub 6}NaY complex on heat treatment in high vacuum were identified via in situ IR spectroscopy; in particular, evidence for the formation of complexes with nitrosyl ligands was obtained. It was shown that partially decomposed (deammoniated) Ru(NH{sub 3}){sub 6}NaY complexes can be recovered to some extent by readsorption of ammonia. Ruthenium-containing species were localized either in the supercages or in the small cavities as shown by IR spectroscopy employing ammonia and pyridine as probes. The acidic properties of variously treated Ru(NH{sub 3}){sub 6}NaY zeolites were characterized via temperature-programmed desorption (TPD) of ammonia, which was monitored by mass spectrometry. A strong interaction between ruthenium-containing species and the zeolite framework, leading to a lack of overtone and combination modes in the near infrared, is confirmed. Investigations of Ru(NH{sub 3}){sub 6}NaY samples by X-ray photoelectron spectroscopy under the same conditions as applied for IR and TPD studies revealed that, at variance with the results usually obtained after heat treatment of Ru(NH{sub 3}){sub 6}NaY in high vacuum, no significant formation of ruthenium metal species through autoreduction occurred. Rather, a particular form of a cation-exchanged Ru, Na-Y zeolite was obtained. 24 refs., 18 figs., 2 tabs.

  9. Hydrogen Purification Using Natural Zeolite Membranes

    NASA Technical Reports Server (NTRS)

    DelValle, William

    2003-01-01

    The School of Science at Universidad del Turabo (UT) have a long-lasting investigation plan to study the hydrogen cleaning and purification technologies. We proposed a research project for the synthesis, phase analysis and porosity characterization of zeolite based ceramic perm-selective membranes for hydrogen cleaning to support NASA's commitment to achieving a broad-based research capability focusing on aerospace-related issues. The present study will focus on technology transfer by utilizing inorganic membranes for production of ultra-clean hydrogen for application in combustion. We tested three different natural zeolite membranes (different particle size at different temperatures and time of exposure). Our results show that the membranes exposured at 900 C for 1Hr has the most higher permeation capacity, indicated that our zeolite membranes has the capacity to permeate hydrogen.

  10. Studies of anions sorption on natural zeolites.

    PubMed

    Barczyk, K; Mozgawa, W; Król, M

    2014-12-10

    This work presents results of FT-IR spectroscopic studies of anions-chromate, phosphate and arsenate - sorbed from aqueous solutions (different concentrations of anions) on zeolites. The sorption has been conducted on natural zeolites from different structural groups, i.e. chabazite, mordenite, ferrierite and clinoptilolite. The Na-forms of sorbents were exchanged with hexadecyltrimethylammonium cations (HDTMA(+)) and organo-zeolites were obtained. External cation exchange capacities (ECEC) of organo-zeolites were measured. Their values are 17mmol/100g for chabazite, 4mmol/100g for mordenite and ferrierite and 10mmol/100g for clinoptilolite. The used initial inputs of HDTMA correspond to 100% and 200% ECEC of the minerals. Organo-modificated sorbents were subsequently used for immobilization of mentioned anions. It was proven that aforementioned anions' sorption causes changes in IR spectra of the HDTMA-zeolites. These alterations are dependent on the kind of anions that were sorbed. In all cases, variations are due to bands corresponding to the characteristic Si-O(Si,Al) vibrations (occurring in alumino- and silicooxygen tetrahedra building spatial framework of zeolites). Alkylammonium surfactant vibrations have also been observed. Systematic changes in the spectra connected with the anion concentration in the initial solution have been revealed. The amounts of sorbed CrO4(2-), AsO4(3-) and PO4(3-) ions were calculated from the difference between their concentrations in solutions before (initial concentration) and after (equilibrium concentration) sorption experiments. Concentrations of anions were determined by spectrophotometric method. PMID:25002191

  11. Biological membrane modeling with a liquid/liquid interface. Probing mobility and environment with total internal reflection excited fluorescence.

    PubMed Central

    Morrison, L E; Weber, G

    1987-01-01

    Total internal reflection of exciting light, in combination with fluorescence intensity and polarization measurements, was used to selectively study fluorescent compounds adsorbed to the interface region between two immiscible liquids. A fluorometer was constructed which provided excitation at variable angles of incidence and allowed sensitive detection of polarized fluorescence emitted from the interface. The compound 4,4'-bis-1-phenylamino-8-naphthalenesulfonate (bis-ANS) was examined at a decalin/water interface and was found to possess remarkable affinity for the interface region with the bulk of the adsorbed molecule residing in the decalin phase. The adsorbed fluorophore displayed an apparent hindered rotation in the plane of the interface with a rotational diffusion coefficient 3- to 12-fold lower than that expected for bis-ANS in solution. While other dyes examined were not found to be significantly surface active, the addition of cationic surfactant sufficed to induce adsorption of the anionic fluorophore 1-aminonaphthalene-3,6,8-trisulfonic acid. This fluoropore was found to reside in an aqueous environment when bound to the interface, and it also exhibited hindered rotation in the plane of the interface. As the concentrations of the dyes were increased, both adsorbed dyes exhibited polarization reductions consistent with excitation energy transfer. Adsorption of bis-ANS was reversed by addition of bovine serum albumin. The membrane protein cytochrome b5 was found not to bind at the decalin/water interface, indicating that interaction with lipid is required for its adherence to biological membranes. PMID:3651556

  12. A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control

    PubMed Central

    Di Trani, Livia; Bedini, Barbara; Donatelli, Isabella; Campitelli, Laura; Chiappini, Barbara; De Marco, Maria Alessandra; Delogu, Mauro; Buonavoglia, Canio; Vaccari, Gabriele

    2006-01-01

    Background Avian influenza viruses (AIVs) are endemic in wild birds and their introduction and conversion to highly pathogenic avian influenza virus in domestic poultry is a cause of serious economic losses as well as a risk for potential transmission to humans. The ability to rapidly recognise AIVs in biological specimens is critical for limiting further spread of the disease in poultry. The advent of molecular methods such as real time polymerase chain reaction has allowed improvement of detection methods currently used in laboratories, although not all of these methods include an Internal Positive Control (IPC) to monitor for false negative results. Therefore we developed a one-step reverse transcription real time PCR (RRT-PCR) with a Minor Groove Binder (MGB) probe for the detection of different subtypes of AIVs. This technique also includes an IPC. Methods RRT-PCR was developed using an improved TaqMan technology with a MGB probe to detect AI from reference viruses. Primers and probe were designed based on the matrix gene sequences from most animal and human A influenza virus subtypes. The specificity of RRT-PCR was assessed by detecting influenza A virus isolates belonging to subtypes from H1–H13 isolated in avian, human, swine and equine hosts. The analytical sensitivity of the RRT-PCR assay was determined using serial dilutions of in vitro transcribed matrix gene RNA. The use of a rodent RNA as an IPC in order not to reduce the efficiency of the assay was adopted. Results The RRT-PCR assay is capable to detect all tested influenza A viruses. The detection limit of the assay was shown to be between 5 and 50 RNA copies per reaction and the standard curve demonstrated a linear range from 5 to 5 × 108 copies as well as excellent reproducibility. The analytical sensitivity of the assay is 10–100 times higher than conventional RT-PCR. Conclusion The high sensitivity, rapidity, reproducibility and specificity of the AIV RRT-PCR with the use of IPC to monitor

  13. Towards liquid fuels from biosyngas: effect of zeolite structure in hierarchical-zeolite-supported cobalt catalysts.

    PubMed

    Sartipi, Sina; Alberts, Margje; Meijerink, Mark J; Keller, Tobias C; Pérez-Ramírez, Javier; Gascon, Jorge; Kapteijn, Freek

    2013-09-01

    Wax on, wax off: Bifunctional cobalt-based catalysts on zeolite supports are applied for the valorization of biosyngas through Fischer-Tropsch chemistry. By using these catalysts, waxes can be hydrocracked to shorter-chain hydrocarbons, increasing the selectivity towards the C5 -C11 (gasoline) fraction. The zeolite topology and the amount and strength of acid sites are key parameters to maximize the performance of these bifunctional catalysts, steering Fischer-Tropsch product selectivity towards liquid hydrocarbons. PMID:23765635

  14. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    PubMed

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields. PMID:27483802

  15. Silver clusters and chemistry in zeolites

    SciTech Connect

    Sun, T.; Seff, K. . Dept. of Chemistry)

    1994-06-01

    The spectroscopic work done on silver clusters trapped in solid noble gas matrices at low temperature has been extensively reviewed by Ozin, and Henglein has done the same for photochemical studies of colloidal silver particles in solution. This article will review the chemistry of silver in zeolite hosts, including the synthesis and structures of silver clusters. 127 refs.

  16. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  17. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong

    1987-01-01

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  18. Dispersion enhanced metal/zeolite catalysts

    DOEpatents

    Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.

    1987-03-31

    Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.

  19. MERCURY SEPARATION FROM POLLUTANT WATER USING ZEOLITES

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water has been examined at room temperature. Experiments have...

  20. Zeolite 5A Catalyzed Etherification of Diphenylmethanol

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.; Lightbody, Owen C.

    2009-01-01

    An experiment for the synthetic undergraduate laboratory is described in which zeolite 5A catalyzes the room temperature dehydration of diphenylmethanol, (C[subscript 6]H[subscript 5])[subscript 2]CHOH, producing 1,1,1',1'-tetraphenyldimethyl ether, (C[subscript 6]H[subscript 5])[subscript 2]CHOCH(C[subscript 6]H[subscript 5])[subscript 2]. The…

  1. Chemical interactions in multimetal/zeolite catalysts

    SciTech Connect

    Sachtler, W.M.H.

    1992-02-07

    Mechanistic explanations have been found for the migration of atoms and ions through the zeolite channels leading to specific distribution of ions and the metal clusters. In this report, we summarize the state of understanding attained on a number of topics in the area of mono- and multimetal/zeolite systems, to which our recent research has made significant contributions. The following topics are discussed: (1) Formation of isolated metal atoms in sodalite cages; (2) differences of metal/zeolite systems prepared by ion reduction in channels or via isolated atoms; (3) rejuvenation of Pd/NaY and Pd/HY catalysts by oxidative redispersion of the metal; (4) formation of mono- or bimetal particles in zeolites by programmed reductive decomposition of volatile metal complexes; (5) cation-cation interaction as a cause of enhanced reducibility; (6) formation of palladium carbonyl clusters in supercages; (7) enhanced catalytic activity of metal particle-proton complexes for hydrocarbon conversion reactions; (8) stereoselectivity of catalytic reactions due to geometric constraints of particles in cages.

  2. [Internal initiation of translation in eukaryotes. Chemical probing of the encephalomyocarditis virus RNA IRES-element in the 48S preinitiation complex].

    PubMed

    Boroviagin, A V; Ezrokhi, M V; Shatskiĭ, I N

    1995-01-01

    Using in vitro T7 polymerase system, the transcript containing the IRES-element (nts 315-833), and the initial part of the coding sequence of encephalomyocarditis virus (EMCV) RNA (nts 834-1155) was prepared. Its complex with the 40S ribosomal subunit (48S preinitiation complex) was then isolated by sucrose gradient sedimentation from ascites carcinoma Krebs2 cell extracts after preincubation with the transcript. The complex was treated with dimethylsulphate (DMS), a common reagent for chemical probing of A and C residues in single-stranded RNA regions. The modified nucleotides were identified by primer extension inhibition analysis in reverse transcription reaction. The pattern of modification of the 48S complex was compared with that for the corresponding free mRNP. Multiple protection of A residues against DMS modification was found in the domains of the IRES-element proximal to the initiation AUG codon (nt 834-836). The mechanism of internal translational initiation of EMCV RNA and other picornaviral RNAs is discussed. PMID:8552069

  3. Energetics of sodium-calcium exchanged zeolite A.

    PubMed

    Sun, H; Wu, D; Guo, X; Shen, B; Navrotsky, A

    2015-05-01

    A series of calcium-exchanged zeolite A samples with different degrees of exchange were prepared. They were characterized by powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). High temperature oxide melt drop solution calorimetry measured the formation enthalpies of hydrated zeolites CaNa-A from constituent oxides. The water content is a linear function of the degree of exchange, ranging from 20.54% for Na-A to 23.77% for 97.9% CaNa-A. The enthalpies of formation (from oxides) at 25 °C are -74.50 ± 1.21 kJ mol(-1) TO2 for hydrated zeolite Na-A and -30.79 ± 1.64 kJ mol(-1) TO2 for hydrated zeolite 97.9% CaNa-A. Dehydration enthalpies obtained from differential scanning calorimetry are 32.0 kJ mol(-1) H2O for hydrated zeolite Na-A and 20.5 kJ mol(-1) H2O for hydrated zeolite 97.9% CaNa-A. Enthalpies of formation of Ca-exchanged zeolites A are less exothermic than for zeolite Na-A. A linear relationship between the formation enthalpy and the extent of calcium substitution was observed. The energetic effect of Ca-exchange on zeolite A is discussed with an emphasis on the complex interactions between the zeolite framework, cations, and water. PMID:25827491

  4. Conversion of Ethanol to Hydrocarbons on Hierarchical HZSM-5 Zeolites

    SciTech Connect

    Ramasamy, Karthikeyan K.; Zhang, He; Sun, Junming; Wang, Yong

    2014-02-22

    This study reports synthesis, characterization, and catalytic activity of the nano-size hierarchical HZSM-5 zeolite with high mesoporosity produced via a solvent evaporation procedure. Further, this study compares hierarchical zeolites with conventional HZSM-5 zeolite with similar Si/Al ratios for the ethanol-to-hydrocarbon conversion process. The catalytic performance of the hierarchical and conventional zeolites was evaluated using a fixed-bed reactor at 360 °C, 300 psig, and a weight hourly space velocity of 7.9 h-1. For the low Si/Al ratio zeolite (~40), the catalytic life-time for the hierarchical HZSM-5 was approximately 2 times greater than the conventional HZSM-5 despite its coking amount deposited 1.6 times higher than conventional HZSM-5. For the high Si/Al ratio zeolite (~140), the catalytic life-time for the hierarchical zeolite was approximately 5 times greater than the conventional zeolite and the amount of coking deposited was 2.1 times higher. Correlation was observed between catalyst life time, porosity, and the crystal size of the zeolite. The nano-size hierarchical HZSM-5 zeolites containing mesoporosity demonstrated improved catalyst life-time compared to the conventional catalyst due to faster removal of products, shorter diffusion path length, and the migration of the coke deposits to the external surface from the pore structure.

  5. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-11-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.

  6. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins

    PubMed Central

    Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H. Ali; Awala, H.; Mintova, S.; Daghighi, M.; Bakhshandeh Rostami, F.; de Vries, M.; Motazacker, M. M.; Peppelenbosch, M. P.; Mahmoudi, M.; Rezaee, F.

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8–12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  7. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins.

    PubMed

    Rahimi, M; Ng, E-P; Bakhtiari, K; Vinciguerra, M; Ali Ahmad, H; Awala, H; Mintova, S; Daghighi, M; Bakhshandeh Rostami, F; de Vries, M; Motazacker, M M; Peppelenbosch, M P; Mahmoudi, M; Rezaee, F

    2015-01-01

    The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy. PMID:26616161

  8. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    EPA Science Inventory

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  9. CO2 SEPARATIONS USING ZEOLITE MEMBRANES

    SciTech Connect

    Richard D. Noble; John L. Falconer

    2001-06-30

    Zeolite and other inorganic molecular sieve membranes have shown potential for separations based on molecular size and shape because of their small pore sized, typically less than 1 nm, and their narrow pore size distribution. The high thermal and chemical stability of these inorganic crystals make them ideal materials for use in high temperature applications such as catalytic membrane reactors. Most of the progress with zeolite membranes has been with MFI zeolites prepared on porous disks and tubes. The MFI zeolite is a medium pore size structure having nearly circular pores with diameters between .53 and .56 nm. Separation experiments through MFI membranes indicate that competitive adsorption separates light gas mixtures. Light gas selectivities are typically small, however, owing to small differences in adsorption strengths and their small sizes relative to the MFI pore opening. Furthermore, competitive adsorption does not work well at high temperature where zeolite membranes are stable and have potential application. Separation by differences in size has a greater potential to work at high temperature than competitive adsorption, but pores smaller than those in MFI zeolites are required. Therefore, some studies focused on the synthesis of a small, 8-membered-pore structures such as zeolite A (0.41-nm pore diameter) and SAPO-34, a chabazite (about .4-nm pore diameter with about 1.4 nm cages) analog. The small pore size of the zeolite A and SAPO-34 structures made the separation of smaller molecules by differences in size possible. Zeolite MFI and SAPO-34 membranes were prepared on the inside surface of porous alumina tubes by hydrothermal synthesis, and single gas and binary mixture permeances were measured to characterize the membrane's performance. A mathematical diffusion model was developed to determine the relative quantities of zeolite and non-zeolite pores in different membranes by modeling the permeation date of CO{sub 2}. This model expresses the total

  10. Differences in the Location of Guest Molecules within Zeolite Pores As Revealed by Multilaser Excitation Confocal Fluorescence Microscopy: Which Molecule Is Where?

    PubMed Central

    2015-01-01

    A detailed and systematic polarized confocal fluorescence microscopy investigation is presented on three batches of large coffin-shaped ZSM-5 crystals (i.e., parent, steamed at 500 °C, and steamed at 700 °C). In total, six laser lines of different wavelength in the visible region are employed on two crystal positions and three orientations with respect to the polarization plane of the excitation laser light. A fluorescent probe molecule is generated inside the zeolite pores, originating from the acid-catalyzed oligomerization of 4-fluorostyrene. A thorough analysis of the polarization plane of emitting fluorescent light reveals insight into the orientation of the fluorescent probe molecule restricted by the highly ordered zeolite channel framework, thereby visualizing pore accessibility and clearly distinguishing the occupation of straight and sinusoidal channels by the probe molecule. Spectral features are, furthermore, observed to tell apart molecules situated in one or the other pore. Special focus was given on the rim and tip regions of the zeolite ZSM-5 crystals. On the basis of the confocal approach of the investigation, the aforementioned features are evaluated in three dimensions, while the degradation of the zeolite framework upon postsynthesis steam treatment could be visualized by occupation of the sinusoidal pores. PMID:25590519

  11. Measurement of xenon distribution statistics in Na-A zeolite cavities

    SciTech Connect

    Chmelka, B.F.; Raftery, D.; McCormick, A.V.; de Menorval, L.C.; Levine, R.D.; Pines, A. . Materials Sciences Division University of California, Berkeley, CA . Department of Chemistry)

    1991-02-04

    {sup 129}Xe NMR spectroscopy has been used to probe directly the distribution of xenon atoms confined in atomic-size Na-A zeolite cavities. For mean xenon occupancies less than about three Xe atoms per {alpha}-cage, the guest populations are well described by binomial statistics. At higher guest loadings the finite volumes of the xenon atoms become significant, as reflected by a fit of the experimental populations with a hypergeometric distribution. The data and hypergeometric analysis indicate a maximum occupancy of seven Xe atoms/cage. At the highest xenon loadings the experimental distribution is narrower than hypergeometric.

  12. Synthesis strategies in the search for hierarchical zeolites.

    PubMed

    Serrano, D P; Escola, J M; Pizarro, P

    2013-05-01

    Great interest has arisen in the past years in the development of hierarchical zeolites, having at least two levels of porosities. Hierarchical zeolites show an enhanced accessibility, leading to improved catalytic activity in reactions suffering from steric and/or diffusional limitations. Moreover, the secondary porosity offers an ideal space for the deposition of additional active phases and for functionalization with organic moieties. However, the secondary surface represents a discontinuity of the crystalline framework, with a low connectivity and a high concentration of silanols. Consequently, hierarchical zeolites exhibit a less "zeolitic behaviour" than conventional ones in terms of acidity, hydrophobic/hydrophilic character, confinement effects, shape-selectivity and hydrothermal stability. Nevertheless, this secondary surface is far from being amorphous, which provides hierarchical zeolites with a set of novel features. A wide variety of innovative strategies have been developed for generating a secondary porosity in zeolites. In the present review, the different synthetic routes leading to hierarchical zeolites have been classified into five categories: removal of framework atoms, surfactant-assisted procedures, hard-templating, zeolitization of preformed solids and organosilane-based methods. Significant advances have been achieved recently in several of these alternatives. These include desilication, due to its versatility, dual templating with polyquaternary ammonium surfactants and framework reorganization by treatment with surfactant-containing basic solutions. In the last two cases, the materials so prepared show both mesoscopic ordering and zeolitic lattice planes. Likewise, interesting results have been obtained with the incorporation of different types of organosilanes into the zeolite crystallization gels, taking advantage of their high affinity for silicate and aluminosilicate species. Crystallization of organofunctionalized species favours the

  13. Role of Lewis basicity and van der Waals forces in adhesion of silica MFI zeolites (010) with polyimides.

    PubMed

    Lee, Jung-Hyun; Thio, Beng Joo Reginald; Bae, Tae-Hyun; Meredith, J Carson

    2009-08-18

    Adhesion between zeolites and polymers is a central factor in achieving defect-free mixed-matrix membranes for energy-efficient gas separations. In this work, atomic force microscopy (AFM) was used to measure adhesion forces between a pure silica MFI (ZSM-5: Zeolite Socony Mobil-Five) (010) zeolite probe and a series of polyimide (Matrimid 5218, 6FDA-DAM, 6FDA-6FpDA, and 6FDA-DAM:DABA (3:2)) and polyetherimide (Ultem 1000) polymers in air. Combined with measurements of surface energy of the polymer surfaces, the dependence of adhesion on polymer structure was determined. Adhesion force was strongly dependent on the Lewis basicity component of polymer surface energy and was less dependent on van der Waals (VDW) components, by a factor of about 6. Hydrogen bonding likely occurs between the acidic (electron acceptor) component of the zeolite surface (silanols or adsorbed water) and the basic (electron donor) component of the polymer surface. Adhesion force was strongly correlated with the mole fraction of carbonyls per monomer. We conclude that differences in adhesion as a function of polymer structure were primarily controlled by the polymer's Lewis basicity, contributed primarily by carbonyl groups. PMID:19432396

  14. Chemical Interactions in Multimetal/Zeolite Catalysts

    SciTech Connect

    Sachtler, Wolfgang M. H.

    2004-04-16

    This two-year project has led to a significant improvement in the fundamental understanding of the catalytic action of zeolite-supported redox catalysts. It turned out to be essential that we could combine four strategies for the preparation of catalysts containing transition metal (TM) ions in zeolite cavities: (1) ion exchange from aqueous solution; (2) chemical vapor deposition (CVD) of a volatile halide onto a zeolite in its acidic form; (3) solid state ion exchange; and (4) hydrothermal synthesis of a zeolite having TM ions in its lattice, followed by a treatment transporting these ions to ''guest positions''. Technique (2) enables us to position more TM ions into cavities than permitted by the conventional technique (1).viz one positive charge per Al centered tetrahedron in the zeolite lattice. The additional charge is compensated by ligands to the TM ions, for instance in oxo-ions such as (GaO){sup +} or dinuclear [Cu-O-Cu]{sup 2+}. While technique (3) is preferred over CVD where volatile halides are not available, technique (4) leads to rather isolated ''ex lattice'' oxo-ions. Such oxo-ions tend to be mono-nuclear, in contrast to technique (2) which preferentially creates dinuclear oxo-ions of the same TM element. A favorable element for the present research was that the PI is also actively engaged in a project on the reduction of nitrogen oxides, sponsored by EMSI program of the National Science Foundation and the US Department of Energy, Office of Science. This combination created a unique opportunity to test and analyze catalysts for the one step oxidation of benzene to phenol and compare them with catalysts for the reduction of nitrogen oxides, using hydrocarbons as the reductant. In both projects catalysts have been used which contain Fe ions or oxo-ions in the cavities the zeolite MFI, often called ZSM-5. With Fe as the TM-element and MFI as the host zeolite we found that catalysts with high Fe content, prepared by technique (2) were optimal for the

  15. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  16. Zeolite and swine inoculum effect on poultry manure biomethanation

    NASA Astrophysics Data System (ADS)

    Kougias, P. G.; Fotidis, I. A.; Zaganas, I. D.; Kotsopoulos, T. A.; Martzopoulos, G. G.

    2013-03-01

    Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.

  17. Interaction of Microwaves with Synthetic Type A Zeolite Containing Water

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiro; Takayama, Sadatsugu; Sano, Saburo

    2013-11-01

    A synthetic honeycomb type A zeolite adsorbent was regenerated through microwave irradiation in a single-mode cavity microwave at 2.46 GHz. The regeneration mechanism was investigated by comparing the heating properties, thermogravimetric properties, and dielectric properties of the synthetic zeolite samples. The hydrated zeolite sample was easily heated to over 200 °C, although a difference in the impedance matching frequency of only 0.01 GHz sharply reduced the maximum heating and increased the regeneration time. The adsorbed water in the hydrated zeolite initially acted as a heating agent by absorbing microwave energy, because the dielectric loss factor of water is higher than that of synthetic zeolite around 2.45 GHz. From 50 to 250 °C, the zeolite itself also absorbed microwave energy.

  18. Density of mechanisms within the flexibility window of zeolites.

    PubMed

    Kapko, V; Dawson, C; Rivin, I; Treacy, M M J

    2011-10-14

    By treating idealized zeolite frameworks as periodic mechanical trusses, we show that the number of flexible folding mechanisms in zeolite frameworks is strongly peaked at the minimum density end of their flexibility window. 25 of the 197 known zeolite frameworks exhibit an extensive flexibility, where the number of unique mechanisms increases linearly with the volume when long wavelength mechanisms are included. Extensively flexible frameworks therefore have a maximum in configurational entropy, as large crystals, at their lowest density. Most real zeolites do not exhibit extensive flexibility, suggesting that surface and edge mechanisms are important, likely during the nucleation and growth stage. The prevalence of flexibility in real zeolites suggests that, in addition to low framework energy, it is an important criterion when searching large databases of hypothetical zeolites for potentially useful realizable structures. PMID:22107389

  19. Preparation of Robust, Thin Zeolite Membrane Sheet for Molecular Separation

    SciTech Connect

    Liu, Wei; Zhang, Jian; Canfield, Nathan L.; Saraf, Laxmikant V.

    2011-10-19

    This paper reports a feasibility study on the preparation of zeolite membrane films on a thin, porous metal support sheet (50-{micro}m thick). Zeolite sodium A (NaA) and silicalite zeolite frameworks are chosen to represent synthesis of respective hydrophilic-type and hydrophobic-type zeolite membranes on this new support. It is found that a dense, continuous inter-grown zeolite crystal layer at a thickness less than 2 {micro}m can be directly deposited on such a support by using direct and secondary growth techniques. The resulting membrane shows excellent adhesion on the metal sheet. Molecular-sieving functions of the prepared membranes are characterized with ethanol/water separation, CO2 separation, and air dehumidification. The results show great potential to make flexible metal-foil-like zeolite membranes for a range of energy conversion and environmental applications.

  20. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  1. Ionic Liquid assisted Synthesis of Zeolite-TON

    PubMed Central

    Tian, Yuyang; McPherson, Matthew J; Wheatley, Paul S; Morris, Russell E

    2014-01-01

    An ionic liquid assisted strategy for the synthesis of zeolitic material is reported. This strategy is a solid state synthetic method and the ionic liquid is employed as structure directing agent. A TON-type zeolite, which contains one-dimensional 10-member-ring, is successfully synthesized with the assistance of the ionic liquid, 1-ethyl-3-methylimidazolium bromide. This finding improves our understanding about the challenge of ionothermally synthesizing siliceous and aluminosilicate zeolites. PMID:26213423

  2. Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts.

    PubMed

    Gómez-Álvarez, Paula; Hamad, Said; Haranczyk, Maciej; Ruiz-Salvador, A Rabdel; Calero, Sofia

    2016-01-01

    To find optimal porous materials for adsorption-based separations is a challenging task due to the extremely large number of possible pore topologies and compositions. New porous material classes such as Metal Organic Frameworks (MOFs) are emerging, and hope to replace traditionally used materials such as zeolites. Computational screening offers relatively fast searching for candidate structures as well as side-by-side comparisons between material families. This work is pioneering at examining the families comprised by the experimentally known zeolites and their respective Zeolitic Imidazolate Framework (ZIF) counterparts in the context of a number of environmental and industrial separations involving carbon dioxide, nitrogen, methane, oxygen, and argon. Additionally, unlike related published work, here all the targeted structures have been previously relaxed through energy minimization. On the first level of characterization, we considered a detailed pore characterization, identifying 24 zeolites as promising candidates for gas separation based on adsorbate sizes. The second level involved interatomic potential-based calculations to assess the adsorption performance of the materials. We found no correlation in the values of heat of adsorption between zeolites and ZIFs sharing the same topology. A number of structures were identified as potential experimental targets for CO2/N2, and CO2/CH4 affinity-based separations. PMID:26600432

  3. Peculiarities of the dielectric response of natural zeolite composites prepared by using zeolite and silicon powders

    NASA Astrophysics Data System (ADS)

    Ozturk Koc, S.; Orbukh, V. I.; Eyvazova, G. M.; Lebedeva, N. N.; Salamov, B. G.

    2016-03-01

    We present the real and imaginary part of the dielectric permittivity of natural zeolite composites prepared by using zeolite and silicon powders. The dielectric response (DR) dependences on the frequency (3-300 GHz) of electric field and different Si concentrations (5-33%) are non-monotonic and a maximum peak is observed. This peak position is practically independent on the frequency and its maximum is observed in zeolite composites which included 9% of the Si-powder. Also the maximum peak is decreased by about an order of magnitude when frequency increases from 500 Hz to 5 kHz. Addition of the conductive Si-particles to zeolite-powder leads to two opposite effects. Firstly, the movement of electrons in the Si-particles provides increase of DR. Secondly, cations which leaving from zeolite pores can be neutralized by the particles of Si in the intercrystalline-space. Such a peculiar mechanism for recombination of Si electrons and cations from pores leads to a reduction of DR for large silicon concentrations. Due to the fact that the contribution of free carriers in the decreasing of the DR as the frequency increases, it is consistent with the suggestion that the maximum peak decreases with increasing frequency.

  4. Formation of ZSM-22 zeolite catalytic particles by fusion of elementary nanorods.

    PubMed

    Hayasaka, Kazuaki; Liang, Duoduo; Huybrechts, Ward; De Waele, Bart R; Houthoofd, Kristof J; Eloy, Pierre; Gaigneaux, Eric M; van Tendeloo, Gustaaf; Thybaut, Joris W; Marin, Guy B; Denayer, Joeri F M; Baron, Gino V; Jacobs, Pierre A; Kirschhock, Christine E A; Martens, Johan A

    2007-01-01

    An ZSM-22 aluminosilicate zeolite was synthesized using the hydrothermal gel method at 150 degrees C. Products obtained after different synthesis times were characterized using various techniques and catalytic testing. Massive formation of ZSM-22 nanocrystals occurs after only a short synthesis time, appearing as isolated rods with a cross section of 12+/-4 nm. Nanorods have aluminum enriched at their external surface. Later in the crystallization process nanorods align and fuse sideways, whereby the external surface is systematically converted into an internal micropore surface. The formation of aluminum bearing micropores by the joining of nanorod surfaces is responsible for the enhanced catalytic activity. For this, the zeolite synthesis of nanoscale crystallites is ineffective for enhancing catalytic activity. PMID:17868172

  5. A Meta-Analysis and Systematic Review of the Literature to Evaluate Potential Threats to Internal Validity in Probe Procedures for Chained Tasks

    ERIC Educational Resources Information Center

    Alexander, Jennifer L.; Smith, Katie A.; Mataras, Theologia; Shepley, Sally B.; Ayres, Kevin M.

    2015-01-01

    The two most frequently used methods for assessing performance on chained tasks are single opportunity probes (SOPs) and multiple opportunity probes (MOPs). Of the two, SOPs may be easier and less time-consuming but can suppress actual performance. In comparison, MOPs can provide more information but present the risk of participants acquiring…

  6. Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry.

    PubMed

    Nakashima, Taiken; Wada, Hiroshi; Morita, Satoshi; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2016-03-15

    In this report, we developed the pressure probe electrospray ionization-mass spectrometry with internal electrode capillary (IEC-PPESI-MS) which enables high spatial-resolution cell sampling, precise postsampling manipulation, and high detection sensitivity. Using this technique, a comparative in situ single-cell metabolite profiling of stalk and glandular cells, the two adjacent cell types comprising a trichome unit in tomato plants (Solanum lycopersicum L.), were performed to clarify the extent of metabolic differentiation between two cell types as well as among different types of trichomes. Owing to high sensitivity of the system, less than a picoliter cell sap from a single stalk cell sufficiently yielded a number of peaks of amino acids, organic acids, carbohydrates, and flavonoids. The minimal cell sap removal from a stalk cell without severe disturbance of trichome structure enabled sequential analysis of adjacent glandular cell on the same trichome, which showed the presence of striking differences in metabolite compositions between two adjacent cell types. Comparison among different types of trichome also revealed significant variations in metabolite profiles, particularly in flavonoids and acyl sugars compositions. Some metabolites were found only in specific cell types or particular trichome types. Although extensive metabolomics analysis of glandular cells of tomato trichomes has been previously documented, this is the first report describing cell-to-cell variations in metabolite compositions of stalk and glandular cells as well as in different trichome types. Further application of this technique may provide new insights into distinct metabolism in plant cells displaying variations in shape, size, function and physicochemical properties. PMID:26845634

  7. Atom probe tomography study of internal interfaces in Cu{sub 2}ZnSnSe{sub 4} thin-films

    SciTech Connect

    Schwarz, T. Cojocaru-Mirédin, O.; Choi, P. Raabe, D.; Mousel, M.; Redinger, A.; Siebentritt, S.

    2015-09-07

    We report on atom probe tomography studies of the composition at internal interfaces in Cu{sub 2}ZnSnSe{sub 4} thin-films. For Cu{sub 2}ZnSnSe{sub 4} precursors, which are deposited at 320 °C under Zn-rich conditions, grain boundaries are found to be enriched with Cu irrespective of whether Cu-poor or Cu-rich growth conditions are chosen. Cu{sub 2}ZnSnSe{sub 4} grains are found to be Cu-poor and excess Cu atoms are found to be accumulated at grain boundaries. In addition, nanometer-sized ZnSe grains are detected at or near grain boundaries. The compositions at grain boundaries show different trends after annealing at 500 °C. Grain boundaries in the annealed absorber films, which are free of impurities, are Cu-, Sn-, and Se-depleted and Zn-enriched. This is attributed to dissolution of ZnSe at the Cu-enriched grain boundaries during annealing. Furthermore, some of the grain boundaries of the absorbers are enriched with Na and K atoms, stemming from the soda-lime glass substrate. Such grain boundaries show no or only small changes in composition of the matrix elements. Na and K impurities are also partly segregated at some of the Cu{sub 2}ZnSnSe{sub 4}/ZnSe interfaces in the absorber, whereas for the precursors, only Na was detected at such phase boundaries possibly due to a higher diffusivity of Na compared to K. Possible effects of the detected compositional fluctuations on cell performance are discussed.

  8. Method for the recovery of silver from silver zeolite

    DOEpatents

    Reimann, G.A.

    1985-03-05

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  9. Dry method for recycling iodine-loaded silver zeolite

    DOEpatents

    Thomas, Thomas R.; Staples, Bruce A.; Murphy, Llewellyn P.

    1978-05-09

    Fission product iodine is removed from a waste gas stream and stored by passing the gas stream through a bed of silver-exchanged zeolite until the zeolite is loaded with iodine, passing dry hydrogen gas through the bed to remove the iodine and regenerate the bed, and passing the hydrogen stream containing the hydrogen iodide thus formed through a lead-exchanged zeolite which adsorbs the radioactive iodine from the gas stream and permanently storing the lead-exchanged zeolite loaded with radioactive iodine.

  10. Natural zeolites in diet or litter of broilers.

    PubMed

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter. PMID:26879673

  11. Zeolite shape selectivity in the uptake of uranium from solutions

    SciTech Connect

    Ingram, C.W.; Szostak, R.; Cleare, K.

    1996-12-31

    Various synthetic zeolites (KL, LZY, 13X, and mordenite), as well as a natural zeolite (clinoptilolite) were evaluated for the uptake of uranium from solution. Mordenite, LZY and KL were most effective for uranium uptake. The relative effectiveness of the zeolites was a function of their pore dimensions, chemical compositions and cation concentration. Mordenite showed superior performance to a clay-soil for uranium uptake. With time, initially sorbed uranium later re-dissolve from the clay, but remained anchored in the matrix of the zeolite. Mordenite therefore demonstrated potential for use as an in situ trap for preventing uranium migration in soils.

  12. Method for the recovery of silver from silver zeolite

    SciTech Connect

    Reimann, George A.

    1986-01-01

    High purity silver is recovered from silver exchanged zeolite used to capture radioactive iodine from nuclear reactor and nuclear fuel reprocessing environments. The silver exchanged zeolite is heated with slag formers to melt and fluidize the zeolite and release the silver, the radioactivity removing with the slag. The silver containing metallic impurities is remelted and treated with oxygen and a flux to remove the metal impurities. About 98% of the silver in the silver exchanged zeolite having a purity of 99% or better is recoverable by the method.

  13. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming.

    PubMed

    Ristanović, Zoran; Hofmann, Jan P; De Cremer, Gert; Kubarev, Alexey V; Rohnke, Marcus; Meirer, Florian; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-05-27

    Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data. PMID:25867455

  14. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming

    PubMed Central

    2015-01-01

    Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data. PMID:25867455

  15. Using Natural Boundary Conditions to Probe the Internal Dynamics of Pyroclastic Flows: Mass, Enthalpy and Momentum Transfer at the Flow-Bed Interface

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Bergantz, G. W.; Manga, M.

    2006-12-01

    The interaction of pyroclastic density currents with their substrate plays a significant role in the transport and deposition of these flows. The basal particle concentration of these flows will ultimately determine the mechanism of mass, enthalpy and momentum transfer and the sensitivity of these flows to bed roughness, topography and even their ability to cross bodies of water. In order to probe the internal structure of these flows we used an Eulerian-Eulerian-Lagrangian (EEL) computational approach coupled with an examination of ignimbrite deposits of the Kos Plateau Tuff (KPT) and the near-shore deposits of the 2003 Montserrat dome collapse (Allen and Cas, 2001; Edmonds and Herd, 2005). In particular, the KPT eruption provides a unique opportunity to compare flows that have traversed a body of water (and thereby filtering out their bed-load) versus flows that have traveled over-land. The examined Montserrat pyroclastic flows also encounter the ocean, and comparison with observations of the recently produced near-shore deposits allow us to access the near-surface energy transfer required to produce the observed steam explosions and the mass transfer necessary to produce tsunami. This coupled deposit-driven and numerical investigation reveals that energy-dissipation at the basal boundary is one of the primary factors determining the run-out distance of pyroclastic flows. A significant portion of the momentum of over-land flows is transported in a bed-load region dominated by numerous particle-particle and particle-boundary interactions. Mass and energy transfer in the near shore environment produce tsunami and steam explosions, which result in preferential fining in the proximal deposits and a source of water vapor to the propagating currents. However, the simulations indicate the internal structure and head of the pyroclastic density current are not significantly impacted by the steam explosions after they have traveled several kilometers away from the shore as

  16. Pf/Zeolite Catalyst for Tritium Stripping

    SciTech Connect

    Hsu, R.H.

    2001-03-26

    This report described promising hydrogen (protium and tritium) stripping results obtained with a Pd/zeolite catalyst at ambient temperature. Preliminary results show 90-99+ percent tritium stripping efficiency may be obtained, with even better performance expected as bed configuration and operating conditions are optimized. These results suggest that portable units with single beds of the Pd/zeolite catalyst may be utilized as ''catalytic absorbers'' to clean up both tritium gas and tritiated water. A cart-mounted prototype stripper utilizing this catalyst has been constructed for testing. This portable stripper has potential applications in maintenance-type jobs such as tritium line breaks. This catalyst can also potentially be utilized in an emergency stripper for the Replacement Tritium Facility.

  17. Olefins from methanol by modified zeolites

    SciTech Connect

    Inui, T.; Takegami, Y.

    1982-11-01

    Compares the effects of modified catalysts (ZSM-34 and ZSM-5 class zeolites) on methanol conversion to olefins (MTO) with regard to olefin selectivity and cost. Presents tables with prices of olefins in the US and Japan; comparison of methanol-cracking with naphtha cracking; methanol conversion data for Type-1, Type-II and reference catalysts; hydrocarbon distribution from MTO processes; and speculative economics for MTO processes of Concept-1 and 2. Diagrams the proposed MTO process scheme. Scanning electron micrographs of the zeolite catalysts are shown. Graphs indicate the change of ethylene prices in the US since 1978 and forecast ethylene prices in several countries. Concludes that the prices of ethylene for both MTO processes examined compare favorably with products of conventional processes.

  18. Incorporation of Mn into the vacant T-atom sites of a BEA zeolite as isolated, mononuclear Mn: FTIR, XPS, EPR and DR UV-Vis studies.

    PubMed

    Baran, R; Valentin, L; Dzwigaj, S

    2016-04-28

    A MnSiBEA zeolite has been prepared via a two-step postsynthesis procedure which consisted, in the first step, of the treatment of a tetraethylammonium BEA zeolite with nitric acid for the formation of vacant T-atom sites and then, in the second step, of the incorporation of Mn ions into the framework, resulting in a SiBEA zeolite, through their reaction with the silanol group of the vacant T-atom sites. The incorporation of Mn ions into the framework of the SiBEA zeolite has been evidenced using XRD. The formation of isolated mononuclear Mn(ii) and Mn(iii) in a MnSiBEA zeolite has been shown using FTIR, diffuse reflectance UV-Vis, EPR and XPS. The acidic properties of the mononuclear manganese species have been investigated via FTIR spectroscopy using pyridine as the probe molecule. The changes in the oxidation state of the Mn species under various treatments have been proven using EPR. PMID:27067795

  19. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  20. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  1. Surface modified natural zeolite as a carrier for sustained diclofenac release: A preliminary feasibility study.

    PubMed

    de Gennaro, Bruno; Catalanotti, Lilia; Cappelletti, Piergiulio; Langella, Alessio; Mercurio, Mariano; Serri, Carla; Biondi, Marco; Mayol, Laura

    2015-06-01

    In view of zeolite potentiality as a carrier for sustained drug release, a clinoptilolite-rich rock from California (CLI_CA) was superficially modified with cetylpyridinium chloride and loaded with diclofenac sodium (DS). The obtained surface modified natural zeolites (SMNZ) were characterized by confocal scanning laser microscopy (CLSM), powder X-ray diffraction (XRPD) and laser light scattering (LS). Their flowability properties, drug adsorption and in vitro release kinetics in simulated intestinal fluid (SIF) were also investigated. CLI_CA is a Na- and K-rich clinoptilolite with a cationic exchange ability that fits well with its zeolite content (clinoptilolite=80 wt%); the external cationic exchange capacity is independent of the cationic surfactant used. LS and CLSM analyses have shown a wide distribution of volume diameters of SMNZ particles that, along with their irregular shape, make them cohesive with scarce flow properties. CLSM observation has revealed the localization of different molecules in/on SMNZ by virtue of their chemical nature. In particular, cationic and polar probes prevalently localize in SMNZ bulk, whereas anionic probes preferentially arrange themselves on SMNZ surface and the loading of a nonpolar molecule in/on SMNZ is discouraged. The adsorption rate of DS onto SMNZ was shown by different kinetic models highlighting the fact that DS adsorption is a pseudo-second order reaction and that the diffusion through the boundary layer is the rate-controlling step of the process. DS release in an ionic medium, such as SIF, can be sustained for about 5h through a mechanism prevalently governed by anionic exchange with a rapid final phase. PMID:25919666

  2. Solar energy storage by natural zeolites: I. Dehydration of zeolitic tuff

    SciTech Connect

    Nastro, A.; Aiello, R.; Colella, C.; Conte, M.; Fittipaldi, F.

    1980-12-01

    In the perspective of a possible utilization of natural zeolites in the solar energy exploitation as materials suitable for heat storage, the behaviours of chabazitic and phillipsitic tuffs in the isothermal dehydration have been studied, evaluating the influence of temperature, heating rate and cationic form of the zeolite on the water desorption process. The possibility of achieving an almost complete desorption at temperatures of 200/250/sup 0/C in times of the order of two hours or less has been emphasized and indications on the heat amount storable by a chabazitic tuff in its original cationic form have been at last given.

  3. Zeolite thin films: from computer chips to space stations.

    PubMed

    Lew, Christopher M; Cai, Rui; Yan, Yushan

    2010-02-16

    Zeolites are a class of crystalline oxides that have uniform and molecular-sized pores (3-12 A in diameter). Although natural zeolites were first discovered in 1756, significant commercial development did not begin until the 1950s when synthetic zeolites with high purity and controlled chemical composition became available. Since then, major commercial applications of zeolites have been limited to catalysis, adsorption, and ion exchange, all using zeolites in powder form. Although researchers have widely investigated zeolite thin films within the last 15 years, most of these studies were motivated by the potential application of these materials as separation membranes and membrane reactors. In the last decade, we have recognized and demonstrated that zeolite thin films can have new, diverse, and economically significant applications that others had not previously considered. In this Account, we highlight our work on the development of zeolite thin films as low-dielectric constant (low-k) insulators for future generation computer chips, environmentally benign corrosion-resistant coatings for aerospace alloys, and hydrophilic and microbiocidal coatings for gravity-independent water separation in space stations. Although these three applications might not seem directly related, they all rely on the ability to fine-tune important macroscopic properties of zeolites by changing their ratio of silicon to aluminum. For example, pure-silica zeolites (PSZs, Si/Al = infinity) are hydrophobic, acid stable, and have no ion exchange capacity, while low-silica zeolites (LSZs, Si/Al < 2) are hydrophilic, acid soluble, and have a high ion exchange capacity. These new thin films also take advantage of some unique properties of zeolites that have not been exploited before, such as a higher elastic modulus, hardness, and heat conductivity than those of amorphous porous silicas, and microbiocidal capabilities derived from their ion exchange capacities. Finally, we briefly discuss our

  4. Superconducting characteristics of 4-Å carbon nanotube–zeolite composite

    PubMed Central

    Lortz, Rolf; Zhang, Qiucen; Shi, Wu; Ye, Jian Ting; Qiu, Chunyin; Wang, Zhe; He, Hongtao; Sheng, Ping; Qian, Tiezheng; Tang, Zikang; Wang, Ning; Zhang, Xixiang; Wang, Jiannong; Chan, Che Ting

    2009-01-01

    We have fabricated nanocomposites consisting of 4-Å carbon nanotubes embedded in the 0.7-nm pores of aluminophosphate-five (AFI) zeolite that display a superconducting specific heat transition at 15 K. MicroRaman spectra of the samples show strong and spatially uniform radial breathing mode (RBM) signals at 510 cm−1 and 550 cm−1, characteristic of the (4, 2) and (5, 0) nanotubes, respectively. The specific heat transition is suppressed at >2 T, with a temperature dependence characteristic of finite-size effects. Comparison with theory shows the behavior to be consistent with that of a type II BCS superconductor, characterized by a coherence length of 14 ± 2 nm and a magnetic penetration length of 1.5 ± 0.7 μm. Four probe and differential resistance measurements have also indicated a superconducting transition initiating at 15 K, but the magnetoresistance data indicate the superconducting network to be inhomogeneous, with a component being susceptible to magnetic fields below 3 T and other parts capable of withstanding a magnetic field of 5 T or beyond. PMID:19369206

  5. In Situ SAXS/WAXS of Zeolite Microwave Synthesis: NaY, NaA, and Beta Zeolites

    SciTech Connect

    Panzarella,B.; Tompsett, G.; Conner, W.; Jones, K.

    2007-01-01

    A custom waveguide apparatus is constructed to study the microwave synthesis of zeolites by in situ small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The WR-284 waveguide is used to heat precursor solutions using microwaves at a frequency of 2.45 GHz. The reaction vessels are designed to include sections of thin-walled glass, which permit X-rays to pass through the precursor solutions with minimal attenuation. Slots were machined into the waveguide to provide windows for X-ray energy to enter and scatter from solutions during microwave heating. The synthesis of zeolites with conventional heating is also studied using X-ray scattering in the same reactor. SAXS studies show that the crystallization of beta zeolite and NaY zeolite is preceded by a reorganization of nanosized particles in their precursor solutions or gels. The evolution of these particles during the nucleation and crystallization stages of zeolite formation depends on the properties of the precursor solution. The synthesis of NaA and NaX zeolites and sodalite from a single zeolite precursor is studied by microwave and conventional heating. Microwave heating shifts the selectivity of this synthesis in favor of NaA and NaX over sodalite; conventional heating leads to the formation of sodalite for synthesis from the same precursor. The use of microwave heating also led to a more rapid onset of NaA zeolite product crystallization compared to conventional heating. Pulsed and continuous microwave heating are compared for zeolite synthesis. The resulting rates of formation of the zeolite products, and the relative amounts of the products determined from the WAXS spectra, are similar when either pulsed or continuous microwave heating is applied in the reactor while maintaining the same synthesis temperature. The consequences of these results in terms of zeolite synthesis are discussed.

  6. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite.

    PubMed

    Salim, Mashitah Mad; Malek, Nik Ahmad Nizam Nik

    2016-02-01

    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading. PMID:26652350

  7. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2001-01-01

    A process for a combined selective thermal oxidation and photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly combined selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  8. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1999-01-01

    A process for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  9. Selective thermal and photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, H.; Blatter, F.; Sun, H.

    1999-06-22

    A process is described for selective thermal oxidation or photooxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation and photooxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls in solvent free zeolites under dark thermal conditions or under irradiation with visible light. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts. 19 figs.

  10. Selective thermal oxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    2000-01-01

    A process for selective thermal oxidation of hydrocarbons adsorbed onto zeolite matrices. A highly selective thermal oxidation of unsubstituted or alkyl substituted alkanes, alkenes, aromatics and cycloalkyls is carried out in solvent free zeolites under dark thermal conditions. The process oxidizes hydrocarbons almost completely selectively without substantial production of byproducts.

  11. FUNDAMENTALS AND APPLICATIONS OF PERVAPORATION THROUGH ZEOLITE MEMBRANES

    EPA Science Inventory

    Zeolite membranes are well suited for separating liquid-phase mixtures by pervaporation because of their molecular-sized pores and their hydrophilic/hydrophobic nature, and the first commercial application of zeolite membranes has been for dehydrating organics [1]. Because of ...

  12. Factors that Determine Zeolite Stability in Hot Liquid Water.

    PubMed

    Zhang, Lu; Chen, Kuizhi; Chen, Banghao; White, Jeffery L; Resasco, Daniel E

    2015-09-16

    The susceptibility of zeolites to hot liquid water may hamper their full utilization in aqueous phase processes, such as those involved in biomass conversion and upgrading reactions. Interactions of zeolites with water strongly depend on the presence of hydrophilic moieties including Brønsted acid sites (BAS), extraframework cations, and silanol defects, which facilitate wetting of the surface. However, it is not clear which of these moieties are responsible for the susceptibility of zeolites to liquid water. Previous studies have offered contradictory explanations because the role of each of these characteristics has not been investigated independently. In this work, a systematic comparison has been attempted by relating crystallinity losses to the variation of each of the five zeolite characteristics that may influence their stability in liquid water, including number of BAS, Si-O-Si bonds, framework type, silanol defects, and extraframework Al. In this study, we have systematically monitored the crystallinity changes of a series of HY, H-ZSM-5, and H-β zeolite samples with varying Si/Al ratio, density of BAS, zeolite structure, and density of silanol defects upon exposure to liquid water at 200 °C. The results of this comparison unambiguously indicate that the density of silanol defects plays the most crucial role in determining susceptibility of zeolites to hot liquid water. By functionalizing the silanol defects with organosilanes, the hydrophobicity of defective zeolite is increased and the tolerance to hot liquid water is significantly enhanced. PMID:26301890

  13. A zeolite ion exchange membrane for redox flow batteries.

    PubMed

    Xu, Zhi; Michos, Ioannis; Wang, Xuerui; Yang, Ruidong; Gu, Xuehong; Dong, Junhang

    2014-03-01

    The zeolite-T membrane was discovered to have high proton permselectivity against vanadium ions and exhibit low electrical resistance in acidic electrolyte solutions because of its enormous proton concentration and small thickness. The zeolite membrane was demonstrated to be an efficient ion exchange membrane in vanadium redox flow batteries. PMID:24396857

  14. Hydrocarbon cracking with mixture of zeolites y and zsm-5

    SciTech Connect

    Gladrow, E.M.; Winter, W.E.

    1981-09-15

    A hydrocarbon cracking catalyst comprises an ultrastable y-type crystalline zeolite, a small pore crystalline zsm-type zeolite, an inorganic oxide matrix and, optionally, a porous inert component. The cracking catalyst has a high activity and selectivity for the production of high octane naphtha fractions from higher boiling point hydrocarbonaceous oils. Catalytic cracking processes utilizing the catalyst are also provided.

  15. Ion exchange in a zeolite-molten chloride system

    SciTech Connect

    Woodman, R.H.; Pereira, C.

    1997-07-01

    Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for ion exchange. To date, the molten chloride ion-exchange properties of four zeolites have been investigated for this process: zeolite A, IE95{reg_sign}, clinoptilolite, and mordenite. Of these, zeolite A has been the most promising. Treating zeolite 4A, the sodium form of zeolite A , with the solvent salt for the waste stream-lithium-potassium chloride of eutectic melting composition, is expected to provide a material with favorable ion-exchange properties for the treatment of the waste salt. The authors constructed a pilot-plant system for the ion-exchange column. Initial results indicate that there is a direct relationship between the two operating variable of interest, temperature, and initial sodium concentration. Also, the mass ratio has been about 3--5 to bring the sodium concentration of the effluent below 1 mol%.

  16. Zeolite-type metal organic frameworks immobilized Eu³⁺ for cation sensing in aqueous environment.

    PubMed

    Liu, Chang; Yan, Bing

    2015-12-01

    A novel luminescent lanthanide metal organic framework (Ln-MOF) is synthesized by in situ encapsulating Eu(3+) ions to partial replace the transition-metal clusters in the channels of CPM-17-Zn nanocrystals. The Eu(3+) functionalized zeolite-type MOF hybrid system shows excellent luminescence property and photo-stability in aqueous environment for the sensitization and protection from the host framework. Subsequently, as a highly selective and sensitive sensor, its nanocrystals can be used to detect Cd(2+) in aqueous solution. In addition, the possible sensing mechanism based on ion exchange is discussed in detail. This work is one of the few cases for detecting Cd(2+) in aqueous solution based on a zeolite-type MOF. The good fluorescence stability, low detection limit and broad linear range in aqueous environment make this probe to be expected to have potential application in intracellular sensing and imaging of Cd(2+) potentially. PMID:26298079

  17. Transition Metal Ions in Zeolites: Coordination and activation of O2

    PubMed Central

    Smeets, Pieter J.; Woertink, Julia S.; Sels, Bert F.; Solomon, Edward I.; Schoonheydt, Robert A.

    2010-01-01

    Zeolites containing transition metal ions (TMI) often show promising activity as heterogeneous catalysts in pollution abatement and selective oxidation reactions. In this paper, two aspects of research on the TMI Cu, Co and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species. At low loading, TMI preferably occupy exchange sites in six-membered oxygen rings (6MR) where the TMI preferentially coordinate with the oxygen atoms of Al tetrahedra. High TMI loadings result in a variety of TMI species formed at the zeolite surface. Removal of the extra-lattice oxygens during high temperature pretreatments can result in auto-reduction. Oxidation of reduced TMI sites often results in the formation of highly reactive oxygen species. In Cu-ZSM-5, calcination with O2 results in the formation of a species, which was found to be a crucial intermediate in both the direct decomposition of NO and N2O and the selective oxidation of methane into methanol. An activated oxygen species, called α-oxygen, is formed in Fe-ZSM5 and reported to be the active site in the partial oxidation of methane and benzene into methanol and phenol, respectively. However, this reactive α-oxygen can only be formed with N2O, not with O2. O2 activated Co intermediates in Faujasite (FAU) zeolites can selectively oxidize α-pinene and epoxidize styrene. In Co-FAU, CoIII superoxo and peroxo complexes are suggested to be the active cores, whereas in Cu and Fe-ZSM-5 various monomeric and dimeric sites have been proposed, but no consensus has been obtained. Very recently, the active site in Cu-ZSM-5 was identified as a bent [Cu-O-Cu]2+ core (Proc. Natl. Acad. Sci. USA 2009, 106, 18908-18913). Overall, O2 activation depends on the interplay of structural factors such as type of zeolite, size of the channels and cages and chemical factors such as Si/Al ratio and the nature, charge and distribution of the charge balancing cations. The presence of several different TMI sites

  18. Selective Transformation of Various Nitrogen-Containing Exhaust Gases toward N2 over Zeolite Catalysts.

    PubMed

    Zhang, Runduo; Liu, Ning; Lei, Zhigang; Chen, Biaohua

    2016-03-23

    In this review we focus on the catalytic removal of a series of N-containing exhaust gases with various valences, including nitriles (HCN, CH3CN, and C2H3CN), ammonia (NH3), nitrous oxide (N2O), and nitric oxides (NO(x)), which can cause some serious environmental problems, such as acid rain, haze weather, global warming, and even death. The zeolite catalysts with high internal surface areas, uniform pore systems, considerable ion-exchange capabilities, and satisfactory thermal stabilities are herein addressed for the corresponding depollution processes. The sources and toxicities of these pollutants are introduced. The important physicochemical properties of zeolite catalysts, including shape selectivity, surface area, acidity, and redox ability, are described in detail. The catalytic combustion of nitriles and ammonia, the direct catalytic decomposition of N2O, and the selective catalytic reduction and direct catalytic decomposition of NO are systematically discussed, involving the catalytic behaviors as well as mechanism studies based on spectroscopic and kinetic approaches and molecular simulations. Finally, concluding remarks and perspectives are given. In the present work, emphasis is placed on the structure-performance relationship with an aim to design an ideal zeolite-based catalyst for the effective elimination of harmful N-containing compounds. PMID:26889565

  19. Mechanisms of CPB Modified Zeolite on Mercury Adsorption in Simulated Wastewater.

    PubMed

    Liu, Jiang; Huang, Hui; Huang, Rong; Zhang, Jinzhong; Hao, Shuoshuo; Shen, Yuanyuan; Chen, Hong

    2016-06-01

    A systematic study was carried out to analyze the effects of mercury(II) adsorption by surface modified zeolite (SMZ) and adsorption mechanism. Cetylpyridinium bromide (CPB) was used to prepare SMZ. The characterization methods by means of powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscope (SEM) showed that both the surface and internal zeolite were covered with CPB molecules, but the main binding sites were surface. Results showed that the organic carbon and cation exchange capacity of the SMZ were 7.76 times and 4.22 times higher than those of natural zeolite (NZ), respectively. Zeta potentials before and after modification were measured at -7.80 mV and -30.27 mV, respectively. Moreover, the saturation adsorptive capacity of SMZ was 16.35 times higher than NZ in mercury-containing wastewater. The possible mechanisms of mercury elimination were surface adsorption, hydrophobic interaction, ion exchange, electricity neutralization. The adsorption process was affected little by competitive ions. PMID:26811296

  20. Facile Synthesis, Characterization, and Catalytic Behavior of a Large-Pore Zeolite with the IWV Framework.

    PubMed

    Schmidt, Joel E; Chen, Cong-Yan; Brand, Stephen K; Zones, Stacey I; Davis, Mark E

    2016-03-14

    Large-pore microporous materials are of great interest to process bulky hydrocarbon and biomass-derived molecules. ITQ-27 (IWV) has a two-dimensional pore system bounded by 12-membered rings (MRs) that lead to internal cross-sections containing 14 MRs. Investigations into the catalytic behavior of aluminosilicate (zeolite) materials with this framework structure have been limited until now due to barriers in synthesis. The facile synthesis of aluminosilicate IWV in both hydroxide and fluoride media is reported herein using simple, diquaternary organic structure-directing agents (OSDAs) that are based on tetramethylimidazole. In hydroxide media, a zeolite product with Si/Al=14.8-23.2 is obtained, while in fluoride media an aluminosilicate product with Si/Al up to 82 is synthesized. The material produced in hydroxide media is tested for the hydroisomerization of n-hexane, and results from this test reaction suggest that the effective pore size of zeolites with the IWV framework structure is similar to but slightly larger than that of ZSM-12 (MTW), in fairly good agreement with crystallographic data. PMID:26833857

  1. Potential and actual uses of zeolites in crop protection.

    PubMed

    De Smedt, Caroline; Someus, Edward; Spanoghe, Pieter

    2015-10-01

    In this review, it is demonstrated that zeolites have a potential to be used as crop protection agents. Similarly to kaolin, zeolites can be applied as particle films against pests and diseases. Their honeycomb framework, together with their carbon dioxide sorption capacity and their heat stress reduction capacity, makes them suitable as a leaf coating product. Furthermore, their water sorption capacity and their smaller particle sizes make them effective against fungal diseases and insect pests. Finally, these properties also ensure that zeolites can act as carriers of different active substances, which makes it possible to use zeolites for slow-release applications. Based on the literature, a general overview is provided of the different basic properties of zeolites as promising products in crop protection. PMID:25727795

  2. Rheological Influence of Synthetic Zeolite on Cement Pastes

    NASA Astrophysics Data System (ADS)

    Baldino, N.; Gabriele, D.; Frontera, P.; Crea, F.; de Cindio, B.

    2008-07-01

    Self Compacting Concrete (SCC) is characterized by specific and particular mechanical properties, often due to the addition of components, able to modify the paste rheology. Concrete properties are strongly affected by characteristics of the fresh cement paste that is the continuous phase dispersing larger aggregates. Therefore, aiming to characterize mechanical properties of final concrete is relevant to know rheological properties of the base cement paste. In this work cement pastes for SCC were prepared by using, as additive, synthetic zeolite 5A in different amounts and they were analyzed by small amplitude oscillations. Experimental results have shown a relationship between dynamic moduli and zeolite content, identifying a proper level of zeolite addition. Moreover samples containing traditional fine additives, such as silica fume and limestone, were prepared and experimental data were compared to those obtained by using zeolite. It was found that zeolite seems to give better properties to cement paste than other additives can do.

  3. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    PubMed Central

    Vernimmen, Jarian; Cool, Pegie

    2011-01-01

    Summary In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i) the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii) the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials. PMID:22259762

  4. Fly ash based zeolitic pigments for application in anticorrosive paints

    NASA Astrophysics Data System (ADS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  5. Influence of NaA Zeolite Crystal Expansion/Contraction on Zeolite Membrane Separations

    SciTech Connect

    Sorenson, Stephanie G; Payzant, E Andrew; Gibbons, Will T; Soydas, Belma; Kita, Hidetoshi; Noble, Richard D; Falconer, John L.

    2011-01-01

    In-situ powder XRD measurements showed that the NaA zeolite unit cell contracts and expands upon adsorption, and these changes in zeolite crystal size correlate with permeation changes through NaA zeolite membranes. These membranes had high pervaporation selectivities, even though gas permeation was mainly through defects, as indicated by Knudsen selectivities for gases. At 300 K and a thermodynamic activity of 0.03, water contracted the NaA crystals by 0.22 vol%, and this contraction increased the helium flux through two NaA membranes by approximately 80%. Crystal contraction also increased the fluxes of i-butane during vapor permeation and i-propanol (IPA) during pervaporation (~ 0.03 wt% water). At activities above 0.07, water expanded NaA crystals and correspondingly decreased the membrane fluxes of helium, i-butane, and IPA. Similarly, methanol contracted NaA crystals by 0.05 vol% at an activity of 0.02, and this contraction slightly increased the helium and i-butane fluxes through a NaA membrane. Above an activity of 0.06, methanol expanded the crystals, and the fluxes of helium and i-butane through a NaA membrane decreased. The adsorbate-induced changes explain some pervaporation behavior reported by others, and they indicate that crystal expansion and contraction may increase or decrease zeolite NaA membrane selectivity by changing the defect sizes.

  6. Zeolite stability constraints on radioactive waste isolation in zeolite-bearing volcanic rocks

    SciTech Connect

    Smyth, J.R.

    1982-12-31

    Silicic tuffs of the southern Great Basin and basalts of the Columbia River Plateau are under investigation as potential host rocks for high- and intermediate-level radioactive wastes. Non-welded and partially welded tuffs may contain major amounts (> 50%) of the zeolite minerals: clinoptilolite, mordenite, and analcime. Densely welded tuffs and some basalt flows may contain clinoptilolite as fracture filling which limits permeability of these rocks. The cation exchange properties of these zeolite minerals allow them to pose a natural barrier to the migration of cationic species of various radionuclides in aqueous solutions. However, these minerals are unstable at elevated temperatures and at low water vapor pressures, and they may break down either by reversible dehydration or by irreversible mineralogical reactions. All of the breakdown reactions occurring with increased temperature involve a net volume reduction and evolution of fluids. Thus, they may provide both a pathway (shrinkage fractures) and a driving force (fluid pressure) for release of radionuclides to the biosphere. These reactions may be avoided by keeping zeolite-bearing horizons saturated with water and below about 85{sup 0}C. This may restrict allowable gross thermal loadings in radioactive waste repositories in zeolite-bearing volcanic rocks. 3 figures.

  7. Oxidative regeneration of toluene-saturated natural zeolite by gaseous ozone: the influence of zeolite chemical surface characteristics.

    PubMed

    Alejandro, Serguei; Valdés, Héctor; Manéro, Marie-Hélène; Zaror, Claudio A

    2014-06-15

    In this study, the effect of zeolite chemical surface characteristics on the oxidative regeneration of toluene saturated-zeolite samples is investigated. A Chilean natural zeolite (53% clinoptilolite, 40% mordenite and 7% quartz) was chemically modified by acid treatment with hydrochloric acid and by ion-exchange with ammonium sulphate. Thermal pre-treatments at 623 and 823K were applied and six zeolite samples with different chemical surface characteristics were generated. Chemical modification of natural zeolite followed by thermal out-gassing allows distinguishing the role of acidic surface sites on the regeneration of exhausted zeolites. An increase in Brønsted acid sites on zeolite surface is observed as a result of ammonium-exchange treatment followed by thermal treatment at 623K, thus increasing the adsorption capacity toward toluene. High ozone consumption could be associated to a high content of Lewis acid sites, since these could decompose ozone into atomic active oxygen species. Then, surface oxidation reactions could take part among adsorbed toluene at Brønsted acid sites and surface atomic oxygen species, reducing the amount of adsorbed toluene after the regenerative oxidation with ozone. Experimental results show that the presence of adsorbed oxidation by-products has a negative impact on the recovery of zeolite adsorption capacity. PMID:24794812

  8. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  9. Ultrasonic search wheel probe

    DOEpatents

    Mikesell, Charles R.

    1978-01-01

    A device is provided for reducing internal reflections from the tire of an ultrasonic search wheel probe or from within the material being examined. The device includes a liner with an anechoic chamber within which is an ultrasonic transducer. The liner is positioned within the wheel and includes an aperture through which the ultrasonic sound from the transducer is directed.

  10. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect

    Tsao, G.T.

    1992-01-01

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  11. [Zeolite catalysis in conversion of cellulosics

    SciTech Connect

    Tsao, G.T.

    1992-12-31

    To transform biomass into fermentable substrate for yeast, we are using zeolites instead of enzymes to catalyze the two bottleneck reactions in biomass conversion, xylose isomerization and ceuobiose hydrolysis. The experimental results on these reactions carried out over various zeolites and other catalysts are presented herein. The advantages and disadvantages of using these catalysts over enzymes are also discussed. Heterogeneous solid catalysts other than zeolites has been employed for cellobiose-to-glucose hydrolysis. The size and shape selectivity that makes zeoutes unique for some reactions can add diffusional hindrance. We have spent some time screening various known solid acidic catalysts. We report that a class of cationic ion exchange resins in the acidified form (e.g. Amberlite) has worked well as an acidic catalyst in hydrolyzing cellobiose to glucose. Our experimental results, together with those obtained from a homogeneous acid catalyst (e.g. sulfuric acid) for comparison are provided. Having succeeded in finding an alternative solid acid catalyst for hydrolysis, we explored other solid resin or other homogeneous but non-enzyme catalyst to carry out the xylose-to-xylulose isomerization. A fairly extensive search has been made. We explored the use of sodium aluminates in the homogeneous phase isomerization of glucose to fructose and obtained a very high conversion of glucose to fructose with the final mixture containing 85% of fructose instead of the common 45%. Fructose apparently complexes with aluminates, and its equilibrium concentration is shifted to considerably higher values than permitted by simple glucose/fructose equilibrium. We have recently found a number of catalysts capable of promoting isomerization between aldoses and ketoses. One solid resin, known as polyvinyl pyridine (PVP), is able to convert xylose to xylulose at a pH below 7. Our usage of alternative isomerization catalysts, including PVP, are described.

  12. Possible Responsibility of Silicone Materials for Degradation of the CO2 Removal System in the International Space Station

    NASA Technical Reports Server (NTRS)

    Baeza, Mario; Sharma, Hemant; Borrok, David; Ren, Mingua; Pannell, Keith

    2011-01-01

    From data concerning the degradation of the CO2 removal system in the International Space Station (ISS) two important features were apparent: (1) The atmosphere within the International Space Station (ISS) contained many organic compounds including alcohols, halocarbons, aldehydes, esters, and ketones, inter alia. Various cyclosiloxanes Dn, hexamethylcyclotrisiloxane (D3) and its higher homologs (D4) and (D5) are also present presumably due to offgassing. (2) Screens within the zeolite-containing canisters, used for the removal of CO2, exhibited partial clogging due to zeolitic fragments (dust) along with "sticky" residues, that in toto significantly reduced the efficiency of the CO2 removal process. Samples of the ISS fresh zeolite, used zeolite, filter clogging zeolite particles and residual polymeric materials were examined using, inter alia, NMR, EM and HRSEM. These data were compared to equivalent samples obtained prior and subsequent to Dn polymerization experiments performed in our laboratories using the clean ISS zeolite samples as catalyst. Polysiloxane materials produced were essentially equivalent in the two cases and the EM images demonstrate a remarkable similarity between the ISS filter zeolite samples and the post-polymerization zeolite material from our experiments. In this regard even the changes in the Al/Si ratio from the virgin zeolite material to the filter samples and the post-polymerization laboratory samples samples is noteworthy. This research was supported by a contract from the Boeing Company

  13. Structural analysis of hierarchically organized zeolites

    NASA Astrophysics Data System (ADS)

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-10-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact.

  14. Structural analysis of hierarchically organized zeolites.

    PubMed

    Mitchell, Sharon; Pinar, Ana B; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  15. Structural analysis of hierarchically organized zeolites

    PubMed Central

    Mitchell, Sharon; Pinar, Ana B.; Kenvin, Jeffrey; Crivelli, Paolo; Kärger, Jörg; Pérez-Ramírez, Javier

    2015-01-01

    Advances in materials synthesis bring about many opportunities for technological applications, but are often accompanied by unprecedented complexity. This is clearly illustrated by the case of hierarchically organized zeolite catalysts, a class of crystalline microporous solids that has been revolutionized by the engineering of multilevel pore architectures, which combine unique chemical functionality with efficient molecular transport. Three key attributes, the crystal, the pore and the active site structure, can be expected to dominate the design process. This review examines the adequacy of the palette of techniques applied to characterize these distinguishing features and their catalytic impact. PMID:26482337

  16. Design and characterization of chitosan/zeolite composite films--Effect of zeolite type and zeolite dose on the film properties.

    PubMed

    Barbosa, Gustavo P; Debone, Henrique S; Severino, Patrícia; Souto, Eliana B; da Silva, Classius F

    2016-03-01

    Chitosan films can be used as wound dressings for the treatment of chronic wounds and severe burns. The antimicrobial properties of these films may be enhanced by the addition of silver. Despite the antimicrobial activity of silver, several studies have reported the cytotoxicity as a factor limiting its biomedical applications. This problem may, however, be circumvented by the provision of sustained release of silver. Silver zeolites can be used as drug delivery platforms to extend the release of silver. The objective of this study was to evaluate the addition of clinoptilolite and A-type zeolites in chitosan films. Sodium zeolites were initially subjected to ion-exchange in a batch reactor. Films were prepared by casting technique using a 2% w/w chitosan solution and two zeolite doses (0.1 or 0.2% w/w). Films were characterized by thermal analysis, color analysis, scanning electron microscopy, X-ray diffraction, and water vapor permeation. The results showed that films present potential for application as dressing. The water vapor permeability is one of the main properties in wound dressings, the best results were obtained for A-type zeolite/chitosan films, which presented a brief reduction of this property in relation to zeolite-free chitosan film. On the other hand, the films containing clinoptilolite showed lower water vapor permeation, which may be also explained by the best distribution of the particles into the polymer which also promoted greater thermal resistance. PMID:26706528

  17. Cation Movements during Dehydration and NO2 Desorption in a Ba-Y,FAU zeolite: an in situ Time-resolved X-ray Diffraction Study

    SciTech Connect

    Wang, Xianqin; Hanson, Jonathan C.; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-02-28

    Synchrotron-based in situ time-resolved X-ray diffraction and Rietveld analysis were used to probe the interactions between BaY, FAU zeolite frameworks and H2O or NO2 molecules. These results provided information about the migration of the Ba2+ cations in the zeolite framework during dehydration and during NO2 adsorption/desorption processes in a water free zeolite. In the hydrated structure water molecules form four double rings of hexagonal ice-like clusters [(H2O)6] in the 12-ring openings of the super-cage. These water rings interacted with the cations and the zeolite framework through four cation/water clusters centered over the four 6-membered rings of the super-cage (site II). Interpenetrating tetrahedral water clusters [(H2O)4] and tetrahedral Ba+2 cation clusters were observed in the sodalite cage. Consistent with the reported FT-IR results, three different ionic NOx species (NO+, NO+-NO2, and NO3-) were observed following NO2 adsorption by the dehydrated Ba-Y,FAU zeolite. The structure of the water and the NOx species were correlated with the interactions between the adsorbates, the cations, and the framework. The population of Ba2+ ions at different cationic positions strongly depended on the amount of bound water or NOx species. Both dehydration and NO2 adsorption/desorption resulted in facile migration of Ba2+ ions among the different cationic positions. Data obtained in this work have provided direct evidence for the Ba2+ cation migration to accommodate the binding of gas molecules. This important feature may play a pivotal role in the strong binding of NO2 to Ba-Y,FAU zeolite, a prerequisite for high catalytic activity in lean NOx reduction catalysis.

  18. Electron transfer reactions within zeolites: Radical cation from benzonorbornadiene

    SciTech Connect

    Pitchumani, K.; Ramamurthy, V.; Corbin, D.R.

    1996-08-28

    Zeolites are being used as solid acid catalysts in a number of commercial processes. Occasionally zeolites are also reported to perform as electron transfer agents. Recently, we observed that radical cations of certain olefins and thiophene oligomers can be generated spontaneously within ZSM-5 zeolites. We noticed that these radical cations generated from diphenyl polyenes and thiophene oligomers were remarkably stable (at room temperature) within ZSM-5 and can be characterized spectroscopically at leisure. We have initiated a program on electron transfer processes within large pore zeolites. The basis of this approach is that once a cation radical is generated within a large pore zeolite, it will have sufficient room to undergo a molecular transformation. Our aim is to identify a condition under which electron transfer can be routinely and reliably carried out within large pore zeolites such as faujasites. To our great surprise, when benzonorbornadiene A and a number of olefins were included in divalent cation exchanged faujasites. they were transformed into products very quickly (<15 min). This observation allowed us to explore the use of zeolites as oxidants. Results of our studies on benzonorbornadiene are presented in this communication. 16 refs., 1 fig.

  19. Copper cation removal in an electrokinetic cell containing zeolite.

    PubMed

    Elsayed-Ali, Omar H; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E

    2011-01-30

    Zeolites are used in environmental remediation of soil or water to immobilize or remove toxic materials by cation exchange. An experiment was conducted to test the use a low electric field to direct the toxic cations towards the zeolite. An electrokinetic cell was constructed using carbon electrodes. Synthetic Linde Type A (LTA) zeolite was placed in the cell. Copper(II) chloride dissolved in water was used as a contaminant. The Cu(2+) concentration was measured for ten hours with and without an applied electric field. The removal of the Cu(2+) ions was accelerated by the applied field in the first two hours. For longer time, the electric field did not improve the removal rate of the Cu(2+) ions. The presence of zeolite and applied electric field complicates the chemistry near the cathode and causes precipitation of Cu(2+) ions as copper oxide on the surface of the zeolite. With increased electric field the zeolite farther away from the cathode had little cation exchange due to the higher drift velocity of the Cu(2+) ions. The results also show that, in the LTA Zeolite A pellets, the cation exchange of Cu is limited to a shell of several tens of micrometers. PMID:21109348

  20. The role of zeolites in wastewater treatment of printing inks.

    PubMed

    Metes, A; Kovacević, D; Vujević, D; Papić, S

    2004-01-01

    The adsorption of residual organic pollutants from flocculated printing ink wastewater onto several synthetic zeolites was investigated as a finishing method for additional reduction of TOC. The nonselective removal of total organic content was studied. The amount of adsorbed organics was largest for ZSM-5 and NH4-Beta while the other zeolites studied showed lower efficiency, suggesting that adsorption is independent of pore structure. The adsorption rates of organic pollutants were fast. Although the TOC removal increases with increasing amount of zeolite, because of the necessity of additional filtration to lower turbidity to required levels, 5.0 g/L of zeolite was found to be optimum. The 88% reduction of TOC obtained with a single flocculation treatment was improved with the combination of flocculation and adsorption with ZSM-5 which resulted in the overall TOC efficiency of 95%. The addition of zeolites in decantated supernatant water, obtained after flocculation, was also studied in order to assess the effect of floc on zeolite capacity. A decrease in adsorption capacity occurred only if a coagulant concentration less than optimal was applied. Removal efficiency then decreased by around 10%. It was concluded that flocculation followed by adsorption with zeolites is an effective treatment method for this kind of wastewater. PMID:15276754

  1. Zeolite Crystal Growth (ZCG) Flight on USML-2

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, Nurcan; Warzywoda, Juliusz; Guray, Ipek; Marceau, Michelle; Sacco, Teran L.; Whalen, Leah M.

    1997-01-01

    The extensive use of zeolites and their impact on the world's economy has resulted in many efforts to characterize their structure, and improve the knowledge base for nucleation and growth of these crystals. The zeolite crystal growth (ZCG) experiment on USML-2 aimed to enhance the understanding of nucleation and growth of zeolite crystals, while attempting to provide a means of controlling the defect concentration in microgravity. Zeolites A, X, Beta, and Silicalite were grown during the 16 day - USML-2 mission. The solutions where the nucleation event was controlled yielded larger and more uniform crystals of better morphology and purity than their terrestrial/control counterparts. The external surfaces of zeolite A, X, and Silicalite crystals grown in microgravity were smoother (lower surface roughness) than their terrestrial controls. Catalytic studies with zeolite Beta indicate that crystals grown in space exhibit a lower number of Lewis acid sites located in micropores. This suggests fewer structural defects for crystals grown in microgravity. Transmission electron micrographs (TEM) of zeolite Beta crystals also show that crystals grown in microgravity were free of line defects while terrestrial/controls had substantial defects.

  2. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  3. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  4. Carbon Dioxide Adsorption on a 5A Zeolite Designed for CO2 Removal in Spacecraft Cabins

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Finn, John E.

    1998-01-01

    Carbon dioxide adsorption data were obtained for a 5A zeolite manufactured by AlliedSignal Inc. (Des Plaines, Illinois). The material is planned for use in the Carbon Dioxide Removal Assembly (CDRA) for U.S. elements of the International Space Station. The family of adsorption isotherms covers a temperature range of O to 250 C, and a pressure range of 0.001 to 800 torr. Coefficients of the Toth equation are fit to the data. Isosteric heats of adsorption are derived from the equilibrium loading data.

  5. Zeolitic BIF Crystal Directly Producing Noble-Metal Nanoparticles in Its Pores for Catalysis

    PubMed Central

    Zhang, Hai-Xia; Liu, Meng; Bu, Xianhui; Zhang, Jian

    2014-01-01

    As an integral part of a porous framework and uniformly distributed throughout the internal pore space, the high density of the exposed B–H bond in zeolite-like porous BIF-20 (BIF = Boron Imidazolate Framework) is shown here to effectively produce nanoparticles within its confined pore space. Small noble-metal nanoparticles (Ag or Au) are directly synthesized into its pores without the need for any external reducing agent or photochemical reactions, and the resulting Ag@BIF-20 (or Au@BIF-20) samples show high catalytic activities for the reduction of 4-nitrophenol. PMID:24473155

  6. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  7. Zeolite crystal growth in space - What has been learned

    NASA Technical Reports Server (NTRS)

    Sacco, A., Jr.; Thompson, R. W.; Dixon, A. G.

    1993-01-01

    Three zeolite crystal growth experiments developed at WPI have been performed in space in last twelve months. One experiment, GAS-1, illustrated that to grow large, crystallographically uniform crystals in space, the precursor solutions should be mixed in microgravity. Another experiment evaluated the optimum mixing protocol for solutions that chemically interact ('gel') on contact. These results were utilized in setting the protocol for mixing nineteen zeolite solutions that were then processed and yielded zeolites A, X and mordenite. All solutions in which the nucleation event was influenced produced larger, more 'uniform' crystals than did identical solutions processed on earth.

  8. Accelerated crystallization of zeolites via hydroxyl free radicals.

    PubMed

    Feng, Guodong; Cheng, Peng; Yan, Wenfu; Boronat, Mercedes; Li, Xu; Su, Ji-Hu; Wang, Jianyu; Li, Yi; Corma, Avelino; Xu, Ruren; Yu, Jihong

    2016-03-11

    In the hydrothermal crystallization of zeolites from basic media, hydroxide ions (OH(-)) catalyze the depolymerization of the aluminosilicate gel by breaking the Si,Al-O-Si,Al bonds and catalyze the polymerization of the aluminosilicate anions around the hydrated cation species by remaking the Si,Al-O-Si,Al bonds. We report that hydroxyl free radicals (•OH) are involved in the zeolite crystallization under hydrothermal conditions. The crystallization processes of zeolites-such as Na-A, Na-X, NaZ-21, and silicalite-1-can be accelerated with hydroxyl free radicals generated by ultraviolet irradiation or Fenton's reagent. PMID:26965626

  9. Method of preparing sodalite from chloride salt occluded zeolite A

    SciTech Connect

    Lewis, M.A.; Pereira, C.

    1995-12-31

    A method is described for immobilizing waste chloride salts containing radionuclides and hazardous nuclear material for permanent disposal starting with a substantially dry zeolite and sufficient glass to form leach resistance sodalite with occluded radionuclides and hazardous nuclear material. The zeolite and glass are heated to a temperature up to about 1,000 K to convert the zeolite to sodalite and thereafter maintained at a pressure and temperature sufficient to form a sodalite product near theoretical density. Pressure is used on the formed sodalite to produce the required density.

  10. Mimicking high-silica zeolites: highly stable germanium- and tin-rich zeolite-type chalcogenides.

    PubMed

    Lin, Qipu; Bu, Xianhui; Mao, Chengyu; Zhao, Xiang; Sasan, Koroush; Feng, Pingyun

    2015-05-20

    High-silica zeolites, as exemplified by ZSM-5, with excellent chemical and thermal stability, have generated a revolution in industrial catalysis. In contrast, prior to this work, high-silica-zeolite-like chalcogenides based on germanium/tin remained unknown, even after decades of research. Here six crystalline high-germanium or high-tin zeolite-type sulfides and selenides with four different topologies are reported. Their unprecedented framework compositions give these materials much improved thermal and chemical stability with high surface area (Langmuir surface area of 782 m(2)/g(-1)) comparable to or better than zeolites. Among them, highly stable CPM-120-ZnGeS allows for ion exchange with diverse metal or complex cations, resulting in fine-tuning in porosity, fast ion conductivity, and photoelectric response. Being among the most porous crystalline chalcogenides, CPM-120-ZnGeS (exchanged with Cs(+) ions) also shows reversible adsorption with high capacity and affinity for CO2 (98 and 73 cm(3) g(-1) at 273 and 298 K, respectively, isosteric heat of adsorption = 40.05 kJ mol(-1)). Moreover, CPM-120-ZnGeS could also function as a robust photocatalyst for water reduction to generate H2. The overall activity of H2 production from water, in the presence of Na2S-Na2SO3 as a hole scavenger, was 200 μmol h(-1)/(0.10 g). Such catalytic activity remained undiminished under illumination by UV light for as long as measured (200 h), demonstrating excellent resistance to photocorrosion even under intense UV radiation. PMID:25950820

  11. Internal shim

    DOEpatents

    Barth, Clyde H.; Blizinski, Theodore W.

    2003-05-13

    An internal shim used to accurately measure spaces in conjunction with a standard small probe has a shim top and a chassis. The internal shim is adjustably fixed within the space to be measured using grippers that emerge from the chassis and which are controlled by an arm pivotably attached to the shim top. A standard small probe passes through the shim along guides on the chassis and measures the distance between the exterior of the chassis and the boundary. By summing the measurements on each side of the chassis and the width of the chassis, the dimension of the space can be determined to within 0.001 inches.

  12. Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size

    SciTech Connect

    Corma, A.; Martinez, A.; Martinez, C. )

    1994-03-01

    The alkylation reaction of isobutane with trans-2-butene has been carried out on a series of steam-dealuminated Y zeolites with unit cell sizes ranging from 2.450 to 2.426 nm. A fixed-bed reactor connected to an automatized multiloop sampling system allowed differential product analysis from very short (1 min or less) to longer times on stream. A maximum in the initial 2-butene conversion was found on samples with unit cell sizes between 2.435 and 2.450 nm. However, the TMP/DMH ratio, i.e., the alkylation-to-oligomerization ratio, continuously increased with zeolite unit cell size. The concentration of reactants in the pores, the strength distribution of Bronsted acid sites, and the extent of hydrogen transfer reactions, which in turn depend on the framework Si/Al ratio of a given zeolite, were seen to affect activity and product distribution of the catalysts. Finally, the influence of these factors on the aging characteristics of the samples was also discussed. 17 refs., 7 figs., 4 tabs.

  13. CO2 capture using zeolite 13X prepared from bentonite

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2014-02-01

    Zeolite 13X was prepared using bentonite as the raw material by alkaline fusion followed by a hydrothermal treatment without adding any extra silica or alumina sources. The prepared zeolite 13X was characterized by X-ray powder diffraction, N2-adsorption-desorption measurements, and scanning electron microscopy. The CO2 capture performance of the prepared zeolite 13X was examined under both static and flow conditions. The prepared zeolite 13X showed a high BET surface area of 688 m2/g with a high micropore volume (0.30 cm3/g), and exhibited high CO2 capture capacity (211 mg/g) and selectivity to N2 (CO2/N2 = 37) at 25 °C and 1 bar. In addition, the material showed fast adsorption kinetics, and stable CO2 adsorption-desorption recycling performance at both 25 and 200 °C.

  14. 12. INTERIOR OF BUILDING 2, ORIGINAL ZEOLITE PLANT, AT WEYMOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. INTERIOR OF BUILDING 2, ORIGINAL ZEOLITE PLANT, AT WEYMOUTH LOOKING WEST TO FOUNTAIN. STAIRWAY RUNS DOWN TO FILTRATION BAYS. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA

  15. Zeolite - A Natural Filter Material for Lead Polluted Water

    NASA Astrophysics Data System (ADS)

    Neamţu, Corina Ioana; Pică, Elena Maria; Rusu, Tiberiu

    2014-11-01

    Reducing the concentration of lead ions in a wastewater using zeolite has proven to be a successful water treatement method, all over the world. Putting the two media (solid and liquid) in contact in static conditions had good results regarding the concentration of the filtered solution, the pH and the electric conductivity, depending on the values of certain parameters such as the amount of the zeolite, volume of the solution or interaction time. The present study highlights the zeolite ability to retain the lead ions from a solution, in dynamic interaction conditions between the two environments, in a short interaction time. The results confirmed the effectiveness of ion exchange water treatment method in the conditions set, emphasizing once again the properties of the filter material - the zeolite

  16. Hydrogen Adsorption in Zeolite Studied with Sievert and Thermogravimetric Methods

    NASA Astrophysics Data System (ADS)

    Lesnicenoks, P.; Sivars, A.; Grinberga, L.; Kleperis, J.

    2012-08-01

    Natural clinoptilolite (mixture from clinoptilolite, quartz and muscovite) is activated with palladium and tested for hydrogen adsorption capability at temperatures RT - 200°C. Thermogravimetric and volumetric methods showed that zeolite activated with palladium (1.25%wt) shows markedly high hydrogen adsorption capacity - up to 3 wt%. Lower amount of adsorbed hydrogen (~1.5 wt%) was found for raw zeolite and activated with higher amount of palladium sample. Hypothesis is proposed that the heating of zeolite in argon atmosphere forms and activates the pore structure in zeolite material, where hydrogen encapsulation (trapping) is believed to occur when cooling down to room temperature. An effect of catalyst (Pd) on hydrogen sorption capability is explained by spillover phenomena were less-porous fractions of natural clinoptilolite sample (quartz and muscovite) are involved.

  17. Hydration and dehydration of zeolitic tuff from Yucca Mountain, Nevada

    SciTech Connect

    Kranz, R.L.; Bish, D.L.; Blacic, J.D. )

    1989-10-01

    Naturally occurring zeolites expand and contract when hydrated or dehydrated. In tuffaceous rock composed largely of such zeolites, the entire rock may swell or contract significantly as the rock becomes saturated or dries out. If such rock is constrained, significant stresses may develop as a result of hydration or dehydration. We present experimental results that substantiates this. In a zeolitized, non-welded tuff from Yucca Mountain, NV, rock permeability governs the swelling rate since the major constituent, clinoptilolite, hydrates as fast as it can be exposed to water. At Yucca Mountain, where a nuclear waste repository is proposed, strata of welded, devitrified tuff overlie non-welded, zeolitic tuff. Should the hydration state of the units change significantly over the repository lifetime, additional stresses on the same order of magnitude as now exist may develop. {copyright} American Geophysical Union 1989

  18. The stability of copper oxo species in zeolite frameworks

    DOE PAGESBeta

    Vilella, Laia; Studt, Felix

    2016-03-07

    Cu-exchanged zeolites are promising heterogeneous catalysts, as they provide a confined environment to carry out highly selective reactions. Furthermore, the knowledge of how the zeolite framework and the location of Al atoms therein affect the adsorption of copper species is still not well understood. In this work, DFT was used to investigate the adsorption of potential Cu oxo active species suggested in the literature [Cu(η2-O2), Cu(µ-O)Cu, and Cu2O2] into zeolites with different pore sizes and shapes (AFI, CHA, TON, MOR, and MFI). The calculations revealed that both monomeric and dimeric Cu oxo species bind strongly to the O atoms ofmore » the lattice. For the monometallic species similar adsorption energies are obtained with the different zeolite frameworks, whereas an optimum Al–Al distance is required for the dimeric species.« less

  19. Perturbed angular correlation study of the ion exchange of indium into silicalite zeolites

    NASA Astrophysics Data System (ADS)

    Ramallo-López, J. M.; Requejo, F. G.; Rentería, M.; Bibiloni, A. G.; Miró, E. E.

    1999-09-01

    Two indium-containing silicalite zeolites (In/H ZSM5) catalysts prepared by wet impregnation and ionic exchange were characterized by the Perturbed Angular Correlation (PAC) technique using 111In as probe to determine the nature of the indium species. Some of these species take part in the catalytic reaction of the selective reduction (SCR) of NOx with methane. PAC experiments were performed at 500ºC in air before and after reduction reoxidation treatments on the catalysts in order to determine the origin of the different hyperfine interactions and then the degree of ionic exchange. Complementary catalytic activity characterizations were also performed. PAC experiments performed on the catalyst obtained by wet impregnation showed that all In-atoms form In2O3 crystallites while almost 70% of In-atoms form In2O3 in the catalyst obtained by ionic exchange. The PAC experiments of both catalysts performed after the reduction reoxidation treatment revealed the presence of two hyperfine interactions, different from those corresponding to indium in In2O3. These hyperfine interactions should be associated to disperse In species responsible of the catalytic activity located in the ionic exchange-sites of the zeolites.

  20. Entrapping Molecules in Zeolites Nanocavities: A Thermodynamic and Ab-Initio Study

    NASA Astrophysics Data System (ADS)

    Bolis, V.; Barbaglia, A.; Broyer, M.; Busco, C.; Civalleri, B.; Ugliengo, P.

    2004-02-01

    Adsorption enthalpies of Ar, N2, CO, H2O, CH3CN and NH3 on H-BEA and H-MFI zeolites and on Silicalite, have been measured calorimetrically at 303K in order to assess the energetic features of dispersive forces interactions (confinement effects), H-bonding interactions with surface silanols and specific interactions with Lewis and Brønsted acidic sites. The adsorption of the molecular probes with model clusters mimicking surface silanols, Lewis and Bronsted sites has been simulated at ab-initio level. The combined use of the two different approaches allowed to discriminate among the different processes contributing to the measured (-ΔadsH). Whereas CO and N2 single out contributions from Lewis and Br{\\o}nsted acidic sites, Ar is only sensitive to confinement effects. For H2O, CH3CN and NH3 the adsorption on Brønsted sites is competitive with the adsorption on Lewis sites. The energy of interaction of H2O with all considered zeolites is surprisingly higher than expected on the basis of -ΔadsH vs PA correlation.

  1. Specificity of sites within eight-membered ring zeolite channels for carbonylation of methyls to acetyls.

    PubMed

    Bhan, Aditya; Allian, Ayman D; Sunley, Glenn J; Law, David J; Iglesia, Enrique

    2007-04-25

    The acid-catalyzed formation of carbon-carbon bonds from C1 precursors via CO insertion into chemisorbed methyl groups occurs selectively within eight-membered ring (8-MR) zeolite channels. This elementary step controls catalytic carbonylation rates of dimethyl ether (DME) to methyl acetate. The number of O-H groups within 8-MR channels was measured by rigorous deconvolution of the infrared bands for O-H groups in cation-exchanged and acid forms of mordenite (M,H-MOR) and ferrierite (H-FER) after adsorption of basic probe molecules of varying size. DME carbonylation rates are proportional to the number of O-H groups within 8-MR channels. Na+ cations selectively replaced protons within 8-MR channels and led to a disproportionate decrease in carbonylation turnover rates (per total H+). These conclusions are consistent with the low or undetectable rates of carbonylation on zeolites without 8-MR channels (H-BEA, H-FAU, H-MFI). Such specificity of methyl reactivity upon confinement within small channels appears to be unprecedented in catalysis by microporous solids, which typically select reactions by size exclusion of bulkier transition states. PMID:17397162

  2. Effects of Hydrothermal Aging on NH3-SCR reaction over Cu/zeolites

    SciTech Connect

    Kwak, Ja Hun; Tran, Diana N.; Burton, Sarah D.; Szanyi, Janos; Lee, Jong H.; Peden, Charles HF

    2012-02-06

    The effects of hydrothermal treatment on model Cu/zeolite catalysts were investigated to better understand the nature of Cu species for the selective catalytic reduction of NO{sub x} by NH{sub 3}. After hydrothermal aging at 800 C for 16 h, the NO{sub x} reduction performance of Cu-ZSM-5 and Cu-beta were significantly reduced at low temperatures, while that of Cu-SSZ-13 was not affected. When the zeolite framework aluminum species were probed using solid state {sup 27}Al-NMR, significant reduction in the intensities of the tetrahedral aluminum peak was observed for Cu-ZSM-5 and Cu-beta, although no increase in the intensities of the octahedral aluminum peak was observed. When the redox behavior of Cu species was examined using H{sub 2}-TPR, it was found that Cu{sup 2+} could be reduced to Cu{sup +} and to Cu{sup 0} fir Cu-ZSM-5 and Cu-beta catalysts, while Cu{sup 2+} could be reduced to Cu{sup +} only for Cu-SSZ-13. After hydrothermal aging, CuO and Cu-aluminate species were found to form in Cu-ZSM-5 and Cu-beta, while little changes were observed for Cu-SSZ-13.

  3. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  4. Shape-selective modulation of ion-pair and triple-ion equilibria in zeolites. Charge transfer-salts of methylviologen iodides

    SciTech Connect

    Yoon, K.B.; Kochi, J.K. )

    1991-02-07

    Zeolites doped with various pyridinium acceptors serve as sensitive color probes for the intracavity assembly of specific ion pairs and ion triplets. For example, the ion exchange of the methylviologen dication (MV{sup 2+}) into sodium zeolite-Y can be carefully regulated to produce MV(1.0)Y and MV(2.0)Y containing one and two MV{sup 2+}, respectively, in each (average) supercage. The highly efficient intercalation of iodide from acetonitrile solution then affords a series of brilliantly colored zeolites, the diffuse reflectance spectra of which reveal the presence of characteristic charge-transfer (CT) bands of the methylviologen iodides extant as the ion pair MV{sup 2+}(I{sup {minus}}) and the ion triplet MV{sup 2+}(I{sup {minus}}){sub 2}. Shape selectivity in such a stepwise assemblage of ions within the supercage is controlled by the size of the iodide salt M{sup +}I{sup {minus}} (where M{sup +} = Na{sup +}, K{sup +}, (CH{sub 3}){sub 4}N{sup +}, (CH{sub 3}CH{sub 2}){sub 4}N{sup +}, (CH{sub 3}CH{sub 2}CH{sub 2}CH{sub 2}){sub 4}N{sup +}, etc.) which effectively limits the penetration of the zeolite aperture.

  5. Synthesis and characterization of nanocrystalline and mesoporous zeolites

    NASA Astrophysics Data System (ADS)

    Petushkov, Anton

    2011-12-01

    Mesoporous aggregates of nanocrystalline zeolites with MFI and BEA frameworks have been synthesized using a one-pot and single structure directing agent. The effect of different reaction conditions, such as temperature, time, pH and water content, on the particle size, surface area and mesopore volume has been studied. Nanocrystalline and mesoporous ZSM-5, beta and Y zeolites were modified with different transition metals and the resulting single- and double metal containing catalyst materials were characterized. Nanocrystalline Silicalite-1 zeolite samples with varying particle size were functionalized with different organosilane groups and the cytotoxic activity of the zeolite nanocrystals was studied as a function of particle size, concentration, organic functional group type, as well as the type of cell line. Framework stability of nanocrystalline NaY zeolite was tested under different pH conditions. The synthesized zeolites used in this work were characterized using a variety of physico-chemical methods, including powder X-ray diffraction, Solid State NMR, nitrogen sorption, electron microscopy, Inductively Coupled Plasma -- Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy.

  6. Nanosized zeolites as a perspective material for conductometric biosensors creation

    NASA Astrophysics Data System (ADS)

    Kucherenko, Ivan; Soldatkin, Oleksandr; Kasap, Berna Ozansoy; Kirdeciler, Salih Kaan; Kurc, Burcu Akata; Jaffrezic-Renault, Nicole; Soldatkin, Alexei; Lagarde, Florence; Dzyadevych, Sergei

    2015-05-01

    In this work, the method of enzyme adsorption on different zeolites and mesoporous silica spheres (MSS) was investigated for the creation of conductometric biosensors. The conductometric transducers consisted of gold interdigitated electrodes were placed on the ceramic support. The transducers were modified with zeolites and MSS, and then the enzymes were adsorbed on the transducer surface. Different methods of zeolite attachment to the transducer surface were used; drop coating with heating to 200°C turned out to be the best one. Nanozeolites beta and L, zeolite L, MSS, and silicalite-1 (80 to 450 nm) were tested as the adsorbents for enzyme urease. The biosensors with all tested particles except zeolite L had good analytical characteristics. Silicalite-1 (450 nm) was also used for adsorption of glucose oxidase, acetylcholinesterase, and butyrylcholinesterase. The glucose and acetylcholine biosensors were successfully created, whereas butyrylcholinesterase was not adsorbed on silicalite-1. The enzyme adsorption on zeolites and MSS is simple, quick, well reproducible, does not require use of toxic compounds, and therefore can be recommended for the development of biosensors when these advantages are especially important.

  7. Characterization of Chemical Properties, Unit Cell Parameters and Particle Size Distribution of Three Zeolite Reference Materials: RM 8850 - Zeolite Y, RM 8851 - Zeolite A and RM 8852 - Ammonium ZSM-5 Zeolite

    SciTech Connect

    Turner,S.; Sieber, J.; Vetter, T.; Zeisler, R.; Marlow, A.; Moreno-Ramirez, M.; Davis, M.; Kennedy, G.; Borghard, W.; et al

    2008-01-01

    Zeolites have important industrial applications including use as catalysts, molecular sieves and ion exchange materials. In this study, three zeolite materials have been characterized by the National Institute of Standards and Technology (NIST) as reference materials (RMs): zeolite Y (RM 8850), zeolite A (RM 8851) and ZSM-5 zeolite (RM 8852). They have been characterized by a variety of chemical and physical measurement methods: X-ray fluorescence (XRF), gravimetry, instrumental neutron activation analysis (INAA), nuclear magnetic resonance (NMR), calorimetry, synchrotron X-ray diffraction, neutron diffraction, laser light extinction, laser light scattering, electric sensing zone, X-ray sedimentation, scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and optical microscopy. The chemical homogeneity of the materials has been characterized. Reference values are given for the major components (major elements, loss on ignition [LOI] and loss on fusion [LOF]), trace elements and Si/Al and Na/Al ratios. Information values are given for enthalpies of formation, unit cell parameters, particle size distributions, refractive indices and variation of mass with variation in relative humidity (RH). Comparisons are made to literature unit cell parameters. The RMs are expected to provide a basis for intercomparison studies of these zeolite materials.

  8. Removal of ammonium from municipal landfill leachate using natural zeolites.

    PubMed

    Ye, Zhihong; Wang, Jiawen; Sun, Lingyu; Zhang, Daobin; Zhang, Hui

    2015-01-01

    Ammonium ion-exchange performance of the natural zeolite was investigated in both batch and column studies. The effects of zeolite dosage, contact time, stirring speed and pH on ammonium removal were investigated in batch experiments. The result showed that ammonium removal efficiency increased with an increase in zeolite dosage from 25 to 150 g/L, and an increase in stirring speed from 200 to 250 r/min. But further increase in zeolite dosage and stirring speed would result in an unpronounced increase of ammonium removal. The optimal pH for the removal of ammonium was found as 7.1. In the column studies, the effect of flow rate was investigated, and the total ammonium removal percentage during 180 min operation time decreased with the flow rate though the ion-exchange capacity varied to a very small extent with the flow rate ranging from 4 to 9 mL/min. The spent zeolite was regenerated by sodium chloride solution and the ammonia removal capacity of zeolite changed little or even increased after three regeneration cycles. PMID:26510611

  9. Removal of metal cations from water using zeolites

    SciTech Connect

    Zamzow, M.J.; Murphy, J.E. )

    1992-11-01

    Zeolites from abundant natural deposits were investigated by the Bureau of Mines for efficiently cleaning up mining industry wastewaters. Twenty-four zeolite samples were analyzed by x-ray diffraction and inductively coupled plasma. These included clinoptilolite, mordenite, chabazite, erionite, and phillipsite. Bulk densities of a sized fraction ([minus]40, +65 mesh) varied from 0.48 to 0.93 g/ml. Attrition losses ranged from 1 to 18% during an hour-long shake test. The 24 zeolites and an ion-exchange resin were tested for the uptake of Cd, Cu, and Zn. Of the natural zeolites, phillipsite proved to be the most efficient, while the mordenites had the lowest uptakes. Sodium was the most effective exchangeable ion for exchange of heavy metals. Wastewater from an abandoned copper mine in Nevada was used to test the effectiveness of clinoptilolite for treating a multi-ion wastewater. The metal ions Fe[sup 3+], Cu[sup 2+], and Zn[sup 2+] in the copper mine wastewater were removed to below drinking water standards, but Mn[sup 2+] and Ni[sup 2+] were not. Calcium and NH[sub 4][sup +] interfered with the uptake of heavy metals. Adsorbed heavy metals were eluted from zeolites with a 3% NaCl solution. Heavy metals were concentrated in the eluates up to 30-fold relative to the waste solution. Anions were not adsorbed by the zeolites.

  10. An analysis of commerical zeolite catalysts by multinuclear NMR

    SciTech Connect

    Flanagan, L.

    1990-09-21

    This work involves studying two commercial hydrocracking catalysts by solid state multinuclear NMR silicon 29 and aluminum 27 with the goal of developing a method of determining the fraction zeolite in the catalysts. The zeolite fraction is known to be one of the faujasite zeolites type X or Y. The clay matrix of the catalyst is assumed to be kaolinite. Fresh, air-exposed commercial hydrocracking catalysts were provided by Phillips Petroleum. Sample 33351-86 was known to be a physical mixture of a Y zeolite and a clay matrix. The other catalyst, 33351-20, was composed of a faujasite zeolite grown within a clay matrix. Both were suspected of being about 20 wt % zeolite. Nothing is known about the state of pretreatment or cation exchange. A portion of each catalyst was calcined in a porcelain crucible in air at 500{degree}C for two hours with a hour heating ramp preceding and a two hour cooling ramp following calcination. 64 refs., 21 figs., 8 tabs.

  11. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species. PMID:25897618

  12. The Influence of Zeolites on Radical Formation During Lignin Pyrolysis.

    PubMed

    Bährle, Christian; Custodis, Victoria; Jeschke, Gunnar; van Bokhoven, Jeroen A; Vogel, Frédéric

    2016-09-01

    Lignin from lignocellulosic biomass is a promising source of energy, fuels, and chemicals. The conversion of the polymeric lignin to fuels and chemicals can be achieved by catalytic and noncatalytic pyrolysis. The influence of nonporous silica and zeolite catalysts, such as silicalite, HZSM5, and HUSY, on the radical and volatile product formation during lignin pyrolysis was studied by in situ high-temperature electron paramagnetic resonance spectroscopy (HTEPR) as well as GC-MS. Higher radical concentrations were observed in the samples containing zeolite compared to the sample containing only lignin, which suggests that there is a stabilizing effect by the inorganic surfaces on the formed radical fragments. This effect was observed for nonporous silica as well as for HUSY, HZSM5, and silicalite zeolite catalysts. However, the effect is far larger for the zeolites owing to their higher specific surface area. The zeolites also showed an effect on the volatile product yield and the product distribution within the volatile phase. Although silicalite showed no effect on the product selectivity, the acidic zeolites such as HZSM5 or HUSY increased the formation of deoxygenated products such as benzene, toluene, xylene (BTX), and naphthalene. PMID:27486717

  13. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-01

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit. PMID:26061093

  14. Sorption Behaviour of Armenian Natural Zeolites

    SciTech Connect

    Keheyan, Y.; Khachatryan, S.; Christidis, G.; Moraetis, D.; Gevorkyan, R.; Sarkisyan, H.; Yeritsyan, H.; Nikoghosyan, S.; Sahakyan, A.; Kekelidze, N.; Akhalbedashvili, L.

    2005-07-15

    The sorptive behaviour of radioactive waste on Armenian zeolites, natural, irradiated, chemically treated and heated at high temperatures was studied and their capacity for the separation and enrichment of radionuclides was evaluated.The influence of temperature, acidity, basicity, specific activity, electron and gamma irradiation on sorption have been studied. The chemical analysis of exchanged samples was carried out and the cation exchange capacity was determined. Absorption properties of mono-cationic forms of different clinoptilolite samples were studied depending on type of guest cation and contact time.By means of model experiments the laboratory plant for absorption of metal cations from solutions in dynamic regime was designed and developed. This plant was used for experiments of radioactive waste removal from the Armenian nuclear reactor.

  15. International, collaborative assessment of limitations of chromosome-specific probes (CSP) and fluorescent in situ hybridization (FISH): Analysis of expected detections in 73,000 prenatal cases

    SciTech Connect

    Evans, M.I.; Henry, G.P.; Miller, W.A.

    1994-09-01

    FISH and CSP have been proposed to reduce karyotyping need. The purpose of this study was to assess the potential efficacy of CSP-FISH using currently available probes (13, 18, 21, X, & Y) in large, prenatal diagnostic centers. Results (1990-1993) from 7 centers in 4 countries were divided by those expected to be detectable by currently available probes, and those which would be missed assuming 10% probe efficacy. 72,994 karyotypes included 699 trisomy 21`s, 352 trisomy 18`s, 136 trisomy 13`s, 358 sex chromosome aneuploidies, 70 triploidies, and 855 others (translocations, inversions, deletions, markers). Of 2,613 abnormalities, 1,745 would be detectable (66.8%). [Detroit 55.7%, Stockholm 68.3%, Boston 52.6%, Denver 61.3%, Muenster 77.0%, London 84.5%, Philadelphia 69.4%]. Centers with high proportions of referrals for ultrasound anomalies had the highest CSP-FISH positives secondary to increased T 18 & 13. We conclude: (1) 73,000 karyotypes show relatively consistent incidences of the common trisomies, sex chromosome abnormalities, and other chromosome abnormalities among the centers. (2) The proportion expected detectable by FISH-CSP technology varies from 52.6% to 84.5%, averaging 66.8%. (3) 1/3 of the karyotypic abnormalities would be missed, and therefore, replacement of complete karyotyping with FISH would have unacceptably high false-negative rates for routine evaluation. (4) FISH-CSP, while useful when positive for anomalies, is not sufficient when negative to obviate the need for a complete karyotype.

  16. 1D Superconducting behavior in 4-Angstrom carbon nanotube-zeolite composite

    NASA Astrophysics Data System (ADS)

    Shi, Wu; Wang, Zhe; Xie, Hang; Zhang, Ting; Wang, Ning; Tang, Zikang; Zhang, Xixiang; Lortz, Rolf; Sheng, Ping

    2010-03-01

    We report 4-probe electrical measurements on a sample of 4-Angstrom carbon nanotubes-zeolite composite that exhibit 1D superconducting behavior. The resistance displays a smooth decrease as a function of temperature that is characteristic of the phase slip fluctuation effects, and the differential resistance measured as a function of current shows a quasigap that is characteristic of the fluctuating condensate. Both data sets show very little variation upon the application of a magnetic field, up to 9 Tesla. These behaviors are explainable in terms of the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory of phase slips. We also show and discuss an interesting phenomenon in which a sharp zero current (bias) peak appears in the differential resistance above 3 K.

  17. A Cell-Based Internalization and Degradation Assay with an Activatable Fluorescence–Quencher Probe as a Tool for Functional Antibody Screening

    PubMed Central

    Liu, Peter Corbett; Shen, Yang; Snavely, Marshall D.; Hiraga, Kaori

    2015-01-01

    For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody–drug conjugates. Here we describe a novel activatable fluorescence–quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process. PMID:26024945

  18. A Cell-Based Internalization and Degradation Assay with an Activatable Fluorescence-Quencher Probe as a Tool for Functional Antibody Screening.

    PubMed

    Li, Yan; Liu, Peter Corbett; Shen, Yang; Snavely, Marshall D; Hiraga, Kaori

    2015-08-01

    For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody-drug conjugates. Here we describe a novel activatable fluorescence-quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process. PMID:26024945

  19. Preparation of zeolite NaA for CO2 capture from nickel laterite residue

    NASA Astrophysics Data System (ADS)

    Du, Tao; Liu, Li-ying; Xiao, Penny; Che, Shuai; Wang, He-ming

    2014-08-01

    Zeolite NaA was successfully prepared from nickel laterite residue for the first time via a fusion-hydrothermal procedure. The structure and morphology of the as-synthesized zeolite NaA were characterized with a range of experimental techniques, such as X-ray diffraction, scanning electronic microscopy, and infrared spectroscopy. It was revealed that the structures of the produced zeolites were dependent on the molar ratios of the reactants and hydrothermal reaction conditions, so the synthesis conditions were optimized to obtain pure zeolite NaA. Adsorption of nitrogen and carbon dioxide on the prepared zeolite NaA was also measured and analyzed. The results showed that zeolite NaA could be prepared with reasonable purity, it had physicochemical properties comparable with zeolite NaA made from other methods, and it had excellent gas adsorption properties, thus demonstrating that zeolite NaA could be prepared from nickel laterite residue.

  20. Adsorption and isothermal models of atrazine by zeolite prepared from Egyptian kaolin

    NASA Astrophysics Data System (ADS)

    Jamil, Tarek S.; Gad-Allah, Tarek A.; Ibrahim, Hanan S.; Saleh, Tamer S.

    2011-01-01

    The adsorption behavior of Atrazine on zeolites, prepared from Egyptian kaolin, has been studied in order to consider the application of these types of zeolites in water purification. The batch mode has been employed, using atrazine solution of concentration ranging from 2 to 10 mg /l. The adsorption capacity and distribution coefficients ( Kd) were determined for the adsorption system as a function of sorbate concentration. It was found that, under the studies concentrations, the percent of adsorbed atrazine on both zeolites match to Langmuir and Freundlich adsorption models. The constants of each model were calculated to assess the adsorption behavior of atrazine on each type of zeolite. According to the equilibrium studies, adsorption of atrazine on zeolite X at lower concentrations is much better than that on zeolite A. The application of Dublin-Kaganer-Radushkevich model revealed physisorption endothermic adsorption process for both zeolites. These results show that natural zeolites hold great potential to remove hazardous materials such as atrazine from water.

  1. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Synthesis of mesoporous zeolite single crystals with cheap porogens

    SciTech Connect

    Tao Haixiang; Li Changlin; Ren Jiawen; Wang Yanqin; Lu Guanzhong

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.

  3. Catalytic desulfurization of organic sulfur compounds over zeolite catalysts

    SciTech Connect

    Sugioka, M.; Aomura, K.

    1980-03-01

    Various kinds of zeolites, such as Na-zeolites, MeY and HY, showed catalytic activity for the dehydrosulfurization of ethanethiol. The catalytic activity of MeY in the dehydrosulfurization of ethanethiol at 400/sup 0/C was changed by the kind of metal ions in the zeolites and a volcano shape order was observed between the catalytic activity and the electronegativity, Xi, of the metal ions. The order of the catalytic activity was NaX>NaY>NaA. The changes in the activity of HY in ethanethiol dehydrosulfurization and cumene dealkylation by calcination agreed with the decrease in the Bronsted acidity determined by Ward but was independent of Lewis acidity. Me/sup 0/Y, such as Co/sup 0/Y, Ni/sup 0/Y, Cu/sup 0/Y and Ag/sup 0/Y, showed higher catalytic activity than a commercial hydrodesulfurization catalyst and the order of the activity was Ni/sup 0/Y>Co/sup 0/Y>Cu/sup 0/Y>Ag/sup 0/Y. Reduced and presulfided Me/sup 0/Y zeolites showed selective hydrodesulfurization activity for thiophene. The remarkable promoting effect of NiO and MoO/sub 3/ upon the catalytic activity of Me/sup 0/Y was not observed in the hydrodesulfurization of thiophene. Zeolite catalysts have a possibility of use as effective hydrodesulfurization catalysts for petroleum if further improvement in catalyst deactivation of Me/sup 0/Y zeolite is accomplished. The investigation of the hydrodesulfurization of thiophene over Me/sup 0/Y zeolites would become a good model to clarify the mechanism of the hydrodesulfurization of petroleum.

  4. Removal of heavy metals from mine waters by natural zeolites

    SciTech Connect

    Ulla Wingenfelder; Carsten Hansen; Gerhard Furrer; Rainer Schulin

    2005-06-15

    The study investigated the removal of Fe, Pb, Cd, and Zn from synthetic mine waters by a natural zeolite. The emphasis was given to the zeolite's behavior toward a few cations in competition with each other. Pb was removed efficiently from neutral as well as from acidic solutions, whereas the uptake of Zn and Cd decreased with low pH and high iron concentrations. With increasing Ca concentrations in solution, elimination of Zn and Cd became poorer while removal of Pb remained virtually unchanged. The zeolite was stable in acidic solutions. Disintegration was only observed below pH 2.0. Forward- and back-titration of synthetic acidic mine water were carried out in the presence and absence of zeolite to simulate the effects of a pH increase by addition of neutralizing agents and a re-acidification which can be caused by subsequent mixing with acidic water. The pH increase during neutralization causes precipitation of hydrous ferric oxides and decreased dissolved metal concentrations. Zeolite addition further diminished Pb concentrations but did not have an effect on Zn and Cd concentrations in solution. During re-acidification of the solution, remobilization of Pb was weaker in the presence than in the absence of zeolite. No substantial differences were observed for Fe, Cd, and Zn immobilization. The immobilization of the metals during pH increase and the subsequent remobilization caused by re-acidification can be well described by a geochemical equilibrium speciation model that accounts for metal complexation at hydrous ferric oxides, for ion exchange on the zeolite surfaces, as well as for dissolution and precipitation processes. 42 refs., 5 figs., 3 tabs.

  5. Zeolite fiber integrated microsensors for highly sensitive point detection of chemical agents

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Hui, Juan; Dong, Junhang; Xiao, Hai

    2006-05-01

    A zeolite-fiber integrated chemical sensor was developed for in situ point detection of chemical warfare agents. The sensor was made by fine-polishing the MFI polycrystalline zeolite thin film synthesized on the endface of the single mode optical fiber. The sensor device operates by measuring the optical thickness changes of the zeolite thin film caused by the adsorption of analytes into the zeolite channels. The sensor was demonstrated for sensitive detection of toluene and dimethyl methylphosphonate (DMMP).

  6. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  7. ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER

    EPA Science Inventory

    Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...

  8. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores.

    PubMed

    Machoke, Albert G; Beltrán, Ana M; Inayat, Alexandra; Winter, Benjamin; Weissenberger, Tobias; Kruse, Nadine; Güttel, Robert; Spiecker, Erdmann; Schwieger, Wilhelm

    2015-02-01

    Zeolite crystals with an embedded and interconnected macropore system are prepared by using mesoporous silica particles as a silica source and as a sacrificial macroporogen. These novel hierarchical zeolite crystals are expected to reduce diffusion limitations in all zeolite-catalyzed reactions, especially in the transformation of larger molecules like in the catalytic cracking of polymers and the conversion of biomass. PMID:25535114

  9. Framework Stabilization of Si-Rich LTA Zeolite Prepared in Organic-Free Media

    SciTech Connect

    Conato, Marlon T.; Oleksiak, Matthew D.; McGrail, B. Peter; Motkuri, Radha K.; Rimer, Jeffrey D.

    2014-10-16

    Zeolite HOU-2 (LTA type) is prepared with the highest silica content (Si/Al = 2.1) reported for Na-LTA zeolites without the use of an organic structure-directing agent. The rational design of Si-rich zeolites has the potential to improve their thermal stability for applications in catalysis, gas storage, and selective separations.

  10. Properties of Zeolite A Obtained from Powdered Laundry Detergent: An Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Smoot, Alison L.; Lindquist, David A.

    1997-01-01

    Presents experiments that introduce students to the myriad properties of zeolites using the sodium form of zeolite A (Na-A) from laundry detergent. Experiments include extracting Na-A from detergent, water softening properties, desiccant properties, ion-exchange properties, and Zeolite HA as a dehydration catalyst. (JRH)

  11. Fabrication of zeolite/polymer multilayer composite membranes for carbon dioxide capture: Deposition of zeolite particles on polymer supports.

    PubMed

    Ramasubramanian, Kartik; Severance, Michael A; Dutta, Prabir K; Ho, W S Winston

    2015-08-15

    Membranes, due to their smaller footprint and potentially lower energy consumption than the amine process, offer a promising route for post-combustion CO2 capture. Zeolite Y based inorganic selective layers offer a favorable combination of CO2 permeance and CO2/N2 selectivity, membrane properties crucial to the economics. For economic viability on large scale, we propose to use flexible and scalable polymer supports for inorganic selective layers. The work described in this paper developed a detailed protocol for depositing thin zeolite Y seed layers on polymer supports, the first step in the synthesis of a polycrystalline zeolite Y membrane. We also studied the effects of support surface morphology (pore size and surface porosity) on the quality of deposition and identified favorable supports for the deposition. Two different zeolite Y particles with nominal sizes of 200 nm and 40 nm were investigated. To obtain a complete coverage of zeolite particles on the support surface with minimum defects and in a reproducible manner, a vacuum-assisted dip-coating technique was developed. Images obtained using both digital camera and optical microscope showed the presence of color patterns on the deposited surface which suggested that the coverage was complete. Electron microscopy revealed that the particle packing was dense with some drying cracks. Layer thickness with the larger zeolite Y particles was close to 1 μm while that with the smaller particles was reduced to less than 0.5 μm. In order to reduce drying cracks for layers with smaller zeolite Y particles, thickness was reduced by lowering the dispersion concentration. Transport measurement was used as an additional technique to characterize these layers. PMID:25950846

  12. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    Michael Grutzeck

    1999-04-30

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO{sub 2} from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO{sub 2} from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150 C contained a greater proportion of zeolite and as such were more SO{sub 2} adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. 100 C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO{sub 2} adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the US.

  13. SO2 REMOVAL FROM FLUE GASES USING UTILITY SYNTHESIZED ZEOLITES

    SciTech Connect

    MICHAEL GRUTZECK

    1998-10-31

    It is well known that natural and synthetic zeolites (molecular sieves) can adsorb gaseous SO2 from flue gas and do it more efficiently than lime based scrubbing materials. Unfortunately their cost ($500-$800 per ton) has deterred their use in this capacity. It is also known that zeolites are easy to synthesize from a variety of natural and man-made materials. The overall objective of the current work has been to evaluate the feasibility of having a utility synthesize its own zeolites, on-site, from fly ash and other recycled materials and then use these zeolites to adsorb SO2 from their flue gases. Work to date has shown that the efficiency of the capture process is related to the degree of crystallinity and the type of zeolite that forms in the samples. Normally, those samples cured at 150°C contained a greater proportion of zeolite and as such were more SO2 adsorptive than their low-temperature counterparts. However, in order for the project to be successful, on site synthesis must remain an option, i.e. _100°C synthesis. In light of this, the experimental focus now has two aspects. First, compositions of the starting materials are being altered by blending the current suite of fly ashes with other fly ashes, ground glass cullet and silica fume to promote the formation and growth of well crystallized and highly adsorptive zeolites. Second, greater degrees of reaction at significantly lower temperatures are being promote by ball milling the fly ash prior to use, by the use of more concentrated caustic solutions, and by the addition of zeolite seeds to the reactants. In all cases studies will focus on the effect of structure type and degree of conversion on SO2 adsorption. Future work will concentrate on the study of the effect of weathering on the suitability of converting fly ash into zeolites. This is an especially important study, considering the acres of fly ash now in storage throughout the country.

  14. Playing with dye molecules at the inner and outer surface of zeolite L

    NASA Astrophysics Data System (ADS)

    Calzaferri, Gion; Brühwiler, Dominik; Megelski, Silke; Pfenniger, Michel; Pauchard, Marc; Hennessy, Brian; Maas, Huub; Devaux, André; Graf, Urs

    2000-06-01

    realize a device in which different dye molecules inside the tubes are arranged in such a way that the whole visible spectrum can be used by conducting light from blue to green to red without significant loss. Such a material could conceivably be used in a dye laser of extremely small size. The light harvesting nanocrystals are also investigated as probes in near-field microscopy, as materials for new imaging techniques and as luminescent probes in biological systems. The extremely fast energy migration, the pronounced anisotropy, the geometrical constraints and the high concentration of monomers which can be realized, have great potential in leading to new photophysical phenomena. Attempts are being made to use the efficient zeolite-based light harvesting system for the development of a new type of thin-layer solar cell in which the absorption of light and the creation of an electron-hole pair are spatially separated as in the natural antenna system of green plants. Synthesis, characterization and applications of an artificial antenna for light harvesting within a certain volume and transport of the electronic excitation energy to a specific place of molecular dimension has been the target of research in many laboratories in which different approaches have been followed. To our knowledge, the system developed by us is the first artificial antenna which works well enough to deserve this name. Many other highly organized dye-zeolite materials of this type can be prepared by similar methods and are expected to show a wide variety of remarkable properties. The largely improved chemical and photochemical stability of dye molecules inserted in an appropriate zeolite framework allows us to work with dyes which otherwise would be considered uninteresting because of their lack of stability. We have developed two methods for preparing well-defined dye-zeolite materials, one of them working at the solid-liquid and the other at the solid-gas interface. Different approaches for

  15. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone. PMID:25078817

  16. Zeolites for the selective adsorption of sulfur hexafluoride.

    PubMed

    Matito-Martos, I; Álvarez-Ossorio, J; Gutiérrez-Sevillano, J J; Doblaré, M; Martin-Calvo, A; Calero, S

    2015-07-21

    Molecular simulations have been used to investigate at the molecular level the suitability of zeolites with different topology on the adsorption, diffusion and separation of a nitrogen-sulfur hexafluoride mixture containing the latter at low concentration. This mixture represents the best alternative for the sulfur hexafluoride in industry since it reduces the use of this powerful greenhouse gas. A variety of zeolites are tested with the aim to identify the best structure for the recycling of sulfur hexafluoride in order to avoid its emission to the atmosphere and to overcome the experimental difficulties of its handling. Even though all zeolites show preferential adsorption of sulfur hexafluoride, we identified local structural features that reduce the affinity for sulfur hexafluoride in zeolites such as MOR and EON, providing exclusive adsorption sites for nitrogen. Structures such as ASV and FER were initially considered as good candidates based on their adsorption features. However, they were further discarded based on their diffusion properties. Regarding operation conditions for separation, the range of pressure that spans from 3 × 10(2) to 3 × 10(3) kPa was identified as the optimal to obtain the highest adsorption loading and the largest SF6/N2 selectivity. Based on these findings, zeolites BEC, ITR, IWW, and SFG were selected as the most promising materials for this particular separation. PMID:26099734

  17. Copper removal using bio-inspired polydopamine coated natural zeolites.

    PubMed

    Yu, Yang; Shapter, Joseph G; Popelka-Filcoff, Rachel; Bennett, John W; Ellis, Amanda V

    2014-05-30

    Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2-5.5), PDA treatment time (3-24h), contact time (0 to 24h) and initial Cu(II) ion concentrations (1 to 500mgdm(-3)) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93mgg(-1) for pristine natural zeolite and 28.58mgg(-1) for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01M or 0.1M) of either acid or base. PMID:24731937

  18. Zeolite A effect on calcium homeostasis in growing goats.

    PubMed

    Schwaller, D; Wilkens, M R; Liesegang, A

    2016-04-01

    The purpose of this study was to investigate the influence of 2 different concentrations of zeolite A on calcium homeostasis. Seventeen growing goats were divided into 3 groups. Whereas the control group (5 animals) received no supplementation, 2 treatment groups were supplemented with zeolite A at either 1.2 (6 animals) or 1.6 g/kg BW (6 animals), respectively. Blood and urine samples were continually drawn and bone mineral density was measured weekly by peripheral quantitative computed tomography. After 3 wks, the animals were slaughtered and samples were taken from the rumen, duodenum, and kidneys. Plasma concentrations of phosphate ( < 0.001), magnesium ( < 0.001), and 1.25-dihydroxycholecalciferol ( < 0.01) as well as renal excretion of phosphate ( < 0.05) were significantly lower in the treatment groups compared with the control group. Although bone resorption was increased in both treatment groups ( < 0.05), no alterations in bone structure were detected. Determination of gastrointestinal absorption of calcium by Ussing chamber technique and quantification of RNA and protein expression of genes known to be involved in active calcium absorption did not reveal any stimulating effect of zeolite. Plasma calcium concentrations were not altered, probably because of the sufficient dietary calcium supply. However due to the effects of zeolite on 1,25 dihydroxycholecalciferol, bone metabolism and serum concentrations of phosphate and magenesium shown in the present study, potential negative long-termin effects on the animals should be considered whenever rations with zeolite are designed. PMID:27136016

  19. Risk assessment for the transportation of radioactive zeolite liners

    SciTech Connect

    Not Available

    1982-01-01

    The risk is estimated for the shipment of radioactive zeolite liners in support of the Zeolite Vitrification Demonstration Program currently underway at Pacific Northwest Laboratory under the sponsorship of the US Department of Energy. This program will establish the feasibility of zeolite vitrification as an effective means of immobilizing high-specific-activity wastes. In this risk assessment, it is assumed that two zeolite liners, each loaded around July 1, 1981 to 60,000 Ci, will be shipped by truck around January 1, 1982. However, to provide a measure of conservatism, each liner is assumed to initially hole 70,000 Ci, with the major radioisotopes as follow: /sup 90/Sr = 3000 Ci, /sup 134/Cs = 7000 Ci, /sup 137/Cs = 60,000 Ci. Should shipment take place with essentially no delay after initial loading (regardless of loading date), the shipment loading would be only 2.7% higher than that for the assumed six-month delay. This would negligibly affect the overall risk. As a result of this risk assessment, it is concluded that the transport of the radioactive zeolite liners from TMI to PNL by truck can be conducted at an insignificant level of risk to the public.

  20. Impact protection behavior of a mordenite zeolite system

    NASA Astrophysics Data System (ADS)

    Xu, J.; Hu, R.; Chen, X.; Hu, D.

    2016-05-01

    By combining zeolite with water, a novel nanocomposite may exhibit extraordinary capability of energy absorption and impact mitigation. The multiple size of zeolite may lead to simultaneous yet different infiltration behaviors of water molecules, and thus multi-staged energy mitigation characteristics (which may benefit the scope of application). In this study, we investigate the dynamic infiltration behavior of water into mordenite zeolite (MOR) using molecular dynamics (MD) simulations. Thanks to its hydrophobicity and multi pore-sized structure, the MOR system has a decent energy mitigation performance upon high impact speed. Parametric studies are carried out to investigate the effects of various parameters, including the impact speed, mass, and water/zeolite ratio, on energy mitigating characteristics. The MOR/water mixture may perform better at a higher impact energy with higher MOR zeolite-water ratio. Upon unloading, the defiltration of water molecules is faster and more complete at higher impact speed. Results may guide the design and application of the energy mitigation nanosystem.

  1. Rationalizing Inter- and Intracrystal Heterogeneities in Dealuminated Acid Mordenite Zeolites by Stimulated Raman Scattering Microscopy Correlated with Super-resolution Fluorescence Microscopy

    PubMed Central

    2014-01-01

    Dealuminated zeolites are widely used acid catalysts in research and the chemical industry. Bulk-level studies have revealed that the improved catalytic performance results from an enhanced molecular transport as well as from changes in the active sites. However, fully exploiting this information in rational catalyst design still requires insight in the intricate interplay between both. Here we introduce fluorescence and stimulated Raman scattering microscopy to quantify subcrystal reactivity as well as acid site distribution and to probe site accessibility in the set of individual mordenite zeolites. Dealumination effectively introduces significant heterogeneities between different particles and even within individual crystals. Besides enabling direct rationalization of the nanoscale catalytic performance, these observations reveal valuable information on the industrial dealumination process itself. PMID:25402756

  2. The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites

    SciTech Connect

    Sun, Y.; Campbell, S.M.; Lunsford, J.H. ); Lewis, G.E.; Palke, D.; Tau, L.M. )

    1993-09-01

    A Mg-ZSM-5 zeolite modified with phosphorus is capable of catalyzing the reaction of CH[sub 3]Cl to C[sub 2]H[sub 4], C[sub 3]H[sub 6], C[sub 4]H[sub 8], and HCl at 500[degrees]C. At a WHSV of 20 h[sup [minus]1], an initial conversion level of 96% was achieved with combined C[sub 2]H[sub 4], C[sub 3]H[sub 6], and C[sub 4]H[sub 8] selectivities of about 80%. During the useful life of the catalyst the C[sub 3]H[sub 6] selectivity was 50-60%. The percent conversion decreased to 50% over a period of 20 h, but the catalyst could be regenerated by heating in flowing air. As the catalyst deactivated, the C[sub 3]H[sub 6] selectivity increased slightly and the C[sub 2]H[sub 4] selectivity decreased. Catalytic and spectroscopic results confirm that phosphorus, derived from trimethylphosphine, was responsible for a decrease in the strong Broensted acidity in the zeolite. For example, the phosphorus-modified zeolite was inactive for n-hexane cracking at 350[degrees]C, and the protonated amount of pyridine, added to the zeolite as a probe for acidity, decreased significantly. The catalyst, however, had sufficient acidity to crack hexene or octene at 500[degrees]C to propylene and ethylene in ratios that were very similar to those detected during the conversion of CH[sub 3]Cl. Without the strong Broensted acidity the PMg-ZSM-5 zeolite apparently is unable to convert the light olefins to paraffins and aromatics. A mechanism is proposed in which magnesium cations activate CH[sub 3]Cl to form HCl and a carbene intermediate. The latter is believed to be responsible for C-C bond formation via reaction with a surface methoxide species. Ethylene probably is the primary hydrocarbon, but it oligomerizes to a higher molecular weight olefin which cracks back to ethylene and propylene. 22 refs., 8 figs., 1 tab.

  3. Determination of trace elements in zeolites by laser ablation ICP-MS.

    PubMed

    Pickhardt, C; Brenner, I B; Becker, J S; Dietze, H J

    2000-09-01

    Laser ablation inductively coupled plasma mass spectrometry using a quadrupole-based mass spectrometer (LA-ICP-QMS) was applied for the analysis of powdered zeolites (microporous aluminosilicates) used for clean-up procedures. For the quantitative determination of trace element concentrations three geological reference materials, granite NIM-G, lujavrite NIM-L and syenite NIM-S, from the National Institute for Metallurgy (South Africa) with a matrix composition corresponding to the zeolites were employed. Both the zeolites and reference materials were fused with a lithium borate mixture to increase the homogeneity and to eliminate mineralogical effects. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS relative sensitivity coefficients (RSCs) of chemical elements and calibration curves were measured using the geostandards. The experimentally obtained RSCs are in the range of 0.2-6 for all elements of interest. Calibration curves for trace elements were measured without and with Li or Ti as internal standard element. With a few exceptions the regression coefficients of the calibration curves are better than 0.993 with internal standardization. NIM-G granite reference material was employed to evaluate the accuracy of the technique. Therefore, the measured concentrations were corrected with RSCs which were determined using lujavrite reference material NIM-L. This quantification method provided analytical results with deviations of 1-11% from the recommended and proposed values in granite reference material NIM-G, except for Co, Cs, La and Tb. The relative standard deviation (RSD) of the determination of the trace element concentration (n = 5) is about 1% to 6% using Ti as internal standard element. Detection limits of LA-ICP-QMS in the lower microg/g range (from 0.03 microg/g for Lu, Ta and Th to 7.3 microg/g for Cu, with the exception of La) have been achieved for all elements of interest. Under the laser ablation

  4. Silver nitrate in silver zeolite A: three-dimensional incommensurate guest ordering in a zeolite framework.

    PubMed

    Viertelhaus, M; Taylor, A E; Kloo, L; Gameson, I; Anderson, P A

    2006-05-21

    We report the results of a detailed examination of the occlusion of silver nitrate in silver zeolite A (AgA). The superlattice reported to occur in (AgNO3)9-AgA was found to melt at between 80 and 100 degrees C on heating and reappear when the sample was cooled down to 80 degrees C. Annealing in this temperature range and rigorous exclusion of water produced an enhancement of the superlattice peaks, which results from ordering of the contents of the zeolite cages. Peaks assigned to the superlattice were indexed with the tetragonal lattice parameters a = 17.440(5) and c = 12.398(4) A and proposed space group P4/nmm. The sharp peaks representing the lattice of the framework (a = 12.3711(5) A, Pm3m) remained largely unaffected by the guest in this compound, which was found to exhibit strong negative thermal expansion. The host and guest lattices are incommensurate with the tetragonal guest lattice being slightly larger than the cubic host in the c-direction and slightly smaller in the a- and b-directions. PMID:16688325

  5. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  6. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  7. The removal of bacteria by modified natural zeolites.

    PubMed

    Milán, Z; de Las Pozas, C; Cruz, M; Borja, R; Sánchez, E; Ilangovan, K; Espinosa, Y; Luna, B

    2001-01-01

    The removal effect of natural and modified zeolites containing different heavy metals (Ni2+, Zn2+, Fe3+ and Cu2+) on pure cultures of Escherichia coli and Staphylococcus aureus in a solid medium was evaluated in this work. These experiments were carried out in a continuous mode treating municipal wastewater. Faecal coliform species and Pseudomonas aeruginosa were identified. The rate constants of heavy metal lixiviation were determined using a first order kinetic model. The removal effect of modified natural zeolites in both a solid medium and in continuous mode showed an increased elimination of the bacterial population. The results established a decreasing order of the removal effect as follows: Cu2+ > Fe3+ > Zn2+ > Ni2+. The best performance of columns was obtained for inlet bacterial concentrations below 10(6) cells/100 ml. Most of the identified bacterial species were affected by copper modified zeolites, although Serratia marcescens presented the highest sensitivity and Klebsiella pneumoniae the greatest resistance. PMID:11501306

  8. The rheology of collapsing zeolites amorphized by temperature and pressure.

    PubMed

    Greaves, G N; Meneau, F; Sapelkin, A; Colyer, L M; ap Gwynn, I; Wade, S; Sankar, G

    2003-09-01

    Low-density zeolites collapse to the rigid amorphous state at temperatures that are well below the melting points of crystals of the same composition but of conventional density. Here we show, by using a range of experimental techniques, how the phenomenon of amorphization is time dependent, and how the dynamics of order-disorder transitions in zeolites under temperature and pressure are equivalent. As a result, thermobaric regions of instability can be charted, which are indicative of polyamorphism. Moreover, the boundaries of these zones depend on the rate at which temperature or pressure is ramped. By directly comparing the rheology of collapse with structural relaxation in equivalent melts, we conclude that zeolites amorphize like very strong liquids and, if compression occurs slowly, this is likely to lead to the synthesis of perfect glasses. PMID:12942072

  9. Wet gringing of zeolite in stirred media mill

    NASA Astrophysics Data System (ADS)

    Mucsi, G.; Bohács, K.

    2016-04-01

    In the present study the results of systematic experimental series are presented with the specific goal of optimizing the zeolite nanoparticles' production using a wet stirred media mill. The diameter of the grinding media as well as the rotor velocity were varied in the experiments. Particle size distribution and "outer" specific surface area of the ground samples were measured by a laser particle size analyser. Additionally, BET, XRD and FT-IR analyses were performed for the characterization of the "total" specific surface area as well as the crystalline and material structure, respectively. Based on the results of the laboratory experiments it was found that wet stirred media milling provided significant reductions in the particle size of zeolite. Furthermore, the crystallinity of the samples also decreased, so not only the physical but the mineralogical characteristics of zeolite can be controlled by stirred media milling.

  10. Direct Dual-Template Synthesis of MWW Zeolite Monolayers.

    PubMed

    Margarit, Vicente J; Martínez-Armero, Marta E; Navarro, M Teresa; Martínez, Cristina; Corma, Avelino

    2015-11-01

    A two-dimensional zeolite with the topology of MWW sheets has been obtained by direct synthesis with a combination of two organic structure-directing agents. The resultant material consists of approximately 70% single and double layers and displays a well-structured external surface area of about 300 m(2) g(-1). The delaminated zeolite prepared by means of this single-step synthetic route has a high delamination degree, and the structural integrity of the MWW layers is well preserved. The new zeolite material displayed excellent activity, selectivity, and stability when used as a catalyst for the alkylation of benzene with propylene and found to be superior to the catalysts that are currently used for producing cumene. PMID:26381669

  11. Heterogeneous radiolysis of CO 2 in the presence of zeolites

    NASA Astrophysics Data System (ADS)

    Garibov, A. A.; Velibekova, G. Z.; Agayev, T. N.

    Radiation catalytic activity of different zeolites Ca A, Na X, Na Y, LiNa Y, Ba M in CO 2 radiolysis has been investigated. This has led to studies in the catalyst porosity, the number of adsorbed CO 2 molecules and adsorption forces on their surface on the yield of CO 2 radiolysis products. A mechanism has been suggested for the observed CO 2 radiolysis processes over different zeolites. One of the possible ways to increase CO yield in radiolytic processes of CO 2 decomposition is to use various types of catalyst. (1-3) Therefore, the development of a scientific basis for appropriate catalyst selection is becoming of particular interest. For this purpose, heterogeneous CO 2 radiolysis in the presence of high-silica zeolites has been studied in this paper.

  12. The mechanism of oligomerization of ethylene on type ZSM zeolites

    SciTech Connect

    Medin, A.S.; Borovkov, V.Y.; Kazanskii, V.B.

    1986-08-01

    The kinetics of oligomerization of ethylene on high-silica zeolites in which some of the hydroxyls were substitued by methoxyl groups were studied by spectroscopy in diffusely scattered light, and the possibility of their participation in transformations of lower olefins was demonstrated. According to the results, the oligomerization of ethylene in high-silica zeolites probably does not take place according to the classic carbonium ion, but through the formation of alkoxyl structures as intermediate products. The fact that not all of the acid OH groups are active in this reaction is apparently due to the inhomogeneity of their structural environment caused by the presence of nonequivalent silicon oxygen tetrahedrons in the structure of these zeolites.

  13. Mechanistic proposal for the zeolite catalyzed methylation of aromatic compounds.

    PubMed

    Svelle, Stian; Bjørgen, Morten

    2010-12-01

    Alkylation and methylation reactions are important reactions in petrochemical production and form part of the reaction mechanism of many hydrocarbon transformation processes. Here, a new reaction mechanism is explored for the zeolite catalyzed methylation of arenes using quantum chemical calculations. It is proposed that the most substituted methylbenzenes, which will reside predominantly on the protonated form when adsorbed in a zeolite, can react directly with a neutral methanol molecule in the vicinity, thereby initiating the methylation reaction without having to return a proton to the zeolite surface. The calculated barriers are quite low, indicating that the suggested mechanism is plausible. This route might explain how the most substituted methylbenzenes can function as efficient reaction intermediates in the methanol to hydrocarbons reaction without themselves acting as catalyst poisons as a consequence of their high proton affinities. PMID:21049891

  14. Mechanochemical approach for selective deactivation of external surface acidity of ZSM-5 zeolite catalyst.

    PubMed

    Inagaki, Satoshi; Sato, Koki; Hayashi, Shunsuke; Tatami, Junichi; Kubota, Yoshihiro; Wakihara, Toru

    2015-03-01

    The acid sites associated with the external surface of zeolite particles are responsible for undesirable consecutive reactions, such as isomerization, alkylation, and oligomerization, resulting in a lower selectivity to a target product; therefore, the selective modification (deactivation) of the external surface of zeolite particles has been an important issue in zeolite science. Here, a new method for surface deactivation of zeolite catalyst was tested via a mechanochemical approach using powder composer. Postsynthetic mechanochemical treatment of ZSM-5 zeolite causes a selective deactivation of catalytically active sites existing only on the external surface, as a potentially useful catalyst for highly selective production of p-xylene. PMID:25654542

  15. Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route

    NASA Astrophysics Data System (ADS)

    Tong, Mingquan; Zhang, Daliang; Fan, Weibin; Xu, Jun; Zhu, Liangkui; Guo, Wen; Yan, Wenfu; Yu, Jihong; Qiu, Shilun; Wang, Jianguo; Deng, Feng; Xu, Ruren

    2015-06-01

    Chiral zeolitic materials with intrinsically chiral frameworks are highly desired because they can combine both shape selectivity and enantioselectivity. In the field of zeolite, the synthesis of chiral polymorph A of zeolite Beta or chiral polymorph A-enriched zeolite Beta is one of the biggest challenges. We demonstrate here a generalized extremely concentrated fluoride route for the synthesis of chiral polymorph A-enriched zeolite Beta in the presence of five achiral organic structure-directing agents. The polymorph A-enriched Ti-Beta shows a higher enantioselectivity for the asymmetric epoxidation of alkenes than the normal Ti-Beta.

  16. Synthesis of chiral polymorph A-enriched zeolite Beta with an extremely concentrated fluoride route

    PubMed Central

    Tong, Mingquan; Zhang, Daliang; Fan, Weibin; Xu, Jun; Zhu, Liangkui; Guo, Wen; Yan, Wenfu; Yu, Jihong; Qiu, Shilun; Wang, Jianguo; Deng, Feng; Xu, Ruren

    2015-01-01

    Chiral zeolitic materials with intrinsically chiral frameworks are highly desired because they can combine both shape selectivity and enantioselectivity. In the field of zeolite, the synthesis of chiral polymorph A of zeolite Beta or chiral polymorph A-enriched zeolite Beta is one of the biggest challenges. We demonstrate here a generalized extremely concentrated fluoride route for the synthesis of chiral polymorph A-enriched zeolite Beta in the presence of five achiral organic structure-directing agents. The polymorph A-enriched Ti-Beta shows a higher enantioselectivity for the asymmetric epoxidation of alkenes than the normal Ti-Beta. PMID:26096214

  17. Selective sensing of alcohols in water influenced by chemically Zeolite coatings on optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Nazari, Marziyeh; Hill, Matthew R.; Duke, Mikel; Sidiroglou, Fotios; Collins, Stephen F.

    2014-05-01

    The application of a MFI type zeolite coating on the end of an optical fiber is presented. Zeolite coatings were directly grown on the freshly cleaved endface of optical fibers. It was found that the produced integrated zeolite-fiber sensors exhibit specific chemical sensitivity towards certain chemicals. The molecular adsorption induced change of zeolite refractive index was studied to understand the sensing mechanisms of the developed sensor system. This work can lead to a new class of portable zeolite thin film enabled miniaturized fiber optic sensors.

  18. Novel modified zeolites for energy-efficient hydrocarbon separations.

    SciTech Connect

    Arruebo, Manuel; Dong, Junhang; Anderson, Thomas (Burns and McDonnell, Kansas City, MO); Gu, Xuehong; Gray, Gary (Goodyear Chemical Company, Akron, OH); Bennett, Ron (Goodyear Chemical Company, Akron, OH); Nenoff, Tina Maria; Kartin, Mutlu; Johnson, Kaylynn (Goodyear Chemical Company, Akron, OH); Falconer, John; Noble, Richard

    2006-11-01

    We present synthesis, characterization and testing results of our applied research project, which focuses on the effects of surface and skeletal modification of zeolites for significant enhancements in current hydrocarbon (HC) separations. Zeolites are commonly used by the chemical and petroleum industries as catalysts and ion-exchangers. They have high potential for separations owing to their unique pore structures and adsorption properties and their thermal, mechanical and chemical properties. Because of zeolites separation properties, low cost, and robustness in industrial process, they are natural choice for use as industrial adsorbents. This is a multidisciplinary effort to research, design, develop, engineer, and test new and improved materials for the separation of branched vs. linear organic molecules found in commercially important HC streams via adsorption based separations. The focus of this project was the surface and framework modification of the commercially available zeolites, while tuning the adsorption properties and the selectivities of the bulk and membrane separations. In particular, we are interested with our partners at Goodyear Chemical, on how to apply the modified zeolites to feedstock isoprene purification. For the characterization and the property measurements of the new and improved materials powder X-ray diffraction (PXRD), Residual Gas Analyzer-Mass Spectroscopy (RGA-MS), Electron Microscopy (SEM/EDAX), temperature programmed desorption (TPD) and surface area techniques were utilized. In-situ carbonization of MFI zeolite membranes allowed for the maximum separation of isoprene from n-pentane, with a 4.1% enrichment of the binary stream with n-pentane. In four component streams, a modified MFI membrane had high selectivities for n-pentane and 1-3-pentadiene over isoprene but virtually no separation for the 2-methyl-2-butene/isoprene pair.

  19. Zeolites replacing plant fossils in the Denver formation, Lakewood, Colorado.

    USGS Publications Warehouse

    Modreski, P.J.; Verbeek, E.R.; Grout, M.A.

    1984-01-01

    Well-developed crystals of heulandite and stilbite, within fossil wood, occur in sedimentary rocks in Lakewood, Jefferson County. The rocks belong to the Denver formation, a locally fossiliferous deposit of fluvial claystone, siltstone, sandstone and conglomerate, containing some volcanic mudflows (andesitic) of late Cretaceous to Palaeocene age. Altered volcanic glass released Na and Ca into the ground-water and subsequently zeolites were crystallized in the open spaces between grains and within fossil plant structures. Minor pyrite, quartz (jasper), calcite and apatite also occur as replacements of fossil wood. Similar zeolite occurrences in other areas are reviewed.-R.S.M.

  20. Regenerative Cu/La zeolite supported desulfurizing sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1991-01-01

    Efficient, regenerable sorbents for removal of H2S from fluid hydrocarbons such as diesel fuel at moderate condition comprise a porous, high surface area aluminosilicate support, suitably a synthetic zeolite, and most preferably a zeolite having a free lattice opening of at least 6 Angstroms containing from 0.1 to 0.5 moles of copper ions, lanthanum ions or their mixtures. The sorbent removes sulfur from the hydrocarbon fuel in high efficiency and can be repetitively regenerated without loss of activity.

  1. Bound zeolite catalyst and process for using the catalyst

    SciTech Connect

    Kao, J.L.; Poeppelmeier, K.R.; Funk, W.G.; Steger, J.J.; Fung, S.C.; Cross, V.R.

    1987-03-10

    A process is described for reforming naphtha. The process comprises (a) contacting the naphtha in the presence of hydrogen at elevated temperatures with a catalyst comprising a binder, a type L zeolite containing exchangeable cations of which at least 75% are selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, calcium and barium, at least one Group VIII noble metal, the particles of which are well dispersed over the surface of the catalyst and at least 90% of the noble metal associated with the zeolite is in the form of particles having a diameter of less than about 7 A; and (b) recovering reformed product.

  2. Destructive hydroisomerization of naphtha cuts over zeolitic nickel aluminosilicate catalyst

    SciTech Connect

    Abad-zade, K.I.; Rustamov, M.I.

    1987-05-01

    The authors discuss a process developed for hydroisomerization of low-octane naphtha cuts with the aim of obtaining light isoparaffinic hydrocarbons. A zeolitic Ni-Al-Si catalyst with highly dispersed nickel was synthesized. The characteristics of the naphtha cuts used are provided. Data is given on the influence of temperature on destructive hydroisomerization of the 85-195/sup 0/C cut. It is found that the zeolitic Ni-Al-Si catalyst is adequate in activity so that the naphtha cut can be subjected to thorough destructive hydroisomerization through an ionic mechanism with little formation of C/sub 1/ and C/sub 2/ hydrocarbons.

  3. Effect of crystal size on physical and catalytic properties of ZSM-5 type zeolites

    NASA Astrophysics Data System (ADS)

    Voogd, P.

    1991-09-01

    Diffusion of C6-alkanes in zeolite ZSM-5 and its aluminum free variant silicate-1 receives the greatest attention in the thesis. A physical property of zeolite like the ability to sorb, in particular, nonpolar compounds, was utilized in studying hydrocarbon diffusion by performing adsorption and desorption experiments. The diffusional behavior of the zeolite ZSM-5 and of aluminated silicate-1 at catalytically relevant temperatures was studied by way of a catalytic property of the zeolite. Descriptions of physical studies on nitrogen sorption in ZSM 5 type zeolites and of catalytic studies on the conversion of ethanol to hydrocarbons complete the thesis which tries to give a better understanding of adsorptive, diffusional, and catalytic behavior by describing experiments in which only one parameter has been varied, the zeolite crystal size. Discussions and conclusions are directed towards the industrial application of zeolite ZSM-5, as a catalyst.

  4. Nano- and microsized zeolites as a perspective material for potentiometric biosensors creation.

    PubMed

    Soldatkin, Oleksandr O; Shelyakina, Margaryta K; Arkhypova, Valentyna N; Soy, Esin; Kirdeciler, Salih Kaan; Ozansoy Kasap, Berna; Lagarde, Florence; Jaffrezic-Renault, Nicole; Akata Kurç, Burcu; Soldatkin, Alexei P; Dzyadevych, Sergei V

    2015-01-01

    A number of potentiometric biosensors based on coimmobilization of enzymes with different types of zeolite on pH-ion-sensitive field-effect transistor (ISFET) have been developed. Their working characteristics have been determined and compared. It was shown that clinoptilolite and zeolite Beta polymorph A (BEA) are more promising for creating biosensors than zeolite A. Changing the concentration of zeolite BEA in membranes, it is possible to extend the biosensor linear measurement range. The two-layer method of deposition of the enzyme with clinoptilolite was found to provide a significant increase in the biosensor sensitivity to substrates, whereas thermal modification of the zeolite BEA crystals can improve analytical characteristics of potentiometric biosensors for detection of toxic substances. These results show that it is possible to regulate the ISFET characteristics for different enzyme-based biosensors by tailoring the electrode surfaces via different zeolites. This makes zeolites strong candidates for integration into biosensors as ISFET modifiers. PMID:25852356

  5. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  6. Role of Delamination in Zeolite-Catalyzed Aromatic Alkylation: UCB‑3 versus 3‑D Al-SSZ-70

    SciTech Connect

    Runnebaum, Ron C.; Ouyang, Xiaoying; Edsinga, Jeffrey A.; Rea, Thomas; Arslan, Ilke; Hwang, Son-Jong; Zones, Stacey I.; Katz, Alexander

    2014-07-03

    Delaminated zeolite UCB-3 exhibits 2.4-fold greater catalytic activity relative to its three-dimensional (3D) zeolite counterpart, Al-SSZ-70, and 2.0-fold greater activity (per catalyst mass) when compared with industrial catalyst MCM-22, for the alkylation of toluene with propylene at 523 K. The former increase is nearly equal to the observed relative increase in external surface area and acid sites upon delamination. However, at 423 K for the same reaction, UCB-3 exhibits a 3.5-fold greater catalytic activity relative to 3D Al-SSZ-70. The higher relative rate enhancement for the delaminated material at lower temperature can be elucidated on the basis of increased contributions from internal acid sites. Evidence of possible contributions from such acid sites is obtained by performing catalysis after silanation treatment, which demonstrates that although virtually all catalysis in MCM-22 occurs on the external surface, catalysis also occurs on internal sites for 3D Al-SSZ-70. The additional observed enhancement at low temperatures can therefore be rationalized by greater access to internal active sites as a result of sheet breakage during delamination. Such breakage leads to shorter characteristic internal diffusion paths and was visualized using TEM comparisons of UCB-3 and 3D Al-SSZ-70.

  7. The growth of zeolites A, X and mordenite in space

    NASA Technical Reports Server (NTRS)

    Sacco, Albert, Jr.; Bac, N.; Coker, E. N.; Dixon, A. G.; Warzywoda, J.; Thompson, R. W.

    1994-01-01

    Zeolites are a class of crystalline aluminosilicate materials that form the backbone of the chemical process industry worldwide. They are used primarily as adsorbents and catalysts and support to a significant extent the positive balance of trade realized by the chemical industry in the United States (around $19 billion in 1991). The magnitude of their efforts can be appreciated when one realizes that since their introduction as 'cracking catalysts' in the early 1960's, they have saved the equivalent of 60 percent of the total oil production from Alaska's North Slope. Thus the performance of zeolite catalysts can have a profound effect on the U.S. economy. It is estimated that a 1 percent increase in yield of the gasoline fraction per barrel of oil would represent a savings of 22 million barrels of crude oil per year, representing a reduction of $400 million in the United States' balance of payments. Thus any activity that results in improvement in zeolite catalyst performance is of significant scientific and industrial interest. In addition, due to their 'stability,' uniformity, and, within limits, their 'engineerable' structures, zeolites are being tested as potential adsorbents to purify gases and liquids at the parts-per-billion levels needed in today's electronic, biomedical, and biotechnology industries and for the environment. Other exotic applications, such as host materials for quantum-confined semiconductor atomic arrays, are also being investigated. Because of the importance of this class of material, extensive efforts have been made to characterize their structures and to understand their nucleation and growth mechanisms, so as to be able to custom-make zeolites for a desired application. To date, both the nucleation mechanics and chemistry (such as what are the 'key' nutrients) are, as yet, still unknown for many, if not all, systems. The problem is compounded because there is usually a 'gel' phase present that is assumed to control the degree of

  8. Chemical interactions in multimetal/zeolite catalysts

    SciTech Connect

    Sachtler, W.M.H.

    1992-02-07

    For Pt/NaY catalysts our analysis of the mechanism of metal particle formation has enabled us to produce at will samples which contain either the majority of the Pt particles in supercages, without filling these cages completely, or the Pt particles bulge into neighboring cages. The catalytic selectivity is distinctly different for these preparations, in the former case molecules can enter a supercage which is partially filled by the Pt cluster, in the second case adsorption takes place through the cage window. Applying the same principles of catalyst preparation of bimetallic catalysts enables us to produce PtCu particles in supercages of NaY, which contain, initially a Pt core, surrounded by a Cu mantle. Earlier we have found that Ni ions migrate into hexagonal prisms during calcination of Ni/NaY; this process can be partially suppressed by first filling these prisms with Mn or Cr ions. In more recent work we found that addition of Pt strongly lowers the temperature of Ni reduction. Part of the Ni ions is reduced by hydrogen while still inside the smaller cages. This reduction process is, however, reversible; at elevated temperature and in an inert atmosphere protons re-oxidize the Ni atoms and dihydrogen gas is developed. In this way it seems possible to count the Ni atoms in small cages. The calcination stage in the preparation of zeolite supported metals has been studied in considerable detail for Pd/NaY. The Pd is introduced as a tetrammin complex; during calcination the ammine ligands are successively oxidized. Once three ammine ligands are destroyed, the Pd ions which carry only one ligand, surprisingly jump from the supercages to the sodalite cage.

  9. CAN WE PROBE THE LORENTZ FACTOR OF GAMMA-RAY BURSTS FROM GeV-TeV SPECTRA INTEGRATED OVER INTERNAL SHOCKS?

    SciTech Connect

    Aoi, Junichi; Nagataki, Shigehiro; Murase, Kohta; Takahashi, Keitaro; Ioka, Kunihito

    2010-10-10

    We revisit the high-energy spectral cutoff originating from the electron-positron pair creation in the prompt phase of gamma-ray bursts (GRBs) with numerical and analytical calculations. We show that the conventional exponential and/or broken power-law cutoff should be drastically modified to a shallower broken power law in practical observations that integrate emissions from different internal shocks. Since the steepening is tiny for observations, this 'smearing' effect can generally reduce the previous estimates of the Lorentz factor of the GRB outflows. We apply our formulation to GRB 080916C, recently detected by the Large Area Telescope detector on the Fermi satellite, and find that the minimum Lorentz factor can be {approx}600 (or even smaller values), which is below but consistent with the previous result of {approx}900. Observing the steepening energy (the so-called 'pair-break energy') is crucial to diagnosing the Lorentz factor and/or the emission site in future observations, especially current and future Cherenkov telescopes such as MAGIC, VERITAS, and CTA.

  10. Rapid detection of Cronobacter sakazakii by real-time PCR based on the cgcA gene and TaqMan probe with internal amplification control.

    PubMed

    Hu, Shuangfang; Yu, Yigang; Li, Rong; Wu, Xinwei; Xiao, Xinglong; Wu, Hui

    2016-03-01

    Cronobacter sakazakii is a severe virulent strain that is frequently detected in powdered infant formula (PIF). Therefore, it is necessary to develop a fast and specific detection method. The specificity of our newly developed quantitative real-time PCR (qRT-PCR) was validated with DNA from 46 strains. Among them, 12 C. sakazakii strains were correctly amplified, whereas no positive florescent signal was observed from 34 nontarget controls. The detection limit of C. sakazakii was about 110 CFU/mL in broth and 1100 CFU/g in PIF. After enrichment in buffered peptone water for 6 h, our developed qRT-PCR assay could reliably detect C. sakazakii when the inoculation level was as low as 2 CFU/25 g (0.08 CFU/g) in PIF. The growth of C. sakazakii could be inhibited by the presence of Lactobacillus pentosus and Bacillus cereus, which used a longer enrichment period before the isolation was accomplished. However, at 5 and 50 CFU/25 g inoculation levels of C. sakazakii in the presence of 4 × 10(6) CFU L. pentosus/25 g or of 2 × 10(4) CFU B. cereus/25 g, the qRT-PCR assay could detect the presence of Cronobacter even though these artificially spiked samples were negative in culture. Therefore, our results indicated that the qRT-PCR assay could detect samples containing inhibitors and could avoid false negatives by using an internal amplification control. PMID:26751178

  11. Gold Nanoparticle Internal Structure and Symmetry Probed by Unified Small-Angle X-ray Scattering and X-ray Diffraction Coupled with Molecular Dynamics Analysis.

    PubMed

    Fleury, Blaise; Cortes-Huerto, Robinson; Taché, Olivier; Testard, Fabienne; Menguy, Nicolas; Spalla, Olivier

    2015-09-01

    Shape and size are known to determine a nanoparticle's properties. Hardly ever studied in synthesis, the internal crystal structure (i.e., particle defects, crystallinity, and symmetry) is just as critical as shape and size since it directly impacts catalytic efficiency, plasmon resonance, and orients anisotropic growth of metallic nanoparticles. Hence, its control cannot be ignored any longer in today's research and applications in nanotechnology. This study implemented an unprecedented reliable measurement combining these three structural aspects. The unified small-angle X-ray scattering and diffraction measurement (SAXS/XRD) was coupled with molecular dynamics to allow simultaneous determination of nanoparticles' shape, size, and crystallinity at the atomic scale. Symmetry distribution (icosahedra-Ih, decahedra-Dh, and truncated octahedra-TOh) of 2-6 nm colloidal gold nanoparticles synthesized in organic solvents was quantified. Nanoparticle number density showed the predominance of Ih, followed by Dh, and little, if any, TOh. This result contradicts some theoretical predictions and highlights the strong effect of the synthesis environment on structure stability. We foresee that this unified SAXS/XRD analysis, yielding both statistical and quantitative counts of nanoparticles' symmetry distribution, will provide new insights into nanoparticle formation, growth, and assembly. PMID:26263393

  12. The active site of low-temperature methane hydroxylation in iron-containing zeolites.

    PubMed

    Snyder, Benjamin E R; Vanelderen, Pieter; Bols, Max L; Hallaert, Simon D; Böttger, Lars H; Ungur, Liviu; Pierloot, Kristine; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2016-08-18

    An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts. PMID:27535535

  13. High-pressure alchemy on a small-pore zeolite

    NASA Astrophysics Data System (ADS)

    Lee, Y.

    2011-12-01

    While an ever-expanding variety of zeolites with a wide range of framework topology is available, it is desirable to have a way to tailor the chemistry of the zeolitic nanopores for a given framework topology via controlling both the coordination-inclusion chemistry and framework distortion/relaxation. This is, however, subjected to the ability of a zeolitic nanopore to allow the redistribution of cations-water assembly and/or insertion of foreign molecules into the pores and channels. Small-pore zeolites such as natrolite (Na16Al16Si24O80x16H2O), however, have been known to show very limited capacity for any changes in the confinement chemistry. We have recently shown that various cation-exchanged natrolites can be prepared under modest conditions from natural sodium natrolite and exhibit cation-dependent volume expansions by up to 18.5% via converting the elliptical channels into progressively circular ones. Here, we show that pressure can be used as a unique and clean tool to further manipulate the chemistry of the natrolite nanopores. Our recent crystallographic and spectroscopic studies of pressure-insertion of foreign molecules, trivalent-cation exchange under pressure, and pressure-induced inversion of cation-water coordination and pore geometry in various cation-exchanged natrolites will be presented.

  14. USE OF SYNTHETIC ZEOLITES FOR ARSENATE REMOVAL FROM POLLUTANT WATER

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water below the current and proposed EPA MCL has been examined...

  15. Association of Indigo with Zeolites for Improved Color Stabilization

    NASA Astrophysics Data System (ADS)

    Dejoie, Catherine; Martinetto, Pauline; Dooryhée, Eric; van Elslande, Elsa; Blanc, Sylvie; Bordat, Patrice; Brown, Ross; Porcher, Florence; Anne, Michel

    2010-10-01

    The durability of an organic colour and its resistance against external chemical agents and exposure to light can be significantly enhanced by hybridizing the natural dye with a mineral. In search for stable natural pigments, the present work focuses on the association of indigo blue with several zeolitic matrices (LTA zeolite, mordenite, MFI zeolite). The manufacturing of the hybrid pigment is tested under varying oxidising conditions, using Raman and UV-visible spectrometric techniques. Blending indigo with MFI is shown to yield the most stable composite in all of our artificial indigo pigments. In absence of defects and substituted cations such as aluminum in the framework of the MFI zeolite matrix, we show that matching the pore size with the dimensions of the guest indigo molecule is the key factor. The evidence for the high colour stability of indigo@MFI opens a new path for modeling the stability of indigo in various alumino-silicate substrates such as in the historical Maya Blue pigment.

  16. Biogas cleaning and upgrading with natural zeolites from tuffs.

    PubMed

    Paolini, Valerio; Petracchini, Francesco; Guerriero, Ettore; Bencini, Alessandro; Drigo, Serena

    2016-01-01

    CO2 adsorption on synthetic zeolites has become a consolidated approach for biogas upgrading to biomethane. As an alternative to synthetic zeolites, tuff waste from building industry was investigated in this study: indeed, this material is available at a low price and contains a high fraction of natural zeolites. A selective adsorption of CO2 and H2S towards CH4 was confirmed, allowing to obtain a high-purity biomethane (CO2 <2 g m(-3), i.e. 0.1%; H2S <1.5 mg m(-3)), suitable for injection in national grids or as vehicle fuel. The loading capacity was found to be 45 g kg(-1) and 40 mg kg(-1), for CO2 and H2S, respectively. Synthetic gas mixtures and real biogas samples were used, and no significant effects due to biogas impurities (e.g. humidity, dust, moisture, etc.) were observed. Thermal and vacuum regenerations were also optimized and confirmed to be possible, without significant variations in efficiency. Hence, natural zeolites from tuffs may successfully be used in a pressure/vacuum swing adsorption process. PMID:26563442

  17. Selective photooxidation of hydrocarbons in zeolites by oxygen

    DOEpatents

    Frei, Heinz; Blatter, Fritz; Sun, Hai

    1998-01-01

    A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

  18. Spectral evidence for zeolite in the dust on Mars

    NASA Astrophysics Data System (ADS)

    Ruff, Steven W.

    2004-03-01

    Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data ( ˜ 1670 -220 cm -1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ˜ 1630 cm -1 is consistent with the presence of an H 2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ˜ 830 cm -1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ˜ 830 cm -1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.

  19. Direct Observation of Luminescent Silver Clusters Confined in Faujasite Zeolites.

    PubMed

    Altantzis, Thomas; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Martinez, Gerardo T; Abakumov, Artem M; Tendeloo, Gustaaf Van; Roeffaers, Maarten B J; Bals, Sara; Hofkens, Johan

    2016-08-23

    One of the ultimate goals in the study of metal clusters is the correlation between the atomic-scale organization and their physicochemical properties. However, direct observation of the atomic organization of such minuscule metal clusters is heavily hindered by radiation damage imposed by the different characterization techniques. We present direct evidence of the structural arrangement, at an atomic level, of luminescent silver species stabilized in faujasite (FAU) zeolites using aberration-corrected scanning transmission electron microscopy. Two different silver clusters were identified in Ag-FAU zeolites, a trinuclear silver species associated with green emission and a tetranuclear silver species related to yellow emission. By combining direct imaging with complementary information obtained from X-ray powder diffraction and Rietveld analysis, we were able to elucidate the main differences at an atomic scale between luminescent (heat-treated) and nonluminescent (cation-exchanged) Ag-FAU zeolites. It is expected that such insights will trigger the directed synthesis of functional metal nanocluster-zeolite composites with tailored luminescent properties. PMID:27391548

  20. Zeolite formation from coal fly ash and its adsorption potential

    SciTech Connect

    Duangkamol Ruen-ngam; Doungmanee Rungsuk; Ronbanchob Apiratikul; Prasert Pavasant

    2009-10-15

    The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m{sup 2}/g. Optimal crystallization temperature and time were 90{sup o}C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%. 29 refs., 5 tabs., 7 figs.

  1. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles.

    PubMed

    Mielby, Jerrik; Abildstrøm, Jacob Oskar; Wang, Feng; Kasama, Takeshi; Weidenthaler, Claudia; Kegnaes, Søren

    2014-11-10

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high activity and selectivity for the catalytic gas-phase oxidation of ethanol are demonstrated. The zeolites are modified by a recrystallization process, which creates intraparticle voids and mesopores that facilitate the formation of small and disperse nanoparticles upon simple impregnation. The individual zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98 % selectivity toward acetaldehyde at 200 °C, which (under the given reaction conditions) corresponds to 606 mol acetaldehyde/mol Au hour(-1) . PMID:25196739

  2. Synthesis and Properties of Nano Zeolitic Imidazolate Frameworks

    SciTech Connect

    Nune, Satish K.; Thallapally, Praveen K.; Dohnalkova, Alice; Wang, Chong M.; Liu, Jun; Exarhos, Gregory J.

    2010-07-21

    Nano sized zeolitic imidazolate frameworks [nZIF-8] with excellent chemical and thermal stability has been synthesized at room temperature by simple mixing of 2-methylimidazole and zinc nitrate hexahydrate in methanol/ 1% high molecular weight poly(diallyldimethylammonium chloride) solution for 24 hrs

  3. ADSORPTION AND CATALYTIC DESTRUCTION OF TRICHLOROETHYLENE IN HYDROPHOBIC ZEOLITES

    EPA Science Inventory

    Several chromium exchanged ZSM-5 zeolites of varying SiO2/Al2O3 ratio were prepared and investigated for ambient (23 ?C) adsorption and subsequent oxidative destruction (250-400 ?C) of gaseous trichloroethylene (TCE, Cl2C=CHCl) in a humid air stream. With an increase in the SiO2...

  4. [Denitrification water treatment with zeolite composite filter by intermittent operation].

    PubMed

    Qing, Cheng-Song; Bao, Tao; Chen, Tian-Hu; Chen, Dong; Xie, Jing-Jing

    2012-12-01

    The zeolite composite filters (ZCF) with the size of4-8 mm were prepared using raw zeolite (0.15-0.18 mm) as the main material and the cement as binder. After a combination of material characterizations, such as the void fraction, apparent density, compression strength and surface area, the optimal prepared conditions of composite filters were obtained as follow: weight ratio of m (zeolite): m (cement) = 7 : 3, curing for 15 d under the moisture condition and ambient temperature. Through upflow low-concentration ammonia nitrogen wastewater, ZCF filled in the experimental column was hung with the biological membrane. Thus, intermittent dynamic experiments were conducted, the intermittent operation cycle included adsorption, biological regeneration and drip washing. Until concentration of ammonia nitrogen was more than 2 mg x L(-1) of effluent standards, water in experiment column was firstly emptied, and then blast biological regeneration was conducted. After the filters were bathed with water, the zeolite adsorption-biological regeneration cycle was performed repeatedly. The experimental results show that under conditions of 24 h blast and 5 d of continuous operation period, ammonia nitrogen removal rate is up to 87.6% on average, total nitrogen removal rate reaches 51.2% on average. PMID:23379168

  5. [Supplementation of swine feed rations with zeolite during cage rearing].

    PubMed

    Bartko, P; Chabada, J; Vrzgula, L; Solár, I; Blazovský, J

    1983-07-01

    The effect of the addition of zeolite to pig feed ration was studied in the cage rearing system under production conditions. Zeolite was mixed in the COS I and COS II feed mixtures directly in the feed plant, the mixing ratio being 100 kg feed mixture + 5 kg zeolite. The feed mixture was administered in granular form ad libitum. The test group had 648 weanlings and the control group 674 weanlings; the piglets, kept in two-story cages in four sections, were arranged so that the test group could be a mirror-like reflection of the control group. The trial lasted 45 days. The piglets given the fortified feed ration had daily weight gains higher by 0.017 kg and feed consumption lower by 0.234 kg per 1 kg of gain, as compared with the control animals. The costs of the feed ration required for producing a kilogram of gain were 8.55 Cz. crowns in the zeolite group and 9.422 crowns in the control group. PMID:6312666

  6. Preparation and gas separation properties of zeolite T membrane.

    PubMed

    Cui, Ying; Kita, Hidetoshi; Okamoto, Ken-ichi

    2003-09-01

    Zeolite T membranes were synthesized on tubular porous mullite tubes by hydrothermal synthesis. The membranes selectively permeated carbon dioxide from CO2/CH4 and CO2/N2 mixtures with high separation performances, which were due to combined effects of molecular sieving and competitive adsorption. PMID:13678177

  7. Characterization of natural zeolite clinoptilolite for sorption of contaminants

    NASA Astrophysics Data System (ADS)

    Xingu-Contreras, E.; García-Rosales, G.; García-Sosa, I.; Cabral-Prieto, A.; Solache-Ríos, M.

    2015-06-01

    The nanoparticles technology has received considerable attention for its potential applications in groundwater treatment for the removal of various pollutants as Cadmium. In this work, iron boride nanoparticles were synthesized in pure form and in presence of homo-ionized zeolite clinoptilolite, as support material. These materials were used for removing Cd (II) from aqueous solutions containing 10, 50, 100, 150, 200, 250, 300 and 400 mg/L. The characterization of these materials was made by using X-ray Diffraction, Scanning Electron Microscopy and Mössbauer Spectroscopy. Pure iron boride particles show a broad X-ray diffraction peak centered at 45∘ (2 𝜃), inferring the presence of nanocrystals of Fe2B as identified from Mössbauer Spectroscopy. The size of these Fe2B particles was within the range of 50 and 120 nm. The maximum sorption capacities for Cd (II) of iron boride particles and supported iron boride particles in homo-ionized zeolitic material were nearly 100 %. For homo-ionized zeolite and homo-ionized zeolite plus sodium borohydride was ≥ 95 %.

  8. Zeolitization of glassy Topopah Spring tuff under hydrothermal conditions

    SciTech Connect

    Knauss, K.G.

    1987-01-01

    In support of the Nevada Nuclear Waste Storage Investigations Project experiments were conducted to study the effects of heat generated by a nuclear waste repository in densely welded, devitrified tuff on the underlying, compositionally-equivalent glassy tuff at Yucca Mtn. Solid wafers of glassy tuff were reacted with a dilute ground water for several months at 150{sup 0}C and 250{sup 0}C at 100 bars pressure in Dickson-type, gold-bag rocking autoclaves. The in-situ chemistry of the hydrothermal fluids was modeled and the chemical affinities for all possible mineral precipitation reactions were calculated using the EQ3/6 program. In the 250{sup 0}C experiment the calculations suggest that a zeolite mineral would be expected to form. Analyses of the run products showed that not only had the wafer been extensively corroded and the glass shards replaced by clinoptilolite, but pure clinoptilolite had precipitated directly from solution. In the 150{sup 0}C experiment, although clay minerals were thermodynamically favored to form in the first half of the experiment, by the end of the run a zeolite mineral was predicted to form. Analyses of the run products showed no well-formed secondary minerals (clays or zeolites) had formed. At the lower temperature the effects of precipitation kinetics may preclude the formation of the zeolite within the time span of this experiment. In general the observations are in relatively good agreement with the geochemical model calculations.

  9. Synthesis of mesoporous zeolite single crystals with cheap porogens

    NASA Astrophysics Data System (ADS)

    Tao, Haixiang; Li, Changlin; Ren, Jiawen; Wang, Yanqin; Lu, Guanzhong

    2011-07-01

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, 27Al magic angle spinning nuclear magnetic resonance ( 27Al MAS NMR), temperature-programmed desorption of ammonia (NH 3-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. 27Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites.

  10. Inelastic neutron scattering from tetramethylammonium cations occluded within zeolites

    SciTech Connect

    Brun, T.O.; Curtiss, L.A.; Iton, L.E.; Kleb, R.; Newsam, J.M.; Beyerlein, R.A.; Vaughan, D.E.W.

    1987-06-24

    The use of organic bases, for example, tetraalklylammonium hydroxides, and other organic reagents has greatly enhanced the scope of gel/solution synthesis routes to crystalline microporous materials such as zeolites. The role of these organic components, however, continues to be the topic of considerable debate. The organic components first modify the gel structural chemistry. The presence of tetramethylammonium (TMA) hydroxide, for example, promotes the formation of double four-ring units in silicate solutions. Occlusion of organic gel components in zeolite crystal structures, however, leads also to the concept of a templating effect in which the organic component provides a basis around which the developing zeolite cages form. The mechanism of this templating process remains somewhat ill defined and must, at least, be of variable specificity. The authors describe here the use of inelastic neutron scattering (INS) to measure TMA template torsional vibrations, vibrations that provide to be sensitive to the strength of the interaction between the template cation and the enclosing zeolite cage.

  11. DIFFUSION MEASUREMENTS DURING PERVAPORATION THROUGH A ZEOLITE MEMBRANE

    EPA Science Inventory


    An isotopic-transient technique was used to directly measure diffusion times of H2O, methanol, ethanol, 2-propanol, and acetone in pure and binary mixture feeds transporting through a zeolite membrane under steady-state pervaporation conditions. Diffusivities can be determ...

  12. Calibration analysis of zeolites by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Horňáčková, M.; Grolmusová, Z.; Horňáček, M.; Rakovský, J.; Hudec, P.; Veis, P.

    2012-08-01

    Laser induced breakdown spectroscopy was used for calibration analysis of different types of microporous crystalline aluminosilicates with exactly ordered structure — zeolites. The LIBS plasma was generated using a Q-switched Nd:YAG laser operating at the wavelength of 532 nm and providing laser pulses of 4 ns duration. Plasma emission was analysed by echelle type emission spectrometer, providing wide spectral range 200-950 nm. The spectrometer was equipped with intensified CCD camera providing rapid spectral acquisition (gating time from 5 ns). The optimum experimental conditions (time delay, gate width and laser pulse energy) have been determined for reliable use of LIBS for quantitative analysis. Samples of different molar ratios of Si/Al were used to create the calibration curves. Calibration curves for different types of zeolites (mordenite, type Y and ZSM-5) were constructed. Molar ratios of Si/Al for samples used for calibration were determined by classical wet chemical analysis and were in the range 5.3-51.8 for mordenite, 2.3-12.8 for type Y and 14-600 for ZSM-5. Zeolites with these molar ratios of Si/Al are usually used as catalysts in alkylation reactions. Laser induced breakdown spectroscopy is a suitable method for analysis of molar ratio Si/Al in zeolites, because it is simple, fast, and does not require sample preparation compared with classical wet chemical analysis which are time consuming, require difficult sample preparation and manipulation with strong acids and bases.

  13. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    DOEpatents

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  14. Zeolite in horizontal permeable reactive barriers for artificial groundwater recharge

    NASA Astrophysics Data System (ADS)

    Leal, María; Martínez-Hernández, Virtudes; Lillo, Javier; Meffe, Raffaella; de Bustamante, Irene

    2013-04-01

    The Spanish Water Reuse Royal Decree 1620/2007 considers groundwater recharge as a feasible use of reclaimed water. To achieve the water quality established in the above-mentioned legislation, a tertiary wastewater treatment is required. In this context, the infiltration of effluents generated by secondary wastewater treatments through a Horizontal Permeable Reactive Barrier (HPRB) may represent a suitable regeneration technology. Some nutrients (phosphate and ammonium) and some Pharmaceutical and Personal Care Products (PPCPs) are not fully removed in conventional wastewater treatment plants. To avoid groundwater contamination when effluents of wastewater treatments plants are used in artificial recharge activities, these contaminants have to be removed. Due to its sorption capacities, zeolite is among the most used reactive materials in Permeable Reactive Barrier (PRB). Therefore, the main goal of this study is to evaluate the zeolite retention effectiveness of nutrients and PPCPs occurring in treated wastewater. Batch sorption experiments using synthetic wastewater (SWW) and zeolite were performed. A 1:4 zeolite/SWW ratio was selected due to the high sorption capacity of the reactive material.The assays were carried out by triplicate. All the bottles containing the SWW-zeolite mixture were placed on a mechanical shaker during 24 hours at 140 rpm and 25 °C. Ammonium and phosphate, as main nutrients, and a group of PPCPs were selected as compounds to be tested during the experiments. Nutrients were analyzed by ion chromatography. For PPCPs determination, Solid Phase Extraction (SPE) was applied before their analysis by liquid chromatography-mass spectrometry time of flight (LC-MS/ TOF). The experimental data were fitted to linearized Langmuir and Freundlich isotherm equations to obtain sorption parameters. In general, Freundlich model shows a greater capability of reproducing experimental data. To our knowledge, sorption of the investigated compounds on zeolite

  15. Clinoptilolite zeolitized tuff from Central Alborz Range, North Iran

    NASA Astrophysics Data System (ADS)

    Taghipour, Batoul

    2010-05-01

    Zeolites are hydrated alumino-silicates of the alkaline and alkaline earth cations, principally sodium, potassium, calcium, and magnesium (Iijima 1980; Hay 1981). Zeolites occur principally in unmetamorphosed sedimentary rocks and are particularly widespread in volcani-clastic strata (Hay, 1978). Clinoptilolite is a natural zeolite of the heulandite group with the simplified formula of (Na, K)6 Si30 Al6 O72 .nH2. It is the most common natural zeolite found mainly in sedimentary rocks of volcanic origin. Alborz zone is one of the important geological divisions in Iran. This zone is restricted to Kopeh dagh zone in North & Central Iranian zone in South and is a region of active deformation within the broad Arabian-Eurasia collision zone (Allen et al. 2003). The zeolitized green tuff belt from Central Alborz which introduce here are made of volcanoclastic sequence of Karaj Formation. This belt is about 40 km long along Alborz Range and is Eocene in age. Zeolites and associated minerals of this altered vitric tuff studied. Zeolitization took place in some beds of Karaj Formations, with average range of 3 to 300 meters thickness. There are several gypsum lenses which interbed with a widespread green tuff succession in the studied area. On the basis of chemical composition these tuffs are in the range of acid to intermediate volcanic rocks. Also magmatic affinity is calc-alkaline and geological setting of the area belongs to volcanic arc granitoid. Petrographic data has shown that various shape and size of shard glass are the main component of tuffs. Based on the field studies, detail microscopy, XRD and electron microprobe analysis (EMPA), the following main minerals are determined: Clinoptilolite+montmorillonite+crystobalite. Clinoptilolite and smectite are predominant minerals in all altered samples. Concerning the Si/Al ratio of 40 point analyses of glass shards the Alborz tuff has clinoptilolite composition. Otherwise the chemical composition of altered shard glass

  16. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats.

    PubMed

    Rieger, Katrina A; Cho, Hong Je; Yeung, Hiu Fai; Fan, Wei; Schiffman, Jessica D

    2016-02-10

    In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites. PMID:26788882

  17. Catalase-like activity studies of the manganese(II) adsorbed zeolites

    NASA Astrophysics Data System (ADS)

    Ćiçek, Ekrem; Dede, Bülent

    2013-12-01

    Preparation of manganese(II) adsorbed on zeolite 3A, 4A, 5A. AW-300, ammonium Y zeolite, organophilic, molecular sieve and catalase-like enzyme activity of manganese(II) adsorbed zeolites are reported herein. Firstly zeolites are activated at 873 K for two hours before contact manganese(II) ions. In order to observe amount of adsorption, filtration process applied for the solution. The pure zeolites and manganese(II) adsorbed zeolites were analysed by FT-IR. As a result according to the FT-IR spectra, the incorporation of manganese(II) cation into the zeolite structure causes changes in the spectra. These changes are expected particularly in the pseudolattice bands connected with the presence of alumino and silicooxygen tetrahedral rings in the zeolite structure. Furthermore, the catalytic activities of the Mn(II) adsorbed zeolites for the disproportionation of hydrogen peroxide were investigated in the presence of imidazole. The Mn(II) adsorbed zeolites display efficiency in the disproportion reactions of hydrogen peroxide, producing water and dioxygen in catalase-like activity.

  18. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors

    PubMed Central

    Zheng, Yangong; Li, Xiaogan; Dutta, Prabir K.

    2012-01-01

    The unique properties of microporous zeolites, including ion-exchange properties, adsorption, molecular sieving, catalysis, conductivity have been exploited in improving the performance of gas sensors. Zeolites have been employed as physical and chemical filters to improve the sensitivity and selectivity of gas sensors. In addition, direct interaction of gas molecules with the extraframework cations in the nanoconfined space of zeolites has been explored as a basis for developing new impedance-type gas/vapor sensors. In this review, we summarize how these properties of zeolites have been used to develop new sensing paradigms. There is a considerable breadth of transduction processes that have been used for zeolite incorporated sensors, including frequency measurements, optical and the entire gamut of electrochemical measurements. It is clear from the published literature that zeolites provide a route to enhance sensor performance, and it is expected that commercial manifestation of some of the approaches discussed here will take place. The future of zeolite-based sensors will continue to exploit its unique properties and use of other microporous frameworks, including metal organic frameworks. Zeolite composites with electronic materials, including metals will lead to new paradigms in sensing. Use of nano-sized zeolite crystals and zeolite membranes will enhance sensor properties and make possible new routes of miniaturized sensors. PMID:22666081

  19. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  20. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template.

    PubMed

    Kim, Kyoungsoo; Lee, Taekyoung; Kwon, Yonghyun; Seo, Yongbeom; Song, Jongchan; Park, Jung Ki; Lee, Hyunsoo; Park, Jeong Young; Ihee, Hyotcherl; Cho, Sung June; Ryoo, Ryong

    2016-07-01

    Three-dimensional graphene architectures with periodic nanopores—reminiscent of zeolite frameworks—are of topical interest because of the possibility of combining the characteristics of graphene with a three-dimensional porous structure. Lately, the synthesis of such carbons has been approached by using zeolites as templates and small hydrocarbon molecules that can enter the narrow pore apertures. However, pyrolytic carbonization of the hydrocarbons (a necessary step in generating pure carbon) requires high temperatures and results in non-selective carbon deposition outside the pores. Here, we demonstrate that lanthanum ions embedded in zeolite pores can lower the temperature required for the carbonization of ethylene or acetylene. In this way, a graphene-like carbon structure can be selectively formed inside the zeolite template, without carbon being deposited at the external surfaces. X-ray diffraction data from zeolite single crystals after carbonization indicate that electron densities corresponding to carbon atoms are generated along the walls of the zeolite pores. After the zeolite template is removed, the carbon framework exhibits an electrical conductivity that is two orders of magnitude higher than that of amorphous mesoporous carbon. Lanthanum catalysis allows a carbon framework to form in zeolite pores with diameters of less than 1 nanometre; as such, microporous carbon nanostructures can be reproduced with various topologies corresponding to different zeolite pore sizes and shapes. We demonstrate carbon synthesis for large-pore zeolites (FAU, EMT and beta), a one-dimensional medium-pore zeolite (LTL), and even small-pore zeolites (MFI and LTA). The catalytic effect is a common feature of lanthanum, yttrium and calcium, which are all carbide-forming metal elements. We also show that the synthesis can be readily scaled up, which will be important for practical applications such as the production of lithium-ion batteries and zeolite-like catalyst

  1. Sorption of cesium and strontium by zeolite single crystals

    SciTech Connect

    Burns, R.G.; Wood, V.M.; Morgenstein, M.E.

    1992-08-01

    The aspect ratios of crystals of platey clinoptilolite and fibrous mordenite observed in mineral assemblages coating fractures through tuffs at Yucca Mountain, Nevada, influence the sorption properties of these two zeolites. The crystallographic dependencies of cation exchange reactions have been demonstrated in clinoptilolite by reacting CsCl with oriented single crystals mounted on (100), (010), (001) and (101) faces. Competing cation exchange reactions involving Cs{sup +}, Sr{sup 2+} and Ba{sup 2+}, as well as Cs{sup +} in NaCl or NaHCO{sub 3} solutions, were performed on the oriented zeolite crystals. Reactions were carried out at 60{degrees}C for 1 to 8 weeks in a shaking water bath with dissolved metal chloride solutions ranging in concentrations from 1M to 10{sup {minus}4}M. Electron microprobe analyses were performed on the surfaces of the reacted zeolite crystals. In clinoptilolite, cation exchange is initially retarded on (010) faces which are nominal to the one direction (parallel to the b-axis) along which channels do not exist in the clinoptilolite structure. This orientation effect was particularly severe for Sr, concentrations of which on (010) faces remained 90% lower than values measured on other crystal faces even when reaction times exceeded 2 months. In competition with Sr and Ba, the uptake of Cs into clinoptilolite was lowered significantly (and vice versa for Ba and Sr), particularly in the presence of Ba. The addition of 1M NaCl did not significantly affect the relative concentrations of these competing cations in reacted zeolite crystals. In NaHCO{sub 3} solutions, however, the Cs uptake was lowered significantly. Although clinoptilolite has a very high selectivity for Cs{sup +} compared to other cations, competition with Sr{sup 2+} and Ba{sup 2+} reduces the concentration of Cs{sup +} exchanged into this zeolite. 31 refs., 11 figs.

  2. Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property.

    PubMed

    Chen, Li-Hua; Xu, Shu-Tao; Li, Xiao-Yun; Tian, Ge; Li, Yu; Rooke, Joanna Claire; Zhu, Guang-Shan; Qiu, Shi-Lun; Wei, Ying-Xu; Yang, Xiao-Yu; Liu, Zhong-Min; Su, Bao-Lian

    2012-07-01

    Hierarchical porous architecture with interconnected trimodal micro-meso-macroporous systems constructed from uniform zeolite Zr-doped silicalite-1 nanocrystals has been prepared. The synthesis has been made by using glycerin as a reaction medium via a quasi-solid-state crystallization of hierarchically meso-macroporous zirconosilicate precursor under the effect of the structure directing agent TPAOH. The presence of glycerin is crucial in the synthesis systems to maintain the porous hierarchy. The pores inter-connectivity, Zr location in the framework, the acidity and the catalytic activity have been studied by laser-hyperpolarized (129)Xe NMR spectroscopy, UV-visible spectroscopy, temperature-programmed desorption of ammonia and the catalytic isopropylbenzene cracking probe reaction, respectively. The products possess well-defined macrochannels interconnected with mesopores located in the macropore walls, which in turn have been constructed from microporous MFI-type zeolite units. (129)Xe NMR study indicated that the hierarchically micro-, meso-, macro-pore systems are homogeneously distributed throughout the final materials and well interconnected, which is important for molecular diffusion. The TPD-NH(3) investigation revealed that the hierarchically micro-meso-macroporous materials constructed from zeolite Zr-Silicalite-1 nanocrystals present strong acidity. PMID:22498367

  3. X-ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One.

    PubMed

    Ristanović, Zoran; Hofmann, Jan P; Richard, Marie-Ingrid; Jiang, Tao; Chahine, Gilbert A; Schülli, Tobias U; Meirer, Florian; Weckhuysen, Bert M

    2016-06-20

    Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm-resolved X-ray diffraction (μ-XRD) and X-ray excited optical fluorescence (μ-XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ-XEOF) were correlated with local crystallinity and framework Al content, determined by μ-XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X-ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27145171

  4. The influence of chemisorbed molecules on mass transfer in H-ZSM-5-type zeolites and the location of Broensted acid sites

    SciTech Connect

    Caro, J.; Buelow, M. ); Kaerger, J.; Pfeifer, H. )

    1988-11-01

    Heterogeneous catalysis is one of the most important applications of zeolites. Therefore, various methods have been developed to determine the strength and concentration of Bronsted acid sites in zeolites. Among them, in the last few years, {sup 1}H MAS NMR has become a powerful tool. In addition to the accessibility of the acid sites probed by chemisorption of N-bases, the steric environment of these catalytically active sites is of importance since it imposes constraints on the geometry of the transition state. However, only a few studies have been reported on this topic. Information was obtained from quantum chemical calculations, catalytic experiments, I.R. spectroscopy, and the arrangement of guest molecules. From these investigations it has been concluded that in H-ZSM-5 the channel intersections should be preferential location centers for the Bronsted acid sites. In adsorption technology, in the use of zeolites as shape-selective adsorbents, modification of the molecular sieve properties by chemisorption of nitrogen-containing bases (N-compounds) has become a common technique. The authors have applied the NMR pulsed field gradient technique to study the influence of chemisorbed N-compounds on transport properties of molecular sieves, considering the chemisorbed compounds as transport obstacles.

  5. X‐ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One

    PubMed Central

    Ristanović, Zoran; Hofmann, Jan P.; Richard, Marie‐Ingrid; Jiang, Tao; Chahine, Gilbert A.; Schülli, Tobias U.; Meirer, Florian

    2016-01-01

    Abstract Structure–activity relationships in heterogeneous catalysis are challenging to be measured on a single‐particle level. For the first time, one X‐ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm‐resolved X‐ray diffraction (μ‐XRD) and X‐ray excited optical fluorescence (μ‐XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ‐XEOF) were correlated with local crystallinity and framework Al content, determined by μ‐XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X‐ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27145171

  6. X‐ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One

    PubMed Central

    Ristanović, Zoran; Hofmann, Jan P.; Richard, Marie‐Ingrid; Jiang, Tao; Chahine, Gilbert A.; Schülli, Tobias U.; Meirer, Florian

    2016-01-01

    Abstract Structure–activity relationships in heterogeneous catalysis are challenging to be measured on a single‐particle level. For the first time, one X‐ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm‐resolved X‐ray diffraction (μ‐XRD) and X‐ray excited optical fluorescence (μ‐XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ‐XEOF) were correlated with local crystallinity and framework Al content, determined by μ‐XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X‐ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27478278

  7. Adsorptive Separation of 1-Butanol from Aqueous Solutions Using MFI- and FER-Type Zeolite Frameworks: A Monte Carlo Study.

    PubMed

    DeJaco, Robert F; Bai, Peng; Tsapatsis, Michael; Siepmann, J Ilja

    2016-03-01

    Anaerobic fermentation can transform carbohydrates to yield a multicomponent mixture comprising mainly of acetone, 1-butanol, and ethanol (ABE) in a typical weight ratio of 3:6:1. Compared to ethanol, 1-butanol, the main product of ABE fermentation, offers significant advantages as a biofuel or a fuel additive. However, the toxicity of 1-butanol for cell cultures requires broth concentrations to be low in 1-butanol (≈1-2 wt %). An energy-efficient recovery method that performs well even at low 1-butanol concentrations is therefore necessary to ensure economic feasibility of the ABE fermentation process. In this work, configurational-bias Monte Carlo simulations in the Gibbs ensemble are performed to probe the adsorption of 1-butanol/water solutions onto all-siliceous zeolites with the framework types MFI and FER. At low solution concentration, the selectivity and capacity for 1-butanol in MFI are larger than those in FER, while the opposite is true for concentrations at or above those of ABE broths. Structural analysis at various loadings sheds light on the different sorbate-sorbate and sorbate-sorbent interactions that govern trends in adsorption in each zeolite. PMID:26818393

  8. Transport of engineered zeolite and natural nanoparticles in porous media

    NASA Astrophysics Data System (ADS)

    Keller, A. A.; Wang, P.

    2007-12-01

    There are many natural nanoparticles (NPs) that are ubiquitous in the environment such as soil and sediment colloids. In addition, many new engineered NPs, such as tailored zeolites, are being developed for applications in which they may be released into the environment. The fate and transport of the NPs is very much related with contaminant fate and transport. This study focused on transport of engineered zeolite nanoparticles (NPs) and natural soil and sediment colloidal NPs within porous media under saturated conditions. Clean medium-sized sand grains were used as the porous media and NPs were injected into the column as a pulse. KCl or CaCl2 with varying concentrations was used as background electrolyte. The results showed that, interestingly, the zeta- potential of the natural colloids and Zeolite-Ca decreased (more negative) with increasing KCl concentration while increased (less negative) with increasing CaCl2 concentration. This unexpected results was attributed to the fact that the natural colloids and Zeolite-Ca are saturated with divalent cations (Ca2+ and/or Mg2+) originally and the replacement of these divalent cations with K+ on the colloid surfaces caused the zeta-potential to drop with increasing KCl concentrations. The zeta-potential measurement of Zeolite-K increased with either KCl or CaCl2 concentration. Consistently early breakthrough was observed for NP compared with conservative tracers (KCL or CaCl2) and the effect was more pronounced with higher water flowrate. Zeolite-K showed significantly higher degree of transport (defined as percent of NPs transported out of the column) than Zeolite-Ca under the otherwise same conditions. With KCl as the background electrolyte, the significantly higher NP transport was observed than with CaCl2. Overall, as the ionic strength of the flowing fluid increased, the transport of the NPs decreased, largely due to the compressed double layer under the higher ionic strength. Besides, as the flow rate of the

  9. Studies of zeolite-based artificial photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyu

    Two ruthenium polypyridyl compounds of structural formula [(bpy) 2RuL]2+ (RuL) and [(bpy)2RuLDQ]4+ (RuLDQ) (where bpy = bipyridine, L = trans-1,2-bis-4-(4'-methyl)-2,2'-bipyridyl) ethane, LDQ = 1-[4-(4'-methyl)-2,2'-bipyridyl)]-2-[4-(4'-N,N'-tetramethylene-2,2'-bipyridinium)] ethene) were synthesized and purified. From pH titrations, it was found that the Ru complex was a stronger base (pKa* = 6) in the excited state than in the ground state (pKa = 4). Photolysis of the RuL complex in solutions at pH 7 and 12 led to formation of species with increased emission quantum yields, ˜55 nm blue-shift of the emission maximum to 625 nm and disappearance of the absorption band at 330 nm, the latter arising from the olefinic bond of the L ligand. Photoproducts formed at neutral pH have been analyzed. It was found that the major product was a dimer of RuL, dimerizing around the double bond. Photoreactions did not occur in the dark or in the aprotic solvent acetonitrile. We proposed that a Ru(III) radical intermediate was formed by photoinduced excited-state electron and proton transfer, which initiated the dimerization. The radical intermediate also underwent photochemical degradative reductions. Below pH 4, the emission quenching was proposed to arise via protonation of the monoprotonated RuLH + followed by electron transfer to the viologen-type moiety created by protonation. The products of photodegradation at pH > 12 were different from those of pH 7, but the mechanism of the degradation at pH > 12 was not elucidated. RuLDQ was stable under visible irradiation. We examined nanocrystalline zeolite as a host for light absorbing sensitizers (electron donors) and electron acceptors. Nanocrystalline zeolite Y (NanoY) with uniform particle size, pure phase was prepared. NanoY was obtained by periodically removing nanocrystals from the mother liquor and recycling the unused reagents. The nanoparicles were characterized by XRD and TEM. Optically clear colloidal solutions of Nano

  10. Large zeolite H-ZSM-5 crystals as models for the methanol-to-hydrocarbons process: bridging the gap between single-particle examination and bulk catalyst analysis.

    PubMed

    Hofmann, Jan P; Mores, Davide; Aramburo, Luis R; Teketel, Shewangizaw; Rohnke, Marcus; Janek, Jürgen; Olsbye, Unni; Weckhuysen, Bert M

    2013-06-24

    The catalytic, deactivation, and regeneration characteristics of large coffin-shaped H-ZSM-5 crystals were investigated during the methanol-to-hydrocarbons (MTH) reaction at 350 and 500 °C. Online gas-phase effluent analysis and examination of retained material thereof were used to explore the bulk properties of large coffin-shaped zeolite H-ZSM-5 crystals in a fixed-bed reactor to introduce them as model catalysts for the MTH reaction. These findings were related to observations made at the individual particle level by using polarization-dependent UV-visible microspectroscopy and mass spectrometric techniques after reaction in an in situ microspectroscopy reaction cell. Excellent agreement between the spectroscopic measurements and the analysis of hydrocarbon deposits by means of retained hydrocarbon analysis and time-of-flight secondary-ion mass spectrometry of spent catalyst materials was observed. The obtained data reveal a shift towards more condensed coke deposits on the outer zeolite surface at higher reaction temperatures. Zeolites in the fixed-bed reactor setup underwent more coke deposition than those reacted in the in situ microspectroscopy reaction cell. Regeneration studies of the large zeolite crystals were performed by oxidation in O2 /inert gas mixtures at 550 °C. UV-visible microspectroscopic measurements using the oligomerization of styrene derivatives as probe reaction indicated that the fraction of strong acid sites decreased during regeneration. This change was accompanied by a slight decrease in the initial conversion obtained after regeneration. H-ZSM-5 deactivated more rapidly at higher reaction temperature. PMID:23649944

  11. Effects of Surface and Morphological Properties of Zeolite on Impedance Spectroscopy-Based Sensing Performance

    PubMed Central

    Zhang, Jianwei; Li, Xiaogan; White, Jeremy; Dutta, Prabir K.

    2012-01-01

    Measurement by impedance spectroscopy of the changes in intrazeolitic cation motion of pressed pellets of zeolite particles upon adsorption of dimethylmethylphosphonate (DMMP) provides a strategy for sensing DMMP, a commonly used simulant for highly toxic organophosphate nerve agents. In this work, two strategies for improving the impedance spectroscopy based sensing of DMMP on zeolites were investigated. The first one is the use of cerium oxide (CeO2) coated on the zeolite surface to neutralize acidic groups that may cause the decomposition of DMMP, and results in better sensor recovery. The second strategy was to explore the use of zeolite Y membrane. Compared to pressed pellets, the membranes have connected supercages of much longer length scales. The zeolite membranes resulted in higher sensitivity to DMMP, but recovery of the device was significantly slower as compared to pressed zeolite pellets. PMID:23201996

  12. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass.

    PubMed

    Ennaert, Thijs; Van Aelst, Joost; Dijkmans, Jan; De Clercq, Rik; Schutyser, Wouter; Dusselier, Michiel; Verboekend, Danny; Sels, Bert F

    2016-02-01

    Increasing demand for sustainable chemicals and fuels has pushed academia and industry to search for alternative feedstocks replacing crude oil in traditional refineries. As a result, an immense academic attention has focused on the valorisation of biomass (components) and derived intermediates to generate valuable platform chemicals and fuels. Zeolite catalysis plays a distinct role in many of these biomass conversion routes. This contribution emphasizes the progress and potential in zeolite catalysed biomass conversions and relates these to concepts established in existing petrochemical processes. The application of zeolites, equipped with a variety of active sites, in Brønsted acid, Lewis acid, or multifunctional catalysed reactions is discussed and generalised to provide a comprehensive overview. In addition, the feedstock shift from crude oil to biomass involves new challenges in developing fields, like mesoporosity and pore interconnectivity of zeolites and stability of zeolites in liquid phase. Finally, the future challenges and perspectives of zeolites in the processing of biomass conversion are discussed. PMID:26691750

  13. Understanding Mechanism and Designing Strategies for Sustainable Synthesis of Zeolites: A Personal Story.

    PubMed

    Wang, Yeqing; Xiao, Feng-Shou

    2016-06-01

    Zeolites with intricate micropores have been widely studied for a long time as an important class of porous materials in different areas of industrial processes such as gas adsorption and separation, ion exchange, and shape-selective catalysis. However, their industrial syntheses are not sustainable, and normally require the presence of expensive organic templates and a large amount of solvents such as water. The presence of organic templates not only increases zeolite cost but also produces harmful gases during the removal of these templates by calcination, while the use of solvents significantly increases the amount of polluted water. This Personal Account briefly summarizes recent sustainable routes for the synthesis of zeolites in our group according to our understanding of the synthetic mechanism, and mainly focuses on the organotemplate-free synthesis of zeolites in the presence of zeolite seeds, the design of environmentally friendly templates, and solvent-free synthesis of zeolites. PMID:27009872

  14. XAFS Study on TiO2 Photocatalyst Loaded on Zeolite Synthesized from Steel Slag

    SciTech Connect

    Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kosuke; Katayama, Iwao; Yamashita, Hiromi

    2007-02-02

    The convenient route for the synthesis of Y-zeolites by utilizing steel slag as a material source was developed. Through hydrothermal treatment, well-crystallized Y-zeolite was obtained. We also synthesized TiO2-loaded Y-zeolites by an impregnation method. The structure of titanium oxide species highly dispersed on the zeolite, which couldn't be detected by XRD patterns, was investigated by XAFS analysis. Photocatalytic activity for decomposition of 2-propanol in liquid phase was found to be enhanced by the hydrophobic surface property of zeolite. It has been demonstrated that the zeolite synthesized from steel slag would be applicable as a promising support of TiO2 photocatalyst.

  15. Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane

    SciTech Connect

    Varoon, Kumar; Zhang, Xueyi; Elyassi, Bahman; Brewer, Damien D.; Gettel, Melissa; Kumar, Sandeep; Lee, J. Alex; Maheshwari, Sundeep; Mittal, Anudha; Sung, Chun-Yi; Cococcioni, Matteo; Francis, Lorraine F.; McCormick, Alon V.; Mkhoyan, K. Andre; Tsapatsis, Michael

    2011-10-06

    Thin zeolite films are attractive for a wide range of applications, including molecular sieve membranes, catalytic membrane reactors, permeation barriers, and low-dielectric-constant materials. Synthesis of thin zeolite films using high-aspect-ratio zeolite nanosheets is desirable because of the packing and processing advantages of the nanosheets over isotropic zeolite nanoparticles. Attempts to obtain a dispersed suspension of zeolite nanosheets via exfoliation of their lamellar precursors have been hampered because of their structure deterioration and morphological damage (fragmentation, curling, and aggregation). We demonstrated the synthesis and structure determination of highly crystalline nanosheets of zeolite frameworks MWW and MFI. The purity and morphological integrity of these nanosheets allow them to pack well on porous supports, facilitating the fabrication of molecular sieve membranes.

  16. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica.

    PubMed

    Vaičiukynienė, Danutė; Kantautas, Aras; Vaitkevičius, Vitoldas; Jakevičius, Leonas; Rudžionis, Žymantas; Paškevičius, Mantas

    2015-11-01

    The synthesis of zeolite NaA from silica by-product was carried out in the presence of 20 kHz ultrasound at room temperature. Zeolites obtained in this type of synthesis were compared to zeolites obtained by performing conventional static syntheses under similar conditions. The sonication effects on zeolite NaA synthesis were characterized by phase identification, crystallinity etc. The effects of different parameters such as crystallization time and initial materials preparation methods on the crystallinity and morphology of the synthesized zeolites were investigated. The final products were characterized by XRD and FT-IR. It was possible to obtain crystalline zeolite NaA from by-product silica in the presence of ultrasound. PMID:26186874

  17. Synthesis and characterization of zeolites prepared from industrial fly ash.

    PubMed

    Franus, Wojciech; Wdowin, Magdalena; Franus, Małgorzata

    2014-09-01

    In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm(3) of 5 mol · dm(-3) NaOH + 0.4 dm(3) of 3 mol · dm(-3) NaCl, 95 °C). As synthesized materials were characterized to obtain mineral composition (X-ray diffractometry, Scanning electron microscopy-energy dispersive spectrometry), adsorption properties (Brunauer-Emmett-Teller surface area, N2 isotherm adsorption/desorption), and ion exchange capacity. The most effective reaction for zeolite preparation was when sodalite was formed and the quantitative content of zeolite from X-ray diffractometry was 90 wt%, compared with 70 wt% for the Na-X and 75 wt% for the Na-P1. Residues from each synthesis reaction were the following: mullite, quartz, and the remains of amorphous aluminosilicate glass. The best zeolitic material as characterized by highest specific surface area was Na-X at almost 166 m(2) · g(-1), while for the Na-P1 and sodalite it was 71 and 33 m(2) · g(-1), respectively. The ion exchange capacity decreased in the following order: Na-X at 1.8 meq · g(-1), Na-P1 at 0.72 meq · g(-1), and sodalite at 0.56 meq · g(-1). The resulting zeolites are competitive for commercially available materials and are used as ion exchangers in industrial wastewater and soil decontamination. PMID:24838802

  18. Effective solidification/stabilisation of mercury-contaminated wastes using zeolites and chemically bonded phosphate ceramics.

    PubMed

    Zhang, Shaoqing; Zhang, Xinyan; Xiong, Ya; Wang, Guoping; Zheng, Na

    2015-02-01

    In this study, two kinds of zeolites materials (natural zeolite and thiol-functionalised zeolite) were added to the chemically bonded phosphate ceramic processes to treat mercury-contaminated wastes. Strong promotion effects of zeolites (natural zeolite and thiol-functionalised zeolite) on the stability of mercury in the wastes were obtained and these technologies showed promising advantages toward the traditional Portland cement process, i.e. using Portland cement as a solidification agent and natural or thiol-functionalised zeolite as a stabilisation agent. Not only is a high stabilisation efficiency (lowered the Toxicity Characteristic Leaching Procedure Hg by above 10%) obtained, but also a lower dosage of solidification (for thiol-functionalised zeolite as stabilisation agent, 0.5 g g(-1) and 0.7 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) and stabilisation agents (for natural zeolite as stabilisation agent, 0.35 g g(-1) and 0.4 g g(-1) for chemically bonded phosphate ceramic and Portland cement, respectively) were used compared with the Portland cement process. Treated by thiol-functionalised zeolite and chemically bonded phosphate ceramic under optimum parameters, the waste containing 1500 mg Hg kg(-1) passed the Toxicity Characteristic Leaching Procedure test. Moreover, stabilisation/solidification technology using natural zeolite and chemically bonded phosphate ceramic also passed the Toxicity Characteristic Leaching Procedure test (the mercury waste containing 625 mg Hg kg(-1)). Moreover, the presence of chloride and phosphate did not have a negative effect on the chemically bonded phosphate ceramic/thiol-functionalised zeolite treatment process; thus, showing potential for future application in treatment of 'difficult-to-manage' mercury-contaminated wastes or landfill disposal with high phosphate and chloride content. PMID:25568090

  19. Ammonium removal from high-strength aqueous solutions by Australian zeolite.

    PubMed

    Wijesinghe, D Thushari N; Dassanayake, Kithsiri B; Sommer, Sven G; Jayasinghe, Guttila Y; J Scales, Peter; Chen, Deli

    2016-07-01

    Removal of ammonium nitrogen (NH4(+)-N) particularly from sources which are highly rich in nitrogen is important for addressing environmental pollution. Zeolites, aluminosilicate minerals, are commonly used as commercial adsorbents and ion-exchange medium in number of commercial applications due to its high adsorption capacity of ammonium (NH4(+)). However, detailed investigations on NH4(+) adsorption and ion exchange capacities of Australian natural zeolites are rare, particularly under higher NH4(+) concentrations in the medium. Therefore, this study was conducted to determine NH4(+) adsorption characteristics of Australian natural zeolites at high NH4(+) concentrations with and without other chemical compounds in an aqueous solution. Results showed that initial NH4(+) concentration, temperature, reaction time, and pH of the solution had significant effects on NH4(+) adsorption capacity of zeolite. Increased retention time and temperature generally had a positive impact on adsorption. Freundlich model fitted well with adsorption process of Australian natural zeolites; however, Langmuir model had best fitted for the adsorption process of sodium (Na(+)) treated zeolites. NaCl treatment increased the NH4(+) adsorption capacity of Australian zeolites by 25% at 1000 mg-N, NH4(+) solution. The maximum adsorption capacity of both natural Australian zeolites and Na(+) treated zeolites were estimated as 9.48 and 11.83 mg-N/g, respectively, which is lower than many zeolites from other sources. Compared to the NH4(+) only medium, presence of other competitive ions and acetic acid in the medium (resembling composition in digested swine manure slurries) reduced NH4(+) removal of natural and Na(+) treated zeolites by 44% and 57%, respectively. This suggests detailed investigations are required to determine practically achievable NH4(+) -N removal potential of zeolites for applications in complex mediums such as animal manure slurries. PMID:27050255

  20. Synthesis and characterization of various zeolites and study of dynamic adsorption of dimethyl methyl phosphate over them

    SciTech Connect

    Khanday, Waheed Ahmad; Majid, Sheikh Abdul; Chandra Shekar, S.; Tomar, Radha

    2013-11-15

    Graphical abstract: Thermal desorption pattern of DMMP over various zeolites (a) 1st desorption and (b) 2nd desorption. - Highlights: • Synthesis of Zeolite-A, MCM-22, Zeolite-X and Erionite by hydrothermal method. • Zeolites were characterized by using XRD, FTIR, BET, NH{sub 3}-TPD, SEM and EDS techniques. • Dynamic adsorption of DMMP on zeolites was carried out using TPD plus chemisorption system. • Thermal desorption of DMMP on zeolites was carried using the same system. - Abstract: Zeolite-A, MCM-22, Zeolite-X and Erionite were synthesized successfully under hydrothermal conditions and were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Brunauer–Emmett–Teller (BET) surface area analysis and thermal programmed desorption (TPD). Dynamic adsorption of dimethyl methyl phosphate (DMMP) was carried out on these zeolites. Zeolite-X having high surface area among all four zeolites shows highest adsorption capacity followed by Erionite and MCM-22 where as Zeolite-A shows the least. For all zeolites adsorption was found to be high initially and it then decreases with increase in injected volume. Then desorption pattern was analyzed which shows two types of peaks, sharp peak representing desorption of physisorbed DMMP and a broad peak representing desorption of strongly chemisorbed DMMP.

  1. Ammonium removal from groundwater using a zeolite permeable reactive barrier: a pilot-scale demonstration.

    PubMed

    Li, Shengpin; Huang, Guoxin; Kong, Xiangke; Yang, Yingzhao; Liu, Fei; Hou, Guohua; Chen, Honghan

    2014-01-01

    In situ remediation of ammonium-contaminated groundwater is possible through a zeolite permeable reactive barrier (PRB); however, zeolite's finite sorption capacity limits the long-term field application of PRBs. In this paper, a pilot-scale PRB was designed to achieve sustainable use of zeolite in removing ammonium (NH(4)(+)-N) through sequential nitrification, adsorption, and denitrification. An oxygen-releasing compound was added to ensure aerobic conditions in the upper layers of the PRB where NH(4)(+)-N was microbially oxidized to nitrate. Any remaining NH(4)(+)-N was removed abiotically in the zeolite layer. Under lower redox conditions, nitrate formed during nitrification was removed by denitrifying bacteria colonizing the zeolite. During the long-term operation (328 days), more than 90% of NH(4)(+)-N was consistently removed, and approximately 40% of the influent NH(4)(+)-N was oxidized to nitrate. As much as 60% of the nitrate formed in the PRB was reduced in the zeolite layer after 300 days of operation. Removal of NH(4)(+)-N from groundwater using a zeolite PRB through bacterial nitrification and abiotic adsorption is a promising approach. The zeolite PRB has the advantage of achieving sustainable use of zeolite and immediate NH(4)(+)-N removal. PMID:25401319

  2. Improved Catalysts for Heavy Oil Upgrading Based on Zeolite Y Nanoparticles Encapsulated Stable Nanoporous Host

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2007-09-30

    The objective of this project is to synthesize nanocrystals of highly acidic zeolite Y nanoclusters, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates, and evaluate the 'zeolite Y/Nanoporous host' composites as catalysts for the upgrading of heavy petroleum feedstocks. In comparison to conventionally-used zeolite Y catalysts of micron size particles, the nanocrystals (< 100 nm particle size) which contain shorter path lengths, are expected to allow faster diffusion of large hydrocarbon substrates and the catalysis products within and out of the zeolite's channels and cages (<1 nm size). This is expected to significantly reduce deactivation of the catalyst and to prolong their period of reactivity. Encapsulating zeolite Y nanocrystals within the nanoporous materials is expected to protect its external surfaces and pore entrances from being blocked by large hydrocarbon substrates, since these substrates will initially be converted to small molecules by the nanoporous host (a catalyst in its own right). The project consisted of four major tasks as follows: (1) synthesis of the nanoparticles of zeolite Y (of various chemical compositions) using various techniques such as the addition of organic additives to conventional zeolite Y synthesis mixtures to suppress zeolite Y crystal growth; (2) synthesis of nanoporous silicate host materials of up to 30 nm pore diameter, using poly (alkylene oxide) copolymers which when removed will yield a mesoporous material; (3) synthesis of zeolite Y/Nanoporous Host composite materials as potential catalysts; and (4) evaluation of the catalyst for the upgrading of heavy petroleum feedstocks.

  3. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    SciTech Connect

    Ayoub, Muhammad; Abdullah, Ahmad Zuhairi; Inayat, Abrar

    2014-10-24

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N{sub 2} adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  4. Lithium modified zeolite synthesis for conversion of biodiesel-derived glycerol to polyglycerol

    NASA Astrophysics Data System (ADS)

    Ayoub, Muhammad; Abdullah, Ahmad Zuhairi; Inayat, Abrar

    2014-10-01

    Basic zeolite has received significant attention in the catalysis community. These zeolites modified with alkaline are the potential replacement for existing zeolite catalysts due to its unique features with added advantages. The present paper covers the preparation of lithium modified zeolite Y (Li-ZeY) and its activity for solvent free conversion of biodiesel-derived glycerol to polyglycerol via etherification process. The modified zeolite was well characterized by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Nitrogen Adsorption. The SEM images showed that there was no change in morphology of modified zeolite structure after lithium modification. XRD patterns showed that the structure of zeolite was sustained after lithium modification. The surface properties of parent and modified zeolite was also observed N2 adsortion-desorption technique and found some changes in surface area and pore size. In addition, the basic strength of prepared materials was measured by Hammet indicators and found that basic strength of Li-ZeY was highly improved. This modified zeolite was found highly thermal stable and active heterogamous basic catalyst for conversion of solvent free glycerol to polyglycerol. This reaction was conducted at different temperatures and 260 °C was found most active temperature for this process for reaction time from 6 to 12 h over this basic catalyst in the absence of solvent.

  5. Characterization of lead sorption by the natural and Fe(III)-modified zeolite

    NASA Astrophysics Data System (ADS)

    Kragović, Milan; Daković, Aleksandra; Marković, Marija; Krstić, Jugoslav; Gatta, G. Diego; Rotiroti, Nicola

    2013-10-01

    The influence of contact time, temperature and particle size on lead sorption by the natural and Fe(III)-modified zeolites was investigated. Characterization of the natural and Fe(III)-modified zeolite before and after lead sorption was performed by determination of textural properties, by scanning electron microscopy and X-ray spectroscopy in energy-dispersive mode (SEM-EDS), transmission electron microscopy (TEM) and X-ray powder diffraction (XRPD) analysis. Lead sorption kinetics at 303-333 K, best represented by the pseudo-second order model and activation energy (13.5 and 8.5 kJ/mol for the natural and Fe(III)-modified zeolite respectively) confirmed an activated chemical sorption. Desorption experiments indicated that lead was irreversibly sorbed on both zeolites. XRPD, TEM and SEM results showed that modification of the natural zeolite with Fe(III) ions did not change its crystal structure and iron is mainly located at the zeolite surface, likely in form of amorphous iron oxy-hydroxides. Specific surface area significantly increases after modification of the natural zeolite with Fe(III) ions (from 30.2 for the natural to 52.5 m2/g for Fe(III)-modified zeolite). Characterization of both lead saturated sorbents suggested that besides ion exchange, lead is both chemisorbed and precipitated at their surfaces, and presence of amorphous iron in Fe(III)-modified zeolite favors sorption of lead.

  6. n- and isoalkane adsorption mechanisms on zeolite MCM-22.

    PubMed

    Denayer, Joeri F M; Ocakoglu, Refik A; Thybaut, Joris; Marin, Guy; Jacobs, Pierre; Martens, Johan; Baron, G V

    2006-05-01

    Low-coverage adsorption properties (Henry constants, adsorption enthalpy, and entropy) of linear and branched alkanes (C3-C8) on zeolite MCM-22 were determined using the chromatographic technique at temperatures between 420 and 540 K. It was found that adsorption enthalpy and entropy of linear alkanes vary in a nonmonotonic way with carbon number. The adsorption behavior of alkanes was rationalized on the basis of the pore geometry. Short molecules prefer to reside in the pockets of the MCM-22 supercage, where they maximize energetic interaction with the zeolite. Longer molecules reside in the larger central part of the supercage. For carbon numbers up to six, singly branched alkanes are selectively adsorbed over their linear counterparts. This preference originates from the entropic advantage of singly branched molecules inside MCM-22 supercages, where these species have high rotational freedom because of their small length. PMID:16640405

  7. Separation of branched hexane isomers using zeolite molecular sieves

    SciTech Connect

    Huddersman, K.; Klimczyk, M.

    1996-02-01

    A range of small, medium and large pore zeolite, and their modified forms are studied for their ability to separate di- from monobranched isomers of hexane. The separation studies are carried out using high-temperature (250--350 C) gas chromatography. Beta(H,Ba) is found to be the most effective separator of 2,3-dimethylbutane and 3-methyl-pentane and is therefore studied for its sorption capacities toward the two hexane isomers. This work is directed to the improvement of the quality of petrol by separating hydrocarbon mixtures using zeolites. Since maximum hydrocarbon branching is desirable in petrol (hydrocarbons with a branching structure burn more efficiently and thus have a higher octane rating), catalytic isomerization is used to isomerize straight-chain hydrocarbons to their mono- or dibranched isomers.

  8. Computational studies of Bronsted acid sites in zeolites

    SciTech Connect

    Curtiss, L.A.; Iton, L.E.; Zygmunt, S.A.

    1995-01-01

    The authors have performed high-level ab initio calculations using both Hartree-Fock (HF) and Moller-Plesset perturbation theory (MP2) to study the geometry and energetics of the adsorption complex involving H{sub 2}O and the Bronsted acid site in the zeolite H-ZSM-5. In these calculations, which use aluminosilicate cluster models for the zeolite framework with as many a 28 T atoms (T = Si, Al), we included geometry optimization in the local vicinity of the acid site at the HF/6-31G(d) level of theory, and have calculated corrections for zero-point energies, extensions for zero-point energies, extensions to higher basis sets, and the influence of electron correlation. Results for the adsorption energy and geometry of this complex are reported and compared with previous theoretical and experimental values.

  9. Modified Asphalt Binder with Natural Zeolite for Warm Mix Asphalt

    NASA Astrophysics Data System (ADS)

    Dubravský, Marián; Mandula, Ján

    2015-11-01

    In recent years, warm mix asphalt (WMA) is becoming more and more used in the asphalt industry. WMA provide a whole range of benefits, whether economic, environmental and ecological. Lower energy consumption and less pollution is the most advantages of this asphalt mixture. The paper deals with the addition of natural zeolite into the sub base asphalt layers, which is the essential constituent in the construction of the road. Measurement is focused on basic physic - mechanical properties declared according to the catalog data sheets. The aim of this article is to demonstrate the ability of addition the natural zeolite into the all asphalt layers of asphalt pavement. All asphalt mixtures were compared with reference asphalt mixture, which was prepared in reference temperature.

  10. GREEN CHEMISTRY. Shape-selective zeolite catalysis for bioplastics production.

    PubMed

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A; Sels, Bert F

    2015-07-01

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling. PMID:26138977

  11. Shape-selective zeolite catalysis for bioplastics production

    NASA Astrophysics Data System (ADS)

    Dusselier, Michiel; Van Wouwe, Pieter; Dewaele, Annelies; Jacobs, Pierre A.; Sels, Bert F.

    2015-07-01

    Biodegradable and renewable polymers, such as polylactic acid, are benign alternatives for petrochemical-based plastics. Current production of polylactic acid via its key building block lactide, the cyclic dimer of lactic acid, is inefficient in terms of energy, time, and feedstock use. We present a direct zeolite-based catalytic process, which converts lactic acid into lactide. The shape-selective properties of zeolites are essential to attain record lactide yields, outperforming those of the current multistep process by avoiding both racemization and side-product formation. The highly productive process is strengthened by facile recovery and practical reactivation of the catalyst, which remains structurally fit during at least six consecutive reactions, and by the ease of solvent and side-product recycling.

  12. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks

    PubMed Central

    Park, Kyo Sung; Ni, Zheng; Côté, Adrien P.; Choi, Jae Yong; Huang, Rudan; Uribe-Romo, Fernando J.; Chae, Hee K.; O’Keeffe, Michael; Yaghi, Omar M.

    2006-01-01

    Twelve zeolitic imidazolate frameworks (ZIFs; termed ZIF-1 to -12) have been synthesized as crystals by copolymerization of either Zn(II) (ZIF-1 to -4, -6 to -8, and -10 to -11) or Co(II) (ZIF-9 and -12) with imidazolate-type links. The ZIF crystal structures are based on the nets of seven distinct aluminosilicate zeolites: tetrahedral Si(Al) and the bridging O are replaced with transition metal ion and imidazolate link, respectively. In addition, one example of mixed-coordination imidazolate of Zn(II) and In(III) (ZIF-5) based on the garnet net is reported. Study of the gas adsorption and thermal and chemical stability of two prototypical members, ZIF-8 and -11, demonstrated their permanent porosity (Langmuir surface area = 1,810 m2/g), high thermal stability (up to 550°C), and remarkable chemical resistance to boiling alkaline water and organic solvents. PMID:16798880

  13. Adsorption of methanol in zeolite, gallosilicate and SAPO catalysts

    NASA Astrophysics Data System (ADS)

    Limtrakul, Jumras

    1995-04-01

    Methanol adsorption in zeolite, gallosilicate and silicoaluminophosphate (SAPO) catalysts has been investigated within the framework of ab initio molecular orbital calculations. Full optimization of all cluster models and their complexes has been carried out at the DZP/SCF level of theory. Physisorbed methanol and methoxonium cation complexed to the framework catalyst are found for SAPO catalysts, the latter complexes are observed only at high coverages, while only hydrogen-bonded physisorbed methanol complexes are obtained for gallosilicates and zeolitic catalysts. The conversion energy of the hydrogen-bonded physisorbed structure, H 3SiOHAl(OH) 2OPH 3/[CH 3OH] 2 to the methoxonium structure, H 3SiOAl(OH) 2OPH 3]/[CH 3OH 2+][CH 3OH], is about 6.69 kcal/mol. Comparison with hydrogen halides and related complexes of methanol shows that protonated SAPO/methanol is a very strong acid.

  14. Sensitized near infrared emission from lanthanide-exchanged zeolites

    SciTech Connect

    Monguzzi, A.; Macchi, G.; Meinardi, F.; Tubino, R.; Burger, M.; Calzaferri, G.

    2008-03-24

    In this work, we present an alternative approach to sensitize the near infrared emission of Er{sup 3+} ions (used in telecom applications) by exploiting the geometrical confinement occurring in porous zeolites structures. The sensitization of the Ln ion is obtained by energy transfer between a suitable organic molecule acting as an antenna and the emitting ion arranged in closed proximity, thus, avoiding the limits imposed by the coordination chemistry.

  15. Ammonia synthesis catalyzed by ruthenium supported on basic zeolites

    SciTech Connect

    Fishel, C.T.; Davis, R.J.; Garces, J.M.

    1996-09-15

    Ammonia synthesis was catalyzed by ruthenium metal clusters, promoted by alkali and alkaline earth elements, supported on zeolite X, magnesia, and pure silica MCM-41. At atmospheric total pressure and temperatures ranging from 623 to 723 K, the turnover frequencies of ammonia synthesis on Ru/KX varied significantly with Fu cluster size, demonstrating the known structure sensitivity of the reaction. Therefore, zeolite and magnesia catalysts were prepared with similar Ru cluster sizes, about 1 nm in diameter, in order to properly evaluate the effect of promoters. The same high degree of metal dispersion could not be obtained with Ru/MCM-41 catalysts. The turnover frequency for ammonia synthesis over Ru/CsX exceeded that over Ru/KX, consistent with the rank of promoter basicity. However, alkaline earth metals were more effective promoters than alkali metals for Ru supported on both zeolite X and MCM-41. Since alkaline earth metals are less basic; this promotional effect was unexpected. In addition, the turnover frequency for ammonia synthesis on Ru/BaX exceeded that of Ru/MgO, a nonzeolitic material. Pore volumes for Ru/BaX and Ru/KX measured by N{sub 2} adsorption were essentially identical, suggesting that pore blockage by ions within the zeolites does not account for the differences in reaction rates. The kinetics of ammonia synthesis over ruthenium differed considerably from what has been reported for industrial iron catalysts. Most significantly, the order of reaction in H{sub 2} was negative over Ru but is positive over Fe. A likely cause of this change in reaction order is that dissociated hydrogen atoms cover a greater fraction of the Ru clusters compared to Fe under reaction conditions. 49 refs., 8 figs., 10 tabs.

  16. Extraction of edingtonite from a natural zeolite under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Tutti, F.; Kamyab, S. M.; Barghi, M. A.; Badiei, A.

    2013-01-01

    In the present study, edingtonite has been extracted from natural zeolite clinoptilolite by simulating the natural hydrothermal conditions in the laboratory, under the influence of solutions with different concentrations of Ba+2 and Na+, varying from 0.5 to 2.8 mol/L, at 150 °C. In this work, the essential hydrothermal conditions have been provided by hydrothermal autoclaves. The natural and laboratory prepared samples were characterized by XRD, XRF and SEM methods.

  17. Thermal stability of zeolitic tuff from Yucca Mountain, Nevada

    SciTech Connect

    Bish, D.L.

    1990-04-01

    Thermal models of the proposed repository at Yucca Mountain, Nevada, suggest that rocks near the proposed host rock will experience elevated temperatures for at least 1000 yrs. In order to assess the effects of elevated temperatures on zeolites clinoptilolite and mordenite were investigated using a combination of high-temperature X-ray powder diffraction, thermogravimetric and differential scanning calorimetric analysis, and long-term heating experiments. 13 refs., 7 figs.

  18. Magic-angle-spinning NMR studies of zeolite SAPO-5

    NASA Astrophysics Data System (ADS)

    Freude, D.; Ernst, H.; Hunger, M.; Pfeifer, H.; Jahn, E.

    1988-01-01

    SAPO-5 was synthesized using triethylamine as template. Magic-angle-spinning (MAS) NMR of 1H, 27Al, 29Si and 31P was used to study the silicon incorporation into the framework and the nature of the Brønsted sites. 1H MAS NMR shows two types of bridging hydroxyl groups. 29Si MAS NMR indicates that silicon substitutes mostly for phosphorus and that there is a small amount of crystalline SiO 2 in the zeolite powder.

  19. Base catalysis by alkali modified zeolites. III. Alkylation with methanol

    SciTech Connect

    Hathaway, P.E.; Davis, M.E. )

    1989-10-01

    Ion exchanged CsNaX and CsNaY, cesium acetate impregnated CsNaX (CsAce/CsNaX) and CsNaY (CsAce/CsNaY), and MgO have been reacted with isopropanol at 425 C and atmospheric pressure to assess their acid/base properties at a temperature consistent with that used in the side chain alkylation of toluene with methanol. The results suggest that the ability of the catalysts tested here to promote a base mediated reaction follow the order of MgO > CsAce/CsNaY > CsAce/CsNaX {approx equal} CsNaY > CsNaX. Selectivities to acetone measured at 4.73% conversion follow this order as well, ranging from 95.7% and 93.9% for MgO and CsAce/CsNaY, respectively, to 17.6% for the CsNaX. Thus, these catalysts can be grouped into two categories: (i) catalysts which vary in acid/base properties yet possess identical topology (e.g., the zeolites) and (ii) catalysts which vary in topology yet have similar acid/base properties (e.g., MgO and CsAce/CsNaY). These catalysts were compared using the side chain alkylation of toluene, ethane, methane, and acetone with methanol. For the impregnated zeolites, similar toluene conversions were observed. No formaldehyde was observed in the product stream of the impregnated Y zeolite. Both MgO and CsAce/CsNaY had similar methanol decomposition products; i.e., no formaldehyde and high CO formation, yet unlike CsAce/CsNaY no toluene conversion was observed for MgO. No conversion of ethane or methane was observed for either impregnated zeolite at 425 C.

  20. Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg-Li alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Zhu, Yanhao; Li, Chao; Song, Dalei; Zhang, Tao; Zheng, Xinran; Yan, Yongde; Zhang, Meng; Wang, Jun; Shchukin, Dmitry G.

    2016-04-01

    The epoxy coatings containing MCM-22 and Ce-MCM-22 zeolites were prepared by coating method on the Mg-Li alloy surface. The influence of MCM-22 and Ce-MCM-22 zeolites on corrosion protection of the epoxy coating was studied. The epoxy coating containing Ce-MCM-22 zeolites showed high corrosion resistance. Artificial defects in the epoxy coating containing Ce-MCM-22 zeolites on the Mg-Li surface were produced by the needle punching. The results show that the epoxy coating containing Ce-MCM-22 zeolites exhibits self-healing corrosion inhibition capabilities. It is ascribed to the fact that the Ce3+ ions are released from MCM-22 zeolites based on ion exchange of zeolite in the corrosion process of the Mg-Li alloy substrate. MCM-22 zeolites as reservoirs provided a prolonged release of cerium ions.

  1. Correlations for Adsorption of Oxygenates onto Zeolites from Aqueous Solutions

    SciTech Connect

    Mallon, Elizabeth E.; Babineau, Ian J.; Kranz, Joshua I.; Guefrachi, Yasmine; Siepmann, J. Ilja; Bhan, Aditya; Tsapatsis, Michael

    2011-10-06

    Henry’s constants (K{sub ads}) for adsorption of C₃ polyfunctional molecules onto zeolites from aqueous solutions at 278 K were obtained and compared with the octanol–water partition coefficients, K{sub ow}, which were calculated using the prevalent ClogP group contribution method. K{sub ads} increases linearly with K{sub ow} for these adsorbates on H–ZSM-5 (MFI), FAU, BEA, and ITQ-1 (MWW). K{sub ads} values for C₂–C₆ diol adsorption at 278 K are also linearly correlated with K{sub ow} regardless of interactions in the bulk phase as measured by the solution activity coefficient. Exceptions to the correlation established between K{sub ads} and K{sub ow} are the adsorption of 1,2,ω-triols with carbon number greater than three on H–ZSM-5 and adsorption of all oxygenates studied on FER, which we postulate to be due to the effect of changing adsorption configuration with adsorbate/zeolite structure which cannot be captured by K{sub ow} alone. These results enable the prediction of separation selectivities of biomass-derived compounds on zeolite adsorbents.

  2. Zeolites on Mars: Possible environmental indicators in soils and sediments

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Gooding, J. L.

    1988-01-01

    Weathering products should serve as indicators of weathering environments and may provide the best evidence of the nature of climate change on Mars. No direct mineralogical measurements of Martian regolith were performed by the Viking missions, but the biology and X-ray fluorescence experiments provided some information on the physiochemical properties of Martian regolith. Most post-Viking studies of candidate weathering products have emphasized phyllosilicates and Fe-oxides; zeolites are potentially important, but overlooked, candidate Martian minerals. Zeolites would be important on Mars for three different reasons. First, they are major sinks of atmospheric gases and, per unit mass, are stronger and more efficient sorbents than are phyllosilicates. Secondly, they can be virtually unique sorbents and shelters for organic compounds and possible catalysts for organic-based reactions. Finally, their exchangeable ions are good indicators of the chemical properties of solutions with which they have communicated. Accordingly, the search for information on past compositions of the Martian atmosphere and hydrosphere should find zeolites to be rich repositories.

  3. Sonochemical synthesis of zeolite NaP from clinoptilolite.

    PubMed

    Behin, Jamshid; Kazemian, Hossein; Rohani, Sohrab

    2016-01-01

    In the present work, natural clinoptilolite was converted to zeolite NaP using ultrasonic energy, in which the transformation time shortened remarkably. The effect of post-synthesis treatment using conventional hydrothermal was also investigated. The synthesized powders were characterized by XRD, TGA/DTA, SEM, and PSD analysis. The results showed that, increasing the sonication time (energy) has no significant effect on the product's morphology. The crystallinity of the synthesized samples increased slightly with increasing sonication time, but their yield remained relatively unchanged. Furthermore, post-synthesis hydrothermal treatment showed very little influence on properties of the final product. Because the ultrasonic irradiation creates acoustic cavitation cracks on the surface structure of clinoptilolite particulates and increases the concentration of soluble alumino-silicate species, which favors the prevailing super-saturation, crystallization and crystal growth of zeolite NaP happen faster. The particles of zeolite NaP synthesized by ultrasonic irradiation consist of small crystallites of uniform size. PMID:26341462

  4. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    DOE PAGESBeta

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; Dixon, David A.; Gates, Bruce C.

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridiummore » hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.« less

  5. Mononuclear iridium dinitrogen complexes bonded to zeolite HY

    SciTech Connect

    Yang, Dong; Chen, Mingyang; Martinez-Macias, Claudia; Dixon, David A.; Gates, Bruce C.

    2014-11-07

    In this study, the adsorption of N2 on structurally well-defined dealuminated HY zeolite-supported iridium diethylene complexes was investigated. Iridium dinitrogen complexes formed when the sample was exposed to N2 in H2 at 298 K, as shown by infrared spectra recorded with isotopically labeled N2. Four supported species formed in various flowing gases: Ir(N2), Ir(N2)(N2), Ir(C2H5)(N2), and Ir(H)(N2). Their interconversions are summarized in a reaction network, showing, for example, that, in the presence of N2, Ir(N2) was the predominant dinitrogen species at temperatures of 273-373 K. Ir(CO)(N2) formed transiently in flowing CO, and in the presence of H2, rather stable iridium hydride complexes formed. Here, four structural models of each iridium complex bonded at the acidic sites of the zeolite were employed in a computational investigation, showing that the calculated vibrational frequencies agree well with experiment when full calculations are done at the level of density functional theory, independent of the size of the model of the zeolite.

  6. Hierarchical Porous Zeolite Structures for Pressure Swing Adsorption Applications.

    PubMed

    Besser, Benjamin; Tajiri, Henrique Akira; Mikolajczyk, Gerd; Möllmer, Jens; Schumacher, Thomas C; Odenbach, Stefan; Gläser, Roger; Kroll, Stephen; Rezwan, Kurosch

    2016-02-10

    Porous adsorbents with hierarchical structured macropores ranging from 1 to 100 μm are prepared using a combination of freeze casting and additional sacrificial templating of polyurethane foams, with a zeolite 13X powder serving as adsorbent. The pore system of the prepared monoliths features micropores assigned to the zeolite 13X particle framework, interparticular pores of ∼1-2 μm, lamellar pores derived from freeze casting of ∼10 μm, and an interconnected pore network obtained from the sacrificial templates ranging from around 100 to 200 μm with a total porosity of 71%. Gas permeation measurements show an increase in intrinsic permeability by a factor of 14 for monoliths prepared with an additional sacrificial templated foam compared to monoliths solely providing freeze casting pores. Cyclic CO2 adsorption and desorption tests where pressure swings between 8 and 140 kPa reveal constant working capacities over multiple cycles. Furthermore, the monoliths feature a high volumetric working capacity of ∼1.34 mmol/cm(3) which is competitive to packed beds made of commercially available zeolite 13X beads (∼1.28 mmol/cm(3)). Combined with the faster CO2 uptake showing an adsorption of 50% within 5-8 s (beads ∼10 s), the monoliths show great potential for pressure swing adsorption applications, where high volumetric working capacities, fast uptakes, and low pressure drops are needed for a high system performance. PMID:26760054

  7. Synthesis of colloidal suspensions of zeolite ZSM-2

    SciTech Connect

    Schoeman, B.J.; Sterte, J.; Otterstedt, J.E.

    1995-03-15

    Discrete colloidal particles of zeolite ZSM-2 with crystal sizes less than 100 nm, in the form of aqueous suspensions, have been synthesized in tetramethylammonium (TMA)-aluminosilicate solutions in the presence of either lithium or a combination of lithium and sodium hydroxide. The well-crystallized ZSM-2 has a specific surface area of 781 m{sup 2}/g after purification and removal of the organic base by calcination. Synthesis times (t) are as short as 3 < t < 12 h and in certain cases, less than 3 h, less than those previously reported in the literature. Prolonged hydrothermal treatment of sols in the presence of sodium cations (>12 h) results in the phase transformation of ZSM-2 to the nitrogeneous edingtonite zeolite (Li,Na)-E. The synthesis of nitrogeneous (Li,Na)-E is also favored by a high TMA content in conjunction with sodium, whereas synthesis of zeolite N-A is favored by a high sodium content. Furthermore, it is shown that colloidal suspensions of TMA sodalite with crystal sizes less than 40 nm are synthesized in the absence of alkali cations.

  8. Development of Zeolite Nonwoven for the Adsorption of Radioactive Cesium - 13288

    SciTech Connect

    Murao, Ayako; Nakai, Tomonori; Mimura, Hitoshi; Miura, Teruo; Aoyama, Yoshihito

    2013-07-01

    The zeolite nonwoven fabric produced by TDS (Totally Dry System) process has some advantages such as the control of zeolite content, flexibility, strength and water-resistant property depending on the purpose. Hence the zeolite nonwoven fabric is expected for the application in various fields of the decontamination of Cs-contaminated water. In this study, Cs adsorption properties of zeolite nonwoven fabrics were examined by batch experiments, and the radiation stability, thermal stability and chemical durability were evaluated. As for batch adsorption properties, relatively large uptake rate of Cs{sup +} was obtained; the uptake equilibrium attained within 20 min and the uptake (%) was above 95%. The differences in zeolite content had no effects on the Cs{sup +} uptake (%). The uptake (%) of Cs{sup +} in seawater was slightly lowered compared to that in the presence of HNO{sub 3}. The uptake (%) of Cs{sup +} in seawater was estimated to be above 90% after 2 h-shaking, indicating the considerable enhancement of uptake rate compared to the conventional granular zeolites. The uptake (%) of Cs{sup +} for the zeolite high content type was estimated to be above 99% by using {sup 137}Cs tracer. As for the comparison of sealing treatment, the uptake (%) for the zeolite sheet treated with edge sealing was larger than that with rapping treatment. The uptake (%) for the zeolite sheet (zeolite high content type) was estimated to be about 95%, which is independent of sealing treatment and NaOH concentration. As for the stability, the surface morphology and the structure of zeolite sheet were not altered by the treatment with acid and alkaline solutions under the experimental conditions. The zeolite sheets were also stable after {sup 60}Co-γ ray irradiation up to 7.01x10{sup 6} R. On the other hand, color change for both fiber and zeolite and the shrinkage of the fiber were observed after heat treatment at 150 deg. C for 2 h. Thus the considerable enhancement of adsorption

  9. Zeolite inorganic scaffolds for novel biomedical application: Effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability

    NASA Astrophysics Data System (ADS)

    Tavolaro, Palmira; Catalano, Silvia; Martino, Guglielmo; Tavolaro, Adalgisa

    2016-09-01

    The design, preparation and selection of inorganic materials useful as functional scaffolds for cell adhesion is a complex question based both on the understanding of the chemical behavior of the materials and individual cells, and on their interactions. Pure zeolite membranes formed from synthetic crystals offer chemically-capable being modulated silanolic surfaces that are amenable to adhesion and growth of fibroblasts. We report the facile preparation of reusable, very longlasting, biocompatible, easily sterilized synthetic scaffolds in a zeolite membrane configuration, which are very stable in aqueous media (apart from ionic strength and pH values), able to adsorb pollutant species and to confine undesired toxic ions (present in culture media). This may ultimately lead to the development of cell supports for economic antibiotic-free culture media.

  10. Dynamic Structural Changes in a Molecular Zeolite-Supported Iridium Catalyst for Ethene Hydrogenation

    SciTech Connect

    Uzun, Alper; Gates, Bruce C.

    2009-11-16

    The structure of a catalyst often changes as a result of changes in the reactive environment during operation. Examples include changes in bulk phases, extended surface structures, and nanoparticle morphologies; now we report real-time characterization of changes in the structure of a working supported catalyst at the molecular level. Time-resolved extended X-ray absorption fine structure (EXAFS) data demonstrate the reversible interconversion of mononuclear iridium complexes and tetrairidium clusters inside zeolite Y cages, with the structure controlled by the C{sub 2}H{sub 4}/H{sub 2} ratio during ethene hydrogenation at 353 K. The data demonstrate break-up of tetrairidium clusters into mononuclear complexes indicated by a decrease in the Ir-Ir coordination number in ethene-rich feed. When the feed composition was switched to first equimolar and then to a H{sub 2}-rich (C{sub 2}H{sub 4}/H{sub 2} = 0.3) feed, the EXAFS spectra show the reformation of tetrairidium clusters as the Ir-Ir coordination number increased again. When the feed composition was cycled from ethene-rich to H{sub 2}-rich, the predominant species in the catalyst cycled accordingly. Evidence confirming the structural change is provided by IR spectra of iridium carbonyls formed by probing of the catalyst with CO. The data are the first showing how to tune the structure of a solid catalyst at the molecular scale by choice of the reactant composition.

  11. Fly ash from a Mexican mineral coal. II. Source of W zeolite and its effectiveness in arsenic (V) adsorption.

    PubMed

    Medina, Adriana; Gamero, Prócoro; Almanza, José Manuel; Vargas, Alfredo; Montoya, Ascención; Vargas, Gregorio; Izquierdo, María

    2010-09-15

    Coal-fired plants in Coahuila (Mexico) produce highly reactive fly ash (MFA), which is used in a one-step process as a raw material in producing zeolite. We explored two routes in the synthesis of zeolite: (a) direct MFA zeolitization, which resulted in the formation of W zeolite with KOH and analcime with NaOH and (b) a MFA fusion route, which resulted in the formation of zeolite W or chabazite with KOH and zeolite X or P with NaOH. No residual crystalline phases were present. When LiOH was employed, ABW zeolite with quartz and mullite were obtained. For both zeolitization routes, the nature of the alkali (KOH, NaOH, LiOH), the alkali/MFA ratio (0.23-1.46), and the crystallization temperature and time (90-175 degrees C; 8-24 h) were evaluated. Additionally, the effect of temperature and time on MFA fusion was studied. W zeolite was obtained by both zeolitization methods. The direct route is preferred because it is a straightforward method using soft reaction conditions that results in a high yield of low cost zeolites with large crystal agglomerates. It was demonstrated that aluminum modified W zeolite has the ability to remove 99% of the arsenic (V) from an aqueous solution of Na(2)HAsO(4).7H(2)O originally containing 740 ppb. PMID:20537461

  12. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  13. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    PubMed

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  14. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  15. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid.

    PubMed

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N; Dionysiou, Dionysios D

    2016-08-01

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2·6H2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21±1°C was about 60mgCg(-1). The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents. PMID:27135170

  16. Synthetic Zeolites as Controlled-Release Delivery Systems for Anti-Inflammatory Drugs.

    PubMed

    Khodaverdi, Elham; Soleimani, Hossein Ali; Mohammadpour, Fatemeh; Hadizadeh, Farzin

    2016-06-01

    Scientists have always been trying to use artificial zeolites to make modified-release drug delivery systems in the gastrointestinal tract. An ideal carrier should have the capability to release the drug in the intestine, which is the main area of absorption. Zeolites are mineral aluminosilicate compounds with regular structure and huge porosity, which are available in natural and artificial forms. In this study, soaking, filtration and solvent evaporation methods were used to load the drugs after activation of the zeolites. Weight measurement, spectroscopy FTIR, thermogravimetry and scanning electronic microscope were used to determine drug loading on the systems. Finally, consideration of drug release was made in a simulated gastric fluid and a simulated intestinal fluid for all matrixes (zeolites containing drugs) and drugs without zeolites. Diclofenac sodium (D) and piroxicam (P) were used as the drug models, and zeolites X and Y as the carriers. Drug loading percentage showed that over 90% of drugs were loaded on zeolites. Dissolution tests in stomach pH environment showed that the control samples (drug without zeolite) released considerable amount of drugs (about 90%) within first 15 min when it was about 10-20% for the matrixes. These results are favorable as NSAIDs irritate the stomach wall and it is ideal not to release much drugs in the stomach. Furthermore, release rate of drugs from matrixes has shown slower rate in comparison with control samples in intestine pH environment. PMID:26705687

  17. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route

    PubMed Central

    Wheatley, Paul S.; Čejka, Jiří; Morris, Russell E.

    2016-01-01

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques. PMID:27078165

  18. Experiments for the Undergraduate Laboratory that Illustrate the Size-Exclusion Properties of Zeolite Molecular Sieves

    ERIC Educational Resources Information Center

    Cooke, Jason; Henderson, Eric J.

    2009-01-01

    Experiments are presented that demonstrate the size-exclusion properties of zeolites and reveal the reason for naming zeolites "molecular sieves". If an IR spectrometer is available, the adsorption or exclusion of alcohols of varying sizes from dichloromethane or chloroform solutions can be readily demonstrated by monitoring changes in the…

  19. One-pot synthesized hierarchical zeolite supported metal nanoparticles for highly efficient biomass conversion.

    PubMed

    Wang, Darui; Ma, Bing; Wang, Bo; Zhao, Chen; Wu, Peng

    2015-10-21

    Hierarchically porous zeolite supported metal nanoparticles are successfully prepared through a base-assisted chemoselective interaction between the silicon species on the zeolite crystal surface and metal salts, in which in situ construction of mesopores and high dispersion of metal species are realized simultaneously. PMID:26361087

  20. Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process.

    PubMed

    Martín, Nuria; Li, Zhibin; Martínez-Triguero, Joaquín; Yu, Jihong; Moliner, Manuel; Corma, Avelino

    2016-04-26

    The synthesis of nanosized SSZ-39 zeolite has been achieved using a high silica FAU zeolite as the Si and Al source and tetraethylphosphonium (TEP) cations as OSDAs. The obtained SSZ-39 material shows a remarkably high catalyst lifetime compared to conventional SSZ-13 and SSZ-39 materials. PMID:26947336

  1. One-step synthesis of mesoporous pentasil zeolite with single-unit-cell lamellar structural features

    SciTech Connect

    Tsapstsis, Michael; Zhang, Xueyi

    2015-11-17

    A method for making a pentasil zeolite material includes forming an aqueous solution that includes a structure directing agent and a silica precursor; and heating the solution at a sufficient temperature and for sufficient time to form a pentasil zeolite material from the silica precursor, wherein the structure directing agent includes a quaternary phosphonium ion.

  2. Synthesis of Giant Zeolite Crystals by a Bulk-Material Dissolution Technique.

    PubMed

    Shimizu; Hamada

    1999-09-01

    Using a quartz glass tube as a bulk silica source under aqueous hydrothermal conditions afforded giant crystals of MFI zeolite about 3 mm in size (see photo). Similar procedures were successfully applied to bulk aluminosilicate ceramics to synthesize large crystals of other zeolites, such as ANA, JBW, CAN, and SOD. PMID:10508361

  3. Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y

    NASA Astrophysics Data System (ADS)

    Guesh, Kiros; Márquez-Álvarez, Carlos; Chebude, Yonas; Díaz, Isabel

    2016-08-01

    Zeolite Y was treated using ammonium acetate and ammonium fluoride sequentially. As a consequence the aluminum from the surface was selectively removed. Then, loading with TiO2 (20 wt%) led to a final photocatalyst. The samples were characterized by X-ray diffraction (XRD), elemental analysis (ICP-OES), N2 adsorption, diffuse reflectance UV-vis spectroscopy (DRS), photoluminescence spectroscopy (PL), and X-ray photoelectron spectroscopy (XPS). It was found that 50% of the Al atoms were removed from the surface of the zeolite without affecting the framework structure. The TiO2/treated zeolite sample yielded 92% photocatalytic degradation of 10 ppm methyl orange (MO), a model pollutant, while the TiO2/parent zeolite converted only 7.6%. The mass normalized turnover rate (TORm) of the treated zeolite loaded with TiO2 was about 12 times higher than that of the parent zeolite loaded with the same amount of TiO2 precursor. This higher photocatalytic activity of the TiO2 supported on treated zeolite can be attributed to a more efficient interaction of the TiO2 with the zeolite leading to higher adsorption capacity. Reusability of the photocatalysts was assessed by performing three consecutive reaction cycles that showed no significant loss of photocatalytic activity.

  4. Synthesis, deposition and characterization of magnesium hydroxide nanostructures on zeolite 4A

    SciTech Connect

    Koh, Pei-Yoong; Yan, Jing; Ward, Jason; Koros, William J.; Teja, Amyn S.; Xu, Bo

    2011-03-15

    Research highlights: {yields} Reports a simple precipitation-growth method to produce nanostructures of Mg(OH){sub 2} on the surface of zeolite 4A. {yields} Able to control the growth of the nanostructures by manipulating the experimental procedure. {yields} Able to deposit Mg(OH){sub 2} onto specific sites namely bridging hydroxyl protons (SiOHAl) on the surface of zeolite 4A. -- Abstract: The precipitation and self-assembly of magnesium hydroxide Mg(OH){sub 2} nanopetals on dispersed zeolite 4A particles was investigated. Mg(OH){sub 2}/zeolite nanocomposites were produced from magnesium chloride solutions and characterized via X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared analysis (FTIR), and solid state NMR. It was determined that Mg(OH){sub 2} interacted with bridging hydroxyl protons (SiOHAl) on the zeolite surface, but not with silanol or aluminol groups. NMR analysis showed that 13% of the tetrahedral Al sites on the zeolite were converted to octahedral Al. The zeolite structure and crystallinity remained intact after treatment, and no dealumination reactions were detected. This suggests that the deposition-precipitation process at ambient conditions is a facile method for controlling Mg(OH){sub 2} nanostructures on zeolites.

  5. Modified methods of zeolite and its application of ammonia removal for residential area wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zuo, Jinlong

    2010-11-01

    With the rapid development of urbanization in China, lots of residential area wastewater was directly discharged into the rivers or lakes, which led to eutrophication and the increasing pollution of the water environment. In order to improve ammonia removal capability from the residential area wastewater, zeolite was modified in this paper. Some results for virgin zeolite were revealed by SEM and X ray diffraction. The best results could be attained by combined modification with orthogonal experiment. The adsorption capacity of modified zeolite could be reach mean value of 137.14 meq/100 g, which was 1.8 times than virgin zeolite. The results of bench scale experiments showed that the data in the experiments were in line with Langmuir isotherms for ammonium ion absorbed onto modified zeolite. Moreover, it demonstrated that the biofilm which attached on the surface of modified zeolite only modified the surface feature of modified zeolite, while ion-exchange and diffusion procedure were not affected. So the zeolite was suggested as a suitable material for adsorbing ammonia of residential area wastewater.

  6. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents ...

  7. A zeolite family with expanding structural complexity and embedded isoreticular structures

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Shin, Jiho; Greenaway, Alex G.; Min, Jung Gi; Su, Jie; Choi, Hyun June; Liu, Leifeng; Cox, Paul A.; Hong, Suk Bong; Wright, Paul A.; Zou, Xiaodong

    2015-08-01

    The prediction and synthesis of new crystal structures enable the targeted preparation of materials with desired properties. Among porous solids, this has been achieved for metal-organic frameworks, but not for the more widely applicable zeolites, where new materials are usually discovered using exploratory synthesis. Although millions of hypothetical zeolite structures have been proposed, not enough is known about their synthesis mechanism to allow any given structure to be prepared. Here we present an approach that combines structure solution with structure prediction, and inspires the targeted synthesis of new super-complex zeolites. We used electron diffraction to identify a family of related structures and to discover the structural `coding' within them. This allowed us to determine the complex, and previously unknown, structure of zeolite ZSM-25 (ref. 8), which has the largest unit-cell volume of all known zeolites (91,554 cubic ångströms) and demonstrates selective CO2 adsorption. By extending our method, we were able to predict other members of a family of increasingly complex, but structurally related, zeolites and to synthesize two more-complex zeolites in the family, PST-20 and PST-25, with much larger cell volumes (166,988 and 275,178 cubic ångströms, respectively) and similar selective adsorption properties. Members of this family have the same symmetry, but an expanding unit cell, and are related by hitherto unrecognized structural principles; we call these family members embedded isoreticular zeolite structures.

  8. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite.

    PubMed

    Panayotova, M I

    2001-01-01

    Natural Bulgarian zeolite was tested for its ability to remove Cu2+ from model wastewater. Influence of process variables was investigated. It was found that the optimum wastewater to zeolite ratio is 100:1 and the optimum pH value of water to be treated is 5.5 to 7.5. Zeolite with finer particles shows a higher uptake capacity. The simultaneous presence of Ca2+ and Mg2+ in concentrations similar to their concentrations in Bulgarian natural water does not significantly influence the uptake of Cu2+. Zeolite modification by treating it with NaCl, CH3COONa and NaOH increases its uptake ability. Copper ions are strongly immobilized by modified zeolite and secondary pollution of water caused by its contact with preloaded zeolite is very low (1.5-2.5% of Cu2+ preliminary immobilized have been released back into acidified water). Contacting with 2 mol dm(-3) NaCl can easily regenerate loaded zeolite; best results were obtained for zeolite modified with NaCl. Requirements of Bulgarian standards for industrial wastewater can be met by a one-stage process for an initial Cu2+ concentration of 10 mg dm(-3), and by a two stage process for an initial Cu2+ concentration of 50 mg dm(-3). Uptake of Cu2+ by zeolite from neutral wastewater has proved to be as effective as Cu2+ removal by precipitation of copper hydroxide. The process of Cu2+ uptake by natural zeolite is best described by the kinetic equation for adsorption. This fact, together with the correlation found between the Cu2+ uptake and the amount of Na+, Ca2+ and K+ released into solution by zeolite shows that the ion exchange sorption plays the basic role in Cu2+ uptake by natural zeolite. The value obtained for the apparent activation energy (26.112 kJ mol(-1) implies that the process can be easily carried out with a satisfactory rate. The uptake equilibrium is best described by the Langmuir adsorption isotherm, with Langmuir constants KL= 6.4 x 10(-2) dm3 mg(-1) and M = 6.74 mg g(-1). The apparent equilibrium constant

  9. [Effect of Nano Zeolite on Chemical Fractions of Cd in Soil and Its Uptake by Cabbage].

    PubMed

    Xiong, Shi-juan; Xu, Wei-hong; Xie, Wen-wen; Chen, Rong; Chen, Yong-qin; Chi, Sun-lin; Chen, Xu- gen; Zhang, Jin-zhong; Xiong, Zhi-ting; Wang, Zheng-yin; Xie, De-ti

    2015-12-01

    Incubation experiments were carried out to investigate the influence of different nano zeolite (NZ) and ordinary zeolite (OZ) levels(0, 5, 10 and 20 g · kg⁻¹) on the change trends in fraction distribution coefficient (FDC) of Cd when exposed to different Cadmium (Cd) levels (1, 5, 10 and 15 mg · kg⁻¹), and pot experiments were carried out to investigate their influence on soil Cd fraction and Cd uptake by cabbage. The results in incubation experiments showed that the application of nano zeolite as well as ordinary zeolite effectively decreased the FDC of exchangeable Cd and increased the FDC of Fe-Mn oxide fraction. The FDC of soil Cd from 0 d to 28 d was deceased at first, then increased and tended to be stable, and finally increased. At the end of incubation, the FDC of soil exchangeable Cd decreased from 72.0%-88.0% to 30.0%-66.4%. Exchangeable fraction Cd was the most dominant Cd fraction in soil during the whole incubation. The results in pot experiment indicated that the application of nano zeolite and ordinary zeolite decreased the concentration and FDC of soil exchangeable Cd, and concurrently the concentration and FDC of Cd in carbonate, Fe-Mn oxide, organic matter and residual fraction were increased. The lowest EX-Cd was observed in the treatment with high dose of nano zeolite (20 g · kg⁻¹). The FDC of exchangeable Cd showed significant negative relationship with the soil pH (P < 0.05), and was concurrently extremely positively correlated with Cd concentration in shoot and root of cabbage (P < 0.01). Soil pH increased by 1.8%-45.5% and 6.1%-54.3% in the presence of zeolite when exposed to 5 mg · kg⁻¹ 1 and Cd, respectively; FDC of exchangeable Cd decreased by 16.3%-47.7% and 16.2%-46.7%; Cd concentration in each tissues of cabbage decreased by 1.0%-75.0% and 3.8%-53.2%, respectively. Moreover, the reduction effect of nano zeolite on soil and plant Cd was better than that of ordinary zeolite. The growth of cabbage was stimulated by low and

  10. Methanol to olefin Conversion on HSAPO-34 zeolite from periodic density functional theory calculations: a complete cycle of side chain hydrocarbon pool mechanism

    SciTech Connect

    Wang, C.M.; Wang, Y.D.; Xie, Z.K.; Liu, Z.P.

    2009-03-15

    For its unique position in the coal chemical industry, the methanol to olefin (MTO) reaction has been a hot topic in zeolite catalysis. Due to the complexities of catalyst structure and reaction networks, many questions such as how the olefin chain is built from methanol remain elusive. On the basis of periodic density functional theory calculations, this work establishes the first complete catalytic cycle for MTO reaction via hexamethylbenzene (HMB) trapped in HSAPO-34 zeolite based on the so-called side chain hydrocarbon pool mechanism. The cycle starts from the methylation of HMB that leads to heptamethylbenzenium ion (heptaMB{sup +}) intermediate. This is then followed by the growth of side chain via repeated deprotonation of benzenium ions and methylation of the exocyclic double bond. Ethene and propene can finally be released from the side ethyl and isopropyl groups of benzenium ions by deprotonation and subsequent protonation steps. We demonstrate that (i) HMB/HSAPO-34 only yields propene as the primary product based on the side chain hydrocarbon pool mechanism and (ii) an indirect proton-shift step mediated by water that is always available in the system is energetically more favorable than the traditionally regarded internal hydrogen-shift step. Finally, the implications of our results toward understanding the effect of acidity of zeolite on MTO activity are also discussed.

  11. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    SciTech Connect

    Bowman, R.S.; Sullivan, E.J.

    1995-10-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost ({approximately}$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs{sup +} or Ca{sup 2+}), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb{sup 2+}) via ion exchange and surface complexation, and inorganic anions (CrO{sub 4}{sup 2-}, SeO{sub 4}{sup 2-}, SO{sub 4}{sup 2-}) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants.

  12. Microwave-assisted regeneration of synthetic zeolite used in tritium removal systems

    SciTech Connect

    Tanaka, M.; Takayama, S.; Sano, S.

    2015-03-15

    The regeneration process using synthetic honeycomb type 5A zeolite under microwave irradiation was experimentally investigated using a single-mode cavity at 2.46 GHz. In order to investigate the effect of electromagnetic fields, inductive heating by a magnetic field was applied to synthetic zeolite containing water. Because the microwave energy absorbed in the sample was less than 15 W, the zeolite sample was only heated to a temperature of 71 C. degrees. Water desorption was observed based on the increased temperature of the zeolite sample and the thermogravimetric curve that indicated a single step phenomenon. As a result, the regeneration process of zeolite was not complete over a period of 6000 s. A comparison of dielectric heating by an electric field with inductive heating by a magnetic field showed that the regeneration process by microwave irradiation was particularly beneficial in dielectric heating. (authors)

  13. Enhanced Activity of Nanocrystalline Beta Zeolite for Acylation of Veratrole with Acetic Anhydride.

    PubMed

    Aisha Mahmood Abdulkareem, Al-Turkustani; Selvin, Rosilda

    2016-04-01

    Friedel-Craft acylation of veratrole using homogeneous acid catalysts such as AlCl3, FeCl3, ZnCl2, and HF etc. produces acetoveratrone, (3',4'-dimethoxyacetophenone), which is the intermediate for synthesis of papavarine alkaloids. The problems associated with these homogeneous catalysts can be overcome by using heterogeneous solid catalysts. Since acetoveratrone is a larger molecule, large pore Beta zeolites with smaller particle sizes are beneficial for the liquid-phase acylation of veratrole, for easy diffusion of reactants and products. The present study aims in the acylation of veratrole with acetic anhydride using nanocrystalline Beta Zeolite catalyst. A systematic investigation of the effects of various reaction parameters was done. The catalysts were characterized for their structural features by using XRD, TEM and DLS analyses. The catalytic activity of nanocrystalline Beta zeolite was compared with commercial Beta zeolite for the acylation and was found that nanocrystalline Beta zeolite possessed superior activity. PMID:27451793

  14. Synthesis of polymorph A-enriched beta zeolites in a HF-concentrated system.

    PubMed

    Zhang, Guanqun; Wang, Bingchun; Zhang, Weiping; Li, Mingrun; Tian, Zhijian

    2016-04-21

    Polymorph A-enriched beta zeolites were synthesized by employing high HF concentrations in the synthesis medium. The polymorphic compositions of the synthesized beta zeolites were determined by the complementary characterization methods (19)F NMR analysis and PXRD simulation. With a variety of SDAs, a high HF concentration (HF/SDA > 1.0) in the synthesis medium results in the A-rich feature (55-65% A) of beta zeolites, while a moderate HF concentration only results in typical beta zeolites. A systematic study on the synthesis conditions reveals the existence of a buffered system of H(+) and F(-) formed in the highly HF-concentrated medium. This buffer results in a small but continuous supply of F(-) during zeolite crystallization, in contrast to the conventional fluoride route where all F(-) are discharged all-at-once at the initial stage. PMID:26974286

  15. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Zheng, Jinyu; Luo, Yibin; Da, Zhijian

    2016-09-01

    The zeolite Y is considered as a leading catalyst for FCC industry. The acidity and porosity modification play important roles in determining the final catalytic properties of zeolite Y. The alkaline treatment of zeolite Y by dealumination and alkaline treatment with NaOH and NaOH&TBPH was investigated. The zeolites were characterized by X-ray diffraction, low-temperature adsorption of nitrogen, transmission electron microscope, NMR, NH3-TPD and IR study of acidity. Accordingly, the hierarchical porosity and acidity property were discussed systematically. Finally, the catalytic performance of the zeolites Y was evaluated in the cracking of 1,3,5-TIPB. It was found that desilication with NaOH&TBPH ensured the more uniform intracrystalline mesoporosity with higher microporosity, while preserving higher B/L ratio and moderate Brønsted acidities resulting in catalysts with the most appropriated acidity and then with better catalytic performance.

  16. Product Selectivity Controlled by Zeolite Crystals in Biomass Hydrogenation over a Palladium Catalyst.

    PubMed

    Wang, Chengtao; Wang, Liang; Zhang, Jian; Wang, Hong; Lewis, James P; Xiao, Feng-Shou

    2016-06-29

    This work delineates the first example for controlling product selectivity in metal-catalyzed hydrogenation of biomass by zeolite crystals. The key to this success is to combine the advantages of both Pd nanoparticles (highly active sites) and zeolite micropores (controllable diffusion of reactants and products), which was achieved from encapsulation of the Pd nanoparticles inside of silicalite-I zeolite crystals as a core-shell structure (Pd@S-1). In the hydrogenation of biomass-derived furfural, the furan selectivity over the Pd@S-1 is as high as 98.7%, outperforming the furan selectivity (5.6%) over conventional Pd nanoparticles impregnated with S-1 zeolite crystals (Pd/S-1). The extraordinary furan selectivity in the hydrogenation over the Pd@S-1 is reasonably attributed to the distinguishable mass transfer of the hydrogenated products in the zeolite micropores. PMID:27308846

  17. Palladium-Zeolite nanofiber as an effective recyclable catalyst membrane for water treatment.

    PubMed

    Choi, Jungsu; Chan, Sophia; Yip, Garriott; Joo, Hyunjong; Yang, Heejae; Ko, Frank K

    2016-09-15

    Zeolite is an exciting natural material due to its unique capability of ammonium nitrogen (NH3N) adsorption in water. In this study, multifunctional hybrid composites of zeolite/palladium (Ze/Pd) on polymer nanofiber membranes were fabricated and explored for sustainable contaminant removal. SEM and XRD demonstrated that zeolite and palladium nanoparticles were uniformly distributed and deposited on the nanofibers. NH3N recovery rate was increased from 23 to 92% when palladium coated zeolite was embedded on the nanofiber. Multifunctional nanofibers of Ze/Pd membranes were able to adsorb NH3N on the zeolites placed on the surface of fibers and palladium catalysts were capable of selective oxidation of NH3N to N2 gas. The cycling of NH3N adsorption-oxidation, high flux, hydrophilicity, and flexibility of the membrane makes it a strong candidate for water treatment. PMID:27253639

  18. Discovery of optimal zeolites for challenging separations and chemical transformations using predictive materials modeling

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Jeon, Mi Young; Ren, Limin; Knight, Chris; Deem, Michael W.; Tsapatsis, Michael; Siepmann, J. Ilja

    2015-01-01

    Zeolites play numerous important roles in modern petroleum refineries and have the potential to advance the production of fuels and chemical feedstocks from renewable resources. The performance of a zeolite as separation medium and catalyst depends on its framework structure. To date, 213 framework types have been synthesized and >330,000 thermodynamically accessible zeolite structures have been predicted. Hence, identification of optimal zeolites for a given application from the large pool of candidate structures is attractive for accelerating the pace of materials discovery. Here we identify, through a large-scale, multi-step computational screening process, promising zeolite structures for two energy-related applications: the purification of ethanol from fermentation broths and the hydroisomerization of alkanes with 18-30 carbon atoms encountered in petroleum refining. These results demonstrate that predictive modelling and data-driven science can now be applied to solve some of the most challenging separation problems involving highly non-ideal mixtures and highly articulated compounds.

  19. The development of a zeolite system for upgrade of the Process Waste Treatment Plant

    SciTech Connect

    Robinson, S.M.; Kent, T.E.; Arnold, W.D.; Parrott, J.R. Jr.

    1993-10-01

    Studies have been undertaken to design an efficient zeolite ion exchange system for use at the ORNL Process Waste Treatment Plant to remove cesium and strontium to meet discharge limits. This report focuses on two areas: (1) design of column hardware and pretreatment steps needed to eliminate column plugging and channeling and (2) development of equilibrium models for the wastewater system. Results indicate that zeolite columns do not plug as quickly when the wastewater equalization is performed in the new Bethel Valley Storage Tanks instead of the former equalization basin where suspended solids concentration is high. A down-flow column with spent zeolite was used successfully as a prefilter to prevent plugging of the zeolite columns being used to remove strontium and cesium. Equilibrium studies indicate that a Langmuir isotherm models binary zeolite equilibrium data while the modified Dubinin-Polyani model predicts multicomponent data.

  20. Liquid-phase alkylation of benzene with light olefins catalyzed by {beta} zeolites

    SciTech Connect

    Bellussi, G.; Pazzuconi, G.; Perego, C.

    1995-11-01

    The catalytic performance of zeolite {beta} in the liquid-phase alkylation of benzene is compared with that of other solid catalysts. Zeolite {beta} is more active and more selective than zeolite Y in the alkylation with propylene and ethylene to cumene and ethylbenzene (EB). In the alkylation with propylene the overall selectivity of {beta} is higher than that of the traditional {open_quotes}solid phosphoric acid.{close_quotes} The catalytic activity is affected by the composition and the particle size of zeolite {beta} samples. Decreasing the framework Al content, by direct synthesis or by partial substitution of Al for B, produces a decrease in both conversion and selectivity in cumene and EB synthesis. A hypothesis to explain this behavior is given. The catalytic activity of zeolite {beta} is limited by intraparticle diffusion, as evidenced by the decreased activity corresponding to the particle size increase. 22 refs., 7 figs., 10 tabs.

  1. Dry-gel synthesis of shaped binderless zeolites composed of nanosized ZSM-5

    NASA Astrophysics Data System (ADS)

    Yue, Ming Bo; Yang, Na; Jiao, Wen Qian; Wang, Yi Meng; He, Ming-Yuan

    2013-06-01

    Shaped binderless ZSM-5 zeolites are prepared via a dry-gel conversion (DGC) technique from aluminosilicate extrudates, where the addition of seed gels not only provides crystal nuclei for rapid crystallization of zeolite but also controls the size of ZSM-5 crystal. Furthermore, the introduction of amine into the steam favors the formation of nanosized ZSM-5 zeolite. Especially, the morphology of these aluminosilicate extrudates well kept in the crystallization process. The obtained shaped zeolites are characterized by X-ray diffraction (XRD), nitrogen adsorption analysis, and scanning electron micrographs (SEM). The shaped zeolites show hierarchical structure with high mesopore volume (0.22 cm3 g-1) and demonstrate similar activity as commercial ZSM-5 samples in the transformation of i-propanol to hydrocarbons reaction.

  2. Effect of the formation of secondary pores in zeolite ZSM-5 on the properties of molybdenum-zeolite catalysts for methane aromatization

    NASA Astrophysics Data System (ADS)

    Kucherov, A. V.

    2014-03-01

    A study is performed of 4% Mo/ZSM-5 (30) catalysts for methane aromatization prepared by solid-phase synthesis with mechanical mixing of a zeolite with MoO3 followed by calcination at 550°C. Zeolite etched with sodium hydroxide solutions and dealuminated with aluminum nitrate solutions is used as a support. Catalytic studies of the catalysts are conducted. The effect of treating the initial zeolite on the properties of catalysts in methane aromatization is determined. The effect subsequently treating a zeolite support has on the acid sites of a catalyst is confirmed by means of temperature-programmed reduction and the temperature-programmed desorption of NH3. The formation of molybdenum ions in the +5 oxidation state during catalysis and the presence of graphitized carbon deposits on a spent catalyst's surface are confirmed by EPR and temperature-programmed oxidation.

  3. Rapid synthesis of an aluminum-rich MSE-type zeolite by the hydrothermal conversion of an FAU-type zeolite.

    PubMed

    Inagaki, Satoshi; Tsuboi, Yasuyuki; Nishita, Yuji; Syahylah, Tuan; Wakihara, Toru; Kubota, Yoshihiro

    2013-06-10

    An aluminum-rich MSE-type zeolite (Si/Al is as small as 7) has been successfully synthesized in a remarkably short crystallization period of only 3 days by the hydrothermal conversion of an FAU-type zeolite, presumably by the assembly of four-membered-ring (4-R) aluminosilicate oligomers supplied by the double 6-R (D6R) components of the FAU framework with the aid of the structure-directing agents and seed crystals. The dealuminated version of the aluminum-rich MSE-type zeolite showed a high level of coke durability in addition to a significant yield of propylene, which indicates that this novel zeolitic material is suitable for industrial applications as a highly selective and long-lived catalyst. PMID:23606200

  4. Analysis of the biological and chemical reactivity of zeolite-based aluminosilicate fibers and particulates.

    PubMed Central

    Fach, Estelle; Waldman, W James; Williams, Marshall; Long, John; Meister, Richard K; Dutta, Prabir K

    2002-01-01

    Environmental and/or occupational exposure to minerals, metals, and fibers can cause lung diseases that may develop years after exposure to the agents. The presence of toxic fibers such as asbestos in the environment plus the continuing development of new mineral or vitreous fibers requires a better understanding of the specific physical and chemical features of fibers/particles responsible for bioactivity. Toward that goal, we have tested aluminosilicate zeolites to establish biological and chemical structure-function correlations. Zeolites have known crystal structure, are subject to experimental manipulation, and can be synthesized and controlled to produce particles of selected size and shape. Naturally occurring zeolites include forms whose biological activity is reported to range from highly pathogenic (erionite) to essentially benign (mordenite). Thus, we used naturally occurring erionite and mordenite as well as an extensively studied synthetic zeolite based on faujasite (zeolite Y). Bioactivity was evaluated using lung macrophages of rat origin (cell line NR8383). Our objective was to quantitatively determine the biological response upon interaction of the test particulates/fibers with lung macrophages and to evaluate the efficacy of surface iron on the zeolites to promote the Fenton reaction. The biological assessment included measurement of the reactive oxygen species by flow cytometry and chemiluminescence techniques upon phagocytosis of the minerals. The chemical assessment included measuring the hydroxyl radicals generated from hydrogen peroxide by iron bound to the zeolite particles and fibers (Fenton reaction). Chromatography as well as absorption spectroscopy were used to quantitate the hydroxyl radicals. We found that upon exposure to the same mass of a specific type of particulate, the oxidative burst increased with decreasing particle size, but remained relatively independent of zeolite composition. On the other hand, the Fenton reaction

  5. Energy Analysis of Aluminosilicate Zeolites with Comprehensive Ranges of Framework Topologies, Chemical Compositions, and Aluminum Distributions.

    PubMed

    Muraoka, Koki; Chaikittisilp, Watcharop; Okubo, Tatsuya

    2016-05-18

    The contents and locations of Al in the zeolite frameworks are one of the key factors determining the physicochemical properties of zeolites. Systematic evaluation of the characteristics of zeolites with a wide variety of framework topologies, a wide range of Si/Al ratios, and various locations of Al is of great significance, but very challenging due to the limitation of the realizable ranges of Al contents in zeolites as well as the limited information on the Al locations obtained from the current analytical techniques. Here, we report the systematic analysis of the energetics of aluminosilicate zeolites with 209 existing framework topologies at different Si/Al ratios using molecular mechanics. More than 43 000 initial structures were generated to give comprehensive views of the energetics of zeolites. The results coincide well with the structural knowledge obtained experimentally. It was revealed that the relation between the relative framework energies versus the Al contents varies in accordance with the topologies, suggesting that the relative stability of zeolites depends not only on the topologies, but also on the substituting contents of Al. For particular topologies with the same Al contents, in addition, comparisons between random and specific distributions of Al showed that zeolite with Al at a particular T site is energetically more stable than those with random distributions, suggesting the inherent influences of the Al locations. The contents and locations of Al in zeolites likely have a certain preference that may reflect the range of chemical compositions, the Al distributions, and consequently the physicochemical properties of realizable aluminosilicate zeolites. PMID:27097121

  6. Adsorption and Diffusion of Fructose in Zeolite HZSM-5: Selection of Models and Methods for Computational Studies

    SciTech Connect

    Cheng, Lei; Curtiss, Larry A.; Assary, Rajeev S.; Greeley, Jeffrey P.; Kerber, Torsten; Sauer, Joachim

    2011-11-10

    The adsorption and protonation of fructose inHZSM-5 have been studied for the assessment of models for accurate reaction energy calculations and the evaluation of molecular diffusivity. The adsorption and protonation were calculated using 2T, 5T, and 46T clusters as well as a periodic model. The results indicate that the reaction thermodynamics cannot be predicted correctly using small cluster models, such as 2T or 5T, because these small cluster models fail to represent the electrostatic effect of a zeolite cage, which provides additional stabilization to the ion pair formed upon the protonation of fructose. Structural parameters optimized using the 46T cluster model agree well with those of the full periodic model; however, the calculated reaction energies are in significant error due to the poor account of dispersion effects by density functional theory. The dispersion effects contribute -30.5 kcal/mol to the binding energy of fructose in the zeolite pore based on periodic model calculations that include dispersion interactions. The protonation of the fructose ternary carbon hydroxyl group was calculated to be exothermic by 5.5 kcal/mol with a reaction barrier of 2.9 kcal/mol using the periodic model with dispersion effects. Our results suggest that the internal diffusion of fructose in HZSM-5 is very likely to be energetically limited and only occurs at high temperature due to the large size of the molecule.

  7. Adsorption and diffusion of fructose in zeolite HZSM-5: selection of models and methods for computational studies.

    SciTech Connect

    Cheng, L.; Curtiss, L. A.; Assary, R. S.; Greeley, J.; Kerber, T.; Sauer, J.

    2011-09-14

    The adsorption and protonation of fructose in HZSM-5 have been studied for the assessment of models for accurate reaction energy calculations and the evaluation of molecular diffusivity. The adsorption and protonation were calculated using 2T, 5T, and 46T clusters as well as a periodic model. The results indicate that the reaction thermodynamics cannot be predicted correctly using small cluster models, such as 2T or 5T, because these small cluster models fail to represent the electrostatic effect of a zeolite cage, which provides additional stabilization to the ion pair formed upon the protonation of fructose. Structural parameters optimized using the 46T cluster model agree well with those of the full periodic model; however, the calculated reaction energies are in significant error due to the poor account of dispersion effects by density functional theory. The dispersion effects contribute -30.5 kcal/mol to the binding energy of fructose in the zeolite pore based on periodic model calculations that include dispersion interactions. The protonation of the fructose ternary carbon hydroxyl group was calculated to be exothermic by 5.5 kcal/mol with a reaction barrier of 2.9 kcal/mol using the periodic model with dispersion effects. Our results suggest that the internal diffusion of fructose in HZSM-5 is very likely to be energetically limited and only occurs at high temperature due to the large size of the molecule.

  8. Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies.

    PubMed

    Nibou, D; Mekatel, H; Amokrane, S; Barkat, M; Trari, M

    2010-01-15

    The adsorption of Zn(2+) onto NaA and NaX zeolites was investigated. The samples were synthesized according to a hydrothermal crystallization using aluminium isopropoxide (Al[OCH(CH(3))(2)](3)) as a new alumina source. The effects of pH, initial concentration, solid/liquid ratio and temperature were studied in batch experiments. The Freundlich and the Langmuir models were applied and the adsorption equilibrium followed Langmuir adsorption isotherm. The uptake distribution coefficient (K(d)) indicated that the Zn(2+) removal was the highest at minimum concentration. Thermodynamic parameters were calculated. The negative values of standard enthalpy of adsorption revealed the exothermic nature of the adsorption process whereas the negative activation entropies reflected that no significant change occurs in the internal structure of the zeolites solid matrix during the sorption of Zn(2+). The negative values of Gibbs free energy were indicative of the spontaneity of the adsorption process. Analysis of the kinetic and rate data revealed that the pseudo second-order sorption mechanism is predominant and the intra particle diffusion was the determining step for the sorption of zinc ions. The obtained optimal parameters have been applied to wastewater from the industrial zone (Algeria) in order to remove the contained zinc effluents. PMID:19773115

  9. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    PubMed Central

    Liu, Ning; Hui, Juan; Sun, Cunqiang; Dong, Junhang; Zhang, Luzheng; Xiao, Hai

    2006-01-01

    A fiber optic intrinsic Fabry-Perot interferometric (IFPI) chemical sensor was developed by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolite synthesized on the cleaved endface of a single mode fiber. The sensor operated by monitoring the optical thickness changes of the zeolite thin film caused by the adsorption of organic molecules into the zeolite channels. The optical thickness of the zeolite thin film was measured by white light interferometry. Using methanol, 2-propanol, and toluene as the model chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolved organics in water with high sensitivity.

  10. Protective shield for an instrument probe

    DOEpatents

    Johnsen, Howard A.; Ross, James R.; Birtola, Sal R.

    2004-10-26

    A shield is disclosed that is particularly useful for protecting exposed optical elements at the end of optical probes used in the analysis of hazardous emissions in and around an industrial environment from the contaminating effects of those emissions. The instant invention provides a hood or cowl in the shape of a right circular cylinder that can be fitted over the end of such optical probes. The hood provides a clear aperture through which the probe can perform unobstructed analysis. The probe optical elements are protected from the external environment by passing a dry gas through the interior of the hood and out through the hood aperture in sufficient quantity and velocity to prevent any significant mixing between the internal and external environments. Additionally, the hood is provided with a cooling jacket to lessen the potential for damaging the probe due to temperature excursions.

  11. Improved probes for ultrasonic flaw detection

    NASA Astrophysics Data System (ADS)

    Antsifirov, V. V.; Rubin, A. L.; Salaev, A. V.; Sharko, A. V.

    1980-10-01

    Refinements are introduced in the structure of scanning probes for ultrasonic flaw detection, eliminating a number of the shortcomings inherent in standard probes (small capture zone, high acoustic noise level, unsuitability for inspection on a blank unfinished surface, etc.). A wide-scan combination double transceiver probe with a flat response over the length of the transducer is used to inspect large-scale pieces. Surface-wave inspection of pieces is realized with a high-sensitivity combination double transceiver probe with a low internal noise level, and hot-rolled steel VNS-5 plates are inspected with a probe having a local immersion bath and a sensitivity to the exposure of defects comparable in size with a control reflector of diameter 2.4 mm.

  12. Effect of the Si/Al ratio and of the zeolite structure on the performance of dealuminated zeolites for the reforming of hydrocarbon mixtures

    SciTech Connect

    Smirniotis, P.G.; Zhang, W.

    1996-09-01

    Various 12-membered ring pore zeolites were employed for the reforming of synthetic hydrocarbon mixtures which simulate industrial naphthas. All the zeolites were dealuminated to various extents. It was found that, under the present conditions over the samples which are slightly dealuminated, bimolecular-condensation reactions followed by recracking are responsible for the relatively large selectivities of C{sub 4} paraffins. The monomolecular cracking (via pentacoordinated carbonium ions) of the latter hydrocarbons is responsible for the large generation of CH{sub 4} from the cracking of C{sub 4} paraffins. When the Si/Al ratio increases, the selectivity of methane passes through a steep minimum, while those of C{sub 3}, C{sub 4}, and C{sub 5} pass through a maximum. It was also found that the zeolite pore structure is a very important factor for the time on stream activity of zeolite-based catalysts. Zeolites with reduced aluminum content and pore structures, which do not favor the formation of coke precursors in their cavities, can lead to very promising catalysts for acid-catalyzed reactions. From this study a 12-membered ring pore zeolite, which demonstrates minimal coke deactivation, was identified.

  13. Atmospheric Probe Model: Construction and Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Vogel, Jerald M.

    1998-01-01

    The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.

  14. Thermal conductivity of model zeolites: molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Murashov, Vladimir V.

    1999-02-01

    The thermal conductivity of model zeolites was investigated using non-equilibrium molecular dynamics calculations. This type of calculation was found to overestimate the thermal conductivity of low-density silica polymorphs. A better reproduction of the experimental results was found for zeolites, and this was related to the lower phonon mean free path. The thermal conductivity of framework silicates was shown to be determined primarily by the vibrations of the continuous oxygen sublattice. Thus, the most drastic suppression of the heat transfer was related to alterations of the O-O distances; for example, a sixfold reduction in thermal conductivity compared to that of siliceous LTA zeolite was found for LTA-A1PO4. Framework cations were shown to affect the heat transfer by changing the vibrational modes of the structural building units of the framework and non-framework counter-cations, by disturbing the oxygen sublattice locally and acting as Rayleigh and resonant scatterers. A model assuming the heat transfer to be due only to non-dispersive acoustic phonons failed to reproduce the dependence of the thermal conductivity on the mass of the cations and the unit-cell dimension, thus suggesting a more sophisticated mechanism of heat transfer to be operative in framework materials. The effect of non-framework non-ionic species on the thermal conductivity was shown to be determined by their effect on the characteristics of the oxygen framework vibrations. Thus, repulsive interactions between the oxygen sublattice and Xe8 clusters, reducing the anisotropy and anharmonicity of the oxygen vibrations, give rise to enhanced heat transfer in LTA-SiO2 at ambient conditions.

  15. Separation of fructooligosaccharides using zeolite fixed bed columns.

    PubMed

    Kuhn, Raquel Cristine; Maugeri Filho, Francisco

    2010-07-15

    Recent studies have shown that the chromatographic separation of mixtures of monosaccharides and disaccharides may be improved by employing Y zeolites, a procedure which holds promise in the separation of oligosaccharides. In the present study, a column packed with zeolite was employed to study the separation of fructooligosaccharides (FOS). FOS were produced by an enzyme isolated from Rhodotorula sp., which produces GF2 (kestose), GF3 (nystose) and GF4 (frutofuranosyl nystose). The identification and quantification of the sugars were carried out by ion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The separation of fructooligosaccharides was carried out using a fixed bed column packed with Ba2+-exchange Y zeolites. The effects of temperature (40-50 degrees C), injected volume per bed volume (2.55-7.64%), superficial velocity (0.1-0.15 cm min(-1)) and eluent composition (40-60% ethanol) were investigated using a fractionary factorial design with separation efficiency as the response. The results showed that the most favorable conditions for the separation of the oligosaccharide-glucose mixture were 60% ethanol as eluent, temperature of 50 degrees C, superficial velocity of 0.1 cm min(-1) and 2.55% injection volume per bed volume of injection mixture, using two columns in series. The values for separation efficiency were 0.60 for oligosaccharide-glucose, 1.00 for oligosaccharide-fructose, 0.22 for oligosaccharide-sucrose, 0.43 for glucose-fructose, 0.82 for glucose-sucrose and 1.23 for fructose-sucrose. PMID:20617538

  16. Modification of commercial NaY zeolite to give high water diffusivity and adsorb a large amount of water.

    PubMed

    Katoh, Masahiro; Kimura, Michisato; Sugino, Mao; Horikawa, Toshihide; Nakagawa, Keizo; Sugiyama, Shigeru

    2015-10-01

    By using NaY zeolites as desiccant materials, commercial NaY zeolite was alkali treated with 1 M NaOH aqueous solution and then Mg(2+) ion-exchanged by 0.5 M Mg(NO3)2 aqueous solution. Alkali treatment (AT) of NaY zeolite removed silicon atoms selectivity from the framework of Y-type zeolite and enhanced water diffusivity of Y-type zeolite. On the other hand, Mg(2+) ion-exchange of NaY zeolite increased the amount of water adsorbed. Prepared Y-AT-Mg zeolite had both water adsorption velocity and a large difference of water adsorbed amount between adsorption at 30 °C and desorption at 100 °C. PMID:26072446

  17. Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors

    PubMed Central

    2014-01-01

    A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors. PMID:24636423

  18. Study of zeolite influence on analytical characteristics of urea biosensor based on ion-selective field-effect transistors

    NASA Astrophysics Data System (ADS)

    Shelyakina, Margaryta K.; Soldatkin, Oleksandr O.; Arkhypova, Valentyna M.; Kasap, Berna O.; Akata, Burcu; Dzyadevych, Sergei V.

    2014-03-01

    A possibility of the creation of potentiometric biosensor by adsorption of enzyme urease on zeolite was investigated. Several variants of zeolites (nano beta, calcinated nano beta, silicalite, and nano L) were chosen for experiments. The surface of pH-sensitive field-effect transistors was modified with particles of zeolites, and then the enzyme was adsorbed. As a control, we used the method of enzyme immobilization in glutaraldehyde vapour (without zeolites). It was shown that all used zeolites can serve as adsorbents (with different effectiveness). The biosensors obtained by urease adsorption on zeolites were characterized by good analytical parameters (signal reproducibility, linear range, detection limit and the minimal drift factor of a baseline). In this work, it was shown that modification of the surface of pH-sensitive field-effect transistors with zeolites can improve some characteristics of biosensors.

  19. Fluorescent probes for shock compression spectroscopy

    NASA Astrophysics Data System (ADS)

    Banishev, Alexandr; Christensen, James; Dlott, Dana

    We have demonstrated the capability of using Rhodamine 6G dye as an ultrafast emission probe in high-speed shock compression of condensed matter. The ultimate time response of the probe, which functions as a high-speed pressure sensor, is limited by fundamental photophysical processes such as radiative rates, internal conversion rates and intersystem crossing rates. The time response has been greatly improved by encapsulating the dye in silica nano or microparticles. This probe was used to observed nanosecond viscoelastic shock compression of a polymer (PMMA), and has been used to monitor the response of individual grains of sand to high-speed impact.

  20. Overview of Key Saturn Probe Mission Trades

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Kowalkowski, Theresa; Folkner, Bill

    2007-01-01

    Ongoing studies, performed at NASA/JPL over the past two years in support of NASA's SSE Roadmap activities, proved the feasibility of a NF class Saturn probe mission. I. This proposed mission could also provide a good opportunity for international collaboration with the proposed Cosmic Vision KRONOS mission: a) With ESA contributed probes (descent modules) on a NASA lead mission; b) Early 2017 launch could be a good programmatic option for ESA-CV/NASA-NF. II. A number of mission architectures could be suitable for this mission: a) Probe Relay based architecture with short flight time (approx. 6.3-7 years); b) DTE probe telecom based architecture with long flight time (-11 years), and low probe data rate, but with the probes decoupled from the carrier, allowing for polar trajectories I orbiter. This option may need technology development for telecom; c) Orbiter would likely impact mission cost over flyby, but would provide significantly higher science return. The Saturn probes mission is expected to be identified in NASA's New Frontiers AO. Thus, further studies are recommended to refine the most suitable architecture. International collaboration is started through the KRONOS proposal work; further collaborated studies will follow once KRONOS is selected in October under ESA's Cosmic Vision Program.

  1. Decomposition of trichloroethene on ozone-adsorbed high silica zeolites.

    PubMed

    Fujita, Hirotaka; Izumi, Jun; Sagehashi, Masaki; Fujii, Takao; Sakoda, Akiyoshi

    2004-01-01

    We developed a novel ozonation process for water treatment using high silica zeolites as an adsorptive concentrator of water-dissolved ozone and organic pollutants, resulting in a significant increase in reaction rate. In experiments involving trichloroethene (TCE) decomposition using a tubular flow reactor, TCE decomposition was much greater in the presence of ZSM-5 (SiO(2)/Al(2)O(3) ratio=3000) than in its absence, possibly due to the high concentrations of ozone and TCE inside the adsorbent. The TCE conversion obtained in our experiments was found to reach its theoretically maximum limit. PMID:14630114

  2. Multiple episodes of zeolite deposition in fractured silicic tuff

    SciTech Connect

    Carlos, B.A.; Chipera, S.J.; Snow, M.G.

    1995-04-01

    Fractures in silicic tuffs above the water table at Yucca Mountain, Nevada, USA contain two morphologies of heulandite with different compositions. Tabular heulandite is zoned, with Sr-rich cores and Mg-rich rims. Later prismatic heulandite is nearly the same composition as the more magnesian rims. Heulandite and stellerite may occur between layers of calcite, and calcite occurs locally between generations of heulandite. Thermodynamic modeling, using estimated thermodynamic data and observed chemical compositions for heulandite and stellerite, shows that stellerite is the favored zeolite unless Ca concentrations are reduced or Mg and/or Sr concentrations are significantly elevated above current Yucca Mountain waters.

  3. Electron microscopy study of zeolite ZK-14; a synthetic chabazite

    NASA Astrophysics Data System (ADS)

    Cartlidge, S.; Wessicken, R.; Nissen, H.-U.

    1983-03-01

    The defect structure of zeolite (K+, TMA+) — ZK-14, a synthetic chabazite, has been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM together with TEM bright field (BF) and dark field (DF) micrographs indicate that the hexagonal, platelet ZK-14 crystals are built up of crystalline blocks joined by twinning along (00.1). High resolution transmission electron microscopy (HRTEM) reveals faulting of the ideal AABBCC single 6-ring stacking sequence of ZK-14. This is consistent with an observed line broadening in its X-ray powder diffraction profile. Channel apertures are imaged, even for thick specimens.

  4. Mathematical modelling of diffusion and reaction in blocked zeolite catalysts

    SciTech Connect

    Sundaresan, S.; Hall, C.K.

    1985-01-01

    A mathematical model for diffusion and reaction in blocked zeolites is developed which takes into account nonidealities arising from interaction between sorbed molecules as well as the effect of pore and surface blocking. The model combines a microscopic approach, in which expressions for chemical potential and diffusive fluxes are calculated within the lattice-gas framework, with the more traditional continuum approach which takes into account the effect of surface blocking. The effect of pore blocking on the diffusive fluxes is accounted for through an effective medium approximation.

  5. Catalytic degradation of high density polyethylene using zeolites.

    PubMed

    Zaggout, F R; al Mughari, A R; Garforth, A

    2001-01-01

    Plastic wastes, which cause a serious environmental problem in urban areas, can serve as sources of energy. Catalytic treatment of High Density Polyethylene (HDPE) has shown that the degradation of HDPE resulted in the production of a stream of gaseous hydrocarbons varied in the range C1-C8. The degradation was carried out using diluted forms of zeolites ZSM-5, USY and Mordenite (MORD) using a fluidized bed reactor (FBR). Effect of coke formation on the activity of the catalysts was screened by thermogravimetric (TGA). ZSM-5 showed a significant resistance to deactivation because of the nature of its small pore size compared with USY and MORD. PMID:11382018

  6. Evaluation of the adsorptive behavior of cesium and strontium on hydroxyapatite and zeolite for decontamination of radioactive substances.

    PubMed

    Ozeki, K; Aoki, H

    2016-08-12

    Removal of radioactive substances, such as cesium (Cs) and strontium (Sr), has become an emerging issue after the Fukushima Daiichi Nuclear Power Plant Disaster. To assess the possibility that hydroxyapatite (HA) and zeolites can be used for removal of radioactive substances, the adsorption capacities of Cs and Sr on the HA and a zeolite were investigated. The influence of Fe ions on Cs and Sr adsorption on the HA and the zeolite was also evaluated, because Fe ions are the most effective inhibitor of Cs adsorption on the zeolite.In the Cs adsorption process on the HA and the zeolite, the zeolite showed a higher adsorption ratio than the HA, and the maximum sorption capacity of the zeolite was calculated as 196 mg/g, whereas the HA showed a higher Sr adsorption ratio than the zeolite. The maximum sorption capacity of Sr on the HA was 123 mg/g. Under coexistence with Fe, Cs adsorption on the zeolite decreased with increasing Fe concentration, reaching 2.0 ± 0.8% at 0.1 M Fe concentration. In contrast, Cs adsorption on the zeolite was improved by adding the HA. In the case of coexistence of the HA, the Cs adsorption on the mixture of the HA and the zeolite was 52.4% ± 3.6 % at 0.1 M Fe concentration, although Cs adsorption on the HA alone was quite low. In the Fe adsorption processes of the HA and the zeolite, the HA exhibited a maximum sorption capacity of 256 mg/g, which was much higher than that of the zeolite (111 mg/g). The high affinity of Fe on the HA contributes to the improvement of the deteriorated Cs adsorption on the zeolite due to Fe ions. PMID:27567777

  7. Gas-phase adsorption in dealuminated natural clinoptilolite and liquid-phase adsorption in commercial DAY zeolite and modified ammonium Y zeolite

    NASA Astrophysics Data System (ADS)

    Costa Hernandez, Alba Nydia

    The adsorption of Carbon Dioxide (CO2) is a very important tool for the material characterization. On the other hand, in separation and recovery technology, the adsorption of the CO2 is important to reduce the concentration of this gas considered as one of the greenhouse gases. Natural zeolites, particularly clinoptilolite, are widely applied to eliminate some pollutants from the environment. One of the goals of this research is to study the structure, composition and morphology of one natural clinoptilolite dealuminated with ammonium hexafluorosilicate (AHFi) and with orthophosphoric acid (H3PO4). Each modified sample was characterized using X-ray Diffraction (XRD), Carbon Dioxide adsorption at 0° C, Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy with Energy Dispersive X-Ray Analysis (SEM-EDAX). In addition, the surface chemistry of the modified clinoptilolites was analyzed with Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS). The adsorption measurements were also used to study of the interaction of CO2 molecule within the adsorption space of these modified clinoptilolites. It was concluded that one of the modified clinoptilolites, (CSW-HFSi-0.1M), showed a great quality as adsorbent and as catalytic comparable to commercial synthetic zeolites. As far as we know, the modification of clinoptilolite with HFSi to improve their adsorption properties had not been previously attempted. In the second part of this dissertation, the dynamic adsorption of three isomers of nitrophenols using as adsorbent a commercial DAY zeolite was investigated. Also, the dynamic adsorption of methanol in a less hydrophobic zeolite, Ammonium Y Zeolite was investigated. The obtained breakthrough curves showed that the commercial DAY zeolite could be a suitable adsorbent to the liquid-phase adsorption of the phenolic compounds. Notwithstanding the modified ammonium Y zeolite had a low Si/Al ratio (less hydrophobic) than commercial DAY zeolite; this

  8. A comparison of the amorphization of zeolitic imidazolate frameworks (ZIFs) and aluminosilicate zeolites by ball-milling.

    PubMed

    Baxter, Emma F; Bennett, Thomas D; Cairns, Andrew B; Brownbill, Nick J; Goodwin, Andrew L; Keen, David A; Chater, Philip A; Blanc, Frédéric; Cheetham, Anthony K

    2016-03-14

    X-ray diffraction has been used to investigate the kinetics of amorphization through ball-milling at 20 Hz, for five zeolitic imidazolate frameworks (ZIFs) - ZIF-8, ZIF-4, ZIF-zni, BIF-1-Li and CdIF-1. We find that the rates of amorphization for the zinc-containing ZIFs increase with increasing solvent accessible volume (SAV) in the sequence ZIF-8 > ZIF-4 > ZIF-zni. The Li-B analogue of the dense ZIF-zni amorphizes more slowly than the corresponding zinc phase, with the behaviour showing a correlation with their relative bulk moduli and SAVs. The cadmium analogue of ZIF-8 (CdIF-1) amorphizes more rapidly than the zinc counterpart, which we ascribe primarily to its relatively weak M-N bonds as well as the higher SAV. The results for the ZIFs are compared to three classical zeolites - Na-X, Na-Y and ZSM-5 - with these taking up to four times longer to amorphize. The presence of adsorbed solvent in the pores is found to render both ZIF and zeolite frameworks more resistant to amorphization. X-ray total scattering measurements show that amorphous ZIF-zni is structurally indistinguishable from amorphous ZIF-4 with both structures retaining the same short-range order that is present in their crystalline precursors. By contrast, both X-ray total scattering measurements and (113)Cd NMR measurements point to changes in the local environment of amorphous CdIF-1 compared with its crystalline CdIF-1 precursor. PMID:26575842

  9. Effect of zeolite on toxicity of ammonia in freshwater sediments: Implications for toxicity identification evaluation procedures

    SciTech Connect

    Besser, J.M.; Ingersoll, C.G.; Leonard, E.N.; Mount, D.R.

    1998-11-01

    Techniques for reducing ammonia toxicity in freshwater sediments were investigated as part of a project to develop toxicity identification and evaluation (TIE) procedures for whole sediments. Although ammonia is a natural constituent of freshwater sediments, pollution can lead to ammonia concentrations that are toxic to benthic invertebrates, and ammonia can also contribute to the toxicity of sediments that contain more persistent contaminants. The authors investigated the use of amendments of a natural zeolite mineral, clinoptilolite, to reduce concentrations of ammonia in sediment pore water. Zeolites have been widely used for removal of ammonia in water treatment and in aqueous TIE procedures. The addition of granulated zeolite to ammonia-spiked sediments reduced pore-water ammonia concentrations and reduced ammonia toxicity to invertebrates. Amendments of 20% zeolite (v/v) reduced ammonia concentrations in pore water by {ge}70% in spiked sediments with ammonia concentrations typical of contaminated freshwater sediments. Zeolite amendments reduced toxicity of ammonia-spiked sediments to three taxa of benthic invertebrates (Hyalella azteca, Lumbriculus variegatus, and Chironomus tentans), despite their widely differing sensitivity to ammonia toxicity. In contrast, zeolite amendments did not reduce acute toxicity of sediments containing high concentrations of cadmium or copper or reduce concentrations of these metals in pore waters. These studies suggest that zeolite amendments, used in conjunction with toxicity tests with sensitive taxa such as H. azteca, may be an effective technique for selective reduction of ammonia toxicity in freshwater sediments.

  10. Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode O.; Breedveld, Victor

    2008-07-01

    We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.

  11. Distribution and chemistry of fracture-lining zeolites at Yucca Mountain, Nevada

    SciTech Connect

    Carlos, B.; Chipera, S.; Bish, D.; Raymond, R.

    1993-09-01

    Yucca Mountain, a > 1.5-km thick sequence of tuffs and subordinate lavas in southwest Nevada, is being investigated as a potential high-level nuclear waste repository site. Fracture-lining minerals are possible sources of information on past transport within the tuffs, and they may act as natural barriers to radionuclide migration along the fractures. Cores from several drill holes were examined to determine the distribution and chemistry of zeolite minerals in fractures. Fracture-lining minerals in the Paintbrush Tuff are highly variable in distribution, both vertically and laterally across the mountain, with mordenite, heulandite, and stellerite widespread in fractures even though the tuff matrix is generally devitrified and not zeolitic. Where heulandite occurs as both tabular and prismatic crystals in the same fracture, the two morphologies have different compositions, suggesting multiple episodes of zeolite formation within the fractures. In contrast to the Paintbrush Tuff, fractures in the Calico Hills Formation and the Crater Flat Tuff generally contain abundant clinoptilolite and mordenite only where the matrix is zeolitic, although mordenite does occur as fracture linings in some devitrified intervals of the Crater Flat Tuff as well. The fracture-lining zeolites correlate with the degree of alteration of the zeolitic tuffs, with clinoptilolite plus mordenite in tuffs containing clinoptilolite, and analcime in fractures limited to tuff intervals containing analcime. These data suggest that fracture-lining zeolite formation may have been coincident with the original alteration of the tuffs.

  12. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste.

    PubMed

    Milán, Z; Sánchez, E; Weiland, P; Borja, R; Martín, A; Ilangovan, K

    2001-10-01

    The effect of different natural zeolite concentrations on the anaerobic digestion of piggery waste was studied. Natural zeolite doses in the range 0.2-10 g/l of wastewater were used in batch experiments, which were carried out at temperatures between 27 degrees C and 30 degrees C. Total chemical oxygen demand (COD), total and volatile solids, ammonia and organic nitrogen, pH, total volatile fatty acids (TVFA), alkalinity (Alk) and accumulative methane production were determined during 30 days of digestion. The anaerobic digestion process was favored by the addition of natural zeolite at doses between 2 and 4 g/l and increasingly inhibited at doses beyond 6 g/l. A first-order kinetic model of COD removal was used to determine the apparent kinetic constants of the process. The kinetic constant values increased with the zeolite amount up to a concentration of 4 g/l. The values of the maximum accumulative methane production (Gm) increased until zeolite concentrations of 2-4 g/l. The addition of zeolite reduced the values of the TVFA/ Alk ratio while increasing the pH values, and these facts could contribute to the process failure at zeolite doses of 10 g/l. PMID:11554599

  13. Catalytic degradation of high-density polyethylene over different zeolitic structures

    SciTech Connect

    Manos, G.; Garforth, A.; Dwyer, J.

    2000-05-01

    The catalytic degradation of high-density polyethylene to hydrocarbons was studied over different zeolites. The product range was typically between C{sub 3} and C{sub 15} hydrocarbons. Distinctive patterns of product distribution were found with different zeolitic structures. Over large-pore ultrastable Y, Y, and {beta} zeolites, alkanes were the main products with less alkenes and aromatics and only very small amounts of cycloalkanes and cycloalkenes. Medium-pore mordenite and ZSM-5 gave significantly more olefins. In the medium-pore zeolites secondary bimolecular reactions were sterically hindered, resulting in higher amounts of alkenes as primary products. The hydrocarbons formed with medium-pore zeolites were lighter than those formed with large-pore zeolites. The following order was found regarding the carbon number distribution: (lighter products) ZSM-5 < mordenite < {beta} < Y < US-Y (heavier products). A similar order was found regarding the bond saturation: (more alkenes) ZSM-5 < mordenite < {beta} < Y < US-Y (more alkanes). Dependent upon the chosen zeolite, a variety of products was obtained with high values as fuel, confirming catalytic degradation of polymers as a promising method of waste plastic recycling.

  14. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite.

    PubMed

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-01-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La(3+) in sodalite cage is much better than that of AE(2+) and about 12 La(3+) can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La(3+) is more suitable for the catalytic cracking of cyclohexane than that of AE(2+). Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail. PMID:26987306

  15. High permeability and salt rejection reverse osmosis by a zeolite nano-membrane.

    PubMed

    Liu, Yilun; Chen, Xi

    2013-05-14

    The possibility of employing a zeolite nano-membrane for seawater desalination is studied using comprehensive molecular dynamics simulations. Two types of zeolite with different wetting properties, the hydrophilic FAU and hydrophobic MFI, are used as the reverse osmosis (RO) membrane. Both can reach nearly 100% rejection of salt ions, and when the membrane thickness is smaller than 3.5 nm, the permeability is about 2 × 10(-9) m Pa(-1) s(-1), which is two orders of magnitude higher than that of the commercial state-of-the-art RO membrane. The relation between the permeability and thickness of the zeolite membrane is studied through the pressure drop-flux dependence. The pressure drop is linearly dependent on the thickness of the zeolite membrane. As the thickness approaches nanoscale, the end effect of water molecules entering the zeolite membrane has apparent influence on the pressure drop. For the FAU membrane the hydrophilicity can assist the water molecules entering the nanopore with reduced pressure drop, while for the hydrophobic MFI zeolite additional pressure drop arises from the capillary resistance. In order to sustain the pressure drop during desalination, the nanoscale zeolite membrane should be placed on a porous substrate and the ratio of the thickness of the nano-membrane to the radius of the supporting pore in the substrate should be properly optimized. PMID:23546302

  16. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity.

    PubMed

    Choi, Minkee; Cho, Hae Sung; Srivastava, Rajendra; Venkatesan, Chithravel; Choi, Dae-Heung; Ryoo, Ryong

    2006-09-01

    Zeolites are a family of crystalline aluminosilicate materials widely used as shape-selective catalysts, ion exchange materials, and adsorbents for organic compounds. In the present work, zeolites were synthesized by adding a rationally designed amphiphilic organosilane surfactant to conventional alkaline zeolite synthesis mixtures. The zeolite products were characterized by a complementary combination of X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analyses show that the present method is suitable as a direct synthesis route to highly mesoporous zeolites. The mesopore diameters could be uniformly tailored, similar to ordered mesoporous silica with amorphous frameworks. The mesoporous zeolite exhibited a narrow, small-angle XRD peak, which is characteristic of the short-range correlation between mesopores, similar to disordered wormhole-like mesoporous materials. The XRD patterns and electron micrographs of the samples taken during crystallization clearly showed the evolution of the mesoporous structure concomitantly to the crystallization of zeolite frameworks. The synthesis of the crystalline aluminosilicate materials with tunable mesoporosity and strong acidity has potentially important technological implications for catalytic reactions of large molecules, whereas conventional mesoporous materials lack hydrothermal stability and acidity. PMID:16892049

  17. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite

    NASA Astrophysics Data System (ADS)

    Deng, Changshun; Zhang, Junji; Dong, Lihui; Huang, Meina; Bin Li; Jin, Guangzhou; Gao, Junbin; Zhang, Feiyue; Fan, Minguang; Zhang, Luoming; Gong, Yanjun

    2016-03-01

    The investigation on the modification of NaY zeolite on LaHY and AEHY (AE refers Ca and Sr and the molar ratio of Ca and Sr is 1:1) zeolites was proformed by XRD, N2-physisorption (BET), XRF, XPS, NH3-TPD, Py-IR, hydrothermal stability, and catalytic cracking test. These results indicate that HY zeolite with ultra low content Na can be obtained from NaY zeolite through four exchange four calcination method. The positioning capability of La3+ in sodalite cage is much better than that of AE2+ and about 12 La3+ can be well coordinated in sodalite cages of one unit cell of Y zeolite. Appropriate acid amount and strength favor the formation of propylene and La3+ is more suitable for the catalytic cracking of cyclohexane than that of AE2+. Our results not only elaborate the variation of the strong and weak acid sites as well as the Brönsted and Lewis acid sites with the change of exchanged ion content but also explore the influence of hydrothermal aging of LaHY and AEHY zeolites and find the optimum ion exchange content for the most reserved acid sites. At last, the coordination state and stabilization of ion exchanged Y zeolites were discussed in detail.

  18. Selective Ring Opening of 1-Methylnaphthalene Over NiW-Supported Catalyst Using Dealuminated Beta Zeolite.

    PubMed

    Kim, Eun-Sang; Lee, You-Jin; Kim, Jeong-Rang; Kim, Joo-Wan; Kim, Tae-Wan; Chae, Ho-Jeong; Kim, Chul-Ung; Lee, Chang-Ha; Jeong, Soon-Yong

    2016-02-01

    Nanoporous Beta zeolite was dealuminated by weak acid treatment for reducing the acidity. Bi-functional catalysts were prepared using commercial Beta zeolites and the dealuminated zeolites for acidic function, NiW for metallic function. 1-Methylnaphthalene was selected as a model compound for multi-ring aromatics in heavy oil, and its selective ring opening reaction has been investigated using the prepared bi-functional catalysts with different acidity in fixed bed reaction system. The dealuminated Beta zeolites, which crystal structure and nanoporosity were maintained, showed the higher SiO2/Al2O3 ratio and smaller acidity than their original zeolite. NiW-supported catalyst using the dealuminated Beta zeolite with SiO2/Al203 mole ratio of 55 showed the highest performance for the selective ring opening. The acidity of catalyst seemed to play an important role as active sites for the selective ring opening of 1-methylnaphthalene but there should be some optimum catalyst acidity for the reaction. The acidity of Beta zeolite could be controlled by the acid treatment and the catalyst with the optimum acidity for the selective ring opening could be prepared. PMID:27433655

  19. Potential of sustainable hierarchical zeolites in the valorization of α-pinene.

    PubMed

    Nuttens, Nicolas; Verboekend, Danny; Deneyer, Aron; Van Aelst, Joost; Sels, Bert F

    2015-04-13

    In the valorization of α-pinene, which is an important biomass intermediate derived from turpentine oil, hierarchical (mesoporous) zeolites represent a superior class of catalysts. Hierarchical USY, ZSM-5, and beta zeolites have been prepared, characterized, and catalytically evaluated, with the aim of combining the highest catalytic performance with the most sustainable synthetic protocol. These zeolites are prepared by alkaline treatment in aqueous solutions of NH4 OH, NaOH, diethylamine, and NaOH complemented with tetrapropylammonium bromide. The hierarchical USY zeolite is the most attractive catalyst of the tested series, and is able to combine an overall organic-free synthesis with an up to sixfold activity enhancement and comparable selectivity over the conventional USY zeolite. This superior performance relates to a threefold greater activity than that of the commercial standard, namely, H2 SO4 /TiO2 . Correlation of the obtained benefits to the amount of solid lost during the postsynthetic modifications highlights that the highest activity gains are obtained with minor leaching. Furthermore, a highly zeolitic character, as determined by bulk XRD, is beneficial, but not crucial, in the conversion of α-pinene. The alkaline treatments not only result in a higher overall activity, but also a more functional external surface area, attaining up to four times the pinene conversions per square nanometer. The efficiency of the hierarchical USY zeolite is concomitantly demonstrated in the conversion of limonene and turpentine oil, which emphasizes its industrial potential. PMID:25736719

  20. Fluorescence labelling as tool for zeolite particle tracking in nanoremediation approaches.

    PubMed

    Gillies, Glenn; Mackenzie, Katrin; Kopinke, Frank-Dieter; Georgi, Anett

    2016-04-15

    Colloidal Fe-zeolites such as Fe-BEA-35 are currently under study as new adsorbent and catalyst materials for in-situ chemical oxidation with H2O2. As for nanoremediation in general, the availability of suitable particle detection methods is a requirement for successful process development and particle tracing. Detection and distinguishing between natural colloids and introduced particles with a similar composition are a challenge. By means of fluorescence labelling, a highly specific detection option for Fe-BEA-35 was developed. 'Ship-in-a-bottle' synthesis of fluorescein within the zeolite pores, which was applied for the first time for a BEA type zeolite, provides a product with stable and non-extractable fluorescence. When the fluorescent labelled zeolite is added at a concentration of 1wt.% referring to the total zeolite mass, a very low detection limit of 1mg/L of total zeolite is obtained. Compared to commonly applied turbidity measurements, detection via fluorescence labelling is much more specific and sensitive. Fluorescence is only marginally affected by carboxymethyl cellulose, which is frequently applied as stabilizer in application suspensions but will be depleted upon contact with H2O2. Transport properties of fluorescent labelled and non-labelled Fe-zeolite particles are in agreement as determined in a column study with quartz sand and synthetic groundwater (classified as very hard). PMID:26849345