Sample records for problem solving environment

  1. The effects of monitoring environment on problem-solving performance.

    PubMed

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  2. Understanding the determinants of problem-solving behavior in a complex environment

    NASA Technical Reports Server (NTRS)

    Casner, Stephen A.

    1994-01-01

    It is often argued that problem-solving behavior in a complex environment is determined as much by the features of the environment as by the goals of the problem solver. This article explores a technique to determine the extent to which measured features of a complex environment influence problem-solving behavior observed within that environment. In this study, the technique is used to determine how complex flight deck and air traffic control environment influences the strategies used by airline pilots when controlling the flight path of a modern jetliner. Data collected aboard 16 commercial flights are used to measure selected features of the task environment. A record of the pilots' problem-solving behavior is analyzed to determine to what extent behavior is adapted to the environmental features that were measured. The results suggest that the measured features of the environment account for as much as half of the variability in the pilots' problem-solving behavior and provide estimates on the probable effects of each environmental feature.

  3. The Problem Solving Studio: An Apprenticeship Environment for Aspiring Engineers

    ERIC Educational Resources Information Center

    Le Doux, Joseph M.; Waller, Alisha A.

    2016-01-01

    This paper describes the problem-solving studio (PSS) learning environment. PSS was designed to teach students how to solve difficult analytical engineering problems without resorting to rote memorization of algorithms, while at the same time developing their deep conceptual understanding of the course topics. There are several key features of…

  4. A Case Study in an Integrated Development and Problem Solving Environment

    ERIC Educational Resources Information Center

    Deek, Fadi P.; McHugh, James A.

    2003-01-01

    This article describes an integrated problem solving and program development environment, illustrating the application of the system with a detailed case study of a small-scale programming problem. The system, which is based on an explicit cognitive model, is intended to guide the novice programmer through the stages of problem solving and program…

  5. Problem-Based Learning and Problem-Solving Tools: Synthesis and Direction for Distributed Education Environments.

    ERIC Educational Resources Information Center

    Friedman, Robert S.; Deek, Fadi P.

    2002-01-01

    Discusses how the design and implementation of problem-solving tools used in programming instruction are complementary with both the theories of problem-based learning (PBL), including constructivism, and the practices of distributed education environments. Examines how combining PBL, Web-based distributed education, and a problem-solving…

  6. Interaction Network Estimation: Predicting Problem-Solving Diversity in Interactive Environments

    ERIC Educational Resources Information Center

    Eagle, Michael; Hicks, Drew; Barnes, Tiffany

    2015-01-01

    Intelligent tutoring systems and computer aided learning environments aimed at developing problem solving produce large amounts of transactional data which make it a challenge for both researchers and educators to understand how students work within the environment. Researchers have modeled student-tutor interactions using complex networks in…

  7. Performance modeling codes for the QuakeSim problem solving environment

    NASA Technical Reports Server (NTRS)

    Parker, J. W.; Donnellan, A.; Lyzenga, G.; Rundle, J.; Tullis, T.

    2003-01-01

    The QuakeSim Problem Solving Environment uses a web-services approach to unify and deploy diverse remote data sources and processing services within a browser environment. Here we focus on the high-performance crustal modeling applications that will be included in this set of remote but interoperable applications.

  8. Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment

    NASA Astrophysics Data System (ADS)

    Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc

    2012-11-01

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.

  9. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  10. Prompting in Web-Based Environments: Supporting Self-Monitoring and Problem Solving Skills in College Students

    ERIC Educational Resources Information Center

    Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei

    2008-01-01

    This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…

  11. An Electronic Library-Based Learning Environment for Supporting Web-Based Problem-Solving Activities

    ERIC Educational Resources Information Center

    Tsai, Pei-Shan; Hwang, Gwo-Jen; Tsai, Chin-Chung; Hung, Chun-Ming; Huang, Iwen

    2012-01-01

    This study aims to develop an electronic library-based learning environment to support teachers in developing web-based problem-solving activities and analyzing the online problem-solving behaviors of students. Two experiments were performed in this study. In study 1, an experiment on 103 elementary and high school teachers (the learning activity…

  12. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving

    ERIC Educational Resources Information Center

    Karatas, Ilhan; Baki, Adnan

    2013-01-01

    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  13. Fostering Problem-Solving in a Virtual Environment

    ERIC Educational Resources Information Center

    Morin, Danielle; Thomas, Jennifer D. E.; Saadé, Raafat George

    2015-01-01

    This article investigates students' perceptions of the relationship between Problem-Solving and the activities and resources used in a Web-based course on the fundamentals of Information Technology at a university in Montreal, Canada. We assess for the different learning components of the course, the extent of perceived problem-solving skills…

  14. Problem Solving in a Natural Language Environment.

    DTIC Science & Technology

    1979-07-21

    another mapping that can map the "values" of those slots onto each other. 11.2 Kowledge Reoresentation Systems Several general knowledge...Hirach Frames The problem solving frames are general descriptions of problems (and solutions). Much more power could be milked from the concept of...general and powerful matching routines can be seen if the problem solving frames are going to work. The matcher must find matches between an element

  15. Supporting Scientific Analysis within Collaborative Problem Solving Environments

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    Collaborative problem solving environments for scientists should contain the analysis tools the scientists require in addition to the remote collaboration tools used for general communication. Unfortunately, most scientific analysis tools have been designed for a "stand-alone mode" and cannot be easily modified to work well in a collaborative environment. This paper addresses the questions, "What features are desired in a scientific analysis tool contained within a collaborative environment?", "What are the tool design criteria needed to provide these features?", and "What support is required from the architecture to support these design criteria?." First, the features of scientific analysis tools that are important for effective analysis in collaborative environments are listed. Next, several design criteria for developing analysis tools that will provide these features are presented. Then requirements for the architecture to support these design criteria are listed. Sonic proposed architectures for collaborative problem solving environments are reviewed and their capabilities to support the specified design criteria are discussed. A deficiency in the most popular architecture for remote application sharing, the ITU T. 120 architecture, prevents it from supporting highly interactive, dynamic, high resolution graphics. To illustrate that the specified design criteria can provide a highly effective analysis tool within a collaborative problem solving environment, a scientific analysis tool that contains the specified design criteria has been integrated into a collaborative environment and tested for effectiveness. The tests were conducted in collaborations between remote sites in the US and between remote sites on different continents. The tests showed that the tool (a tool for the visual analysis of computer simulations of physics) was highly effective for both synchronous and asynchronous collaborative analyses. The important features provided by the tool (and

  16. Criteria for assessing problem solving and decision making in complex environments

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith

    1993-01-01

    Training crews to cope with unanticipated problems in high-risk, high-stress environments requires models of effective problem solving and decision making. Existing decision theories use the criteria of logical consistency and mathematical optimality to evaluate decision quality. While these approaches are useful under some circumstances, the assumptions underlying these models frequently are not met in dynamic time-pressured operational environments. Also, applying formal decision models is both labor and time intensive, a luxury often lacking in operational environments. Alternate approaches and criteria are needed. Given that operational problem solving and decision making are embedded in ongoing tasks, evaluation criteria must address the relation between those activities and satisfaction of broader task goals. Effectiveness and efficiency become relevant for judging reasoning performance in operational environments. New questions must be addressed: What is the relation between the quality of decisions and overall performance by crews engaged in critical high risk tasks? Are different strategies most effective for different types of decisions? How can various decision types be characterized? A preliminary model of decision types found in air transport environments will be described along with a preliminary performance model based on an analysis of 30 flight crews. The performance analysis examined behaviors that distinguish more and less effective crews (based on performance errors). Implications for training and system design will be discussed.

  17. Problem Solving in Technology Rich Contexts: Mathematics Sense Making in Out-of-School Environments

    ERIC Educational Resources Information Center

    Lowrie, Tom

    2005-01-01

    This investigation describes the way in which a case study participant (aged 7) represented, posed and solved problems in a technology game-based environment. The out-of-school problem-solving context placed numeracy demands on the participant that were more complex and sophisticated than the type of mathematics experiences he encountered in…

  18. Problem-Solving Environments (PSEs) to Support Innovation Clustering

    NASA Technical Reports Server (NTRS)

    Gill, Zann

    1999-01-01

    This paper argues that there is need for high level concepts to inform the development of Problem-Solving Environment (PSE) capability. A traditional approach to PSE implementation is to: (1) assemble a collection of tools; (2) integrate the tools; and (3) assume that collaborative work begins after the PSE is assembled. I argue for the need to start from the opposite premise, that promoting human collaboration and observing that process comes first, followed by the development of supporting tools, and finally evolution of PSE capability through input from collaborating project teams.

  19. Robot, computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.

    1972-01-01

    The development of a computer problem solving system is reported that considers physical problems faced by an artificial robot moving around in a complex environment. Fundamental interaction constraints with a real environment are simulated for the robot by visual scan and creation of an internal environmental model. The programming system used in constructing the problem solving system for the simulated robot and its simulated world environment is outlined together with the task that the system is capable of performing. A very general framework for understanding the relationship between an observed behavior and an adequate description of that behavior is included.

  20. Opportunities to Pose Problems Using Digital Technology in Problem Solving Environments

    ERIC Educational Resources Information Center

    Aguilar-Magallón, Daniel Aurelio; Fernández, Willliam Enrique Poveda

    2017-01-01

    This article reports and analyzes different types of problems that nine students in a Master's Program in Mathematics Education posed during a course on problem solving. What opportunities (affordances) can a dynamic geometry system (GeoGebra) offer to allow in-service and in-training teachers to formulate and solve problems, and what type of…

  1. Problem Solving Learning Environments and Assessment: A Knowledge Space Theory Approach

    ERIC Educational Resources Information Center

    Reimann, Peter; Kickmeier-Rust, Michael; Albert, Dietrich

    2013-01-01

    This paper explores the relation between problem solving learning environments (PSLEs) and assessment concepts. The general framework of evidence-centered assessment design is used to describe PSLEs in terms of assessment concepts, and to identify similarities between the process of assessment design and of PSLE design. We use a recently developed…

  2. VET Workers' Problem-Solving Skills in Technology-Rich Environments: European Approach

    ERIC Educational Resources Information Center

    Hämäläinen, Raija; Cincinnato, Sebastiano; Malin, Antero; De Wever, Bram

    2014-01-01

    The European workplace is challenging VET adults' problem-solving skills in technology-rich environments (TREs). So far, no international large-scale assessment data has been available for VET. The PIAAC data comprise the most comprehensive source of information on adults' skills to date. The present study (N = 50 369) focuses on gaining insight…

  3. Perfecting scientists’ collaboration and problem-solving skills in the virtual team environment

    USDA-ARS?s Scientific Manuscript database

    Perfecting Scientists’ Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-lo...

  4. Investigating the Problem Solving Competency of Pre Service Teachers in Dynamic Geometry Environment

    ERIC Educational Resources Information Center

    Haja, Shajahan

    2005-01-01

    This study investigated the problem-solving competency of four secondary pre service teachers (PSTs) of University of London as they explored geometry problems in dynamic geometry environment (DGE) in 2004. A constructivist experiment was designed in which dynamic software Cabri-Geometre II (hereafter Cabri) was used as an interactive medium.…

  5. A Toolkit for Forward/Inverse Problems in Electrocardiography within the SCIRun Problem Solving Environment

    PubMed Central

    Burton, Brett M; Tate, Jess D; Erem, Burak; Swenson, Darrell J; Wang, Dafang F; Steffen, Michael; Brooks, Dana H; van Dam, Peter M; Macleod, Rob S

    2012-01-01

    Computational modeling in electrocardiography often requires the examination of cardiac forward and inverse problems in order to non-invasively analyze physiological events that are otherwise inaccessible or unethical to explore. The study of these models can be performed in the open-source SCIRun problem solving environment developed at the Center for Integrative Biomedical Computing (CIBC). A new toolkit within SCIRun provides researchers with essential frameworks for constructing and manipulating electrocardiographic forward and inverse models in a highly efficient and interactive way. The toolkit contains sample networks, tutorials and documentation which direct users through SCIRun-specific approaches in the assembly and execution of these specific problems. PMID:22254301

  6. The effects of a shared, Intranet science learning environment on the academic behaviors of problem-solving and metacognitive reflection

    NASA Astrophysics Data System (ADS)

    Parker, Mary Jo

    This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female

  7. Encrypted Objects and Decryption Processes: Problem-Solving with Functions in a Learning Environment Based on Cryptography

    ERIC Educational Resources Information Center

    White, Tobin

    2009-01-01

    This paper introduces an applied problem-solving task, set in the context of cryptography and embedded in a network of computer-based tools. This designed learning environment engaged students in a series of collaborative problem-solving activities intended to introduce the topic of functions through a set of linked representations. In a…

  8. When Creative Problem Solving Strategy Meets Web-Based Cooperative Learning Environment in Accounting Education

    ERIC Educational Resources Information Center

    Cheng, Kai Wen

    2011-01-01

    Background: Facing highly competitive and changing environment, cultivating citizens with problem-solving attitudes is one critical vision of education. In brief, the importance of education is to cultivate students with practical abilities. Realizing the advantages of web-based cooperative learning (web-based CL) and creative problem solving…

  9. Conceptual Learning in a Principled Design Problem Solving Environment

    ERIC Educational Resources Information Center

    Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.

    2013-01-01

    To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…

  10. KIPSE1: A Knowledge-based Interactive Problem Solving Environment for data estimation and pattern classification

    NASA Technical Reports Server (NTRS)

    Han, Chia Yung; Wan, Liqun; Wee, William G.

    1990-01-01

    A knowledge-based interactive problem solving environment called KIPSE1 is presented. The KIPSE1 is a system built on a commercial expert system shell, the KEE system. This environment gives user capability to carry out exploratory data analysis and pattern classification tasks. A good solution often consists of a sequence of steps with a set of methods used at each step. In KIPSE1, solution is represented in the form of a decision tree and each node of the solution tree represents a partial solution to the problem. Many methodologies are provided at each node to the user such that the user can interactively select the method and data sets to test and subsequently examine the results. Otherwise, users are allowed to make decisions at various stages of problem solving to subdivide the problem into smaller subproblems such that a large problem can be handled and a better solution can be found.

  11. Toward Solving the Problem of Problem Solving: An Analysis Framework

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2016-01-01

    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  12. Structuring an Adult Learning Environment. Part IV: Establishing an Environment for Problem Solving.

    ERIC Educational Resources Information Center

    Frankel, Alan; Brennan, James

    Through the years, many researchers have advanced theories of problem solving. Probably the best definition of problem solving to apply to adult learning programs is Wallas' (1926) four-stage theory. The stages are (1) a preparation, (2) an incubation period, (3) a moment of illumination, and (4) final application or verification of the solution.…

  13. A life history approach to delineating how harsh environments and hawk temperament traits differentially shape children's problem-solving skills.

    PubMed

    Suor, Jennifer H; Sturge-Apple, Melissa L; Davies, Patrick T; Cicchetti, Dante

    2017-08-01

    Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and children's problem-solving outcomes across tasks varying in ecological relevance. In addition, we utilize an evolutionary model of temperament toward further specifying whether hawk temperament traits moderate these associations. Two hundred and one mother-child dyads participated in a prospective multimethod study when children were 2 and 4 years old. At age 2, environmental harshness was assessed via maternal report of earned income and observations of maternal disengagement during a parent-child interaction task. Children's hawk temperament traits were assessed from a series of unfamiliar episodes. At age 4, children's reward-oriented and visual problem-solving were measured. Path analyses revealed early environmental harshness and children's hawk temperament traits predicted worse visual problem-solving. Results showed a significant two-way interaction between children's hawk temperament traits and environmental harshness on reward-oriented problem-solving. Simple slope analyses revealed the effect of environmental harshness on reward-oriented problem-solving was specific to children with higher levels of hawk traits. Results suggest early experiences of environmental harshness and child hawk temperament traits shape children's trajectories of problem-solving in an environment-fitting manner. © 2017 Association for Child and Adolescent Mental Health.

  14. On the Benefits of Seeking (and Avoiding) Help in Online Problem-Solving Environments

    ERIC Educational Resources Information Center

    Roll, Ido; Baker, Ryan S. J. d.; Aleven, Vincent; Koedinger, Kenneth R.

    2014-01-01

    Seeking the right level of help at the right time can support learning. However, in the context of online problem-solving environments, it is still not entirely clear which help-seeking strategies are desired. We use fine-grained data from 38 high school students who worked with the Geometry Cognitive Tutor for 2 months to better understand the…

  15. Problem-Framing: A perspective on environmental problem-solving

    NASA Astrophysics Data System (ADS)

    Bardwell, Lisa V.

    1991-09-01

    The specter of environmental calamity calls for the best efforts of an involved public. Ironically, the way people understand the issues all too often serves to discourage and frustrate rather than motivate them to action. This article draws from problem-solving perspectives offered by cognitive psychology and conflict management to examine a framework for thinking about environmental problems that promises to help rather than hinder efforts to address them. Problem-framing emphasizes focusing on the problem definition. Since how one defines a problem determines one's understanding of and approach to that problem, being able to redefine or reframe a problem and to explore the “problem space” can help broaden the range of alternatives and solutions examined. Problem-framing incorporates a cognitive perspective on how people respond to information. It explains why an emphasis on problem definition is not part of people's typical approach to problems. It recognizes the importance of structure and of having ways to organize that information on one's problem-solving effort. Finally, problem-framing draws on both cognitive psychology and conflict management for strategies to manage information and to create a problem-solving environment that not only encourages participation but can yield better approaches to our environmental problems.

  16. Optimal Planning and Problem-Solving

    NASA Technical Reports Server (NTRS)

    Clemet, Bradley; Schaffer, Steven; Rabideau, Gregg

    2008-01-01

    CTAEMS MDP Optimal Planner is a problem-solving software designed to command a single spacecraft/rover, or a team of spacecraft/rovers, to perform the best action possible at all times according to an abstract model of the spacecraft/rover and its environment. It also may be useful in solving logistical problems encountered in commercial applications such as shipping and manufacturing. The planner reasons around uncertainty according to specified probabilities of outcomes using a plan hierarchy to avoid exploring certain kinds of suboptimal actions. Also, planned actions are calculated as the state-action space is expanded, rather than afterward, to reduce by an order of magnitude the processing time and memory used. The software solves planning problems with actions that can execute concurrently, that have uncertain duration and quality, and that have functional dependencies on others that affect quality. These problems are modeled in a hierarchical planning language called C_TAEMS, a derivative of the TAEMS language for specifying domains for the DARPA Coordinators program. In realistic environments, actions often have uncertain outcomes and can have complex relationships with other tasks. The planner approaches problems by considering all possible actions that may be taken from any state reachable from a given, initial state, and from within the constraints of a given task hierarchy that specifies what tasks may be performed by which team member.

  17. Environmental problem solving

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.

    Human influences create both environmental problems and barriers to effective policy aimed at addressing those problems. In effect, environmental managers manage people as much as they manage the environment. Therefore, they must gain an understanding of the psychological and sociopolitical dimensions of environmental problems that they are attempting to resolve. The author reappraises conventional analyses of environmental problems using lessons from the psychosocial disciplines. The author combines the disciplines of ecology, political sociology and psychology to produce a more adaptive approach to problem-solving that is specifically geared toward the environmental field. Numerous case studies demonstrate the practical application of theorymore » in a way that is useful to technical and scientific professionals as well as to policymakers and planners.« less

  18. What's the Right Answer? Team Problem-Solving in Environments of Uncertainty

    ERIC Educational Resources Information Center

    Jameson, Daphne A.

    2009-01-01

    Whether in the workplace or the classroom, many teams approach problem-solving as a search for certainty--even though certainty rarely exists in business. This search for the one right answer to a problem creates unrealistic expectations and often undermines teams' effectiveness. To help teams manage their problem-solving process and communication…

  19. Measuring Family Problem Solving: The Family Problem Solving Diary.

    ERIC Educational Resources Information Center

    Kieren, Dianne K.

    The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…

  20. Solving Problems.

    ERIC Educational Resources Information Center

    Hale, Norman; Lindelow, John

    Chapter 12 in a volume on school leadership, this chapter cites the work of several authorities concerning problem-solving or decision-making techniques based on the belief that group problem-solving effort is preferable to individual effort. The first technique, force-field analysis, is described as a means of dissecting complex problems into…

  1. An Auto-Scoring Mechanism for Evaluating Problem-Solving Ability in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Chiou, Chuang-Kai; Hwang, Gwo-Jen; Tseng, Judy C. R.

    2009-01-01

    The rapid development of computer and network technologies has attracted researchers to investigate strategies for and the effects of applying information technologies in learning activities; simultaneously, learning environments have been developed to record the learning portfolios of students seeking web information for problem-solving. Although…

  2. The CLIA-Model: A Framework for Designing Powerful Learning Environments for Thinking and Problem Solving

    ERIC Educational Resources Information Center

    De Corte, Erik; Verschaffel, Lieven; Masui, Chris

    2004-01-01

    A major challenge for education and educational research is to build on our present understanding of learning for designing environments for education that are conducive to fostering in students self-regulatory and cooperative learning skills, transferable knowledge, and a disposition toward competent thinking and problem solving. Taking into…

  3. First Responder Problem Solving and Decision Making in Today’s Asymmetrical Environment

    DTIC Science & Technology

    2008-03-01

    Scenario: Earthquake 4 It is January 2, 2008, and you are working a day-tour in Ladder Company 999 located in Queens, New York. • Ladder 999’s...able to perform both. 121 Scenario: Earthquake 4 You find out that at approximately 8:58 am, the New York City area...RESPONDER PROBLEM SOLVING AND DECISION MAKING IN TODAY’S ASYMMETRICAL ENVIRONMENT Neil R. Hintze Battalion Chief, New York City Fire Department B.A

  4. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  5. Perfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment

    NASA Astrophysics Data System (ADS)

    Jabro, A.; Jabro, J.

    2012-04-01

    PPerfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-located research partners and diverse funding sources, dynamic economic and political environments, and a changing workforce. Today's scientists must be prepared to not only perform work in the virtual team environment, but to work effectively and efficiently despite physical and cultural barriers. Research supports that students who have been exposed to virtual team experiences are desirable in the professional and academic arenas. Research supports establishing and maintaining established protocols for communication behavior prior to task discussion provides for successful team outcomes. Research conducted on graduate and undergraduate virtual teams' behaviors led to the development of successful pedagogic practices and assessment strategies.

  6. Integrating Computers into the Problem-Solving Process.

    ERIC Educational Resources Information Center

    Lowther, Deborah L.; Morrison, Gary R.

    2003-01-01

    Asserts that within the context of problem-based learning environments, professors can encourage students to use computers as problem-solving tools. The ten-step Integrating Technology for InQuiry (NteQ) model guides professors through the process of integrating computers into problem-based learning activities. (SWM)

  7. Investigating Plane Geometry Problem-Solving Strategies of Prospective Mathematics Teachers in Technology and Paper-and-Pencil Environments

    ERIC Educational Resources Information Center

    Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc

    2015-01-01

    This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…

  8. Rasch Measurement of Collaborative Problem Solving in an Online Environment.

    PubMed

    Harding, Susan-Marie E; Griffin, Patrick E

    2016-01-01

    This paper describes an approach to the assessment of human to human collaborative problem solving using a set of online interactive tasks completed by student dyads. Within the dyad, roles were nominated as either A or B and students selected their own roles. The question as to whether role selection affected individual student performance measures is addressed. Process stream data was captured from 3402 students in six countries who explored the problem space by clicking, dragging the mouse, moving the cursor and collaborating with their partner through a chat box window. Process stream data were explored to identify behavioural indicators that represented elements of a conceptual framework. These indicative behaviours were coded into a series of dichotomous items. These items represented actions and chats performed by students. The frequency of occurrence was used as a proxy measure of item difficulty. Then given a measure of item difficulty, student ability could be estimated using the difficulty estimates of the range of items demonstrated by the student. The Rasch simple logistic model was used to review the indicators to identify those that were consistent with the assumptions of the model and were invariant across national samples, language, curriculum and age of the student. The data were analysed using a one and two dimension, one parameter model. Rasch separation reliability, fit to the model, distribution of students and items on the underpinning construct, estimates for each country and the effect of role differences are reported. This study provides evidence that collaborative problem solving can be assessed in an online environment involving human to human interaction using behavioural indicators shown to have a consistent relationship between the estimate of student ability, and the probability of demonstrating the behaviour.

  9. The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework

    ERIC Educational Resources Information Center

    Carlson, Marilyn P.; Bloom, Irene

    2005-01-01

    This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…

  10. Using Everyday Materials To Promote Problem Solving in Toddlers.

    ERIC Educational Resources Information Center

    Segatti, Laura; Brown-DuPaul, Judy; Keyes, Tracy L.

    2003-01-01

    Outlines benefits of and skills involved in problem solving. Details how an environment rich in materials that foster cause-and-effect or trial-and-error explorations promote cognitive development among toddlers. Offers examples of problem-solving experiences and lists materials for use in curriculum planning. Describes the teacher' role as one of…

  11. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."

    ERIC Educational Resources Information Center

    Pestel, Beverly C.

    1993-01-01

    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  12. Resources in Technology: Problem-Solving.

    ERIC Educational Resources Information Center

    Technology Teacher, 1986

    1986-01-01

    This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)

  13. Escript: Open Source Environment For Solving Large-Scale Geophysical Joint Inversion Problems in Python

    NASA Astrophysics Data System (ADS)

    Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy

    2014-05-01

    The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for

  14. Introduction to LogoWriter and Problem Solving for Educators.

    ERIC Educational Resources Information Center

    Yoder, Sharon Burrowes; Moursund, Dave

    This book about Logo programming and problem solving is designed to introduce preservice and inservice teachers to problem solving in a Logo programming environment. Such a unit of study can be an important part of an introductory computers in education course for educators. Although Logowriter--a version of Logo--was developed by Logo Computer…

  15. Preschoolers' Cooperative Problem Solving: Integrating Play and Problem Solving

    ERIC Educational Resources Information Center

    Ramani, Geetha B.; Brownell, Celia A.

    2014-01-01

    Cooperative problem solving with peers plays a central role in promoting children's cognitive and social development. This article reviews research on cooperative problem solving among preschool-age children in experimental settings and social play contexts. Studies suggest that cooperative interactions with peers in experimental settings are…

  16. Psychosocial dimensions of solving an indoor air problem.

    PubMed

    Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari

    2002-03-01

    This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.

  17. Group Problem Solving.

    ERIC Educational Resources Information Center

    King, James C.

    1988-01-01

    This pamphlet discusses group problem solving in schools. Its point of departure is that teachers go at problems from a number of different directions and that principals need to capitalize on those differences and bring a whole range of skills and perceptions to the problem-solving process. Rather than trying to get everyone to think alike,…

  18. Problem Solving Teams in a Total Quality Management Environment.

    ERIC Educational Resources Information Center

    Towler, Constance F.

    1993-01-01

    Outlines the problem-solving team training process used at Harvard University (Massachusetts), including the size and formation of teams, roles, and time commitment. Components of the process are explained, including introduction to Total Quality Management (TQM), customer satisfaction, meeting management, Parker Team Player Survey, interactive…

  19. Problem Solving. Research Brief

    ERIC Educational Resources Information Center

    Muir, Mike

    2004-01-01

    No longer solely the domain of Mathematics, problem solving permeates every area of today's curricula. Ideally students are applying heuristics strategies in varied contexts and novel situations in every subject taught. The ability to solve problems is a basic life skill and is essential to understanding technical subjects. Problem-solving is a…

  20. Behavioral flexibility and problem solving in an invasive bird

    PubMed Central

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop’s Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments. PMID:27168984

  1. Behavioral flexibility and problem solving in an invasive bird.

    PubMed

    Logan, Corina J

    2016-01-01

    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  2. Problem-solving variability in older spouses: how is it linked to problem-, person-, and couple-characteristics?

    PubMed

    Hoppmann, Christiane A; Blanchard-Fields, Fredda

    2011-09-01

    Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.

  3. Toward Group Problem Solving Guidelines for 21st Century Teams

    ERIC Educational Resources Information Center

    Ranieri, Kathryn L.

    2004-01-01

    Effective problem-solving skills are critical in dealing with ambiguous and often complex issues in the present-day leaner and globally diverse organizations. Yet respected, well-established problem-solving models may be misaligned within the current work environment, particularly within a team context. Models learned from a more bureaucratic,…

  4. Enhancing chemistry problem-solving achievement using problem categorization

    NASA Astrophysics Data System (ADS)

    Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.

    The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving

  5. Understanding Adults' Strong Problem-Solving Skills Based on PIAAC

    ERIC Educational Resources Information Center

    Hämäläinen, Raija; De Wever, Bram; Nissinen, Kari; Cincinnato, Sebastiano

    2017-01-01

    Purpose: Research has shown that the problem-solving skills of adults with a vocational education and training (VET) background in technology-rich environments (TREs) are often inadequate. However, some adults with a VET background do have sound problem-solving skills. The present study aims to provide insight into the socio-demographic,…

  6. Innovation and problem solving: a review of common mechanisms.

    PubMed

    Griffin, Andrea S; Guez, David

    2014-11-01

    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1973-01-01

    A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.

  8. Problem solving strategies used by RN-to-BSN students in an online problem-based learning course.

    PubMed

    Oldenburg, Nancy L; Hung, Wei-Chen

    2010-04-01

    It is essential that nursing students develop the problem solving and critical thinking skills required in the current health care environment. Problem-based learning has been promoted as a way to help students acquire those skills; however, gaps exist in the knowledge base of the strategies used by learners. The purpose of this case study was to gain insight into the problem solving experience of a group of six RN-to-BSN students in an online problem-based learning course. Data, including discussion transcripts, reflective papers, and interview transcripts, were analyzed using a qualitative approach. Students expanded their use of resources and resolved the cases, identifying relevant facts and clinical applications. They had difficulty communicating their findings, establishing the credibility of sources, and offering challenging feedback. Increased support and direction are needed to facilitate the development of problem solving abilities of students in the problem-based learning environment.

  9. Using Problem-solving Therapy to Improve Problem-solving Orientation, Problem-solving Skills and Quality of Life in Older Hemodialysis Patients.

    PubMed

    Erdley-Kass, Shiloh D; Kass, Darrin S; Gellis, Zvi D; Bogner, Hillary A; Berger, Andrea; Perkins, Robert M

    2017-08-24

    To determine the effectiveness of Problem-Solving Therapy (PST) in older hemodialysis (HD) patients by assessing changes in health-related quality of life and problem-solving skills. 33 HD patients in an outpatient hemodialysis center without active medical and psychiatric illness were enrolled. The intervention group (n = 15) received PST from a licensed social worker for 6 weeks, whereas the control group (n = 18) received usual care treatment. In comparison to the control group, patients receiving PST intervention reported improved perceptions of mental health, were more likely to view their problems with a positive orientation and were more likely to use functional problem-solving methods. Furthermore, this group was also more likely to view their overall health, activity limits, social activities and ability to accomplish desired tasks with a more positive mindset. The results demonstrate that PST may positively impact mental health components of quality of life and problem-solving coping among older HD patients. PST is an effective, efficient, and easy to implement intervention that can benefit problem-solving abilities and mental health-related quality of life in older HD patients. In turn, this will help patients manage their daily living activities related to their medical condition and reduce daily stressors.

  10. Analogy as a strategy for supporting complex problem solving under uncertainty.

    PubMed

    Chan, Joel; Paletz, Susannah B F; Schunn, Christian D

    2012-11-01

    Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.

  11. Heuristics and Problem Solving.

    ERIC Educational Resources Information Center

    Abel, Charles F.

    2003-01-01

    Defines heuristics as cognitive "rules of thumb" that can help problem solvers work more efficiently and effectively. Professors can use a heuristic model of problem solving to guide students in all disciplines through the steps of problem-solving. (SWM)

  12. KidTech: Hands-On Problem Solving with Design Technology for Grades 5-8.

    ERIC Educational Resources Information Center

    Miller, Lucy

    Design technology integrates problem solving with an awareness of the effects of technology on society and the environment. This book places problem solving in a realistic context and addresses situations that are meaningful to students. Design technology aims to develop confidence in problem solving and competence in using technology wisely. This…

  13. Collaborative Problem-Solving Environments; Proceedings for the Workshop CPSEs for Scientific Research, San Diego, California, June 20 to July 1, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, George

    1999-01-11

    A workshop on collaborative problem-solving environments (CPSEs) was held June 29 through July 1, 1999, in San Diego, California. The workshop was sponsored by the U.S. Department of Energy and the High Performance Network Applications Team of the Large Scale Networking Working Group. The workshop brought together researchers and developers from industry, academia, and government to identify, define, and discuss future directions in collaboration and problem-solving technologies in support of scientific research.

  14. The Impact of Teacher Training on Creative Writing and Problem-Solving Using Futuristic Scenarios for Creative Problem Solving and Creative Problem Solving Programs

    ERIC Educational Resources Information Center

    Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia

    2016-01-01

    The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…

  15. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use.

    PubMed

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda

    2008-07-01

    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.

  16. Problem-solving skills in high school biology: The effectiveness of the IMMEX problem-solving assessment software

    NASA Astrophysics Data System (ADS)

    Palacio-Cayetano, Joycelin

    "Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled

  17. Providing Adaptation and Guidance for Design Learning by Problem Solving: The Design Planning Approach in DomoSim-TPC Environment

    ERIC Educational Resources Information Center

    Redondo, Miguel A.; Bravo, Crescencio; Ortega, Manuel; Verdejo, M. Felisa

    2007-01-01

    Experimental learning environments based on simulation usually require monitoring and adaptation to the actions the users carry out. Some systems provide this functionality, but they do so in a way which is static or cannot be applied to problem solving tasks. In response to this problem, we propose a method based on the use of intermediate…

  18. Adaptive Problem Solving

    DTIC Science & Technology

    2017-03-01

    AFRL-AFOSR-JP-TR-2017-0026 Adaptive Problem Solving Michael Barley THE UNIVERSITY OF AUCKLAND Final Report 03/01/2017 DISTRIBUTION A: Distribution...May 2015 to 26 Nov 2016 4. TITLE AND SUBTITLE Adaptive Problem Solving 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4069 5c.  PROGRAM ELEMENT...Report for AOARD Grant FA2386-15-1-4069 “ Adaptive Problem Solving” 25 February 2017 Name of Principal Investigators (PI): Michael W. Barley - e

  19. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  20. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems

    ERIC Educational Resources Information Center

    Aljaberi, Nahil M.; Gheith, Eman

    2016-01-01

    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  1. Students’ difficulties in probabilistic problem-solving

    NASA Astrophysics Data System (ADS)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.

    2018-03-01

    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  2. Problem Solving and Learning

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2009-07-01

    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  3. A Contingency View of Problem Solving in Schools: A Case Analysis.

    ERIC Educational Resources Information Center

    Hanson, E. Mark; Brown, Michael E.

    Patterns of problem-solving activity in one middle-class urban high school are examined and a problem solving model rooted in a conceptual framework of contingency theory is presented. Contingency theory stresses that as political, economic, and social conditions in an organization's environment become problematic, the internal structures of the…

  4. Promoting Students' Problem Solving Skills and Knowledge of STEM Concepts in a Data-Rich Learning Environment: Using Online Data as a Tool for Teaching about Renewable Energy Technologies

    NASA Astrophysics Data System (ADS)

    Thurmond, Brandi

    This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related to renewable energy technologies and students' problem solving skills. Two purposefully selected Advanced Placement (AP) Environmental Science teachers were included in the study. Each teacher taught one class about RET in a lecture-based environment (control) and another class in a DRL environment (treatment), for a total of four classes of students (n=128). This study utilized a quasi-experimental, pretest/posttest, control-group design. The initial hypothesis that the treatment group would have a significant gain in knowledge of STEM concepts related to RET and be better able to solve problems when compared to the control group was not supported by the data. Although students in the DRL environment had a significant gain in knowledge after instruction, posttest score comparisons of the control and treatment groups revealed no significant differences between the groups. Further, no significant differences were noted in students' problem solving abilities as measured by scores on a problem-based activity and self-reported abilities on a reflective questionnaire. This suggests that the DRL environment is at least as effective as the lecture-based learning environment in teaching AP Environmental Science students about RET and fostering the development of problem solving skills. As this was a small scale study, further research is needed to provide information about effectiveness of DRL environments in promoting students' knowledge of STEM concepts and problem-solving skills.

  5. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving

    ERIC Educational Resources Information Center

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim

    2016-01-01

    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  6. Sleep Does Not Promote Solving Classical Insight Problems and Magic Tricks

    PubMed Central

    Schönauer, Monika; Brodt, Svenja; Pöhlchen, Dorothee; Breßmer, Anja; Danek, Amory H.; Gais, Steffen

    2018-01-01

    During creative problem solving, initial solution attempts often fail because of self-imposed constraints that prevent us from thinking out of the box. In order to solve a problem successfully, the problem representation has to be restructured by combining elements of available knowledge in novel and creative ways. It has been suggested that sleep supports the reorganization of memory representations, ultimately aiding problem solving. In this study, we systematically tested the effect of sleep and time on problem solving, using classical insight tasks and magic tricks. Solving these tasks explicitly requires a restructuring of the problem representation and may be accompanied by a subjective feeling of insight. In two sessions, 77 participants had to solve classical insight problems and magic tricks. The two sessions either occurred consecutively or were spaced 3 h apart, with the time in between spent either sleeping or awake. We found that sleep affected neither general solution rates nor the number of solutions accompanied by sudden subjective insight. Our study thus adds to accumulating evidence that sleep does not provide an environment that facilitates the qualitative restructuring of memory representations and enables problem solving. PMID:29535620

  7. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  8. Supporting Distance Learners for Collaborative Problem Solving.

    ERIC Educational Resources Information Center

    Verdejo, M. F.; Barros, B.; Abad, M. T.

    This paper describes a computer-supported environment designed to facilitate distance learning through collaborative problem-solving. The goal is to encourage distance learning students to work together, in order to promote both learning of collaboration and learning through collaboration. Collaboration is defined as working together on a common…

  9. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems

    PubMed Central

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467

  10. The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.

    PubMed

    Baars, Martine; Wijnia, Lisette; Paas, Fred

    2017-01-01

    Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.

  11. Factors of Problem-Solving Competency in a Virtual Chemistry Environment: The Role of Metacognitive Knowledge about Strategies

    ERIC Educational Resources Information Center

    Scherer, Ronny; Tiemann, Rudiger

    2012-01-01

    The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…

  12. Problem-Solving Software

    NASA Technical Reports Server (NTRS)

    1992-01-01

    CBR Express software solves problems by adapting sorted solutions to new problems specified by a user. It is applicable to a wide range of situations. The technology was originally developed by Inference Corporation for Johnson Space Center's Advanced Software Development Workstation. The project focused on the reuse of software designs, and Inference used CBR as part of the ACCESS prototype software. The commercial CBR Express is used as a "help desk" for customer support, enabling reuse of existing information when necessary. It has been adopted by several companies, among them American Airlines, which uses it to solve reservation system software problems.

  13. Could HPS Improve Problem-Solving?

    NASA Astrophysics Data System (ADS)

    Coelho, Ricardo Lopes

    2013-05-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  14. Problem solving stages in the five square problem

    PubMed Central

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory. PMID:26300794

  15. Problem solving stages in the five square problem.

    PubMed

    Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael

    2015-01-01

    According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.

  16. Effects of Instructional Preparation Strategies on Problem Solving in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2010-01-01

    This study reports the effects of different types of instructional preparation strategies on the problem solving performance of college students taking an introductory physics class. Students were divided into four equally skilled groups and solved the same physics problems after receiving different instructional preparations (engaging in…

  17. A Life History Approach to Delineating How Harsh Environments and Hawk Temperament Traits Differentially Shape Children's Problem-Solving Skills

    ERIC Educational Resources Information Center

    Suor, Jennifer H.; Sturge-Apple, Melissa L.; Davies, Patrick T.; Cicchetti, Dante

    2017-01-01

    Harsh environments are known to predict deficits in children's cognitive abilities. Life history theory approaches challenge this interpretation, proposing stressed children's cognition becomes specialized to solve problems in fitness-enhancing ways. The goal of this study was to examine associations between early environmental harshness and…

  18. Interacting domain-specific languages with biological problem solving environments

    NASA Astrophysics Data System (ADS)

    Cickovski, Trevor M.

    Iteratively developing a biological model and verifying results with lab observations has become standard practice in computational biology. This process is currently facilitated by biological Problem Solving Environments (PSEs), multi-tiered and modular software frameworks which traditionally consist of two layers: a computational layer written in a high level language using design patterns, and a user interface layer which hides its details. Although PSEs have proven effective, they still enforce some communication overhead between biologists refining their models through repeated comparison with experimental observations in vitro or in vivo, and programmers actually implementing model extensions and modifications within the computational layer. I illustrate the use of biological Domain-Specific Languages (DSLs) as a middle-level PSE tier to ameliorate this problem by providing experimentalists with the ability to iteratively test and develop their models using a higher degree of expressive power compared to a graphical interface, while saving the requirement of general purpose programming knowledge. I develop two radically different biological DSLs: XML-based BIOLOGO will model biological morphogenesis using a cell-centered stochastic cellular automaton and translate into C++ modules for an object-oriented PSE C OMPUCELL3D, and MDLab will provide a set of high-level Python libraries for running molecular dynamics simulations, using wrapped functionality from the C++ PSE PROTOMOL. I describe each language in detail, including its its roles within the larger PSE and its expressibility in terms of representable phenomena, and a discussion of observations from users of the languages. Moreover I will use these studies to draw general conclusions about biological DSL development, including dependencies upon the goals of the corresponding PSE, strategies, and tradeoffs.

  19. Understanding Undergraduates’ Problem-Solving Processes †

    PubMed Central

    Nehm, Ross H.

    2010-01-01

    Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710

  20. Problem Solving.

    ERIC Educational Resources Information Center

    Pollak, Ave

    This guide is intended for use in presenting a three-session course designed to develop the problem-solving skills required of persons employed in the manufacturing and service industries. The course is structured so that, upon its completion, students will be able to accomplish the following: describe and analyze problems encountered at work;…

  1. Empowering Educationally Disadvantaged Mathematics Students through a Strategies-Based Problem Solving Approach

    ERIC Educational Resources Information Center

    Ramnarain, Umesh

    2014-01-01

    A major impediment to problem solving in mathematics in the great majority of South African schools is that disadvantaged students from seriously impoverished learning environments are lacking in the necessary informal mathematical knowledge to develop their own strategies for solving non-routine problems. A randomized pretest-posttest control…

  2. Blackboard system generator (BSG) - An alternative distributed problem-solving paradigm

    NASA Technical Reports Server (NTRS)

    Silverman, Barry G.; Feggos, Kostas; Chang, Joseph Shih

    1989-01-01

    A status review is presented for a generic blackboard-based distributed problem-solving environment in which multiple-agent cooperation can be effected. This environment is organized into a shared information panel, a chairman control panel, and a metaplanning panel. Each panel contains a number of embedded AI techniques that facilitate its operation and that provide heuristics for solving the underlying team-agent decision problem. The status of these panels and heuristics is described along with a number of robustness considerations. The techniques for each of the three panels and for four sets of paradigm-related advances are described, along with selected results from classroom teaching experiments and from three applications.

  3. Trading a Problem-solving Task

    NASA Astrophysics Data System (ADS)

    Matsubara, Shigeo

    This paper focuses on a task allocation problem, especially cases where the task is to find a solution in a search problem or a constraint satisfaction problem. If the search problem is hard to solve, a contractor may fail to find a solution. Here, the more computational resources such as the CPU time the contractor invests in solving the search problem, the more a solution is likely to be found. This brings about a new problem that a contractee has to find an appropriate level of the quality in a task achievement as well as to find an efficient allocation of a task among contractors. For example, if the contractee asks the contractor to find a solution with certainty, the payment from the contractee to the contractor may exceed the contractee's benefit from obtaining a solution, which discourages the contractee from trading a task. However, solving this problem is difficult because the contractee cannot ascertain the contractor's problem-solving ability such as the amount of available resources and knowledge (e.g. algorithms, heuristics) or monitor what amount of resources are actually invested in solving the allocated task. To solve this problem, we propose a task allocation mechanism that is able to choose an appropriate level of the quality in a task achievement and prove that this mechanism guarantees that each contractor reveals its true information. Moreover, we show that our mechanism can increase the contractee's utility compared with a simple auction mechanism by using computer simulation.

  4. Improving Students' Problem Solving in a Virtual Chemistry Simulation through Metacognitive Messages

    ERIC Educational Resources Information Center

    Beal, Carole R.; Stevens, Ronald H.

    2011-01-01

    Recent assessments indicate that American students do not score well on tests of scientific problem solving, relative to students in other nations. IMMEX is a web-based virtual environment that provides students with opportunities to solve science problems by viewing information resources through a suite of menu options, developing a hypothesis…

  5. Assessing Reflective Thinking in Solving Design Problems: The Development of a Questionnaire

    ERIC Educational Resources Information Center

    Hong, Yi-Chun; Choi, Ikseon

    2015-01-01

    Reflection is a critical factor in solving design problems. Using good methods to observe designers' reflection is essential to inform the design of the learning environments that support the development of design problem-solving skills. In this study, we have developed and validated a novel self-reporting questionnaire as an efficient instrument…

  6. Assertiveness and problem solving in midwives

    PubMed Central

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Background: Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. Materials and Methods: This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P < 0.05. Results: The RAS mean scores and the PSI mean scores showed statistically significant differences in terms of a midwife's considering herself as a member of the health team, expressing herself within the health care team, being able to say “no” when necessary, cooperating with her colleagues, taking part in problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P < 0.01). Conclusions: There were significant statistical differences between assertiveness levels and problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession. PMID:26793247

  7. Assertiveness and problem solving in midwives.

    PubMed

    Yurtsal, Zeliha Burcu; Özdemir, Levent

    2015-01-01

    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P < 0.05. The RAS mean scores and the PSI mean scores showed statistically significant differences in terms of a midwife's considering herself as a member of the health team, expressing herself within the health care team, being able to say "no" when necessary, cooperating with her colleagues, taking part in problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P < 0.01). There were significant statistical differences between assertiveness levels and problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  8. Collection of solved problems in physics

    NASA Astrophysics Data System (ADS)

    Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie

    2017-01-01

    To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).

  9. Factors affecting the social problem-solving ability of baccalaureate nursing students.

    PubMed

    Lau, Ying

    2014-01-01

    The hospital environment is characterized by time pressure, uncertain information, conflicting goals, high stakes, stress, and dynamic conditions. These demands mean there is a need for nurses with social problem-solving skills. This study set out to (1) investigate the social problem-solving ability of Chinese baccalaureate nursing students in Macao and (2) identify the association between communication skill, clinical interaction, interpersonal dysfunction, and social problem-solving ability. All nursing students were recruited in one public institute through the census method. The research design was exploratory, cross-sectional, and quantitative. The study used the Chinese version of the Social Problem Solving Inventory short form (C-SPSI-R), Communication Ability Scale (CAS), Clinical Interactive Scale (CIS), and Interpersonal Dysfunction Checklist (IDC). Macao nursing students were more likely to use the two constructive or adaptive dimensions rather than the three dysfunctional dimensions of the C-SPSI-R to solve their problems. Multiple linear regression analysis revealed that communication ability (ß=.305, p<.0001), clinical interaction (ß=.129, p=.047), and interpersonal dysfunction (ß=-.402, p<.0001) were associated with social problem-solving after controlling for covariates. Macao has had no problem-solving training in its educational curriculum; an effective problem-solving training should be implemented as part of the curriculum. With so many changes in healthcare today, nurses must be good social problem-solvers in order to deliver holistic care. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Problem Solving in Technology-Rich Environments. A Report from the NAEP Technology-Based Assessment Project, Research and Development Series. NCES 2007-466

    ERIC Educational Resources Information Center

    Bennett, Randy Elliot; Persky, Hilary; Weiss, Andrew R.; Jenkins, Frank

    2007-01-01

    The Problem Solving in Technology-Rich Environments (TRE) study was designed to demonstrate and explore innovative use of computers for developing, administering, scoring, and analyzing the results of National Assessment of Educational Progress (NAEP) assessments. Two scenarios (Search and Simulation) were created for measuring problem solving…

  11. TTWand NHT in problem solving

    NASA Astrophysics Data System (ADS)

    Anthycamurty, R. C. C.; Mardiyana; Saputro, D. R. S.

    2018-05-01

    This research aims to analyze and determine effect of the model on problem solving. Subjects in this research are students of class X SMK in Purworejo. The learning model used in this research was TTW in class experimental 1 and NHT class experiment 2. This research used quasi experiment. Data analysis technique in this research used ANOVA two way. Data collection techniques in this research used tests to measure student problem solving and GEFT to measure students' cognitive style. The results of this research indicate that there are differences in problem solving between experimental classes used TTW and NHT. The impact of this research is that students are able to remind problem solving used learning model and to know cognitive style of the students.

  12. Problem Solving with the Elementary Youngster.

    ERIC Educational Resources Information Center

    Swartz, Vicki

    This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…

  13. Problem-Solving Models for Computer Literacy: Getting Smarter at Solving Problems. Student Lessons.

    ERIC Educational Resources Information Center

    Moursund, David

    This book is intended for use as a student guide. It is about human problem solving and provides information on how the mind works, placing a major emphasis on the role of computers as an aid in problem solving. The book is written with the underlying philosophy of discovery-based learning based on two premises: first, through the appropriate…

  14. Problem Solving through an Optimization Problem in Geometry

    ERIC Educational Resources Information Center

    Poon, Kin Keung; Wong, Hang-Chi

    2011-01-01

    This article adapts the problem-solving model developed by Polya to investigate and give an innovative approach to discuss and solve an optimization problem in geometry: the Regiomontanus Problem and its application to football. Various mathematical tools, such as calculus, inequality and the properties of circles, are used to explore and reflect…

  15. Collis-Romberg Mathematical Problem Solving Profiles.

    ERIC Educational Resources Information Center

    Collis, K. F.; Romberg, T. A.

    Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…

  16. Analog Processor To Solve Optimization Problems

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.

    1993-01-01

    Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.

  17. Problem Solving Appraisal of Delinquent Adolescents.

    ERIC Educational Resources Information Center

    Perez, Ruperto M.; And Others

    The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…

  18. Developing Creativity through Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Albert, Lillie R.; Kim, Rina

    2013-01-01

    This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…

  19. Flexibility in Problem Solving: The Case of Equation Solving

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2008-01-01

    A key learning outcome in problem-solving domains is the development of flexible knowledge, where learners know multiple strategies and adaptively choose efficient strategies. Two interventions hypothesized to improve flexibility in problem solving were experimentally evaluated: prompts to discover multiple strategies and direct instruction on…

  20. Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems and Algorithms

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The deployment of ubiquitous sensor systems and algorithms has led to many challenges, such as matching sensor systems to compatible algorithms which are capable of satisfying a task. Compounding the challenges is the lack of the requisite knowledge models needed to discover sensors and algorithms and to subsequently integrate their capabilities to satisfy a specific task. A novel ontological problem-solving framework has been designed to match sensors to compatible algorithms to form synthesized systems, which are capable of satisfying a task and then assigning the synthesized systems to high-level missions. The approach designed for the ontological problem-solving framework has been instantiated in the context of a persistence surveillance prototype environment, which includes profiling sensor systems and algorithms to demonstrate proof-of-concept principles. Even though the problem-solving approach was instantiated with profiling sensor systems and algorithms, the ontological framework may be useful with other heterogeneous sensing-system environments. PMID:22163793

  1. Kindergarten Students Solving Mathematical Word Problems

    ERIC Educational Resources Information Center

    Johnson, Nickey Owen

    2013-01-01

    The purpose of this study was to explore problem solving with kindergarten students. This line of inquiry is highly significant given that Common Core State Standards emphasize deep, conceptual understanding in mathematics as well as problem solving in kindergarten. However, there is little research on problem solving with kindergarten students.…

  2. Thinking Process of Naive Problem Solvers to Solve Mathematical Problems

    ERIC Educational Resources Information Center

    Mairing, Jackson Pasini

    2017-01-01

    Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…

  3. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.

    PubMed

    Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.

  4. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem

    PubMed Central

    Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849

  5. Environmental problem-solving: Psychosocial factors

    NASA Astrophysics Data System (ADS)

    Miller, Alan

    1982-11-01

    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  6. Improve Problem Solving Skills through Adapting Programming Tools

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda H.; Shaykhian, Gholam Ali

    2007-01-01

    There are numerous ways for engineers and students to become better problem-solvers. The use of command line and visual programming tools can help to model a problem and formulate a solution through visualization. The analysis of problem attributes and constraints provide insight into the scope and complexity of the problem. The visualization aspect of the problem-solving approach tends to make students and engineers more systematic in their thought process and help them catch errors before proceeding too far in the wrong direction. The problem-solver identifies and defines important terms, variables, rules, and procedures required for solving a problem. Every step required to construct the problem solution can be defined in program commands that produce intermediate output. This paper advocates improved problem solving skills through using a programming tool. MatLab created by MathWorks, is an interactive numerical computing environment and programming language. It is a matrix-based system that easily lends itself to matrix manipulation, and plotting of functions and data. MatLab can be used as an interactive command line or a sequence of commands that can be saved in a file as a script or named functions. Prior programming experience is not required to use MatLab commands. The GNU Octave, part of the GNU project, a free computer program for performing numerical computations, is comparable to MatLab. MatLab visual and command programming are presented here.

  7. Associations between conceptual reasoning, problem solving, and adaptive ability in high-functioning autism.

    PubMed

    Williams, Diane L; Mazefsky, Carla A; Walker, Jon D; Minshew, Nancy J; Goldstein, Gerald

    2014-11-01

    Abstract thinking is generally highly correlated with problem-solving ability which is predictive of better adaptive functioning. Measures of conceptual reasoning, an ecologically-valid laboratory measure of problem-solving, and a report measure of adaptive functioning in the natural environment, were administered to children and adults with and without autism. The individuals with autism had weaker conceptual reasoning ability than individuals with typical development of similar age and cognitive ability. For the autism group, their flexible thinking scores were significantly correlated with laboratory measures of strategy formation and rule shifting and with reported overall adaptive behavior but not socialization scores. Therefore, in autism, flexibility of thought is potentially more important for adaptive functioning in the natural environment than conceptual reasoning or problem-solving.

  8. Customer-centered problem solving.

    PubMed

    Samelson, Q B

    1999-11-01

    If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.

  9. The Microcomputer--A Problem Solving Tool.

    ERIC Educational Resources Information Center

    Hoelscher, Karen J.

    Designed to assist teachers in using the microcomputer as a tool to teach problem solving strategies, this document is divided into two sections: the first introduces the concept of problem solving as a thinking process, and suggests means by which a teacher can become an effective guide for the learning of problem solving skills; the second…

  10. Student’s scheme in solving mathematics problems

    NASA Astrophysics Data System (ADS)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono

    2018-03-01

    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  11. Investigating Problem-Solving Perseverance Using Lesson Study

    ERIC Educational Resources Information Center

    Bieda, Kristen N.; Huhn, Craig

    2017-01-01

    Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…

  12. Towards a Framework of Using Knowledge Tools for Teaching by Solving Problems in Technology-Enhanced Learning Environment

    ERIC Educational Resources Information Center

    Kostousov, Sergei; Kudryavtsev, Dmitry

    2017-01-01

    Problem solving is a critical competency for modern world and also an effective way of learning. Education should not only transfer domain-specific knowledge to students, but also prepare them to solve real-life problems--to apply knowledge from one or several domains within specific situation. Problem solving as teaching tool is known for a long…

  13. Using a Recommendation System to Support Problem Solving and Case-Based Reasoning Retrieval

    ERIC Educational Resources Information Center

    Tawfik, Andrew A.; Alhoori, Hamed; Keene, Charles Wayne; Bailey, Christian; Hogan, Maureen

    2018-01-01

    In case library learning environments, learners are presented with an array of narratives that can be used to guide their problem solving. However, according to theorists, learners struggle to identify and retrieve the optimal case to solve a new problem. Given the challenges novice face during case retrieval, recommender systems can be embedded…

  14. Solving work-related ethical problems.

    PubMed

    Laukkanen, Laura; Suhonen, Riitta; Leino-Kilpi, Helena

    2016-12-01

    Nurse managers are responsible for solving work-related ethical problems to promote a positive ethical culture in healthcare organizations. The aim of this study was to describe the activities that nurse managers use to solve work-related ethical problems. The ultimate aim was to enhance the ethical awareness of all nurse managers. The data for this descriptive cross-sectional survey were analyzed through inductive content analysis and quantification. Participants and research context: The data were collected in 2011 using a questionnaire that included an open-ended question and background factors. Participants were nurse managers working in Finnish healthcare organizations (n = 122). Ethical considerations: Permission for the study was given by the Finnish Association of Academic Managers and Experts of Health Sciences. Nurse managers identified a variety of activities they use to solve work-related ethical problems: discussion (30%), cooperation (25%), work organization (17%), intervention (10%), personal values (9%), operational models (4%), statistics and feedback (4%), and personal examples (1%). However, these activities did not follow any common or systematic model. In the future, nurse managers need a more systematic approach to solve ethical problems. It is important to establish new kinds of ethics structures in organizations, such as a common, systematic ethical decision-making model and an ethics club for nurse manager problems, to support nurse managers in solving work-related ethical problems.

  15. Perspectives on Problem Solving and Instruction

    ERIC Educational Resources Information Center

    van Merrienboer, Jeroen J. G.

    2013-01-01

    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  16. Difficulties in Genetics Problem Solving.

    ERIC Educational Resources Information Center

    Tolman, Richard R.

    1982-01-01

    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  17. Understanding Individual Problem-Solving Style: A Key to Learning and Applying Creative Problem Solving

    ERIC Educational Resources Information Center

    Treffinger, Donald J.; Selby, Edwin C.; Isaksen, Scott G.

    2008-01-01

    More than five decades of research and development have focused on making the Creative Problem Solving process and tools accessible across a wide range of ages and contexts. Recent evidence indicates that when individuals, in both school and corporate settings, understand their own style of problem solving, they are able to learn and apply process…

  18. Personality, problem solving, and adolescent substance use.

    PubMed

    Jaffee, William B; D'Zurilla, Thomas J

    2009-03-01

    The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.

  19. Inquiry-based problem solving in introductory physics

    NASA Astrophysics Data System (ADS)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  20. Problem Solving, Scaffolding and Learning

    ERIC Educational Resources Information Center

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  1. Problem solving performance and learning strategies of undergraduate students who solved microbiology problems using IMMEX educational software

    NASA Astrophysics Data System (ADS)

    Ebomoyi, Josephine Itota

    The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p < .10) related to ability to solve "Creeping Crud". Peer learning strategy showed a positive significant (p < .10) relationship with scores obtained from solving "Creeping Crud". Students' declared major made a significant (p < .05) difference on the ability to solve "Microquest". A subset (18) volunteered for a think aloud method to determine decision-making process. High achievers used fewer steps, and had more focused approach than low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.

  2. Social Problem Solving as a Predictor of Well-Being in Adolescents and Young Adults

    ERIC Educational Resources Information Center

    Siu, Andrew M. H.; Shek, Daniel T. L.

    2010-01-01

    Social problem solving is the cognitive-affective-behavioral process by which people attempt to resolve real-life problems in a social environment, and is of key importance in the management of emotions and well-being. This paper reviews a series of studies on social problem solving conducted by the authors. First, we developed and validated the…

  3. Vers une Meilleure Connaissance des Facons dont les Apprenants de L2 Resolvent Leurs Problemes dans l'Environnement Multimedia (Toward a Better Understanding of the Ways in Which L2 Learners Solve Problems in a Multimedia Environment).

    ERIC Educational Resources Information Center

    Duquette, Lise

    1999-01-01

    Examines the role of metacognition, particularly problem solving strategies, in how second language students learn in a multimedia environment, studying problem solving strategies used by students completing exercises in Mydlarski and Paramskas' program, Vi-Conte. Presents recommendations for training teachers, noting that the flexibility of…

  4. Learning Impasses in Problem Solving

    NASA Technical Reports Server (NTRS)

    Hodgson, J. P. E.

    1992-01-01

    Problem Solving systems customarily use backtracking to deal with obstacles that they encounter in the course of trying to solve a problem. This paper outlines an approach in which the possible obstacles are investigated prior to the search for a solution. This provides a solution strategy that avoids backtracking.

  5. Problem-Solving Rules for Genetics.

    ERIC Educational Resources Information Center

    Collins, Angelo

    The categories and applications of strategic knowledge as these relate to problem solving in the area of transmission genetics are examined in this research study. The role of computer simulations in helping students acquire the strategic knowledge necessary to solve realistic transmission genetics problems was emphasized. The Genetics…

  6. Problem Solving on a Monorail.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; And Others

    1994-01-01

    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  7. Resource Letter RPS-1: Research in problem solving

    NASA Astrophysics Data System (ADS)

    Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.

    2004-09-01

    This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.

  8. Disciplinary Foundations for Solving Interdisciplinary Scientific Problems

    ERIC Educational Resources Information Center

    Zhang, Dongmei; Shen, Ji

    2015-01-01

    Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…

  9. Could HPS Improve Problem-Solving?

    ERIC Educational Resources Information Center

    Coelho, Ricardo Lopes

    2013-01-01

    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem…

  10. Developing Legal Problem-Solving Skills.

    ERIC Educational Resources Information Center

    Nathanson, Stephen

    1994-01-01

    A law professor explains how he came to view legal problem solving as the driving concept in law school curriculum design and draws on personal experience and a survey of students concerning teaching methods in a commercial law course. He outlines six curriculum design principles for teaching legal problem solving. (MSE)

  11. Spontaneous gestures influence strategy choices in problem solving.

    PubMed

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro

    2011-09-01

    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  12. Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children

    ERIC Educational Resources Information Center

    Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.

    2007-01-01

    This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…

  13. Solving Optimization Problems with Spreadsheets

    ERIC Educational Resources Information Center

    Beigie, Darin

    2017-01-01

    Spreadsheets provide a rich setting for first-year algebra students to solve problems. Individual spreadsheet cells play the role of variables, and creating algebraic expressions for a spreadsheet to perform a task allows students to achieve a glimpse of how mathematics is used to program a computer and solve problems. Classic optimization…

  14. Including Critical Thinking and Problem Solving in Physical Education

    ERIC Educational Resources Information Center

    Pill, Shane; SueSee, Brendan

    2017-01-01

    Many physical education curriculum frameworks include statements about the inclusion of critical inquiry processes and the development of creativity and problem-solving skills. The learning environment created by physical education can encourage or limit the application and development of the learners' cognitive resources for critical and creative…

  15. Cross-syndrome comparison of real-world executive functioning and problem solving using a new problem-solving questionnaire.

    PubMed

    Camp, Joanne S; Karmiloff-Smith, Annette; Thomas, Michael S C; Farran, Emily K

    2016-12-01

    Individuals with neurodevelopmental disorders like Williams syndrome and Down syndrome exhibit executive function impairments on experimental tasks (Lanfranchi, Jerman, Dal Pont, Alberti, & Vianello, 2010; Menghini, Addona, Costanzo, & Vicari, 2010), but the way that they use executive functioning for problem solving in everyday life has not hitherto been explored. The study aim is to understand cross-syndrome characteristics of everyday executive functioning and problem solving. Parents/carers of individuals with Williams syndrome (n=47) or Down syndrome (n=31) of a similar chronological age (m=17 years 4 months and 18 years respectively) as well as those of a group of younger typically developing children (n=34; m=8years 3 months) completed two questionnaires: the Behavior Rating Inventory of Executive Function (BRIEF; Gioia, Isquith, Guy, & Kenworthy, 2000) and a novel Problem-Solving Questionnaire. The rated likelihood of reaching a solution in a problem solving situation was lower for both syndromic groups than the typical group, and lower still for the Williams syndrome group than the Down syndrome group. The proportion of group members meeting the criterion for clinical significance on the BRIEF was also highest for the Williams syndrome group. While changing response, avoiding losing focus and maintaining perseverance were important for problem-solving success in all groups, asking for help and avoiding becoming emotional were also important for the Down syndrome and Williams syndrome groups respectively. Keeping possessions in order was a relative strength amongst BRIEF scales for the Down syndrome group. Results suggest that individuals with Down syndrome tend to use compensatory strategies for problem solving (asking for help and potentially, keeping items well ordered), while for individuals with Williams syndrome, emotional reactions disrupt their problem-solving skills. This paper highlights the importance of identifying syndrome-specific problem-solving

  16. Lesion mapping of social problem solving

    PubMed Central

    Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.

    2014-01-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511

  17. The Effects of Thinking Aloud Pair Problem Solving on High School Students' Chemistry Problem-Solving Performance and Verbal Interactions

    NASA Astrophysics Data System (ADS)

    Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee

    2005-10-01

    This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.

  18. Self-affirmation improves problem-solving under stress.

    PubMed

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  19. Problem Solving Under Time-Constraints.

    ERIC Educational Resources Information Center

    Richardson, Michael; Hunt, Earl

    A model of how automated and controlled processing can be mixed in computer simulations of problem solving is proposed. It is based on previous work by Hunt and Lansman (1983), who developed a model of problem solving that could reproduce the data obtained with several attention and performance paradigms, extending production-system notation to…

  20. The Future Problem Solving Program.

    ERIC Educational Resources Information Center

    Crabbe, Anne B.

    1989-01-01

    Describes the Future Problem Solving Program, in which students from the U.S. and around the world are tackling some complex challenges facing society, ranging from acid rain to terrorism. The program uses a creative problem solving process developed for business and industry. A sixth-grade toxic waste cleanup project illustrates the process.…

  1. King Oedipus and the Problem Solving Process.

    ERIC Educational Resources Information Center

    Borchardt, Donald A.

    An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…

  2. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  3. Interactive Problem Solving Tutorials Through Visual Programming

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian; Schuster, David; Undreiu, Adriana

    2008-10-01

    We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.

  4. Problem Solving with Combinations.

    ERIC Educational Resources Information Center

    English, Lyn

    1992-01-01

    Highlights combinatorial problems appropriate for students aged 4 to 12 years that utilize manipulatives in a hands-on approach. Examines and identifies students' strategies and self-monitoring techniques that produce effective problem solving. (MDH)

  5. Self-Affirmation Improves Problem-Solving under Stress

    PubMed Central

    Creswell, J. David; Dutcher, Janine M.; Klein, William M. P.; Harris, Peter R.; Levine, John M.

    2013-01-01

    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. PMID:23658751

  6. A Design and Development of Distance Learning Support Environment for Collaborative Problem Solving in Group Learners

    ERIC Educational Resources Information Center

    Nitta, Takuya; Takaoka, Ryo; Ahama, Shigeki; Shimokawa, Masayuki

    2014-01-01

    The competency and curriculum for human resource development in knowledge based society are proposed in each country. We think the keywords are "collaborative problem solving" and "effective use of ICT". In particular, the competency to perform the collaborative problem solving and learning with others on the network is…

  7. How to Solve Polyhedron Problem?

    NASA Astrophysics Data System (ADS)

    Wijayanti, A.; Kusumah, Y. S.; Suhendra

    2017-09-01

    The purpose of this research is to know the possible strategies to solve the problem in polyhedron topic with Knilsey’s Learning Model as scaffolding for the student. This research was conducted by using mixed method with sequential explanatory design. Researchers used purposive sampling technique to get two classes for Knisley class and conventional class and an extreme case sampling technique to get interview data. The instruments used are tests, observation sheets and interview guidelines. The result of the research shows that: (1) students’ strategies to solve polyhedron problem were grouped into two steps: by partitioning the problem to find out the solution and make a mathematical model of the mathematical sentence given and then connect it with the concept that the students already know; (2) students ‘mathematical problem solving ability in Knisley class is higher than those in conventional class.

  8. Conceptual problem solving in high school physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  9. Lesion mapping of social problem solving.

    PubMed

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H

    2014-10-01

    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

  10. LEGO Robotics: An Authentic Problem Solving Tool?

    ERIC Educational Resources Information Center

    Castledine, Alanah-Rei; Chalmers, Chris

    2011-01-01

    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  11. Mathematical Problem Solving: A Review of the Literature.

    ERIC Educational Resources Information Center

    Funkhouser, Charles

    The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…

  12. Improving mathematical problem solving skills through visual media

    NASA Astrophysics Data System (ADS)

    Widodo, S. A.; Darhim; Ikhwanudin, T.

    2018-01-01

    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  13. Capturing Problem-Solving Processes Using Critical Rationalism

    ERIC Educational Resources Information Center

    Chitpin, Stephanie; Simon, Marielle

    2012-01-01

    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  14. Solving fully fuzzy transportation problem using pentagonal fuzzy numbers

    NASA Astrophysics Data System (ADS)

    Maheswari, P. Uma; Ganesan, K.

    2018-04-01

    In this paper, we propose a simple approach for the solution of fuzzy transportation problem under fuzzy environment in which the transportation costs, supplies at sources and demands at destinations are represented by pentagonal fuzzy numbers. The fuzzy transportation problem is solved without converting to its equivalent crisp form using a robust ranking technique and a new fuzzy arithmetic on pentagonal fuzzy numbers. To illustrate the proposed approach a numerical example is provided.

  15. Effects of Training in Problem Solving on the Problem-Solving Abilities of Gifted Fourth Graders: A Comparison of the Future Problem Solving and Instrumental Enrichment Programs.

    ERIC Educational Resources Information Center

    Dufner, Hillrey A.; Alexander, Patricia A.

    The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…

  16. Spatial visualization in physics problem solving.

    PubMed

    Kozhevnikov, Maria; Motes, Michael A; Hegarty, Mary

    2007-07-08

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naíve students were administered kinematics problems and spatial visualization ability tests. In Study 2, 17 (8 high- and 9 low-spatial ability) additional students completed think-aloud protocols while they solved the kinematics problems. In Study 3, the eye movements of fifteen (9 high- and 6 low-spatial ability) students were recorded while the students solved kinematics problems. In contrast to high-spatial students, most low-spatial students did not combine two motion vectors, were unable to switch frames of reference, and tended to interpret graphs literally. The results of the study suggest an important relationship between spatial visualization ability and solving kinematics problems with multiple spatial parameters. 2007 Cognitive Science Society, Inc.

  17. Problem? "No Problem!" Solving Technical Contradictions

    ERIC Educational Resources Information Center

    Kutz, K. Scott; Stefan, Victor

    2007-01-01

    TRIZ (pronounced TREES), the Russian acronym for the theory of inventive problem solving, enables a person to focus his attention on finding genuine, potential solutions in contrast to searching for ideas that "may" work through a happenstance way. It is a patent database-backed methodology that helps to reduce time spent on the problem,…

  18. New Perspectives on Human Problem Solving

    ERIC Educational Resources Information Center

    Goldstone, Robert L.; Pizlo, Zygmunt

    2009-01-01

    In November 2008 at Purdue University, the 2nd Workshop on Human Problem Solving was held. This workshop, which was a natural continuation of the first workshop devoted almost exclusively to optimization problems, addressed a wider range of topics that reflect the scope of the "Journal of Problem Solving." The workshop was attended by 35…

  19. Social problem-solving among adolescents treated for depression.

    PubMed

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S

    2010-01-01

    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Problem Solving by Design

    ERIC Educational Resources Information Center

    Capobianco, Brenda M.; Tyrie, Nancy

    2009-01-01

    In a unique school-university partnership, methods students collaborated with fifth graders to use the engineering design process to build their problem-solving skills. By placing the problem in the context of a client having particular needs, the problem took on a real-world appeal that students found intriguing and inviting. In this article, the…

  1. Neural Network Solves "Traveling-Salesman" Problem

    NASA Technical Reports Server (NTRS)

    Thakoor, Anilkumar P.; Moopenn, Alexander W.

    1990-01-01

    Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.

  2. Problem solving strategies integrated into nursing process to promote clinical problem solving abilities of RN-BSN students.

    PubMed

    Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie

    2004-11-01

    A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.

  3. Information Seeking When Problem Solving: Perspectives of Public Health Professionals.

    PubMed

    Newman, Kristine; Dobbins, Maureen; Yost, Jennifer; Ciliska, Donna

    2017-04-01

    Given the many different types of professionals working in public health and their diverse roles, it is likely that their information needs, information-seeking behaviors, and problem-solving abilities differ. Although public health professionals often work in interdisciplinary teams, few studies have explored their information needs and behaviors within the context of teamwork. This study explored the relationship between Canadian public health professionals' perceptions of their problem-solving abilities and their information-seeking behaviors with a specific focus on the use of evidence in practice settings. It also explored their perceptions of collaborative information seeking and the work contexts in which they sought information. Key Canadian contacts at public health organizations helped recruit study participants through their list-servs. An electronic survey was used to gather data about (a) individual information-seeking behaviors, (b) collaborative information-seeking behaviors, (c) use of evidence in practice environments, (d) perceived problem-solving abilities, and (e) demographic characteristics. Fifty-eight public health professionals were recruited, with different roles and representing most Canadian provinces and one territory. A significant relationship was found between perceived problem-solving abilities and collaborative information-seeking behavior (r = -.44, p < .00, N = 58), but not individual information seeking. The results suggested that when public health professionals take a shared, active approach to problem solving, maintain personal control, and have confidence, they are more likely collaborate with others in seeking information to complete a work task. Administrators of public health organizations should promote collaboration by implementing effective communication and information-seeking strategies, and by providing information resources and retrieval tools. Public health professionals' perceived problem-solving abilities can

  4. Social problem-solving in Chinese baccalaureate nursing students.

    PubMed

    Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia

    2016-11-01

    To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  5. The Internet: Problem Solving Friend or Foe?

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.

    2007-01-01

    Teaching problem solving to today's students requires teachers to be aware of the ways their students may use the internet as both a resource and as a tool for solving problems. In this article, I describe some of my own experiences in teaching problem solving to preservice teachers and how the existence of the internet has affected the ways in…

  6. Robotics Projects and Learning Concepts in Science, Technology and Problem Solving

    ERIC Educational Resources Information Center

    Barak, Moshe; Zadok, Yair

    2009-01-01

    This paper presents a study about learning and the problem solving process identified among junior high school pupils participating in robotics projects in the Lego Mindstorm environment. The research was guided by the following questions: (1) How do pupils come up with inventive solutions to problems in the context of robotics activities? (2)…

  7. The New Method of Problem Solving in Physics Education by Using SCORM-Compliant Content Package

    ERIC Educational Resources Information Center

    Gonen, Selahattin; Basaran, Bulent

    2008-01-01

    In this article, two basic purposes are presented. First, taking effective feedbacks in the electronic learning environment about the learning level of students at the problem solving which are told in physics lessons and laboratories. Second, providing a possibility for students to repeat the subjects and solved problems by watching and…

  8. Scaffolding Online Argumentation during Problem Solving

    ERIC Educational Resources Information Center

    Oh, S.; Jonassen, D. H.

    2007-01-01

    In this study, constraint-based argumentation scaffolding was proposed to facilitate online argumentation performance and ill-structured problem solving during online discussions. In addition, epistemological beliefs were presumed to play a role in solving ill-structured diagnosis-solution problems. Constraint-based discussion boards were…

  9. Processes involved in solving mathematical problems

    NASA Astrophysics Data System (ADS)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra

    2018-04-01

    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  10. Emotion dysregulation, problem-solving, and hopelessness.

    PubMed

    Vatan, Sevginar; Lester, David; Gunn, John F

    2014-04-01

    A sample of 87 Turkish undergraduate students was administered scales to measure hopelessness, problem-solving skills, emotion dysregulation, and psychiatric symptoms. All of the scores from these scales were strongly associated. In a multiple regression, hopelessness scores were predicted by poor problem-solving skills and emotion dysregulation.

  11. Diagrams Benefit Symbolic Problem-Solving

    ERIC Educational Resources Information Center

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R.

    2017-01-01

    Background: The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic…

  12. Dreams and creative problem-solving.

    PubMed

    Barrett, Deirdre

    2017-10-01

    Dreams have produced art, music, novels, films, mathematical proofs, designs for architecture, telescopes, and computers. Dreaming is essentially our brain thinking in another neurophysiologic state-and therefore it is likely to solve some problems on which our waking minds have become stuck. This neurophysiologic state is characterized by high activity in brain areas associated with imagery, so problems requiring vivid visualization are also more likely to get help from dreaming. This article reviews great historical dreams and modern laboratory research to suggest how dreams can aid creativity and problem-solving. © 2017 New York Academy of Sciences.

  13. The Missing Curriculum in Physics Problem-Solving Education

    NASA Astrophysics Data System (ADS)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  14. Design and performance frameworks for constructing problem-solving simulations.

    PubMed

    Stevens, Ron; Palacio-Cayetano, Joycelin

    2003-01-01

    Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement.

  15. Design and Performance Frameworks for Constructing Problem-Solving Simulations

    PubMed Central

    Stevens, Ron; Palacio-Cayetano, Joycelin

    2003-01-01

    Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement. PMID:14506505

  16. Metacognition: Student Reflections on Problem Solving

    ERIC Educational Resources Information Center

    Wismath, Shelly; Orr, Doug; Good, Brandon

    2014-01-01

    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  17. Translation among Symbolic Representations in Problem-Solving. Revised.

    ERIC Educational Resources Information Center

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  18. Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.

    PubMed

    Kraines, Morganne A; Wells, Tony T

    2017-01-01

    Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.

  19. Innovative problem solving by wild spotted hyenas

    PubMed Central

    Benson-Amram, Sarah; Holekamp, Kay E.

    2012-01-01

    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  20. Inquiry and Problem Solving.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    1999-01-01

    This issue of ENC Focus focuses on the topic of inquiry and problem solving. Featured articles include: (1) "Inquiry in the Everyday World of Schools" (Ronald D. Anderson); (2) "In the Cascade Reservoir Restoration Project Students Tackle Real-World Problems" (Clint Kennedy with Advanced Biology Students from Cascade High…

  1. Problem representation and mathematical problem solving of students of varying math ability.

    PubMed

    Krawec, Jennifer L

    2014-01-01

    The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.

  2. The Process of Solving Complex Problems

    ERIC Educational Resources Information Center

    Fischer, Andreas; Greiff, Samuel; Funke, Joachim

    2012-01-01

    This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

  3. Creativity and Insight in Problem Solving

    ERIC Educational Resources Information Center

    Golnabi, Laura

    2016-01-01

    This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

  4. Understanding catastrophizing from a misdirected problem-solving perspective.

    PubMed

    Flink, Ida K; Boersma, Katja; MacDonald, Shane; Linton, Steven J

    2012-05-01

    The aim is to explore pain catastrophizing from a problem-solving perspective. The links between catastrophizing, problem framing, and problem-solving behaviour are examined through two possible models of mediation as inferred by two contemporary and complementary theoretical models, the misdirected problem solving model (Eccleston & Crombez, 2007) and the fear-anxiety-avoidance model (Asmundson, Norton, & Vlaeyen, 2004). In this prospective study, a general population sample (n= 173) with perceived problems with spinal pain filled out questionnaires twice; catastrophizing and problem framing were assessed on the first occasion and health care seeking (as a proxy for medically oriented problem solving) was assessed 7 months later. Two different approaches were used to explore whether the data supported any of the proposed models of mediation. First, multiple regressions were used according to traditional recommendations for mediation analyses. Second, a bootstrapping method (n= 1000 bootstrap resamples) was used to explore the significance of the indirect effects in both possible models of mediation. The results verified the concepts included in the misdirected problem solving model. However, the direction of the relations was more in line with the fear-anxiety-avoidance model. More specifically, the mediation analyses provided support for viewing catastrophizing as a mediator of the relation between biomedical problem framing and medically oriented problem-solving behaviour. These findings provide support for viewing catastrophizing from a problem-solving perspective and imply a need to examine and address problem framing and catastrophizing in back pain patients. ©2011 The British Psychological Society.

  5. Impacts of Learning Inventive Problem-Solving Principles: Students' Transition from Systematic Searching to Heuristic Problem Solving

    ERIC Educational Resources Information Center

    Barak, Moshe

    2013-01-01

    This paper presents the outcomes of teaching an inventive problem-solving course in junior high schools in an attempt to deal with the current relative neglect of fostering students' creativity and problem-solving capabilities in traditional schooling. The method involves carrying out systematic manipulation with attributes, functions and…

  6. Problem Solving Software for Math Classes.

    ERIC Educational Resources Information Center

    Troutner, Joanne

    1987-01-01

    Described are 10 computer software programs for problem solving related to mathematics. Programs described are: (1) Box Solves Story Problems; (2) Safari Search; (3) Puzzle Tanks; (4) The King's Rule; (5) The Factory; (6) The Royal Rules; (7) The Enchanted Forest; (8) Gears; (9) The Super Factory; and (10) Creativity Unlimited. (RH)

  7. Mathematical Problem Solving. Issues in Research.

    ERIC Educational Resources Information Center

    Lester, Frank K., Jr., Ed.; Garofalo, Joe, Ed.

    This set of papers was originally developed for a conference on Issues and Directions in Mathematics Problem Solving Research held at Indiana University in May 1981. The purpose is to contribute to the clear formulation of the key issues in mathematical problem-solving research by presenting the ideas of actively involved researchers. An…

  8. Solving Problems with Charts & Tables. Pipefitter.

    ERIC Educational Resources Information Center

    Greater Baton Rouge Chamber of Commerce, LA.

    Developed as part of the ABCs of Construction National Workplace Literacy Project, this instructional module is designed to help individuals employed as pipefitters learn to solve problems with charts and tables. Outlined in the first section is a five-step procedure for solving problems involving tables and/or charts: identifying the question to…

  9. Problem Solving Interactions on Electronic Networks.

    ERIC Educational Resources Information Center

    Waugh, Michael; And Others

    Arguing that electronic networking provides a medium which is qualitatively superior to the traditional classroom for conducting certain types of problem solving exercises, this paper details the Water Problem Solving Project, which was conducted on the InterCultural Learning Network in 1985 and 1986 with students from the United States, Mexico,…

  10. 6 Essential Questions for Problem Solving

    ERIC Educational Resources Information Center

    Kress, Nancy Emerson

    2017-01-01

    One of the primary expectations that the author has for her students is for them to develop greater independence when solving complex and unique mathematical problems. The story of how the author supports her students as they gain confidence and independence with complex and unique problem-solving tasks, while honoring their expectations with…

  11. [Investigation of problem solving skills among psychiatric patients].

    PubMed

    Póos, Judit; Annus, Rita; Perczel Forintos, Dóra

    2008-01-01

    According to our present knowledge depression and hopelessness play an important role in attempted suicide and the development of hopelessness seems to be closely associated with poor problem solving skills. In the present study we have used the internationally well-known MEPS (Means-Ends Problem Solving Test; a measure of social problem solving ability) in Hungary for the first time and combined with other tests. We intended to explore the cognitive risk factors that potentially play a role in the suicidal behavior in clinical population. In our study we compared a group of individuals who had attempted suicide to a nonsuicidal psychiatric control group and a normal control group (61 subjects in each group). Our results confirm the findings of others that psychiatric patients have difficulties in social problem solving compared to normal controls. Moreover, they generate less and poorer solutions. According to our data problem solving skills of the two clinical groups were similar. A strong positive correlation was found between poor problem solving skills, depression and hopelessness which may suggest that the development of problem solving skills could help to reduce negative mood.

  12. Problem Solving Model for Science Learning

    NASA Astrophysics Data System (ADS)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  13. Metaphor and analogy in everyday problem solving.

    PubMed

    Keefer, Lucas A; Landau, Mark J

    2016-11-01

    Early accounts of problem solving focused on the ways people represent information directly related to target problems and possible solutions. Subsequent theory and research point to the role of peripheral influences such as heuristics and bodily states. We discuss how metaphor and analogy similarly influence stages of everyday problem solving: Both processes mentally map features of a target problem onto the structure of a relatively more familiar concept. When individuals apply this structure, they use a well-known concept as a framework for reasoning about real world problems and candidate solutions. Early studies found that analogy use helped people gain insight into novel problems. More recent research on metaphor goes further to show that activating mappings has subtle, sometimes surprising effects on judgment and reasoning in everyday problem solving. These findings highlight situations in which mappings can help or hinder efforts to solve problems. WIREs Cogn Sci 2016, 7:394-405. doi: 10.1002/wcs.1407 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  14. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Computer Programming: A Medium for Teaching Problem Solving.

    ERIC Educational Resources Information Center

    Casey, Patrick J.

    1997-01-01

    Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…

  16. Socio-Demographic and Practice-Oriented Factors Related to Proficiency in Problem Solving: A Lifelong Learning Perspective

    ERIC Educational Resources Information Center

    Desjardins, Richard; Ederer, Peer

    2015-01-01

    This article explores the relative importance of different socio-demographic and practice-oriented factors that are related to proficiency in problem solving in technology-rich environments (PSTREs) and by extension may be related to complex problem solving (CPS). The empirical analysis focuses on the proficiency measurements of PSTRE made…

  17. Problem-Solving Support for English Language Learners

    ERIC Educational Resources Information Center

    Wiest, Lynda R.

    2008-01-01

    Although word problems pose greater language demands, they also encourage more meaningful problem solving and mathematics understanding. With proper instructional support, a student-centered, investigative approach to contextualized problem solving benefits all students. This article presents a lesson built on an author-adapted version of the…

  18. Transformational and derivational strategies in analogical problem solving.

    PubMed

    Schelhorn, Sven-Eric; Griego, Jacqueline; Schmid, Ute

    2007-03-01

    Analogical problem solving is mostly described as transfer of a source solution to a target problem based on the structural correspondences (mapping) between source and target. Derivational analogy (Carbonell, Machine learning: an artificial intelligence approach Los Altos. Morgan Kaufmann, 1986) proposes an alternative view: a target problem is solved by replaying a remembered problem-solving episode. Thus, the experience with the source problem is used to guide the search for the target solution by applying the same solution technique rather than by transferring the complete solution. We report an empirical study using the path finding problems presented in Novick and Hmelo (J Exp Psychol Learn Mem Cogn 20:1296-1321, 1994) as material. We show that both transformational and derivational analogy are problem-solving strategies realized by human problem solvers. Which strategy is evoked in a given problem-solving context depends on the constraints guiding object-to-object mapping between source and target problem. Specifically, if constraints facilitating mapping are available, subjects are more likely to employ a transformational strategy, otherwise they are more likely to use a derivational strategy.

  19. Solving inversion problems with neural networks

    NASA Technical Reports Server (NTRS)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.

    1990-01-01

    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  20. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study

    ERIC Educational Resources Information Center

    Mills, Nadia Monrose

    2015-01-01

    The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

  1. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    NASA Astrophysics Data System (ADS)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  2. Personal and parental problem drinking: effects on problem-solving performance and self-appraisal.

    PubMed

    Slavkin, S L; Heimberg, R G; Winning, C D; McCaffrey, R J

    1992-01-01

    This study examined the problem-solving performances and self-appraisals of problem-solving ability of college-age subjects with and without parental history of problem drinking. Contrary to our predictions, children of problem drinkers (COPDs) were rated as somewhat more effective in their problem-solving skills than non-COPDs, undermining prevailing assumptions about offspring from alcoholic households. While this difference was not large and was qualified by other variables, subjects' own alcohol abuse did exert a detrimental effect on problem-solving performance, regardless of parental history of problem drinking. However, a different pattern was evident for problem-solving self-appraisals. Alcohol-abusing non-COPDs saw themselves as effective problem-solvers while alcohol-abusing COPDs appraised themselves as poor problem-solvers. In addition, the self-appraisals of alcohol-abusing COPDs were consistent with objective ratings of solution effectiveness (i.e., they were both negative) while alcohol-abusing non-COPDs were overly positive in their appraisals, opposing the judgments of trained raters. This finding suggests that the relationship between personal alcohol abuse and self-appraised problem-solving abilities may differ as a function of parental history of problem drinking. Limitations on the generalizability of findings are addressed.

  3. Programming and Problem Solving.

    ERIC Educational Resources Information Center

    Elias, Barbara P.

    A study was conducted to examine computer programming as a problem solving activity. Thirteen fifth grade children were selected by their teacher from an above average class to use Apple IIe microcomputers. The investigator conducted sessions of 40-50 minutes with the children in groups of two or three. Four problems, incorporating the programming…

  4. Problem Solving in Electricity.

    ERIC Educational Resources Information Center

    Caillot, Michel; Chalouhi, Elias

    Two studies were conducted to describe how students perform direct current (D-C) circuit problems. It was hypothesized that problem solving in the electricity domain depends largely on good visual processing of the circuit diagram and that this processing depends on the ability to recognize when two or more electrical components are in series or…

  5. Find the Dimensions: Students Solving a Tiling Problem

    ERIC Educational Resources Information Center

    Obara, Samuel

    2018-01-01

    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  6. Journey into Problem Solving: A Gift from Polya

    ERIC Educational Resources Information Center

    Lederman, Eric

    2009-01-01

    In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…

  7. Using Jigsaw-Style Spectroscopy Problem-Solving to Elucidate Molecular Structure through Online Cooperative Learning

    ERIC Educational Resources Information Center

    Winschel, Grace A.; Everett, Renata K.; Coppola, Brian P.; Shultz, Ginger V.

    2015-01-01

    Cooperative learning was employed as an instructional approach to facilitate student development of spectroscopy problem solving skills. An interactive online environment was used as a framework to structure weekly discussions around spectroscopy problems outside of class. Weekly discussions consisted of modified jigsaw-style problem solving…

  8. Internet Computer Coaches for Introductory Physics Problem Solving

    ERIC Educational Resources Information Center

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  9. Independence Pending: Teacher Behaviors Preceding Learner Problem Solving

    ERIC Educational Resources Information Center

    Roesler, Rebecca A.

    2017-01-01

    The purposes of the present study were to identify the teacher behaviors that preceded learners' active participation in solving musical and technical problems and describe learners' roles in the problem-solving process. I applied an original model of problem solving to describe the behaviors of teachers and students in 161 rehearsal frames…

  10. Teaching Effective Problem Solving Strategies for Interns

    ERIC Educational Resources Information Center

    Warren, Louis L.

    2005-01-01

    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  11. Sharing Solutions: Persistence and Grounding in Multimodal Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Dillenbourg, Pierre; Traum, David

    2006-01-01

    This article reports on an exploratory study of the relationship between grounding and problem solving in multimodal computer-mediated collaboration. This article examines two different media, a shared whiteboard and a MOO environment that includes a text chat facility. A study was done on how the acknowledgment rate (how often partners give…

  12. Internet computer coaches for introductory physics problem solving

    NASA Astrophysics Data System (ADS)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  13. Noticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding

    PubMed Central

    Crooks, Noelle M.; Alibali, Martha W.

    2013-01-01

    This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the

  14. Decision-Making and Problem-Solving Approaches in Pharmacy Education

    PubMed Central

    Martin, Lindsay C.; Holdford, David A.

    2016-01-01

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823

  15. Decision-Making and Problem-Solving Approaches in Pharmacy Education.

    PubMed

    Martin, Lindsay C; Donohoe, Krista L; Holdford, David A

    2016-04-25

    Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.

  16. Quantum Computing: Solving Complex Problems

    ScienceCinema

    DiVincenzo, David

    2018-05-22

    One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

  17. Problem Solving in the General Mathematics Classroom

    ERIC Educational Resources Information Center

    Troutman, Andria Price; Lichtenberg, Betty Plunkett

    1974-01-01

    Five steps common to different problem solving models are listed. Next, seven specific abilities related to solving problems are discussed and examples given. Sample activities, appropriate to help in developing these specific abilities, are suggested. (LS)

  18. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning

    NASA Astrophysics Data System (ADS)

    Mulyono; Hadiyanti, R.

    2018-03-01

    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.

  19. Implementing a Case-Based E-Learning Environment in a Lecture-Oriented Anaesthesiology Class: Do Learning Styles Matter in Complex Problem Solving over Time?

    ERIC Educational Resources Information Center

    Choi, Ikseon; Lee, Sang Joon; Kang, Jeongwan

    2009-01-01

    This study explores how students' learning styles influence their learning while solving complex problems when a case-based e-learning environment is implemented in a conventional lecture-oriented classroom. Seventy students from an anaesthesiology class at a dental school participated in this study over a 3-week period. Five learning-outcome…

  20. Distributed problem solving by pilots and dispatchers

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Wich, Mike; Fischer, Ute; Jobe, Kim; Mccoy, Elaine; Beatty, Roger; Smith, Phil

    1993-01-01

    The study addressed the following question: Are flight planning problems solved differently by PILOTS and DISPATCHERS when they work alone versus when they work together? Aspect of their performance that were of interest include the following: Problem perception and definition; Problem solving strategies and information use; Options considered; Solution and rational; and errors.

  1. Strategy Keys as Tools for Problem Solving

    ERIC Educational Resources Information Center

    Herold-Blasius, Raja

    2017-01-01

    Problem solving is one of the main competences we seek to teach students at school for use in their future lives. However, when dealing with mathematical problems, teachers encounter a wide variety of difficulties. To foster students' problem-solving skills, the authors developed "strategy keys." Strategy keys can serve as material to…

  2. Problem-Solving during Shared Reading at Kindergarten

    ERIC Educational Resources Information Center

    Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees

    2015-01-01

    This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

  3. Problem solving and decisionmaking: An integration

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1980-01-01

    An attempt was made to redress a critical fault of decisionmaking and problem solving research-a lack of a standard method to classify problem or decision states or conditions. A basic model was identified and expanded to indicate a possible taxonomy of conditions which may be used in reviewing previous research or for systematically pursuing new research designs. A generalization of the basic conditions was then made to indicate that the conditions are essentially the same for both concepts, problem solving and decisionmaking.

  4. [Problem Solving Activities.

    ERIC Educational Resources Information Center

    Wisconsin Univ. - Stout, Menomonie. Center for Vocational, Technical and Adult Education.

    The teacher directed problem solving activities package contains 17 units: Future Community Design, Let's Build an Elevator, Let's Construct a Catapult, Let's Design a Recreational Game, Let's Make a Hand Fishing Reel, Let's Make a Wall Hanging, Let's Make a Yo-Yo, Marooned in the Past, Metrication, Mousetrap Vehicles, The Multi System…

  5. Effects of subliminal hints on insight problem solving.

    PubMed

    Hattori, Masasi; Sloman, Steven A; Orita, Ryo

    2013-08-01

    Two experiments tested a total of 509 participants on insight problems (the radiation problem and the nine-dot problem). Half of the participants were first exposed to a 1-min movie that included a subliminal hint. The hint raised the solution rate of people who did not recognize it. In addition, the way they solved the problem was affected by the hint. In Experiment 3, a novel technique was introduced to address some methodological concerns raised by Experiments 1 and 2. A total of 80 participants solved the 10-coin problem, and half of them were exposed to a subliminal hint. The hint facilitated solving the problem, and it shortened the solution time. Some implications of subliminal priming for research on and theorizing about insight problem solving are discussed.

  6. Modeling visual problem solving as analogical reasoning.

    PubMed

    Lovett, Andrew; Forbus, Kenneth

    2017-01-01

    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza

    2013-01-01

    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  8. Flexibility in Mathematics Problem Solving Based on Adversity Quotient

    NASA Astrophysics Data System (ADS)

    Dina, N. A.; Amin, S. M.; Masriyah

    2018-01-01

    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  9. Solving Tommy's Writing Problems.

    ERIC Educational Resources Information Center

    Burdman, Debra

    1986-01-01

    The article describes an approach by which word processing helps to solve some of the writing problems of learning disabled students. Aspects considered include prewriting, drafting, revising, and completing the story. (CL)

  10. Investigation of Environmental Problem Solving Skills of Preschool Age Children

    ERIC Educational Resources Information Center

    Ulutas, Aysegül; Köksalan, Bahadir

    2017-01-01

    The study was conducted to determine problem-solving skills of preschool age children on environment as well as factors affecting this skill. For this purpose, quantitative and qualitative research methods were used together in the study and the research was designed in the screening model. This study is a descriptive type research since it…

  11. Testing problem-solving capacities: differences between individual testing and social group setting.

    PubMed

    Krasheninnikova, Anastasia; Schneider, Jutta M

    2014-09-01

    Testing animals individually in problem-solving tasks limits distractions of the subjects during the test, so that they can fully concentrate on the problem. However, such individual performance may not indicate the problem-solving capacity that is commonly employed in the wild when individuals are faced with a novel problem in their social groups, where the presence of a conspecific influences an individual's behaviour. To assess the validity of data gathered from parrots when tested individually, we compared the performance on patterned-string tasks among parrots tested singly and parrots tested in social context. We tested two captive groups of orange-winged amazons (Amazona amazonica) with several patterned-string tasks. Despite the differences in the testing environment (singly vs. social context), parrots from both groups performed similarly. However, we found that the willingness to participate in the tasks was significantly higher for the individuals tested in social context. The study provides further evidence for the crucial influence of social context on individual's response to a challenging situation such as a problem-solving test.

  12. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  13. The effects of expected reward on creative problem solving.

    PubMed

    Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan

    2018-06-12

    Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.

  14. [Problem-solving strategies and marital satisfaction].

    PubMed

    Kriegelewicz, Olga

    2006-01-01

    This study investigated the relation between problem-solving strategies in the marital conflict and marital satisfaction. Four problem-solving strategies (Dialogue, Loyalty, Escalation of conflict and Withdrawal) were measured by the Problem-Solving Strategies Inventory, in two versions: self-report and report of partners' perceived behaviour. This measure refers to the concept of Rusbult, Johnson and Morrow, and meets high standards of reliability (alpha Cronbach from alpha = 0.78 to alpha = 0.94) and validity. Marital satisfaction was measured by Marriage Success Scale. The sample was composed of 147 marital couples. The study revealed that satisfied couples, in comparison with non-satisfied couples, tend to use constructive problem-solving strategies (Dialogue and Loyalty). They rarely use destructive strategies like Escalation of conflict or Withdrawal. Dialogue is the strategy connected with satisfaction in a most positive manner. These might be very important guidelines to couples' psychotherapy. Loyalty to oneself is a significant positive predictor of male satisfaction is also own Loyalty. The study shows that constructive attitudes are the most significant predictors of marriage satisfaction. It is therefore worth concentrating mostly on them in the psychotherapeutic process instead of eliminating destructive attitudes.

  15. Perceived problem solving, stress, and health among college students.

    PubMed

    Largo-Wight, Erin; Peterson, P Michael; Chen, W William

    2005-01-01

    To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.

  16. Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.

    ERIC Educational Resources Information Center

    Camacho, Moises; Good, Ron

    1989-01-01

    Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…

  17. Genetics problem solving and worldview

    NASA Astrophysics Data System (ADS)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  18. Problem-solving performance and reproductive success of great tits in urban and forest habitats.

    PubMed

    Preiszner, Bálint; Papp, Sándor; Pipoly, Ivett; Seress, Gábor; Vincze, Ernő; Liker, András; Bókony, Veronika

    2017-01-01

    Success in problem solving, a form of innovativeness, can help animals exploit their environments, and recent research suggests that it may correlate with reproductive success. Innovativeness has been proposed to be especially beneficial in urbanized habitats, as suggested by superior problem-solving performance of urban individuals in some species. If there is stronger selection for innovativeness in cities than in natural habitats, we expect problem-solving performance to have a greater positive effect on fitness in more urbanized habitats. We tested this idea in great tits (Parus major) breeding at two urban sites and two forests by measuring their problem-solving performance in an obstacle-removal task and a food-acquisition task. Urban pairs were significantly faster problem-solvers in both tasks. Solving speed in the obstacle-removal task was positively correlated with hatching success and the number of fledglings, whereas performance in the food-acquisition task did not correlate with reproductive success. These relationships did not differ between urban and forest habitats. Neophobia, sensitivity to human disturbance, and risk taking in the presence of a predator did not explain the relationships of problem-solving performance either with habitat type or with reproductive success. Our results suggest that the benefit of innovativeness in terms of reproductive success is similar in urban and natural habitats, implying that problem-solving skills may be enhanced in urban populations by some other benefits (e.g. increased survival) or reduced costs (e.g. more opportunities to gain practice with challenging tasks).

  19. Decision-Making Styles and Problem-Solving Appraisal.

    ERIC Educational Resources Information Center

    Phillips, Susan D.; And Others

    1984-01-01

    Compared decision-making style and problem-solving appraisal in 243 undergraduates. Results suggested that individuals who employ rational decision-making strategies approach problematic situations, while individuals who endorse dependent decisional strategies approach problematic situations without confidence in their problem-solving abilities.…

  20. Tracing Success: Graphical Methods for Analysing Successful Collaborative Problem Solving

    ERIC Educational Resources Information Center

    Joiner, Richard; Issroff, Kim

    2003-01-01

    The aim of this paper is to evaluate the use of trace diagrams for analysing collaborative problem solving. The paper describes a study where trace diagrams were used to analyse joint navigation in a virtual environment. Ten pairs of undergraduates worked together on a distributed virtual task to collect five flowers using two bees with each…

  1. Fuzzy Analysis in Creative Problem Solving.

    ERIC Educational Resources Information Center

    Carey, Russell L.

    1984-01-01

    "Diagraming Analysis of a Fuzzy Technique" (DAFT) is a model rectifying two problems associated with Future Problem Solving Bowl activities, namely problem definition by teams and evaluation of team responses. (MC)

  2. Insightful problem solving and emulation in brown capuchin monkeys.

    PubMed

    Renner, Elizabeth; Abramo, Allison M; Karen Hambright, M; Phillips, Kimberley A

    2017-05-01

    We investigated problem solving abilities of capuchin monkeys via the "floating object problem," a task in which the subject must use creative problem solving to retrieve a favored food item from the bottom of a clear tube. Some great apes have solved this problem by adding water to raise the object to a level at which it can be easily grabbed. We presented seven capuchins with the task over eight trials (four "dry" and four "wet"). None of the subjects solved the task, indicating that no capuchin demonstrated insightful problem solving under these experimental conditions. We then investigated whether capuchins would emulate a solution to the task. Seven subjects observed a human model solve the problem by pouring water from a cup into the tube, which brought the object to the top of the tube, allowing the subject to retrieve it. Subjects were then allowed to interact freely with an unfilled tube containing the object in the presence of water and objects that could be used to solve the task. While most subjects were unable to solve the task after viewing a demonstrator solve it, one subject did so, but in a unique way. Our results are consistent with some previous results in great ape species and indicate that capuchins do not spontaneously solve the floating object problem via insight.

  3. A problem-solving routine for improving hospital operations.

    PubMed

    Ghosh, Manimay; Sobek Ii, Durward K

    2015-01-01

    The purpose of this paper is to examine empirically why a systematic problem-solving routine can play an important role in the process improvement efforts of hospitals. Data on 18 process improvement cases were collected through semi-structured interviews, reports and other documents, and artifacts associated with the cases. The data were analyzed using a grounded theory approach. Adherence to all the steps of the problem-solving routine correlated to greater degrees of improvement across the sample. Analysis resulted in two models. The first partially explains why hospital workers tended to enact short-term solutions when faced with process-related problems; and tended not seek longer-term solutions that prevent problems from recurring. The second model highlights a set of self-reinforcing behaviors that are more likely to address problem recurrence and result in sustained process improvement. The study was conducted in one hospital setting. Hospital managers can improve patient care and increase operational efficiency by adopting and diffusing problem-solving routines that embody three key characteristics. This paper offers new insights on why caregivers adopt short-term approaches to problem solving. Three characteristics of an effective problem-solving routine in a healthcare setting are proposed.

  4. Can Television Enhance Children's Mathematical Problem Solving?

    ERIC Educational Resources Information Center

    Fisch, Shalom M.; And Others

    1994-01-01

    A summative evaluation of "Square One TV," an educational mathematics series produced by the Children's Television Workshop, shows that children who regularly viewed the program showed significant improvement in solving unfamiliar, complex mathematical problems, and viewers showed improvement in their mathematical problem-solving ability…

  5. Problem solving using soft systems methodology.

    PubMed

    Land, L

    This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.

  6. Problem solving therapy - use and effectiveness in general practice.

    PubMed

    Pierce, David

    2012-09-01

    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  7. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  8. A Multivariate Model of Physics Problem Solving

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  9. Mathematical Problem Solving through Sequential Process Analysis

    ERIC Educational Resources Information Center

    Codina, A.; Cañadas, M. C.; Castro, E.

    2015-01-01

    Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…

  10. Learning problem-solving skills in a distance education physics course

    NASA Astrophysics Data System (ADS)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  11. Quantitative Reasoning in Problem Solving

    ERIC Educational Resources Information Center

    Ramful, Ajay; Ho, Siew Yin

    2015-01-01

    In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.

  12. Measuring Problem Solving Skills in "Portal 2"

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Wang, Lubin

    2013-01-01

    This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

  13. Perceived Problem Solving, Stress, and Health among College Students

    ERIC Educational Resources Information Center

    Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William

    2005-01-01

    Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…

  14. Computer-Based Assessment of Complex Problem Solving: Concept, Implementation, and Application

    ERIC Educational Resources Information Center

    Greiff, Samuel; Wustenberg, Sascha; Holt, Daniel V.; Goldhammer, Frank; Funke, Joachim

    2013-01-01

    Complex Problem Solving (CPS) skills are essential to successfully deal with environments that change dynamically and involve a large number of interconnected and partially unknown causal influences. The increasing importance of such skills in the 21st century requires appropriate assessment and intervention methods, which in turn rely on adequate…

  15. A Comparison of the Effects of Lego TC Logo and Problem Solving Software on Elementary Students' Problem Solving Skills.

    ERIC Educational Resources Information Center

    Palumbo, Debra L; Palumbo, David B.

    1993-01-01

    Computer-based problem-solving software exposure was compared to Lego TC LOGO instruction. Thirty fifth graders received either Lego LOGO instruction, which couples Lego building block activities with LOGO computer programming, or instruction with various problem-solving computer programs. Although both groups showed significant progress, the Lego…

  16. A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry

    NASA Astrophysics Data System (ADS)

    Rusyda, N. A.; Kusnandi, K.; Suhendra, S.

    2017-09-01

    The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.

  17. Teaching Problem Solving Skills to Elementary Age Students with Autism

    ERIC Educational Resources Information Center

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.

    2014-01-01

    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  18. Decomposing intuitive components in a conceptual problem solving task.

    PubMed

    Reber, Rolf; Ruch-Monachon, Marie-Antoinette; Perrig, Walter J

    2007-06-01

    Research into intuitive problem solving has shown that objective closeness of participants' hypotheses were closer to the accurate solution than their subjective ratings of closeness. After separating conceptually intuitive problem solving from the solutions of rational incremental tasks and of sudden insight tasks, we replicated this finding by using more precise measures in a conceptual problem-solving task. In a second study, we distinguished performance level, processing style, implicit knowledge and subjective feeling of closeness to the solution within the problem-solving task and examined the relationships of these different components with measures of intelligence and personality. Verbal intelligence correlated with performance level in problem solving, but not with processing style and implicit knowledge. Faith in intuition, openness to experience, and conscientiousness correlated with processing style, but not with implicit knowledge. These findings suggest that one needs to decompose processing style and intuitive components in problem solving to make predictions on effects of intelligence and personality measures.

  19. The semantic system is involved in mathematical problem solving.

    PubMed

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng

    2018-02-01

    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Student Modeling Based on Problem Solving Times

    ERIC Educational Resources Information Center

    Pelánek, Radek; Jarušek, Petr

    2015-01-01

    Student modeling in intelligent tutoring systems is mostly concerned with modeling correctness of students' answers. As interactive problem solving activities become increasingly common in educational systems, it is useful to focus also on timing information associated with problem solving. We argue that the focus on timing is natural for certain…

  1. Examining problem solving in physics-intensive Ph.D. research

    NASA Astrophysics Data System (ADS)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students

  2. Cognitive Predictors of Everyday Problem Solving across the Lifespan

    PubMed Central

    Chen, Xi; Hertzog, Christopher; Park, Denise C.

    2017-01-01

    Background An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. Objectives The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT; [1]). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Method Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24–93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on the Everyday Problems Test. Results Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of fifty. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. Conclusion This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. PMID:28273664

  3. Problems in modeling man machine control behavior in biodynamic environments

    NASA Technical Reports Server (NTRS)

    Jex, H. R.

    1972-01-01

    Reviewed are some current problems in modeling man-machine control behavior in a biodynamic environment. It is given in two parts: (1) a review of the models which are appropriate for manual control behavior and the added elements necessary to deal with biodynamic interfaces; and (2) a review of some biodynamic interface pilot/vehicle problems which have occurred, been solved, or need to be solved.

  4. Enhancing Students' Problem-Solving Skills through Context-Based Learning

    ERIC Educational Resources Information Center

    Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi

    2015-01-01

    Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…

  5. The Role of Expository Writing in Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Craig, Tracy S.

    2016-01-01

    Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…

  6. The Problem-Solving Approach of Environmental Education.

    ERIC Educational Resources Information Center

    Connect, 1983

    1983-01-01

    The problem-solving approach in environmental education (EE), reports on EE programs and activities in selected foreign countries, and a report on the Asian Subregional Workshop on Teacher Training in EE are provided in this newsletter. The nature of the problem-solving approach and brief discussions of such methodologies as group discussion,…

  7. Problem Solving Strategies among Primary School Teachers

    ERIC Educational Resources Information Center

    Yew, Wun Thiam; Lian, Lim Hooi; Meng, Chew Cheng

    2017-01-01

    The purpose of this article was to examine problem solving strategies among primary school teachers. The researchers employed survey research design to examine their problem solving strategies. The participants of this study consisted of 120 primary school teachers from a public university in Peninsula Malaysia who enrolled in a 4-year Graduating…

  8. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays

    ERIC Educational Resources Information Center

    Chen, Zhe; Siegler, Robert S.

    2013-01-01

    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  9. The testing effect and analogical problem-solving.

    PubMed

    Peterson, Daniel J; Wissman, Kathryn T

    2018-06-25

    Researchers generally agree that retrieval practice of previously learned material facilitates subsequent recall of same material, a phenomenon known as the testing effect. There is debate, however, about when such benefits transfer to related (though not identical) material. The current study examines the phenomenon of transfer in the domain of analogical problem-solving. In Experiments 1 and 2, learners were presented a source text describing a problem and solution to read which was subsequently either restudied or recalled. Following a short (Experiment 1) or long (Experiment 2) delay, learners were given a new target text and asked to solve a problem. The two texts shared a common structure such that the provided solution for the source text could be applied to solve the problem in the target text. In a combined analysis of both experiments, learners in the retrieval practice condition were more successful at solving the problem than those in the restudy condition. Experiment 3 explored the degree to which retrieval practice promotes cued versus spontaneous transfer by manipulating whether participants were provided with an explicit hint that the source and target texts were related. Results revealed no effect of retrieval practice.

  10. Problem-Solving Deficits in Iranian People with Borderline Personality Disorder

    PubMed Central

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169

  11. Problem-solving deficits in Iranian people with borderline personality disorder.

    PubMed

    Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima

    2014-01-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.

  12. On the Analysis of Two-Person Problem Solving Protocols.

    ERIC Educational Resources Information Center

    Schoenfeld, Alan H.

    Methodological issues in the use of protocol analysis for research into human problem solving processes are examined through a case study in which two students were videotaped as they worked together to solve mathematical problems "out loud." The students' chosen strategic or executive behavior in examining and solving a problem was…

  13. Surveying Graduate Students' Attitudes and Approaches to Problem Solving

    ERIC Educational Resources Information Center

    Mason, Andrew; Singh, Chandralekha

    2010-01-01

    Students' attitudes and approaches to problem solving in physics can profoundly influence their motivation to learn and development of expertise. We developed and validated an Attitudes and Approaches to Problem Solving survey by expanding the Attitudes toward Problem Solving survey of Marx and Cummings and administered it to physics graduate…

  14. An Investigation on Chinese Teachers' Realistic Problem Posing and Problem Solving Ability and Beliefs

    ERIC Educational Resources Information Center

    Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven

    2011-01-01

    In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…

  15. Problem Solving Instruction for Overcoming Students' Difficulties in Stoichiometric Problems

    ERIC Educational Resources Information Center

    Shadreck, Mandina; Enunuwe, Ochonogor Chukunoye

    2017-01-01

    The study sought to find out difficulties encountered by high school chemistry students when solving stoichiometric problems and how these could be overcome by using a problem-solving approach. The study adopted a quasi-experimental design. 485 participants drawn from 8 highs schools in a local education district in Zimbabwe participated in the…

  16. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course

    NASA Astrophysics Data System (ADS)

    Mushlihuddin, R.; Nurafifah; Irvan

    2018-01-01

    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  17. Cognitive Predictors of Everyday Problem Solving across the Lifespan.

    PubMed

    Chen, Xi; Hertzog, Christopher; Park, Denise C

    2017-01-01

    An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.

  18. The Design of Computerized Practice Fields for Problem Solving and Contextualized Transfer

    ERIC Educational Resources Information Center

    Riedel, Jens; Fitzgerald, Gail; Leven, Franz; Toenshoff, Burkhard

    2003-01-01

    Current theories of learning emphasize the importance of learner-centered, active, authentic, environments for meaningful knowledge construction. From this perspective, computerized case-based learning systems afford practice fields for learners to build domain knowledge and problem-solving skills and to support contextualized transfer of…

  19. Embedding Game-Based Problem-Solving Phase into Problem-Posing System for Mathematics Learning

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Wu, Lin-Jung; Weng, Sheng-En; Sung, Yao-Ting

    2012-01-01

    A problem-posing system is developed with four phases including posing problem, planning, solving problem, and looking back, in which the "solving problem" phase is implemented by game-scenarios. The system supports elementary students in the process of problem-posing, allowing them to fully engage in mathematical activities. In total, 92 fifth…

  20. Problem Solving Software: What Does It Teach?

    ERIC Educational Resources Information Center

    Duffield, Judith A.

    The purpose of this study was to examine the potential of computer-assisted instruction (CAI) for teaching problem solving skills. It was conducted in three phases. During the first phase, two pieces of problem solving software, "The King's Rule" and "Safari Search," were identified and analyzed. During the second phase, two groups of six…

  1. Impact of Context-Rich, Multifaceted Problems on Students' Attitudes Towards Problem-Solving

    NASA Astrophysics Data System (ADS)

    Ogilvie, Craig

    2008-04-01

    Young scientists and engineers need strong problem-solving skills to enable them to address the broad challenges they will face in their careers. These challenges will likely be ill-defined and open-ended with either unclear goals, insufficient constraints, multiple possible solutions, and different criteria for evaluating solutions so that our young scientists and engineers must be able to make judgments and defend their proposed solutions. In contrast, many students believe that problem-solving is being able to apply set procedures or algorithms to tasks and that their job as students is to master an ever-increasing list of procedures. This gap between students' beliefs and the broader, deeper approaches of experts is a strong barrier to the educational challenge of preparing students to succeed in their future careers. To start to address this gap, we have used multi-faceted, context-rich problems in a sophomore calculus-based physics course. To assess whether there was any change in students' attitudes or beliefs towards problem-solving, students were asked to reflect on their problem-solving at the beginning and at the end of the semester. These reflections were coded as containing one or more problem-solving ideas. The change in students' beliefs will be shown in this talk.

  2. Using Digital Mapping Tool in Ill-Structured Problem Solving

    ERIC Educational Resources Information Center

    Bai, Hua

    2013-01-01

    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  3. Age differences in everyday problem-solving effectiveness: older adults select more effective strategies for interpersonal problems.

    PubMed

    Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi

    2007-01-01

    Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.

  4. Collaborative problem solving with a total quality model.

    PubMed

    Volden, C M; Monnig, R

    1993-01-01

    A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.

  5. Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics.

    PubMed

    Aono, Masashi; Naruse, Makoto; Kim, Song-Ju; Wakabayashi, Masamitsu; Hori, Hirokazu; Ohtsu, Motoichi; Hara, Masahiko

    2013-06-18

    Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.

  6. Problem Solving through Paper Folding

    ERIC Educational Resources Information Center

    Wares, Arsalan

    2014-01-01

    The purpose of this article is to describe a couple of challenging mathematical problems that involve paper folding. These problem-solving tasks can be used to foster geometric and algebraic thinking among students. The context of paper folding makes some of the abstract mathematical ideas involved relatively concrete. When implemented…

  7. Teaching Social Problem Solving to Individuals with Mental Retardation

    ERIC Educational Resources Information Center

    Crites, Steven A.; Dunn, Caroline

    2004-01-01

    The purpose of this study was to determine effectiveness of a problem-solving curriculum for transition-age students with mental retardation. The interactive training program Solving Your Problems (Browning, n.d.) was used to teach a five-step process for solving problems. Results indicate participants in the training group were able to use the…

  8. Complex collaborative problem-solving processes in mission control.

    PubMed

    Fiore, Stephen M; Wiltshire, Travis J; Oglesby, James M; O'Keefe, William S; Salas, Eduardo

    2014-04-01

    NASA's Mission Control Center (MCC) is responsible for control of the International Space Station (ISS), which includes responding to problems that obstruct the functioning of the ISS and that may pose a threat to the health and well-being of the flight crew. These problems are often complex, requiring individuals, teams, and multiteam systems, to work collaboratively. Research is warranted to examine individual and collaborative problem-solving processes in this context. Specifically, focus is placed on how Mission Control personnel-each with their own skills and responsibilities-exchange information to gain a shared understanding of the problem. The Macrocognition in Teams Model describes the processes that individuals and teams undertake in order to solve problems and may be applicable to Mission Control teams. Semistructured interviews centering on a recent complex problem were conducted with seven MCC professionals. In order to assess collaborative problem-solving processes in MCC with those predicted by the Macrocognition in Teams Model, a coding scheme was developed to analyze the interview transcriptions. Findings are supported with excerpts from participant transcriptions and suggest that team knowledge-building processes accounted for approximately 50% of all coded data and are essential for successful collaborative problem solving in mission control. Support for the internalized and externalized team knowledge was also found (19% and 20%, respectively). The Macrocognition in Teams Model was shown to be a useful depiction of collaborative problem solving in mission control and further research with this as a guiding framework is warranted.

  9. Solving Integer Programs from Dependence and Synchronization Problems

    DTIC Science & Technology

    1993-03-01

    DEFF.NSNE Solving Integer Programs from Dependence and Synchronization Problems Jaspal Subhlok March 1993 CMU-CS-93-130 School of Computer ScienceT IC...method Is an exact and efficient way of solving integer programming problems arising in dependence and synchronization analysis of parallel programs...7/;- p Keywords: Exact dependence tesing, integer programming. parallelilzng compilers, parallel program analysis, synchronization analysis Solving

  10. Complex Problem Solving in L1 Education: Senior High School Students' Knowledge of the Language Problem-Solving Process

    ERIC Educational Resources Information Center

    van Velzen, Joke H.

    2017-01-01

    The solving of reasoning problems in first language (L1) education can produce an understanding of language, and student autonomy in language problem solving, both of which are contemporary goals in senior high school education. The purpose of this study was to obtain a better understanding of senior high school students' knowledge of the language…

  11. Working memory dysfunctions predict social problem solving skills in schizophrenia.

    PubMed

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K

    2014-12-15

    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Pre-service mathematics teachers’ ability in solving well-structured problem

    NASA Astrophysics Data System (ADS)

    Paradesa, R.

    2018-01-01

    This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.

  13. Three-M in Word Problem Solving

    ERIC Educational Resources Information Center

    Hajra, Sayonita Ghosh; Kofman, Victoria

    2018-01-01

    We describe three activities that help undergraduates (pre-service teachers) to develop scientific vocabulary on measurable attributes and units of measurement. Measurable attributes are important features in understanding a word problem and solving the problem. These activities help students comprehend word problems better by identifying…

  14. Universal Design Problem Solving

    ERIC Educational Resources Information Center

    Sterling, Mary C.

    2004-01-01

    Universal design is made up of four elements: accessibility, adaptability, aesthetics, and affordability. This article addresses the concept of universal design problem solving through experiential learning for an interior design studio course in postsecondary education. Students' experiences with clients over age 55 promoted an understanding of…

  15. Problem Solving with Spreadsheets.

    ERIC Educational Resources Information Center

    Catterall, P.; Lewis, R.

    1985-01-01

    Documents the educational use of spreadsheets through a description of exploratory work which utilizes spreadsheets to achieve the objectives of Conway's Game of Life, a scientific method game for the development of problem-solving techniques. The implementation and classroom use of the spreadsheet programs are discussed. (MBR)

  16. Analysis of problem solving in terms of cognitive style

    NASA Astrophysics Data System (ADS)

    Anthycamurty, Rr C. C.; Mardiyana; Saputro, D. R. S.

    2018-03-01

    The purpose of this study was to analyze the problem solving based on the type of cognitive style. Subjects used in this study are students of class X SMK located in Purworejo. The method used in this research is qualitative descriptive. Data collection techniques used in this research is a problem-solving test to determine student problem solving and GEFT to determine the type of cognitive style possessed by students. The result of this research is to determine the mastery of each type in cognitive style, that is Field Independent type and Field Dependent type on problem solving indicator. The impact of this research is the teacher can know the mastery of student problem solving on each type of cognitive style so that teacher can determine the proper way of delivering to student at next meeting.

  17. A biologically inspired controller to solve the coverage problem in robotics.

    PubMed

    Rañó, Iñaki; Santos, José A

    2017-06-05

    The coverage problem consists on computing a path or trajectory for a robot to pass over all the points in some free area and has applications ranging from floor cleaning to demining. Coverage is solved as a planning problem-providing theoretical validation of the solution-or through heuristic techniques which rely on experimental validation. Through a combination of theoretical results and simulations, this paper presents a novel solution to the coverage problem that exploits the chaotic behaviour of a simple biologically inspired motion controller, the Braitenberg vehicle 2b. Although chaos has been used for coverage, our approach has much less restrictive assumptions about the environment and can be implemented using on-board sensors. First, we prove theoretically that this vehicle-a well known model of animal tropotaxis-behaves as a charge in an electro-magnetic field. The motion equations can be reduced to a Hamiltonian system, and, therefore the vehicle follows quasi-periodic or chaotic trajectories, which pass arbitrarily close to any point in the work-space, i.e. it solves the coverage problem. Secondly, through a set of extensive simulations, we show that the trajectories cover regions of bounded workspaces, and full coverage is achieved when the perceptual range of the vehicle is short. We compare the performance of this new approach with different types of random motion controllers in the same bounded environments.

  18. Assessing Student Written Problem Solutions: A Problem-Solving Rubric with Application to Introductory Physics

    ERIC Educational Resources Information Center

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-01-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…

  19. Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process

    ERIC Educational Resources Information Center

    Yerushalmi, Edit; Magen, Esther

    2006-01-01

    Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…

  20. A framework for solving ill-structured community problems

    NASA Astrophysics Data System (ADS)

    Keller, William Cotesworth

    A multifaceted protocol for solving ill-structured community problems has been developed. It embodies the lessons learned from the past by refining and extending features of previous models from the systems thinkers, and the fields of behavioral decision making and creative problem solving. The protocol also embraces additional features needed to address the unique aspects of community decision situations. The essential elements of the protocol are participants from the community, a problem-solving process, a systems picture, a facilitator, a modified Delphi method of communications, and technical expertise. This interdisciplinary framework has been tested by a quasi experiment with a real world community problem (the high cost of electrical power on Long Island, NY). Results indicate the protocol can enable members of the community to understand a complicated, ill-structured problem and guide them to action to solve the issue. However, the framework takes time (over one year in the test case) and will be inappropriate for crises where quick action is needed.

  1. Teaching problem solving: Don't forget the problem solver(s)

    NASA Astrophysics Data System (ADS)

    Ranade, Saidas M.; Corrales, Angela

    2013-05-01

    The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.

  2. Solving TSP problem with improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Fu, Chunhua; Zhang, Lijun; Wang, Xiaojing; Qiao, Liying

    2018-05-01

    The TSP is a typical NP problem. The optimization of vehicle routing problem (VRP) and city pipeline optimization can use TSP to solve; therefore it is very important to the optimization for solving TSP problem. The genetic algorithm (GA) is one of ideal methods in solving it. The standard genetic algorithm has some limitations. Improving the selection operator of genetic algorithm, and importing elite retention strategy can ensure the select operation of quality, In mutation operation, using the adaptive algorithm selection can improve the quality of search results and variation, after the chromosome evolved one-way evolution reverse operation is added which can make the offspring inherit gene of parental quality improvement opportunities, and improve the ability of searching the optimal solution algorithm.

  3. Students' Problem Solving and Justification

    ERIC Educational Resources Information Center

    Glass, Barbara; Maher, Carolyn A.

    2004-01-01

    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  4. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems

    ERIC Educational Resources Information Center

    Bahar, Abdulkadir; Maker, C. June

    2015-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  5. Does Solving Insight-Based Problems Differ from Solving Learning-Based Problems? Some Evidence from an ERP Study

    ERIC Educational Resources Information Center

    Leikin, Roza; Waisman, Ilana; Leikin, Mark

    2016-01-01

    We asked: "What are the similarities and differences in mathematical processing associated with solving learning-based and insight-based problems?" To answer this question, the ERP research procedure was employed with 69 male adolescent subjects who solved specially designed insight-based and learning-based tests. Solutions of…

  6. Problem-Solving Training: Effects on the Problem-Solving Skills and Self-Efficacy of Nursing Students

    ERIC Educational Resources Information Center

    Ancel, Gulsum

    2016-01-01

    Problem Statement: Problem-Solving (PS) skills have been determined to be an internationally useful strategy for better nursing. That is why PS skills underlie all nursing practice, teamwork, and health care management, and are a main topic in undergraduate nursing education. Thus, there is a need to develop effective methods to teach…

  7. Investigating and Communicating Technology Mathematics Problem Solving Experience of Two Preservice Teachers

    ERIC Educational Resources Information Center

    Kuzle, Ana

    2012-01-01

    In this paper, I report on preservice teachers' reflections and perceptions on their problem-solving process in a technological context. The purpose of the study was to investigate how preservice teachers experience working individually in a dynamic geometry environment and how these experiences affect their own mathematical activity when…

  8. Solicited versus Unsolicited Metacognitive Prompts for Fostering Mathematical Problem Solving Using Multimedia

    ERIC Educational Resources Information Center

    Kramarski, Bracha; Friedman, Sheli

    2014-01-01

    The study examined how student control over metacognitive prompts in a multimedia environment affects students' ability to solve mathematical problems in immediate comprehension tasks using a multimedia program and a delayed-transfer test. It also examined the effect on metacognitive discourse, mental effort, and engagement with multimedia-based…

  9. Relation between Cyberbullying and Problem Solving: A Study on Turkish University Students

    ERIC Educational Resources Information Center

    Gokler, Riza

    2013-01-01

    In this study, cyberbullying living frequency, what the cyber environments in which cyberbullying is lived are, and the relation between "being victim of cyberbullying" and "being cyberbullying" status and problem solving skill of university students are analysed. This research is done by attendance of 460 students from five…

  10. Validation of Predictive Relationship of Creative Problem-Solving Attrubutes with Math Creativity

    ERIC Educational Resources Information Center

    Pham, Linh Hung

    2014-01-01

    This study was designed to investigate the predictive relationships of creative problem-solving attributes, which comprise divergent thinking, convergent thinking, motivation, general and domain knowledge and skills, and environment, with mathematical creativity of sixth grade students in Thai Nguyen City, Viet Nam. The study also aims to revise…

  11. An investigative framework to facilitate epidemiological thinking during herd problem-solving.

    PubMed

    More, Simon J; Doherty, Michael L; O'Grady, Luke

    2017-01-01

    Veterinary clinicians and students commonly use diagnostic approaches appropriate for individual cases when conducting herd problem-solving. However, these approaches can be problematic, in part because they make limited use of epidemiological principles and methods, which has clear application during the investigation of herd problems. In this paper, we provide an overview of diagnostic approaches that are used when investigating individual animal cases, and the challenges faced when these approaches are directly translated from the individual to the herd. Further, we propose an investigative framework to facilitate epidemiological thinking during herd problem-solving. A number of different approaches are used when making a diagnosis on an individual animal, including pattern recognition, hypothetico-deductive reasoning, and the key abnormality method. Methods commonly applied to individuals are often adapted for herd problem-solving: 'comparison with best practice' being a herd-level adaptation of pattern recognition, and 'differential diagnoses' a herd-level adaptation of hypothetico-deductive reasoning. These approaches can be effective, however, challenges can arise. Herds are complex; a collection of individual cows, but also additional layers relating to environment, management, feeding etc. It is unrealistic to expect seamless translation of diagnostic approaches from the individual to the herd. Comparison with best practice is time-consuming and prioritisation of actions can be problematic, whereas differential diagnoses can lead to 'pathogen hunting', particularly in complex cases. Epidemiology is the science of understanding disease in populations. The focus is on the population, underpinned by principles and utilising methods that seek to allow us to generate solid conclusions from apparently uncontrolled situations. In this paper, we argue for the inclusion of epidemiological principles and methods as an additional tool for herd problem-solving, and

  12. Interference thinking in constructing students’ knowledge to solve mathematical problems

    NASA Astrophysics Data System (ADS)

    Jayanti, W. E.; Usodo, B.; Subanti, S.

    2018-04-01

    This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.

  13. Effectiveness of discovery learning model on mathematical problem solving

    NASA Astrophysics Data System (ADS)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn

    2017-08-01

    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  14. Cognitive functioning and social problem-solving skills in schizophrenia.

    PubMed

    Hatashita-Wong, Michi; Smith, Thomas E; Silverstein, Steven M; Hull, James W; Willson, Deborah F

    2002-05-01

    This study examined the relationships between symptoms, cognitive functioning, and social skill deficits in schizophrenia. Few studies have incorporated measures of cognitive functioning and symptoms in predictive models for social problem solving. For our study, 44 participants were recruited from consecutive outpatient admissions. Neuropsychological tests were given to assess cognitive function, and social problem solving was assessed using structured vignettes designed to evoke the participant's ability to generate, evaluate, and apply solutions to social problems. A sequential model-fitting method of analysis was used to incorporate social problem solving, symptom presentation, and cognitive impairment into linear regression models. Predictor variables were drawn from demographic, cognitive, and symptom domains. Because this method of analysis was exploratory and not intended as hierarchical modelling, no a priori hypotheses were proposed. Participants with higher scores on tests of cognitive flexibility were better able to generate accurate, appropriate, and relevant responses to the social problem-solving vignettes. The results suggest that cognitive flexibility is a potentially important mediating factor in social problem-solving competence. While other factors are related to social problem-solving skill, this study supports the importance of cognition and understanding how it relates to the complex and multifaceted nature of social functioning.

  15. Solving lot-sizing problem with quantity discount and transportation cost

    NASA Astrophysics Data System (ADS)

    Lee, Amy H. I.; Kang, He-Yau; Lai, Chun-Mei

    2013-04-01

    Owing to today's increasingly competitive market and ever-changing manufacturing environment, the inventory problem is becoming more complicated to solve. The incorporation of heuristics methods has become a new trend to tackle the complex problem in the past decade. This article considers a lot-sizing problem, and the objective is to minimise total costs, where the costs include ordering, holding, purchase and transportation costs, under the requirement that no inventory shortage is allowed in the system. We first formulate the lot-sizing problem as a mixed integer programming (MIP) model. Next, an efficient genetic algorithm (GA) model is constructed for solving large-scale lot-sizing problems. An illustrative example with two cases in a touch panel manufacturer is used to illustrate the practicality of these models, and a sensitivity analysis is applied to understand the impact of the changes in parameters to the outcomes. The results demonstrate that both the MIP model and the GA model are effective and relatively accurate tools for determining the replenishment for touch panel manufacturing for multi-periods with quantity discount and batch transportation. The contributions of this article are to construct an MIP model to obtain an optimal solution when the problem is not too complicated itself and to present a GA model to find a near-optimal solution efficiently when the problem is complicated.

  16. Using Clickers to Facilitate Development of Problem-Solving Skills

    PubMed Central

    Levesque, Aime A.

    2011-01-01

    Classroom response systems, or clickers, have become pedagogical staples of the undergraduate science curriculum at many universities. In this study, the effectiveness of clickers in promoting problem-solving skills in a genetics class was investigated. Students were presented with problems requiring application of concepts covered in lecture and were polled for the correct answer. A histogram of class responses was displayed, and students were encouraged to discuss the problem, which enabled them to better understand the correct answer. Students were then presented with a similar problem and were again polled. My results indicate that those students who were initially unable to solve the problem were then able to figure out how to solve similar types of problems through a combination of trial and error and class discussion. This was reflected in student performance on exams, where there was a statistically significant positive correlation between grades and the percentage of clicker questions answered. Interestingly, there was no clear correlation between exam grades and the percentage of clicker questions answered correctly. These results suggest that students who attempt to solve problems in class are better equipped to solve problems on exams. PMID:22135374

  17. The perceived problem-solving ability of nurse managers.

    PubMed

    Terzioglu, Fusun

    2006-07-01

    The development of a problem-solving approach to nursing has been one of the more important changes in nursing during the last decade. Nurse Managers need to have effective problem-solving and management skills to be able to decrease the cost of the health care and to increase the quality of care. This descriptive study was conducted to determine the perceived problem-solving ability of nurse managers. From a population of 87 nurse managers, 71 were selected using the stratified random sampling method, 62 nurse managers agreed to participate. Data were collected through a questionnaire including demographic information and a problem-solving inventory. The problem-solving inventory was developed by Heppner and Petersen in 1982, and validity and readability studies were done. It was adapted to Turkish by Sahin et al (1993). The acquired data have been evaluated on the software spss 10.0 programme, using percentages, mean values, one-way anova and t-test (independent samples t-test). Most of the nurses had 11 or more years of working experience (71%) and work as charge nurses in the clinics. It was determined that 69.4% of the nurse managers did not have any educational training in administration. The most encountered problems stated were issues related to managerial (30.6%) and professional staff (25.8%). It was identified that nurse managers who had received education about management, following scientific publication and scientific meeting and had followed management models, perceived their problem-resolving skills as more adequate than the others (P>0.05). In this study, it was determined that nurses do not perceive that they have problem-solving skills at a desired level. In this context, it is extremely important that this subject be given an important place in both nursing education curriculum and continuing education programmes.

  18. The Place of Problem Solving in Contemporary Mathematics Curriculum Documents

    ERIC Educational Resources Information Center

    Stacey, Kaye

    2005-01-01

    This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…

  19. How Does Early Feedback in an Online Programming Course Change Problem Solving?

    ERIC Educational Resources Information Center

    Ebrahimi, Alireza

    2012-01-01

    How does early feedback change the programming problem solving in an online environment and help students choose correct approaches? This study was conducted in a sample of students learning programming in an online course entitled Introduction to C++ and OOP (Object Oriented Programming) using the ANGEL learning management system platform. My…

  20. AI tools in computer based problem solving

    NASA Technical Reports Server (NTRS)

    Beane, Arthur J.

    1988-01-01

    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  1. Developing a Theory of Digitally-Enabled Trial-Based Problem Solving through Simulation Methods: The Case of Direct-Response Marketing

    ERIC Educational Resources Information Center

    Clark, Joseph Warren

    2012-01-01

    In turbulent business environments, change is rapid, continuous, and unpredictable. Turbulence undermines those adaptive problem solving methods that generate solutions by extrapolating from what worked (or did not work) in the past. To cope with this challenge, organizations utilize trial-based problem solving (TBPS) approaches in which they…

  2. Problem Solving with General Semantics.

    ERIC Educational Resources Information Center

    Hewson, David

    1996-01-01

    Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

  3. Assessing Creative Problem-Solving with Automated Text Grading

    ERIC Educational Resources Information Center

    Wang, Hao-Chuan; Chang, Chun-Yen; Li, Tsai-Yen

    2008-01-01

    The work aims to improve the assessment of creative problem-solving in science education by employing language technologies and computational-statistical machine learning methods to grade students' natural language responses automatically. To evaluate constructs like creative problem-solving with validity, open-ended questions that elicit…

  4. Problem Solving: How Can We Help Students Overcome Cognitive Difficulties

    ERIC Educational Resources Information Center

    Cardellini, Liberato

    2014-01-01

    The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…

  5. The development and evaluation of a web-based programme to support problem-solving skills following brain injury.

    PubMed

    Powell, Laurie Ehlhardt; Wild, Michelle R; Glang, Ann; Ibarra, Summer; Gau, Jeff M; Perez, Amanda; Albin, Richard W; O'Neil-Pirozzi, Therese M; Wade, Shari L; Keating, Tom; Saraceno, Carolyn; Slocumb, Jody

    2017-10-24

    Cognitive impairments following brain injury, including difficulty with problem solving, can pose significant barriers to successful community reintegration. Problem-solving strategy training is well-supported in the cognitive rehabilitation literature. However, limitations in insurance reimbursement have resulted in fewer services to train such skills to mastery and to support generalization of those skills into everyday environments. The purpose of this project was to develop and evaluate an integrated, web-based programme, ProSolv, which uses a small number of coaching sessions to support problem solving in everyday life following brain injury. We used participatory action research to guide the iterative development, usability testing, and within-subject pilot testing of the ProSolv programme. The finalized programme was then evaluated in a between-subjects group study and a non-experimental single case study. Results were mixed across studies. Participants demonstrated that it was feasible to learn and use the ProSolv programme for support in problem solving. They highly recommended the programme to others and singled out the importance of the coach. Limitations in app design were cited as a major reason for infrequent use of the app outside of coaching sessions. Results provide mixed evidence regarding the utility of web-based mobile apps, such as ProSolv to support problem solving following brain injury. Implications for Rehabilitation People with cognitive impairments following brain injury often struggle with problem solving in everyday contexts. Research supports problem solving skills training following brain injury. Assistive technology for cognition (smartphones, selected apps) offers a means of supporting problem solving for this population. This project demonstrated the feasibility of a web-based programme to address this need.

  6. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours

    ERIC Educational Resources Information Center

    Muir, Tracey; Beswick, Kim; Williamson, John

    2008-01-01

    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  7. Insightful problem solving in an Asian elephant.

    PubMed

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana

    2011-01-01

    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  8. Indoor Air Quality Problem Solving Tool

    EPA Pesticide Factsheets

    Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.

  9. Collaborative Problem Solving in Shared Space

    ERIC Educational Resources Information Center

    Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk

    2015-01-01

    The purpose of this study was to examine collaborative problem solving in a shared virtual space. The main question asked was: How will the performance and processes differ between collaborative problem solvers and independent problem solvers over time? A total of 104 university students (63 female and 41 male) participated in an experimental…

  10. Reading-Enhanced Word Problem Solving: A Theoretical Model

    ERIC Educational Resources Information Center

    Capraro, Robert M.; Capraro, Mary Margaret; Rupley, William H.

    2012-01-01

    There is a reciprocal relationship between mathematics and reading cognition. Metacognitive training within reading-enhanced problem solving should facilitate students developing an awareness of what good readers do when reading for meaning in solving mathematical problems enabling them to apply these strategies. The constructs for each cognitive…

  11. Role of Multiple Representations in Physics Problem Solving

    ERIC Educational Resources Information Center

    Maries, Alexandru

    2013-01-01

    This thesis explores the role of multiple representations in introductory physics students' problem solving performance through several investigations. Representations can help students focus on the conceptual aspects of physics and play a major role in effective problem solving. Diagrammatic representations can play a particularly important role…

  12. Rumination decreases parental problem-solving effectiveness in dysphoric postnatal mothers.

    PubMed

    O'Mahen, Heather A; Boyd, Alex; Gashe, Caroline

    2015-06-01

    Postnatal depression is associated with poorer parenting quality, but there are few studies examining maternal-specific cognitive processes that may impact on parenting quality. In this study, we examined the impact of rumination on parental problem-solving effectiveness in dysphoric and non-dysphoric postnatal mothers. Fifty-nine mothers with a infant aged 12 months and under, 20 of whom had a Beck Depression Score II (BDI-II) score ≥ 14, and 39 who scored less than 14 on the BDI-II were randomly assigned to either a rumination or distraction condition. Problem-solving effectiveness was assessed post-induction with the "Postnatal Parental Problem-Solving Task" (PPST), which was adapted from the Means Ends Problem-solving task. Parental problem-solving confidence was also assessed. Dysphoric ruminating mothers exhibited poorer problem-solving effectiveness and poorer confidence regarding their problem-solving compared to dysphoric distracting, non-dysphoric distracting, and non-dysphoric ruminating mothers. A self-report measure of depressed mood was used. Rumination may be a key mechanism associated with both depressive mood and maternal parenting quality during the postnatal period. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Patterns of problem-solving in children's literacy and arithmetic.

    PubMed

    Farrington-Flint, Lee; Vanuxem-Cotterill, Sophie; Stiller, James

    2009-11-01

    Patterns of problem-solving among 5-to-7 year-olds' were examined on a range of literacy (reading and spelling) and arithmetic-based (addition and subtraction) problem-solving tasks using verbal self-reports to monitor strategy choice. The results showed higher levels of variability in the children's strategy choice across Years I and 2 on the arithmetic (addition and subtraction) than literacy-based tasks (reading and spelling). However, across all four tasks, the children showed a tendency to move from less sophisticated procedural-based strategies, which included phonological strategies for reading and spelling and counting-all and finger modellingfor addition and subtraction, to more efficient retrieval methods from Years I to 2. Distinct patterns in children's problem-solving skill were identified on the literacy and arithmetic tasks using two separate cluster analyses. There was a strong association between these two profiles showing that those children with more advanced problem-solving skills on the arithmetic tasks also showed more advanced profiles on the literacy tasks. The results highlight how different-aged children show flexibility in their use of problem-solving strategies across literacy and arithmetical contexts and reinforce the importance of studying variations in children's problem-solving skill across different educational contexts.

  14. Students' Images of Problem Contexts when Solving Applied Problems

    ERIC Educational Resources Information Center

    Moore, Kevin C.; Carlson, Marilyn P.

    2012-01-01

    This article reports findings from an investigation of precalculus students' approaches to solving novel problems. We characterize the images that students constructed during their solution attempts and describe the degree to which they were successful in imagining how the quantities in a problem's context change together. Our analyses revealed…

  15. A Problem-Solving Conceptual Framework and Its Implications in Designing Problem-Posing Tasks

    ERIC Educational Resources Information Center

    Singer, Florence Mihaela; Voica, Cristian

    2013-01-01

    The links between the mathematical and cognitive models that interact during problem solving are explored with the purpose of developing a reference framework for designing problem-posing tasks. When the process of solving is a successful one, a solver successively changes his/her cognitive stances related to the problem via transformations that…

  16. Facilitating Case Reuse during Problem Solving in Algebra-Based Physics

    ERIC Educational Resources Information Center

    Mateycik, Frances Ann

    2010-01-01

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…

  17. Hopfield networks for solving Tower of Hanoi problems

    NASA Astrophysics Data System (ADS)

    Kaplan, G. B.; Güzeliş, Cüneyt

    2001-08-01

    In this paper, Hopfield neural networks have been considered in solving the Tower of Hanoi test which is used in the determining of deficit of planning capability of the human prefrontal cortex. The main difference between this paper and the ones in the literature which use neural networks is that the Tower of Hanoi problem has been formulated here as a special shortest-path problem. In the literature, some Hopfield networks are developed for solving the shortest path problem which is a combinatorial optimization problem having a diverse field of application. The approach given in this paper gives the possibility of solving the Tower of Hanoi problem using these Hopfield networks. Also, the paper proposes new Hopfield network models for the shortest path and hence the Tower of Hanoi problems and compares them to the available ones in terms of the memory and time (number of steps) needed in the simulations.

  18. Introspection in Problem Solving

    ERIC Educational Resources Information Center

    Jäkel, Frank; Schreiber, Cornell

    2013-01-01

    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  19. Logo's Problem-Solving Potential.

    ERIC Educational Resources Information Center

    Dale, Evelyn J.

    Given the uncertainty of the future and the rapidity with which computer technology is changing, a generalist position on the objectives of educational computing is desirable. This position insists that learning how to think and solve problems is the foundation of education and suggests that basic learning needs to be an integral part of the…

  20. Facilitating problem solving in high school chemistry

    NASA Astrophysics Data System (ADS)

    Gabel, Dorothy L.; Sherwood, Robert D.

    The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.

  1. Toward Theory-Based Instruction in Scientific Problem Solving.

    ERIC Educational Resources Information Center

    Heller, Joan I.; And Others

    Several empirical and theoretical analyses related to scientific problem-solving are reviewed, including: detailed studies of individuals at different levels of expertise, and computer models simulating some aspects of human information processing during problem solving. Analysis of these studies has revealed many facets about the nature of the…

  2. Childhood Physical Punishment and Problem Solving in Marriage

    ERIC Educational Resources Information Center

    Cast, Alicia D.; Schweingruber, David; Berns, Nancy

    2006-01-01

    Drawing from social learning theories and symbolic interactionist understandings of social life, the authors suggest that physical punishment teaches aggressive and controlling strategies for solving the problems of living together and hinders the development of important problem-solving skills, specifically the ability to role take with others.…

  3. Robotics and Children: Science Achievement and Problem Solving.

    ERIC Educational Resources Information Center

    Wagner, Susan Preston

    1999-01-01

    Compared the impact of robotics (computer-powered manipulative) to a battery-powered manipulative (novelty control) and traditionally taught science class on science achievement and problem solving of fourth through sixth graders. Found that the robotics group had higher scores on programming logic-problem solving than did the novelty control…

  4. A Markov Model Analysis of Problem-Solving Progress.

    ERIC Educational Resources Information Center

    Vendlinski, Terry

    This study used a computerized simulation and problem-solving tool along with artificial neural networks (ANN) as pattern recognizers to identify the common types of strategies high school and college undergraduate chemistry students would use to solve qualitative chemistry problems. Participants were 134 high school chemistry students who used…

  5. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement

    ERIC Educational Resources Information Center

    Zheng, Robert; Cook, Anne

    2012-01-01

    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  6. Development and validation of a physics problem-solving assessment rubric

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer Lynn

    Problem solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving throughout the educational system, there is no standard way to evaluate written problem solving that is valid, reliable, and easy to use. Most tests of problem solving performance given in the classroom focus on the correctness of the end result or partial results rather than the quality of the procedures and reasoning leading to the result, which gives an inadequate description of a student's skills. A more detailed and meaningful measure is necessary if different curricular materials or pedagogies are to be compared. This measurement tool could also allow instructors to diagnose student difficulties and focus their coaching. It is important that the instrument be applicable to any problem solving format used by a student and to a range of problem types and topics typically used by instructors. Typically complex processes such as problem solving are assessed by using a rubric, which divides a skill into multiple quasi-independent categories and defines criteria to attain a score in each. This dissertation describes the development of a problem solving rubric for the purpose of assessing written solutions to physics problems and presents evidence for the validity, reliability, and utility of score interpretations on the instrument.

  7. Enhancing memory and imagination improves problem solving among individuals with depression.

    PubMed

    McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T

    2017-08-01

    Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.

  8. Representations in Problem Solving: A Case Study with Optimization Problems

    ERIC Educational Resources Information Center

    Villegas, Jose L.; Castro, Enrique; Gutierrez, Jose

    2009-01-01

    Introduction: Representations play an essential role in mathematical thinking. They favor the understanding of mathematical concepts and stimulate the development of flexible and versatile thinking in problem solving. Here our focus is on their use in optimization problems, a type of problem considered important in mathematics teaching and…

  9. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students With Mathematics Problem-Solving Difficulties.

    PubMed

    Jitendra, Asha K; Harwell, Michael R; Dupuis, Danielle N; Karl, Stacy R

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their students in the larger study were randomly assigned to an SBI or control condition and teachers in both conditions then provided instruction on the topics of ratio, proportion, and percent. We found that students with MD-PS in SBI classrooms scored on average higher than their counterparts in control classrooms on a posttest and delayed posttest administered 9 weeks later. Given students' difficulties with proportional problem-solving and the consequences of these difficulties, an important contribution of this research is the finding that when provided with appropriate instruction, students with MD-PS are capable of enhanced proportional problem-solving performance.

  10. Investigating the role of future thinking in social problem solving.

    PubMed

    Noreen, Saima; Whyte, Katherine E; Dritschel, Barbara

    2015-03-01

    There is well-established evidence that both rumination and depressed mood negatively impact the ability to solve social problems. A preliminary stage of the social problem solving process may be the process of catapulting oneself forward in time to think about the consequences of a problem before attempting to solve it. The aim of the present study was to examine how thinking about the consequences of a social problem being resolved or unresolved prior to solving it influences the solution of the problem as a function of levels of rumination and dysphoric mood. Eighty six participants initially completed the Beck Depression Inventory- II (BDI-II) and the Ruminative Response Scale (RRS). They were then presented with six social problems and generated consequences for half of the problems being resolved and half of the problems remaining unresolved. Participants then solved some of the problems, and following a delay, were asked to recall all of the consequences previously generated. Participants reporting higher levels of depressed mood and rumination were less effective at generating problem solutions. Specifically, those reporting higher levels of rumination produced less effective solutions for social problems that they had previously generated unresolved than resolved consequences. We also found that individuals higher in rumination, irrespective of depressed mood recalled more of the unresolved consequences in a subsequent memory test. As participants did not solve problems for scenarios where no consequences were generated, no baseline measure of problem solving was obtained. Our results suggest thinking about the consequences of a problem remaining unresolved may impair the generation of effective solutions in individuals with higher levels of rumination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Thinking can cause forgetting: memory dynamics in creative problem solving.

    PubMed

    Storm, Benjamin C; Angello, Genna; Bjork, Elizabeth Ligon

    2011-09-01

    Research on retrieval-induced forgetting has shown that retrieval can cause the forgetting of related or competing items in memory (Anderson, Bjork, & Bjork, 1994). In the present research, we examined whether an analogous phenomenon occurs in the context of creative problem solving. Using the Remote Associates Test (RAT; Mednick, 1962), we found that attempting to generate a novel common associate to 3 cue words caused the forgetting of other strong associates related to those cue words. This problem-solving-induced forgetting effect occurred even when participants failed to generate a viable solution, increased in magnitude when participants spent additional time problem solving, and was positively correlated with problem-solving success on a separate set of RAT problems. These results implicate a role for forgetting in overcoming fixation in creative problem solving. (c) 2011 APA, all rights reserved.

  12. Problem Solving in the School Curriculum from a Design Perspective

    ERIC Educational Resources Information Center

    Toh, Tin Lam; Leong, Yew Hoong; Dindyal, Jaguthsing; Quek, Khiok Seng

    2010-01-01

    In this symposium, the participants discuss some preliminary data collected from their problem solving project which uses a design experiment approach. Their approach to problem solving in the school curriculum is in tandem with what Schoenfeld (2007) claimed: "Crafting instruction that would make a wide range of problem-solving strategies…

  13. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  14. Interpersonal Problem-Solving Deficits in Self-Poisoning Patients.

    ERIC Educational Resources Information Center

    McLeavey, Breda C.; And Others

    1987-01-01

    Compared self-poisoning patients with psychiatric patients and nonpatient controls on problem-solving skills and locus of control. The psychiatric and self-poisoning groups showed deficits on interpersonal problem solving compared with nonpatient controls. The self-poisoning group performed below or at the level of the psychiatric group. Locus of…

  15. Problem Solving in Technology Education: A Taoist Perspective.

    ERIC Educational Resources Information Center

    Flowers, Jim

    1998-01-01

    Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)

  16. Exploring Business Students' Creative Problem-Solving Preferences

    ERIC Educational Resources Information Center

    Titus, Philip A.; Koppitsch, Steven

    2018-01-01

    Past research has established the importance of problem solving to business success. The authors explored the creative problem-solving (CPS) preferences of business students, addressing two primary issues: (a) Do CPS preferences vary across CPS stages and tasks? And (b) Do CPS preferences regarding collaboration and delegation vary by stage?…

  17. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  18. Solving Common Mathematical Problems

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Mathematical Solutions Toolset is a collection of five software programs that rapidly solve some common mathematical problems. The programs consist of a set of Microsoft Excel worksheets. The programs provide for entry of input data and display of output data in a user-friendly, menu-driven format, and for automatic execution once the input data has been entered.

  19. Circumference and Problem Solving.

    ERIC Educational Resources Information Center

    Blackburn, Katie; White, David

    The concept of pi is one of great importance to all developed civilization and one that can be explored and mastered by elementary students through an inductive and problem-solving approach. Such an approach is outlined and discussed. The approach involves the following biblical quotation: "And he made a moltin sea ten cubits from one brim to…

  20. Problem Solving with Patents

    ERIC Educational Resources Information Center

    Moore, Jerilou; Sumrall, William J.

    2008-01-01

    Exploring our patent system is a great way to engage students in creative problem solving. As a result, the authors designed a teaching unit that uses the study of patents to explore one avenue in which scientists and engineers do science. Specifically, through the development of an idea, students learn how science and technology are connected.…

  1. Problem Solving in Practice

    ERIC Educational Resources Information Center

    Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia

    2017-01-01

    Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…

  2. Cognitive Science: Problem Solving And Learning For Physics Education

    NASA Astrophysics Data System (ADS)

    Ross, Brian H.

    2007-11-01

    Cognitive Science has focused on general principles of problem solving and learning that might be relevant for physics education research. This paper examines three selected issues that have relevance for the difficulty of transfer in problem solving domains: specialized systems of memory and reasoning, the importance of content in thinking, and a characterization of memory retrieval in problem solving. In addition, references to these issues are provided to allow the interested researcher entries to the literatures.

  3. Solving a novel confinement problem by spartaeine salticids that are predisposed to solve problems in the context of predation.

    PubMed

    Cross, Fiona R; Jackson, Robert R

    2015-03-01

    Intricate predatory strategies are widespread in the salticid subfamily Spartaeinae. The hypothesis we consider here is that the spartaeine species that are proficient at solving prey-capture problems are also proficient at solving novel problems. We used nine species from this subfamily in our experiments. Eight of these species (two Brettus, one Cocalus, three Cyrba, two Portia) are known for specialized invasion of other spiders' webs and for actively choosing other spiders as preferred prey ('araneophagy'). Except for Cocalus, these species also use trial and error to derive web-based signals with which they gain dynamic fine control of the resident spider's behaviour ('aggressive mimicry').The ninth species, Paracyrba wanlessi, is not araneophagic and instead specializes at preying on mosquitoes. We presented these nine species with a novel confinement problem that could be solved by trial and error. The test spider began each trial on an island in a tray of water, with an atoll surrounding the island. From the island, the spider could choose between two potential escape tactics (leap or swim), but we decided at random before the trial which tactic would fail and which tactic would achieve partial success. Our findings show that the seven aggressive-mimic species are proficient at solving the confinement problem by repeating 'correct' choices and by switching to the alternative tactic after making an 'incorrect' choice. However, as predicted, there was no evidence of C. gibbosus or P. wanlessi, the two non-aggressive-mimic species, solving the confinement problem. We discuss these findings in the context of an often-made distinction between domain-specific and domain-general cognition.

  4. Understanding Problem Solving Behavior of 6-8 Graders in a Debugging Game

    ERIC Educational Resources Information Center

    Liu, Zhongxiu; Zhi, Rui; Hicks, Andrew; Barnes, Tiffany

    2017-01-01

    Debugging is an over-looked component in K-12 computational thinking education. Few K-12 programming environments are designed to teach debugging, and most debugging research were conducted on college-aged students. In this paper, we presented debugging exercises to 6th-8th grade students and analyzed their problem solving behaviors in a…

  5. Worry and problem-solving skills and beliefs in primary school children.

    PubMed

    Parkinson, Monika; Creswell, Cathy

    2011-03-01

    To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.

  6. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth

    2015-01-01

    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  7. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    NASA Astrophysics Data System (ADS)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  8. Solving search problems by strongly simulating quantum circuits

    PubMed Central

    Johnson, T. H.; Biamonte, J. D.; Clark, S. R.; Jaksch, D.

    2013-01-01

    Simulating quantum circuits using classical computers lets us analyse the inner workings of quantum algorithms. The most complete type of simulation, strong simulation, is believed to be generally inefficient. Nevertheless, several efficient strong simulation techniques are known for restricted families of quantum circuits and we develop an additional technique in this article. Further, we show that strong simulation algorithms perform another fundamental task: solving search problems. Efficient strong simulation techniques allow solutions to a class of search problems to be counted and found efficiently. This enhances the utility of strong simulation methods, known or yet to be discovered, and extends the class of search problems known to be efficiently simulable. Relating strong simulation to search problems also bounds the computational power of efficiently strongly simulable circuits; if they could solve all problems in P this would imply that all problems in NP and #P could be solved in polynomial time. PMID:23390585

  9. The effects of cumulative practice on mathematics problem solving.

    PubMed

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving.

  10. The effects of cumulative practice on mathematics problem solving.

    PubMed Central

    Mayfield, Kristin H; Chase, Philip N

    2002-01-01

    This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving. PMID:12102132

  11. The Development, Implementation, and Evaluation of a Problem Solving Heuristic

    ERIC Educational Resources Information Center

    Lorenzo, Mercedes

    2005-01-01

    Problem-solving is one of the main goals in science teaching and is something many students find difficult. This research reports on the development, implementation and evaluation of a problem-solving heuristic. This heuristic intends to help students to understand the steps involved in problem solving (metacognitive tool), and to provide them…

  12. Problem-Solving Phase Transitions During Team Collaboration.

    PubMed

    Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M

    2018-01-01

    Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.

  13. Problem-solving ability and comorbid personality disorders in depressed outpatients.

    PubMed

    Harley, Rebecca; Petersen, Timothy; Scalia, Margaret; Papakostas, George I; Farabaugh, Amy; Fava, Maurizio

    2006-01-01

    Major depressive disorder (MDD) is associated with poor problem-solving abilities. In addition, certain personality disorders (PDs) that are common among patients with MDD are also associated with limited problem-solving skills. Attempts to understand the relationship between PDs and problem solving can be complicated by the presence of acute MDD. Our objective in this study was to investigate the relationships between PDs, problem-solving skills, and response to treatment among outpatients with MDD. We enrolled 312 outpatients with MDD in an open, fixed-dose, 8-week fluoxetine trial. PD diagnoses were ascertained via structured clinical interview before and after fluoxetine treatment. Subjects completed the Problem-Solving Inventory (PSI) at both time points. We used analyses of covariance (ANCOVAs) to assess relationships between PD diagnoses and PSI scores prior to treatment. Subjects were divided into three groups: those with PD diagnoses that remained stable after fluoxetine treatment (N=91), those who no longer met PD criteria after fluoxetine treatment (N=119), and those who did not meet criteria for a PD at any time point in the study (N=95). We used multiple chi(2) analyses to compare rates of MDD response and remission between the three PD groups. ANCOVA was also used to compare posttreatment PSI scores between PD groups. Prior to fluoxetine treatment, patients with avoidant, dependent, narcissistic, and borderline PDs reported significantly worse problem-solving ability than did patients without any PDs. Only subjects with dependent PD remained associated with poorer baseline problem-solving reports after the effects of baseline depression severity were controlled. Patients with stable PD diagnoses had significantly lower rates of MDD remission. Across PD groups, problem solving improved as MDD improved. No significant differences in posttreatment problem-solving were found between PD groups after controlling for baseline depression severity, baseline

  14. Problem Solving in Social Studies: Concepts and Critiques.

    ERIC Educational Resources Information Center

    Van Sickle, Ronald L.; Hoge, John D.

    Recent developments in the field of cognitive psychology, particularly in the area of information processing, have shed light on the way people think in order to make decisions and solve problems. In addition, cooperative learning research has provided evidence of the effectiveness of cooperatively structured group work aimed at problem solving.…

  15. Emergent Leadership in Children's Cooperative Problem Solving Groups

    ERIC Educational Resources Information Center

    Sun, Jingjng; Anderson, Richard C.; Perry, Michelle; Lin, Tzu-Jung

    2017-01-01

    Social skills involved in leadership were examined in a problem-solving activity in which 252 Chinese 5th-graders worked in small groups on a spatial-reasoning puzzle. Results showed that students who engaged in peer-managed small-group discussions of stories prior to problem solving produced significantly better solutions and initiated…

  16. An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving

    NASA Astrophysics Data System (ADS)

    Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani

    2016-02-01

    Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.

  17. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students with Mathematics Problem-Solving Difficulties

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.

    2017-01-01

    This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and…

  18. Examining Problem Solving in Physics-Intensive Ph.D. Research

    ERIC Educational Resources Information Center

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-01-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically…

  19. Human sex differences in solving a virtual navigation problem.

    PubMed

    Astur, Robert S; Purton, Andrea J; Zaniewski, Melanie J; Cimadevilla, Jose; Markus, Etan J

    2016-07-15

    The current study examined sex differences in initial and subsequent strategies in solving a navigational problem within a virtual reality environment. We tested 163 undergraduates on a virtual T-maze task that included probe trials designed to assess whether participants were responding using either a place or response strategy. Participants were also tested on a mental rotation task and memory of the details of the virtual room. There were no differences between the sexes in copying or recalling a map of the room or on first trial performance of the T-maze. However, at trial two, males show a significant advantage in solving the task, and approximately 80% of the males adopt a place strategy to solve the T-maze whereas females at that point showed no strategy preference. Across all testing, both males and females preferentially used a place strategy. We discuss how factors such as spatial priming affect strategy preferences and how such factors may differentially affect males and females. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance

    ERIC Educational Resources Information Center

    Bahar, Abdulkadir

    2013-01-01

    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  1. Do prescribed prompts prime sensemaking during group problem solving?

    NASA Astrophysics Data System (ADS)

    Martinuk, Mathew "Sandy"; Ives, Joss

    2012-02-01

    Many researchers and textbooks have promoted the use of rigid prescribed strategies for encouraging development of expert-like problem-solving behavior in novice students. The University of British Columbia's introductory algebra-based course for non-physics majors uses Context-Rich problems with a prescribed six-step strategy. We have coded audio recordings of group problem-solving sessions to analyze students' epistemological framing based on the implicit goal of their discussions. By treating the goal of "understanding the physics of the situation" as sensemaking, we argue that prescribed problem-solving prompts are not sufficient to induce subsequent sensemaking discussion.

  2. The problem-solving approach in the teaching of number theory

    NASA Astrophysics Data System (ADS)

    Toh, Pee Choon; Hoong Leong, Yew; Toh, Tin Lam; Dindyal, Jaguthsing; Quek, Khiok Seng; Guan Tay, Eng; Him Ho, Foo

    2014-02-01

    Mathematical problem solving is the mainstay of the mathematics curriculum for Singapore schools. In the preparation of prospective mathematics teachers, the authors, who are mathematics teacher educators, deem it important that pre-service mathematics teachers experience non-routine problem solving and acquire an attitude that predisposes them to adopt a Pólya-style approach in learning mathematics. The Practical Worksheet is an instructional scaffold we adopted to help our pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. The Worksheet was initially used in a design experiment aimed at teaching problem solving in a secondary school. In this paper, we describe an application and adaptation of the MProSE (Mathematical Problem Solving for Everyone) design experiment to a university level number theory course for pre-service mathematics teachers. The goal of the enterprise was to help the pre-service mathematics teachers develop problem-solving dispositions alongside the learning of the subject matter. Our analysis of the pre-service mathematics teachers' work shows that the MProSE design holds promise for mathematics courses at the tertiary level.

  3. A dependency-based modelling mechanism for problem solving

    NASA Technical Reports Server (NTRS)

    London, P.

    1978-01-01

    The paper develops a technique of dependency net modeling which relies on an explicit representation of justifications for beliefs held by the problem solver. Using these justifications, the modeling mechanism is able to determine the relevant lines of inference to pursue during problem solving. Three particular problem-solving difficulties which may be handled by the dependency-based technique are discussed: (1) subgoal violation detection, (2) description binding, and (3) maintaining a consistent world model.

  4. Problem Solving, Patterns, Probability, Pascal, and Palindromes.

    ERIC Educational Resources Information Center

    Hylton-Lindsay, Althea Antoinette

    2003-01-01

    Presents a problem-solving activity, the birth order problem, and several solution-seeking strategies. Includes responses of current and prospective teachers and a comparison of various strategies. (YDS)

  5. Problem Solving and Collaboration Using Mobile Serious Games

    ERIC Educational Resources Information Center

    Sanchez, Jaime; Olivares, Ruby

    2011-01-01

    This paper presents the results obtained with the implementation of a series of learning activities based on Mobile Serious Games (MSGs) for the development of problem solving and collaborative skills in Chilean 8th grade students. Three MSGs were developed and played by teams of four students in order to solve problems collaboratively. A…

  6. Problem Solving Frameworks for Mathematics and Software Development

    ERIC Educational Resources Information Center

    McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley

    2012-01-01

    In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…

  7. Solving Problems with the Percentage Bar

    ERIC Educational Resources Information Center

    van Galen, Frans; van Eerde, Dolly

    2013-01-01

    At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…

  8. Solving the Swath Segment Selection Problem

    NASA Technical Reports Server (NTRS)

    Knight, Russell; Smith, Benjamin

    2006-01-01

    Several artificial-intelligence search techniques have been tested as means of solving the swath segment selection problem (SSSP) -- a real-world problem that is not only of interest in its own right, but is also useful as a test bed for search techniques in general. In simplest terms, the SSSP is the problem of scheduling the observation times of an airborne or spaceborne synthetic-aperture radar (SAR) system to effect the maximum coverage of a specified area (denoted the target), given a schedule of downlinks (opportunities for radio transmission of SAR scan data to a ground station), given the limit on the quantity of SAR scan data that can be stored in an onboard memory between downlink opportunities, and given the limit on the achievable downlink data rate. The SSSP is NP complete (short for "nondeterministic polynomial time complete" -- characteristic of a class of intractable problems that can be solved only by use of computers capable of making guesses and then checking the guesses in polynomial time).

  9. A Rubric for Assessing Students' Experimental Problem-Solving Ability

    ERIC Educational Resources Information Center

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.

    2012-01-01

    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  10. Threshold Concepts in the Development of Problem-Solving Skills

    ERIC Educational Resources Information Center

    Wismath, Shelly; Orr, Doug; MacKay, Bruce

    2015-01-01

    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…

  11. A Randomized Trial of the Effects of Schema-Based Instruction on Proportional Problem-Solving for Students with Mathematics Problem-Solving Difficulties

    ERIC Educational Resources Information Center

    Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.

    2016-01-01

    This paper reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their…

  12. The Role of Context in a Collaborative Problem-Solving Task during Professional Development

    ERIC Educational Resources Information Center

    Ritella, Giuseppe; Ligorio, Maria Beatrice; Hakkarainen, Kai

    2016-01-01

    This article analyses how a group of teachers managed the resources available while performing computer-supported collaborative problem-solving tasks in the context of professional development. The authors video-recorded and analysed collaborative sessions during which the group of teachers used a digital environment to prepare a pedagogical…

  13. Problem Solving in a Middle School Robotics Design Classroom

    NASA Astrophysics Data System (ADS)

    Norton, Stephen J.; McRobbie, Campbell J.; Ginns, Ian S.

    2007-07-01

    Little research has been conducted on how students work when they are required to plan, build and evaluate artefacts in technology rich learning environments such as those supported by tools including flow charts, Labview programming and Lego construction. In this study, activity theory was used as an analytic tool to examine the social construction of meaning. There was a focus on the effect of teachers’ goals and the rules they enacted upon student use of the flow chart planning tool, and the tools of the programming language Labview and Lego construction. It was found that the articulation of a teacher’s goals via rules and divisions of labour helped to form distinct communities of learning and influenced the development of different problem solving strategies. The use of the planning tool flow charting was associated with continuity of approach, integration of problem solutions including appreciation of the nexus between construction and programming, and greater educational transformation. Students who flow charted defined problems in a more holistic way and demonstrated more methodical, insightful and integrated approaches to their use of tools. The findings have implications for teaching in design dominated learning environments.

  14. Solving L-L Extraction Problems with Excel Spreadsheet

    ERIC Educational Resources Information Center

    Teppaitoon, Wittaya

    2016-01-01

    This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

  15. Instructional Design-Based Research on Problem Solving Strategies

    ERIC Educational Resources Information Center

    Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  16. School Leaders' Problem Framing: A Sense-Making Approach to Problem-Solving Processes of Beginning School Leaders

    ERIC Educational Resources Information Center

    Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen

    2009-01-01

    In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…

  17. Conceptual Versus Algorithmic Problem-solving: Focusing on Problems Dealing with Conservation of Matter in Chemistry

    NASA Astrophysics Data System (ADS)

    Salta, Katerina; Tzougraki, Chryssa

    2011-08-01

    The students' performance in various types of problems dealing with the conservation of matter during chemical reactions has been investigated at different levels of schooling. The participants were 499 ninth grade (ages 14, 15 years) and 624 eleventh grade (ages 16, 17 years) Greek students. Data was collected using a written questionnaire concerning basic chemical concepts. Results of statistical factor and correlation analysis confirmed the classification of the problems used in three types: "algorithmic-type", "particulate-type", and "conceptual-type". All the students had a far better performance in "particulate-type" problems than in the others. Although students' ability in solving "algorithmic-type" problem increases as their school experience in chemistry progresses, their ability in solving "conceptual-type" problems decreases. Students' achievement in chemistry was measured by a Chemical Concepts Test (CCT) containing 57 questions of various forms. High-achievement students scored higher both on "algorithmic-type" and "particulate-type" problems than low achievers with the greatest difference observed in solving "algorithmic-type" problems. It is concluded that competence in "particulate-type" and "algorithmic-type" problem solving may be independent of competence in solving "conceptual-type" ones. Furthermore, it was found that students' misconceptions concerning chemical reactions and equivalence between mass and energy are impediments to their problem solving abilities. Finally, based on the findings, few suggestions concerning teaching practices are discussed.

  18. Glogs as Non-Routine Problem Solving Tools in Mathematics

    ERIC Educational Resources Information Center

    Devine, Matthew T.

    2013-01-01

    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  19. Safety in numbers 4: The relationship between exposure to authentic and didactic environments and nursing students' learning of medication dosage calculation problem solving knowledge and skills.

    PubMed

    Weeks, Keith W; Clochesy, John M; Hutton, B Meriel; Moseley, Laurie

    2013-03-01

    Advancing the art and science of education practice requires a robust evaluation of the relationship between students' exposure to learning and assessment environments and the development of their cognitive competence (knowing that and why) and functional competence (know-how and skills). Healthcare education translation research requires specific education technology assessments and evaluations that consist of quantitative analyses of empirical data and qualitative evaluations of the lived student experience of the education journey and schemata construction (Weeks et al., 2013a). This paper focuses on the outcomes of UK PhD and USA post-doctorate experimental research. We evaluated the relationship between exposure to traditional didactic methods of education, prototypes of an authentic medication dosage calculation problem-solving (MDC-PS) environment and nursing students' construction of conceptual and calculation competence in medication dosage calculation problem-solving skills. Empirical outcomes from both UK and USA programmes of research identified highly significant differences in the construction of conceptual and calculation competence in MDC-PS following exposure to the authentic learning environment to that following exposure to traditional didactic transmission methods of education (p < 0.001). This research highlighted that for many students exposure to authentic learning environments is an essential first step in the development of conceptual and calculation competence and relevant schemata construction (internal representations of the relationship between the features of authentic dosage problems and calculation functions); and how authentic environments more ably support all cognitive (learning) styles in mathematics than traditional didactic methods of education. Functional competence evaluations are addressed in Macdonald et al. (2013) and Weeks et al. (2013e). Copyright © 2012. Published by Elsevier Ltd.

  20. Whole-Class Scaffolding for Learning to Solve Mathematics Problems Together in a Computer-Supported Environment

    ERIC Educational Resources Information Center

    Abdu, Rotem; Schwarz, Baruch; Mavrikis, Manolis

    2015-01-01

    We investigate teachers' practices in a whole-class context when they scaffold students' learning in situations where students use technologies that facilitate group learning to solve mathematical problems in small groups. We describe teachers' practices in order to evaluate their contribution to "Whole-Class Scaffolding" in the context…

  1. Solving multiconstraint assignment problems using learning automata.

    PubMed

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the

  2. Calculus Problem Solving Behavior of Mathematic Education Students

    NASA Astrophysics Data System (ADS)

    Rizal, M.; Mansyur, J.

    2017-04-01

    The purpose of this study is to obtain a description of the problem-solving behaviour of mathematics education students. The attainment of the purpose consisted of several stages: (1) to gain the subject from the mathematic education of first semester students, each of them who has a high, medium, and low competence of mathematic case. (2) To give two mathematical problems with different characteristics. The first problem (M1), the statement does not lead to a resolution. The second problem (M2), a statement leads to problem-solving. (3) To explore the behaviour of problem-solving based on the step of Polya (Rizal, 2011) by way of thinking aloud and in-depth interviews. The obtained data are analysed as suggested by Miles and Huberman (1994) but at first, time triangulation is done or data’s credibility by providing equivalent problem contexts and at different times. The results show that the behavioral problem solvers (mathematic education students) who are capable of high mathematic competency (ST). In understanding M1, ST is more likely to pay attention to an image first, read the texts piecemeal and repeatedly, then as a whole and more focus to the sentences that contain equations, numbers or symbols. As a result, not all information can be received well. When understanding the M2, ST can link the information from a problem that is stored in the working memory to the information on the long-term memory. ST makes planning to the solution of M1 and M2 by using a formula based on similar experiences which have been ever received before. Another case when implementing the troubleshooting plans, ST complete the M1 according to the plan, but not all can be resolved correctly. In contrast to the implementation of the solving plan of M2, ST can solve the problem according to plan quickly and correctly. According to the solving result of M1 and M2, ST conducts by reading the job based on an algorithm and reasonability. Furthermore, when SS and SR understand the

  3. Effect of Physics Problem Solving on Structures Schemes and Knowledge Associations

    NASA Astrophysics Data System (ADS)

    Setyowidodo, I.; Jatmiko, B.; Susantini, E.; Widodo, S.; Shofwan, A.

    2017-09-01

    This study aims to develop learners’ thinking structures through associations, case based, and schematic method so that different knowledge structures have a role in influencing the structure of creative thinking. The learners have low mastery of physics materials since they are not given sufficient opportunity to build their own knowledge. They should be directed to approach each new problem or task with their prior knowledge, assimilate new information, and construct their own understanding. The design of this research was a quasi-experiment using purposive sampling. Data were analyzed using variance analysis. The design of this research was a quasi-experiment using purposive sampling. Data were analyzed using variance analysis. The learning process of problemsolving consists of: 1) identifying problems, 2) planning projects, 3) creating projects, 4) presenting projects, and 5) evaluating projects. From the results of this research, it can be concluded that problem-solving method can provide strong supports in developing the learners’ creative thinking skills as they can share their knowledge and interact with their friends and the environment. This learning activity also constitutes an appropriate technique to help the learners to develop problem solving knowledge and skills.

  4. Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving

    ERIC Educational Resources Information Center

    Both, Lilly; Needham, Douglas; Wood, Eileen

    2004-01-01

    The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…

  5. Worry, beliefs about worry and problem solving in young children.

    PubMed

    Wilson, Charlotte; Hughes, Claire

    2011-10-01

    Childhood worry is common, and yet little is known about why some children develop pathological worry and others do not. Two theories of adult worry that are particularly relevant to children are Davey's problem-solving model in which perseverative worry occurs as a result of thwarted problem-solving attempts, and Wells' metacognitive model, in which positive and negative beliefs about worry interact to produce pathological worry. The present study aimed to test hypotheses that levels of worry in young children are associated with poor or avoidant solution generation for social problems, and poor problem-solving confidence. It also aimed to explore beliefs about worry in this age group, and to examine their relationships with worry, anxiety and age. Fifty-seven young children (6-10 years) responded to open ended questions about social problem-solving situations and beliefs about worry, and completed measures of worry, anxiety and problem-solving confidence. Children with higher levels of worry and anxiety reported using more avoidant solutions in social problem situations and children's low confidence in problem solving was associated with high levels of worry. Children as young as 6 years old reported both positive and negative beliefs about worry, but neither were associated with age, gender, or level of anxiety or worry. RESULTS indicate similarities between adults and children in the relationships between problem-solving variables and worry, but not in relationships between beliefs about worry and worry. This may be due to developmental factors, or may be the result of measurement issues.

  6. Secondary Teachers’ Mathematics-related Beliefs and Knowledge about Mathematical Problem-solving

    NASA Astrophysics Data System (ADS)

    E Siswono, T. Y.; Kohar, A. W.; Hartono, S.

    2017-02-01

    This study investigates secondary teachers’ belief about the three mathematics-related beliefs, i.e. nature of mathematics, teaching mathematics, learning mathematics, and knowledge about mathematical problem solving. Data were gathered through a set of task-based semi-structured interviews of three selected teachers with different philosophical views of teaching mathematics, i.e. instrumental, platonist, and problem solving. Those teachers were selected from an interview using a belief-related task from purposively selected teachers in Surabaya and Sidoarjo. While the interviews about knowledge examine teachers’ problem solving content and pedagogical knowledge, the interviews about beliefs examine their views on several cases extracted from each of such mathematics-related beliefs. Analysis included the categorization and comparison on each of beliefs and knowledge as well as their interaction. Results indicate that all the teachers did not show a high consistency in responding views of their mathematics-related beliefs, while they showed weaknesses primarily on problem solving content knowledge. Findings also point out that teachers’ beliefs have a strong relationship with teachers’ knowledge about problem solving. In particular, the instrumental teacher’s beliefs were consistent with his insufficient knowledge about problem-solving, while both platonist and problem-solving teacher’s beliefs were consistent with their sufficient knowledge of either content or pedagogical problem solving.

  7. Ontological Problem-Solving Framework for Assigning Sensor Systems and Algorithms to High-Level Missions

    PubMed Central

    Qualls, Joseph; Russomanno, David J.

    2011-01-01

    The lack of knowledge models to represent sensor systems, algorithms, and missions makes opportunistically discovering a synthesis of systems and algorithms that can satisfy high-level mission specifications impractical. A novel ontological problem-solving framework has been designed that leverages knowledge models describing sensors, algorithms, and high-level missions to facilitate automated inference of assigning systems to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the ontological problem-solving architecture, a family of persistence surveillance sensor systems and algorithms has been instantiated in a prototype environment to demonstrate the assignment of systems to subtasks of high-level missions. PMID:22164081

  8. The Association of DRD2 with Insight Problem Solving.

    PubMed

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene ( DRD2 ) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.

  9. The Association of DRD2 with Insight Problem Solving

    PubMed Central

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene (DRD2) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings. PMID:27933030

  10. Using the Habit App for Weight Loss Problem Solving: Development and Feasibility Study.

    PubMed

    Pagoto, Sherry; Tulu, Bengisu; Agu, Emmanuel; Waring, Molly E; Oleski, Jessica L; Jake-Schoffman, Danielle E

    2018-06-20

    Reviews of weight loss mobile apps have revealed they include very few evidence-based features, relying mostly on self-monitoring. Unfortunately, adherence to self-monitoring is often low, especially among patients with motivational challenges. One behavioral strategy that is leveraged in virtually every visit of behavioral weight loss interventions and is specifically used to deal with adherence and motivational issues is problem solving. Problem solving has been successfully implemented in depression mobile apps, but not yet in weight loss apps. This study describes the development and feasibility testing of the Habit app, which was designed to automate problem-solving therapy for weight loss. Two iterative single-arm pilot studies were conducted to evaluate the feasibility and acceptability of the Habit app. In each pilot study, adults who were overweight or obese were enrolled in an 8-week intervention that included the Habit app plus support via a private Facebook group. Feasibility outcomes included retention, app usage, usability, and acceptability. Changes in problem-solving skills and weight over 8 weeks are described, as well as app usage and weight change at 16 weeks. Results from both pilots show acceptable use of the Habit app over 8 weeks with on average two to three uses per week, the recommended rate of use. Acceptability ratings were mixed such that 54% (13/24) and 73% (11/15) of participants found the diet solutions helpful and 71% (17/24) and 80% (12/15) found setting reminders for habits helpful in pilots 1 and 2, respectively. In both pilots, participants lost significant weight (P=.005 and P=.03, respectively). In neither pilot was an effect on problem-solving skills observed (P=.62 and P=.27, respectively). Problem-solving therapy for weight loss is feasible to implement in a mobile app environment; however, automated delivery may not impact problem-solving skills as has been observed previously via human delivery. ClinicalTrials.gov NCT

  11. Human problem solving performance in a fault diagnosis task

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.

    1978-01-01

    It is proposed that humans in automated systems will be asked to assume the role of troubleshooter or problem solver and that the problems which they will be asked to solve in such systems will not be amenable to rote solution. The design of visual displays for problem solving in such situations is considered, and the results of two experimental investigations of human problem solving performance in the diagnosis of faults in graphically displayed network problems are discussed. The effects of problem size, forced-pacing, computer aiding, and training are considered. Results indicate that human performance deviates from optimality as problem size increases. Forced-pacing appears to cause the human to adopt fairly brute force strategies, as compared to those adopted in self-paced situations. Computer aiding substantially lessens the number of mistaken diagnoses by performing the bookkeeping portions of the task.

  12. Incubation Effects in Problem Solving

    DTIC Science & Technology

    1988-12-14

    to other matters The incubation period is over when a sudden illumination occurs or when the problem solver resumes conscious problem solving and then...atheoretical -- as it must be if we are to establish the ’Briefly, Best-First search involves evaluating each idea that has been generated so far and...choosing the most promising one for further exploration, After a certain amount of exploration, the evaluation process is repeated. A certain idea may look

  13. Spatial Visualization in Physics Problem Solving

    ERIC Educational Resources Information Center

    Kozhevnikov, Maria; Motes, Michael A.; Hegarty, Mary

    2007-01-01

    Three studies were conducted to examine the relation of spatial visualization to solving kinematics problems that involved either predicting the two-dimensional motion of an object, translating from one frame of reference to another, or interpreting kinematics graphs. In Study 1, 60 physics-naive students were administered kinematics problems and…

  14. Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding

    ERIC Educational Resources Information Center

    Domin, Daniel; Bodner, George

    2012-01-01

    The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…

  15. Seventh Grade Students' Problem Solving Success Rates on Proportional Reasoning Problems

    ERIC Educational Resources Information Center

    Pelen, Mustafa Serkan; Artut, Perihan Dinç

    2016-01-01

    This research was conducted to investigate 7th grade students' problem solving success rates on proportional reasoning problems and whether these success rates change with different problem types. 331 randomly selected students of grade seven participated in this study. A problem test which contains three different types of missing value (direct…

  16. Real-Time Assessment of Problem-Solving of Physics Students Using Computer-Based Technology

    ERIC Educational Resources Information Center

    Gok, Tolga

    2012-01-01

    The change in students' problem solving ability in upper-level course through the application of a technological interactive environment--Tablet PC running InkSurvey--was investigated in present study. Tablet PC/InkSurvey interactive technology allowing the instructor to receive real-time formative assessment as the class works through the problem…

  17. Solving optimization problems on computational grids.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, S. J.; Mathematics and Computer Science

    2001-05-01

    Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms havemore » become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software

  18. Characteristics of students in comparative problem solving

    NASA Astrophysics Data System (ADS)

    Irfan, M.; Sudirman; Rahardi, R.

    2018-01-01

    Often teachers provided examples and exercised to students with regard to comparative problems consisting of one quantity. In this study, the researchers gave the problem of comparison with the two quantities mixed. It was necessary to have a good understanding to solve this problem. This study aimed to determine whether students understand the comparison in depth and be able to solve the problem of non-routine comparison. This study used qualitative explorative methods, with researchers conducting in-depth interviews on subjects to explore the thinking process when solving comparative problems. The subject of this study was three students selected by purposive sampling of 120 students. From this research, researchers found there were three subjects with different characteristics, namely: subject 1, he did the first and second questions with methods of elimination and substitution (non-comparison); subject 2, he did the first question with the concept of comparison although the answer was wrong, and did the second question with the method of elimination and substitution (non-comparison); and subject 3, he did both questions with the concept of comparison. In the first question, he did wrong because he was unable to understand the problem, while on the second he did correctly. From the characteristics of the answers, the researchers divided into 3 groups based on thinking process, namely: blind-proportion, partial-proportion, and proportion thinking.

  19. Analytical derivation: An epistemic game for solving mathematically based physics problems

    NASA Astrophysics Data System (ADS)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  20. Problems of Complex Systems: A Model of System Problem Solving Applied to Schools.

    ERIC Educational Resources Information Center

    Cooke, Robert A.; Rousseau, Denise M.

    Research of 25 Michigan elementary and secondary public schools is used to test a model relating organizations' problem-solving adequacy to their available inputs or resources and to the appropriateness of their structures. Problems that all organizations must solve, to avoid disorganization or entropy, include (1) getting inputs and producing…

  1. Heuristics for Cooperative Problem Solving

    DTIC Science & Technology

    1989-02-01

    briefly, cooperation is a very common problem-solving technique in natural systems and occurs in a wide variety of animals ranging from termites and...primitive way with pheromones but sometimes more directly. As with social spiders, they show relatively primitive coordination of behavior. In spite

  2. Problem-Solving Exercises and Evolution Teaching

    ERIC Educational Resources Information Center

    Angseesing, J. P. A.

    1978-01-01

    It is suggested that the work of Kammerer provides suitable material, in the form of case studies on which to base discussions of Lamarckism versus Darwinism. A set of structured problems is described as an example of possible problem-solving exercises, and further experiments to extend Kammerer's work are outlined. (Author/MA)

  3. Problem-Solving: Scaling the "Brick Wall"

    ERIC Educational Resources Information Center

    Benson, Dave

    2011-01-01

    Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…

  4. Pose and Solve Varignon Converse Problems

    ERIC Educational Resources Information Center

    Contreras, José N.

    2014-01-01

    The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…

  5. THE CURRENT STATUS OF RESEARCH AND THEORY IN HUMAN PROBLEM SOLVING.

    ERIC Educational Resources Information Center

    DAVIS, GARY A.

    PROBLEM-SOLVING THEORIES IN THREE AREAS - TRADITIONAL (STIMULUS-RESPONSE) LEARNING, COGNITIVE-GESTALT APPROACHES, AND COMPUTER AND MATHEMATICAL MODELS - WERE SUMMARIZED. RECENT EMPIRICAL STUDIES (1960-65) ON PROBLEM SOLVING WERE CATEGORIZED ACCORDING TO TYPE OF BEHAVIOR ELICITED BY PARTICULAR PROBLEM-SOLVING TASKS. ANAGRAM,…

  6. Problem Posing and Solving with Mathematical Modeling

    ERIC Educational Resources Information Center

    English, Lyn D.; Fox, Jillian L.; Watters, James J.

    2005-01-01

    Mathematical modeling is explored as both problem posing and problem solving from two perspectives, that of the child and the teacher. Mathematical modeling provides rich learning experiences for elementary school children and their teachers.

  7. Concept Learning versus Problem Solving: Is There a Difference?

    ERIC Educational Resources Information Center

    Nurrenbern, Susan C.; Pickering, Miles

    1987-01-01

    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  8. Primer on clinical acid-base problem solving.

    PubMed

    Whittier, William L; Rutecki, Gregory W

    2004-03-01

    Acid-base problem solving has been an integral part of medical practice in recent generations. Diseases discovered in the last 30-plus years, for example, Bartter syndrome and Gitelman syndrome, D-lactic acidosis, and bulimia nervosa, can be diagnosed according to characteristic acid-base findings. Accuracy in acid-base problem solving is a direct result of a reproducible, systematic approach to arterial pH, partial pressure of carbon dioxide, bicarbonate concentration, and electrolytes. The 'Rules of Five' is one tool that enables clinicians to determine the cause of simple and complex disorders, even triple acid-base disturbances, with consistency. In addition, other electrolyte abnormalities that accompany acid-base disorders, such as hypokalemia, can be incorporated into algorithms that complement the Rules and contribute to efficient problem solving in a wide variety of diseases. Recently urine electrolytes have also assisted clinicians in further characterizing select disturbances. Acid-base patterns, in many ways, can serve as a 'common diagnostic pathway' shared by all subspecialties in medicine. From infectious disease (eg, lactic acidemia with highly active antiviral therapy therapy) through endocrinology (eg, Conn's syndrome, high urine chloride alkalemia) to the interface between primary care and psychiatry (eg, bulimia nervosa with multiple potential acid-base disturbances), acid-base problem solving is the key to unlocking otherwise unrelated diagnoses. Inasmuch as the Rules are clinical tools, they are applied throughout this monograph to diverse pathologic conditions typical in contemporary practice.

  9. The Effect of Using an Explicit General Problem Solving Teaching Approach on Elementary Pre-Service Teachers' Ability to Solve Heat Transfer Problems

    ERIC Educational Resources Information Center

    Mataka, Lloyd M.; Cobern, William W.; Grunert, Megan L.; Mutambuki, Jacinta; Akom, George

    2014-01-01

    This study investigate the effectiveness of adding an "explicit general problem solving teaching strategy" (EGPS) to guided inquiry (GI) on pre-service elementary school teachers' ability to solve heat transfer problems. The pre-service elementary teachers in this study were enrolled in two sections of a chemistry course for pre-service…

  10. Teaching Teamwork and Problem Solving Concurrently

    ERIC Educational Resources Information Center

    Goltz, Sonia M.; Hietapelto, Amy B.; Reinsch, Roger W.; Tyrell, Sharon K.

    2008-01-01

    Teamwork and problem-solving skills have frequently been identified by business leaders as being key competencies; thus, teaching methods such as problem-based learning and team-based learning have been developed. However, the focus of these methods has been on teaching one skill or the other. A key argument for teaching the skills concurrently is…

  11. Personality and problem-solving in common mynas (Acridotheres tristis).

    PubMed

    Lermite, Françoise; Peneaux, Chloé; Griffin, Andrea S

    2017-01-01

    Animals show consistent individual differences in behaviour across time and/or contexts. Recently, it has been suggested that proactive personality types might also exhibit fast cognitive styles. The speed with which individuals sample environmental cues is one way in which correlations between personality and cognition might arise. Here, we measured a collection of behavioural traits (competitiveness, neophobia, neophilia, task-directed motivation and exploration) in common mynas (Acridotheres tristis) and measured their relationship with problem solving. We predicted that fast solving mynas would interact with (i.e. sample) the problem solving task at higher rates, but also be more competitive, less neophobic, more neophilic, and more exploratory. Mynas that were faster to solve a novel foraging problem were no more competitive around food and no more inclined to take risks. Unexpectedly, these fast-solving mynas had higher rates of interactions with the task, but also displayed lower levels of exploration. It is possible that a negative relation between problem solving and spatial exploration arose as a consequence of how inter-individual variation in exploration was quantified. We discuss the need for greater consensus on how to measure exploratory behaviour before we can advance our understanding of relationships between cognition and personality more effectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Becker, J. D.; Merriam, E. W.

    1974-01-01

    The conceptual, experimental, and practical phases of developing a robot computer problem solving system are outlined. Robot intelligence, conversion of the programming language SAIL to run under the THNEX monitor, and the use of the network to run several cooperating jobs at different sites are discussed.

  13. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    PubMed Central

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  14. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving

  15. Social Problem Solving and Health Behaviors of Undergraduate Students.

    ERIC Educational Resources Information Center

    Elliott, Timothy R.; And Others

    1997-01-01

    Examines the relationship of social problem solving to health behaviors as reported by 126 undergraduate students. Findings revealed significant relationships between elements of social problem solving and wellness and accident prevention behaviors, and traffic and substance risk taking. However, correlations revealed differences between men and…

  16. Self-directed questions to improve students' ability in solving chemical problems

    NASA Astrophysics Data System (ADS)

    Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani

    2017-12-01

    Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.

  17. Solving SAT Problem Based on Hybrid Differential Evolution Algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan

    Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.

  18. Factors Contributing to Problem-Solving Performance in First-Semester Organic Chemistry

    ERIC Educational Resources Information Center

    Lopez, Enrique J.; Shavelson, Richard J.; Nandagopal, Kiruthiga; Szu, Evan; Penn, John

    2014-01-01

    Problem solving is a highly valued skill in chemistry. Courses within this discipline place a substantial emphasis on problem-solving performance and tend to weigh such performance heavily in assessments of learning. Researchers have dedicated considerable effort investigating individual factors that influence problem-solving performance. The…

  19. How Students Circumvent Problem-Solving Strategies that Require Greater Cognitive Complexity.

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    1996-01-01

    Analyzes the great diversity in problem-solving strategies used by students in solving a chemistry problem and discusses the relationship between these variables and different cognitive variables. Concludes that students try to circumvent certain problem-solving strategies by adapting flexible and stylistic innovations that render the cognitive…

  20. The social problem-solving abilities of people with borderline personality disorder.

    PubMed

    Bray, Stephanie; Barrowclough, Christine; Lobban, Fiona

    2007-06-01

    Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behaviour therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group. In this study, the social problem-solving (SPS) abilities of three groups of participants were assessed: a BPD group (n=25), a clinical control (CC) group (n=25) procedure and a non-clinical control (NCC) group (n=25). SPS ability was assessed using the means-end problem-solving (MEPS) procedure and the Social Problem-Solving Inventory-Revised (SPSI-R). The BPD group exhibited deficits in their SPS abilities, however the majority of these deficits were not specific to the BPD group but were also found in the CC group, indicating that a common factor between these two groups, such as negative affect, may account for these observed deficits. Specific SPS deficits were identified in the BPD group: they provided less specific solutions on the MEPS and reported higher levels of negative problem orientation and a more impulsive/carelessness style towards solving social problems. The results of this study provide empirical support for the use of problem-solving interventions with people suffering from BPD.

  1. Identifying barriers to recovery from work related upper extremity disorders: use of a collaborative problem solving technique.

    PubMed

    Shaw, William S; Feuerstein, Michael; Miller, Virginia I; Wood, Patricia M

    2003-08-01

    Improving health and work outcomes for individuals with work related upper extremity disorders (WRUEDs) may require a broad assessment of potential return to work barriers by engaging workers in collaborative problem solving. In this study, half of all nurse case managers from a large workers' compensation system were randomly selected and invited to participate in a randomized, controlled trial of an integrated case management (ICM) approach for WRUEDs. The focus of ICM was problem solving skills training and workplace accommodation. Volunteer nurses attended a 2 day ICM training workshop including instruction in a 6 step process to engage clients in problem solving to overcome barriers to recovery. A chart review of WRUED case management reports (n = 70) during the following 2 years was conducted to extract case managers' reports of barriers to recovery and return to work. Case managers documented from 0 to 21 barriers per case (M = 6.24, SD = 4.02) within 5 domains: signs and symptoms (36%), work environment (27%), medical care (13%), functional limitations (12%), and coping (12%). Compared with case managers who did not receive the training (n = 67), workshop participants identified more barriers related to signs and symptoms, work environment, functional limitations, and coping (p < .05), but not to medical care. Problem solving skills training may help focus case management services on the most salient recovery factors affecting return to work.

  2. Problem Solving and Reasoning.

    DTIC Science & Technology

    1984-02-01

    Sloan Foundation (HAS). This paper is a draft of a chapter to appear in R. C. Atkinson, R. Herrnstein, G. Lindzey, and R. D. Luce (Eds.), Stevens ...D. Luce (Eds.), Stevens ’ Handbook of Experimental Psychology, (Revised Edition). New York: John Wiley & Sons. PROBLEM SOLVING AND REASONING James G... LaBerge & S. J. Samuels (Eds.), Perception and comprehension. Hillsdale, NJ: Erlbaum. Anderson, J. R. (1982). Acquisition of cognitive skill

  3. Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students.

    PubMed

    Marshall, Matthew M; Carrano, Andres L; Dannels, Wendy A

    2016-10-01

    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Improving insight and non-insight problem solving with brief interventions.

    PubMed

    Wen, Ming-Ching; Butler, Laurie T; Koutstaal, Wilma

    2013-02-01

    Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or 'ad hoc' goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention - self-affirmation (SA) - that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual-spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive- and social-psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours. © 2012 The British Psychological Society.

  5. The relation between stressful life events and adjustment in elementary school children: the role of social support and social problem-solving skills.

    PubMed

    Dubow, E F; Tisak, J

    1989-12-01

    This study investigated the relation between stressful life events and adjustment in elementary school children, with particular emphasis on the potential main and stress-buffering effects of social support and social problem-solving skills. Third through fifth graders (N = 361) completed social support and social problem-solving measures. Their parents provided ratings of stress in the child's environment and ratings of the child's behavioral adjustment. Teachers provided ratings of the children's behavioral and academic adjustment. Hierarchical multiple regressions revealed significant stress-buffering effects for social support and problem-solving skills on teacher-rated behavior problems, that is, higher levels of social support and problem-solving skills moderated the relation between stressful life events and behavior problems. A similar stress-buffering effect was found for problem-solving skills on grade-point average and parent-rated behavior problems. In terms of children's competent behaviors, analyses supported a main effect model of social support and problem-solving. Possible processes accounting for the main and stress-buffering effects are discussed.

  6. Implementing thinking aloud pair and Pólya problem solving strategies in fractions

    NASA Astrophysics Data System (ADS)

    Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.

    2017-12-01

    This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.

  7. Biostimulators: A New Trend towards Solving an Old Problem.

    PubMed

    Posmyk, Małgorzata M; Szafrańska, Katarzyna

    2016-01-01

    Stresses provoked by adverse living conditions are inherent to a changing environment (climate change and anthropogenic influence) and they are basic factors that limit plant development and yields. Agriculture always struggled with this problem. The survey of non-toxic, natural, active substances useful in protection, and stimulation of plants growing under suboptimal and even harmful conditions, as well as searching for the most effective methods for their application, will direct our activities toward sustainable development and harmony with nature. It seems highly probable that boosting natural plant defense strategies by applying biostimulators will help to solve an old problem of poor yield in plant cultivation, by provoking their better growth and development even under suboptimal environmental conditions. This work is a concise review of such substances and methods of their application to plants.

  8. Problem Solving and the Development of Expertise in Management.

    ERIC Educational Resources Information Center

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  9. The Role of Problem Solving in Complex Intraverbal Repertoires

    ERIC Educational Resources Information Center

    Sautter, Rachael A.; LeBlanc, Linda A.; Jay, Allison A.; Goldsmith, Tina R.; Carr, James E.

    2011-01-01

    We examined whether typically developing preschoolers could learn to use a problem-solving strategy that involved self-prompting with intraverbal chains to provide multiple responses to intraverbal categorization questions. Teaching the children to use the problem-solving strategy did not produce significant increases in target responses until…

  10. Phenomenographic Study of Students' Problem Solving Approaches in Physics

    ERIC Educational Resources Information Center

    Walsh, Laura N.; Howard, Robert G.; Bowe, Brian

    2007-01-01

    This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study…

  11. Teaching Evidence-based Medicine Using Literature for Problem Solving.

    ERIC Educational Resources Information Center

    Mottonen, Merja; Tapanainen, Paivi; Nuutinen, Matti; Rantala, Heikki; Vainionpaa, Leena; Uhari, Matti

    2001-01-01

    Evidence-based medicine--the process of using research findings systematically as the basis for clinical decisions--can be taught using problem-solving teaching methods. Evaluates whether it was possible to motivate students to use the original literature by giving them selected patient problems to solve. (Author/ASK)

  12. Socratic Problem-Solving in the Business World

    ERIC Educational Resources Information Center

    Peterson, Evan

    2009-01-01

    Accurate and effective decision-making is one of the most essential skills necessary for organizational success. The problem-solving process provides a systematic means of effectively recognizing, analyzing, and solving a dilemma. The key element in this process is critical analysis of the situation, which can be executed by a taking a Socratic…

  13. Student’s thinking process in solving word problems in geometry

    NASA Astrophysics Data System (ADS)

    Khasanah, V. N.; Usodo, B.; Subanti, S.

    2018-05-01

    This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.

  14. Parents' and Teachers' Opinions of Preschool Children's Social Problem-Solving and Behavioural Problems

    ERIC Educational Resources Information Center

    Kasik, László; Gál, Zita

    2016-01-01

    The aim of our study was to shed light on (1) what Hungarian mothers, fathers and teachers of 4-6-year-olds think of these children's social problem-solving (SPS) and their difficulties in terms of problem-solving, adaptability and prosocial behaviour; (2) studying any correlation between the examined aspects and (3) the connection between one's…

  15. Arithmetic Word-Problem-Solving in Huntington's Disease

    ERIC Educational Resources Information Center

    Allain, P.; Verny, C.; Aubin, G.; Pinon, K.; Bonneau, D.; Dubas, F.; Gall, D.L.

    2005-01-01

    The purpose of this study was to examine executive functioning in patients with Huntington's disease using an arithmetic word-problem-solving task including eight solvable problems of increasing complexity and four aberrant problems. Ten patients with Huntington's disease and 12 normal control subjects matched by age and education were tested.…

  16. Human Problem Solving in 2006

    ERIC Educational Resources Information Center

    Pizlo, Zygmunt

    2007-01-01

    This paper presents a bibliography of a little more than 100 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Compendex databases. Only journal papers, books and dissertations are included. The topics include human development, education, neuroscience, research in applied…

  17. Superintendents' Group Problem-Solving Processes.

    ERIC Educational Resources Information Center

    Leithwood, Kenneth; And Others

    Findings of a study that examined the collaborative problem-solving processes used by superintendents are presented in this paper. Based on information processing theory, the study utilizes a model composed of the following components: interpretation; goals; principles and values; constraints; solution processes; and mood. Data were derived from…

  18. Graph pyramids as models of human problem solving

    NASA Astrophysics Data System (ADS)

    Pizlo, Zygmunt; Li, Zheng

    2004-05-01

    Prior theories have assumed that human problem solving involves estimating distances among states and performing search through the problem space. The role of mental representation in those theories was minimal. Results of our recent experiments suggest that humans are able to solve some difficult problems quickly and accurately. Specifically, in solving these problems humans do not seem to rely on distances or on search. It is quite clear that producing good solutions without performing search requires a very effective mental representation. In this paper we concentrate on studying the nature of this representation. Our theory takes the form of a graph pyramid. To verify the psychological plausibility of this theory we tested subjects in a Euclidean Traveling Salesman Problem in the presence of obstacles. The role of the number and size of obstacles was tested for problems with 6-50 cities. We analyzed the effect of experimental conditions on solution time per city and on solution error. The main result is that time per city is systematically affected only by the size of obstacles, but not by their number, or by the number of cities.

  19. Doctoral training in behavior analysis: Training generalized problem-solving skills

    PubMed Central

    Chase, Philip N.; Wylie, Ruth G.

    1985-01-01

    This essay provides guidelines for designing a doctoral program in behavior analysis. First, we propose a general accomplishment for all behavior analytic doctoral students: that they be able to solve problems concerning individual behavior within a range of environments. Second, in order to achieve this goal, we propose that students be trained in conceptual and experimental analysis of behavior, the application of behavioral principles and the administration of behavioral programs. This training should include class work, but it should emphasize the immersion of students in a variety of environments in which they are required to use behavior analytic strategies. Third, we provide an example of a hypothetical graduate program that involves the proposed training. Finally, an evaluation plan is suggested for determining whether a training program is in fact producing students who are generalized problem-solvers. At each step, we justify our point of view from a perspective that combines principles from behavior analysis and educational systems design. PMID:22478633

  20. A New Problem-Posing Approach Based on Problem-Solving Strategy: Analyzing Pre-Service Primary School Teachers' Performance

    ERIC Educational Resources Information Center

    Kiliç, Çigdem

    2017-01-01

    This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…

  1. Simulated annealing algorithm for solving chambering student-case assignment problem

    NASA Astrophysics Data System (ADS)

    Ghazali, Saadiah; Abdul-Rahman, Syariza

    2015-12-01

    The problem related to project assignment problem is one of popular practical problem that appear nowadays. The challenge of solving the problem raise whenever the complexity related to preferences, the existence of real-world constraints and problem size increased. This study focuses on solving a chambering student-case assignment problem by using a simulated annealing algorithm where this problem is classified under project assignment problem. The project assignment problem is considered as hard combinatorial optimization problem and solving it using a metaheuristic approach is an advantage because it could return a good solution in a reasonable time. The problem of assigning chambering students to cases has never been addressed in the literature before. For the proposed problem, it is essential for law graduates to peruse in chambers before they are qualified to become legal counselor. Thus, assigning the chambering students to cases is a critically needed especially when involving many preferences. Hence, this study presents a preliminary study of the proposed project assignment problem. The objective of the study is to minimize the total completion time for all students in solving the given cases. This study employed a minimum cost greedy heuristic in order to construct a feasible initial solution. The search then is preceded with a simulated annealing algorithm for further improvement of solution quality. The analysis of the obtained result has shown that the proposed simulated annealing algorithm has greatly improved the solution constructed by the minimum cost greedy heuristic. Hence, this research has demonstrated the advantages of solving project assignment problem by using metaheuristic techniques.

  2. Students’ difficulties in solving linear equation problems

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  3. Dynamic Scaffolding in a Cloud-Based Problem Representation System: Empowering Pre-Service Teachers' Problem Solving

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Ling, Keck Voon; Reimann, Peter; Diponegoro, Yudho Ahmad; Koh, Chia Heng; Chew, Derwin

    2014-01-01

    Purpose: The purpose of this paper is to argue for the need to develop pre-service teachers' problem solving ability, in particular, in the context of real-world complex problems. Design/methodology/approach: To argue for the need to develop pre-service teachers' problem solving skills, the authors describe a web-based problem representation…

  4. Working Memory Components as Predictors of Children's Mathematical Word Problem Solving

    ERIC Educational Resources Information Center

    Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.

    2011-01-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…

  5. Social problem solving among depressed adolescents is enhanced by structured psychotherapies.

    PubMed

    Dietz, Laura J; Marshal, Michael P; Burton, Chad M; Bridge, Jeffrey A; Birmaher, Boris; Kolko, David; Duffy, Jamira N; Brent, David A

    2014-04-01

    Changes in adolescent interpersonal behavior before and after an acute course of psychotherapy were investigated as outcomes and mediators of remission status in a previously described treatment study of depressed adolescents. Maternal depressive symptoms were examined as moderators of the association between psychotherapy condition and changes in adolescents' interpersonal behavior. Adolescents (n = 63, mean age = 15.6 years, 77.8% female, 84.1% White) engaged in videotaped interactions with their mothers before randomization to cognitive behavior therapy (CBT), systemic behavior family therapy (SBFT), or nondirective supportive therapy (NST) and after 12-16 weeks of treatment. Adolescent involvement, problem solving, and dyadic conflict were examined. Improvements in adolescent problem solving were significantly associated with CBT and SBFT. Maternal depressive symptoms moderated the effect of CBT, but not SBFT, on adolescents' problem solving; adolescents experienced increases in problem solving only when their mothers had low or moderate levels of depressive symptoms. Improvements in adolescents' problem solving were associated with higher rates of remission across treatment conditions, but there were no significant indirect effects of SBFT on remission status through problem solving. Exploratory analyses revealed a significant indirect effect of CBT on remission status through changes in adolescent problem solving, but only when maternal depressive symptoms at study entry were low. Findings provide preliminary support for problem solving as an active treatment component of structured psychotherapies for depressed adolescents and suggest one pathway by which maternal depression may disrupt treatment efficacy for depressed adolescents treated with CBT.

  6. Solving Fractional Programming Problems based on Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Raouf, Osama Abdel; Hezam, Ibrahim M.

    2014-04-01

    This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.

  7. Students' and Teachers' Conceptual Metaphors for Mathematical Problem Solving

    ERIC Educational Resources Information Center

    Yee, Sean P.

    2017-01-01

    Metaphors are regularly used by mathematics teachers to relate difficult or complex concepts in classrooms. A complex topic of concern in mathematics education, and most STEM-based education classes, is problem solving. This study identified how students and teachers contextualize mathematical problem solving through their choice of metaphors.…

  8. New Testing Methods to Assess Technical Problem-Solving Ability.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K.; And Others

    Tests to assess problem-solving ability being provided for the Air Force are described, and some details on the development and validation of these computer-administered diagnostic achievement tests are discussed. Three measurement approaches were employed: (1) sequential problem solving; (2) context-free assessment of fundamental skills and…

  9. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes

    PubMed Central

    Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.

    2017-01-01

    Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on

  10. Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.

    PubMed

    Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G

    2017-08-01

    To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine

  11. The Effect of Reading Comprehension and Problem Solving Strategies on Classifying Elementary 4th Grade Students with High and Low Problem Solving Success

    ERIC Educational Resources Information Center

    Ulu, Mustafa

    2017-01-01

    In this study, the effect of fluent reading (speed, reading accuracy percentage, prosodic reading), comprehension (literal comprehension, inferential comprehension) and problem solving strategies on classifying students with high and low problem solving success was researched. The sampling of the research is composed of 279 students at elementary…

  12. Scaffolding for solving problem in static fluid: A case study

    NASA Astrophysics Data System (ADS)

    Koes-H, Supriyono; Muhardjito, Wijaya, Charisma P.

    2018-01-01

    Problem solving is one of the basic abilities that should be developed from learning physics. However, students still face difficulties in the process of non-routine problem-solving. Efforts are necessary to be taken in order to identify such difficulties and the solutions to solve them. An effort in the form of a diagnosis of students' performance in problem solving can be taken to identify their difficulties, and various instructional scaffolding supports can be utilized to eliminate the difficulties. This case study aimed to describe the students' difficulties in solving static fluid problems and the effort to overcome such difficulties through different scaffolding supports. The research subjects consisted of four 10-grade students of (Public Senior High School) SMAN 4 Malang selected by purposive sampling technique. The data of students' difficulties were collected via think-aloud protocol implemented on students' performance in solving non-routine static fluid problems. Subsequently, combined scaffolding supports were given to the students based on their particular difficulties. The research findings pointed out that there were several conceptual difficulties discovered from the students when solving static fluid problems, i.e. the use of buoyancy force formula, determination of all forces acting on a plane in a fluid, the resultant force on a plane in a fluid, and determination of a plane depth in a fluid. An effort that can be taken to overcome such conceptual difficulties is providing a combination of some appropriate scaffolding supports, namely question prompts with specific domains, simulation, and parallel modeling. The combination can solve students' lack of knowledge and improve their conceptual understanding, as well as help them to find solutions by linking the problems with their prior knowledge. According to the findings, teachers are suggested to diagnose the students' difficulties so that they can provide an appropriate combination of

  13. Unconscious processing modulates creative problem solving: evidence from an electrophysiological study.

    PubMed

    Gao, Ying; Zhang, Hao

    2014-05-01

    Previous behavioral studies have identified the significant role of subliminal cues in creative problem solving. However, neural mechanisms of such unconscious processing remain poorly understood. Here we utilized an event-related potential (ERP) approach and sandwich mask technique to investigate cerebral activities underlying the unconscious processing of cues in creative problem solving. College students were instructed to solve divergent problems under three different conditions (conscious cue, unconscious cue and no-cue conditions). Our data showed that creative problem solving can benefit from unconscious cues, although not as much as from conscious cues. More importantly, we found that there are crucial ERP components associated with unconscious processing of cues in solving divergent problems. Similar to the processing of conscious cues, processing unconscious cues in problem solving involves the semantic activation of unconscious cues (N280-340) in the right inferior parietal lobule (BA 40), new association formation (P350-450) in the right parahippocampal gyrus (BA 36), and mental representation transformation (P500-760) in the right superior temporal gyrus (BA 22). The present results suggest that creative problem solving can be modulated by unconscious processing of enlightening information that is weakly diffused in the semantic network beyond our conscious awareness. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Human Problem Solving in 2008

    ERIC Educational Resources Information Center

    Pizlo, Zygmunt

    2008-01-01

    This paper presents a bibliography of more than 200 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo database. Journal papers, book chapters, books and dissertations are included. The topics include human development, education, neuroscience, research in applied settings, as well as…

  15. Human Problem Solving in 2012

    ERIC Educational Resources Information Center

    Funke, Joachim

    2013-01-01

    This paper presents a bibliography of 263 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Academic Premier data-base. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings. It…

  16. Teaching Thinking and Problem Solving.

    ERIC Educational Resources Information Center

    Bransford, John; And Others

    1986-01-01

    This article focuses on two approaches to teaching reasoning and problem solving. One emphasizes the role of domain-specific knowledge; the other emphasizes general strategic and metacognitive knowledge. Many instructional programs are based on the latter approach. The article concludes that these programs can be strengthened by focusing on domain…

  17. Novel Problem Solving - The NASA Solution Mechanism Guide

    NASA Technical Reports Server (NTRS)

    Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.

    2014-01-01

    Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the

  18. Physical activity problem-solving inventory for adolescents: Development and initial validation

    USDA-ARS?s Scientific Manuscript database

    Youth encounter physical activity barriers, often called problems. The purpose of problem-solving is to generate solutions to overcome the barriers. Enhancing problem-solving ability may enable youth to be more physically active. Therefore, a method for reliably assessing physical activity problem-s...

  19. Prospective Teachers' Problem Solving Skills and Self-Confidence Levels

    ERIC Educational Resources Information Center

    Gursen Otacioglu, Sena

    2008-01-01

    The basic objective of the research is to determine whether the education that prospective teachers in different fields receive is related to their levels of problem solving skills and self-confidence. Within the mentioned framework, the prospective teachers' problem solving and self-confidence levels have been examined under several variables.…

  20. Determining Students' Attitude towards Physics through Problem-Solving Strategy

    ERIC Educational Resources Information Center

    Erdemir, Naki

    2009-01-01

    In this study, the effects of teacher-directed and self-directed problem-solving strategies on students' attitudes toward physics were explored. Problem-solving strategies were used with the experimental group, while the control group was instructed using traditional teaching methods. The study was conducted with 270 students at various high…