NASA Astrophysics Data System (ADS)
Harper, Kathleen A.; Etkina, Eugenia
2002-10-01
As part of weekly reports,1 structured journals in which students answer three standard questions each week, they respond to the prompt, If I were the instructor, what questions would I ask or problems assign to determine if my students understood the material? An initial analysis of the results shows that some student-generated problems indicate fundamental misunderstandings of basic physical concepts. A further investigation explores the relevance of the problems to the week's material, whether the problems are solvable, and the type of problems (conceptual or calculation-based) written. Also, possible links between various characteristics of the problems and conceptual achievement are being explored. The results of this study spark many more questions for further work. A summary of current findings will be presented, along with its relationship to previous work concerning problem posing.2 1Etkina, E. Weekly Reports;A Two-Way Feedback Tool, Science Education, 84, 594-605 (2000). 2Mestre, J.P., Probing Adults Conceptual Understanding and Transfer of Learning Via Problem Posing, Journal of Applied Developmental Psychology, 23, 9-50 (2002).
Posing Problems: Two Classroom Examples.
ERIC Educational Resources Information Center
Leung, Shukkwan S.; Wu, Rui-xiang
1999-01-01
Shares two lessons in which students help teachers pose problems and discover the importance of posing problems properly. Presents a fifth-grade lesson in which students found a mistake in a proportion problem, and an eighth-grade lesson that discusses a geometry problem with insufficient information. (ASK)
Problem Posing with the Multiplication Table
ERIC Educational Resources Information Center
Dickman, Benjamin
2014-01-01
Mathematical problem posing is an important skill for teachers of mathematics, and relates readily to mathematical creativity. This article gives a bit of background information on mathematical problem posing, lists further references to connect problem posing and creativity, and then provides 20 problems based on the multiplication table to be…
Pose and Solve Varignon Converse Problems
ERIC Educational Resources Information Center
Contreras, José N.
2014-01-01
The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…
Interlocked Problem Posing and Children's Problem Posing Performance in Free Structured Situations
ERIC Educational Resources Information Center
Cankoy, Osman
2014-01-01
The aim of this study is to explore the mathematical problem posing performance of students in free structured situations. Two classes of fifth grade students (N = 30) were randomly assigned to experimental and control groups. The categories of the problems posed in free structured situations by the 2 groups of students were studied through…
Helping Young Students to Better Pose an Environmental Problem
ERIC Educational Resources Information Center
Pruneau, Diane; Freiman, Viktor; Barbier, Pierre-Yves; Langis, Joanne
2009-01-01
Grade 3 students were asked to solve a sedimentation problem in a local river. With scientists, students explored many aspects of the problem and proposed solutions. Graphic representation tools were used to help students to better pose the problem. Using questionnaires and interviews, researchers observed students' capacity to pose the problem…
Heavy crudes, stocks pose desalting problems
Bartley, D.
1982-02-02
The design of electrostatic desalters for crudes lighter than 30 API is well established and is no longer considered a problem. However, since 1970, the number of desalting applications involving heavy crudes (less than 20 API), syncrudes, and residual fuels has increased markedly. These stocks present unique problems that require additional design considerations. All produced crude oils, including synthetic crude from shale, tar sands, and coal liquefaction, contain impurities that adversely affect production and refining processes, the equipment used in these processes, and the final products. The most common of these impurities are water, salt, solids, metals, and sulfur. The desalting process consists of (1) adding water with a low salt content (preferably fresh) to the feedstock; (2) adequately mixing this added water with the feedstock, which already contains some quantities of salty water, sediment, and/or crystalline salt; and (3) extracting as much water as possible from the feedstock.
Developing Teachers' Subject Didactic Competence through Problem Posing
ERIC Educational Resources Information Center
Ticha, Marie; Hospesova, Alena
2013-01-01
Problem posing (not only in lesson planning but also directly in teaching whenever needed) is one of the attributes of a teacher's subject didactic competence. In this paper, problem posing in teacher education is understood as an educational and a diagnostic tool. The results of the study were gained in pre-service primary school teacher…
A well posed boundary value problem in transonic gas dynamics
NASA Technical Reports Server (NTRS)
Sanz, J. M.
1978-01-01
A new approach considered by Garabedian and Korn (1976) to solve a problem of airfoil design has led to a transonic boundary value problem. It remains to be shown that this problem is well posed. A description is presented of an investigation in which it is shown that a corresponding problem for the Tricomi equation is well posed. The solution to the boundary value problem is characterized, in a unique way, as a sum of two particular solutions. The Poisson formulas for the unit semicircle for the Euler-Poisson-Darboux equation are considered and reflection laws for solutions of the general Euler-Poisson-Darboux equation are established. It is proved that the considered boundary value problem for the case in which the involved function is periodic and continuous is well posed within the specified class of solutions.
Embedding Game-Based Problem-Solving Phase into Problem-Posing System for Mathematics Learning
ERIC Educational Resources Information Center
Chang, Kuo-En; Wu, Lin-Jung; Weng, Sheng-En; Sung, Yao-Ting
2012-01-01
A problem-posing system is developed with four phases including posing problem, planning, solving problem, and looking back, in which the "solving problem" phase is implemented by game-scenarios. The system supports elementary students in the process of problem-posing, allowing them to fully engage in mathematical activities. In total, 92 fifth…
Problem Posing Based on Investigation Activities by University Students
ERIC Educational Resources Information Center
da Ponte, Joao Pedro; Henriques, Ana
2013-01-01
This paper reports a classroom-based study involving investigation activities in a university numerical analysis course. The study aims to analyse students' mathematical processes and to understand how these activities provide opportunities for problem posing. The investigations were intended to stimulate students in asking questions, to trigger…
Mighty Mathematicians: Using Problem Posing and Problem Solving to Develop Mathematical Power
ERIC Educational Resources Information Center
McGatha, Maggie B.; Sheffield, Linda J.
2006-01-01
This article describes a year-long professional development institute combined with a summer camp for students. Both were designed to help teachers and students develop their problem-solving and problem-posing abilities.
Determining the Performances of Pre-Service Primary School Teachers in Problem Posing Situations
ERIC Educational Resources Information Center
Kilic, Cigdem
2013-01-01
This study examined the problem posing strategies of pre-service primary school teachers in different problem posing situations (PPSs) and analysed the issues they encounter while posing problems. A problem posing task consisting of six PPSs (two free, two structured, and two semi-structured situations) was delivered to 40 participants.…
ERIC Educational Resources Information Center
Contreras, José N.
2013-01-01
This paper discusses a classroom experience in which a group of prospective secondary mathematics teachers were asked to create, cooperatively (in class) and individually, problems related to Viviani's problem using a problem-posing framework. When appropriate, students used Sketchpad to explore the problem to better understand its attributes…
A Problem-Solving Conceptual Framework and Its Implications in Designing Problem-Posing Tasks
ERIC Educational Resources Information Center
Singer, Florence Mihaela; Voica, Cristian
2013-01-01
The links between the mathematical and cognitive models that interact during problem solving are explored with the purpose of developing a reference framework for designing problem-posing tasks. When the process of solving is a successful one, a solver successively changes his/her cognitive stances related to the problem via transformations that…
An Analysis of Secondary and Middle School Teachers' Mathematical Problem Posing
ERIC Educational Resources Information Center
Stickles, Paula R.
2011-01-01
This study identifies the kinds of problems teachers pose when they are asked to (a) generate problems from given information and (b) create new problems from ones given to them. To investigate teachers' problem posting, preservice and inservice teachers completed background questionnaires and four problem-posing instruments. Based on previous…
ERIC Educational Resources Information Center
Charalambous, Charalambos; Kyriakides, Leonidas; Philippou, George
2003-01-01
The study reported in this paper is an attempt to develop a comprehensive model of measuring problem solving and posing (PSP) skills based on Marshall's schema theory (ST). A battery of tests on PSP skills was administered to 5th and 6th grade Cypriot students (n=2519). The Rasch model was used and a scale was created for the battery of tests and…
Analyzing Pre-Service Primary Teachers' Fraction Knowledge Structures through Problem Posing
ERIC Educational Resources Information Center
Kilic, Cigdem
2015-01-01
In this study it was aimed to determine pre-service primary teachers' knowledge structures of fraction through problem posing activities. A total of 90 pre-service primary teachers participated in this study. A problem posing test consisting of two questions was used and the participants were asked to generate as many as problems based on the…
Dissecting Success Stories on Mathematical Problem Posing: A Case of the Billiard Task
ERIC Educational Resources Information Center
Koichu, Boris; Kontorovich, Igor
2013-01-01
"Success stories," i.e., cases in which mathematical problems posed in a controlled setting are perceived by the problem posers or other individuals as interesting, cognitively demanding, or surprising, are essential for understanding the nature of problem posing. This paper analyzes two success stories that occurred with individuals of different…
A well posed boundary value problem in transonic gas dynamics
NASA Technical Reports Server (NTRS)
Sanz, J. M.
1978-01-01
A boundary value problem for the Tricomi equation was studied in connection with transonic gas dynamics. The transformed equation delta u plus 1/3Y u sub Y equals 0 in canonical coordinates was considered in the complex domain of two independent complex variables. A boundary value problem was then set by prescribing the real part of the solution on the boundary of the real unit circle. The Dirichlet problem in the upper unit semicircle with vanishing values of the solution at Y = 0 was solved explicitly in terms of the hypergeometric function for the more general Euler-Poisson-Darboux equation. An explicit representation of the solution was also given for a mixed Dirichlet and Neumann problem for the same equation and domain.
An Exploratory Framework for Handling the Complexity of Mathematical Problem Posing in Small Groups
ERIC Educational Resources Information Center
Kontorovich, Igor; Koichu, Boris; Leikin, Roza; Berman, Avi
2012-01-01
The paper introduces an exploratory framework for handling the complexity of students' mathematical problem posing in small groups. The framework integrates four facets known from past research: task organization, students' knowledge base, problem-posing heuristics and schemes, and group dynamics and interactions. In addition, it contains a new…
ERIC Educational Resources Information Center
Van Harpen, Xianwei Y.; Presmeg, Norma C.
2013-01-01
The importance of students' problem-posing abilities in mathematics has been emphasized in the K-12 curricula in the USA and China. There are claims that problem-posing activities are helpful in developing creative approaches to mathematics. At the same time, there are also claims that students' mathematical content knowledge could be highly…
An Investigation of Eighth Grade Students' Problem Posing Skills (Turkey Sample)
ERIC Educational Resources Information Center
Arikan, Elif Esra; Ünal, Hasan
2015-01-01
To pose a problem refers to the creative activity for mathematics education. The purpose of the study was to explore the eighth grade students' problem posing ability. Three learning domains such as requiring four operations, fractions and geometry were chosen for this reason. There were two classes which were coded as class A and class B. Class A…
An Investigation of Eighth Grade Students' Problem Posing Skills (Turkey Sample)
ERIC Educational Resources Information Center
Arikan, Elif Esra; Ünal, Hasan
2015-01-01
To pose a problem refers to the creative activity for mathematics education. The purpose of the study was to explore the eighth grade students' problem posing ability. Three learning domains such as requiring four operations, fractions and geometry were chosen for this reason. There were two classes which were coded as class A and class B.…
The Significance of "Problem-Posing" Teaching in a Democratic Society. College Teaching Monograph.
ERIC Educational Resources Information Center
Ceyhun, Fikret
A new teaching methodology, the "problem-posing" approach, is advocated in place of the traditional system of education. Experience in teaching the "Principles of Economics" course at the University of North Dakota is used as illustration. The problem-posing approach can create a learning atmosphere that is more conducive to creative and critical…
The Effects of Problem Posing on Student Mathematical Learning: A Meta-Analysis
ERIC Educational Resources Information Center
Rosli, Roslinda; Capraro, Mary Margaret; Capraro, Robert M.
2014-01-01
The purpose of the study was to meta-synthesize research findings on the effectiveness of problem posing and to investigate the factors that might affect the incorporation of problem posing in the teaching and learning of mathematics. The eligibility criteria for inclusion of literature in the meta-analysis was: published between 1989 and 2011,…
Development of the Structured Problem Posing Skills and Using Metaphoric Perceptions
ERIC Educational Resources Information Center
Arikan, Elif Esra; Unal, Hasan
2014-01-01
The purpose of this study was to introduce problem posing activity to third grade students who have never met before. This study was also explored students' metaphorical images on problem posing process. Participants were from Public school in Marmara Region in Turkey. Data was analyzed both qualitatively (content analysis for difficulty and…
Problem-Posing Research in Mathematics Education: Looking Back, Looking Around, and Looking Ahead
ERIC Educational Resources Information Center
Silver, Edward A.
2013-01-01
In this paper, I comment on the set of papers in this special issue on mathematical problem posing. I offer some observations about the papers in relation to several key issues, and I suggest some productive directions for continued research inquiry on mathematical problem posing.
Solving ill-posed magnetic inverse problem using a Parameterized Trust-Region Sub-problem
NASA Astrophysics Data System (ADS)
Abdelazeem, Maha Mohamed
2013-06-01
The aim of this paper is to find a plausible and stable solution for the inverse geophysical magnetic problem. Most of the inverse problems in geophysics are considered as ill-posed ones. This is not necessarily due to complex geological situations, but it may arise because of ill-conditioned kernel matrix. To deal with such ill-conditioned matrix, one may truncate the most ill part as in truncated singular value decomposition method (TSVD). In such a method, the question will be where to truncate? In this paper, for comparison, we first try the adaptive pruning algorithm for the discrete L-curve criterion to estimate the regularization parameter for TSVD method. Linear constraints have been added to the ill-conditioned matrix. The same problem is then solved using a global optimizing and regularizing technique based on Parameterized Trust Region Sub-problem (PTRS). The criteria of such technique are to choose a trusted region of the solutions and then to find the satisfying minimum to the objective function. The ambiguity is controlled mainly by proper choosing the trust region. To overcome the natural decay in kernel with depth, a specific depth weighting function is used. A Matlab-based inversion code is implemented and tested on two synthetic total magnetic fields contaminated with different levels of noise to simulate natural fields. The results of PTRS are compared with those of TSVD with adaptive pruning L-curve. Such a comparison proves the high stability of the PTRS method in dealing with potential field problems. The capability of such technique has been further tested by applying it to real data from Saudi Arabia and Italy.
ERIC Educational Resources Information Center
Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven
2013-01-01
The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing…
NASA Astrophysics Data System (ADS)
Leung, Shukkwan S.; Silver, Edward A.
1997-05-01
A Test of Arithmetic Problem Posing was developed by the authors to examine the arithmetic problem-posing behaviours of sixty-three prospective elementary school teachers. Results of analysis were then used to examine task format (i.e., the presence or absence of specific numerical information) on subjects' problem posing and the relationship between subjects' problem posing and their mathematics knowledge and verbal creativity. The major findings were that the test effectively evaluated arithmetic problem posing, and that most subjects were able to pose solvable and complex problems. In addition, problem-posing performance was better when the task contained specific numerical information than when it did not, and that problem-posing performance was significantly related to mathematical knowledge but not to verbal creativity.
Well-posed ADM equivalent of the Bondi-Sachs problem
Frittelli, Simonetta
2006-06-15
Every well-posed hyperbolic problem has an associated characteristic representation. In the case of the Einstein equations, traditionally, characteristic problems have been stated in the Bondi-Sachs form, whereas initial-value problems have been represented in the ADM form, both being looked upon as independent versions of the Einstein equations. Under the restriction of spherical symmetry, we provide an ADM version of the Einstein equations that functions as the initial-value representation of the Bondi-Sachs equations. The ADM version allows us to interpret the Bondi-Sachs variables precisely in terms of characteristic fields of the Cauchy problem. The Bondi-Sachs version thus leads us to a version of the Cauchy problem that is first order in time (with no need for reduction) and automatically well posed.
ERIC Educational Resources Information Center
Darvin, Jacqueline
2009-01-01
One way to merge imagination with problem-posing and problem-solving in the English classroom is by asking students to respond to "cultural and political vignettes" (CPVs). CPVs are cultural and political situations that are presented to students so that they can practice the creative and essential decision-making skills that they will need to use…
Will I Lose a Tooth? Will I Learn to Read? Problem Posing with Multicultural Children's Literature
ERIC Educational Resources Information Center
Quintero, Elizabeth
2004-01-01
By using a problem-posing, critical literacy approach employing children's literature, even the complex issues of a world in conflict and confusion can be addressed through an ongoing dialogue. In this article, the author defines "critical literacy" as a process of constructing and critically using language (oral and written) as a means of…
ERIC Educational Resources Information Center
Revelle, Carol L.
2009-01-01
This dissertation chronicles my search to engage high school English students in inquiry as part of a formal research process. The perspective of critical literacy theory is used to describe the four phases of the problem posing process in shaping student research and action. Grounded in Freire's approach and consistent with Dewey and others who…
ERIC Educational Resources Information Center
Isik, Cemalettin; Kar, Tugrul
2012-01-01
The present study aimed to make an error analysis in the problems posed by pre-service elementary mathematics teachers about fractional division operation. It was carried out with 64 pre-service teachers studying in their final year in the Department of Mathematics Teaching in an eastern university during the spring semester of academic year…
The World in a Tomato: Revisiting the Use of "Codes" in Freire's Problem-Posing Education.
ERIC Educational Resources Information Center
Barndt, Deborah
1998-01-01
Gives examples of the use of Freire's notion of codes or generative themes in problem-posing literacy education. Describes how these applications expand Freire's conceptions by involving students in code production, including multicultural perspectives, and rethinking codes as representations. (SK)
Development of a Mobile Learning System Based on a Collaborative Problem-Posing Strategy
ERIC Educational Resources Information Center
Sung, Han-Yu; Hwang, Gwo-Jen; Chang, Ya-Chi
2016-01-01
In this study, a problem-posing strategy is proposed for supporting collaborative mobile learning activities. Accordingly, a mobile learning environment has been developed, and an experiment on a local culture course has been conducted to evaluate the effectiveness of the proposed approach. Three classes of an elementary school in southern Taiwan…
The conjugate gradient method for linear ill-posed problems with operator perturbations
NASA Astrophysics Data System (ADS)
Plato, Robert
1999-03-01
We consider an ill-posed problem Ta = f* in Hilbert spaces and suppose that the linear bounded operator T is approximately available, with a known estimate for the operator perturbation at the solution. As a numerical scheme the CGNR-method is considered, that is, the classical method of conjugate gradients by Hestenes and Stiefel applied to the associated normal equations. Two a posteriori stopping rules are introduced, and convergence results are provided for the corresponding approximations, respectively. As a specific application, a parameter estimation problem is considered.
Group-sparsity regularization for ill-posed subsurface flow inverse problems
NASA Astrophysics Data System (ADS)
Golmohammadi, Azarang; Khaninezhad, Mohammad-Reza M.; Jafarpour, Behnam
2015-10-01
Sparse representations provide a flexible and parsimonious description of high-dimensional model parameters for reconstructing subsurface flow property distributions from limited data. To further constrain ill-posed inverse problems, group-sparsity regularization can take advantage of possible relations among the entries of unknown sparse parameters when: (i) groups of sparse elements are either collectively active or inactive and (ii) only a small subset of the groups is needed to approximate the parameters of interest. Since subsurface properties exhibit strong spatial connectivity patterns they may lead to sparse descriptions that satisfy the above conditions. When these conditions are established, a group-sparsity regularization can be invoked to facilitate the solution of the resulting inverse problem by promoting sparsity across the groups. The proposed regularization penalizes the number of groups that are active without promoting sparsity within each group. Two implementations are presented in this paper: one based on the multiresolution tree structure of Wavelet decomposition, without a need for explicit prior models, and another learned from explicit prior model realizations using sparse principal component analysis (SPCA). In each case, the approach first classifies the parameters of the inverse problem into groups with specific connectivity features, and then takes advantage of the grouped structure to recover the relevant patterns in the solution from the flow data. Several numerical experiments are presented to demonstrate the advantages of additional constraining power of group-sparsity in solving ill-posed subsurface model calibration problems.
A problem-posing approach to teaching the topic of radioactivity
NASA Astrophysics Data System (ADS)
Klaassen, C. W. J. M.
1995-12-01
This thesis highlights a problem-posing approach to science education. By this is meant an approach that explicitly aims at providing students with content-related motives for extending their existing conceptual resources, experiential base and belief system in a certain direction, such that a further development in that direction eventually leads to a proper understanding of science. An elaboration of that approach consists in designing, testing, improving, etc, concrete didactical structures. The eventual aim of the approach is a coherent, and by means of developmental research empirically supported, didactical structure that covers the whole of science education. The thesis also contains a few steps in the direction suggested by this programmatic view. It contains an illustration of the heuristic value of an articulation of a didactical structure in some main substructures, based on the work of van Hiele and ten Voorde. It further contains a discussion of some methodological aspects relating to the design and evaluation of a didactical structure, and of the role that a further developed version of Davidson's theory of interpretation could play in this respect. A detailed didactical structure of the topic of radioactivity is presented, evaluated and, on the basis of the evaluation, judged as `good enough.' Also the role of the teacher in a problem-posing approach is dis-cussed, and in particular the consequences for that role of giving students control over and responsibility for the progress of their learning process with respect to content.
NASA Astrophysics Data System (ADS)
Chvetsov, Alevei V.; Sandison, George A.; Schwartz, Jeffrey L.; Rengan, Ramesh
2015-11-01
The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more
NASA Astrophysics Data System (ADS)
Abdelazeem, Maha; Gobashy, Mohamed
2015-04-01
The magnetic inverse problem is, intrinsically, non-unique and its numerical solution is unstable. This means that any small perturbation in the data (noise) causes large variation in the solution. This ill-posedness is not only due to complex geological situations, but it may arise because of ill-conditioned kernel matrix. Procedures adopted to stabilize the inversion of ill-posed problem are called regularization, so the selection of regularization parameter is very important to invert the earth model causing the measured magnetic field. Two strategies are commonly used, techniques based on Tikhonov formula and techniques using the trust region sub-problem TRS and the controlling factor will be the radius of such region. In this study, the two categories are compared to examine the stability of solutions with noise. A MATLAB-based inversion code is implemented and tested on some synthetic total magnetic fields with different noise levels added to simulate real fields. The capability of such techniques have been further tested by applying it to real data.
Calibrating corneal material model parameters using only inflation data: an ill-posed problem.
Kok, S; Botha, N; Inglis, H M
2014-12-01
Goldmann applanation tonometry (GAT) is a method used to estimate the intraocular pressure by measuring the indentation resistance of the cornea. A popular approach to investigate the sensitivity of GAT results to material and geometry variations is to perform numerical modelling using the finite element method, for which a calibrated material model is required. These material models are typically calibrated using experimental inflation data by solving an inverse problem. In the inverse problem, the underlying material constitutive behaviour is inferred from the measured macroscopic response (chamber pressure versus apical displacement). In this study, a biomechanically motivated elastic fibre-reinforced corneal material model is chosen. The inverse problem of calibrating the corneal material model parameters using only experimental inflation data is demonstrated to be ill-posed, with small variations in the experimental data leading to large differences in the calibrated model parameters. This can result in different groups of researchers, calibrating their material model with the same inflation test data, drawing vastly different conclusions about the effect of material parameters on GAT results. It is further demonstrated that multiple loading scenarios, such as inflation as well as bending, would be required to reliably calibrate such a corneal material model. PMID:25112972
ERIC Educational Resources Information Center
Koichu, Boris; Harel, Guershon; Manaster, Alfred
2013-01-01
Twenty-four mathematics teachers were asked to think aloud when posing a word problem whose solution could be found by computing 4/5 divided by 2/3. The data consisted of verbal protocols along with the written notes made by the subjects. The qualitative analysis of the data was focused on identifying the structures of the problems produced and…
ERIC Educational Resources Information Center
Ellerton, Nerida F.
2013-01-01
Although official curriculum documents make cursory mention of the need for problem posing in school mathematics, problem posing rarely becomes part of the implemented or assessed curriculum. This paper provides examples of how problem posing can be made an integral part of mathematics teacher education programs. It is argued that such programs…
ERIC Educational Resources Information Center
Iqbal, M.
2002-01-01
In this paper we have converted the Laplace transform into an integral equation of the first kind of convolution type, which is an ill-posed problem, and used a statistical regularization method to solve it. The method is applied to three examples. It gives a good approximation to the true solution and compares well with the method given by…
Solution to the SLAM problem in low dynamic environments using a pose graph and an RGB-D sensor.
Lee, Donghwa; Myung, Hyun
2014-01-01
In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system. PMID:25019633
Solution to the SLAM Problem in Low Dynamic Environments Using a Pose Graph and an RGB-D Sensor
Lee, Donghwa; Myung, Hyun
2014-01-01
In this study, we propose a solution to the simultaneous localization and mapping (SLAM) problem in low dynamic environments by using a pose graph and an RGB-D (red-green-blue depth) sensor. The low dynamic environments refer to situations in which the positions of objects change over long intervals. Therefore, in the low dynamic environments, robots have difficulty recognizing the repositioning of objects unlike in highly dynamic environments in which relatively fast-moving objects can be detected using a variety of moving object detection algorithms. The changes in the environments then cause groups of false loop closing when the same moved objects are observed for a while, which means that conventional SLAM algorithms produce incorrect results. To address this problem, we propose a novel SLAM method that handles low dynamic environments. The proposed method uses a pose graph structure and an RGB-D sensor. First, to prune the falsely grouped constraints efficiently, nodes of the graph, that represent robot poses, are grouped according to the grouping rules with noise covariances. Next, false constraints of the pose graph are pruned according to an error metric based on the grouped nodes. The pose graph structure is reoptimized after eliminating the false information, and the corrected localization and mapping results are obtained. The performance of the method was validated in real experiments using a mobile robot system. PMID:25019633
NASA Astrophysics Data System (ADS)
Daun, Kyle J.; Grauer, Samuel J.; Hadwin, Paul J.
2016-03-01
Due to the inherent ill-posed nature of chemical species tomography (CST) problems, additional information based on the presumed species distribution must be introduced into the reconstruction procedure. The role that this prior information plays in tomographic reconstruction differs depending on whether the CST problem is discrete ill-posed or rank-deficient. The former case arises mainly in laboratory studies involving small scale problems with high degrees of optical access and often a stationary flow field, while the later occurs when the number and arrangement of measurements are limited by the size and/or the optical access afforded by the containing geometry. This paper elucidates the difference between these two types of CST problems, and reviews various ways that prior information can be used to enhance reconstruction accuracy of CST experiments on turbulent flows.
Zhuk, Sergiy
2013-10-15
In this paper we present Kalman duality principle for a class of linear Differential-Algebraic Equations (DAE) with arbitrary index and time-varying coefficients. We apply it to an ill-posed minimax control problem with DAE constraint and derive a corresponding dual control problem. It turns out that the dual problem is ill-posed as well and so classical optimality conditions are not applicable in the general case. We construct a minimizing sequence u-circumflex{sub {epsilon}} for the dual problem applying Tikhonov method. Finally we represent u-circumflex{sub {epsilon}} in the feedback form using Riccati equation on a subspace which corresponds to the differential part of the DAE.
Well-Posed Stokes/Brinkman and Stokes/Darcy Problems for Coupled Fluid-Porous Viscous Flows
NASA Astrophysics Data System (ADS)
Angot, Philippe
2010-09-01
We present a well-posed model for the Stokes/Brinkman problem with a family of jump embedded boundary conditions (J.E.B.C.) on an immersed interface with weak regularity assumptions. It is issued from a general framework recently proposed for fictitious domain problems. Our model is based on algebraic transmission conditions combining the stress and velocity jumps on the interface Σ separating the fluid and porous domains. These conditions, well chosen to get the coercivity of the operator, are sufficiently general to get the usual immersed boundary conditions on Σ when fictitious domain methods are concerned: Stefan-like, Robin (Fourier), Neumann or Dirichlet… Moreover, the general framework allows to prove the global solvability of some models with physically relevant stress or velocity jump boundary conditions for the momentum transport at a fluid-porous interface. The Stokes/Brinkman problem with Ochoa-Tapia & Whitaker (1995) interface conditions and the Stokes/Darcy problem with Beavers & Joseph (1967) conditions are both proved to be well-posed by an asymptotic analysis. Up to our knowledge, only the Stokes/Darcy problem with Saffman (1971) approximate interface conditions was known to be well-posed.
[Problems posed during surgical repair of a gunshot wound in the mandible].
Roulaud, J P; Tournaire, J; Roux, R
1975-09-01
The authors present a case of a balistic lesion of the labio-mental region after attempted suicide. They expose the different procedures used for its repair and attempt to analyze the problems which arose from the therapeutic standpoint. They lay stress on the necessity to immobilize these mandibular fragments in good occlusion, as rapidly as possibly. PMID:1108168
Language and Culture in Conflict. Problem-Posing in the ESL Classroom.
ERIC Educational Resources Information Center
Wallerstein, Nina
This book grew out of an actual experience developing and implementing a problem-solving process, using the Paulo Freire approach, for teaching English as a second language (ESL) adult students. This process implies a serious and long-term commitment to developing critical thinking skills. The first part of the book discusses who the students are,…
Fast inference of ill-posed problems within a convex space
NASA Astrophysics Data System (ADS)
Fernandez-de-Cossio-Diaz, J.; Mulet, R.
2016-07-01
In multiple scientific and technological applications we face the problem of having low dimensional data to be justified by a linear model defined in a high dimensional parameter space. The difference in dimensionality makes the problem ill-defined: the model is consistent with the data for many values of its parameters. The objective is to find the probability distribution of parameter values consistent with the data, a problem that can be cast as the exploration of a high dimensional convex polytope. In this work we introduce a novel algorithm to solve this problem efficiently. It provides results that are statistically indistinguishable from currently used numerical techniques while its running time scales linearly with the system size. We show that the algorithm performs robustly in many abstract and practical applications. As working examples we simulate the effects of restricting reaction fluxes on the space of feasible phenotypes of a genome scale Escherichia coli metabolic network and infer the traffic flow between origin and destination nodes in a real communication network.
Third year of the Natural Gas Policy Act continues to pose producer problems
Holland, C.J. Jr.
1981-01-01
December 1, 1980, marked the beginning of the third year of the Natural Gas Policy Act of 1978. Euphemistically called the Natural Gas Deregulation Act, the Act placed all natural gas under Federal regulations. Of the 6 chapter titles, Title I (A), covering wellhead price controls, had the most immediate impact upon the producer. This work briefly discusses the history preceding the Act and the price controls placed into effect by Title I. The principal purpose is to identify and describe the major problem areas plaguing producers. With the inaguration of the new administration, producers can look forward to new directions for the nation's energy policy, which, hopefully, will expedite resolutions of these 2-yr-old problems.
The anatomical problem posed by brain complexity and size: a potential solution
DeFelipe, Javier
2015-01-01
Over the years the field of neuroanatomy has evolved considerably but unraveling the extraordinary structural and functional complexity of the brain seems to be an unattainable goal, partly due to the fact that it is only possible to obtain an imprecise connection matrix of the brain. The reasons why reaching such a goal appears almost impossible to date is discussed here, together with suggestions of how we could overcome this anatomical problem by establishing new methodologies to study the brain and by promoting interdisciplinary collaboration. Generating a realistic computational model seems to be the solution rather than attempting to fully reconstruct the whole brain or a particular brain region. PMID:26347617
Eigen analysis of tree-ring records: part 2, posing the eigen problem
NASA Astrophysics Data System (ADS)
Yang, Bao; Sonechkin, Dmitry M.; Datsenko, Nina M.; Ivashchenko, Nadezda N.; Liu, Jingjing; Qin, Chun
2012-01-01
The technique of expanding meteorological fields on eigenvectors of the field covariation matrix is popular. In this paper, we propose for the first time to use a mathematically similar technique to solve the main problem of dendrochronology: classifying variations in tree-ring records as either age- and microenvironment-dependent or climate-induced. Applying this technique to a sample of very long-lived Qilian junipers ( Sabina przewalskii Kom.) from the Dulan region in western China, we demonstrate that the ring-width variations projected on the first eigenvector are age-dependent, but those projected on several of the first subsequent vectors are mainly climate-induced. In particular, the second and third projections capture multi-centennial climatic variations, and the variations projected on the fourth through seventh eigenvectors show periodic variations that are probably induced by the 178-year solar cycle. The projections on the smallest eigenvectors seem to be negligible.
Rikard, R V; Thompson, Maxine S; Head, Rachel; McNeil, Carlotta; White, Caressa
2012-09-01
The rate of HIV infection among African Americans is disproportionately higher than for other racial groups in the United States. Previous research suggests that low level of health literacy (HL) is an underlying factor to explain racial disparities in the prevalence and incidence of HIV/AIDS. The present research describes a community and university project to develop a culturally tailored HIV/AIDS HL toolkit in the African American community. Paulo Freire's pedagogical philosophy and problem-posing methodology served as the guiding framework throughout the development process. Developing the HIV/AIDS HL toolkit occurred in a two-stage process. In Stage 1, a nonprofit organization and research team established a collaborative partnership to develop a culturally tailored HIV/AIDS HL toolkit. In Stage 2, African American community members participated in focus groups conducted as Freirian cultural circles to further refine the HIV/AIDS HL toolkit. In both stages, problem posing engaged participants' knowledge, experiences, and concerns to evaluate a working draft toolkit. The discussion and implications highlight how Freire's pedagogical philosophy and methodology enhances the development of culturally tailored health information. PMID:22102601
Problem posing vs problem solving.
Happs, S J
1991-04-01
This paper addresses the notion of adult education and places it within the context of the literature on adult development. Emphasis is placed on the work of Klaus Riegel (1973) who suggested a different interpretation of adult development. Dialectic operations is perceived to be the final stage of cognitive development, as opposed to formal operational thought, the traditional interpretation. Dialectic operations is a way of thinking which seeks to discover a whole new series of questions to be asked, rather than in finding 'once and for all' answers. The concepts put forward by Riegel are used as the foundation for a different interpretation of andragogy, based on the work of the Nottingham Andragogy Group (1983). The educational approach suggested to a large extent is diametrically opposed to the much criticised 'traditional' training of nurses. The view is expressed that although this is a different approach it is nonetheless worthwhile and should be embraced, particularly when nurse education is undergoing such major change. PMID:2020288
Juhás, Pavol; Farrow, Christopher L; Yang, Xiaohao; Knox, Kevin R; Billinge, Simon J L
2015-11-01
A strategy is described for regularizing ill posed structure and nanostructure scattering inverse problems (i.e. structure solution) from complex material structures. This paper describes both the philosophy and strategy of the approach, and a software implementation, DiffPy Complex Modeling Infrastructure (DiffPy-CMI). PMID:26522405
NASA Astrophysics Data System (ADS)
Abramovich, S.
2014-10-01
The availability of sophisticated computer programs such as Wolfram Alpha has made many problems found in the secondary mathematics curriculum somewhat obsolete for they can be easily solved by the software. Against this background, an interplay between the power of a modern tool of technology and educational constraints it presents is discussed. Using topics from algebra (equations) and elementary number theory (summation of powers of integers), the paper suggests ways of developing problems that are both technology-immune and technology-enabled in the sense that whereas software can facilitate problem solving, its direct application is not sufficient for finding an answer. Stemming from the author's work with secondary mathematics teacher candidates, this paper highlights the appropriate use of technology as support system for multiple ways of knowing and knowledge construction in the modern classroom.
ERIC Educational Resources Information Center
Abramovich, S.
2014-01-01
The availability of sophisticated computer programs such as "Wolfram Alpha" has made many problems found in the secondary mathematics curriculum somewhat obsolete for they can be easily solved by the software. Against this background, an interplay between the power of a modern tool of technology and educational constraints it presents is…
ERIC Educational Resources Information Center
Fraser, Benjamin
2009-01-01
The matter of cities is, as urban critic Jane Jacobs argued, a complex problem akin to the life sciences. As a rich tradition of philosophical and geographical thought has suggested (Bergson, Lefebvre, and Harvey), the city is not a thing but a process. In order to reconcile process methodology and pedagogy, this essay explores six key ideas…
NASA Astrophysics Data System (ADS)
Edwards, R. A.
2008-07-01
New high-throughput DNA sequencing technologies have revolutionized how scientists study the organisms around us. In particular, microbiology - the study of the smallest, unseen organisms that pervade our lives - has embraced these new techniques to characterize and analyze the cellular constituents and use this information to develop novel tools, techniques, and therapeutics. So-called next-generation DNA sequencing platforms have resulted in huge increases in the amount of raw data that can be rapidly generated. Argonne National Laboratory developed the premier platform for the analysis of this new data (mg-rast) that is used by microbiologists worldwide. This paper uses the accounting from the computational analysis of more than 10,000,000,000 bp of DNA sequence data, describes an analysis of the advanced computational requirements, and suggests the level of analysis that will be essential as microbiologists move to understand how these tiny organisms affect our every day lives. The results from this analysis indicate that data analysis is a linear problem, but that most analyses are held up in queues. With sufficient resources, computations could be completed in a few hours for a typical dataset. These data also suggest execution times that delimit timely completion of computational analyses, and provide bounds for problematic processes.
NASA Astrophysics Data System (ADS)
Li, Zhenhai; Nie, Chenwei; Yang, Guijun; Xu, Xingang; Jin, Xiuliang; Gu, Xiaohe
2014-10-01
Leaf area index (LAI) and LCC, as the two most important crop growth variables, are major considerations in management decisions, agricultural planning and policy making. Estimation of canopy biophysical variables from remote sensing data was investigated using a radiative transfer model. However, the ill-posed problem is unavoidable for the unique solution of the inverse problem and the uncertainty of measurements and model assumptions. This study focused on the use of agronomy mechanism knowledge to restrict and remove the ill-posed inversion results. For this purpose, the inversion results obtained using the PROSAIL model alone (NAMK) and linked with agronomic mechanism knowledge (AMK) were compared. The results showed that AMK did not significantly improve the accuracy of LAI inversion. LAI was estimated with high accuracy, and there was no significant improvement after considering AMK. The validation results of the determination coefficient (R2) and the corresponding root mean square error (RMSE) between measured LAI and estimated LAI were 0.635 and 1.022 for NAMK, and 0.637 and 0.999 for AMK, respectively. LCC estimation was significantly improved with agronomy mechanism knowledge; the R2 and RMSE values were 0.377 and 14.495 μg cm-2 for NAMK, and 0.503 and 10.661 μg cm-2 for AMK, respectively. Results of the comparison demonstrated the need for agronomy mechanism knowledge in radiative transfer model inversion.
Recycled Water Poses Disinfectant Problem
ERIC Educational Resources Information Center
Chemical and Engineering News, 1973
1973-01-01
Discusses the possible health hazards resulting from released nucleic acid of inactivated viruses, chlorinated nonliving organic molecules, and overestimated reliability of waste treatment standards. Suggests the recycle system use a dual disinfectant such as chlorine and ozone in water treatment. (CC)
NASA Astrophysics Data System (ADS)
Klibanov, Michael V.; Kuzhuget, Andrey V.; Golubnichiy, Kirill V.
2016-01-01
A new empirical mathematical model for the Black-Scholes equation is proposed to forecast option prices. This model includes new interval for the price of the underlying stock, new initial and new boundary conditions. Conventional notions of maturity time and strike prices are not used. The Black-Scholes equation is solved as a parabolic equation with the reversed time, which is an ill-posed problem. Thus, a regularization method is used to solve it. To verify the validity of our model, real market data for 368 randomly selected liquid options are used. A new trading strategy is proposed. Our results indicates that our method is profitable on those options. Furthermore, it is shown that the performance of two simple extrapolation-based techniques is much worse. We conjecture that our method might lead to significant profits of those financial insitutions which trade large amounts of options. We caution, however, that further studies are necessary to verify this conjecture.
Kalashnikova, Irina
2012-05-01
A numerical study aimed to evaluate different preconditioners within the Trilinos Ifpack and ML packages for the Quantum Computer Aided Design (QCAD) non-linear Poisson problem implemented within the Albany code base and posed on the Ottawa Flat 270 design geometry is performed. This study led to some new development of Albany that allows the user to select an ML preconditioner with Zoltan repartitioning based on nodal coordinates, which is summarized. Convergence of the numerical solutions computed within the QCAD computational suite with successive mesh refinement is examined in two metrics, the mean value of the solution (an L{sup 1} norm) and the field integral of the solution (L{sup 2} norm).
Posing Einstein's Question: Questioning Einstein's Pose.
ERIC Educational Resources Information Center
Topper, David; Vincent, Dwight E.
2000-01-01
Discusses the events surrounding a famous picture of Albert Einstein in which he poses near a blackboard containing a tensor form of his 10 field equations for pure gravity with a question mark after it. Speculates as to the content of Einstein's lecture and the questions he might have had about the equation. (Contains over 30 references.) (WRM)
Videometrics technology of flyers' pose
NASA Astrophysics Data System (ADS)
Hu, Xiaoli; Su, Xiuqin; Zhang, Sanxi; Liu, Biao; Zhou, Zhiqiang
2015-10-01
In this paper pose measurement refers to flying pose measurement of rigid body including the pitch angle, yaw angel and roll angle. Pose measurement is of vital importance for such items as weapons settings, fault analysis and optimation design. Pose measurement based on optical images has many merits such as intuitive and non-contacted, which is a main method to measure pose currently. According to the parameters used and principle of the algorithms, the existing methods of pose measurement based on optical images are classified systematically and comprehensively for the first time as following: the methods of one station un-using camera's inner parameters are divided into the feature length ratio method and the direct linear transformation(DLT )method, otherwise they are divided into the perspective n points(PNP)problem and the optical and radar integration method, the axes from planes intersection using two stations extensible to multistation, and model matching applied to one or more stations, and then they are comparatively analyzed .At last combined with practical applications such as one or more stations, have or no model and inner parameters used or unused, some selection and improvement of key points are given practically.
Jia, Y.B.; Erdmann, M.
1999-05-01
In the absence of vision, grasping an object often relies on tactile feedback from the fingertips. As the finger pushes the object, the fingertip can feel the contact point move. If the object is known in advance, from this motion the finger may infer the location of the contact point on the object, and thereby, the object pose. This paper primarily investigates the problem of determining the pose (orientation and position) and motion (velocity and angular velocity) of a planar object with known geometry from such contact motion generated by pushing. A dynamic analysis of pushing yields a nonlinear system that relates through contact the object pose and motion to the finger motion. The contact motion on the fingertip thus encodes certain information about the object pose. Nonlinear observability theory is employed to show that such information is sufficient for the finger to observe not only the pose, but also the motion of the object. Therefore, a sensing strategy can be realized as an observer of the nonlinear dynamic system. Two observers are subsequently introduced. The first observer, based on the work of Gautheir, Hammouri, and Othman (1992), has its gain determined by the solution of a Lyapunov-like equation; it can be activated at any time instant during a push. The second observer, based on Newton`s method, solves for the initial (motionless) object pose from three intermediate contact points during a push. Under the Coulomb-friction model, the paper deals with support friction in the plane and/or contact friction between the finger and the object. Extensive simulations have been done to demonstrate the feasibility of the two observers. Preliminary experiments (with an Adept robot) have also been conducted. A contact sensor has been implemented using strain gauges.
Human Pose Estimation Using Consistent Max Covering.
Jiang, Hao
2011-09-01
A novel consistent max-covering method is proposed for human pose estimation. We focus on problems in which a rough foreground estimation is available. Pose estimation is formulated as a jigsaw puzzle problem in which the body part tiles maximally cover the foreground region, match local image features, and satisfy body plan and color constraints. This method explicitly imposes a global shape constraint on the body part assembly. It anchors multiple body parts simultaneously and introduces hyperedges in the part relation graph, which is essential for detecting complex poses. Using multiple cues in pose estimation, our method is resistant to cluttered foregrounds. We propose an efficient linear method to solve the consistent max-covering problem. A two-stage relaxation finds the solution in polynomial time. Our experiments on a variety of images and videos show that the proposed method is more robust than previous locally constrained methods. PMID:21576747
Combining focused MACE filters for pose estimation
NASA Astrophysics Data System (ADS)
Al-Ghoneim, Khaled A.; Vijaya Kumar, Bhagavatula
1998-03-01
In this paper we introduce the notion of a focused filter and discuss its application to the problem of pose estimation. A focused filter is a correlation filter designed to give a maximum response at one pose of the target. This pose is called the focus of the filter. As the actual pose of the target deviates from the focus, the filter's response should exhibit a graceful (and controlled) degradation. When presented with a test image, the responses of all focused filters are collected in a vector. This new vector will have a peak with the vector elements exhibiting the same shape as that used in designing one focused filter. This similarity is exploited for pose estimation by matching the filter responses to the designed shape. Simulation experiments are used to illustrate the potential of the new design method.
Potential Energy Sources Pose Mining Problem
ERIC Educational Resources Information Center
Chemical and Engineering News, 1974
1974-01-01
Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)
Problem Posing from Maps: Utilizing Understanding.
ERIC Educational Resources Information Center
Gregg, Madeleine
1997-01-01
Reports on a study where pairs of students in the fifth and seventh grades generated and answered questions based on maps. Results indicated that students most often generated three types of questions: (1) symbol reading, (2) inferring latitude and longitude, and (3) interpreting scale. Analyzes these questions in regard to cognitive processes.…
Contact Zones, Problem Posing and Critical Consciousness
ERIC Educational Resources Information Center
Patel, Lisa
2012-01-01
In this article, I share the shape and findings of a participatory action research project with newcomer youths on the contours of status in society. This project was nested in a professional internship experience for newcomer youth, and this experience provided the context in which we explored how privilege and status are afforded in American…
Gas co-ops pose solution, problems
Haines, L.
1995-10-01
Gas co-ops can give smaller producers advantages of scale, but they also will add cost and complexity to the work loads of their members. The biggest argument for co-ops is the economics of scale that large volumes bring. Even with that advantage, gas marketing margins have slimmed considerably, prompting a rash of mergers among the marketing-gathering companies and between producers and pipelines.
Factoring Algebraic Error for Relative Pose Estimation
Lindstrom, P; Duchaineau, M
2009-03-09
We address the problem of estimating the relative pose, i.e. translation and rotation, of two calibrated cameras from image point correspondences. Our approach is to factor the nonlinear algebraic pose error functional into translational and rotational components, and to optimize translation and rotation independently. This factorization admits subproblems that can be solved using direct methods with practical guarantees on global optimality. That is, for a given translation, the corresponding optimal rotation can directly be determined, and vice versa. We show that these subproblems are equivalent to computing the least eigenvector of second- and fourth-order symmetric tensors. When neither translation or rotation is known, alternating translation and rotation optimization leads to a simple, efficient, and robust algorithm for pose estimation that improves on the well-known 5- and 8-point methods.
Ill-Posed Point Neuron Models.
Nielsen, Bjørn Fredrik; Wyller, John
2016-12-01
We show that point-neuron models with a Heaviside firing rate function can be ill posed. More specifically, the initial-condition-to-solution map might become discontinuous in finite time. Consequently, if finite precision arithmetic is used, then it is virtually impossible to guarantee the accurate numerical solution of such models. If a smooth firing rate function is employed, then standard ODE theory implies that point-neuron models are well posed. Nevertheless, in the steep firing rate regime, the problem may become close to ill posed, and the error amplification, in finite time, can be very large. This observation is illuminated by numerical experiments. We conclude that, if a steep firing rate function is employed, then minor round-off errors can have a devastating effect on simulations, unless proper error-control schemes are used. PMID:27129667
Accurate pose estimation for forensic identification
NASA Astrophysics Data System (ADS)
Merckx, Gert; Hermans, Jeroen; Vandermeulen, Dirk
2010-04-01
In forensic authentication, one aims to identify the perpetrator among a series of suspects or distractors. A fundamental problem in any recognition system that aims for identification of subjects in a natural scene is the lack of constrains on viewing and imaging conditions. In forensic applications, identification proves even more challenging, since most surveillance footage is of abysmal quality. In this context, robust methods for pose estimation are paramount. In this paper we will therefore present a new pose estimation strategy for very low quality footage. Our approach uses 3D-2D registration of a textured 3D face model with the surveillance image to obtain accurate far field pose alignment. Starting from an inaccurate initial estimate, the technique uses novel similarity measures based on the monogenic signal to guide a pose optimization process. We will illustrate the descriptive strength of the introduced similarity measures by using them directly as a recognition metric. Through validation, using both real and synthetic surveillance footage, our pose estimation method is shown to be accurate, and robust to lighting changes and image degradation.
Human pose tracking from monocular video by traversing an image motion mapped body pose manifold
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2010-01-01
Tracking human pose from monocular video sequences is a challenging problem due to the large number of independent parameters affecting image appearance and nonlinear relationships between generating parameters and the resultant images. Unlike the current practice of fitting interpolation functions to point correspondences between underlying pose parameters and image appearance, we exploit the relationship between pose parameters and image motion flow vectors in a physically meaningful way. Change in image appearance due to pose change is realized as navigating a low dimensional submanifold of the infinite dimensional Lie group of diffeomorphisms of the two dimensional sphere S2. For small changes in pose, image motion flow vectors lie on the tangent space of the submanifold. Any observed image motion flow vector field is decomposed into the basis motion vector flow fields on the tangent space and combination weights are used to update corresponding pose changes in the different dimensions of the pose parameter space. Image motion flow vectors are largely invariant to style changes in experiments with synthetic and real data where the subjects exhibit variation in appearance and clothing. The experiments demonstrate the robustness of our method (within +/-4° of ground truth) to style variance.
POSE Algorithms for Automated Docking
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Howard, Richard T.
2011-01-01
POSE (relative position and attitude) can be computed in many different ways. Given a sensor that measures bearing to a finite number of spots corresponding to known features (such as a target) of a spacecraft, a number of different algorithms can be used to compute the POSE. NASA has sponsored the development of a flash LIDAR proximity sensor called the Vision Navigation Sensor (VNS) for use by the Orion capsule in future docking missions. This sensor generates data that can be used by a variety of algorithms to compute POSE solutions inside of 15 meters, including at the critical docking range of approximately 1-2 meters. Previously NASA participated in a DARPA program called Orbital Express that achieved the first automated docking for the American space program. During this mission a large set of high quality mated sensor data was obtained at what is essentially the docking distance. This data set is perhaps the most accurate truth data in existence for docking proximity sensors in orbit. In this paper, the flight data from Orbital Express is used to test POSE algorithms at 1.22 meters range. Two different POSE algorithms are tested for two different Fields-of-View (FOVs) and two different pixel noise levels. The results of the analysis are used to predict future performance of the POSE algorithms with VNS data.
Distributed consensus on camera pose.
Jorstad, Anne; DeMenthon, Daniel; Wang, I-Jeng; Burlina, Philippe
2010-09-01
Our work addresses pose estimation in a distributed camera framework. We examine how processing cameras can best reach a consensus about the pose of an object when they are each given a model of the object, defined by a set of point coordinates in the object frame of reference. The cameras can only see a subset of the object feature points in the midst of background clutter points, not knowing which image points match with which object points, nor which points are object points or background points. The cameras individually recover a prediction of the object's pose using their knowledge of the model, and then exchange information with their neighbors, performing consensus updates locally to obtain a single estimate consistent across all cameras, without requiring a common centralized processor. Our main contributions are: 1) we present a novel algorithm performing consensus updates in 3-D world coordinates penalized by a 3-D model, and 2) we perform a thorough comparison of our method with other current consensus methods. Our method is consistently the most accurate, and we confirm that the existing consensus method based upon calculating the Karcher mean of rotations is also reliable and fast. Experiments on simulated and real imagery are reported. PMID:20363678
Particle swarm optimization on low dimensional pose manifolds for monocular human pose estimation
NASA Astrophysics Data System (ADS)
Brauer, Jürgen; Hübner, Wolfgang; Arens, Michael
2013-10-01
Automatic assessment of situations with modern security and surveillance systems requires sophisticated discrimination capabilities. Therefore, action recognition, e.g. in terms of person-person or person-object interactions, is an essential core component of any surveillance system. A subclass of recent action recognition approaches are based on space time volumes, which are generated from trajectories of multiple anatomical landmarks like hands or shoulders. A general prerequisite of these methods is the robust estimation of the body pose, i.e. a simplified body model consisting of several anatomical landmarks. In this paper we address the problem of estimating 3D poses from monocular person image sequences. The first stage of our algorithm is the localization of body parts in the 2D image. For this, a part based object detection method is used, which in previous work has been shown to provide a sufficient basis for person detection and landmark estimation in a single step. The output of this processing step is a probability distribution for each landmark and image indicating possible locations of this landmark in image coordinates. The second stage of our algorithm searches for 3D pose estimates that best t to the 15 landmark probability distributions. For resolving ambiguities introduced by uncertainty in the locations of the landmarks, we perform an optimization within a Particle Swarm Optimization (PSO) framework, where each pose hypothesis is represented by a particle. Since the search in the high-dimensional 3D pose search space needs further guidance to deal with the inherently restricted 2D input information, we propose a new compact representation of motion sequences provided by motion capture databases. Poses of a motion sequence are embedded in a low-dimensional manifold. We represent each motion sequence by a compact representation referred to as pose splines using a small number of supporting point poses. The PSO algorithm can be extended to perform
Uncooperative pose estimation with a LIDAR-based system
NASA Astrophysics Data System (ADS)
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2015-05-01
This paper aims at investigating the performance of a LIDAR-based system for pose determination of uncooperative targets. This problem is relevant to both debris removal and on-orbit servicing missions, and requires the adoption of suitable electro-optical sensors on board of a chaser platform, as well as model-based techniques for target detection and pose estimation. In this paper, a three dimensional approach is pursued in which the point cloud generated by a LIDAR is exploited for pose estimation. Specifically, the condition of close proximity flight to a large debris is considered, in which the relative motion determines a large variation of debris appearance and coverage in the sensor field of view, thus producing challenging conditions for pose estimation. A customized three dimensional Template Matching approach is proposed for fast and reliable pose initial acquisition, while pose tracking is carried out with an Iterative Closest Point algorithm exploiting different measurement-model matching techniques. Specific solutions are envisaged to speed algorithm convergence and limit the size of the point clouds used for pose initial acquisition and tracking to allow autonomous on-board operation. To investigate proposed approach effectiveness and achievable pose accuracy, a numerical simulation environment is developed implementing realistic debris geometry, debris-chaser close-proximity flight, and sensor operation. Results demonstrate algorithm capability of operating with sparse point clouds and large pose variations, while achieving sub-degree and sub-centimeter accuracy in relative attitude and position, respectively.
Boosting Pose Ranking Performance via Rescoring with MM-GBSA.
Greenidge, Paulette A; Lewis, Richard A; Ertl, Peter
2016-09-01
In this self-docking study, we address the so-called scoring problem. The 'scoring problem' is the inability to unambiguously identify biologically the most relevant pose, when the docking score is the main selection criterion. We use the Molecular Mechanics/Generalized Born Surface Area and ChemPLP scoring functions to assess the structure reproduction performance. Heavy-atom root-mean-squared deviation values are used to compare the docked poses with the crystallographic ones. 'Partial matching' is introduced. This algorithm captures the visual observation that the majority of a ligand can be well docked, but yet report a root-mean-squared deviation value of >2.0 Å. Often this is attributable to arbitrary placements of flexible side chains in undefined solvent regions. The metrics introduced by this algorithm are applicable for assessing the contribution of ligand sampling to the scoring problem. It is shown that rescoring ChemPLP poses with the Molecular Mechanics/Generalized Born Surface Area scoring function improves pose ranking by better discriminating against non-cognate-like poses. We conclude that poses should not be retained solely on their ranks, but on the score difference relative to the best-ranked pose. PMID:27061970
Aircraft recognition and pose estimation
NASA Astrophysics Data System (ADS)
Hmam, Hatem; Kim, Jijoong
2000-05-01
This work presents a geometry based vision system for aircraft recognition and pose estimation using single images. Pose estimation improves the tracking performance of guided weapons with imaging seekers, and is useful in estimating target manoeuvres and aim-point selection required in the terminal phase of missile engagements. After edge detection and straight-line extraction, a hierarchy of geometric reasoning algorithms is applied to form line clusters (or groupings) for image interpretation. Assuming a scaled orthographic projection and coplanar wings, lateral symmetry inherent in the airframe provides additional constraints to further reject spurious line clusters. Clusters that accidentally pass all previous tests are checked against the original image and are discarded. Valid line clusters are then used to deduce aircraft viewing angles. By observing that the leading edges of wings of a number of aircraft of interest are within 45 to 65 degrees from the symmetry axis, a bounded range of aircraft viewing angles can be found. This generic property offers the advantage of not requiring the storage of complete aircraft models viewed from all aspects, and can handle aircraft with flexible wings (e.g. F111). Several aircraft images associated with various spectral bands (i.e. visible and infra-red) are finally used to evaluate the system's performance.
3-D Pose Presentation for Training Applications
ERIC Educational Resources Information Center
Fox, Kaitlyn; Whitehead, Anthony
2011-01-01
Purpose: In the authors' experience, the biggest issue with pose-based exergames is the difficulty in effectively communicating a three-dimensional pose to a user to facilitate a thorough understanding for accurate pose replication. The purpose of this paper is to examine options for pose presentation. Design/methodology/approach: The authors…
Viewpoint Invariant Gesture Recognition and 3D Hand Pose Estimation Using RGB-D
ERIC Educational Resources Information Center
Doliotis, Paul
2013-01-01
The broad application domain of the work presented in this thesis is pattern classification with a focus on gesture recognition and 3D hand pose estimation. One of the main contributions of the proposed thesis is a novel method for 3D hand pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval problem. The proposed…
NASA Astrophysics Data System (ADS)
Leduhovsky, G. V.; Zhukov, V. P.; Barochkin, E. V.; Zimin, A. P.; Razinkov, A. A.
2015-08-01
The problem of striking material and energy balances from the data received by thermal power plant computerized automation systems from the technical accounting systems with the accuracy determined by the metrological characteristics of serviceable calibrated instruments is formulated using the mathematical apparatus of ridge regression method. A graph theory based matrix model of material and energy flows in systems having an intricate structure is proposed, using which it is possible to formalize the solution of a particular practical problem at the stage of constructing the system model. The problem of striking material and energy balances is formulated taking into account different degrees of trustworthiness with which the initial flow rates of coolants and their thermophysical parameters were determined, as well as process constraints expressed in terms of balance correlations on mass and energy for individual system nodes or for any combination thereof. Analytic and numerical solutions of the problem are proposed in different versions of its statement differing from each other in the adopted assumptions and considered constraints. It is shown how the procedure for striking material and energy balances from the results of measuring the flows of feed water and steam in the thermal process circuit of a combined heat and power plant affects the calculation accuracy of specific fuel rates for supplying heat and electricity. It has been revealed that the nominal values of indicators and the fuel saving or overexpenditure values associated with these indicators are the most dependent parameters. In calculating these quantities using different balance striking procedures, an error may arise the value of which is commensurable with the power plant thermal efficiency margin stipulated by the regulatory-technical documents on using fuel. The study results were used for substantiating the choice of stating the problem of striking material and fuel balances, as well as
Pose-Invariant Face Recognition via RGB-D Images
Sang, Gaoli; Li, Jing; Zhao, Qijun
2016-01-01
Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions. PMID:26819581
Neuromorphic Event-Based 3D Pose Estimation
Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B.
2016-01-01
Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30–60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion. PMID:26834547
The Potential of Statement-Posing Tasks
ERIC Educational Resources Information Center
Yang, Kai-Lin
2010-01-01
This communication aims at revealing the potential of statement-posing tasks to facilitate students' thinking and strategies of understanding proof. Besides outlining the background of statement-posing tasks, four points were advanced as potential benefits of the tasks: (1) focusing on the logic of arguments in addition to the meaning of…
Joint tracking, pose estimation, and identification using HRRR data
NASA Astrophysics Data System (ADS)
Mahler, Ronald P. S.; Rago, Constantino; Zajic, Tim; Musick, Stanton; Mehra, Raman K.
2000-08-01
The work presented here is pat of a generalization of Bayesian filtering and estimation theory to the problem of multisource, multitarget, multi-evidence unified joint detection, tracking, and target ID developed by Lockheed Martin Tactical Defense Systems and Scientific Systems Co., Inc. Our approach to robust joint target identification and tracking was to take the StaF algorithm and integrate it with a Bayesian nonlinear filter, where target position, velocity, pose, and type could then be determined simultaneously via maximum a posteriori estimation. The basis for the integration between the tracker and classifier is base don 'finite-set statistics' (FISST). The theoretical development of FISST is a Lockheed Martin ongoing project since 1994. The specific problem addressed in this paper is that of robust joint target identification and tracking via fusion of high range resolution radar (HRRR) - from the automatic radar target identification (ARTI) data base - signatures and radar track data. A major problem in HRRR ATR is the computational load created by having to match observations against target models for every feasible pose. If pose could be estimated efficiently by a filtering algorithm from track data, the ATR search space would be greatly reduced. On the other hand, HRRR ATR algorithms produce useful information about pose which could potentially aid the track-filtering process as well. We have successfully demonstrated the former concept of 'loose integration' integrating the tracker and classifier for three different type of targets moving on 2D tracks.
Pose estimation of non-cooperative targets without feature tracking
NASA Astrophysics Data System (ADS)
Liu, Jie; Liu, Zongming; Lu, Shan; Sang, Nong
2015-03-01
Pose estimation is playing the vital role in the final approach phase of two spacecraft, one is the target spacecraft and the other one is the observation spacecraft. Traditional techniques are usually based on feature tracking, which will not work when sufficient features are unavailable. To deal with this problem, we present a stereo camera-based pose estimation method without feature tracking. First, stereo vision is used to reconstruct 2.5D of the target spacecraft and a 3D reconstruction is presented by merged all the point cloud of each viewpoint. Then a target-coordinate system is built using the reconstruction results. Finally, point cloud registration algorithm is used to solve the current pose between the observation spacecraft and the target spacecraft. Experimental results show that both the position errors and the attitude errors satisfy the requirements of pose estimation. The method provides a solution for pose estimation without knowing the information of the targets and this algorithm is with wider application range compared with the other algorithms based on feature tracking.
Manifolds for pose tracking from monocular video
NASA Astrophysics Data System (ADS)
Basu, Saurav; Poulin, Joshua; Acton, Scott T.
2015-03-01
We formulate a simple human-pose tracking theory from monocular video based on the fundamental relationship between changes in pose and image motion vectors. We investigate the natural embedding of the low-dimensional body pose space into a high-dimensional space of body configurations that behaves locally in a linear manner. The embedded manifold facilitates the decomposition of the image motion vectors into basis motion vector fields of the tangent space to the manifold. This approach benefits from the style invariance of image motion flow vectors, and experiments to validate the fundamental theory show reasonable accuracy (within 4.9 deg of the ground truth).
Condensate kicks pose additional problems for deep well control
Szczepanski, R.; Edmonds, B.; Yerlett, T.K.; Brown, N.P.; Hamilton, T.A.P.
1996-06-17
Modeling condensate and gas kicks in a deep North Sea well helps drillers understand what to expect after prompt kick detection in a straight-forward kick circulation program with competent choke handling. Concerns have been raised in the industry that as a condensate kick is taken and subsequently circulated out of the well, unexpected surface indications may be present. Blowouts, resulting from uncontrolled kicks, could be particularly hazardous for condensate fields as these are often high-pressure, high-temperature operations. A deeper understanding of the differences, and similarities, between gas and condensate kicks has resulted from an investigation by Infochem Computer Services Ltd., funded by the UK Health and Safety Executive (HSE). This study has led to an assessment of the practical significance of any differences for the personnel involved in well control.
Leveling Students' Creative Thinking in Solving and Posing Mathematical Problem
ERIC Educational Resources Information Center
Siswono, Tatag Yuli Eko
2010-01-01
Many researchers assume that people are creative, but their degree of creativity is different. The notion of creative thinking level has been discussed .by experts. The perspective of mathematics creative thinking refers to a combination of logical and divergent thinking which is based on intuition but has a conscious aim. The divergent thinking…
Effects of Generative Video on Students' Scientific Problem Posing. Draft.
ERIC Educational Resources Information Center
Hickey, Daniel T.; Petrosino, Anthony
A central premise of the discovery-learning and progressive education movements was that the child's own questions are the most appropriate starting point for instruction. Recent advances present new opportunities for discovery-oriented learning. This project has been attempting to create a classroom environment which affords students the…
Space Travel May Pose Risks to Heart
... page: https://medlineplus.gov/news/fullstory_160139.html Space Travel May Pose Risks to Heart Exposure to ... shows. And researchers suspect that exposure to deep space radiation may be the reason why. "We know ...
CHALLENGES POSED BY RETIRED RUSSIAN NUCLEAR SUBMARINES
Rudolph, Dieter; Kroken, Ingjerd; Latyshev, Eduard; Griffith, Andrew
2003-02-27
The purpose of this paper is to provide an overview of the challenges posed by retired Russian nuclear submarines, review current U.S. and International efforts and provide an assessment of the success of these efforts.
Heat Waves Pose Big Health Threats
... news/fullstory_159744.html Heat Waves Pose Big Health Threats Kids, elderly among those at greatest risk, ... Illness Seniors' Health Recent Health News Related MedlinePlus Health Topics Child Safety Heat Illness Seniors' Health About ...
Genetic Research on Biospecimens Poses Minimal Risk
Wendler, David S.; Rid, Annette
2014-01-01
Genetic research on human biospecimens is increasingly common. Yet, debate continues over the level of risk that this research poses to sample donors. Some argue that genetic research on biospecimens poses minimal risk; others argue that it poses greater than minimal risk and therefore needs additional requirements and limitations. This debate raises concern that some donors are not receiving appropriate protection or, conversely, that valuable research is being subject to unnecessary requirements and limitations. The present paper attempts to address this concern using the widely-endorsed ‘risks of daily life’ standard. The three extant versions of this standard all suggest that, with proper measures in place to protect donor confidentiality, most genetic research on human biospecimens poses minimal risk to donors. PMID:25530152
Genetic research on biospecimens poses minimal risk.
Wendler, David S; Rid, Annette
2015-01-01
Genetic research on human biospecimens is increasingly common. However, debate continues over the level of risk that this research poses to sample donors. Some argue that genetic research on biospecimens poses minimal risk; others argue that it poses greater than minimal risk and therefore needs additional requirements and limitations. This debate raises concern that some donors are not receiving appropriate protection or, conversely, that valuable research is being subject to unnecessary requirements and limitations. The present paper attempts to resolve this debate using the widely-endorsed 'risks of daily life' standard. The three extant versions of this standard all suggest that, with proper measures in place to protect confidentiality, most genetic research on human biospecimens poses minimal risk to donors. PMID:25530152
Robust pose determination for autonomous docking
Goddard, J.S.; Jatko, W.B.; Ferrell, R.K.; Gleason, S.S.
1995-12-31
This paper describes current work at the Oak Ridge National Laboratory to develop a robotic vision system capable of recognizing designated objects by their intrinsic geometry. This method, based on single camera vision, combines point features and a model-based technique using geometric feature matching for the pose calculation. In this approach, 2-D point features are connected into higher-order shapes and then matched with corresponding features of the model. Pose estimates are made using a closed-form point solution based on model features of four coplanar points. Rotations are represented by quaternions that simplify the calculations in determining the least squares solution for the coordinate transformation. This pose determination method including image acquisition, feature extraction, feature correspondence, and pose calculation has been implemented on a real-time system using a standard camera and image processing hardware. Experimental results are given for relative error measurements.
Multimodal Deep Autoencoder for Human Pose Recovery.
Hong, Chaoqun; Yu, Jun; Wan, Jian; Tao, Dacheng; Wang, Meng
2015-12-01
Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%-25%, which demonstrates the effectiveness of the proposed method. PMID:26452284
Exemplar-based human action pose correction.
Shen, Wei; Deng, Ke; Bai, Xiang; Leyvand, Tommer; Guo, Baining; Tu, Zhuowen
2014-07-01
The launch of Xbox Kinect has built a very successful computer vision product and made a big impact on the gaming industry. This sheds lights onto a wide variety of potential applications related to action recognition. The accurate estimation of human poses from the depth image is universally a critical step. However, existing pose estimation systems exhibit failures when facing severe occlusion. In this paper, we propose an exemplar-based method to learn to correct the initially estimated poses. We learn an inhomogeneous systematic bias by leveraging the exemplar information within a specific human action domain. Furthermore, as an extension, we learn a conditional model by incorporation of pose tags to further increase the accuracy of pose correction. In the experiments, significant improvements on both joint-based skeleton correction and tag prediction are observed over the contemporary approaches, including what is delivered by the current Kinect system. Our experiments for the facial landmark correction also illustrate that our algorithm can improve the accuracy of other detection/estimation systems. PMID:24058046
Sparse Feature Extraction for Pose-Tolerant Face Recognition.
Abiantun, Ramzi; Prabhu, Utsav; Savvides, Marios
2014-10-01
Automatic face recognition performance has been steadily improving over years of research, however it remains significantly affected by a number of factors such as illumination, pose, expression, resolution and other factors that can impact matching scores. The focus of this paper is the pose problem which remains largely overlooked in most real-world applications. Specifically, we focus on one-to-one matching scenarios where a query face image of a random pose is matched against a set of gallery images. We propose a method that relies on two fundamental components: (a) A 3D modeling step to geometrically correct the viewpoint of the face. For this purpose, we extend a recent technique for efficient synthesis of 3D face models called 3D Generic Elastic Model. (b) A sparse feature extraction step using subspace modeling and ℓ1-minimization to induce pose-tolerance in coefficient space. This in return enables the synthesis of an equivalent frontal-looking face, which can be used towards recognition. We show significant performance improvements in verification rates compared to commercial matchers, and also demonstrate the resilience of the proposed method with respect to degrading input quality. We find that the proposed technique is able to match non-frontal images to other non-frontal images of varying angles. PMID:26352635
Maximal likelihood correspondence estimation for face recognition across pose.
Li, Shaoxin; Liu, Xin; Chai, Xiujuan; Zhang, Haihong; Lao, Shihong; Shan, Shiguang
2014-10-01
Due to the misalignment of image features, the performance of many conventional face recognition methods degrades considerably in across pose scenario. To address this problem, many image matching-based methods are proposed to estimate semantic correspondence between faces in different poses. In this paper, we aim to solve two critical problems in previous image matching-based correspondence learning methods: 1) fail to fully exploit face specific structure information in correspondence estimation and 2) fail to learn personalized correspondence for each probe image. To this end, we first build a model, termed as morphable displacement field (MDF), to encode face specific structure information of semantic correspondence from a set of real samples of correspondences calculated from 3D face models. Then, we propose a maximal likelihood correspondence estimation (MLCE) method to learn personalized correspondence based on maximal likelihood frontal face assumption. After obtaining the semantic correspondence encoded in the learned displacement, we can synthesize virtual frontal images of the profile faces for subsequent recognition. Using linear discriminant analysis method with pixel-intensity features, state-of-the-art performance is achieved on three multipose benchmarks, i.e., CMU-PIE, FERET, and MultiPIE databases. Owe to the rational MDF regularization and the usage of novel maximal likelihood objective, the proposed MLCE method can reliably learn correspondence between faces in different poses even in complex wild environment, i.e., labeled face in the wild database. PMID:25163062
An Activist Posing as an Academic?
ERIC Educational Resources Information Center
Corntassel, Jeff J.
2003-01-01
A few years ago, while interviewing for a tenure-track position at a large, public institution in the Midwest, the author was informed that several faculty members suspected him of being "an activist posing as an academic" because the faculty thought that his research lacked "objectivity." Based on subsequent conversations the author had during…
Common Core Poses Challenges for Preschools
ERIC Educational Resources Information Center
Zubrzycki, Jaclyn
2011-01-01
Although the common-core standards are calibrated to ensure that students leave K-12 schools ready for work and college, they are also posing challenges for the educators who work with children just starting out their school careers. As 46 states and the District of Columbia work this year to put the new curricular guidelines in place, preschool…
Point Cloud Based Relative Pose Estimation of a Satellite in Close Range.
Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming
2016-01-01
Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633
Point Cloud Based Relative Pose Estimation of a Satellite in Close Range
Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming
2016-01-01
Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633
Using glint to perform geometric signature prediction and pose estimation
NASA Astrophysics Data System (ADS)
Paulson, Christopher; Zelnio, Edmund; Gorham, LeRoy; Wu, Dapeng
2012-05-01
We consider two problems in this paper. The rst problem is to construct a dictionary of elements without using synthetic data or a subset of the data collection; the second problem is to estimate the orientation of the vehicle, independent of the elevation angle. These problems are important to the SAR community because it will alleviate the cost to create the dictionary and reduce the number of elements in the dictionary needed for classication. In order to accomplish these tasks, we utilize the glint phenomenology, which is usually viewed as a hindrance in most algorithms but is valuable information in our research. One way to capitalize on the glint information is to predict the location of the int by using geometry of the single and double bounce phenomenology. After qualitative examination of the results, we were able to deduce that the geometry information was sucient for accurately predicting the location of the glint. Another way that we exploited the glint characteristics was by using it to extract the angle feature which we will use to do the pose estimation. Using this technique we were able to predict the cardinal heading of the vehicle within +/-2° with 96:6% having 0° error. Now this research will have an impact on the classication of SAR images because the geometric prediction will reduce the cost and time to develop and maintain the database for SAR ATR systems and the pose estimation will reduce the computational time and improve accuracy of vehicle classication.
Coupled bias-variance tradeoff for cross-pose face recognition.
Li, Annan; Shan, Shiguang; Gao, Wen
2012-01-01
Subspace-based face representation can be looked as a regression problem. From this viewpoint, we first revisited the problem of recognizing faces across pose differences, which is a bottleneck in face recognition. Then, we propose a new approach for cross-pose face recognition using a regressor with a coupled bias-variance tradeoff. We found that striking a coupled balance between bias and variance in regression for different poses could improve the regressor-based cross-pose face representation, i.e., the regressor can be more stable against a pose difference. With the basic idea, ridge regression and lasso regression are explored. Experimental results on CMU PIE, the FERET, and the Multi-PIE face databases show that the proposed bias-variance tradeoff can achieve considerable reinforcement in recognition performance. PMID:21724510
Performance d'un hôpital de zone sanitaire au Benin: un exemple de modèle d’évaluation
Ahanhanzo, Yolaine Glèlè; Ouédraogo, Landaogo Soutongonoma Lionel; Saizonou, Jacques
2014-01-01
Introduction Premier niveau de référence de la pyramide sanitaire du Bénin, les hôpitaux de zone sanitaire s'acquittent de leurs missions dans un contexte difficile. L'objectif de la présente étude a été d’évaluer la performance de l'hôpital de la zone sanitaire de Comè en 2013. Méthodes L’étude était transversale, descriptive et évaluative. Les services retenus ont été sélectionnés par choix raisonné du fait de leur contribution au paquet d'activités de l'hôpital. Les clients externes et internes ont été sélectionnés par commodité. Les membres du conseil de gestion de l'hôpital de zone, les responsables d'organisation à base communautaire, les partenaires techniques et financiers ainsi que des chefs d'arrondissement ont été sélectionné par choix raisonné. La performance de l'hôpital a été mesurée à travers trois critères que sont la qualité des prestations, leur équité d'accès et leur pérennité. L'analyse des données a été faite sur la base de critères en utilisant une cotation analytique puis temporelle. Résultats La performance de l'hôpital de la zone sanitaire de Comè était très faible au premier semestre 2013 avec une qualité des prestations cotée à 35%, une équité d'accès cotée à 50% et une pérennité des actions cotée à 11%. Seul le niveau d'application de la fonction gouvernance était moyen. La méconnaissance des attributions des représentants de la communauté dans les instances de l'hôpital a constitué une limite à leur implication dans l'exercice des fonctions de l'hôpital. Les partenaires techniques et financiers ont participé au renforcement institutionnel de l'hôpital en termes d'amélioration du plateau technique. Conclusion L'application des fonctions de l'hôpital et une meilleure implication de la communauté ainsi que des partenaires contribueront à l'amélioration de la performance de l'hôpital de la zone sanitaire de Comè. PMID:25400830
A quaternion pose determination solution based on monocular vision model
NASA Astrophysics Data System (ADS)
Chen, Jun; Zhang, Qiuzhi; Zhang, Baoshang
2011-08-01
Determination of relative three-dimensional position and orientation between two reference frames can be solved by the pose measuring methods based on monocular vision model. Owing to the special T-shaped configuration, the definition of object rotational matrix in the terms of quaternion elements helped in representing the problem by six nonlinear equations from which a closed-form solution can be obtained for all the unknown parameters. The calculating formulas of elements in the rotational matrix were deduced from the coordinates of feature points in camera frame as well as the converting vector which was also introduced into the process acting as corrected term. An approximate pose could be found by the assumption of zero difference in depth of all points in camera frame, then the converting vector should be initialized by the third row of current rotational matrix. The principle of computing priority of the max value in quaternion expression was proposed to ensure the convergence of the iteration loop through which the final pose was achieved in a few iterations. Simulation experiments show the validity of the solution and analysis of the calculating precision was made in detail. The measuring orientation error would constringe with the reduction of distance from camera focus to target object and performance of the algorithm went well in short distance, while the deformation went larger with the increasing of errors caused by imprecise correspondence.
Numerical solutions to ill-posed and well-posed impedance boundary condition integral equations
NASA Astrophysics Data System (ADS)
Rogers, J. R.
1983-11-01
Exterior scattering from a three-dimensional impedance body can be formulated in terms of various integral equations derived from the Leontovich impedance boundary condition (IBC). The electric and magnetic field integral equations are ill-posed because they theoretically admit spurious solutions at the frequencies of interior perfect conductor cavity resonances. A combined field formulation is well-posed because it does not allow the spurious solutions. This report outlines the derivation of IBC integral equations and describes a procedure for constructing moment-method solutions for bodies of revolution. Numerical results for scattering from impedance spheres are presented which contrast the stability and accuracy of solutions to the ill-posed equations with those of the well-posed equation. The results show that numerical solutions for exterior scattering to the electric and magnetic field integral equations can be severely contaminated by spurious resonant solutions regardless of whether the surface impedance of the body is lossy or lossless.
Tabu search for human pose recognition
NASA Astrophysics Data System (ADS)
Dyce, W.; Rodriguez, N.; Lange, B.; Andary, S.; Seilles, A.
2014-03-01
The use of computer vision techniques to build hands-free input devices has long been a topic of interest to researchers in the field of natural interaction. In recent years Microsoft's Kinect has brought these technologies to the layman, but the most commonly used libraries for Kinect human pose recognition are closed-source. There is not yet an accepted, effective open-source alternative upon which highly specific applications can be based. We propose a novel technique for extracting the appendage configurations of users from the Kinect camera's depth feed, based on stochastic local search techniques rather than per-pixel classification.
Mrs. Chandrasekhar poses with contest winners
NASA Technical Reports Server (NTRS)
1999-01-01
Mrs. Lalitha Chandrasekhar (left), wife of the late Indian- American Nobel Laureate Subrahmanyan Chandrasekhar, poses with a model of the Chandra X-ray Observatory and the winners of the contest to rename the telescope in the TRW Media Hospitality Tent at the NASA Press Site at KSC. The winners of the contest are Jatila van der Veen (center), academic coordinator and lecturer, Physics Dept., University of Santa Barbara, Calif., and Tyrel Johnson (right), high school student, Laclede, Idaho. The name 'Chandra,' a shortened version of Chandrasekhar's name which he preferred among friends and colleagues, was chosen to honor the Nobel Laureate. 'Chandra' also means 'Moon' or 'luminous' in Sanskrit. The observatory is scheduled to be launched aboard Columbia on Space Shuttle mission STS-93.
On pose determination using point features. [vision system for space robots
NASA Technical Reports Server (NTRS)
Hwang, Vincent; Keizer, Richard; Winkert, Tom; Spidaliere, Peter
1992-01-01
Consideration is given to the vision subsystem of an Orbital Replacement Unit (ORU) that was placed onto its base at Goddard Space Flight Center by a PUMA 762 robot equipped with a wrist-mounted CCD camera and a wrist-mounted force sensor. It is found that a simple adaptive thresholding method works quite well for images taken under various lighting conditions. The pose computed using the quadrangle method is reasonable for real images. In the presence of image feature noise the accuracy of the computed pose can be considerably reduced. This problem can be solved by using a 3D marker and an alternative pose computation algorithm.
A face wrapping method based on pose-specific shape eigenspace
NASA Astrophysics Data System (ADS)
Gu, Xiaohua; Gong, Weiguo; Yang, Liping
2010-02-01
Generating virtual face images with different poses has potential applications in many areas, such as face recognition, human-machine interaction, portrait combination, and computer graphics. However, in some situation, the available face images are quite limited, which makes the problem difficult. This paper proposes a pose-specific shape eigenspace based face wrapping method to generate virtual face images with different poses from a specific pose. A predefined training set is necessary. According to their poses, training faces with annotated landmarks are manually divided into several groups, each of which is utilized to learn a pose-specific shape eigenspace by K-L transform. For a new image under a certain pose, its shape information described by the annotated landmarks is firstly projected to the expected pose-specific shape eigenspace to represent the shape information of this image under the expected pose. Then, all corresponding points between the represented shape and original shape the are matched and the texture information of all points in the represented shape are covered by the gray or color information of the corresponding points in the original image to generate a virtual face image under expected pose. To quantify the similarity between the generated virtual images and real images, cosine similarity is adopted. Experiments on IMM, PIE and YaleB face subsets show that the similarity of the virtual image and real images is over 0.9, no matter there is high or low similarity between test set and training set, which illustrates the effectiveness of the proposed method.
Earthquakes Pose a Serious Hazard in Afghanistan
Crone, Anthony J.
2007-01-01
This report is USGS Afghanistan Project No. 155. This study was funded by an Interagency Agreement between the U.S. Agency for International Development (USAID) and the U.S. Geological Survey. Afghanistan is located in the geologically active part of the world where the northward-moving Indian plate is colliding with the southern part of the Eurasian plate at a rate of about 1.7 inches per year. This collision has created the world's highest mountains and causes slips on major faults that generate large, often devastating earthquakes. Every few years a powerful earthquake causes significant damage or fatalities. New construction needs to be designed to accommodate the hazards posed by strong earthquakes. The U.S. Geological Survey has developed a preliminary seismic-hazard map of Afghanistan. Although the map is generalized, it provides government officials, engineers, and private companies who are interested in participating in Afghanistan's growth with crucial information about the location and nature of seismic hazards.
Articulated Non-Rigid Point Set Registration for Human Pose Estimation from 3D Sensors
Ge, Song; Fan, Guoliang
2015-01-01
We propose a generative framework for 3D human pose estimation that is able to operate on both individual point sets and sequential depth data. We formulate human pose estimation as a point set registration problem, where we propose three new approaches to address several major technical challenges in this research. First, we integrate two registration techniques that have a complementary nature to cope with non-rigid and articulated deformations of the human body under a variety of poses. This unique combination allows us to handle point sets of complex body motion and large pose variation without any initial conditions, as required by most existing approaches. Second, we introduce an efficient pose tracking strategy to deal with sequential depth data, where the major challenge is the incomplete data due to self-occlusions and view changes. We introduce a visible point extraction method to initialize a new template for the current frame from the previous frame, which effectively reduces the ambiguity and uncertainty during registration. Third, to support robust and stable pose tracking, we develop a segment volume validation technique to detect tracking failures and to re-initialize pose registration if needed. The experimental results on both benchmark 3D laser scan and depth datasets demonstrate the effectiveness of the proposed framework when compared with state-of-the-art algorithms. PMID:26131673
Project Fox: Assessing Risks Posed By Asteroids
NASA Astrophysics Data System (ADS)
Reinhardt, J.; Chen, X.; Liu, W.; Manchev, P.; Paté-Cornell, M.
2013-12-01
In order to make decisions on how to invest limited research dollars on asteroid surveillance and mitigation options, an analytic understanding of the risks posed by impacts is necessary. Qualitative and quantitative studies have been performed to assess such risks, and some reasonable point estimates have been proposed. However, since consequential asteroid impacts tend to be rare events, point estimates and expected annual death rates do not adequately convey the heavy tail of the distribution, potentially leading to misguided resource allocations. We propose and develop a framework for new risk measures, including a distribution over the number of fatalities from asteroid impacts and the probability of a globally consequential impact. We implement a simulation of asteroid impacts using probabilistic inputs for impactor characteristics, and a Poisson process for asteroid arrivals over the next 100 years. Simulation results indicate that a significant portion of the risk to humans comes from asteroids in the 300-1000 meter diameter range; this is because asteroid impacts in this range can produce global effects, and are more frequent than those from asteroids greater than 1km in diameter. The relative importance of this size regime in overall asteroid impact risk is robust in simulation results, and we find the magnitude of risks is still sensitive to factors that contribute global effects from an asteroid impact. Initial results are provided on the sensitivity of impact risks to various mitigation measures, including 'civil defense' methods. These results underscore the need for next-generation survey missions, and can help provide the basis for setting future space telescope observation requirements.
Transfer between Pose and Illumination Training in Face Recognition
ERIC Educational Resources Information Center
Liu, Chang Hong; Bhuiyan, Md. Al-Amin; Ward, James; Sui, Jie
2009-01-01
The relationship between pose and illumination learning in face recognition was examined in a yes-no recognition paradigm. The authors assessed whether pose training can transfer to a new illumination or vice versa. Results show that an extensive level of pose training through a face-name association task was able to generalize to a new…
Incorporating structure from motion uncertainty into image-based pose estimation
NASA Astrophysics Data System (ADS)
Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen
2015-05-01
A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.
Spatio-Temporal Matching for Human Pose Estimation in Video.
Zhou, Feng; Torre, Fernando De la
2016-08-01
Detection and tracking humans in videos have been long-standing problems in computer vision. Most successful approaches (e.g., deformable parts models) heavily rely on discriminative models to build appearance detectors for body joints and generative models to constrain possible body configurations (e.g., trees). While these 2D models have been successfully applied to images (and with less success to videos), a major challenge is to generalize these models to cope with camera views. In order to achieve view-invariance, these 2D models typically require a large amount of training data across views that is difficult to gather and time-consuming to label. Unlike existing 2D models, this paper formulates the problem of human detection in videos as spatio-temporal matching (STM) between a 3D motion capture model and trajectories in videos. Our algorithm estimates the camera view and selects a subset of tracked trajectories that matches the motion of the 3D model. The STM is efficiently solved with linear programming, and it is robust to tracking mismatches, occlusions and outliers. To the best of our knowledge this is the first paper that solves the correspondence between video and 3D motion capture data for human pose detection. Experiments on the CMU motion capture, Human3.6M, Berkeley MHAD and CMU MAD databases illustrate the benefits of our method over state-of-the-art approaches. PMID:26863647
Plantard, Pierre; Auvinet, Edouard; Pierres, Anne-Sophie Le; Multon, Franck
2015-01-01
Analyzing human poses with a Kinect is a promising method to evaluate potentials risks of musculoskeletal disorders at workstations. In ecological situations, complex 3D poses and constraints imposed by the environment make it difficult to obtain reliable kinematic information. Thus, being able to predict the potential accuracy of the measurement for such complex 3D poses and sensor placements is challenging in classical experimental setups. To tackle this problem, we propose a new evaluation method based on a virtual mannequin. In this study, we apply this method to the evaluation of joint positions (shoulder, elbow, and wrist), joint angles (shoulder and elbow), and the corresponding RULA (a popular ergonomics assessment grid) upper-limb score for a large set of poses and sensor placements. Thanks to this evaluation method, more than 500,000 configurations have been automatically tested, which would be almost impossible to evaluate with classical protocols. The results show that the kinematic information obtained by the Kinect software is generally accurate enough to fill in ergonomic assessment grids. However inaccuracy strongly increases for some specific poses and sensor positions. Using this evaluation method enabled us to report configurations that could lead to these high inaccuracies. As a supplementary material, we provide a software tool to help designers to evaluate the expected accuracy of this sensor for a set of upper-limb configurations. Results obtained with the virtual mannequin are in accordance with those obtained from a real subject for a limited set of poses and sensor placements. PMID:25599426
An Improvement of Pose Measurement Method Using Global Control Points Calibration
Sun, Changku; Sun, Pengfei; Wang, Peng
2015-01-01
During the last decade pose measurement technologies have gained an increasing interest in the computer vision. The vision-based pose measurement method has been widely applied in complex environments. However, the pose measurement error is a problem in the measurement applications. It grows rapidly with increasing measurement range. In order to meet the demand of high accuracy in large measurement range, a measurement error reduction solution to the vision-based pose measurement method, called Global Control Point Calibration (GCPC), is proposed. GCPC is an optimized process of existing visual pose measurement methods. The core of GCPC is to divide the measurement error into two types: the control point error and the control space error. Then by creating the global control points as well as performing error calibration of object pose, the two errors are processed. The control point error can be eliminated and the control space error is minimized. GCPC is experimented on the moving target in the camera’s field of view. The results show that the RMS error is 0.175° in yaw angle, 0.189° in pitch angle, and 0.159° in roll angle, which demonstrate that GCPC works effectively and stably. PMID:26207825
When a Problem Is More than a Teacher's Question
ERIC Educational Resources Information Center
Olson, Jo Clay; Knott, Libby
2013-01-01
Not only are the problems teachers pose throughout their teaching of great importance but also the ways in which they use those problems make this a critical component of teaching. A problem-posing episode includes the problem setup, the statement of the problem, and the follow-up questions. Analysis of problem-posing episodes of precalculus…
Global regular solutions for the 3D Kawahara equation posed on unbounded domains
NASA Astrophysics Data System (ADS)
Larkin, Nikolai A.; Simões, Márcio Hiran
2016-08-01
An initial boundary value problem for the 3D Kawahara equation posed on a channel-type domain was considered. The existence and uniqueness results for global regular solutions as well as exponential decay of small solutions in the H 2-norm were established.
Global regular solutions for the 3D Zakharov-Kuznetsov equation posed on unbounded domains
NASA Astrophysics Data System (ADS)
Larkin, N. A.
2015-09-01
An initial-boundary value problem for the 3D Zakharov-Kuznetsov equation posed on unbounded domains is considered. Existence and uniqueness of a global regular solution as well as exponential decay of the H2-norm for small initial data are proven.
The lighter side of advertising: investigating posing and lighting biases.
Thomas, Nicole A; Burkitt, Jennifer A; Patrick, Regan E; Elias, Lorin J
2008-11-01
People tend to display the left cheek when posing for a portrait; however, this effect does not appear to generalise to advertising. The amount of body visible in the image and the sex of the poser might also contribute to the posing bias. Portraits also exhibit lateral lighting biases, with most images being lit from the left. This effect might also be present in advertisements. A total of 2801 full-page advertisements were sampled and coded for posing direction, lighting direction, sex of model, and amount of body showing. Images of females showed an overall leftward posing bias, but the biases in males depended on the amount of body visible. Males demonstrated rightward posing biases for head-only images. Overall, images tended to be lit from the top left corner. The two factors of posing and lighting biases appear to influence one another. Leftward-lit images had more leftward poses than rightward, while the opposite occurred for rightward-lit images. Collectively, these results demonstrate that the posing biases in advertisements are dependent on the amount of body showing in the image, and that biases in lighting direction interact with these posing biases. PMID:18686164
Asynchronous vehicle pose correction using visual detection of ground features
NASA Astrophysics Data System (ADS)
Harnarinesingh, Randy E. S.; Syan, Chanan S.
2014-07-01
The inherent noise associated with odometry manifests itself as errors in localization for autonomous vehicles. Visual odometry has been previously used in order to supplement classical vehicle odometry. However, visual odometry is limited in its ability to reduce errors in localization for large travel distances that entail the cumulative summing of individual frame-to-frame image errors. In this paper, a novel machine vision approach for tiled surfaces is proposed to address this problem. Tile edges in a laboratory environment are used to define a travel trajectory for the Quansar Qbot (autonomous vehicle) built on the iRobot iRoomba platform with a forward facing camera. Tile intersections are used to enable asynchronous error recovery for vehicle position and orientation. The proposed approach employs real-time image classification and is feasible for error mitigation for large travel distances. The average position error for an 8m travel distance using classical odometry was measured to be 0.28m. However, implementation of the proposed approach resulted in an error of 0.028m. The proposed approach therefore significantly reduces pose estimation error and could be used to supplement existing modalities such as GPS and Laser-based range sensors.
Counterfeit phosphodiesterase type 5 inhibitors pose significant safety risks
Jackson, G; Arver, S; Banks, I; Stecher, V J
2010-01-01
Counterfeit drugs are inherently dangerous and a growing problem; counterfeiters are becoming increasingly sophisticated. Growth of the counterfeit medication market is attributable in part to phosphodiesterase type 5 inhibitor (PDE5i) medications for erectile dysfunction (ED). Millions of counterfeit PDE5is are seized yearly and account for the bulk of all counterfeit pharmaceutical product seizures. It has been estimated that up to 2.5 million men in Europe are exposed to illicit sildenafil, suggesting that there may be as many illegal as legal users of sildenafil. Analysis of the contents of counterfeit PDE5is shows inconsistent doses of active pharmaceutical ingredients (from 0% to > 200% of labelled dose), contaminants (including talcum powder, commercial paint and printer ink) and alternative ingredients that are potentially hazardous. In one analysis, only 10.1% of samples were within 10% of the labelled tablet strength. Estimates place the proportion of counterfeit medications sold over the Internet from 44% to 90%. Of men who purchase prescription-only medication for ED without a prescription, 67% do so using the Internet. Counterfeit PDE5is pose direct and indirect risks to health, including circumvention of the healthcare system. More than 30% of men reported no healthcare interaction when purchasing ED medications. Because > 65% actually had ED, these men missed an opportunity for evaluation of comorbidities (e.g. diabetes and hypertension). Globally, increased obstacles for counterfeiters are necessary to combat pharmaceutical counterfeiting, including fines and penalties. The worldwide nature of the counterfeit problem requires proper coordination between countries to ensure adequate enforcement. Locally, physicians who treat ED need to inform patients of the dangers of ordering PDE5is via the Internet. PMID:20088883
Counterfeit phosphodiesterase type 5 inhibitors pose significant safety risks.
Jackson, G; Arver, S; Banks, I; Stecher, V J
2010-03-01
Counterfeit drugs are inherently dangerous and a growing problem; counterfeiters are becoming increasingly sophisticated. Growth of the counterfeit medication market is attributable in part to phosphodiesterase type 5 inhibitor (PDE5i) medications for erectile dysfunction (ED). Millions of counterfeit PDE5is are seized yearly and account for the bulk of all counterfeit pharmaceutical product seizures. It has been estimated that up to 2.5 million men in Europe are exposed to illicit sildenafil, suggesting that there may be as many illegal as legal users of sildenafil. Analysis of the contents of counterfeit PDE5is shows inconsistent doses of active pharmaceutical ingredients (from 0% to > 200% of labelled dose), contaminants (including talcum powder, commercial paint and printer ink) and alternative ingredients that are potentially hazardous. In one analysis, only 10.1% of samples were within 10% of the labelled tablet strength. Estimates place the proportion of counterfeit medications sold over the Internet from 44% to 90%. Of men who purchase prescription-only medication for ED without a prescription, 67% do so using the Internet. Counterfeit PDE5is pose direct and indirect risks to health, including circumvention of the healthcare system. More than 30% of men reported no healthcare interaction when purchasing ED medications. Because > 65% actually had ED, these men missed an opportunity for evaluation of comorbidities (e.g. diabetes and hypertension). Globally, increased obstacles for counterfeiters are necessary to combat pharmaceutical counterfeiting, including fines and penalties. The worldwide nature of the counterfeit problem requires proper coordination between countries to ensure adequate enforcement. Locally, physicians who treat ED need to inform patients of the dangers of ordering PDE5is via the Internet. PMID:20088883
A Survey on Model Based Approaches for 2D and 3D Visual Human Pose Recovery
Perez-Sala, Xavier; Escalera, Sergio; Angulo, Cecilio; Gonzàlez, Jordi
2014-01-01
Human Pose Recovery has been studied in the field of Computer Vision for the last 40 years. Several approaches have been reported, and significant improvements have been obtained in both data representation and model design. However, the problem of Human Pose Recovery in uncontrolled environments is far from being solved. In this paper, we define a general taxonomy to group model based approaches for Human Pose Recovery, which is composed of five main modules: appearance, viewpoint, spatial relations, temporal consistence, and behavior. Subsequently, a methodological comparison is performed following the proposed taxonomy, evaluating current SoA approaches in the aforementioned five group categories. As a result of this comparison, we discuss the main advantages and drawbacks of the reviewed literature. PMID:24594613
Animated pose templates for modeling and detecting human actions.
Yao, Benjamin Z; Nie, Bruce X; Liu, Zicheng; Zhu, Song-Chun
2014-03-01
This paper presents animated pose templates (APTs) for detecting short-term, long-term, and contextual actions from cluttered scenes in videos. Each pose template consists of two components: 1) a shape template with deformable parts represented in an And-node whose appearances are represented by the Histogram of Oriented Gradient (HOG) features, and 2) a motion template specifying the motion of the parts by the Histogram of Optical-Flows (HOF) features. A shape template may have more than one motion template represented by an Or-node. Therefore, each action is defined as a mixture (Or-node) of pose templates in an And-Or tree structure. While this pose template is suitable for detecting short-term action snippets in two to five frames, we extend it in two ways: 1) For long-term actions, we animate the pose templates by adding temporal constraints in a Hidden Markov Model (HMM), and 2) for contextual actions, we treat contextual objects as additional parts of the pose templates and add constraints that encode spatial correlations between parts. To train the model, we manually annotate part locations on several keyframes of each video and cluster them into pose templates using EM. This leaves the unknown parameters for our learning algorithm in two groups: 1) latent variables for the unannotated frames including pose-IDs and part locations, 2) model parameters shared by all training samples such as weights for HOG and HOF features, canonical part locations of each pose, coefficients penalizing pose-transition and part-deformation. To learn these parameters, we introduce a semi-supervised structural SVM algorithm that iterates between two steps: 1) learning (updating) model parameters using labeled data by solving a structural SVM optimization, and 2) imputing missing variables (i.e., detecting actions on unlabeled frames) with parameters learned from the previous step and progressively accepting high-score frames as newly labeled examples. This algorithm belongs to a
A novel regularization method for optical flow-based head pose estimation
NASA Astrophysics Data System (ADS)
Vater, Sebastian; Mann, Guillermo; Puente León, Fernando
2015-05-01
This paper presents a method for appearance-based 3D head pose tracking utilizing optical flow computation. The task is to recover the head pose parameters for extreme head pose angles based on 2D images. A novel method is presented that enables a robust recovery of the full motion by employing a motion-dependent regulatory term within the optical flow algorithm. Thereby, the rigid motion parameters are coupled directly with a regulatory term in the image alignment method affecting translation and rotation independently. The ill-conditioned, nonlinear optimization problem is stabilized by the proposed regulatory term yielding suitable conditioning of the Hessian matrix. It is shown that the regularization corresponding to the motion parameters can be extended to full 3D motion consisting of six parameters. Experiments on the Boston University head pose dataset demonstrate the enhancement of robustness in head pose estimation compared to conventional regularization methods. Using well-defined values for the regulatory parameters, the proposed method shows significant improvement in headtracking scenarios in terms of accuracy compared to existing methods.
Depth consistency evaluation for error-pose detection
NASA Astrophysics Data System (ADS)
Jin, Sou-Young; Choi, Ho-Jin; Iraqi, Youssef
2013-12-01
With the development of depth sensors, i.e. Kinect, it is now possible to predict human body poses from a depthmap without any manual labeling. The predicted poses can be used as meaningful features for many applications such as human action recognition. However, existing pose estimation algorithms are not perfect, which can seriously affect the performance of its following applications. In this paper, we propose a novel method to detect erroneous poses. Human poses are captured by Kinect SDK which predicts body joints and connects them with straight lines to represent a pose. We observe depth gradient of pixels located on a body part is consistent when the body part is predicted correctly. With this observation, our algorithm examines depth gradients of pixels on each body part. During the depth gradient processing, our algorithm also considers occlusions. Once a sudden change is detected in depth values on a body part, we check whether the gradient is still consistent excluding the sudden change region. We tested our algorithm on many human activities and our experimental results show that our algorithm acceptably detects erroneous poses in real time.
Quaternion epipolar decomposition for camera pose identification and animation
NASA Astrophysics Data System (ADS)
Skarbek, W.; Tomaszewski, M.
2013-03-01
In the literature of computer vision, computer graphics and robotics, the use of quaternions is exclusively related to 3D rotation representation and interpolation. In this research we found how epipoles in multi-camera systems can be used to represent camera poses in the quaternion domain. The rotational quaternion is decomposed in two epipole rotational quaternions and one z axis rotational quaternion. Quadratic form of the essential matrix is also related to quaternion factors. Thus, five pose parameters are distributed into three independent rotational quaternions resulting in measurement error separation at camera pose identification and greater flexibility at virtual camera animation. The experimental results refer to the design of free viewpoint television.
MS Stem Cell Therapy Succeeds but Poses Risks
... nih.gov/medlineplus/news/fullstory_159285.html MS Stem Cell Therapy Succeeds But Poses Risks Toxic side ... HealthDay News) -- A treatment combining chemotherapy and a stem cell transplant could represent a major advance against ...
Sprained Ankle Could Pose Longer-Term Harms to Health
... Sprained Ankle Could Pose Longer-Term Harms to Health Study finds link between adult injury, more heart ... or federal policy. Recent Health News Related MedlinePlus Health Topics Ankle Injuries and Disorders Sprains and Strains ...
Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation
NASA Technical Reports Server (NTRS)
Rakoczy, John; Herren, Kenneth
2007-01-01
A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
32. BUCKET POSING OVER CARGO HOLD; NOTE OPERATOR OVER BUCKET. ...
32. BUCKET POSING OVER CARGO HOLD; NOTE OPERATOR OVER BUCKET. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH
Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation
NASA Technical Reports Server (NTRS)
Rakoczy, John M.; Herren, Kenneth A.
2008-01-01
A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
MS Stem Cell Therapy Succeeds but Poses Risks
... page: https://medlineplus.gov/news/fullstory_159285.html MS Stem Cell Therapy Succeeds But Poses Risks Toxic ... transplant could represent a major advance against aggressive multiple sclerosis, experts say. This new treatment destroys the immune ...
Vision-based pose estimation for cooperative space objects
NASA Astrophysics Data System (ADS)
Zhang, Haopeng; Jiang, Zhiguo; Elgammal, Ahmed
2013-10-01
Imaging sensors are widely used in aerospace recently. In this paper, a vision-based approach for estimating the pose of cooperative space objects is proposed. We learn generative model for each space object based on homeomorphic manifold analysis. Conceptual manifold is used to represent pose variation of captured images of the object in visual space, and nonlinear functions mapping between conceptual manifold representation and visual inputs are learned. Given such learned model, we estimate the pose of a new image by minimizing a reconstruction error via a traversal procedure along the conceptual manifold. Experimental results on the simulated image dataset show that our approach is effective for 1D and 2D pose estimation.
Accurate pose estimation using single marker single camera calibration system
NASA Astrophysics Data System (ADS)
Pati, Sarthak; Erat, Okan; Wang, Lejing; Weidert, Simon; Euler, Ekkehard; Navab, Nassir; Fallavollita, Pascal
2013-03-01
Visual marker based tracking is one of the most widely used tracking techniques in Augmented Reality (AR) applications. Generally, multiple square markers are needed to perform robust and accurate tracking. Various marker based methods for calibrating relative marker poses have already been proposed. However, the calibration accuracy of these methods relies on the order of the image sequence and pre-evaluation of pose-estimation errors, making the method offline. Several studies have shown that the accuracy of pose estimation for an individual square marker depends on camera distance and viewing angle. We propose a method to accurately model the error in the estimated pose and translation of a camera using a single marker via an online method based on the Scaled Unscented Transform (SUT). Thus, the pose estimation for each marker can be estimated with highly accurate calibration results independent of the order of image sequences compared to cases when this knowledge is not used. This removes the need for having multiple markers and an offline estimation system to calculate camera pose in an AR application.
Improvements in intrinsic feature pose measurement for awake animal imaging
J.S. Goddard, J.S. Baba, S.J. Lee, A.G. Weisenberger, A. Stolin, J. McKisson, M.F. Smith
2011-06-01
Development has continued with intrinsic feature optical motion tracking for awake animal imaging to measure 3D position and orientation (pose) for motion compensated reconstruction. Prior imaging results have been directed towards head motion measurement for SPECT brain studies in awake unrestrained mice. This work improves on those results in extracting and tracking intrinsic features from multiple camera images and computing pose changes from the tracked features over time. Previously, most motion tracking for 3D imaging has been limited to measuring extrinsic features such as retro-reflective markers applied to an animal's head. While this approach has been proven to be accurate, the use of external markers is undesirable for several reasons. The intrinsic feature approach has been further developed from previous work to provide full pose measurements for a live mouse scan. Surface feature extraction, matching, and pose change calculation with point tracking and accuracy results are described. Experimental pose calculation and 3D reconstruction results from live images are presented.
Improvements in Intrinsic Feature Pose Measurement for Awake Animal Imaging
Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon; Weisenberger, A G; McKisson, J; Smith, M F; Stolin, Alexander
2010-01-01
Development has continued with intrinsic feature optical motion tracking for awake animal imaging to measure 3D position and orientation (pose) for motion compensated reconstruction. Prior imaging results have been directed towards head motion measurement for SPECT brain studies in awake unrestrained mice. This work improves on those results in extracting and tracking intrinsic features from multiple camera images and computing pose changes from the tracked features over time. Previously, most motion tracking for 3D imaging has been limited to measuring extrinsic features such as retro-reflective markers applied to an animal s head. While this approach has been proven to be accurate, the use of external markers is undesirable for several reasons. The intrinsic feature approach has been further developed from previous work to provide full pose measurements for a live mouse scan. Surface feature extraction, matching, and pose change calculation with point tracking and accuracy results are described. Experimental pose calculation and 3D reconstruction results from live images are presented.
Jain, Ajay N.
2009-01-01
Computational methods for docking ligands have been shown to be remarkably dependent on precise protein conformation, where acceptable results in pose prediction have been generally possible only in the artificial case of re-docking a ligand into a protein binding site whose conformation was determined in the presence of the same ligand (the “cognate” docking problem). In such cases, on well curated protein/ligand complexes, accurate dockings can be returned as top-scoring over 75% of the time using tools such as Surflex-Dock. A critical application of docking in modeling for lead optimization requires accurate pose prediction for novel ligands, ranging from simple synthetic analogs to very different molecular scaffolds. Typical results for widely used programs in the “cross-docking case” (making use of a single fixed protein conformation) have rates closer to 20% success. By making use of protein conformations from multiple complexes, Surflex-Dock yields an average success rate of 61% across eight pharmaceutically relevant targets. Following docking, protein pocket adaptation and rescoring identifies single pose families that are correct an average of 67% of the time. Consideration of the best of two pose families (from alternate scoring regimes) yields a 75% mean success rate. PMID:19340588
Particle Filters and Occlusion Handling for Rigid 2D-3D Pose Tracking.
Lee, Jehoon; Sandhu, Romeil; Tannenbaum, Allen
2013-08-01
In this paper, we address the problem of 2D-3D pose estimation. Specifically, we propose an approach to jointly track a rigid object in a 2D image sequence and to estimate its pose (position and orientation) in 3D space. We revisit a joint 2D segmentation/3D pose estimation technique, and then extend the framework by incorporating a particle filter to robustly track the object in a challenging environment, and by developing an occlusion detection and handling scheme to continuously track the object in the presence of occlusions. In particular, we focus on partial occlusions that prevent the tracker from extracting an exact region properties of the object, which plays a pivotal role for region-based tracking methods in maintaining the track. To this end, a dynamical choice of how to invoke the objective functional is performed online based on the degree of dependencies between predictions and measurements of the system in accordance with the degree of occlusion and the variation of the object's pose. This scheme provides the robustness to deal with occlusions of an obstacle with different statistical properties from that of the object of interest. Experimental results demonstrate the practical applicability and robustness of the proposed method in several challenging scenarios. PMID:24058277
Vision based object pose estimation for mobile robots
NASA Technical Reports Server (NTRS)
Wu, Annie; Bidlack, Clint; Katkere, Arun; Feague, Roy; Weymouth, Terry
1994-01-01
Mobile robot navigation using visual sensors requires that a robot be able to detect landmarks and obtain pose information from a camera image. This paper presents a vision system for finding man-made markers of known size and calculating the pose of these markers. The algorithm detects and identifies the markers using a weighted pattern matching template. Geometric constraints are then used to calculate the position of the markers relative to the robot. The selection of geometric constraints comes from the typical pose of most man-made signs, such as the sign standing vertical and the dimensions of known size. This system has been tested successfully on a wide range of real images. Marker detection is reliable, even in cluttered environments, and under certain marker orientations, estimation of the orientation has proven accurate to within 2 degrees, and distance estimation to within 0.3 meters.
ULTOR passive pose and position engine for spacecraft relative navigation
NASA Astrophysics Data System (ADS)
Hannah, S. Joel
2008-04-01
The ULTORÂ® Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTORÂ® P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTORÂ® P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTORÂ® P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTORÂ® P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.
Learning a Tracking and Estimation Integrated Graphical Model for Human Pose Tracking.
Zhao, Lin; Gao, Xinbo; Tao, Dacheng; Li, Xuelong
2015-12-01
We investigate the tracking of 2-D human poses in a video stream to determine the spatial configuration of body parts in each frame, but this is not a trivial task because people may wear different kinds of clothing and may move very quickly and unpredictably. The technology of pose estimation is typically applied, but it ignores the temporal context and cannot provide smooth, reliable tracking results. Therefore, we develop a tracking and estimation integrated model (TEIM) to fully exploit temporal information by integrating pose estimation with visual tracking. However, joint parsing of multiple articulated parts over time is difficult, because a full model with edges capturing all pairwise relationships within and between frames is loopy and intractable. In previous models, approximate inference was usually resorted to, but it cannot promise good results and the computational cost is large. We overcome these problems by exploring the idea of divide and conquer, which decomposes the full model into two much simpler tractable submodels. In addition, a novel two-step iteration strategy is proposed to efficiently conquer the joint parsing problem. Algorithmically, we design TEIM very carefully so that: 1) it enables pose estimation and visual tracking to compensate for each other to achieve desirable tracking results; 2) it is able to deal with the problem of tracking loss; and 3) it only needs past information and is capable of tracking online. Experiments are conducted on two public data sets in the wild with ground truth layout annotations, and the experimental results indicate the effectiveness of the proposed TEIM framework. PMID:25826809
Pose estimation and frontal face detection for face recognition
NASA Astrophysics Data System (ADS)
Lim, Eng Thiam; Wang, Jiangang; Xie, Wei; Ronda, Venkarteswarlu
2005-05-01
This paper proposes a pose estimation and frontal face detection algorithm for face recognition. Considering it's application in a real-world environment, the algorithm has to be robust yet computationally efficient. The main contribution of this paper is the efficient face localization, scale and pose estimation using color models. Simulation results showed very low computational load when compare to other face detection algorithm. The second contribution is the introduction of low dimensional statistical face geometrical model. Compared to other statistical face model the proposed method models the face geometry efficiently. The algorithm is demonstrated on a real-time system. The simulation results indicate that the proposed algorithm is computationally efficient.
43. Historic photo of Bruce Lundin posing in front of ...
43. Historic photo of Bruce Lundin posing in front of observation window in exhaust cone at base of test stand A in Building 202, September 1960. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA photo number C-53170. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
Gender vs. Power: Self-Posed Behavior Revisited.
ERIC Educational Resources Information Center
Willson, Amanda; Lloyd, Barbara
1990-01-01
In a replication of Mills's study of sex differences in self-posing behavior (1984), 1,659 female and 1,760 male undergraduate students from art schools and science schools at the University of Sussex were photographed. Arts students of both sexes displayed stereotypically female nonverbal behavior, suggesting field of study as a more reliable…
Articulated and Generalized Gaussian Kernel Correlation for Human Pose Estimation.
Ding, Meng; Fan, Guoliang
2016-02-01
In this paper, we propose an articulated and generalized Gaussian kernel correlation (GKC)-based framework for human pose estimation. We first derive a unified GKC representation that generalizes the previous sum of Gaussians (SoG)-based methods for the similarity measure between a template and an observation both of which are represented by various SoG variants. Then, we develop an articulated GKC (AGKC) by integrating a kinematic skeleton in a multivariate SoG template that supports subject-specific shape modeling and articulated pose estimation for both the full body and the hands. We further propose a sequential (body/hand) pose tracking algorithm by incorporating three regularization terms in the AGKC function, including visibility, intersection penalty, and pose continuity. Our tracking algorithm is simple yet effective and computationally efficient. We evaluate our algorithm on two benchmark depth data sets. The experimental results are promising and competitive when compared with the state-of-the-art algorithms. PMID:26672042
Optical neural network system for pose determination of spinning satellites
NASA Technical Reports Server (NTRS)
Lee, Andrew; Casasent, David
1990-01-01
An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.
Lessons about Climate Change Pose Many Challenges for Science Teachers
ERIC Educational Resources Information Center
Cavanagh, Sean
2007-01-01
This article reports on lessons about climate change which pose many challenges for science teachers. The natural world today offers a broad--and dire--catalog of scientific phenomena for teachers wanting to craft classroom lessons on the topic of climate change. As public concern about global warming increases, teachers are carving out a larger…
ADHD Meds May Pose Heart Risks for Some Kids
... page: https://medlineplus.gov/news/fullstory_159140.html ADHD Meds May Pose Heart Risks for Some Kids ... HealthDay News) -- Ritalin, a popular drug for treating attention-deficit hyperactivity disorder (ADHD), might increase the risk of an abnormal ...
Online Professors Pose as Students to Encourage Real Learning
ERIC Educational Resources Information Center
Parry, Marc
2009-01-01
Some professors of online courses are posing as students, infiltrating online course to collect information about students by blending in with them. The deceit has provoked questions about faculty ethics. Two professors admit that their unreal students teeter on an ethical precipice, because the technique could be abused. Others in the…
Developing rigid constraint for the estimation of pose and structure from a single image.
Wei, Bao-Gang; Liu, Yong-Huai
2004-07-01
Pose and structure estimation from a single image is a fundamental problem in machine vision and multiple sensor fusion and integration. In this paper we propose using rigid constraints described in different coordinate frames to iteratively estimate structural and camera pose parameters. Using geometric properties of reflected correspondences we put forward a new concept, the reflected pole of a rigid transformation. The reflected pole represents a general analysis of transformations that can be applied to both 2D and 3D transformations. We demonstrate how the concept is applied to calibration by proposing an iterative method to estimate the structural parameters of objects. The method is based on a coarse-to-fine strategy in which initial estimation is obtained through a classical linear algorithm which is then refined by iteration. For a comparative study of performance, we also implemented an extended motion estimation algorithm (from 2D-2D to 3D-2D case) based on epipolar geometry. PMID:15495305
Wheel pose measurement based on cross structure light
NASA Astrophysics Data System (ADS)
Zhao, Qiancheng; Ding, Xun; Wang, Xian; Zhao, Yafeng
2016-01-01
It's necessary for automobile to detect and adjust four-wheel alignment parameters regularly, due to the significant effect on improving stability, enhancing security and reducing tire wear of automobiles. In order to measure the parameters that determined by relative position and posture of four wheels to the automobile cab, this paper proposes a method which applies monocular vision of linear structure light to wheel pose measurement. Firstly, space coordinates of feature point cloud are calculated out from the principle of structured light. Then, an algorithm is designed to determine the normal vector of wheel tangent plane and measure the wheel pose. Finally, actual experiments that by evaluation of adjusted wheel angle measurement are carried out to verify the system accuracy. The corresponding studies can be applied in designing and developing 3D four-wheel alignment system that based on structured light.
A new full pose measurement method for robot calibration.
Nguyen, Hoai-Nhan; Zhou, Jian; Kang, Hee-Jun
2013-01-01
Identification of robot kinematic errors during the calibration process often requires accurate full pose measurements (position and orientation) of robot end-effectors in Cartesian space. This paper proposes a new method of full pose measurement of robot end-effectors for calibration. This method is based on an analysis of the features of a set of target points (placed on a rotating end-effector) on a circular trajectory. The accurate measurement is validated by computational simulation results from the Puma robot. Moreover, experimental calibration and validation results for the Hyundai HA-06 robot prove the effectiveness, correctness, and reliability of the proposed method. This method can be applied to robots that have entirely revolute joints or to robots for which only the last joint is revolute. PMID:23863856
Robust feature tracking for endoscopic pose estimation and structure recovery
NASA Astrophysics Data System (ADS)
Speidel, S.; Krappe, S.; Röhl, S.; Bodenstedt, S.; Müller-Stich, B.; Dillmann, R.
2013-03-01
Minimally invasive surgery is a highly complex medical discipline with several difficulties for the surgeon. To alleviate these difficulties, augmented reality can be used for intraoperative assistance. For visualization, the endoscope pose must be known which can be acquired with a SLAM (Simultaneous Localization and Mapping) approach using the endoscopic images. In this paper we focus on feature tracking for SLAM in minimally invasive surgery. Robust feature tracking and minimization of false correspondences is crucial for localizing the endoscope. As sensory input we use a stereo endoscope and evaluate different feature types in a developed SLAM framework. The accuracy of the endoscope pose estimation is validated with synthetic and ex vivo data. Furthermore we test the approach with in vivo image sequences from da Vinci interventions.
Challenges posed by extracellular vesicles from eukaryotic microbes
Wolf, Julie M.; Casadevall, Arturo
2014-01-01
Extracellular vesicles (EV) produced by eukaryotic microbes play an important role during infection. EV release is thought to benefit microbial invasion by delivering a high concentration of virulence factors to distal host cells or to the cytoplasm of a host cell. EV can significantly impact the outcome of host-pathogen interaction in a cargo-dependent manner. Release of EV from eukaryotic microbes poses unique challenges when compared to their bacterial or archaeal counterparts. Firstly, the membrane-bound organelles within eukaryotes facilitate multiple mechanisms of vesicle generation. Secondly, the fungal cell wall poses a unique barrier between the vesicle release site at the plasma membrane and its destined extracellular environment. This review focuses on these eukaryotic-specific aspects of vesicle synthesis and release. PMID:25460799
21. Dr. Harrison E. Stroud poses in front of his ...
21. Dr. Harrison E. Stroud poses in front of his newly completed building at the northeast corner of Central Avenue and the alley north of Washington Street in about 1900 or 1901. In 1901, the building seen here was enlarged by the construction of an addition of similar design immediately to the north (left). Virtually the entire west elevation of the initial building is depicted in this view. Credit ADLAPR. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ
Crew pose for portrait while training at KSC
NASA Technical Reports Server (NTRS)
1986-01-01
The STS 51-L crew poses for a portrait while training at Kennedy Space Center's (KSC) Launch complex 39, Pad B. They are standing in the White Room during a break in countdown training. Left to right are Teacher in Space Payload Specialist Sharon Christa McAuliffe; Payload Specialist Gregory Jarvis; and Astronauts Judith A. Resnik, mission specialist; Francis R. (Dick) Scobee, mission commander; Ronald E. McNair, mission specialist; Mike J. Smith, pilot; and Ellison S. Onizuka, mission specialist.
Teaching Human Poses Interactively to a Social Robot
Gonzalez-Pacheco, Victor; Malfaz, Maria; Fernandez, Fernando; Salichs, Miguel A.
2013-01-01
The main activity of social robots is to interact with people. In order to do that, the robot must be able to understand what the user is saying or doing. Typically, this capability consists of pre-programmed behaviors or is acquired through controlled learning processes, which are executed before the social interaction begins. This paper presents a software architecture that enables a robot to learn poses in a similar way as people do. That is, hearing its teacher's explanations and acquiring new knowledge in real time. The architecture leans on two main components: an RGB-D (Red-, Green-, Blue- Depth) -based visual system, which gathers the user examples, and an Automatic Speech Recognition (ASR) system, which processes the speech describing those examples. The robot is able to naturally learn the poses the teacher is showing to it by maintaining a natural interaction with the teacher. We evaluate our system with 24 users who teach the robot a predetermined set of poses. The experimental results show that, with a few training examples, the system reaches high accuracy and robustness. This method shows how to combine data from the visual and auditory systems for the acquisition of new knowledge in a natural manner. Such a natural way of training enables robots to learn from users, even if they are not experts in robotics. PMID:24048336
Shape recognition and pose estimation for mobile Augmented Reality.
Hagbi, Nate; Bergig, Oriel; El-Sana, Jihad; Billinghurst, Mark
2011-10-01
Nestor is a real-time recognition and camera pose estimation system for planar shapes. The system allows shapes that carry contextual meanings for humans to be used as Augmented Reality (AR) tracking targets. The user can teach the system new shapes in real time. New shapes can be shown to the system frontally, or they can be automatically rectified according to previously learned shapes. Shapes can be automatically assigned virtual content by classification according to a shape class library. Nestor performs shape recognition by analyzing contour structures and generating projective-invariant signatures from their concavities. The concavities are further used to extract features for pose estimation and tracking. Pose refinement is carried out by minimizing the reprojection error between sample points on each image contour and its library counterpart. Sample points are matched by evolving an active contour in real time. Our experiments show that the system provides stable and accurate registration, and runs at interactive frame rates on a Nokia N95 mobile phone. PMID:21041876
Intrinsic Feature Pose Measurement for Awake Animal SPECT Imaging
Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon; Weisenberger, A G; Stolin, A; McKisson, J; Smith, M F
2009-01-01
New developments have been made in optical motion tracking for awake animal imaging that measures 3D position and orientation (pose) for a single photon emission computed tomography (SPECT) imaging system. Ongoing SPECT imaging research has been directed towards head motion measurement for brain studies in awake, unrestrained mice. In contrast to previous results using external markers, this work extracts and tracks intrinsic features from multiple camera images and computes relative pose from the tracked features over time. Motion tracking thus far has been limited to measuring extrinsic features such as retro-reflective markers applied to the mouse s head. While this approach has been proven to be accurate, the additional animal handling required to attach the markers is undesirable. A significant improvement in the procedure is achieved by measuring the pose of the head without extrinsic markers using only the external surface appearance. This approach is currently being developed with initial results presented here. The intrinsic features measurement extracts discrete, sparse natural features from 2D images such as eyes, nose, mouth and other visible structures. Stereo correspondence between features for a camera pair is determined for calculation of 3D positions. These features are also tracked over time to provide continuity for surface model fitting. Experimental results from live images are presented.
Pose-variant facial expression recognition using an embedded image system
NASA Astrophysics Data System (ADS)
Song, Kai-Tai; Han, Meng-Ju; Chang, Shuo-Hung
2008-12-01
In recent years, one of the most attractive research areas in human-robot interaction is automated facial expression recognition. Through recognizing the facial expression, a pet robot can interact with human in a more natural manner. In this study, we focus on the facial pose-variant problem. A novel method is proposed in this paper to recognize pose-variant facial expressions. After locating the face position in an image frame, the active appearance model (AAM) is applied to track facial features. Fourteen feature points are extracted to represent the variation of facial expressions. The distance between feature points are defined as the feature values. These feature values are sent to a support vector machine (SVM) for facial expression determination. The pose-variant facial expression is classified into happiness, neutral, sadness, surprise or anger. Furthermore, in order to evaluate the performance for practical applications, this study also built a low resolution database (160x120 pixels) using a CMOS image sensor. Experimental results show that the recognition rate is 84% with the self-built database.
A WELL-POSED KELVIN-HELMHOLTZ INSTABILITY TEST AND COMPARISON
McNally, Colin P.; Lyra, Wladimir; Passy, Jean-Claude E-mail: wlyra@jpl.nasa.gov
2012-08-01
Recently, there has been a significant level of discussion of the correct treatment of Kelvin-Helmholtz instability (KHI) in the astrophysical community. This discussion relies largely on how the KHI test is posed and analyzed. We pose a stringent test of the initial growth of the instability. The goal is to provide a rigorous methodology for verifying a code on two-dimensional KHI. We ran the problem in the Pencil Code, Athena, Enzo, NDSPMHD, and Phurbas. A strict comparison, judgment, or ranking, between codes is beyond the scope of this work, though this work provides the mathematical framework needed for such a study. Nonetheless, how the test is posed circumvents the issues raised by tests starting from a sharp contact discontinuity yet it still shows the poor performance of smoothed particle hydrodynamics (SPH). We then comment on the connection between this behavior to the underlying lack of zeroth-order consistency in SPH interpolation. We comment on the tendency of some methods, particularly those with very low numerical diffusion, to produce secondary Kelvin-Helmholtz billows on similar tests. Though the lack of a fixed, physical diffusive scale in the Euler equations lies at the root of the issue, we suggest that in some methods an extra diffusion operator should be used to damp the growth of instabilities arising from grid noise. This statement applies particularly to moving-mesh tessellation codes, but also to fixed-grid Godunov schemes.
Recognizing visual focus of attention from head pose in natural meetings.
Ba, Sileye O; Odobez, Jean-Marc
2009-02-01
We address the problem of recognizing the visual focus of attention (VFOA) of meeting participants based on their head pose. To this end, the head pose observations are modeled using a Gaussian mixture model (GMM) or a hidden Markov model (HMM) whose hidden states correspond to the VFOA. The novelties of this paper are threefold. First, contrary to previous studies on the topic, in our setup, the potential VFOA of a person is not restricted to other participants only. It includes environmental targets as well (a table and a projection screen), which increases the complexity of the task, with more VFOA targets spread in the pan as well as tilt gaze space. Second, we propose a geometric model to set the GMM or HMM parameters by exploiting results from cognitive science on saccadic eye motion, which allows the prediction of the head pose given a gaze target. Third, an unsupervised parameter adaptation step not using any labeled data is proposed, which accounts for the specific gazing behavior of each participant. Using a publicly available corpus of eight meetings featuring four persons, we analyze the above methods by evaluating, through objective performance measures, the recognition of the VFOA from head pose information obtained either using a magnetic sensor device or a vision-based tracking system. The results clearly show that in such complex but realistic situations, the VFOA recognition performance is highly dependent on how well the visual targets are separated for a given meeting participant. In addition, the results show that the use of a geometric model with unsupervised adaptation achieves better results than the use of training data to set the HMM parameters. PMID:19068430
Real-time upper-body human pose estimation from depth data using Kalman filter for simulator
NASA Astrophysics Data System (ADS)
Lee, D.; Chi, S.; Park, C.; Yoon, H.; Kim, J.; Park, C. H.
2014-08-01
Recently, many studies show that an indoor horse riding exercise has a positive effect on promoting health and diet. However, if a rider has an incorrect posture, it will be the cause of back pain. In spite of this problem, there is only few research on analyzing rider's posture. Therefore, the purpose of this study is to estimate a rider pose from a depth image using the Asus's Xtion sensor in real time. In the experiments, we show the performance of our pose estimation algorithm in order to comparing the results between our joint estimation algorithm and ground truth data.
Does air pollution pose a public health problem for New Zealand?
Scoggins, Amanda
2004-02-01
Air pollution is increasingly documented as a threat to public health and a major focus of regulatory activity in developed and developing countries. Air quality indicators suggest New Zealand has clean air relative to many other countries. However, media releases such as 'Christchurch wood fires pump out deadly smog' and 'Vehicle pollution major killer' have sparked public health concern regarding exposure to ambient air pollution, especially in anticipation of increasing emissions and population growth. Recent evidence is presented on the effects of air quality on health, which has been aided by the application of urban airshed models and Geographic Information Systems (GIS). Future directions for research into the effects of air quality on health in New Zealand are discussed, including a national ambient air quality management project: HAPINZ--Health and Air Pollution in New Zealand. PMID:15108741
Problem Posing: What Can It Tell Us about Students' Mathematical Understanding?
ERIC Educational Resources Information Center
Pirie, Susan E. B.
In 2001, at Snowbird, Utah, members of the [mu]-group from the University of British Columbia, under the guidance of Dr. Susan Pirie, engaged in an innovative, continuous session of linked papers which consider the notion and nature of mathematical understanding and reviewed a number of different theories and approaches to this phenomenon. We…
Clewley, Richard; Stupple, Edward J N
2015-01-01
Many complex work environments rely heavily on cognitive operators using rules. Operators sometimes fail to implement rules, with catastrophic human, social and economic costs. Rule-based error is widely reported, yet the mechanisms of rule vulnerability have received less attention. This paper examines rule vulnerability in the complex setting of airline transport operations. We examined 'the stable approach criteria rule', which acts as a system defence during the approach to land. The study experimentally tested whether system state complexity influenced rule failure. The results showed increased uncertainty and dynamism led to increased likelihood of rule failure. There was also an interaction effect, indicating complexity from different sources can combine to further constrain rule-based response. We discuss the results in relation to recent aircraft accidents and suggest that 'rule-based error' could be progressed to embrace rule vulnerability, fragility and failure. This better reflects the influence that system behaviour and cognitive variety have on rule-based response. Practitioner Summary: In this study, we examined mechanisms of rule vulnerability in the complex setting of airline transport operations. The results suggest work scenarios featuring high uncertainty and dynamism constrain rule-based response, leading to rules becoming vulnerable, fragile or failing completely. This has significant implications for rule-intensive, safety critical work environments. PMID:25588754
Groeger, J A
2006-01-01
Young inexperienced drivers are more likely to be involved in road traffic crashes than drivers who are older and more experienced. This paper argues that neither age nor inexperience are, in and of themselves, sufficient explanations of the association between age, experience, and casualty rates. The aim here is to consider what it is about inexperienced young drivers in particular that may increase crash risk. Evidence is reviewed showing differential sleep loss among different teenage groups, which may relate to recently presented evidence that young teenagers are more crash involved than drivers in their early twenties. Potential acute and chronic effects of sleep loss among teenagers and young adults are described. PMID:16788107
The Problem with Women? Challenges Posed by Gender for Career Guidance Practice
ERIC Educational Resources Information Center
Bimrose, Jenny; Watson, Mark; McMahon, Mary; Haasler, Simone; Tomassini, Massimo; Suzanne, Pamela A.
2014-01-01
Institutionalised discrimination continues to perpetuate deep rooted social divisions, with gender inequality persisting as a pervasive feature of labour markets across the world. Despite the depth and breadth of gender inequality, there is limited acknowledgement in career theory that the career support needs of women are distinctive. A…
Groeger, J A
2006-06-01
Young inexperienced drivers are more likely to be involved in road traffic crashes than drivers who are older and more experienced. This paper argues that neither age nor inexperience are, in and of themselves, sufficient explanations of the association between age, experience, and casualty rates. The aim here is to consider what it is about inexperienced young drivers in particular that may increase crash risk. Evidence is reviewed showing differential sleep loss among different teenage groups, which may relate to recently presented evidence that young teenagers are more crash involved than drivers in their early twenties. Potential acute and chronic effects of sleep loss among teenagers and young adults are described. PMID:16788107
Macrobend optical sensing for pose measurement in soft robot arms
NASA Astrophysics Data System (ADS)
Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar
2015-12-01
This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic
Pose estimation for one-dimensional object with general motion
NASA Astrophysics Data System (ADS)
Liu, Jinbo; Song, Ge; Zhang, Xiaohu
2014-11-01
Our primary interest is in real-time one-dimensional object's pose estimation. In this paper, a method to estimate general motion one-dimensional object's pose, that is, the position and attitude parameters, using a single camera is proposed. Centroid-movement is necessarily continuous and orderly in temporal space, which means it follows at least approximately certain motion law in a short period of time. Therefore, the centroid trajectory in camera frame can be described as a combination of temporal polynomials. Two endpoints on one-dimensional object, A and B, at each time are projected on the corresponding image plane. With the relationship between A, B and centroid C, we can obtain a linear equation system related to the temporal polynomials' coefficients, in which the camera has been calibrated and the image coordinates of A and B are known. Then in the cases that object moves continuous in natural temporal space within the view of a stationary camera, the position of endpoints on the one-dimensional object can be located and also the attitude can be estimated using two end points. Moreover the position of any other point aligned on one-dimensional object can also be solved. Scene information is not needed in the proposed method. If the distance between the endpoints is not known, a scale factor between the object's real positions and the estimated results will exist. In order to improve the algorithm's performance from accuracy and robustness, we derive a pain of linear and optimal algorithms. Simulations' and experiments' results show that the method is valid and robust with respect to various Gaussian noise levels. The paper's work contributes to making self-calibration algorithms using one-dimensional objects applicable to practice. Furthermore, the method can also be used to estimate the pose and shape parameters of parallelogram, prism or cylinder objects.
Exterior view of submarine with survey crew posed in front. ...
Exterior view of submarine with survey crew posed in front. From left to right: Todd Croteau - U.S. National Park Service, Joshua Price - U.S. Navy, Bert Ho - National Oceanic and Atmospheric Administration, Michael McCarthy - Western Australia Maritime Museum, Larry Murphy - U.S. National Park Service, Don Johnson- University of Nebraska Engineering School, James Delgado- Institute for Nautical Archeology, Jacinto Ahmendra - Government of Panama. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ
Rocky Mountain federal lands pose widespread access issues
Crow, P.
1997-02-03
The paper discusses oil and gas leasing constraints posed by federal regulations. Clinton`s executive order setting aside 1.7 million acres in Utah, a re-inventory of all Bureau of Land Management (BLM) wilderness areas in Utah, US Forest Service draft environmental impact statement regarding oil and gas leasing in the Lewis and Clark National Forest in Montana, Colorado BLM interim decision not to issue leases in areas proposed for wilderness by environmental groups, air quality issues in Wyoming, and attempts to block the completion of the Express Pipeline are some of the issues discussed.
Shen, Jie; Liu, Guangcan; Chen, Jia; Fang, Yuqiang; Xie, Jianbin; Yu, Yong; Yan, Shuicheng
2014-11-01
In this paper, we utilize structured learning to simultaneously address two intertwined problems: 1) human pose estimation (HPE) and 2) garment attribute classification (GAC), which are valuable for a variety of computer vision and multimedia applications. Unlike previous works that usually handle the two problems separately, our approach aims to produce an optimal joint estimation for both HPE and GAC via a unified inference procedure. To this end, we adopt a preprocessing step to detect potential human parts from each image (i.e., a set of candidates) that allows us to have a manageable input space. In this way, the simultaneous inference of HPE and GAC is converted to a structured learning problem, where the inputs are the collections of candidate ensembles, outputs are the joint labels of human parts and garment attributes, and joint feature representation involves various cues such as pose-specific features, garment-specific features, and cross-task features that encode correlations between human parts and garment attributes. Furthermore, we explore the strong edge evidence around the potential human parts so as to derive more powerful representations for oriented human parts. Such evidences can be seamlessly integrated into our structured learning model as a kind of energy function, and the learning process could be performed by standard structured support vector machines algorithm. However, the joint structure of the two problems is a cyclic graph, which hinders efficient inference. To resolve this issue, we compute instead approximate optima using an iterative procedure, where in each iteration, the variables of one problem are fixed. In this way, satisfactory solutions can be efficiently computed by dynamic programming. Experimental results on two benchmark data sets show the state-of-the-art performance of our approach. PMID:25248181
NASA Astrophysics Data System (ADS)
Shen, Jie; Liu, Guangcan; Chen, Jia; Fang, Yuqiang; Xie, Jianbin; Yu, Yong; Yan, Shuicheng
2014-11-01
In this paper, we utilize structured learning to simultaneously address two intertwined problems: human pose estimation (HPE) and garment attribute classification (GAC), which are valuable for a variety of computer vision and multimedia applications. Unlike previous works that usually handle the two problems separately, our approach aims to produce a jointly optimal estimation for both HPE and GAC via a unified inference procedure. To this end, we adopt a preprocessing step to detect potential human parts from each image (i.e., a set of "candidates") that allows us to have a manageable input space. In this way, the simultaneous inference of HPE and GAC is converted to a structured learning problem, where the inputs are the collections of candidate ensembles, the outputs are the joint labels of human parts and garment attributes, and the joint feature representation involves various cues such as pose-specific features, garment-specific features, and cross-task features that encode correlations between human parts and garment attributes. Furthermore, we explore the "strong edge" evidence around the potential human parts so as to derive more powerful representations for oriented human parts. Such evidences can be seamlessly integrated into our structured learning model as a kind of energy function, and the learning process could be performed by standard structured Support Vector Machines (SVM) algorithm. However, the joint structure of the two problems is a cyclic graph, which hinders efficient inference. To resolve this issue, we compute instead approximate optima by using an iterative procedure, where in each iteration the variables of one problem are fixed. In this way, satisfactory solutions can be efficiently computed by dynamic programming. Experimental results on two benchmark datasets show the state-of-the-art performance of our approach.
Exhaustive linearization for robust camera pose and focal length estimation.
Penate-Sanchez, Adrian; Andrade-Cetto, Juan; Moreno-Noguer, Francesc
2013-10-01
We propose a novel approach for the estimation of the pose and focal length of a camera from a set of 3D-to-2D point correspondences. Our method compares favorably to competing approaches in that it is both more accurate than existing closed form solutions, as well as faster and also more accurate than iterative ones. Our approach is inspired on the EPnP algorithm, a recent O(n) solution for the calibrated case. Yet we show that considering the focal length as an additional unknown renders the linearization and relinearization techniques of the original approach no longer valid, especially with large amounts of noise. We present new methodologies to circumvent this limitation termed exhaustive linearization and exhaustive relinearization which perform a systematic exploration of the solution space in closed form. The method is evaluated on both real and synthetic data, and our results show that besides producing precise focal length estimation, the retrieved camera pose is almost as accurate as the one computed using the EPnP, which assumes a calibrated camera. PMID:23969384
Pose Estimation and Mapping Using Catadioptric Cameras with Spherical Mirrors
NASA Astrophysics Data System (ADS)
Ilizirov, Grigory; Filin, Sagi
2016-06-01
Catadioptric cameras have the advantage of broadening the field of view and revealing otherwise occluded object parts. However, they differ geometrically from standard central perspective cameras because of light reflection from the mirror surface which alters the collinearity relation and introduces severe non-linear distortions of the imaged scene. Accommodating for these features, we present in this paper a novel modeling for pose estimation and reconstruction while imaging through spherical mirrors. We derive a closed-form equivalent to the collinearity principle via which we estimate the system's parameters. Our model yields a resection-like solution which can be developed into a linear one. We show that accurate estimates can be derived with only a small set of control points. Analysis shows that control configuration in the orientation scheme is rather flexible and that high levels of accuracy can be reached in both pose estimation and mapping. Clearly, the ability to model objects which fall outside of the immediate camera field-of-view offers an appealing means to supplement 3-D reconstruction and modeling.
Efficient human pose estimation from single depth images.
Shotton, Jamie; Girshick, Ross; Fitzgibbon, Andrew; Sharp, Toby; Cook, Mat; Finocchio, Mark; Moore, Richard; Kohli, Pushmeet; Criminisi, Antonio; Kipman, Alex; Blake, Andrew
2013-12-01
We describe two new approaches to human pose estimation. Both can quickly and accurately predict the 3D positions of body joints from a single depth image without using any temporal information. The key to both approaches is the use of a large, realistic, and highly varied synthetic set of training images. This allows us to learn models that are largely invariant to factors such as pose, body shape, field-of-view cropping, and clothing. Our first approach employs an intermediate body parts representation, designed so that an accurate per-pixel classification of the parts will localize the joints of the body. The second approach instead directly regresses the positions of body joints. By using simple depth pixel comparison features and parallelizable decision forests, both approaches can run super-real time on consumer hardware. Our evaluation investigates many aspects of our methods, and compares the approaches to each other and to the state of the art. Results on silhouettes suggest broader applicability to other imaging modalities. PMID:24136424
Efficient Human Pose Estimation from Single Depth Images.
Shotton, Jamie; Girshick, Ross; Fitzgibbon, Andrew; Sharp, Toby; Cook, Mat; Finocchio, Mark; Moore, Richard; Kohli, Pushmeet; Criminisi, Antonio; Kipman, Alex; Blake, Andrew
2012-10-26
We describe two new approaches to human pose estimation. Both can quickly and accurately predict the 3D positions of body joints from a single depth image, without using any temporal information. The key to both approaches is the use of a large, realistic, and highly varied synthetic set of training images. This allows us to learn models that are largely invariant to factors such as pose, body shape, field-of-view cropping, and clothing. Our first approach employs an intermediate body parts representation, designed so that an accurate per-pixel classification of the parts will localize the joints of the body. The second approach instead directly regresses the positions of body joints. By using simple depth pixel comparison features, and parallelizable decision forests, both approaches can run super-realtime on consumer hardware. Our evaluation investigates many aspects of our methods, and compares the approaches to each other and to the state of the art. Results on silhouettes suggest broader applicability to other imaging modalities. PMID:23109523
Laser Remediation of Threats Posed by Small Orbital Debris
NASA Technical Reports Server (NTRS)
Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.
2012-01-01
The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.
High Methionine Diet Poses Cardiac Threat: A Molecular Insight.
Chaturvedi, Pankaj; Kamat, Pradip K; Kalani, Anuradha; Familtseva, Anastasia; Tyagi, Suresh C
2016-07-01
High methionine diet (HMD) for example red meat which includes lamb, beef, pork can pose cardiac threat and vascular dysfunction but the mechanisms are unclear. We hypothesize that a diet rich in methionine can malfunction the cardiovascular system in three ways: (1) by augmenting oxidative stress; (2) by inflammatory manifestations; and (3) by matrix/vascular remodeling. To test this hypothesis we used four groups of mice: (1) WT; (2) WT + methionine; (3) CBS(+/-) ; (4) CBS(+/-) +methionine. We observed high oxidative stress in mice fed with methionine which was even higher in CBS(+/-) and CBS(+/-) +methionine. Higher oxidative stress was indicated by high levels of SOD-1 in methionine fed mouse hearts whereas IL-1β, IL-6, TNFα, and TLR4 showed high inflammatory manifestations. The upregulated levels of eNOS/iNOS and upregulated levels of MMP2/MMP9 along with high collagen deposition indicated vascular and matrix remodeling in methionine fed mouse. We evaluated the cardiac function which was dysregulated in the mice fed with HMD. These mice had decreased ejection fraction and left ventricular dysfunction which subsequently leads to adverse cardiac remodeling. In conclusion, our study clearly shows that HMD poses a cardiac threat by increasing oxidative stress, inflammatory manifestations, matrix/vascular remodeling, and decreased cardiac function. PMID:26565991
Pose-robust recognition of low-resolution face images.
Biswas, Soma; Aggarwal, Gaurav; Flynn, Patrick J; Bowyer, Kevin W
2013-12-01
Face images captured by surveillance cameras usually have poor resolution in addition to uncontrolled poses and illumination conditions, all of which adversely affect the performance of face matching algorithms. In this paper, we develop a completely automatic, novel approach for matching surveillance quality facial images to high-resolution images in frontal pose, which are often available during enrollment. The proposed approach uses multidimensional scaling to simultaneously transform the features from the poor quality probe images and the high-quality gallery images in such a manner that the distances between them approximate the distances had the probe images been captured in the same conditions as the gallery images. Tensor analysis is used for facial landmark localization in the low-resolution uncontrolled probe images for computing the features. Thorough evaluation on the Multi-PIE dataset and comparisons with state-of-the-art super-resolution and classifier-based approaches are performed to illustrate the usefulness of the proposed approach. Experiments on surveillance imagery further signify the applicability of the framework. We also show the usefulness of the proposed approach for the application of tracking and recognition in surveillance videos. PMID:24136439
SIFT algorithm-based 3D pose estimation of femur.
Zhang, Xuehe; Zhu, Yanhe; Li, Changle; Zhao, Jie; Li, Ge
2014-01-01
To address the lack of 3D space information in the digital radiography of a patient femur, a pose estimation method based on 2D-3D rigid registration is proposed in this study. The method uses two digital radiography images to realize the preoperative 3D visualization of a fractured femur. Compared with the pure Digital Radiography or Computed Tomography imaging diagnostic methods, the proposed method has the advantages of low cost, high precision, and minimal harmful radiation. First, stable matching point pairs in the frontal and lateral images of the patient femur and the universal femur are obtained by using the Scale Invariant Feature Transform method. Then, the 3D pose estimation registration parameters of the femur are calculated by using the Iterative Closest Point (ICP) algorithm. Finally, based on the deviation between the six degrees freedom parameter calculated by the proposed method, preset posture parameters are calculated to evaluate registration accuracy. After registration, the rotation error is less than l.5°, and the translation error is less than 1.2 mm, which indicate that the proposed method has high precision and robustness. The proposed method provides 3D image information for effective preoperative orthopedic diagnosis and surgery planning. PMID:25226990
3D face recognition under expressions, occlusions, and pose variations.
Drira, Hassen; Ben Amor, Boulbaba; Srivastava, Anuj; Daoudi, Mohamed; Slama, Rim
2013-09-01
We propose a novel geometric framework for analyzing 3D faces, with the specific goals of comparing, matching, and averaging their shapes. Here we represent facial surfaces by radial curves emanating from the nose tips and use elastic shape analysis of these curves to develop a Riemannian framework for analyzing shapes of full facial surfaces. This representation, along with the elastic Riemannian metric, seems natural for measuring facial deformations and is robust to challenges such as large facial expressions (especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and so on. This framework is shown to be promising from both--empirical and theoretical--perspectives. In terms of the empirical evaluation, our results match or improve upon the state-of-the-art methods on three prominent databases: FRGCv2, GavabDB, and Bosphorus, each posing a different type of challenge. From a theoretical perspective, this framework allows for formal statistical inferences, such as the estimation of missing facial parts using PCA on tangent spaces and computing average shapes. PMID:23868784
Distortion correction for the orthogonally-splitting-imaging pose sensor
NASA Astrophysics Data System (ADS)
Yang, Qian; Sun, Chang-ku; Wang, Peng; Li, Wen-qiang; Liu, Xin-tong
2015-06-01
The orthogonally-splitting-imaging pose sensor utilizes not only large field of view spherical lenses but also two sets of cylindrical ones to realize the high-speed, high-precision and wide-field pose measurement. Notable distortion, however, results from the wide-field lenses at the same time. Therefore, to obtain the best performance of the camera model, a distortion correction method is proposed in this paper, which combines the advantages of the high-stability of the Least Square fittings based on the orthogonal polynomials and the independence of the distortion correction based on the cross-ratio invariability. In this way, the ill-conditioned fitting matrix as well as the iteration and optimization procedures in solving extrinsic and intrinsic parameters can be avoided. Due to the wide fitness of the cross-ratio invariability and the orthogonal polynomials, this distortion correction technique is also suitable to other optical set up with different imaging structure. The experiment results that the corrected grids have superior precision and reliability with their original slopes demonstrate that the distortion model on the basis of orthogonal polynomial is validated and that the distortion correction is effective.
The Math Contest Candidate's Problem.
ERIC Educational Resources Information Center
Frank, Kenneth W.
1985-01-01
A simply posed problem suitable for a class studying summations and series, a class in elementary computer programing, a high school mathematics club, or an individual study project is given, with solution and challenges. (MNS)
ROV overcomes deepwater problems
Frisbie, F.R.; Hughes, E.W.
1984-09-01
The use of remotely operated vehicles (ROVs) in supportive drill ships operating in more than 200 meters of water poses severe technical and operational problems. Defining these problems beforehand and addressing them during design, manufacture, testing and installation ensures a functional and effective support capability. Such problems as the availability of desk space, and the subsequent installation, maintenance, and the launch/recovery of the system are described.
Astronaut David Brown poses with ComBBat team
NASA Technical Reports Server (NTRS)
2000-01-01
Astronaut David Brown poses with members of the team known as ComBBat, representing Central Florida's Astronaut and Titusville high schools. ComBBat was teamed with Boeing at KSC and Brevard Community College. Students from all over the country are at the KSC Visitor Complex for the FIRST (For Inspiration and Recognition of Science and Technology) Southeast Regional competition being held March 9-11 in the Rocket Garden. Teams of high school students are testing the limits of their imagination using robots they have designed, with the support of business and engineering professionals and corporate sponsors, to compete in a technological battle against other schools' robots. Of the 30 high school teams competing, 16 are Florida teams co-sponsored by NASA and KSC contractors. Local high schools participating are Astronaut, Bayside, Cocoa Beach, Eau Gallie, Melbourne, Melbourne Central Catholic, Palm Bay, Rockledge, Satellite, and Titusville.
Intrinsic feature-based pose measurement for imaging motion compensation
Baba, Justin S.; Goddard, Jr., James Samuel
2014-08-19
Systems and methods for generating motion corrected tomographic images are provided. A method includes obtaining first images of a region of interest (ROI) to be imaged and associated with a first time, where the first images are associated with different positions and orientations with respect to the ROI. The method also includes defining an active region in the each of the first images and selecting intrinsic features in each of the first images based on the active region. Second, identifying a portion of the intrinsic features temporally and spatially matching intrinsic features in corresponding ones of second images of the ROI associated with a second time prior to the first time and computing three-dimensional (3D) coordinates for the portion of the intrinsic features. Finally, the method includes computing a relative pose for the first images based on the 3D coordinates.
STS-85 crew poses at LC 39A during TCDT
NASA Technical Reports Server (NTRS)
1997-01-01
The STS-85 flight crew poses at Launch Pad 39A during a break in Terminal Countdown Demonstration Test (TCDT) activities for that mission. They are (back row, from left): Pilot Kent V. Rominger; Payload Commander N. Jan Davis; Mission Specialist Stephen K. Robinson; Payload Specialist Bjarni V. Tryggvason; Mission Specialist Robert L. Curbeam, Jr.; and Commander Curtis L. Brown, Jr. The primary payload aboard the Space Shuttle orbiter Discovery is the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-2 (CRISTA-SPAS-2). Other payloads on the 11- day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments.
Key participants in codeveloped technology pose for group picture
NASA Technical Reports Server (NTRS)
1997-01-01
Following the presentation of the Universal Signal Conditioning Amplifier (USCA), a new piece of technology developed through a National Aeronautics and Space Administration (NASA) partnership with industry, to Kennedy Space Center (KSC) Director Roy Bridges, Jr., key participants in the partnership pose for a group portrait. They are (from left) Bill Larson, NASA; Dr. Pedro Medelius, INET; Roy Bridges, Jr., KSC Director; Ed Gladney and William Saputo, L-3 Communications; Pam Gillespi, representing Congressman Dave Weldon; and Frank Kinney, Technological Research and Development Authority. The USCA is a key component of the codeveloped Automated Data Acquisition System (ADAS) that measures temperature, pressure and vibration at KSC's launch pads. The breakthrough technology is expected to reduce sensor setup and configuration times from hours to seconds. KSC teamed up with Florida's Technological Research and Development Authority and manufacturer L-3 Communications to produce a system that would benefit the aerospace industry and other commercial markets.
STS-110 and Expedition Four Crews Pose for Onboard Portrait
NASA Technical Reports Server (NTRS)
2002-01-01
Posed inside the Destiny Laboratory aboard the International Space Station (ISS) are the STS-110 and Expedition Four crews for a traditional onboard portrait From the left, bottom row, are astronauts Ellen Ochoa, STS mission specialist, Michael J. Bloomfield, STS mission commander, and Yury I Onufrienko, Expedition Four mission commander. From the left, middle row, are astronauts Daniel W. Bursch, Expedition Four flight engineer, Rex J. Walheim, STS mission specialist, and Carl E. Walz, Expedition Four flight engineer. From the left, top row, are astronauts Stephen N. Frick, STS pilot; Jerry L. Ross, Lee M.E. Morin, and Steven L. Smith, all mission specialists. Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission crew prepared the ISS for future space walks by installing and outfitting the 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The mission served as the 8th ISS assembly flight.
STS-100 and Expedition Two Crews Pose For Onboard Portrait
NASA Technical Reports Server (NTRS)
2001-01-01
STS-100 and Expedition Two crew members pose for an onboard portrait in the Destiny laboratory of the International Space Station (ISS). Bottom, from left, are Chris A. Hadfield of the Canadian Space Agency, Umberto Guidoni of the European Space Agency, Kent V. Rominger, and Susan J. Helms (Expedition Two). Middle row, James S. Voss (Expedition Two), and cosmonauts Yury V. Usachev (Expedition Two) and Yuri V. Lonchakov. Top, Scott E. Parazynski, John L. Phillips, and Jeffrey S. Ashby. The crews accomplished the following objectives: The delivery of the Canadian-built Space Station Remote Manipulator System (SSRMS), Canadarm2, which is needed to perform assembly operations on later flights; The delivery and installation of a UHF anterna that provides space-to-space communications capability for U.S. based space walks; and carried the Italian-built multipurpose Logistics Module Raffaello containing six system racks and two storage racks for the U.S. Lab, Destiny.
NASA Astrophysics Data System (ADS)
Arantes, Gilberto, Jr.; Marconi Rocco, Evandro; da Fonseca, Ijar M.; Theil, Stephan
2010-05-01
Space robotics has a substantial interest in achieving on-orbit satellite servicing operations autonomously, e.g. rendezvous and docking/berthing (RVD) with customer and malfunctioning satellites. An on-orbit servicing vehicle requires the ability to estimate the position and attitude in situations whenever the targets are uncooperative. Such situation comes up when the target is damaged. In this context, this work presents a robust autonomous pose system applied to RVD missions. Our approach is based on computer vision, using a single camera and some previous knowledge of the target, i.e. the customer spacecraft. A rendezvous analysis mission tool for autonomous service satellite has been developed and presented, for far maneuvers, e.g. distance above 1 km from the target, and close maneuvers. The far operations consist of orbit transfer using the Lambert formulation. The close operations include the inspection phase (during which the pose estimation is computed) and the final approach phase. Our approach is based on the Lambert problem for far maneuvers and the Hill equations are used to simulate and analyze the approaching and final trajectory between target and chase during the last phase of the rendezvous operation. A method for optimally estimating the relative orientation and position between camera system and target is presented in detail. The target is modelled as an assembly of points. The pose of the target is represented by dual quaternion in order to develop a simple quadratic error function in such a way that the pose estimation task becomes a least square minimization problem. The problem of pose is solved and some methods of non-linear square optimization (Newton, Newton-Gauss, and Levenberg-Marquard) are compared and discussed in terms of accuracy and computational cost.
Investigation of MM-PBSA rescoring of docking poses.
Thompson, David C; Humblet, Christine; Joseph-McCarthy, Diane
2008-05-01
Target-based virtual screening is increasingly used to generate leads for targets for which high quality three-dimensional (3D) structures are available. To allow large molecular databases to be screened rapidly, a tiered scoring scheme is often employed whereby a simple scoring function is used as a fast filter of the entire database and a more rigorous and time-consuming scoring function is used to rescore the top hits to produce the final list of ranked compounds. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches are currently thought to be quite effective at incorporating implicit solvation into the estimation of ligand binding free energies. In this paper, the ability of a high-throughput MM-PBSA rescoring function to discriminate between correct and incorrect docking poses is investigated in detail. Various initial scoring functions are used to generate docked poses for a subset of the CCDC/Astex test set and to dock one set of actives/inactives from the DUD data set. The effectiveness of each of these initial scoring functions is discussed. Overall, the ability of the MM-PBSA rescoring function to (i) regenerate the set of X-ray complexes when docking the bound conformation of the ligand, (ii) regenerate the X-ray complexes when docking conformationally expanded databases for each ligand which include "conformation decoys" of the ligand, and (iii) enrich known actives in a virtual screen for the mineralocorticoid receptor in the presence of "ligand decoys" is assessed. While a pharmacophore-based molecular docking approach, PhDock, is used to carry out the docking, the results are expected to be general to use with any docking method. PMID:18465849
On an ill-posed model of oscillations of a flat plate with a variety of mounts on opposite sides
NASA Astrophysics Data System (ADS)
Iskakova, Ulzada A.
2016-08-01
In this paper, we consider a model case of stationary vibrations of a thin flat plate, one side of which is embedded, the opposite side is free, and the sides are freely leaned. In mathematical modeling, there is a local boundary value problem for the biharmonic equation in a rectangular domain. Boundary conditions are given on all boundary of the domain. We show that the considered problem is self-adjoint. Herewith, the problem is ill-posed. We show that the stability of solution to the problem is disturbed. Necessary and sufficient conditions of existence of the problem solution are found. Spaces of the ill-posedness of the considered problem are constructed.
3D sensor algorithms for spacecraft pose determination
NASA Astrophysics Data System (ADS)
Trenkle, John M.; Tchoryk, Peter, Jr.; Ritter, Greg A.; Pavlich, Jane C.; Hickerson, Aaron S.
2006-05-01
Researchers at the Michigan Aerospace Corporation have developed accurate and robust 3-D algorithms for pose determination (position and orientation) of satellites as part of an on-going effort supporting autonomous rendezvous, docking and space situational awareness activities. 3-D range data from a LAser Detection And Ranging (LADAR) sensor is the expected input; however, the approach is unique in that the algorithms are designed to be sensor independent. Parameterized inputs allow the algorithms to be readily adapted to any sensor of opportunity. The cornerstone of our approach is the ability to simulate realistic range data that may be tailored to the specifications of any sensor. We were able to modify an open-source raytracing package to produce point cloud information from which high-fidelity simulated range images are generated. The assumptions made in our experimentation are as follows: 1) we have access to a CAD model of the target including information about the surface scattering and reflection characteristics of the components; 2) the satellite of interest may appear at any 3-D attitude; 3) the target is not necessarily rigid, but does have a limited number of configurations; and, 4) the target is not obscured in any way and is the only object in the field of view of the sensor. Our pose estimation approach then involves rendering a large number of exemplars (100k to 5M), extracting 2-D (silhouette- and projection-based) and 3-D (surface-based) features, and then training ensembles of decision trees to predict: a) the 4-D regions on a unit hypersphere into which the unit quaternion that represents the vehicle [Q X, Q Y, Q Z, Q W] is pointing, and, b) the components of that unit quaternion. Results have been quite promising and the tools and simulation environment developed for this application may also be applied to non-cooperative spacecraft operations, Autonomous Hazard Detection and Avoidance (AHDA) for landing craft, terrain mapping, vehicle
Invasive Lionfish (Pterosis volitans) Pose Public Health Threats.
Diaz, James H
2015-01-01
The lionfish, Pterosis volitans, a native of Indo-Pacific oceans, is a popular saltwater aquarium fish despite venomous spines on its fins. Lionfish were inadvertently introduced into the western Atlantic from Florida in the early 1990s and have overpopulated and dispersed widely into the Caribbean Sea and Gulf of Mexico. Initiatives to control lionfish populations were launched, including the National Oceanographic and Atmospheric Administration (NOAA)-sponsored "Lionfish as Food Campaign".2 Recently, scientists from the Food and Drug Administration (FDA) reported that lionfish caught off the US Virgin Islands contained ciguatoxins and could cause ciguatera fish poisoning (CFP); a seafood-borne poisoning without an antidote or any specific treatment, and a potential for prolonged neurotoxicity. Lionfish pose several public health threats. New strategies to control the lionfish population explosion in coastal waters and offshore fisheries are needed now to ensure seafood safety and public health. The lionfish, Pterosis volitans, is native to the reefs of the western Indian and Pacific Oceans (Figure 1). Brightly colored with red, white, and black stripes and adorned with feathery fins, the lionfish is a popular saltwater aquarium fish despite venomous spines on its fins (Figure 2). Lionfish were introduced into the western North Atlantic from Florida in the early 1990s after some specimens were discarded by dissatisfied amateur aquarists and others escaped from hurricane-flooded public aquariums.1 Since lionfish are voracious carnivores, have few natural predators, and reproduce prolifically, they have overpopulated and dispersed widely from Cape Hatteras to Florida, throughout the Caribbean Sea, and into the Gulf of Mexico.1 The population density of lionfish in its new, invaded territory now exceeds that of its native habitat.1 As a result, campaigns to control lionfish populations were launched in Florida and the Caribbean. Lionfish now pose several public
Health Issues: Do Cell Phones Pose a Health Hazard?
... problems. Cell phones emit low levels of radiofrequency energy (RF). Over the past 15 years, scientists have ... looking at the biological effects of the radiofrequency energy emitted by cell phones. While some researchers have ...
Real-time pose invariant logo and pattern detection
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Kottmann, Michal; Benesova, Wanda
2011-01-01
The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.
Crowd at VIP viewing site pose for photo
NASA Technical Reports Server (NTRS)
1999-01-01
The group waiting in the Apollo/Saturn V Center for the launch of STS-93 pose for a photo. Among the spectators gathered are First Lady Hillary Rodham Carter and her daughter, Chelsea, NASA Administrator Daniel Goldin, astronauts, and attendees of a Women in Space forum, including Donna Shalala, secretary , Department of Health and Human Services. Much attention has been generated over the launch due to Commander Eileen M. Collins, the first woman to serve as commander of a Shuttle mission. The primary payload of the five-day mission is the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. The new telescope is 20 to 50 times more sensitive than any previous X-ray telescope and is expected to unlock the secrets of supernovae, quasars and black holes. Liftoff of Space Shuttle Columbia is scheduled for 12:36 a.m. EDT July 20.
Resolution-adaptive face alignment with head pose correction
NASA Astrophysics Data System (ADS)
Zhang, Lu; Allebach, Jan; Lin, Qian; Wang, Xianwang
2015-03-01
Faces often appear very small and oriented in surveillance videos because of the need of wide fields of view and typically a large distance between the cameras and the scene. Both low resolution and side-view faces make tasks such as face recognition difficult. As a result, face hallucination or super-resolution techniques of face images are generally needed, which has become a thriving research field. However, most existing methods assume face images have been well aligned into some canonical form (i.e. frontal, symmetric). Therefore, face alignment, especially for low-resolution face images, is a key and first step to the success of many face applications. In this paper, we propose an auto alignment approach for face images at different resolution, which consist of two fundamental steps: 1) To find the locations of facial landmarks or feature points (i.e. eyes, nose, and etc.) even for very low resolution faces; 2) To estimate and correct head poses based on the landmark locations and a 3D reference face model. The effectiveness of this method is shown by the aligned face images and the improved face recognition score on released data sets.
Reappraisal of biosafety risks posed by PERVs in xenotransplantation.
Louz, Derrick; Bergmans, Hans E; Loos, Birgit P; Hoeben, Rob C
2008-01-01
Donor materials of porcine origin could potentially provide an alternative source of cells, tissues or whole organs for transplantation to humans, but is hampered by the health risk posed by infection with porcine viruses. Although pigs can be bred in such a way that all known exogenous microorganisms are eliminated, this is not feasible for all endogenous pathogens, such as the porcine endogenous retroviruses (PERVs) which are present in the germline of pigs as proviruses. Upon transplantation, PERV proviruses would be transferred to the human recipient along with the xenograft. If xenotransplantation stimulates or facilitates replication of PERVs in the new hosts, a risk exists for adaptation of the virus to humans and subsequent spread of these viruses. In a worst-case scenario, this might result in the emergence of a new viral disease. Although the concerns for disease potential of PERVs are easing, only limited pre-clinical and clinical data are available. Small-scale, well-designed and carefully controlled clinical trials would provide more evidence on the safety of this approach and allow a better appreciation of the risks involved. It is therefore important to have a framework of protective measures and monitoring protocols in place to facilitate such initially small scale clinical trials. This framework will raise ethical and social considerations regarding acceptability. PMID:17987669
Does ketoprofen or diclofenac pose the lowest risk to fish?
Cuklev, Filip; Fick, Jerker; Cvijovic, Marija; Kristiansson, Erik; Förlin, Lars; Larsson, D G Joakim
2012-08-30
Ketoprofen and diclofenac are non-steroidal anti-inflammatory drugs (NSAIDs) often used for similar indications, and both are frequently found in surface waters. Diclofenac affects organ histology and gene expression in fish at around 1 μg/L. Here, we exposed rainbow trout to ketoprofen (1, 10 and 100 μg/L) to investigate if this alternative causes less risk for pharmacological responses in fish. The bioconcentration factor from water to fish blood plasma was <0.05 (4 for diclofenac based on previous studies). Ketoprofen only reached up to 0.6 ‰ of the human therapeutic plasma concentration, thus the probability of target-related effects was estimated to be fairly low. Accordingly, a comprehensive analysis of hepatic gene expression revealed no consistent responses. In some contrast, trout exposed to undiluted, treated sewage effluents bioconcentrated ketoprofen and other NSAIDs much more efficiently, according to a meta-analysis of recent studies. Neither of the setups is however an ideal representation of the field situation. If a controlled exposure system with a single chemical in pure water is a reasonable representation of the environment, then the use of ketoprofen is likely to pose a lower risk for wild fish than diclofenac, but if bioconcentration factors from effluent-exposed fish are applied, the risks may be more similar. PMID:22721833
A framework for assessing and managing risks posed by emerging diseases.
Walshe, Terry; Burgman, Mark
2010-02-01
Frameworks for analyzing the risks of emerging diseases and invasive species often have relied on unstructured estimates of likelihoods and consequences. We suggest a flexible alternative that offers more transparent analysis without need for additional data. Its strength lies in explicit and complementary treatment of technical and social judgments. We describe a system in which cognitive maps, Bayes nets, and multicriteria analysis can be used in tandem to structure a problem, identify exposure pathways, combine data and expert judgement to estimate the likelihoods, and assess consequences of alternative decisions. These tools may be employed in participatory settings or as part of standard regulatory practice. We illustrate this approach with an assessment of the management of an emerging disease that poses a hazard to Australia. PMID:19878485
Learning through Problem Solving.
ERIC Educational Resources Information Center
Murray, Hanlie; Olivier, Alwyn; Human, Piet
After conducting several studies on young students' understanding of particular concepts before, during, and after instruction, this paper focuses on the two small scale and several informal teaching experiments based on the idea that the teacher should pose problems to students for which they do not yet have a routine solution method available,…
Allocation Games: Addressing the Ill-Posed Nature of Allocation in Life-Cycle Inventories.
Hanes, Rebecca J; Cruze, Nathan B; Goel, Prem K; Bakshi, Bhavik R
2015-07-01
Allocation is required when a life cycle contains multi-functional processes. One approach to allocation is to partition the embodied resources in proportion to a criterion, such as product mass or cost. Many practitioners apply multiple partitioning criteria to avoid choosing one arbitrarily. However, life cycle results from different allocation methods frequently contradict each other, making it difficult or impossible for the practitioner to draw any meaningful conclusions from the study. Using the matrix notation for life-cycle inventory data, we show that an inventory that requires allocation leads to an ill-posed problem: an inventory based on allocation is one of an infinite number of inventories that are highly dependent upon allocation methods. This insight is applied to comparative life-cycle assessment (LCA), in which products with the same function but different life cycles are compared. Recently, there have been several studies that applied multiple allocation methods and found that different products were preferred under different methods. We develop the Comprehensive Allocation Investigation Strategy (CAIS) to examine any given inventory under all possible allocation decisions, enabling us to detect comparisons that are not robust to allocation, even when the comparison appears robust under conventional partitioning methods. While CAIS does not solve the ill-posed problem, it provides a systematic way to parametrize and examine the effects of partitioning allocation. The practical usefulness of this approach is demonstrated with two case studies. The first compares ethanol produced from corn stover hydrolysis, corn stover gasification, and corn grain fermentation. This comparison was not robust to allocation. The second case study compares 1,3-propanediol (PDO) produced from fossil fuels and from biomass, which was found to be a robust comparison. PMID:26061700
STS-103 crew pose in front of Pad 39B
NASA Technical Reports Server (NTRS)
1999-01-01
During Terminal Countdown Demonstration Test (TDCT) activities at Launch Pad 39B, the STS-103 crew pose in front of the flame trench, which is situated underneath the Mobile Launcher Platform holding Space Shuttle Discovery. Standing left to right are Mission Specialists Claude Nicollier of Switzerland, who is with the European Space Agency (ESA), C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Pilot Scott J. Kelly, Commander Curtis L. Brown Jr., and Mission Specialists Jean-Frangois Clervoy of France, also with ESA, and Steven L. Smith. One of the solid rocket boosters and the external tank that are attached to Discovery can be seen in the photo. The flame trench is made of concrete and refractory brick, and contains an orbiter flame deflector on one side and solid rocket booster flame deflector on the other. The deflectors protect the flame trench floor and pad surface from the intense heat of launch. The TCDT provides the crew with emergency egress training, opportunities to inspect their mission payloads in the orbiter's payload bay, and simulated countdown exercises. STS-103 is a 'call-up' mission due to the need to replace and repair portions of the Hubble Space Telescope, including the gyroscopes that allow the telescope to point at stars, galaxies and planets. The STS-103 crew will be replacing a Fine Guidance Sensor, an older computer with a new enhanced model, an older data tape recorder with a solid-state digital recorder, a failed spare transmitter with a new one, and degraded insulation on the telescope with new thermal insulation. The crew will also install a Battery Voltage/Temperature Improvement Kit to protect the spacecraft batteries from overcharging and overheating when the telescope goes into a safe mode. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.
Crisis planning to manage risks posed by animal rights extremists.
Bailey, Matthew R; Rich, Barbara A; Bennett, B Taylor
2010-01-01
Among the multitude of crises that US research institutions may face are those caused by animal rights activists. While most activists opposed to animal research use peaceful and lawful means of expressing their opinions, some extremists resort to illegal methods. Arson, break-ins, and theft with significant property damage at US animal research facilities began in the 1980s. The most troubling trend to develop in the past decade is the targeting of individuals associated with animal research, whether directly or indirectly, and the use of violent scare tactics to intimidate researchers and their families. The National Association for Biomedical Research has a 30-year history of monitoring the animal rights movement and assisting member institutions with crisis situations. In this article we discuss attacks on researchers at their homes, cyber crimes, exploitation of new media formats, infiltration of research facilities, and the targeting of external research stakeholders and business partners. We describe the need for a well-conceived crisis management plan and strong leadership to mitigate crisis situations. Institutions with well-informed leaders and crisis management teams ready to take timely action are best equipped to protect staff, laboratory animals, and research programs. They act on early warnings, provide support for targeted staff, seek legal remedies, thoughtfully control access to research facilities, and identify and enlist new research supporters. We underscore the importance of up-to-date crisis planning so that institutions are not only aware of ongoing risks posed by animal rights extremists but also better prepared to take preemptive action and able to manage those risks successfully. PMID:20375436
Internet poses multiple risks to children and adolescents.
McColgan, Maria D; Giardino, Angelo P
2005-05-01
Computers and Internet usage, whether by children at home or at public places such as schools and libraries, are here to stay. Tremendous benefits in terms of educational opportunities, communication, and recreation can be expected. With all the benefits that such information technology provides, however, there is an element of risk that should not inhibit its use but must be attended to and managed. The methods child sexual offenders use to pursue their criminal interests will continue to evolve as technology evolves. The first and most important line of defense calls for parents and other caregivers to remain directly responsible for the safety of the children in their care. Parents, teachers, healthcare providers, and other caregivers need to learn continually about the Internet and remain aware of how best to protect children who use the computer and the Internet. Law enforcement agencies must also continue to prepare for advances in computer technology, to better anticipate the behavior of child sexual offenders, and to investigate and prosecute offenders. All law enforcement, medical, and social services personnel who have contact with children on a regular basis must continue to educate children and their parents or guardians about the dangers posed by the Internet. After a child is victimized, law enforcement, medical, and social services personnel also must remain cognizant that the victim's computer may contain evidence that may help identify and prosecute the offender. In short, all those charged with the protection of children and the prosecution of child sexual offenders must continue to adapt to our ever-evolving computer technology. PMID:15948351
The challenge posed by endocrine-disrupting chemicals.
Ashby, J; Houthoff, E; Kennedy, S J; Stevens, J; Bars, R; Jekat, F W; Campbell, P; Van Miller, J; Carpanini, F M; Randall, G L
1997-01-01
Rapid regulatory developments in the area of environmental endocrine disruption present a series of potential problems that are identified and illustrated with examples taken from the recent literature. A list of priorities is provided, including the need for additional epidemiological and wildlife studies, the derivation of a coordinated testing strategy, agreement on the toxicities expected of endocrine disrupting agents, and acceptance that whole animal assays will be uniquely critical in this area of toxicology. The intrinsic difficulty of attempting to simultaneously study all aspects of endocrine disruption indicates the need to reduce the scope of the problem, which can be achieved by first studying toxicities mediated by sex hormone receptors. PMID:9105789
Posing Open-Ended Questions in the Primary Classroom.
ERIC Educational Resources Information Center
Myren, Christina
This book is a collection of 15 open-ended mathematics questions for kindergarten, first- and second-grade children. The questions deal with animals, birthdays, mittens, and other topics that capture the interest of young children. The problems are open ended because they have multiple solutions and/or multiple approaches to reach one solution.…
NASA Astrophysics Data System (ADS)
Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann
2016-05-01
The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.
Egorov, Yurii V
2013-04-30
We consider the classical problem on the tallest column which was posed by Euler in 1757. Bernoulli-Euler theory serves today as the basis for the design of high buildings. This problem is reduced to the problem of finding the potential for the Sturm-Liouville equation corresponding to the maximum of the first eigenvalue. The problem has been studied by many mathematicians but we give the first rigorous proof of the existence and uniqueness of the optimal column and we give new formulae which let us find it. Our method is based on a new approach consisting in the study of critical points of a related nonlinear functional. Bibliography: 6 titles.
Problem Effectiveness in a Course Using Problem-Based Learning.
ERIC Educational Resources Information Center
Dolmans, Diana H. J. M.
1993-01-01
A University of Limburg (Netherlands) medical school study investigated the relationship between student-generated learning issues and faculty instructional objectives (i.e., the effectiveness of the problems posed) in a problem-centered obstetrics and child development curriculum. Subjects were 120 students and 12 faculty. Results indicated…
Pose estimation using linearized rotations and quaternion algebra
NASA Astrophysics Data System (ADS)
Barfoot, Timothy; Forbes, James R.; Furgale, Paul T.
2011-01-01
In this paper we revisit the topic of how to formulate error terms for estimation problems that involve rotational state variables. We present a first-principles linearization approach that yields multiplicative error terms for unit-length quaternion representations of rotations, as well as for canonical rotation matrices. Quaternion algebra is employed throughout our derivations. We show the utility of our approach through two examples: (i) linearizing a sun sensor measurement error term, and (ii) weighted-least-squares point-cloud alignment.
Hyperbolic systems of equations posed on erroneous curved domains
NASA Astrophysics Data System (ADS)
Nordström, Jan; Nikkar, Samira
2016-03-01
The effect of an inaccurate geometry description on the solution accuracy of a hyperbolic problem is discussed. The inaccurate geometry can for example come from an imperfect CAD system, a faulty mesh generator, bad measurements or simply a misconception. We show that inaccurate geometry descriptions might lead to the wrong wave speeds, a misplacement of the boundary conditions, to the wrong boundary operator and a mismatch of boundary data. The errors caused by an inaccurate geometry description may affect the solution more than the accuracy of the specific discretization techniques used. In extreme cases, the order of accuracy goes to zero. Numerical experiments corroborate the theoretical results.
Joint tracking, pose estimation, and target recognition using HRRR and track data: new results
NASA Astrophysics Data System (ADS)
Zajic, Tim; Rago, Constantino; Mahler, Ronald P. S.; Huff, Melvyn; Noviskey, Michael J.
2001-08-01
The work presented here is a continuation of research first reported in Mahler, et. Al. Our goal is a generalization of Bayesian filtering and estimation theory to the problem of multisensor, multitarget, multi-evidence unified joint detection, tracking and target identification. Our earlier efforts were focused on integrating the Statistical Features algorithm with a Bayesian nonlinear filter, allowing simultaneous determination of target position, velocity, pose and type via maximum a posteriori estimation. In this paper we continue to address the problem of target classification based on high range resolution radar signatures. While we continue to consider feature based techniques, as in StaF and our earlier work, instead of considering the location and magnitude of peaks in a signature as our features, we consider three alternative features. The features arise from applying either a Wavelet Decomposition, Principal Component Analysis or Linear Discriminant Analysis to the signature. We discuss briefly also, in the wavelet decomposition setting, the challenge of assigning a measure of uncertainty with a classification decision.
Swimmer detection and pose estimation for continuous stroke-rate determination
NASA Astrophysics Data System (ADS)
Zecha, Dan; Greif, Thomas; Lienhart, Rainer
2012-02-01
In this work we propose a novel approach to automatically detect a swimmer and estimate his/her pose continuously in order to derive an estimate of his/her stroke rate given that we observe the swimmer from the side. We divide a swimming cycle of each stroke into several intervals. Each interval represents a pose of the stroke. We use specifically trained object detectors to detect each pose of a stroke within a video and count the number of occurrences per time unit of the most distinctive poses (so-called key poses) of a stroke to continuously infer the stroke rate. We extensively evaluate the overall performance and the influence of the selected poses for all swimming styles on a data set consisting of a variety of swimmers.
An ill-posed parabolic evolution system for dispersive deoxygenation-reaeration in water
NASA Astrophysics Data System (ADS)
Azaïez, M.; Ben Belgacem, F.; Hecht, F.; Le Bot, C.
2014-01-01
We consider an inverse problem that arises in the management of water resources and pertains to the analysis of surface water pollution by organic matter. Most physically relevant models used by engineers derive from various additions and corrections to enhance the earlier deoxygenation-reaeration model proposed by Streeter and Phelps in 1925, the unknowns being the biochemical oxygen demand (BOD) and the dissolved oxygen (DO) concentrations. The one we deal with includes Taylor’s dispersion to account for the heterogeneity of the contamination in all space directions. The system we obtain is then composed of two reaction-dispersion equations. The particularity is that both Neumann and Dirichlet boundary conditions are available on the DO tracer while the BOD density is free of any conditions. In fact, for real-life concerns, measurements on the DO are easy to obtain and to save. On the contrary, collecting data on the BOD is a sensitive task and turns out to be a lengthy process. The global model pursues the reconstruction of the BOD density, and especially of its flux along the boundary. Not only is this problem plainly worth studying for its own interest but it could also be a mandatory step in other applications such as the identification of the location of pollution sources. The non-standard boundary conditions generate two difficulties in mathematical and computational grounds. They set up a severe coupling between both equations and they are the cause of the ill-posed data reconstruction problem. Existence and stability fail. Identifiability is therefore the only positive result one can search for; it is the central purpose of the paper. Finally, we have performed some computational experiments to assess the capability of the mixed finite element in missing data recovery.
NASA Astrophysics Data System (ADS)
Haecker, Jens; Kroeplin, Bernd H.
2003-08-01
This paper describes our current work in developing a vision-based tracking and trajectory prediction system for an aerial robot based on low-cost digital cameras, image processing techniques, and a filtering and prediction algorithm. The system determines the pose (location and orientation) of a miniature airship, online during indoor flight, and will be used in a development framework for a future autonomous flight control system. Object localization is achieved by tracking an infra-red target array mounted to a model airship. Its pose in three-dimensional space can be computed from corresponding points in the images of two cameras which are calibrated in a global coordinate system. The calibration procedure and the localization, as well as some aspects of the measurement accuracy achieved, are discussed. Real-world applications provide an uncertain static or dynamic environment which complicates the tracking of a target. To overcome problems due to noisy data or even failed target detection in image frames, a filtering procedure is applied for estimating the airship's pose. In a first step, points in the two-dimensional image planes are directly tracked and propagated forward to the vehicle pose. In a second step, an adaptive noise Kalman filter is applied for estimating and predicting the flight trajectory. Its state is propagated back to points in the image planes to guide the detection algorithm by defining regions of confidence. Both approaches are combined in a tracking algorithm. In-flight measurements are used to validate the parameters of the adaption procedure. Some experimental results are shown.
About well-posed definition of geophysical fields'
NASA Astrophysics Data System (ADS)
Ermokhine, Konstantin; Zhdanova, Ludmila; Litvinova, Tamara
2013-04-01
We introduce a new approach to the downward continuation of geophysical fields based on approximation of observed data by continued fractions. Key Words: downward continuation, continued fraction, Viskovatov's algorithm. Many papers in geophysics are devoted to the downward continuation of geophysical fields from the earth surface to the lower halfspace. Known obstacle for the method practical use is a field's breaking-down phenomenon near the pole closest to the earth surface. It is explained by the discrepancy of the studied fields' mathematical description: linear presentation of the field in the polynomial form, Taylor or Fourier series, leads to essential and unremovable instability of the inverse problem since the field with specific features in the form of poles in the lower halfspace principally can't be adequately described by the linear construction. Field description by the rational fractions is closer to reality. In this case the presence of function's poles in the lower halfspace corresponds adequately to the denominator zeros. Method proposed below is based on the continued fractions. Let's consider the function measured along the profile and represented it in the form of the Tchebishev series (preliminary reducing the argument to the interval [-1, 1]): There are many variants of power series' presentation by continued fractions. The areas of series and corresponding continued fraction's convergence may differ essentially. As investigations have shown, the most suitable mathematical construction for geophysical fields' continuation is so called general C-fraction: where ( , z designates the depth) For construction of C-fraction corresponding to power series exists a rather effective and stable Viskovatov's algorithm (Viskovatov B. "De la methode generale pour reduire toutes sortes des quantitees en fraction continues". Memoires de l' Academie Imperiale des Sciences de St. Petersburg, 1, 1805). A fundamentally new algorithm for Downward Continuation
A review of the health hazards posed by cobalt.
Paustenbach, Dennis J; Tvermoes, Brooke E; Unice, Kenneth M; Finley, Brent L; Kerger, Brent D
2013-04-01
Cobalt (Co) is an essential element with ubiquitous dietary exposure and possible incremental exposure due to dietary supplements, occupation and medical devices. Adverse health effects, such as cardiomyopathy and vision or hearing impairment, were reported at peak blood Co concentrations typically over 700 µg/L (8-40 weeks), while reversible hypothyroidism and polycythemia were reported in humans at ~300 µg/L and higher (≥2 weeks). Lung cancer risks associated with certain inhalation exposures have not been observed following Co ingestion and Co alloy implants. The mode of action for systemic toxicity relates directly to free Co(II) ion interactions with various receptors, ion channels and biomolecules resulting in generally reversible effects. Certain dose-response anomalies for Co toxicity likely relate to rare disease states known to reduce systemic Co(II)-ion binding to blood proteins. Based on the available information, most people with clearly elevated serum Co, like supplement users and hip implant patients, have >90% of Co as albumin-bound, with considerable excess binding capacity to sequester Co(II) ions. This paper reviews the scientific literature regarding the chemistry, pharmacokinetics and systemic toxicology of Co, and the likely role of free Co(II) ions to explain dose-response relationships. Based on currently available data, it might be useful to monitor implant patients for signs of hypothyroidism and polycythemia starting at blood or serum Co concentrations above 100 µg/L. This concentration is derived by applying an uncertainty factor of 3 to the 300 µg/L point of departure and this should adequately account for the fact that persons in the various studies were exposed for less than one year. A higher uncertainty factor could be warranted but Co has a relatively fast elimination, and many of the populations studied were of children and those with kidney problems. Closer follow-up of patients who also exhibit chronic disease states
Discrete Molecular Dynamics Distinguishes Nativelike Binding Poses from Decoys in Difficult Targets
Proctor, Elizabeth A.; Yin, Shuangye; Tropsha, Alexander; Dokholyan, Nikolay V.
2012-01-01
Virtual screening is one of the major tools used in computer-aided drug discovery. In structure-based virtual screening, the scoring function is critical to identifying the correct docking pose and accurately predicting the binding affinities of compounds. However, the performance of existing scoring functions has been shown to be uneven for different targets, and some important drug targets have proven especially challenging. In these targets, scoring functions cannot accurately identify the native or near-native binding pose of the ligand from among decoy poses, which affects both the accuracy of the binding affinity prediction and the ability of virtual screening to identify true binders in chemical libraries. Here, we present an approach to discriminating native poses from decoys in difficult targets for which several scoring functions failed to correctly identify the native pose. Our approach employs Discrete Molecular Dynamics simulations to incorporate protein-ligand dynamics and the entropic effects of binding. We analyze a collection of poses generated by docking and find that the residence time of the ligand in the native and nativelike binding poses is distinctly longer than that in decoy poses. This finding suggests that molecular simulations offer a unique approach to distinguishing the native (or nativelike) binding pose from decoy poses that cannot be distinguished using scoring functions that evaluate static structures. The success of our method emphasizes the importance of protein-ligand dynamics in the accurate determination of the binding pose, an aspect that is not addressed in typical docking and scoring protocols. PMID:22225808
Real-Time Head Pose Tracking with Online Face Template Reconstruction.
Li, Songnan; Ngan, King Ngi; Paramesran, Raveendran; Sheng, Lu
2016-09-01
We propose a real-time method to accurately track the human head pose in the 3-dimensional (3D) world. Using a RGB-Depth camera, a face template is reconstructed by fitting a 3D morphable face model, and the head pose is determined by registering this user-specific face template to the input depth video. PMID:26584487
Point cloud modeling using the homogeneous transformation for non-cooperative pose estimation
NASA Astrophysics Data System (ADS)
Lim, Tae W.
2015-06-01
A modeling process to simulate point cloud range data that a lidar (light detection and ranging) sensor produces is presented in this paper in order to support the development of non-cooperative pose (relative attitude and position) estimation approaches which will help improve proximity operation capabilities between two adjacent vehicles. The algorithms in the modeling process were based on the homogeneous transformation, which has been employed extensively in robotics and computer graphics, as well as in recently developed pose estimation algorithms. Using a flash lidar in a laboratory testing environment, point cloud data of a test article was simulated and compared against the measured point cloud data. The simulated and measured data sets match closely, validating the modeling process. The modeling capability enables close examination of the characteristics of point cloud images of an object as it undergoes various translational and rotational motions. Relevant characteristics that will be crucial in non-cooperative pose estimation were identified such as shift, shadowing, perspective projection, jagged edges, and differential point cloud density. These characteristics will have to be considered in developing effective non-cooperative pose estimation algorithms. The modeling capability will allow extensive non-cooperative pose estimation performance simulations prior to field testing, saving development cost and providing performance metrics of the pose estimation concepts and algorithms under evaluation. The modeling process also provides "truth" pose of the test objects with respect to the sensor frame so that the pose estimation error can be quantified.
21 CFR 740.18 - Coal tar hair dyes posing a risk of cancer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Coal tar hair dyes posing a risk of cancer. 740.18... posing a risk of cancer. (a) The principal display panel of the label and any labeling accompanying a... your skin and has been determined to cause cancer in laboratory animals. (b) Hair dyes containing...
21 CFR 740.18 - Coal tar hair dyes posing a risk of cancer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Coal tar hair dyes posing a risk of cancer. 740.18... posing a risk of cancer. (a) The principal display panel of the label and any labeling accompanying a... your skin and has been determined to cause cancer in laboratory animals. (b) Hair dyes containing...
21 CFR 740.18 - Coal tar hair dyes posing a risk of cancer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Coal tar hair dyes posing a risk of cancer. 740.18... posing a risk of cancer. (a) The principal display panel of the label and any labeling accompanying a... your skin and has been determined to cause cancer in laboratory animals. (b) Hair dyes containing...
21 CFR 740.18 - Coal tar hair dyes posing a risk of cancer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Coal tar hair dyes posing a risk of cancer. 740.18... posing a risk of cancer. (a) The principal display panel of the label and any labeling accompanying a... your skin and has been determined to cause cancer in laboratory animals. (b) Hair dyes containing...
21 CFR 740.18 - Coal tar hair dyes posing a risk of cancer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Coal tar hair dyes posing a risk of cancer. 740.18... posing a risk of cancer. (a) The principal display panel of the label and any labeling accompanying a... your skin and has been determined to cause cancer in laboratory animals. (b) Hair dyes containing...
Protein-protein structure prediction by scoring molecular dynamics trajectories of putative poses.
Sarti, Edoardo; Gladich, Ivan; Zamuner, Stefano; Correia, Bruno E; Laio, Alessandro
2016-09-01
The prediction of protein-protein interactions and their structural configuration remains a largely unsolved problem. Most of the algorithms aimed at finding the native conformation of a protein complex starting from the structure of its monomers are based on searching the structure corresponding to the global minimum of a suitable scoring function. However, protein complexes are often highly flexible, with mobile side chains and transient contacts due to thermal fluctuations. Flexibility can be neglected if one aims at finding quickly the approximate structure of the native complex, but may play a role in structure refinement, and in discriminating solutions characterized by similar scores. We here benchmark the capability of some state-of-the-art scoring functions (BACH-SixthSense, PIE/PISA and Rosetta) in discriminating finite-temperature ensembles of structures corresponding to the native state and to non-native configurations. We produce the ensembles by running thousands of molecular dynamics simulations in explicit solvent starting from poses generated by rigid docking and optimized in vacuum. We find that while Rosetta outperformed the other two scoring functions in scoring the structures in vacuum, BACH-SixthSense and PIE/PISA perform better in distinguishing near-native ensembles of structures generated by molecular dynamics in explicit solvent. Proteins 2016; 84:1312-1320. © 2016 Wiley Periodicals, Inc. PMID:27253756
The Spatial and the Visual in Mental Spatial Reasoning: An Ill-Posed Distinction
NASA Astrophysics Data System (ADS)
Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas; Seifert, Inessa
It is an ongoing and controversial debate in cognitive science which aspects of knowledge humans process visually and which ones they process spatially. Similarly, artificial intelligence (AI) and cognitive science research, in building computational cognitive systems, tended to use strictly spatial or strictly visual representations. The resulting systems, however, were suboptimal both with respect to computational efficiency and cognitive plau sibility. In this paper, we propose that the problems in both research strands stem from a mis conception of the visual and the spatial in mental spatial knowl edge pro cessing. Instead of viewing the visual and the spatial as two clearly separable categories, they should be conceptualized as the extremes of a con tinuous dimension of representation. Regarding psychology, a continuous di mension avoids the need to exclusively assign processes and representations to either one of the cate gories and, thus, facilitates a more unambiguous rating of processes and rep resentations. Regarding AI and cognitive science, the con cept of a continuous spatial / visual dimension provides the possibility of rep re sentation structures which can vary continuously along the spatial / visual di mension. As a first step in exploiting these potential advantages of the pro posed conception we (a) introduce criteria allowing for a non-dichotomic judgment of processes and representations and (b) present an approach towards rep re sentation structures that can flexibly vary along the spatial / visual dimension.