Science.gov

Sample records for process block diagram

  1. A Smart Thermal Block Diagram Tool

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn; Miyake, Robert; Dodge, Kyle

    2008-01-01

    The presentation describes a Smart Thermal Block Diagram Tool. It is used by JPL's Team X in studying missions during the Pre-Phase A. It helps generate cost and mass estimates using proprietary data bases.

  2. Reliability computation from reliability block diagrams

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.; Eckstein, R. E.

    1971-01-01

    A method and a computer program are presented to calculate probability of system success from an arbitrary reliability block diagram. The class of reliability block diagrams that can be handled include any active/standby combination of redundancy, and the computations include the effects of dormancy and switching in any standby redundancy. The mechanics of the program are based on an extension of the probability tree method of computing system probabilities.

  3. ISS EPS Orbital Replacement Unit Block Diagrams

    NASA Technical Reports Server (NTRS)

    Schmitz, Gregory V.

    2001-01-01

    The attached documents are being provided to Switching Power Magazine for information purposes. This magazine is writing a feature article on the International Space Station Electrical Power System, focusing on the switching power processors. These units include the DC-DC Converter Unit (DDCU), the Bi-directional Charge/Discharge Unit (BCDU), and the Sequential Shunt Unit (SSU). These diagrams are high-level schematics/block diagrams depicting the overall functionality of each unit.

  4. TEP process flow diagram

    SciTech Connect

    Wilms, R Scott; Carlson, Bryan; Coons, James; Kubic, William

    2008-01-01

    This presentation describes the development of the proposed Process Flow Diagram (PFD) for the Tokamak Exhaust Processing System (TEP) of ITER. A brief review of design efforts leading up to the PFD is followed by a description of the hydrogen-like, air-like, and waterlike processes. Two new design values are described; the mostcommon and most-demanding design values. The proposed PFD is shown to meet specifications under the most-common and mostdemanding design values.

  5. BLOCKER: A block diagram editing utility, release notes

    SciTech Connect

    Anderson, R.

    1986-10-09

    The BLOCKER block diagram utility was written in the interest of promoting better software documentation. It allows the user to easily create block diagrams which can be stored within software source text files and printed out with standard line printing devices. In this way, sketches which are often drawn on paper during software coding can be kept in an organized manner for later reference. BLOCKER is written in the PRAXIS programming language; it runs on VT-100-compatible terminals under version 4.3 of the VMS operating system on VAX computers. 9 refs.

  6. Program listing for the reliability block diagram computation program of JPL Technical Report 32-1543

    NASA Technical Reports Server (NTRS)

    Chelson, P. O.; Eckstein, R. E.

    1971-01-01

    The computer program listing for the reliability block diagram computation program described in Reliability Computation From Reliability Block Diagrams is given. The program is written in FORTRAN 4 and is currently running on a Univac 1108. Each subroutine contains a description of its function.

  7. A Simplified Work Scheme for Using Block Diagrams With the Orthographic Net.

    ERIC Educational Resources Information Center

    Lisle, Richard J.

    1980-01-01

    Presents the steps for drawing a block-diagram from a map in the area of structural geology. The author recommends first platting on the orthographic net, all directional data with respect to geographical reference axes. (Author/SA)

  8. Recognition and processing of logic diagrams

    NASA Astrophysics Data System (ADS)

    Darwish, Ahmed M.; Bashandy, Ahmed R.

    1996-03-01

    In this paper we present a vision system that is capable of interpreting schematic logic diagrams, i.e. determine the output as a logic function of the inputs. The system is composed of a number of modules each designed to perform a specific subtask. Each module bears a minor contribution in the form of a new mixture of known algorithms or extensions to handle actual real life image imperfections which researchers tend to ignore when they develop their theoretical foundations. The main contribution, thus, is not in any individual module, it is rather in their integration to achieve the target job. The system is organized more or less in a classical fashion. Aside from the image acquisition and preprocessing modules, interesting modules include: the segmenter, the identifier, the connector and the grapher. A good segmentation output is one reason for the success of the presented system. Several novelties exist in the presented approach. Following segmentation the type of each logic gate is determined and its topological connectivity. The logic diagram is then transformed to a directed acyclic graph in which the final node is the output logic gate. The logic function is then determined by backtracking techniques. The system is not only aimed at recognition applications. In fact its main usage may be to target other processing applications such as storage compression and graphics modification and manipulation of the diagram as is explained.

  9. Development of the Functional Flow Block Diagram for the J-2X Rocket Engine System

    NASA Technical Reports Server (NTRS)

    White, Thomas; Stoller, Sandra L.; Greene, WIlliam D.; Christenson, Rick L.; Bowen, Barry C.

    2007-01-01

    The J-2X program calls for the upgrade of the Apollo-era Rocketdyne J-2 engine to higher power levels, using new materials and manufacturing techniques, and with more restrictive safety and reliability requirements than prior human-rated engines in NASA history. Such requirements demand a comprehensive systems engineering effort to ensure success. Pratt & Whitney Rocketdyne system engineers performed a functional analysis of the engine to establish the functional architecture. J-2X functions were captured in six major operational blocks. Each block was divided into sub-blocks or states. In each sub-block, functions necessary to perform each state were determined. A functional engine schematic consistent with the fidelity of the system model was defined for this analysis. The blocks, sub-blocks, and functions were sequentially numbered to differentiate the states in which the function were performed and to indicate the sequence of events. The Engine System was functionally partitioned, to provide separate and unique functional operators. Establishing unique functional operators as work output of the System Architecture process is novel in Liquid Propulsion Engine design. Each functional operator was described such that its unique functionality was identified. The decomposed functions were then allocated to the functional operators both of which were the inputs to the subsystem or component performance specifications. PWR also used a novel approach to identify and map the engine functional requirements to customer-specified functions. The final result was a comprehensive Functional Flow Block Diagram (FFBD) for the J-2X Engine System, decomposed to the component level and mapped to all functional requirements. This FFBD greatly facilitates component specification development, providing a well-defined trade space for functional trades at the subsystem and component level. It also provides a framework for function-based failure modes and effects analysis (FMEA), and a

  10. Students' Learning Activities While Studying Biological Process Diagrams

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  11. Witten diagrams revisited: the AdS geometry of conformal blocks

    NASA Astrophysics Data System (ADS)

    Hijano, Eliot; Kraus, Per; Perlmutter, Eric; Snively, River

    2016-01-01

    We develop a new method for decomposing Witten diagrams into conformal blocks. The steps involved are elementary, requiring no explicit integration, and operate directly in position space. Central to this construction is an appealingly simple answer to the question: what object in AdS computes a conformal block? The answer is a "geodesic Witten diagram", which is essentially an ordinary exchange Witten diagram, except that the cubic vertices are not integrated over all of AdS, but only over bulk geodesics connecting the boundary operators. In particular, we consider the case of four-point functions of scalar operators, and show how to easily reproduce existing results for the relevant conformal blocks in arbitrary dimension.

  12. Block voter model: phase diagram and critical behavior.

    PubMed

    Sampaio-Filho, C I N; Moreira, F G B

    2011-11-01

    We introduce and study the block voter model with noise on two-dimensional square lattices using Monte Carlo simulations and finite-size scaling techniques. The model is defined by an outflow dynamics where a central set of N(PCS) spins, here denoted by persuasive cluster spins (PCS), tries to influence the opinion of their neighboring counterparts. We consider the collective behavior of the entire system with varying PCS size. When N(PCS)>2, the system exhibits an order-disorder phase transition at a critical noise parameter q(c) which is a monotonically increasing function of the size of the persuasive cluster. We conclude that a larger PCS has more power of persuasion, when compared to a smaller one. It also seems that the resulting critical behavior is Ising-like independent of the range of interaction. PMID:22181394

  13. Block voter model: Phase diagram and critical behavior

    NASA Astrophysics Data System (ADS)

    Sampaio-Filho, C. I. N.; Moreira, F. G. B.

    2011-11-01

    We introduce and study the block voter model with noise on two-dimensional square lattices using Monte Carlo simulations and finite-size scaling techniques. The model is defined by an outflow dynamics where a central set of NPCS spins, here denoted by persuasive cluster spins (PCS), tries to influence the opinion of their neighboring counterparts. We consider the collective behavior of the entire system with varying PCS size. When NPCS>2, the system exhibits an order-disorder phase transition at a critical noise parameter qc which is a monotonically increasing function of the size of the persuasive cluster. We conclude that a larger PCS has more power of persuasion, when compared to a smaller one. It also seems that the resulting critical behavior is Ising-like independent of the range of interaction.

  14. Dynamic modeling of thickness-mode piezoelectric transducer using the block diagram approach.

    PubMed

    Wang, Sheng-He; Tsai, Mi-Ching

    2011-07-01

    This paper aims to provide an alternative method to determine the characteristics of a piezoelectric transducer from measurement. A block diagram approach is proposed to analyze the dynamic characteristics of a thickness-mode piezoelectric transducer at its resonance frequency. Based on the feedback loop framework, the input-output relations of the electromechanical interaction of the transducer are described in terms of linear block diagram models. Furthermore, the closed-loop relations from external force to vibration velocity and electric current from generated voltage are easily found by Mason's rule to characterize the equivalent mechanical admittance and electrical impedance, respectively. An example of a Langevin transducer with 28.15kHz resonance frequency is illustrated for dynamics analysis. The frequency responses of the piezoelectric transducer, resulting from a force and current input, are respectively measured to identify the system parameters of the feedback model. The experimental results demonstrate the effectiveness of the proposed method. PMID:21292292

  15. Block Diagram Simulator to Solve a User-Defined Network of Differential Equatios

    Energy Science and Technology Software Center (ESTSC)

    1996-12-18

    BDBSIM simulates control and protection systems found in fossil and nuclear power plants. The software is based on the identification of a general equation form that encompasses all control and protection equations encountered in these plants. The user enters his equations in block diagram form as a collection of individual dynamic function, logic, and table blocks. Constructing plant control equations in this manner is analogous to setting up an analog computer for simulation. The capabilitymore » is thus sufficiently general for use in modeling a wide variety of control and protection systems.« less

  16. Surface Morphology Diagram for Cylinder-Forming Block Copolymer Thin Films

    SciTech Connect

    Zhang, Xiaohua; Berry, Brian C.; Yager, Kevin G.; Kim, Sangcheol; Jones, Ronald L.; Satija, Sushil; Pickel, Deanna L; Douglas, Jack F> Karim, Alamgir

    2008-01-01

    We investigate the effect of annealing temperature (T), film thickness (hf) on the surface morphology of flow coated films of a cylinder forming block copolymer, poly (styrene-block-methyl methacrylate) (PS-b-PMMA). Surface morphology transitions from a perpendicular to a parallel cylinder orientation with respect to the substrate with increasing hf are observed in these model frustrated-interaction films where the substrate interaction is preferential for one of the blocks (PMMA) and nearly neutral for the other interface (polymer-air). In these films a transition occurs from cylinders oriented parallel to the substrate to a mixed or hybrid state where the two orientations coexist followed by a transition to cylinders oriented perpendicularly to the polymer-air interface for larger hf. The characteristic values of hf defining these surface morphological transitions depend on T and we construct a surface morphology diagram as a function of hf and T. The surface morphology diagram is found to depend on the method of film formation (flow coated versus spun cast films) so non-equilibrium effects evidently have a large effect on the surface pattern morphology. In particular, the residual solvent within the film (quantified by neutron reflectivity measurements) in the context of physics of glass-formation can have a large effect on the surface morphology diagram.

  17. Students' Learning Activities While Studying Biological Process Diagrams

    NASA Astrophysics Data System (ADS)

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-08-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal data and eye-tracking data were collected as indications of students' learning activities. For the verbal data, we applied a fine-grained coding scheme to optimally describe students' learning activities. For the eye-tracking data, we used fixation time and transitions between areas of interest in the process diagrams as indices of learning activities. Various learning activities while studying process diagrams were found that distinguished between more and less successful students. Results showed that between-student variance in comprehension score was highly predicted by meaning making of the process arrows (80%) and fixation time in the main area (65%). Students employed successful learning activities consistently across learning tasks. Furthermore, compared to unsuccessful students, successful students used a more coherent approach of interrelated learning activities for comprehending process diagrams.

  18. The Effect of Block-Word Diagrams on the Structuring of Science Concepts as a Function of General Ability.

    ERIC Educational Resources Information Center

    Winn, William

    1980-01-01

    Examines the effectiveness of block-word diagrams in science instruction for ninth graders using directed graphs that express content structure as key concepts joined by arrows. Results include the finding that the effect of text-plus-diagram treatment compared to text-only treatment was different for learners of different ability. (CS)

  19. Development of processing diagrams for polymeric die attach adhesives

    NASA Astrophysics Data System (ADS)

    Hsiung, Jen-Chou

    With a processing diagram, one can reduce the effort required to customize curing process conditions for polymeric die attach adhesives. Polymeric die attach adhesives are often cured per the manufacturer's recommendations during initial screening evaluations. In most cases, the recommended cure schedules have to be modified so as to fit differences in process equipment. Unfortunately, the modified cure schedule is usually determined by a trial-and-error method. An aim of our experiments is to understand the curing process of a wide range of polymeric die attach adhesives (conventional, fast, and snap cure adhesives) and to construct a processing diagram, i.e., "Bondability Diagram", so as to define the processing window. Such diagrams should be helpful in determining both the time and cure temperature required to produce high quality bonds. The bondability diagram can be constructed based on fundamental understandings of the phenomena involved in the curing process using a wide variety of tools. Differential Scanning Calorimetry (DSC) is utilized to study the cure kinetics and the extent of reaction. Dynamic Mechanical Analysis (DMA) is used to determine gelation times and melt viscosity under a shear mode. A modified Rheovibron is employed to perform cure characterizations under a tensile mode so that cure stresses could be determined. Thermogravimetric Analysis (TGA) is used to evaluate the outgassing phenomena. Optical Microscopy (OM) is used to detect voids. Results indicate that the cure behaviors of conventional, fast, and snap cure adhesives are different in several respects. The combination of DSC, DMA, TGA, OM, and lap shear test leads to a frame work of developing the bondability diagram concept. The bondability diagram concept provides a foundation for an understanding of the recommended cure schedule and allows one to design their own cure schedule.

  20. The Effect of Diagrams on Online Reading Processes and Memory

    ERIC Educational Resources Information Center

    McCrudden, Matthew T.; Magliano, Joseph P.; Schraw, Gregory

    2011-01-01

    This work examined how adjunct displays influence college readers' moment-by-moment processing of text and the products of reading, using reading time (Experiments 1 & 2), and think-aloud methodologies (Experiment 3). Participants did or did not study a diagram before reading a text. Overall, the reading time data, think-aloud data, and recall…

  1. The use of a block diagram simulation language for rapid model prototyping

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    1995-01-01

    The research performed this summer focussed on the development of a predictive model for the loading of liquid oxygen (LO2) into the external tank (ET) of the shuttle prior to launch. A predictive model can greatly aid the operational personnel since instrumentation aboard the orbiter and ET is limited due to weight constraints. The model, which focuses primarily on the orbiter section of the system was developed using a block diagram based simulation language known as VisSim. Simulations were run on LO2 loading data for shuttle flights STS50 and STS55 and the model was demonstrated to accurately predict the sensor data recorded for these flights. As a consequence of the simulation results, it can be concluded that the software tool can be very useful for rapid prototyping of complex models.

  2. The Use of a Block Diagram Simulation Language for Rapid Model Prototyping

    NASA Technical Reports Server (NTRS)

    Whitlow, Johnathan E.; Engrand, Peter

    1996-01-01

    The research performed this summer was a continuation of work performed during the 1995 NASA/ASEE Summer Fellowship. The focus of the work was to expand previously generated predictive models for liquid oxygen (LOX) loading into the external fuel tank of the shuttle. The models which were developed using a block diagram simulation language known as VisSim, were evaluated on numerous shuttle flights and found to well in most cases. Once the models were refined and validated, the predictive methods were integrated into the existing Rockwell software propulsion advisory tool (PAT). Although time was not sufficient to completely integrate the models developed into PAT, the ability to predict flows and pressures in the orbiter section and graphically display the results was accomplished.

  3. Design of processes with reactive distillation line diagrams

    SciTech Connect

    Bessling, B.; Schembecker, G.; Simmrock, K.H.

    1997-08-01

    On the basis of the transformation of concentration coordinates, the concept of reactive distillation lines is developed. It is applied to study the feasibility of a reactive distillation with an equilibrium reaction on all trays of a distillation column. The singular points in the distillation line diagrams are characterized in terms of nodes and saddles. Depending on the characterization of the reactive distillation line diagrams, it can be decided whether a column with two feed stages is required. On the basis of the reaction space concept, a procedure for identification of reactive distillation processes is developed, in which the reactive distillation column has to be divided into reactive and nonreactive sections. This can be necessary to overcome the limitations in separation which result from the chemical equilibrium. The concentration profile of this combined reactive/nonreactive distillation column is estimated using combined reactive/nonreactive distillation lines.

  4. Introduction to Psychology and Leadership. Block Diagrams. Hierarchy of Behavioral Concepts for Content Outline for Leadership Course.

    ERIC Educational Resources Information Center

    Westinghouse Learning Corp., Annapolis, MD.

    Block diagrams describe the hierarchy of behavioral concepts in the United States Naval Academy leadership course (see the final reports which summarize the course development project, EM 010 418, EM 010 419, and EM 010 484). EM 010 420 through EM 010 447 and EM 010 451 through EM 010 512 are related documents. (SH)

  5. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel.

    PubMed

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern. PMID:25662662

  6. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel

    NASA Astrophysics Data System (ADS)

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern.

  7. WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA603. SUMMARY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA-603. SUMMARY OF COOLANT FLOW FROM WORKING RESERVOIR TO INTERIOR OF REACTOR'S THERMAL SHIELD. NAMES TANK SECTIONS. PIPE AND DRAIN-LINE SIZES. SHOWS DIRECTION OF AIR FLOW THROUGH PEBBLE AND GRAPHITE BLOCK ZONE. NEUTRON CURTAIN AND THERMAL COLUMN DOOR. BLAW-KNOX 3150-92-7, 3/1950. INL INDEX NO. 531-0603-51-098-100036, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  8. Query Processing for Probabilistic State Diagrams Describing Multiple Robot Navigation in an Indoor Environment

    SciTech Connect

    Czejdo, Bogdan; Bhattacharya, Sambit; Ferragut, Erik M

    2012-01-01

    This paper describes the syntax and semantics of multi-level state diagrams to support probabilistic behavior of cooperating robots. The techniques are presented to analyze these diagrams by querying combined robots behaviors. It is shown how to use state abstraction and transition abstraction to create, verify and process large probabilistic state diagrams.

  9. Observed Human Errors in Interpreting 3D visualizations: implications for Teaching Students how to Comprehend Geological Block Diagrams

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Pirl, E.; Chiang, J.; Tremaine, M.

    2009-12-01

    Block diagrams are commonly used to communicate three dimensional geological structures and other phenomena relevant to geological science (e.g., water bodies in the ocean). However, several recent studies have suggested that these 3D visualizations create difficulties for individuals with low to moderate spatial abilities. We have therefore initiated a series of studies to understand what it is about the 3D structures that make them so difficult for some people and also to determine if we can improve people’s understanding of these structures through web-based training not related to geology or other underlying information. Our first study examined what mistakes subjects made in a set of 3D block diagrams designed to represent progressively more difficult internal structures. Each block was shown bisected by a plane either perpendicular or at an angle to the block sides. Five low to medium spatial subjects were asked to draw the features that would appear on the bisecting plane. They were asked to talk aloud as they solved the problem. Each session was videotaped. Using the time it took subjects to solve the problems, the subject verbalizations of their problem solving and the drawings that were found to be in error, we have been able to find common patterns in the difficulties the subjects had with the diagrams. We have used these patterns to generate a set of strategies the subjects used in solving the problems. From these strategies, we are developing methods of teaching. A problem found in earlier work on geology structures was not observed in our study, that is, one of subjects failing to recognize the 2D representation of the block as 3D and drawing the cross-section as a combined version of the visible faces of the object. We attribute this to our experiment introduction, suggesting that even this simple training needs to be carried out with students encountering 3D block diagrams. Other problems subjects had included difficulties in perceptually

  10. Applying state diagrams to food processing and development

    NASA Technical Reports Server (NTRS)

    Roos, Y.; Karel, M.

    1991-01-01

    The physical state of food components affects their properties during processing, storage, and consumption. Removal of water by evaporation or by freezing often results in formation of an amorphous state (Parks et al., 1928; Troy and Sharp, 1930; Kauzmann, 1948; Bushill et al., 1965; White and Cakebread, 1966; Slade and Levine, 1991). Amorphous foods are also produced from carbohydrate melts by rapid cooling after extrusion or in the manufacturing of hard sugar candies and coatings (Herrington and Branfield, 1984). Formation of the amorphous state and its relation to equilibrium conditions are shown in Fig. 1 [see text]. The most important change, characteristic of the amorphous state, is noticed at the glass transition temperature (Tg), which involves transition from a solid "glassy" to a liquid-like "rubbery" state. The main consequence of glass transition is an increase of molecular mobility and free volume above Tg, which may result in physical and physico-chemical deteriorative changes (White and Cakebread, 1966; Slade and Levine, 1991). We have conducted studies on phase transitions of amorphous food materials and related Tg to composition, viscosity, stickiness, collapse, recrystallization, and ice formation. We have also proposed that some diffusion-limited deteriorative reactions are controlled by the physical state in the vicinity of Tg (Roos and Karel, 1990, 1991a, b, c). The results are summarized in this article, with state diagrams based on experimental and calculated data to characterize the relevant water content, temperature, and time-dependent phenomena of amorphous food components.

  11. Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…

  12. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    ERIC Educational Resources Information Center

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  13. Processing of IN-718 Lattice Block Castings

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2002-01-01

    Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.

  14. Block Diagram of a Black and White TV. Lesson Plan No. 1, Electronic Tech 1.

    ERIC Educational Resources Information Center

    Hollandsworth, Donald S.

    This lesson, which is part of a course in electronics technology, explains the workings of a black-and-white television. It covers the structure and function of the 18 structural blocks of black-and-white television sets. The following materials are included: a lesson plan, transparency masters, and student handouts. The lesson plan includes lists…

  15. The Art of Sorting: Using Venn Diagrams To Learn Science Process Skills.

    ERIC Educational Resources Information Center

    Moore, Jan E.

    2003-01-01

    Presents activities that have been proven to teach young learners to sort and classify objects that contain more than one attribute. The activities require that students employ the use of sorting hoops and attribute blocks to create Venn diagrams, the assembly of which requires practice. Includes cross-curricular uses of these learning tools.…

  16. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  17. Map Algorithms for Decoding Linear Block codes Based on Sectionalized Trellis Diagrams

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1999-01-01

    The MAP algorithm is a trellis-based maximum a posteriori probability decoding algorithm. It is the heart of the turbo (or iterative) decoding which achieves an error performance near the Shannon limit. Unfortunately, the implementation of this algorithm requires large computation and storage. Furthermore, its forward and backward recursions result in long decoding delay. For practical applications, this decoding algorithm must be simplified and its decoding complexity and delay must be reduced. In this paper, the MAP algorithm and its variations, such as Log-MAP and Max-Log-MAP algorithms, are first applied to sectionalized trellises for linear block codes and carried out as two-stage decodings. Using the structural properties of properly sectionalized trellises, the decoding complexity and delay of the MAP algorithms can be reduced. Computation-wise optimum sectionalizations of a trellis for MAP algorithms are investigated. Also presented in this paper are bi-directional and parallel MAP decodings.

  18. Property Blocks: Games and Activities.

    ERIC Educational Resources Information Center

    Humphreys, Alan, Ed.; Dailey, Jean, Ed.

    This pamphlet describes the property blocks produced by MINNEMAST, and discusses their use in the development of thinking processes. Classification systems, including block diagrams and tree diagrams, are discussed. Sixteen classroom activities and eleven games which use the blocks are described. Suggestions to the teacher for further reading are…

  19. TV Trouble-Shooting Manual. Volumes 3-4. Part 1: Block Diagram of Colour TV Receiver and Signal Flow. Student and Instructor's Manuals.

    ERIC Educational Resources Information Center

    Mukai, Masaaki; Kobayashi, Ryozo

    These volumes are, respectively, the self-instructional student manual and the teacher manual that cover the first set of training topics in this course for television repair technicians. Both volumes contain the following two sections: (1) Functional Block Diagram of a Colour TV Receiver, including information on the video reproduction circuit,…

  20. FeynChois: System for automating the process of Feynman diagram generation

    NASA Astrophysics Data System (ADS)

    Choi, Chul-Woo

    We have developed a DTD (Document Type Definition) for an XML (Extensible Markup Language) document for describing Feynman rules of quantum field theoretical models---the document is called FeynPage. A FeynPage can be any XML document that conforms to the FeynPage DTD. A FeynPage can be understood by a human or a computer program that is aware of the FeynPage DTD. We have also developed a Feynman diagram generator, which has been named FeynChois. It provides a user with a full GUI (Graphical User Interface) environment. More importantly, FeynChois knows how to read FeynPage. When FeynChois is asked by a user to generate diagrams, it will first look up the rules in the FeynPage; then, it will generate diagrams according to the rules for any process specified by the user. If the Feynman rules in a FeynPage are modified, FeynChois will generate diagrams according to the modified rules. What FeynChois generates are actually Java(TM) objects that represent Feynman diagrams. These objects are graphically displayed in the GUI. A user can edit, remove, and/or save the diagrams mostly by mouse operations. The Java classes for Feynman diagram objects together with FeynPage and FeynChois make up the FeynChois system. The dissertation details what the FeynChois system is and how it works.

  1. The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram

    PubMed Central

    Vins, Holly; Bell, Jesse; Saha, Shubhayu; Hess, Jeremy J.

    2015-01-01

    Little is understood about the long term, indirect health consequences of drought (a period of abnormally dry weather). In particular, the implications of drought for mental health via pathways such as loss of livelihood, diminished social support, and rupture of place bonds have not been extensively studied, leaving a knowledge gap for practitioners and researchers alike. A systematic review of literature was performed to examine the mental health effects of drought. The systematic review results were synthesized to create a causal process diagram that illustrates the pathways linking drought effects to mental health outcomes. Eighty-two articles using a variety of methods in different contexts were gathered from the systematic review. The pathways in the causal process diagram with greatest support in the literature are those focusing on the economic and migratory effects of drought. The diagram highlights the complexity of the relationships between drought and mental health, including the multiple ways that factors can interact and lead to various outcomes. The systematic review and resulting causal process diagram can be used in both practice and theory, including prevention planning, public health programming, vulnerability and risk assessment, and research question guidance. The use of a causal process diagram provides a much needed avenue for integrating the findings of diverse research to further the understanding of the mental health implications of drought. PMID:26506367

  2. The Mental Health Outcomes of Drought: A Systematic Review and Causal Process Diagram.

    PubMed

    Vins, Holly; Bell, Jesse; Saha, Shubhayu; Hess, Jeremy J

    2015-10-01

    Little is understood about the long term, indirect health consequences of drought (a period of abnormally dry weather). In particular, the implications of drought for mental health via pathways such as loss of livelihood, diminished social support, and rupture of place bonds have not been extensively studied, leaving a knowledge gap for practitioners and researchers alike. A systematic review of literature was performed to examine the mental health effects of drought. The systematic review results were synthesized to create a causal process diagram that illustrates the pathways linking drought effects to mental health outcomes. Eighty-two articles using a variety of methods in different contexts were gathered from the systematic review. The pathways in the causal process diagram with greatest support in the literature are those focusing on the economic and migratory effects of drought. The diagram highlights the complexity of the relationships between drought and mental health, including the multiple ways that factors can interact and lead to various outcomes. The systematic review and resulting causal process diagram can be used in both practice and theory, including prevention planning, public health programming, vulnerability and risk assessment, and research question guidance. The use of a causal process diagram provides a much needed avenue for integrating the findings of diverse research to further the understanding of the mental health implications of drought. PMID:26506367

  3. The organization of intrinsic computation: Complexity-entropy diagrams and the diversity of natural information processing

    NASA Astrophysics Data System (ADS)

    Feldman, David P.; McTague, Carl S.; Crutchfield, James P.

    2008-12-01

    Intrinsic computation refers to how dynamical systems store, structure, and transform historical and spatial information. By graphing a measure of structural complexity against a measure of randomness, complexity-entropy diagrams display the different kinds of intrinsic computation across an entire class of systems. Here, we use complexity-entropy diagrams to analyze intrinsic computation in a broad array of deterministic nonlinear and linear stochastic processes, including maps of the interval, cellular automata, and Ising spin systems in one and two dimensions, Markov chains, and probabilistic minimal finite-state machines. Since complexity-entropy diagrams are a function only of observed configurations, they can be used to compare systems without reference to system coordinates or parameters. It has been known for some time that in special cases complexity-entropy diagrams reveal that high degrees of information processing are associated with phase transitions in the underlying process space, the so-called "edge of chaos." Generally, though, complexity-entropy diagrams differ substantially in character, demonstrating a genuine diversity of distinct kinds of intrinsic computation.

  4. The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing.

    PubMed

    Feldman, David P; McTague, Carl S; Crutchfield, James P

    2008-12-01

    Intrinsic computation refers to how dynamical systems store, structure, and transform historical and spatial information. By graphing a measure of structural complexity against a measure of randomness, complexity-entropy diagrams display the different kinds of intrinsic computation across an entire class of systems. Here, we use complexity-entropy diagrams to analyze intrinsic computation in a broad array of deterministic nonlinear and linear stochastic processes, including maps of the interval, cellular automata, and Ising spin systems in one and two dimensions, Markov chains, and probabilistic minimal finite-state machines. Since complexity-entropy diagrams are a function only of observed configurations, they can be used to compare systems without reference to system coordinates or parameters. It has been known for some time that in special cases complexity-entropy diagrams reveal that high degrees of information processing are associated with phase transitions in the underlying process space, the so-called "edge of chaos." Generally, though, complexity-entropy diagrams differ substantially in character, demonstrating a genuine diversity of distinct kinds of intrinsic computation. PMID:19123616

  5. Phase diagrams of the Katz-Lebowitz-Spohn process on lattices with a junction

    NASA Astrophysics Data System (ADS)

    Tian, Bo; Jiang, Rui; Ding, Zhong-Jun; Hu, Mao-Bin; Wu, Qing-Song

    2013-06-01

    This paper studies the Katz-Lebowitz-Spohn (KLS) process on lattices with a junction, where particles move on parallel lattice branches that combine into a single lattice at the junction. It is shown that 11 kinds of phase diagrams could be observed, depending on the two parameters ɛ and δ in the KLS process. We have investigated the phase diagrams as well as bulk density analytically based on flow rate conservation and the extremal current principle. Extensive Monte Carlo computer simulations are performed, and it is found that they are in excellent agreement with theoretical prediction.

  6. Spent Nuclear Fuel (SNF) Project Multi Canister Overpack (MCO) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-09-08

    The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference.

  7. Morphology phase diagram of ultrathin anatase TiO2 films templated by a single PS-b-PEO block copolymer.

    PubMed

    Cheng, Ya-Jun; Gutmann, Jochen S

    2006-04-12

    Ultrathin TiO2 films showing rich morphologies are prepared on Si(100) substrates using sol-gel chemistry coupled with an amphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer as a structure-directing agent. The block copolymer undergoes a good-poor solvent pair induced phase separation in a mixed solution of 1,4-dioxane, concentrated hydrochloric acid (HCl), and titanium tetraisopropoxide (TTIP). By adjusting the weight fractions of 1,4-dioxane, HCl, and TTIP, inorganic block copolymer composite films containing a variety of different morphologies are obtained. On the basis of the results a ternary phase diagram of the morphologies is mapped. By calcination, anatase TiO2 films are achieved. The morphologies and crystallographic phase of the films are studied with AFM, SEM, and XRD, respectively, and the formation mechanisms of the different morphologies are discussed. PMID:16594703

  8. Gravity wave transmission diagram

    NASA Astrophysics Data System (ADS)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  9. Processing by data and program blocks

    NASA Technical Reports Server (NTRS)

    Schaffner, M. R.

    1978-01-01

    A processing system is presented that implements simultaneously the efficiency of the special-purpose processor and the total applicability of the general-purpose computer - characteristics commonly thought of as being mutually exclusive. This is achieved through specializing the machine by programming the hardware structure, rather than by adding software systems to it. Data are organized in circulating pages which form a multiplicity of local dynamic memories for each process. Programs are made up of modules, each describing a transient special-purpose machine. A characteristic of this approach is that the processes are data-driven, rather than program-driven. The programming language presents significant flexibility and efficiency in modeling certain classes of problems, and it may be of interest as an implementation model in a broader context. Applications to real-time processing of radar signals are reported. The relevance of characteristics of this system to problems in multiprogramming and multiprocessing systems is discussed.

  10. Light-emitting block copolymers composition, process and use

    DOEpatents

    Ferraris, John P.; Gutierrez, Jose J.

    2006-11-14

    Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.

  11. Student Understanding Of The Physics And Mathematics Of Process Variables In P-V Diagrams

    NASA Astrophysics Data System (ADS)

    Pollock, Evan B.; Thompson, John R.; Mountcastle, Donald B.

    2007-11-01

    Students in an upper-level thermal physics course were asked to compare quantities related to the First Law of Thermodynamics along with similar mathematical questions devoid of all physical context. We report on a comparison of student responses to physics questions involving interpretation of ideal gas processes on P-V diagrams and to analogous mathematical qualitative questions about the signs of and comparisons between the magnitudes of various integrals. Student performance on individual questions combined with performance on the paired questions shows evidence of isolated understanding of physics and mathematics. Some difficulties are addressed by instruction.

  12. Decoupling Processes in Block-and-ash Flows

    NASA Astrophysics Data System (ADS)

    Hanenkamp, E.; Davies, T.

    2009-05-01

    Lava dome collapse and collapse of lava flow fronts generate short-lived, highly mobile block-and-ash flows, usually comprising three components, a high-density, ground-hugging basal avalanche, a low-density ash cloud surge and a more dilute ash cloud on top. Generally the basal avalanche is valley-confined whereas the overlying surge has the ability to decouple from the dense basal part, overtop topographic barriers and affect greater areas than the basal avalanche, hence posing a larger hazard to the population. These processes have been observed at several volcanoes, e.g. Unzen (Japan), Merapi (Indonesia) and Soufriere Hills (Montserrat), resulting often in the loss of lives. Decoupling is often accentuated by topographic obstructions causing blocking or deflecting of the basal avalanche. Currently laboratory flume experiments are being undertaken to examine the factors initiating and influencing the decoupling processes of block-and-ash flows. A better understanding of the flow dynamics of a moving block-and-ash flow and of the interaction with the underlying substrate and topographic irregularities will provide better hazard zone delineation maps for the future. The experimental results will be used to investigate the emplacement of the block-and-ash flows at Mount Tarawera, New Zealand, where the deposits show indicators of possible decoupling processes during the AD 1305 Kaharoa eruptive episode.

  13. Complex Causal Process Diagrams for Analyzing the Health Impacts of Policy Interventions

    PubMed Central

    Joffe, Michael; Mindell, Jennifer

    2006-01-01

    Causal diagrams are rigorous tools for controlling confounding. They also can be used to describe complex causal systems, which is done routinely in communicable disease epidemiology. The use of change diagrams has advantages over static diagrams, because change diagrams are more tractable, relate better to interventions, and have clearer interpretations. Causal diagrams are a useful basis for modeling. They make assumptions explicit, provide a framework for analysis, generate testable predictions, explore the effects of interventions, and identify data gaps. Causal diagrams can be used to integrate different types of information and to facilitate communication both among public health experts and between public health experts and experts in other fields. Causal diagrams allow the use of instrumental variables, which can help control confounding and reverse causation. PMID:16449586

  14. Thermodynamic Diagrams

    NASA Astrophysics Data System (ADS)

    Chaston, Scot

    1999-02-01

    Thermodynamic data such as equilibrium constants, standard cell potentials, molar enthalpies of formation, and standard entropies of substances can be a very useful basis for an organized presentation of knowledge in diverse areas of applied chemistry. Thermodynamic data can become particularly useful when incorporated into thermodynamic diagrams that are designed to be easy to recall, to serve as a basis for reconstructing previous knowledge, and to determine whether reactions can occur exergonically or only with the help of an external energy source. Few students in our chemistry-based courses would want to acquire the depth of knowledge or rigor of professional thermodynamicists. But they should nevertheless learn how to make good use of thermodynamic data in their professional occupations that span the chemical, biological, environmental, and medical laboratory fields. This article discusses examples of three thermodynamic diagrams that have been developed for this purpose. They are the thermodynamic energy account (TEA), the total entropy scale, and the thermodynamic scale diagrams. These diagrams help in the teaching and learning of thermodynamics by bringing the imagination into the process of developing a better understanding of abstract thermodynamic functions, and by allowing the reader to keep track of specialist thermodynamic discourses in the literature.

  15. Identification of the states of the processes at liquid cathodes under potentiostatic conditions using semantic diagram models

    NASA Astrophysics Data System (ADS)

    Smirnov, G. B.; Markina, S. E.; Tomashevich, V. G.

    2012-08-01

    A technique is described for constructing semantic diagram models of the electrolysis at a liquid cathode in a salt halide melt under potentiostatic conditions that are intended for identifying the static states of this system that correspond to certain combinations of the electrode processes or the processes occurring in the volumes of salt and liquid-metal phases. Examples are given for the discharge of univalent and polyvalent metals.

  16. Rates of Metamorphic and Tectonic Processes Derived From Garnet Chemistry and Phase Diagrams

    NASA Astrophysics Data System (ADS)

    Stowell, H. H.

    2005-12-01

    Sm and Nd isotope data for the interior parts of a garnet crystal (core) and the whole rock can be used to calculate the timing of initial growth. Isotope data for the external parts of a garnet crystal (rim) and the rock matrix can be used to calculate the timing of final growth. Similarly, major element chemistry can be used to calculate pressures (P) and temperatures (T) of metamorphism for initial and final garnet growth. Combination of these data allows estimation of garnet growth, heating, and loading rates. Sm-Nd isochrons were constructed for garnet core and whole rock, and for garnet rim and rock matrix (whole rock minus garnet). For core and rim ages that are indistinguishable, uncertainties for a single isochron constrain the duration of garnet growth. P and T were estimated from the intersection of garnet chemical isopleths on P-T phase diagrams for specific rocks (pseudosections), and garnet rim thermobarometry and/or pseudosection peak mineral stability fields. Results from Cretaceous contact and regional metamorphic environments provide preliminary data for comparison. Schist from Garnet Ledge, AK. 20 mm garnet crystals in pelite less than 1 km from a diorite pluton grew during contact metamorphism over ca. 0.5 m.y. during a 70°C increase in T and 0.6 kbar increase in P. Growth, heating, and loading rates are 20 mm/m.y., 140°C/m.y., 1.2 kbar/m.y., respectively. Chiwaukum Schist from near the Mount Stuart batholith, WA. 14 mm garnet crystals in pelite less than 2 km from the Mt. Stuart batholith grew during regional metamorphism over <1.4 m.y. during a 75°C increase in T and 1.2 kbar increase in P. Growth, heating, and loading rates are 5 mm/m.y., 54°C/m.y., 0.9 kbar/m.y., respectively. 5 mm garnet crystals in pelite adjacent to orthogneiss grew during contact metamorphism over <1.8 m.y. while T and P increased to peak conditions of 630°C and 6.8 kbar. Pembroke granulite from Fiordland, New Zealand. 16 mm peritectic garnet crystals in lower

  17. Mollier-I, S-Diagrams for Combustion Gases in Data Processing

    NASA Technical Reports Server (NTRS)

    Zacharias, F.

    1982-01-01

    In order to have all the thermal and caloric states of combustion gases accessible in a computer, closed mathematical approximation equations were established for the real factors, the enthalpy and the entropy of a real combustion gas. The equations approximate the various effects of molecular forces real gas influence and dissociation - at temperatures of 200 K to 6,000 K, pressures of 0.001 to 1,000 bar, and in the range from stoichiometric composition to air. A system of subprograms is listed in FORTRAN, by means of which thermodynamic calculations can be carried out in the same manner as with Mollier I,S diagrams.

  18. Differential Effectiveness of Two Science Diagram Types.

    ERIC Educational Resources Information Center

    Holliday, William G.

    Reported is an Aptitude Treatment Instruction (ATI) Study designed to evaluate the aptitude of verbal comprehension in terms of two unitary complex science diagram types: a single complex block word diagram and a single complex picture word diagram.. ATI theory and research indicate that different effective instructional treatments tend to help…

  19. Block copolymers useful for enhanced oil recovery processes

    SciTech Connect

    Shu, P.

    1989-10-03

    This patent describes a method for permeability control of a subterranean formation and for enhancing oil recovery from the subterranean formation. The method comprising injecting into the subterranean formation an aqueous solution comprised of a block copolymer having the structural form of ABA triblock or (AB){sub n} multiblock wherein A is a crosslinkable polymer, B is a non-crosslinkable polymer or a polymer having low reactivity to crosslinking agents, n is a number of at least 2 and a crosslinking agent. Wherein A is selected from the group consisting of polyacrylic acid, partially hydrolyzed polyacrylamide, highly hydrolyzed polyacrylamide, partially hydrolyzed polyacrylic ester, highly hydrolyzed polyacrylic ester, polyvinyl alcohol and mixtures thereof and B is selected from the group consisting of polyacrylamide, partially hydrolyzed polyacrylamide, polyalkylene ethers, polyvinyl alcohol and polyvinylpyridine.

  20. Business Process Flow Diagrams in Tissue Bank Informatics System Design, and Identification and Communication of Best Practices: The Pharmaceutical Industry Experience.

    PubMed

    McDonald, Sandra A; Velasco, Elizabeth; Ilasi, Nicholas T

    2010-12-01

    Pfizer, Inc.'s Tissue Bank, in conjunction with Pfizer's BioBank (biofluid repository), endeavored to create an overarching internal software package to cover all general functions of both research facilities, including sample receipt, reconciliation, processing, storage, and ordering. Business process flow diagrams were developed by the Tissue Bank and Informatics teams as a way of characterizing best practices both within the Bank and in its interactions with key internal and external stakeholders. Besides serving as a first step for the software development, such formalized process maps greatly assisted the identification and communication of best practices and the optimization of current procedures. The diagrams shared here could assist other biospecimen research repositories (both pharmaceutical and other settings) for comparative purposes or as a guide to successful informatics design. Therefore, it is recommended that biorepositories consider establishing formalized business process flow diagrams for their laboratories, to address these objectives of communication and strategy. PMID:23386924

  1. Higgs production and decay processes via loop diagrams in various 6D Universal Extra Dimension models at LHC

    NASA Astrophysics Data System (ADS)

    Nishiwaki, Kenji

    2012-05-01

    We calculate loop-induced Higgs production and decay processes which are relevant for the LHC in various six-dimensional Universal Extra Dimension models. More concretely, we focus on the Higgs production through gluon fusion and the Higgs decay into two photons induced by loop diagrams. They are one-loop leading processes and the contribution of Kaluza-Klein particles is considered to be significant. These processes are divergent in six dimensions. Therefore, we employ a momentum cutoff, whose size is fixed from the validity of perturbative calculation through naive dimensional analysis. In these six-dimensional Universal Extra Dimension models, the Higgs production cross section through gluon fusion is highly enhanced and the Higgs decay width into two photons is suppressed. In particular in the case of the compactification on Projective Sphere, these effects are remarkable. The deviation of the h (0) → 2γ signal from the prediction of the Standard model is much greater than that in the case of the five-dimensional minimal UED model. We also consider threshold corrections in the two processes and these effect are noteworthy even when we take a higher cutoff and/or a heavy KK scale. Comparing our calculation to the recent LHC results which were published at the Lepton-Photon 2011 and at the December of 2011 is performed briefly.

  2. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    SciTech Connect

    Beckingsale, D. A.; Gaudin, W. P.; Hornung, R. D.; Gunney, B. T.; Gamblin, T.; Herdman, J. A.; Jarvis, S. A.

    2014-11-17

    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  3. Low-Temperature Processable Block Copolymers That Preserve the Function of Blended Proteins.

    PubMed

    Iwasaki, Yasuhiko; Takemoto, Kyohei; Tanaka, Shinya; Taniguchi, Ikuo

    2016-07-11

    Low-temperature processable polymers have attracted increasing interest as ecological materials because of their reduced energy consumption during processing and suitability for making composites with heat-sensitive biomolecules at ambient temperature. In the current study, low-temperature processable biodegradable block copolymers were synthesized by ring-opening polymerization of l-lactide (LLA) using polyphosphoester as a macroinitiator. The polymer films could be processed under a hydraulic pressure of 35 MPa. The block copolymer films swelled in water because the polyphosphoester block was partially hydrated. Interestingly, the swelling ratio of the films changed with temperature. The pressure-induced order-to-disorder transition of the block copolymers was characterized by small-angle X-ray scattering; a crystallinity reduction in the block copolymers was observed after application of pressure. The crystallinity of the block copolymers was recovered after removing the applied pressure. The Young's modulus of the block copolymer films increased as the LLA unit content increased. Moreover, the modulus did not change after multiple processing cycles and the recyclability of the block copolymers was also confirmed. Finally, polymer films with embedded proteinase K as a model protein were prepared. The activity of catalase loaded into the polymer films was evaluated after processing at different temperatures. The activity of catalase was preserved when the polymer films were processed at room temperature but was significantly reduced after high-temperature processing. The suitability of low-temperature processable biodegradable polymers for making biofunctional composites without reducing protein activity was clarified. These materials will be useful for biomedical and therapeutic applications. PMID:27280847

  4. Application of quaternary phase diagrams to compound semiconductor processing. Progress report, April 1, 1988--December 31, 1988

    SciTech Connect

    Schwartzman, A.

    1988-12-31

    This paper considers the application of quaternary phase diagrams to understanding and predicting the behavior of II-VI thin film interfaces in photovoltaic devices under annealing conditions. Examples, listed in a table, include semiconductor/insulator/semiconductor (SIS) layered structures, II-VI/II-VI and III-V/II-VI epitaxial heterojunctions and oxidation of ternary compounds. Solid solubility is taken into account for quaternary phase diagrams of semiconductor systems. Using free energies of formation, a method to calculate the quaternary phase diagrams was developed. The Ga-As-II-VI and Cd-Te-Zn-O phase diagrams are reviewed as examples of quaternary phase diagrams without and with solid solubility.

  5. Identification of the states of the processes that occur on solid cathodes in the potentiostatic electrolysis mode using semantic diagram models

    NASA Astrophysics Data System (ADS)

    Smirnov, G. B.; Markina, S. E.; Tomashevich, V. G.

    2011-02-01

    A procedure is proposed to construct semantic diagram models for the electrolysis on a solid cathode in a salt halide melt under potentiostatic conditions. These models are intended to identify the static states of the system that correspond to a certain combination of the processes occurring on an electrode and in the system volume. Examples for discharging of univalent and polyvalent metals are given.

  6. Program Synthesizes UML Sequence Diagrams

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2006-01-01

    A computer program called "Rational Sequence" generates Universal Modeling Language (UML) sequence diagrams of a target Java program running on a Java virtual machine (JVM). Rational Sequence thereby performs a reverse engineering function that aids in the design documentation of the target Java program. Whereas previously, the construction of sequence diagrams was a tedious manual process, Rational Sequence generates UML sequence diagrams automatically from the running Java code.

  7. Contingency diagrams as teaching tools

    PubMed Central

    Mattaini, Mark A.

    1995-01-01

    Contingency diagrams are particularly effective teaching tools, because they provide a means for students to view the complexities of contingency networks present in natural and laboratory settings while displaying the elementary processes that constitute those networks. This paper sketches recent developments in this visualization technology and illustrates approaches for using contingency diagrams in teaching. ImagesFigure 2Figure 3Figure 4 PMID:22478208

  8. 76 FR 54787 - Outer Continental Shelf Official Protraction Diagram, Lease Maps, and Supplemental Official Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... Bureau of Ocean Energy Management, Regulation and Enforcement Outer Continental Shelf Official Protraction Diagram, Lease Maps, and Supplemental Official Outer Continental Shelf Block Diagrams AGENCY... revised North American Datum of 1927 (NAD 27) Outer Continental Shelf Official Protraction Diagram,...

  9. 76 FR 2919 - Outer Continental Shelf Official Protraction Diagram and Supplemental Official Outer Continental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... Bureau of Ocean Energy Management, Regulation and Enforcement Outer Continental Shelf Official Protraction Diagram and Supplemental Official Outer Continental Shelf Block Diagrams AGENCY: Bureau of Ocean... American Datum of 1983 (NAD 83) Outer Continental Shelf Official Protraction Diagram and...

  10. Application of ISO22000, failure mode, and effect analysis (FMEA) cause and effect diagrams and pareto in conjunction with HACCP and risk assessment for processing of pastry products.

    PubMed

    Varzakas, Theodoros H

    2011-09-01

    The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of pastry processing. A tentative approach of FMEA application to the pastry industry was attempted in conjunction with ISO22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (pastry processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over pastry processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the Risk Priority Number (RPN) per identified processing hazard. Storage of raw materials and storage of final products at -18°C followed by freezing were the processes identified as the ones with the highest RPN (225, 225, and 144 respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a pastry processing industry is considered imperative. PMID:21838557

  11. Psychological Aspects of Aging. Module A-7. Block A. Basic Knowledge of the Aging Process.

    ERIC Educational Resources Information Center

    Harvey, Dexter; Cap, Orest

    This instructional module on psychological aspects of aging is one in a block of 10 modules designed to provide the human services worker who works with older adults with basic information regarding the aging process. An introduction provides an overview of the module content. A listing of general objectives follows. Six sections present…

  12. Confusion and the Older Adult. Module A-8. Block A. Basic Knowledge of the Aging Process.

    ERIC Educational Resources Information Center

    Harvey, Dexter; Cap, Orest

    This instructional module on confusion and the older adult is one in a block of 10 modules designed to provide the human services worker who works with older adults with basic information regarding the aging process. An introduction provides an overview of the module content. A listing of general objectives follows. Three sections present…

  13. Military Curricula for Vocational & Technical Education. Metals Processing Specialist, Block VII, Classroom Course 13-8.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These curriculum materials are the fourth section of a four-part, secondary-postsecondary-level course in metals processing. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Block VII deals with heat treating, hardness…

  14. Nutrition and the Older Adult. Module A-9. Block A. Basic Knowledge of the Aging Process.

    ERIC Educational Resources Information Center

    Harvey, Dexter; Cap, Orest

    This instructional module on nutrition and the older adult is one in a block of 10 modules designed to provide the human services worker who works with older adults with basic information regarding the aging process. An introduction provides an overview of the module content. A listing of general objectives follows. Five sections present…

  15. Physiological Aspects of Aging. Module A-5. Block A. Basic Knowledge of the Aging Process.

    ERIC Educational Resources Information Center

    Harvey, Dexter; Cap, Orest

    This instructional module on physiological aspects of aging is one in a block of 10 modules designed to provide the human services worker who works with older adults with basic information regarding the aging process. An introduction provides an overview of the module content. A listing of general objectives follows. Nine sections present…

  16. Processes of subduction and exhumation of continental blocks in collisional orogeny

    NASA Astrophysics Data System (ADS)

    Tirel, C.; Brun, J.; Burov, E. B.; Wortel, M. J.; Lebedev, S.

    2009-12-01

    Understanding the mechanism of accretion, subduction and exhumation of rocks during orogeny is a fundamental issue for plate tectonics. Numerous models have been proposed in order to explain the tectonic events that accompany continental subduction. Here, in order to examine the different processes in a simple, self-consistent manner, the fully coupled thermo-mechanical numerical code PARAFLAM is used to perform a parametric study on the subduction mode and, particularly, on the continental subduction processes. A wide range of parameters including slab-pull magnitude, temperature and viscosity distribution, initial geometry of the subduction zone and rheology, is explored to understand the dynamics of accretion, the different processes of exhumation, the deformation of the slab and the deformation of the overriding plate. The first results of this study show the evolution of one or two small continental blocks (terranes) reaching the subduction-zone continental margin. A set of experiments demonstrates that the progressive incorporation of a continental block into the over-riding plate is governed by the dynamics of subduction. Initially, the continental block is partly or entirely subducted, which increases its buoyancy and induces its detachment from the subducting slab. By the time the emplacement of the block into the continental margin is completed, exhumation is likely to have occurred, depending mainly on the slab pull magnitude and the rheology of the continental block itself. As an example, some experiments show the continuous subduction of a continental block followed by an UHP-HP exhumation and a metamorphic-core-complex type of exhumation. These cases can be compared with the pattern of deformation observed in the Aegean-Sea domain or in the Tyrrhenian one.

  17. Automated Processing of LASCO Coronal Images: Spurious Point-Source-Filtering and Missing-Blocks Correction

    NASA Astrophysics Data System (ADS)

    Pagot, E.; Lamy, P.; Llebaria, A.; Boclet, B.

    2014-04-01

    We report on automated procedures for correcting the images of the LASCO coronagraph for i) spurious quasi-point-sources such as the impacts of cosmic rays, stars, and planets, and ii) the absence of signal due to transmission errors or dropouts, which results in blocks of missing information in the images. Correcting for these undesirable artifacts is mandatory for all quantitative works on the solar corona that require data inversion and/or long series of images, for instance. The nonlinear filtering of spike noise or point-like objects is based on mathematical morphology and implements the procedure opening by morphological reconstruction. However, a simple opening filter is applied whenever the fractional area of corrupted pixels exceeds 50 % of the original image. We describe different strategies for reconstructing the missing information blocks. In general, it is possible to implement the method of averaged neighbors using the two images obtained immediately before and after the corrupted image. For the other cases, and in particular when missing blocks overlapped in three images, we developed an original procedure of weighted interpolation along radial profiles from the center of the Sun that intercept the missing block(s). This procedure is also adequate for the saturated images of bright planets (such as Venus) that bleed along the neighboring pixels. Missing blocks in polarized images may generally be reconstructed using the associated unpolarized image of the same format. But in the case of overlapping missing blocks, we implemented our procedure of weighted interpolation. All tests performed on numerous LASCO-C2 images at various periods of solar activity ( i.e. varying complexity of the structure of the corona) demonstrate the excellent performance of these new procedures, with results vastly superior to the methods implemented so far in the pipeline-processing of the LASCO images.

  18. Thin Isoporous Block Copolymer Membranes: It Is All about the Process.

    PubMed

    Hahn, Janina; Clodt, Juliana I; Abetz, Clarissa; Filiz, Volkan; Abetz, Volker

    2015-09-30

    The combination of the self-assembly of amphiphilic block copolymers and the nonsolvent induced phase inversion process offers an efficient way to isoporous integral-asymmetric membranes. In this context we report fast, easily upscalable and material reducing ways to thin self-assembled membranes. Therefore, we succeeded to implement a spray or dip coating step into the membrane formation process of different diblock copolymers like polystyrene-block-poly(4-vinylpyridine), poly(α-methylstyrene)-bock-poly(4-vinylpyridine), and polystyrene-block-poly(iso-propylglycidyl methacrylate). The formation of hexagonal pore structures was possible using a highly diluted one solvent system allowing the reduction of diblock copolymer consumption and therefore the production costs are minimized compared to conventional blade casting approaches. The broad applicability of the process was proven by using different flat and hollow fiber support materials. Furthermore, the membranes made by this new method showed a more than 6-fold increase in water flux compared to conventional polystyrene-block-poly(4-vinylpyridine) membranes with similar pore sizes prepared by blade casting. The membranes could be proven to be stable at transmembrane pressures of 2 bar and showed a pH responsive flux behavior over several cycles. PMID:26349610

  19. Block Copolymer Modified Epoxy Amine System for Reactive Rotational Molding: Structures, Properties and Processability

    NASA Astrophysics Data System (ADS)

    Lecocq, Eva; Nony, Fabien; Tcharkhtchi, Abbas; Gérard, Jean-François

    2011-05-01

    Poly(styrene-butadiene-methylmethacrylate) (SBM) and poly(methylmethacrylate-butyle-acrylate-methylmethacrylate) (MAM) triblock copolymers have been dissolved in liquid DGEBA epoxy resin which is subsequently polymerized by meta-xylene diamine (MXDA) or Jeffamine EDR-148. A chemorheology study of these formulations by plate-plate rheology and by thermal analysis has allowed to conclude that the addition of these copolymer blocks improve the reactive rotational moulding processability without affecting the processing time. Indeed, it prevents the pooling of the formulation at the bottom of the mould and a too rapid build up of resin viscosity of these thermosetting systems. The morphology of the cured blends examined by scanning electron microscopy (SEM) shows an increase of fracture surface area and thereby a potential increase of the toughness with the modification of epoxy system. Dynamic mechanical spectroscopy (DMA) and opalescence of final material show that the block PMMA, initially miscible, is likely to induce phase separation from the epoxy-amine matrix. Thereby, the poor compatibilisation between the toughener and the matrix has a detrimental effect on the tensile mechanical properties. The compatibilisation has to be increased to improve in synergy the processability and the final properties of these block copolymer modified formulations. First attempts could be by adapting the length and ratio of each block.

  20. Ion potential diagrams for electrochromic devices

    SciTech Connect

    Varsano, F. |; Cahen, D.; Decker, F.; Guillemoles, J.F. |; Masetti, E.

    1998-12-01

    Ion potential diagrams can facilitate the description of systems in which ionic species are mobile. They depict qualitatively the spatial dependence of the potential energy for mobile ions, somewhat akin to band diagrams for electrons. The authors construct ion potential diagrams for the mixed conducting (oxide), optically active electrodes of five-layer electrochromic devices, based on reversible Li{sup +} intercalation. These serve to analyze stability problems that arise in these systems. The authors then use them as building blocks to arrive at ion diagrams for complete devices. This allows analyses of (dis)coloration kinetics.

  1. Arrows in Comprehending and Producing Mechanical Diagrams

    ERIC Educational Resources Information Center

    Heiser, Julie; Tversky, Barbara

    2006-01-01

    Mechanical systems have structural organizations--parts, and their relations--and functional organizations--temporal, dynamic, and causal processes--which can be explained using text or diagrams. Two experiments illustrate the role of arrows in diagrams of mechanical systems. In Experiment 1, people described diagrams with or without arrows,…

  2. Differential Cognitive and Affective Responses to Flow Diagrams in Science

    ERIC Educational Resources Information Center

    Holliday, William G.; And Others

    1977-01-01

    Describes a study in which tenth-grade biology students who were low verbal performers scored significantly higher on achievement tests when provided with picture-word diagrams of biological concepts than when provided with block-word diagrams. Students and teachers also preferred picture-word diagrams as indicated by a questionnaire. (MLH)

  3. Comminution and sizing processes of concrete block waste as recycled aggregates.

    PubMed

    Gomes, P C C; Ulsen, C; Pereira, F A; Quattrone, M; Angulo, S C

    2015-11-01

    Due to the environmental impact of construction and demolition waste (CDW), recycling is mandatory. It is also important that recycled concrete aggregates (RCA) are used in concrete to meet market demands. In the literature, the influence of RCAs on concrete has been investigated, but very limited studies have been conducted on how the origin of concrete waste and comminution processes influence RCA characteristics. This paper aims to investigate the influence of three different comminution and sizing processes (simple screening, crushing and grinding) on the composition, shape and porosity characteristics of RCA obtained from concrete block waste. Crushing and grinding implies a reduction of RCA porosity. However, due to the presence of coarse quartz rounded river pebbles in the original concrete block mixtures, the shape characteristics deteriorated. A large amount of powder (<0.15 mm) without detectable anhydrous cement was also generated. PMID:26168872

  4. Efficient block processing of long duration biotelemetric brain data for health care monitoring.

    PubMed

    Soumya, I; Rahman, M Zia Ur; Reddy, D V Rama Koti; Lay-Ekuakille, A

    2015-03-01

    In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence. PMID:25832268

  5. Efficient block processing of long duration biotelemetric brain data for health care monitoring

    SciTech Connect

    Soumya, I.; Zia Ur Rahman, M.; Rama Koti Reddy, D. V.; Lay-Ekuakille, A.

    2015-03-15

    In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.

  6. Improved cost-effectiveness of the block co-polymer anneal process for DSA

    NASA Astrophysics Data System (ADS)

    Pathangi, Hari; Stokhof, Maarten; Knaepen, Werner; Vaid, Varun; Mallik, Arindam; Chan, Boon Teik; Vandenbroeck, Nadia; Maes, Jan Willem; Gronheid, Roel

    2016-04-01

    This manuscript first presents a cost model to compare the cost of ownership of DSA and SAQP for a typical front end of line (FEoL) line patterning exercise. Then, we proceed to a feasibility study of using a vertical furnace to batch anneal the block co-polymer for DSA applications. We show that the defect performance of such a batch anneal process is comparable to the process of record anneal methods. This helps in increasing the cost benefit for DSA compared to the conventional multiple patterning approaches.

  7. Quality Prediction for a Fed-Batch Fermentation Process Using Multi-Block PLS

    NASA Astrophysics Data System (ADS)

    Hong, Jeong Jin; Zhang, Jie

    Quality prediction is usually required for product quality monitoring and setting up control strategy can reduce operating cost and improve production efficiency. Partial least square (PLS) regression is a popular statistical method for predictive modelling. The amount of data measured and stored in a typical industrial process is dramatically increased due to the fast development of computer and measuring system. It is hard to analyse all measured data using one matrix for its complexity. Multi-Block PLS model allows the data to be separated into sub-blocks and the sub-blocks can be analysed independently. Data from the fed-batch fermentation process is used to build models. Data is divided by different modes and different phases and model parameters are used to select variables that can be used as good predictors. The new set of data after variable selections is used to build a new model again. In most cases, new models show improved prediction performances compared with results from the conventional method.

  8. Instantaneous Formation of Block Copolymer Patterns via Solvo-Thermal Casting Process

    NASA Astrophysics Data System (ADS)

    Jung, Hyun Jung; Woo, Sanghoon; Huh, June; Bang, Joona

    2015-03-01

    A self-assembly of block copolymers (BCPs) exhibits one of the most promising alternative methods for the next-generation lithography. Many semiconductor companies have explored the possibility of implementing this process in actual chip process, whereas the critical challenges such as feature size control, defect density, and long processing time need to be overcome. Regarding the BCP process, the formation of BCP patterns usually requires long processing time via thermal or solvent annealing. Herein we developed a simple processing method to promote a microphase separation of BCPs using solvo-thermal spin casting process. Spin casting has a very similar mechanism to solvent vapor annealing but its short process time prevents BCP chains from reaching equilibrium morphology. To maximize the chain mobility, we employed a high boiling point solvent and also applied the heat during spin casting. As a result, a well ordered BCP patterns were obtained within less than 5 min via solvo-thermal casting process without further additional annealing step.

  9. Analysis of backward error recovery for concurrent processes with recovery blocks

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Lee, Y. H.

    1982-01-01

    Three different methods of implementing recovery blocks (RB's). These are the asynchronous, synchronous, and the pseudo recovery point implementations. Pseudo recovery points so that unbounded rollback may be avoided while maintaining process autonomy are proposed. Probabilistic models for analyzing these three methods under standard assumptions in computer performance analysis, i.e., exponential distributions for related random variables were developed. The interval between two successive recovery lines for asynchronous RB's mean loss in computation power for the synchronized method, and additional overhead and rollback distance in case PRP's are used were estimated.

  10. MOVIE: a hardware building block for software-only real-time video processing

    NASA Astrophysics Data System (ADS)

    Barzic, Ronan; Bouville, Christian; Charot, Francois; Le Fol, Gwendal; Lemonnier, Pascal; Wagner, Charles

    1996-03-01

    The goal of the MOVIE VLSI chip is to facilitate the development of software-only solutions for real time video processing applications. This chip can be seen as a building block for SIMD arrays of processing elements and its architecture has been designed so as to facilitate high level language programming. The basic architecture building block associates a sub-array of computational processors with a I/O processor. A module can be seen as a small linear, systolic-like array of processing elements, connected at each end to the I/O processor. The module can communicate with its two nearest neighbors via two communication ports. The chip architecture also includes three 16-bit video ports. One important aspect in the programming environment is the C-stolic programming language. C-stolic is a C-like language augmented with parallel constructs which allow to differentiate between the array controller variables (scalar variables) and the local variables in the array structure (systolic variables). A statement operating on systolic variables implies a simultaneous execution on all the cells of the structure. Implementation examples of MOVIE-based architectures dealing with video compression algorithms are given.

  11. Process Controlled Multiscale Morphologies in Metal-containing Block Copolymer Thin Films

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Kilbey, II, S Michael; Darling, Seth B.

    2014-01-01

    Poly(styrene-block-ferrocenyldimethylsilane) (PS-b-PFS) is a metal-containing block copolymer that exhibits certain advantages as a mask for lithographic applications. These advantages include compatibility with a wide range of substrates, ease of control over domain morphologies and robust stability to etch plasma, which aid in the development of high-aspect-ratio patterns. An asymmetric cylinder-forming PS-b-PFS copolymer is subjected to different processing to manipulate the morphology of the phase-separated domains. Control of film structure and domain morphology is achieved by adjusting the film thickness, mode of annealing, and/or annealing time. Changing the process from thermal or solvent annealing to hybrid annealing (thermal and then solvent annealing in sequence) leads to the formation of mesoscale spherulitic and dendritic morphologies. In this communication, we show that reversing the order of the hybrid annealing (solvent annealing first and then thermal annealing) of relatively thick films (>100 nm) on homogeneously thick substrates develops disordered lamellar structure. Furthermore, the same processing applied on a substrate with a thin, mechanically flexible window in the center leads to the formation of sub-micron scale concentric ring patterns. Enhanced material mobility in the thick film during hybrid annealing along with dynamic rippling effects that may arise from the vibration of the thin window during spin casting are likely causes for these morphologies.

  12. Forming Limit Diagrams of Zircaloy-4 and Zirlo Sheets for Stamping Process of Spacer Grids of Nuclear Fuel Rod

    NASA Astrophysics Data System (ADS)

    Seo, Yunmi; Hyun, Hong Chul; Lee, Hyungyil; Kim, Naksoo

    2011-08-01

    We investigated the theoretical forming limit models for Zircaloy-4 and Zirlo used for spacer grid of nuclear fuel rods. Tensile tests were performed to obtain stress-strain curves and anisotropic coefficients, such as r-values. The experimental forming limit diagrams (FLD) for two materials were obtained by dome stretching tests following the specification of NUMISHEET 96. Theoretical FLD depends on forming limit model and yield criterion. To obtain the right hand side of FLD, we applied the forming limit models (Swift's diffuse necking, Marciniak-Kuczynski damage defect, Storen-Rice's vertex theory) to Zircaloy-4 and Zirlo sheets. Hill's local necking theory was adopted for the left side of FLD. To consider the anisotropy of sheets, the yield criteria of Hill (1948) and Hosford (1979) were applied. Comparing the predicted curves with the experimental data, we found that the FLD for Zircaloy-4 can be described by the Swift model with the Hill 48 yield criterion, while the FLD for Zirlo can be explained by the Storen-Rice model and the Hosford yield criterion (a = 8).

  13. Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures

    NASA Astrophysics Data System (ADS)

    Ceresoli, M.; Palermo, M.; Ferrarese Lupi, F.; Seguini, G.; Perego, M.; Zuccheri, G.; Phadatare, S. D.; Antonioli, D.; Gianotti, V.; Sparnacci, K.; Laus, M.

    2015-10-01

    Binary homopolymer blends of two hydroxyl-terminated polystyrene (PS-OH) and polymethylmethacrylate (PMMA-OH) homopolymers (Mn ˜ 16000 g mol-1) were grafted on SiO2 substrates by high-temperature (T > 150 °C), short-time (t < 600 s) thermal treatments. The resulting brush layer was tested to screen preferential interactions of the SiO2 substrate with the different symmetric and asymmetric PS-b-PMMA block copolymers deposited on top of the grafted molecules. By properly adjusting the blend composition and the processing parameters, an efficient surface neutralization path was identified, enabling the formation, in the block copolymer film, of homogeneous textures of lamellae or cylinders perpendicularly oriented with respect to the substrate. A critical interplay between the phase segregation of the homopolymer blends and their grafting process on the SiO2 was observed. In fact, the polar SiO2 is preferential for the PMMA-rich phase that forms a homogeneous layer on the substrate, while the PS-rich phase is located at the polymer-air interface. During the thermal treatment, phase segregation and grafting proceed simultaneously. Complete wetting of the PS rich phase on the PMMA rich phase leads to the formation of a PS/PMMA bilayer. In this case, the progressive diffusion of PS chains toward the polymer-SiO2 interface during the thermal treatment allows tuning of the brush layer composition.

  14. 40 CFR 68.65 - Process safety information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... paragraph (b): Material Safety Data Sheets meeting the requirements of 29 CFR 1910.1200(g) may be used to... process shall include at least the following: (i) A block flow diagram or simplified process flow...

  15. Reporting methods for processing and analysis of data from serial block face scanning electron microscopy.

    PubMed

    Borrett, S; Hughes, L

    2016-07-01

    Serial block face scanning electron microscopy is rapidly becoming a popular tool for collecting large three-dimensional data sets of cells and tissues, filling the resolution and volume gap between fluorescence microscopy and high-resolution electron microscopy. The automated collection of data within the instrument occupies the smallest proportion of the time required to prepare and analyse biological samples. It is the processing of data once it has been collected that proves the greatest challenge. In this review we discuss different methods that are used to process data. We suggest potential workflows that can be used to facilitate the transfer of raw image stacks into quantifiable data as well as propose a set of criteria for reporting methods for data analysis to enable replication of work. PMID:26800017

  16. Novel surface treatment materials for aligning block-co-polymer in directed self-assembly processes

    NASA Astrophysics Data System (ADS)

    Someya, Yasunobu; Wakayama, Hiroyuki; Endo, Takafumi; Sakamoto, Rikimaru

    2014-03-01

    Directed Self-Assembly (DSA) process is one of the attractive processes for creating the very fine pitch pattern. Especially, the contact hole shrink processes with block-co-polymer (BCP) or polymer blend materials were attractive processes for creating very small size hole patterns with better CD uniformity compare to general photo-lithography patterning. In general contact hole shrink process, the pattern of Spin-on Carbon Hardmask (SOC) or the photo Resist pattern created by Negative-Tone Development (NTD) process were selected for guide patterns. Since the alignment property of BCP was affected by the surface of these guide materials, it is important to control the surface condition of guide in order to obtain good shrunk contact hole patterns. In this study, we will report the surface treatment materials to control the surface condition of guide patterns such as SOC or NTD resist to achieve the better contact hole shrink performance. These materials were attached to guide pattern surface and controlled the surface energy.

  17. Autoplan: A self-processing network model for an extended blocks world planning environment

    NASA Technical Reports Server (NTRS)

    Dautrechy, C. Lynne; Reggia, James A.; Mcfadden, Frank

    1990-01-01

    Self-processing network models (neural/connectionist models, marker passing/message passing networks, etc.) are currently undergoing intense investigation for a variety of information processing applications. These models are potentially very powerful in that they support a large amount of explicit parallel processing, and they cleanly integrate high level and low level information processing. However they are currently limited by a lack of understanding of how to apply them effectively in many application areas. The formulation of self-processing network methods for dynamic, reactive planning is studied. The long-term goal is to formulate robust, computationally effective information processing methods for the distributed control of semiautonomous exploration systems, e.g., the Mars Rover. The current research effort is focusing on hierarchical plan generation, execution and revision through local operations in an extended blocks world environment. This scenario involves many challenging features that would be encountered in a real planning and control environment: multiple simultaneous goals, parallel as well as sequential action execution, action sequencing determined not only by goals and their interactions but also by limited resources (e.g., three tasks, two acting agents), need to interpret unanticipated events and react appropriately through replanning, etc.

  18. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  19. Selective inhibition of farnesyl-protein transferase blocks ras processing in vivo.

    PubMed

    Gibbs, J B; Pompliano, D L; Mosser, S D; Rands, E; Lingham, R B; Singh, S B; Scolnick, E M; Kohl, N E; Oliff, A

    1993-04-15

    The ras oncogene product, Ras, is synthesized in vivo as a precursor protein that requires post-translational processing to become biologically active and to be capable of transforming mammalian cells. Farnesylation appears to be a critical modification of Ras, and thus inhibitors of the farnesyl-protein transferase (FPTase) that catalyzes this reaction may block ras-dependent tumorigenesis. Three structural classes of FPTase inhibitors were identified: (alpha-hydroxyfarnesyl)phosphonic acid, chaetomellic acids, and zaragozic acids. By comparison, these compounds were weaker inhibitors of geranylgeranyl-protein transferases. Each of these inhibitors was competitive with respect to farnesyl diphosphate in the FPTase reaction. All compounds were assayed for inhibition of Ras processing in Ha-ras-transformed NIH3T3 fibroblasts. Ras processing was inhibited by 1 microM (alpha-hydroxyfarnesyl)phosphonic acid. Neither chaetomellic acid nor zaragozic acid were active in this assay. These results are the first demonstration that a small organic chemical selected for inhibition of FPTase can inhibit Ras processing in vivo. PMID:8463291

  20. Process-directed self-assembly of block copolymers: a computer simulation study

    NASA Astrophysics Data System (ADS)

    Müller, Marcus; Sun, De-Wen

    2015-05-01

    The free-energy landscape of self-assembling block copolymer systems is characterized by a multitude of metastable minima and concomitant protracted relaxation times of the morphology. Tailoring rapid changes (quench) of thermodynamic conditions, one can reproducibly trap the ensuing kinetics of self-assembly in a specific metastable state. To this end, it is necessary to (1) control the generation of well-defined, highly unstable states and (2) design the unstable state such that the ensuing spontaneous kinetics of structure formation reaches the desired metastable morphology. This process-directed self-assembly provides an alternative to fine-tuning molecular architecture by synthesis or blending, for instance, in order to fabricate complex network structures. Comparing our simulation results to recently developed free-energy techniques, we highlight the importance of non-equilibrium molecular conformations in the starting state and motivate the significance of the local conservation of density.

  1. A progress report for the large block test of the coupled thermal-mechanical-hydrological-chemical processes

    SciTech Connect

    Lin, W.; Wilder, D.G.; Blink, J.

    1994-10-01

    This is a progress report on the Large Block Test (LBT) project. The purpose of the LBT is to study some of the coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near field of a nuclear waste repository under controlled boundary conditions. To do so, a large block of Topopah Spring tuff will be heated from within for about 4 to 6 months, then cooled down for about the same duration. Instruments to measure temperature, moisture content, stress, displacement, and chemical changes will be installed in three directions in the block. Meanwhile, laboratory tests will be conducted on small blocks to investigate individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The fractures in the large block will be characterized from five exposed surfaces. The minerals on fracture surfaces will be studied before and after the test. The results from the LBT will be useful for testing and building confidence in models that will be used to predict TMHC processes in a repository. The boundary conditions to be controlled on the block include zero moisture flux and zero heat flux on the sides, constant temperature on the top, and constant stress on the outside surfaces of the block. To control these boundary conditions, a load-retaining frame is required. A 3 x 3 x 4.5 m block of Topopah Spring tuff has been isolated on the outcrop at Fran Ridge, Nevada Test Site. Pre-test model calculations indicate that a permeability of at least 10{sup -15} m{sup 2} is required so that a dryout zone can be created within a practical time frame when the block is heated from within. Neutron logging was conducted in some of the vertical holes to estimate the initial moisture content of the block. It was found that about 60 to 80% of the pore volume of the block is saturated with water. Cores from the vertical holes have been used to map the fractures and to determine the properties of the rock. A current schedule is included in the report.

  2. Pseudohaptic interaction with knot diagrams

    NASA Astrophysics Data System (ADS)

    Weng, Jianguang; Zhang, Hui

    2012-07-01

    To make progress in understanding knot theory, we need to interact with the projected representations of mathematical knots, which are continuous in three dimensions (3-D) but significantly interrupted in the projective images. One way to achieve such a goal is to design an interactive system that allows us to sketch two-dimensional (2-D) knot diagrams by taking advantage of a collision-sensing controller and explore their underlying smooth structures through a continuous motion. Recent advances of interaction techniques have been made that allow progress in this direction. Pseudohaptics that simulate haptic effects using pure visual feedback can be used to develop such an interactive system. We outline one such pseudohaptic knot diagram interface. Our interface derives from the familiar pencil-and-paper process of drawing 2-D knot diagrams and provides haptic-like sensations to facilitate the creation and exploration of knot diagrams. A centerpiece of the interaction model simulates a physically reactive mouse cursor, which is exploited to resolve the apparent conflict between the continuous structure of the actual smooth knot and the visual discontinuities in the knot diagram representation. Another value in exploiting pseudohaptics is that an acceleration (or deceleration) of the mouse cursor (or surface locator) can be used to indicate the slope of the curve (or surface) of which the projective image is being explored. By exploiting these additional visual cues, we proceed to a full-featured extension to a pseudohaptic four-dimensional (4-D) visualization system that simulates the continuous navigation on 4-D objects and allows us to sense the bumps and holes in the fourth dimension. Preliminary tests of the software show that main features of the interface overcome some expected perceptual limitations in our interaction with 2-D knot diagrams of 3-D knots and 3-D projective images of 4-D mathematical objects.

  3. Hertzsprung-Russell Diagram

    NASA Astrophysics Data System (ADS)

    Chiosi, C.; Murdin, P.

    2000-11-01

    The Hertzsprung-Russell diagram (HR-diagram), pioneered independently by EJNAR HERTZSPRUNG and HENRY NORRIS RUSSELL, is a plot of the star luminosity versus the surface temperature. It stems from the basic relation for an object emitting thermal radiation as a black body: ...

  4. Processing-structure-mechanical Property Relationships of Semicrystalline Polyolefin-based Block Copolymers

    SciTech Connect

    Deplace, F.; Wang, Z; Lynd, N; Hotta, A; Rose, J; Hustad, P; Tian, J; Ohtaki, H; Coates, J; et. al.

    2010-01-01

    The incremental plastic deformation of the crystals of block copolymers made of semicrystalline polypropylene endblocks and amorphous ethylene-r-propylene midblocks occurring during step cycle tensile tests has dramatic effects on the stress-strain curves. This can be understood from the evolution of the morphology and of the microstructure of the crystalline blocks revealed by X-ray scattering experiments.

  5. A multiscale modeling study of loss processes in block-copolymer-based solar cell nanodevices

    NASA Astrophysics Data System (ADS)

    Donets, Sergii; Pershin, Anton; Christlmaier, Martin J. A.; Baeurle, Stephan A.

    2013-03-01

    Flexible photovoltaic devices possess promising perspectives in opto-electronic technologies, where high mobility and/or large-scale applicability are important. However, their usefulness in such applications is currently still limited due to the low level of optimization of their performance and durability. For the improvement of these properties, a better understanding and control of small-scale annihilation phenomena involved in the photovoltaic process, such as exciton loss and charge carrier loss, is necessary, which typically implicates multiple length- and time-scales. Here, we study the causes for their occurrence on the example of nanostructured diblock- and triblock-copolymer systems by making use of a novel solar-cell simulation algorithm and explore new routes to optimize their photovoltaic properties. A particular focus is set on the investigation of exciton and charge carrier loss phenomena and their dependence on the inter-monomeric interaction strength, chain architecture, and external mechanical loading. Our simulation results reveal that in the regime from low up to intermediate χ-parameters an increasing number of continuous percolation paths is created. In this parameter range, the internal quantum efficiency (IQE) increases up to a maximum, characterized by a minimum in the number of charge losses due to charge recombination. In the regime of high χ-parameters both block-copolymer systems form nanostructures with a large number of bottlenecks and dead ends. These lead to a large number of charge losses due to charge recombination, charge trapping, and a deteriorated exciton dissociation, resulting in a significant drop in the IQE. Moreover, we find that the photovoltaic performance of the triblock-copolymer material decreases with increasing mechanical loading, caused by a growing number of charge losses due to charge recombination and charge accumulation. Finally, we demonstrate that the process of charge trapping in defects can be reversed

  6. Ground-state phase diagram and magnetization process of the exactly solved mixed spin-(1,1/2) Ising diamond chain

    NASA Astrophysics Data System (ADS)

    Lisnyi, Bohdan; Strečka, Jozef

    2013-11-01

    The ground state and magnetization process of the mixed spin-(1,1/2) Ising diamond chain are exactly solved by employing the generalized decoration-iteration mapping transformation and the transfer-matrix method. The decoration-iteration transformation is first used in order to establish a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain in a non-zero magnetic field, which is subsequently exactly treated within the framework of the transfer-matrix technique. It is shown that the ground-state phase diagram includes just four different ground states and the low-temperature magnetization curve may exhibit an intermediate plateau precisely at one half of the saturation magnetization. Our rigorous results disprove recent Monte Carlo simulations of Xin et al. [Z. Xin, S. Chen, C. Zhang, J. Magn. Magn. Mater. 324 (2012) 3704], which imply an existence of the other magnetization plateaus at 0.283 and 0.426 of the saturation magnetization.

  7. The thermal process diagram and equipment of the secondary coolant circuit of a nuclear power station unit based on the BREST-OD-300 reactor installation for subcritical steam conditions

    NASA Astrophysics Data System (ADS)

    Nesterov, Yu. V.; Lisyanskii, A. S.; Makarova, E. I.; Bal'Va, L. Ya.; Prikhod'Ko, P. Yu.

    2011-06-01

    The 300-MWe power unit based on an experimental-demonstration two-circuit 700-MWt reactor installation with lead coolant is briefly described. The thermal process diagram of the secondary coolant circuit for the subcritical steam conditions 17 MPa and 505°C at the outlet from steam generators is presented.

  8. Military Curricula for Vocational & Technical Education. Metals Processing Specialist, Blocks V and VI, Classroom Course 13-7.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These curriculum materials are the third section of a four-part, secondary-postsecondary-level course in metals processing. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Block V, Inert Gas Shielded Welding of High…

  9. Military Curricula for Vocational & Technical Education. Metals Processing Specialist, Blocks III and IV, Classroom Course 13-6.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These curriculum materials are the second section of a four-part, secondary-postsecondary-level course in metals processing. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Block III, Introduction to Metallic Arc Welding,…

  10. Military Curricula for Vocational & Technical Education. Metals Processing Specialist, Blocks I and II, Classroom Course 13-5.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These curriculum materials are the first section of a four-part, secondary-postsecondary-level course in metals processing. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Block I, Introduction to Oxyacetylene Welding,…

  11. Square Source Type Diagram

    NASA Astrophysics Data System (ADS)

    Aso, N.; Ohta, K.; Ide, S.

    2014-12-01

    Deformation in a small volume of earth interior is expressed by a symmetric moment tensor located on a point source. The tensor contains information of characteristic directions, source amplitude, and source types such as isotropic, double-couple, or compensated-linear-vector-dipole (CLVD). Although we often assume a double couple as the source type of an earthquake, significant non-double-couple component including isotropic component is often reported for induced earthquakes and volcanic earthquakes. For discussions on source types including double-couple and non-double-couple components, it is helpful to display them using some visual diagrams. Since the information of source type has two degrees of freedom, it can be displayed onto a two-dimensional flat plane. Although the diagram developed by Hudson et al. [1989] is popular, the trace corresponding to the mechanism combined by two mechanisms is not always a smooth line. To overcome this problem, Chapman and Leaney [2012] developed a new diagram. This diagram has an advantage that a straight line passing through the center corresponds to the mechanism obtained by a combination of an arbitrary mechanism and a double-couple [Tape and Tape, 2012], but this diagram has some difficulties in use. First, it is slightly difficult to produce the diagram because of its curved shape. Second, it is also difficult to read out the ratios among isotropic, double-couple, and CLVD components, which we want to obtain from the estimated moment tensors, because they do not appear directly on the horizontal or vertical axes. In the present study, we developed another new square diagram that overcomes the difficulties of previous diagrams. This diagram is an orthogonal system of isotropic and deviatoric axes, so it is easy to get the ratios among isotropic, double-couple, and CLVD components. Our diagram has another advantage that the probability density is obtained simply from the area within the diagram if the probability density

  12. List blocking and longer retention intervals reveal an influence of gist processing for lexically ambiguous critical lures

    PubMed Central

    McNabb, Jaimie; Hutchison, Keith A.

    2016-01-01

    In two experiments, we examined veridical and false memory for lists of associates from two meanings (e.g., stumble, trip, harvest, pumpkin, etc.) that converged upon a single, lexically ambiguous critical lure (e.g., fall), in order to compare the activation-monitoring and fuzzy-trace false memory accounts. In Experiment 1, we presented study lists that were blocked or alternated by meaning (within subjects), followed by a free recall test completed immediately or after a 2.5-min delay. Correct recall was greater for blocked than for alternated lists. Critical-lure false recall was greater for blocked lists on an immediate test, whereas both list types produced equivalent false recall on a delayed test. In Experiment 2, lists blocked and alternated by meaning were presented via a between-subjects design, in order to eliminate possible list-type carryover effects. Correct recall replicated the result from Experiment 1; however, blocking lists increased false recall on delayed, but not on immediate, tests. Across the experiments, clustering correct recall by meaning increased across the delay selectively for the alternated lists. Our results suggest that thematic (i.e., gist) processes are influential for false recall, especially following a delay, a pattern consistent with fuzzy-trace theory. PMID:26105976

  13. The Classroom as Rhizome: New Strategies for Diagramming Knotted Interactions

    ERIC Educational Resources Information Center

    de Freitas, Elizabeth

    2012-01-01

    This article calls attention to the unexamined role of diagrams in educational research and offers examples of alternative diagramming practices or tools that shed light on classroom interaction as a rhizomatic process. Drawing extensively on the work of Latour, Deleuze and Guattari, and Chatelet, this article explores the power of diagramming as…

  14. Rapid thermal processing of self-assembling block copolymer thin films on flat surfaces and topographically defined patterns

    NASA Astrophysics Data System (ADS)

    Perego, Michele; Ferrarese Lupi, Federico; Giammaria, Tommaso J.; Seguini, Gabriele; Gianotti, Valentina; Antonioli, Diego; Sparnacci, Katia; Laus, Michele; Enrico, Emanuele; de Leo, Natascia; Boarino, Luca; Ober, Christopher K.

    2014-03-01

    Self-assembling block copolymers generate nanostructured patterns, which are potentially useful for a wide range of applications. However, their technological implementation is prevented by the very long time required to drive the process. In this contribution, we demonstrate the capability to control the morphology of the self-assembling process of cylinder forming PS-b-PMMA diblock copolymer (DBC) thin films deposited on un-patterned and topographically patterned surfaces by means of a Rapid Thermal Processing (RTP) machine. Highly ordered patterns were obtained on flat surfaces for perpendicular-oriented cylindrical PS-b-PMMA block copolymers in less than 60 s. The BCs morphology evolution within topographically defined structures was systematically investigated as well. Irrespective of the surface neutralization, an irreversible orientational flipping of the BCP microdomains inside the trenches was observed. This effect was attributed to de-swelling of the polymeric film as a consequence of a progressive desorption of the solvent retained inside the film.

  15. Bite-Block Perturbation in People Who Stutter: Immediate Compensatory and Delayed Adaptive Processes

    ERIC Educational Resources Information Center

    Namasivayam, Aravind Kumar; van Lieshout, Pascal; De Nil, Luc

    2008-01-01

    This exploratory study investigated sensory-motor mechanisms in five people who stutter (PWS) and five people who do not (PNS). Lip kinematic and coordination data were recorded as they produced bi-syllabic nonwords at two rates (normal and fast) in three conditions (jaw-free, immediately after insertion of a bite-block, and after a 10-min…

  16. Weyl card diagrams

    SciTech Connect

    Jones, Gregory; Wang, John E.

    2005-06-15

    To capture important physical properties of a spacetime we construct a new diagram, the card diagram, which accurately draws generalized Weyl spacetimes in arbitrary dimensions by encoding their global spacetime structure, singularities, horizons, and some aspects of causal structure including null infinity. Card diagrams draw only nontrivial directions providing a clearer picture of the geometric features of spacetimes as compared to Penrose diagrams, and can change continuously as a function of the geometric parameters. One of our main results is to describe how Weyl rods are traversable horizons and the entirety of the spacetime can be mapped out. We review Weyl techniques and as examples we systematically discuss properties of a variety of solutions including Kerr-Newman black holes, black rings, expanding bubbles, and recent spacelike-brane solutions. Families of solutions will share qualitatively similar cards. In addition we show how card diagrams not only capture information about a geometry but also its analytic continuations by providing a geometric picture of analytic continuation. Weyl techniques are generalized to higher dimensional charged solutions and applied to generate perturbations of bubble and S-brane solutions by Israel-Khan rods.

  17. Upgrading Diagnostic Diagrams

    NASA Astrophysics Data System (ADS)

    Proxauf, B.; Kimeswenger, S.; Öttl, S.

    2014-04-01

    Diagnostic diagrams of forbidden lines have been a useful tool for observers in astrophysics for many decades now. They are used to obtain information on the basic physical properties of thin gaseous nebulae. Moreover they are also the initial tool to derive thermodynamic properties of the plasma from observations to get ionization correction factors and thus to obtain proper abundances of the nebulae. Some diagnostic diagrams are in wavelengths domains which were difficult to take either due to missing wavelength coverage or low resolution of older spectrographs. Thus they were hardly used in the past. An upgrade of this useful tool is necessary because most of the diagrams were calculated using only the species involved as a single atom gas, although several are affected by well-known fluorescence mechanisms as well. Additionally the atomic data have improved up to the present time. The new diagnostic diagrams are calculated by using large grids of parameter space in the photoionization code CLOUDY. For a given basic parameter the input radiation field is varied to find the solutions with cooling-heating-equilibrium. Empirical numerical functions are fitted to provide formulas usable in e.g. data reduction pipelines. The resulting diagrams differ significantly from those used up to now and will improve the thermodynamic calculations.

  18. Trace element indiscrimination diagrams

    NASA Astrophysics Data System (ADS)

    Li, Chusi; Arndt, Nicholas T.; Tang, Qingyan; Ripley, Edward M.

    2015-09-01

    We tested the accuracy of trace element discrimination diagrams for basalts using new datasets from two petrological databases, PetDB and GEOROC. Both binary and ternary diagrams using Zr, Ti, V, Y, Th, Hf, Nb, Ta, Sm, and Sc do a poor job of discriminating between basalts generated in various tectonic environments (continental flood basalt, mid-ocean ridge basalt, ocean island basalt, oceanic plateau basalt, back-arc basin basalt, and various types of arc basalt). The overlaps between the different types of basalt are too large for the confident application of such diagrams when used in the absence of geological and petrological constraints. None of the diagrams we tested can clearly discriminate between back-arc basin basalt and mid-ocean ridge basalt, between continental flood basalt and oceanic plateau basalt, and between different types of arc basalt (intra-oceanic, island and continental arcs). Only ocean island basalt and some mid-ocean ridge basalt are generally distinguishable in the diagrams, and even in this case, mantle-normalized trace element patterns offer a better solution for discriminating between the two types of basalt.

  19. Weyl card diagrams

    NASA Astrophysics Data System (ADS)

    Jones, Gregory; Wang, John E.

    2005-06-01

    To capture important physical properties of a spacetime we construct a new diagram, the card diagram, which accurately draws generalized Weyl spacetimes in arbitrary dimensions by encoding their global spacetime structure, singularities, horizons, and some aspects of causal structure including null infinity. Card diagrams draw only nontrivial directions providing a clearer picture of the geometric features of spacetimes as compared to Penrose diagrams, and can change continuously as a function of the geometric parameters. One of our main results is to describe how Weyl rods are traversable horizons and the entirety of the spacetime can be mapped out. We review Weyl techniques and as examples we systematically discuss properties of a variety of solutions including Kerr-Newman black holes, black rings, expanding bubbles, and recent spacelike-brane solutions. Families of solutions will share qualitatively similar cards. In addition we show how card diagrams not only capture information about a geometry but also its analytic continuations by providing a geometric picture of analytic continuation. Weyl techniques are generalized to higher dimensional charged solutions and applied to generate perturbations of bubble and S-brane solutions by Israel-Khan rods.

  20. Semiclassical Virasoro blocks from AdS3 gravity

    NASA Astrophysics Data System (ADS)

    Hijano, Eliot; Kraus, Per; Perlmutter, Eric; Snively, River

    2015-12-01

    We present a unified framework for the holographic computation of Virasoro conformal blocks at large central charge. In particular, we provide bulk constructions that correctly reproduce all semiclassical Virasoro blocks that are known explicitly from conformal field theory computations. The results revolve around the use of geodesic Witten diagrams, recently introduced in [1], evaluated in locally AdS3 geometries generated by backreaction of heavy operators. We also provide an alternative computation of the heavy-light semiclassical block — in which two external operators become parametrically heavy — as a certain scattering process involving higher spin gauge fields in AdS3; this approach highlights the chiral nature of Virasoro blocks. These techniques may be systematically extended to compute corrections to these blocks and to interpolate amongst the different semiclassical regimes.

  1. Impulse-Momentum Diagrams

    ERIC Educational Resources Information Center

    Rosengrant, David

    2011-01-01

    Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists. These representations include: pictures, free-body diagrams, energy bar charts, electrical circuits, and, more recently, computer simulations and…

  2. Seafloor character and sedimentary processes in eastern Long Island Sound and western Block Island Sound

    NASA Astrophysics Data System (ADS)

    Poppe, L. J.; Digiacomo-Cohen, M. L.; Smith, S. M.; Stewart, H. F.; Forfinski, N. A.

    2006-06-01

    Multibeam bathymetric data and seismic-reflection profiles collected in eastern Long Island Sound and western Block Island Sound reveal previously unrecognized glacial features and modern bedforms. Glacial features include an ice-sculptured bedrock surface, a newly identified recessional moraine, exposed glaciolacustrine sediments, and remnants of stagnant-ice-contact deposits. Modern bedforms include fields of transverse sand waves, barchanoid waves, giant scour depressions, and pockmarks. Bedform asymmetry and scour around obstructions indicate that net sediment transport is westward across the northern part of the study area near Fishers Island, and eastward across the southern part near Great Gull Island.

  3. Transfer function verification and block diagram simplification of a very high-order distributed pole closed-loop servo by means of non-linear time-response simulation

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1975-01-01

    Linear frequency domain methods are inadequate in analyzing the 1975 Viking Orbiter (VO75) digital tape recorder servo due to dominant nonlinear effects such as servo signal limiting, unidirectional servo control, and static/dynamic Coulomb friction. The frequency loop (speed control) servo of the VO75 tape recorder is used to illustrate the analytical tools and methodology of system redundancy elimination and high order transfer function verification. The paper compares time-domain performance parameters derived from a series of nonlinear time responses with the available experimental data in order to select the best possible analytical transfer function representation of the tape transport (mechanical segment of the tape recorder) from several possible candidates. The study also shows how an analytical time-response simulation taking into account most system nonlinearities can pinpoint system redundancy and overdesign stemming from a strictly empirical design approach. System order reduction is achieved through truncation of individual transfer functions and elimination of redundant blocks.

  4. Interplay Between Residual Stresses, Microstructure, Process Variables and Engine Block Casting Integrity

    NASA Astrophysics Data System (ADS)

    Lombardi, Anthony; D'Elia, Francesco; Ravindran, Comondore; Sediako, Dimitry; Murty, B. S.; MacKay, Robert

    2012-12-01

    The replacement of nodular cast iron with 319 type aluminum (Al) alloys in gasoline engine blocks is an example of the shift towards the use of lighter alloys in the automotive industry. However, excessive residual stress along the cylinder bore may lead to bore distortion, significantly reducing engine operating efficiency. In the current study, microstructure, mechanical properties and residual stress were characterized along the cylinder bridge of engine blocks following thermal sand reclamation (TSR), T7 heat treatment, and service testing of the casting. Neutron diffraction was effectively used to quantify the residual stress along both the Al cylinder bridge and the adjacent gray cast iron cylinder liners in the hoop, radial, and axial orientations with respect to the cylinder axis. The results suggest that an increase in cooling rate along the cylinder caused a significant refinement in microstructure at the bottom of the cylinder. In turn, this suggested an increase in alloy strength at the bottom of the cylinder relative to the top. This increased strength at the bottom of the cylinder likely reduced the susceptibility of the cylinder to rapid relief of residual stress at elevated temperature. In contrast, the coarse microstructure at the top of the cylinder likely triggered stress relief at an elevated temperature.

  5. Reversible Morphology Control in Block Copolymer Films via Solvent Vapor Processing: An In Situ GISAXS study

    PubMed Central

    Paik, Marvin Y.; Bosworth, Joan K.; Smilges, Detlef-M.; Schwartz, Evan L.; Andre, Xavier; Ober, Christopher K.

    2010-01-01

    The real time changes occurring within films of cylinder-forming poly(α-methylstyrene-block-4-hydroxystyrene) (PαMS-b-PHOST) were monitored as they were swollen in tetrahydrofuran (THF) and acetone solvent vapors. In situ information was obtained by combining grazing incidence small angle X-ray scattering (GISAXS) with film thickness monitoring of the solvent vapor swollen films. We show that for self assembly to occur, the polymer thin film must surpass a swollen thickness ratio of 212% of its original thickness when swollen in THF vapors and a ratio of 268% for acetone vapor annealing. As the polymer becomes plasticized by solvent vapor uptake, the polymer chains must become sufficiently mobile to self assemble, or reorganize, at room temperature. Using vapors of a solvent selective to one of the blocks, in our case PHOST-selective acetone, an order-order transition occured driven by the shift in volume fraction. The BCC spherical phase assumed in the highly swollen state can be quenched by rapid drying. Upon treatment with vapor of a non-selective solvent, THF, the film maintained the cylindrical morphology suggested by its dry-state volume fraction. In situ studies indicate that self-assembly occurs spontaneously upon attaining the threshold swelling ratios. PMID:21116459

  6. Heart Block

    MedlinePlus

    ... Block Explore Heart Block What Is... Electrical System & EKG Results Types Causes Who Is at Risk Signs & ... heart block. Doctors use a test called an EKG (electrocardiogram) to help diagnose heart block. This test ...

  7. Tectonic discrimination diagrams revisited

    NASA Astrophysics Data System (ADS)

    Vermeesch, Pieter

    2006-06-01

    The decision boundaries of most tectonic discrimination diagrams are drawn by eye. Discriminant analysis is a statistically more rigorous way to determine the tectonic affinity of oceanic basalts based on their bulk-rock chemistry. This method was applied to a database of 756 oceanic basalts of known tectonic affinity (ocean island, mid-ocean ridge, or island arc). For each of these training data, up to 45 major, minor, and trace elements were measured. Discriminant analysis assumes multivariate normality. If the same covariance structure is shared by all the classes (i.e., tectonic affinities), the decision boundaries are linear, hence the term linear discriminant analysis (LDA). In contrast with this, quadratic discriminant analysis (QDA) allows the classes to have different covariance structures. To solve the statistical problems associated with the constant-sum constraint of geochemical data, the training data must be transformed to log-ratio space before performing a discriminant analysis. The results can be mapped back to the compositional data space using the inverse log-ratio transformation. An exhaustive exploration of 14,190 possible ternary discrimination diagrams yields the Ti-Si-Sr system as the best linear discrimination diagram and the Na-Nb-Sr system as the best quadratic discrimination diagram. The best linear and quadratic discrimination diagrams using only immobile elements are Ti-V-Sc and Ti-V-Sm, respectively. As little as 5% of the training data are misclassified by these discrimination diagrams. Testing them on a second database of 182 samples that were not part of the training data yields a more reliable estimate of future performance. Although QDA misclassifies fewer training data than LDA, the opposite is generally true for the test data. Therefore LDA is a cruder but more robust classifier than QDA. Another advantage of LDA is that it provides a powerful way to reduce the dimensionality of the multivariate geochemical data in a similar

  8. CUEMAP: A tool for generating hierarchical charts and dataflow diagrams

    SciTech Connect

    Lee, J.W.

    1987-12-01

    CUEMAP is a preprocessor to the MAPPER program, which generates report quality visual aids. CUEMAP uses text blocks, symbols, and line connectors to lay out hierarchical charts and dataflow diagrams. A grid is specified as a reference point on which the labels and symbols can be placed. Connectors are added to complete the diagram. Modifications and enhancements require knowledge of the MAPPER syntax. 1 ref., 2 figs.

  9. Impulse-Momentum Diagrams

    NASA Astrophysics Data System (ADS)

    Rosengrant, David

    2011-01-01

    Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists.2 These representations include: pictures, free-body diagrams,3 energy bar charts,4 electrical circuits, and, more recently, computer simulations and animations.5 However, instructors have limited choices when they want to help their students understand impulse and momentum. One of the only available options is the impulse-momentum bar chart.6 The bar charts can effectively show the magnitude of the momentum as well as help students understand conservation of momentum, but they do not easily show the actual direction. This paper highlights a new representation instructors can use to help their students with momentum and impulse—the impulse-momentum diagram (IMD).

  10. Processing Cyclic Peptide-polymer Conjugates in Block Copolymer Thin Films for Sub-nm Porous Membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Xu, Ting

    2014-03-01

    Porous thin films containing subnanometer channels oriented normal to the surface exhibit unique transport and separation properties and can serve as selective membranes for separation. Inspired by natural protein channels, we have developed an approach using cyclic peptide nanotubes (CPNs) embedded in polymeric matrix to mimic the transport of natural channels. The co-assembly of polymer-covered CPNs in a block copolymer (BCP) thin film requires the synchronization of two self-assembly processes, namely the microphase separation of BCP and the nanotube growth of CP-polymer conjugates. We systematically investigated the co-assembly of isolated CP-poly(ethylene glycol) (CP-PEG) conjugates and polystyrene-b-poly (methyl methacrylate) (PS-b-PMMA) in thin films as a function of CP-PEG loading (fCP-PEG) and solvent-polymer interactions. We find that there is a strong dependence of the co-assembly process on fCP-PEG due to thermodynamic limit of incorporating one CPN in one PMMA microdomain, as well as the kinetic pathway in which favorable PEG-solvent interaction helps to disperse CPNs and thus lowers the activation energy barrier of the system. This study presents critical insights in guided assemblies of functional building blocks within nanoscopic frameworks. DOE-EFRC-Gas Separation, Army Research Office.

  11. Wilson Loop Diagrams and Positroids

    NASA Astrophysics Data System (ADS)

    Agarwala, Susama; Marin-Amat, Eloi

    2016-07-01

    In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory (N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

  12. Warped penguin diagrams

    SciTech Connect

    Csaki, Csaba; Grossman, Yuval; Tanedo, Philip; Tsai, Yuhsin

    2011-04-01

    We present an analysis of the loop-induced magnetic dipole operator in the Randall-Sundrum model of a warped extra dimension with anarchic bulk fermions and an IR brane-localized Higgs. These operators are finite at one-loop order and we explicitly calculate the branching ratio for {mu}{yields}e{gamma} using the mixed position/momentum space formalism. The particular bound on the anarchic Yukawa and Kaluza-Klein (KK) scales can depend on the flavor structure of the anarchic matrices. It is possible for a generic model to either be ruled out or unaffected by these bounds without any fine-tuning. We quantify how these models realize this surprising behavior. We also review tree-level lepton flavor bounds in these models and show that these are on the verge of tension with the {mu}{yields}e{gamma} bounds from typical models with a 3 TeV Kaluza-Klein scale. Further, we illuminate the nature of the one-loop finiteness of these diagrams and show how to accurately determine the degree of divergence of a five-dimensional loop diagram using both the five-dimensional and KK formalism. This power counting can be obfuscated in the four-dimensional Kaluza-Klein formalism and we explicitly point out subtleties that ensure that the two formalisms agree. Finally, we remark on the existence of a perturbative regime in which these one-loop results give the dominant contribution.

  13. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards.

    PubMed

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G

    2011-07-01

    In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787

  14. Compute-unified device architecture implementation of a block-matching algorithm for multiple graphical processing unit cards

    NASA Astrophysics Data System (ADS)

    Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.

    2011-07-01

    We describe and evaluate a fast implementation of a classical block-matching motion estimation algorithm for multiple graphical processing units (GPUs) using the compute unified device architecture computing engine. The implemented block-matching algorithm uses summed absolute difference error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation, we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and noninteger search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a noninteger search grid. The additional speedup for a noninteger search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition, we compared the execution time of the proposed FS GPU implementation with two existing, highly optimized nonfull grid search CPU-based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and simplified unsymmetrical multi-hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720 × 480 pixels in resolution commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.

  15. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A): Instrument logic diagrams

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report contains all of the block diagrams and internal logic diagrams for the Earth Observation System Advanced Microwave Sounding Unit-A (AMSU-A). These diagrams show the signal inputs, outputs, and internal signal flow for the AMSU-A.

  16. Coating Bores of Light Metal Engine Blocks with a Nanocomposite Material using the Plasma Transferred Wire Arc Thermal Spray Process

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Ernst, F.; Zwick, J.; Schlaefer, T.; Cook, D.; Nassenstein, K.; Schwenk, A.; Schreiber, F.; Wenz, T.; Flores, G.; Hahn, M.

    2008-09-01

    Engine blocks of modern passenger car engines are generally made of light metal alloys, mostly hypoeutectic AlSi-alloys. Due to their low hardness, these alloys do not meet the tribological requirements of the system cylinder running surface—piston rings—lubricating oil. In order to provide a suitable cylinder running surface, nowadays cylinder liners made of gray cast iron are pressed in or cast into the engine block. A newer approach is to apply thermal spray coatings onto the cylinder bore walls. Due to the geometric conditions, the coatings are applied with specifically designed internal diameter thermal spray systems. With these processes a broad variety of feedstock can be applied, whereas mostly low-alloyed carbon steel feedstock is being used for this application. In the context of this work, an iron-based wire feedstock has been developed, which leads to a nanocrystalline coating. The application of this material was carried out with the Plasma Transferred Wire Arc system. AlMgSi0.5 liners were used as substrates. The coating microstructure and the properties of the coatings were analyzed.

  17. Inorganic solution-processed hole-injecting and electron-blocking layers in polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Reynolds, K. J.; Barker, J. A.; Greenham, N. C.; Friend, R. H.; Frey, G. L.

    2002-12-01

    The use of the solution-processed layered transition metal dichalcogenide (LTMDC) MoS2 as a hole-injecting electrode in polymer light-emitting diodes (LEDs) is reported. MoS2 functions as a very high work function metal and, in combination with an electron-blocking layer in the form of MoO3, provides good LED performance. In this study we investigated model LED devices with a single semiconductor layer, namely, the electron transporting polymer poly-[2,7-(9,9'-di-n-octylfluorene)-3,6-benzothiadiazole]. LED operation was successfully modeled using experimentally determined work functions, carrier mobilities, and barrier properties. Good agreement between experiment and model allows us to demonstrate that the MoS2 and the MoO3 layers act as a high work function hole-injection layer (MoS2) and an electron extraction barrier layer (MoO3), respectively. They improve device performance by allowing the buildup of electron density at the oxide/emissive layer interface which generates a local field, enhancing hole injection and recombination. Furthermore, the model shows the importance of controlling the thickness of the blocking layer to optimize device performance. The wide variety of polymeric emitters available and the range of electronic properties displayed by the LTMDC family and their corresponding oxides, provides the potential to tailor device performance through the selection of suitable organic and inorganic components.

  18. Wear Protection of AJ62 Mg Engine Blocks using Plasma Electrolytic Oxidation Process

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    2011-12-01

    In order to reduce the fuel consumption and pollution, automotive companies are developing magnesium-intensive components. However, due to the low wear resistance of the magnesium (Mg) alloys, Mg cylinder bores are vulnerable to the sliding wear attack. In this thesis, two approaches were used to protect the cylinder bores, made of a new developed Mg engine alloy AJ62 (MgA16Mn0.34Sr2). The first one was to use a Plasma Electrolytic Oxidation (PEO) process to produce oxide coatings on the Mg bores. The wear properties of the PEO coatings were evaluated by sliding wear tests under the boundary lubrication condition at the room and elevated temperatures. It was found that due to the substrate softening and the vaporization loss of the lubricant, the tribological properties of the PEO coatings were deteriorated at the elevated temperature. In order to optimize the PEO process, a statistical method (Response surface method) was used to analyze the effects of the 4 main PEO process parameters with 2 levels for each and their interactions on the tribological properties of the PEO coatings at the room and elevated temperatures, individually. A cylinder liner made of an economical metal-matrix composite (MMC) was another approach to improve the wear resistance of the Mg cylinder bore. In this thesis, an A1383/SiO2 MMC was designed to replace the expensive Alusil alloy used in the BMW Mg/Al composite engine to build the cylinder liner. To further increase the wear resistance of the MMC, PEO process was also used to form an oxide coating on the MMC. The effects of the SiO 2 content and coating thickness on the tribological properties of the MMC were studied. To evaluate the wear properties of the optimal PEO coated Mg coupons and the MMC with the oxide coatings, Alusil and cast iron, currently used on the cylinder bores of the commercial aluminum engines, were used as reference materials. The optimal PEO coated Mg coupons and the oxidized MMC showed their advantages over the

  19. Air-stable, nanostructured electronic and plasmonic materials from solution-processable, silver nanocrystal building blocks.

    PubMed

    Fafarman, Aaron T; Hong, Sung-Hoon; Oh, Soong Ju; Caglayan, Humeyra; Ye, Xingchen; Diroll, Benjamin T; Engheta, Nader; Murray, Christopher B; Kagan, Cherie R

    2014-03-25

    Herein we describe a room-temperature, chemical process to transform silver nanocrystal solids, deposited from colloidal solutions, into highly conductive, corrosion-resistant, optical and electronic materials with nanometer-scale architectures. After assembling the nanocrystal solids, we treated them with a set of simple, compact, organic and inorganic reagents: ammonium thiocyanate, ammonium chloride, potassium hydrogen sulfide, and ethanedithiol. We find that each reagent induces unique changes in the structure and composition of the resulting solid, giving rise to films that vary from insulating to, in the case of thiocyanate, conducting with a remarkably low resistivity of 8.8×10(-6) Ω·cm, only 6 times that of bulk silver. We show that thiocyanate mediates the spontaneous sintering of nanocrystals into structures with a roughness of less than 1/10th of the wavelength of visible light. We demonstrate that these solution-processed, low-resistivity, optically smooth films can be patterned, using imprint lithography, into conductive electrodes and plasmonic mesostructures with programmable resonances. We observe that thiocyanate-treated solids exhibit significantly retarded atmospheric corrosion, a feature that dramatically increases the feasibility of employing silver for electrical and plasmonic applications. PMID:24484271

  20. Argument Diagramming: The Araucaria Project

    NASA Astrophysics Data System (ADS)

    Rowe, Glenn; Reed, Chris

    Formal arguments, such as those used in science, medicine and law to establish a conclusion by providing supporting evidence, are frequently represented by diagrams such as trees and graphs. We describe the software package Araucaria which allows textual arguments to be marked up and represented as standard, Toulmin or Wigmore diagrams. Since each of these diagramming techniques was devised for a particular domain or argumentation, we discuss some of the issues involved in translating between diagrams. The exercise of translating between different diagramming types illustrates that any one diagramming system often cannot capture all of the nuances inherent in an argument. Finally, we describe some areas, such as critical thinking courses in colleges and universities and the analysis of evidence in court cases, where Araucaria has been put to practical use.

  1. Pentagalloylglucose Blocks the Nuclear Transport and the Process of Nucleocapsid Egress to Inhibit HSV-1 Infection.

    PubMed

    Jin, Fujun; Ma, Kaiqi; Chen, Maoyun; Zou, Muping; Wu, Yanting; Li, Feng; Wang, Yifei

    2016-03-23

    Herpes simplex virus type 1 (HSV-1), a widespread virus, causes a variety of human viral diseases worldwide. The serious threat of drug-resistance highlights the extreme urgency to develop novel antiviral drugs with different mechanisms of action. Pentagalloylglucose (PGG) is a natural polyphenolic compound with significant anti-HSV activity; however, the mechanisms underlying its antiviral activity need to be defined by further studies. In this study, we found that PGG treatment delays the nuclear transport process of HSV-1 particles by inhibiting the upregulation of dynein (a cellular major motor protein) induced by HSV-1 infection. Furthermore, PGG treatment affects the nucleocapsid egress of HSV-1 by inhibiting the expression and disrupting the cellular localization of pEGFP-UL31 and pEGFP-UL34, which are indispensable for HSV-1 nucleocapsid egress from the nucleus. However, the over-expression of pEGFP-UL31 and pEGFP-UL34 could decrease the antiviral effect of PGG. In this study, for the first time, the antiviral activity of PGG against acyclovir-resistant virus was demonstrated in vitro, and the possible mechanisms of its anti-HSV activities were identified based on the inhibition of nuclear transport and nucleocapsid egress in HSV-1. It was further confirmed that PGG could be a promising candidate for HSV therapy, especially for drug-resistant strains. PMID:26166506

  2. Processing Effects on Block-Copolymer Based Pressure-Sensitive Adhesives

    NASA Astrophysics Data System (ADS)

    O'Connor, A. E.; Macosko, C. W.

    2000-03-01

    The goal of this work is to investigate how the variables in the hot-melt coating process affect the microstructure and properties of pressure-sensitive adhesives based on a styrene isoprene styrene triblock copolymer. This polymer is a thermoplastic elastomer, able to be coated at high temperatures and physically crosslinked at lower temperatures. Adhesive tape samples have been made through hot-melt and solvent coating methods. Hot-melt coatings are prepared at speeds up to 110 feet/minute. Materials with the same thermal history have been coated using both methods and then tested for comparison of properties. PSA properties are strongly dependent on the time scale of application and debonding, as revealed by shear rheology data, and three types of performance tests (tack, peel, and shear holding power) are used to capture the various responses. Solvent-coated tape has superior shear strength, while hot-melt-coated tape performs better in peel tests. It is expected that the varying flow and deformation histories of the samples will lead to distinct chain orientations, while the rate of cooling of hot-melt-coated samples may influence the degree of phase separation achieved. These factors will cause the adhesive coatings to have different microstructures and therefore different properties.

  3. Simulation of plasma based semiconductor processing using block structured locally refined grids

    SciTech Connect

    Wake, D.D.

    1998-01-01

    We have described a new numerical method for plasma simulation. Calculations have been presented which show that the method is accurate and suggest the regimes in which the method provides savings in CPU time and memory requirements. A steady state simulation of a four centimeter domain was modeled with sheath scale (150 microns) resolution using only 40 grid points. Simulations of semiconductor processing equipment have been performed which imply the usefulness of the method for engineering applications. It is the author`s opinion that these accomplishments represent a significant contribution to plasma simulation and the efficient numerical solution of certain systems of non-linear partial differential equations. More work needs to be done, however, for the algorithm to be of practical use in an engineering environment. Despite our success at avoiding the dielectric relaxation timestep restrictions the algorithm is still conditionally stable and requires timesteps which are relatively small. This represents a prohibitive runtime for steady state solutions on high resolution grids. Current research suggests that these limitations may be overcome and the use of much larger timesteps will be possible.

  4. Using Eye Tracking to Investigate Semantic and Spatial Representations of Scientific Diagrams During Text-Diagram Integration

    NASA Astrophysics Data System (ADS)

    Jian, Yu-Cin; Wu, Chao-Jung

    2015-02-01

    We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our results showed that the text-diagram referencing strategy was commonly used. However, some readers adopted other reading strategies, such as reading the diagram or text first. We found all readers who had referred to the diagram spent roughly the same amount of time reading and performed equally well. However, some participants who ignored the diagram performed more poorly on questions that tested understanding of basic facts. This result indicates that dual coding theory may be a possible theory to explain the phenomenon. Eye movement patterns indicated that at least some readers had extracted semantic information of the scientific terms when first looking at the diagram. Readers who read the scientific terms on the diagram first tended to spend less time looking at the same terms in the text, which they read after. Besides, presented clear diagrams can help readers process both semantic and spatial information, thereby facilitating an overall understanding of the article. In addition, although text-first and diagram-first readers spent similar total reading time on the text and diagram parts of the article, respectively, text-first readers had significantly less number of saccades of text and diagram than diagram-first readers. This result might be explained as text-directed reading.

  5. Block co-polymer approach for CD uniformity and placement error improvement in DSA hole grapho-epitaxy process

    NASA Astrophysics Data System (ADS)

    Matsumiya, Tasuku; Kurosawa, Tsuyoshi; Yahagi, Masahito; Yamano, Hitoshi; Miyagi, Ken; Maehashi, Takaya; Suzuki, Issei; Kawaue, Akiya; Komuro, Yoshitaka; Hirayama, Taku; Ohmori, Katsumi

    2015-03-01

    Directed Self-Assembly (DSA) of Block Co-Polymer (BCP) with conventional lithography is being thought as one of the potential patterning solution for future generation devices manufacturing. Many studies have been reported to fabricate the aligned patterns both on grapho and chemoepitaxy for semiconductor application1, 2. The hole shrink and multiplication by graphoepitaxy are one of the DSA implementation candidates in terms of relatively realistic process and versatility of chip design. The critical challenges on hole shrink and multiplication by using conventional Poly (styrene-b-methyl methacrylate) (PS-b-PMMA) BCP have been reported such as CD uniformity, placement error3 and defectivity. It is needed to overcome these challenging issues by improving not only whole process but materials. From the material aspect, the surface treatment material for guide structure, and process friendly BCP material are key development items on graphoepitaxy. In this paper, it will be shown in BCP approach about conventional PS-b-PMMA with additives and new casting solvent as PS-b-PMMA extension for CD uniformity and placement error improvement and then it'll be discussed on what is the key factor and solution from BCP material approach.

  6. Diagramming Word Problems: A Strategic Approach for Instruction

    ERIC Educational Resources Information Center

    van Garderen, Delinda; Scheuermann, Amy M.

    2015-01-01

    While often recommended as a strategy to use in order to solve word problems, drawing a diagram is a complex process that requires a good depth of understanding. Many middle school students with learning disabilities (LD) often struggle to use diagrams in an effective and efficient manner. This article presents information for teaching middle…

  7. A pseudo-haptic knot diagram interface

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Weng, Jianguang; Hanson, Andrew J.

    2011-01-01

    To make progress in understanding knot theory, we will need to interact with the projected representations of mathematical knots which are of course continuous in 3D but significantly interrupted in the projective images. One way to achieve such a goal would be to design an interactive system that allows us to sketch 2D knot diagrams by taking advantage of a collision-sensing controller and explore their underlying smooth structures through a continuous motion. Recent advances of interaction techniques have been made that allow progress to be made in this direction. Pseudo-haptics that simulates haptic effects using pure visual feedback can be used to develop such an interactive system. This paper outlines one such pseudo-haptic knot diagram interface. Our interface derives from the familiar pencil-and-paper process of drawing 2D knot diagrams and provides haptic-like sensations to facilitate the creation and exploration of knot diagrams. A centerpiece of the interaction model simulates a "physically" reactive mouse cursor, which is exploited to resolve the apparent conflict between the continuous structure of the actual smooth knot and the visual discontinuities in the knot diagram representation. Another value in exploiting pseudo-haptics is that an acceleration (or deceleration) of the mouse cursor (or surface locator) can be used to indicate the slope of the curve (or surface) of whom the projective image is being explored. By exploiting these additional visual cues, we proceed to a full-featured extension to a pseudo-haptic 4D visualization system that simulates the continuous navigation on 4D objects and allows us to sense the bumps and holes in the fourth dimension. Preliminary tests of the software show that main features of the interface overcome some expected perceptual limitations in our interaction with 2D knot diagrams of 3D knots and 3D projective images of 4D mathematical objects.

  8. 76 FR 63654 - Outer Continental Shelf Official Protraction Diagram, Lease Maps, and Supplemental Official Outer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Bureau of Ocean Energy Management Outer Continental Shelf Official Protraction Diagram, Lease Maps, and Supplemental Official Outer Continental Shelf Block Diagrams AGENCY: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Availability of revised North American Datum of 1927 (NAD 27) Outer Continental...

  9. Potential-pH Diagrams.

    ERIC Educational Resources Information Center

    Barnum, Dennis W.

    1982-01-01

    Potential-pH diagrams show the domains of redoxpotential and pH in which major species are most stable. Constructing such diagrams provides students with opportunities to decide what species must be considered, search literature for equilibrium constants and free energies of formation, and practice in using the Nernst equation. (Author/JN)

  10. Energy Efficient Heat Treatment for Linerless Hypereutectic Al-Si Engine Blocks Made Using Vacuum HPDC Process

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Sokolowski, J. H.; Yamagata, H.; Aniolek, M.; Kurita, H.

    2011-02-01

    Heat treatment standards developed by the aluminum industry over the last several decades are often not well optimized when applied to components cast by high cooling rate processes such as High Pressure Die Casting (HPDC), Low Pressure Permanent Mold (LPPM), Squeeze Casting, etc. The inherently finer as-cast structures should not require long solution times for the effective dissolution of intermetallic phases and the adequate thermal modification of structural constituents. Hence, long and expensive T6 and T7 treatments should not be required. Heat treatment studies involving as-cast laboratory samples with SDAS = 13.6 μm (equivalent to a thick-section HPDC casting) were conducted. Traditional and modified solution and aging treatments were compared. These studies suggest that a reduction of up to 92% in thermal processing time is possible while maintaining and/or improving the cast component's metallurgical characteristics including hardness (≥75 HRB), dissolution of secondary phases, and spheroidization of the eutectic Si as well as overall homogeneity. Vacuum HPDC of an actual hypereutectic Al-20%Si motorcycle engine block confirmed the potential for significantly reduced heat treatment times, energy consumption, and overall costs.

  11. Molecular modeling of directed self-assembly of block copolymers: Fundamental studies of processing conditions and evolutionary pattern design

    NASA Astrophysics Data System (ADS)

    Khaira, Gurdaman Singh

    Rapid progress in the semi-conductor industry has pushed for smaller feature sizes on integrated electronic circuits. Current photo-lithographic techniques for nanofabrication have reached their technical limit and are problematic when printing features small enough to meet future industrial requirements. "Bottom-up'' techniques, such as the directed self-assembly (DSA) of block copolymers (BCP), are the primary contenders to compliment current "top-down'' photo-lithography ones. For industrial requirements, the defect density from DSA needs to be less than 1 defect per 10 cm by 10 cm. Knowledge of both material synthesis and the thermodynamics of the self-assembly process are required before optimal operating conditions can be found to produce results adequate for industry. The work present in this thesis is divided into three chapters, each discussing various aspects of DSA as studied via a molecular model that contains the essential physics of BCP self-assembly. Though there are various types of guiding fields that can be used to direct BCPs over large wafer areas with minimum defects, this study focuses only on chemically patterned substrates. The first chapter addresses optimal pattern design by describing a framework where molecular simulations of various complexities are coupled with an advanced optimization technique to find a pattern that directs a target morphology. It demonstrates the first ever study where BCP self-assembly on a patterned substrate is optimized using a three-dimensional description of the block-copolymers. For problems pertaining to DSA, the methodology is shown to converge much faster than the traditional random search approach. The second chapter discusses the metrology of BCP thin films using TEM tomography and X-ray scattering techniques, such as CDSAXS and GISAXS. X-ray scattering has the advantage of being able to quickly probe the average structure of BCP morphologies over large wafer areas; however, deducing the BCP morphology

  12. Liquid-crystalline ordering helps block copolymer self-assembly.

    PubMed

    Yu, Haifeng; Kobayashi, Takaomi; Yang, Huai

    2011-08-01

    Interaction between liquid-crystalline elastic deformation and microphase separation in liquid-crystalline block copolymers enables them to supramolecularly assemble into ordered nanostructures with high regularity. With the help of liquid-crystalline alignment, parallel and perpendicular patterning of nanostructures is fabricated with excellent reproducibility and mass production, which provides nanotemplates and nanofabrication processes for preparing varieties of nanomaterials. Furthermore, nanoscale microphase separation improves the optical performance of block-copolymer fi lms by eliminating the scattering of visible light, leading to advanced applications in optical devices and actuators. Recent progress in liquid-crystalline block copolymers, including their phase diagram, structure-property relationship, nanostructure control and nanotemplate applications, is reviewed. PMID:21910267

  13. Population Blocks.

    ERIC Educational Resources Information Center

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  14. Concrete and abstract Voronoi diagrams

    SciTech Connect

    Klein, R. )

    1989-01-01

    The Voronoi diagram of a set of sites is a partition of the plane into regions, one to each site, such that the region of each site contains all points of the plane that are closer to this site than to the other ones. Such partitions are of great importance to computer science and many other fields. The challenge is to compute Voronoi diagrams quickly. The problem is that their structure depends on the notion of distance and the sort of site. In this book the author proposes a unifying approach by introducing abstract Voronoi diagrams. These are based on the concept of bisecting curves which are required to have some simple properties that are actually possessed by most bisectors of concrete Voronoi diagrams. Abstract Voronoi diagrams can be computed efficiently and there exists a worst-case efficient algorithm of divide-and-conquer type that applies to all abstract Voronoi diagrams satisfying a certain constraint. The author shows that this constraint is fulfilled by the concrete diagrams based no large classes of metrics in the plane.

  15. Spin wave Feynman diagram vertex computation package

    NASA Astrophysics Data System (ADS)

    Price, Alexander; Javernick, Philip; Datta, Trinanjan

    Spin wave theory is a well-established theoretical technique that can correctly predict the physical behavior of ordered magnetic states. However, computing the effects of an interacting spin wave theory incorporating magnons involve a laborious by hand derivation of Feynman diagram vertices. The process is tedious and time consuming. Hence, to improve productivity and have another means to check the analytical calculations, we have devised a Feynman Diagram Vertex Computation package. In this talk, we will describe our research group's effort to implement a Mathematica based symbolic Feynman diagram vertex computation package that computes spin wave vertices. Utilizing the non-commutative algebra package NCAlgebra as an add-on to Mathematica, symbolic expressions for the Feynman diagram vertices of a Heisenberg quantum antiferromagnet are obtained. Our existing code reproduces the well-known expressions of a nearest neighbor square lattice Heisenberg model. We also discuss the case of a triangular lattice Heisenberg model where non collinear terms contribute to the vertex interactions.

  16. Lattice Boltzmann study of hydrodynamic effects in lamellar ordering process of two-dimensional quenched block copolymers

    NASA Astrophysics Data System (ADS)

    Song, Kai-Xu; Jia, Yu-Xi; Sun, Zhao-Yan; An, Li-Jia

    2008-10-01

    By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage. For the late stage of phase separation, it is easy to see the effects of hydrodynamic interactions on the ordering process of lamellae phase. From the analysis of structure factor curves, we find that the growth of domains is faster if hydrodynamic interactions are introduced. Furthermore, the scaling of the pattern dynamics is investigated for the late stage at zero thermal noise. By studying the behavior of scaling exponents of the structure factor and the nematic order-parameter correlation function Cnn, we can see that the effects of hydrodynamic interactions lead to bigger growth exponent for both functions.

  17. Effects of thermal fluctuations and block copolymers compositions on defects in directed self-assembly hole shrink process

    NASA Astrophysics Data System (ADS)

    Fukawatase, Ken; Yoshimoto, Kenji; Ohshima, Masahiro

    2015-06-01

    We investigated the two critical defects on the directed self-assembly hole shrink process, i.e., polystyrene (PS) residue and placement error, by performing dynamic simulations with the Ohta-Kawasaki model. In the simulations, the thermal noise was added to generate stochastic variations in shape and location of the poly(methyl methacrylate) (PMMA) cylindrical domains. For the PS residue issue, we found that the volume fraction of the PMMA minor block, fPMMA, was an effective parameter, and that the PS residue could be minimized by increasing fPMMA from a conventional value of 0.30 to 0.40. On the other hand, the placement error of the PMMA cylindrical domain was affected little by the change in shape and size of the guide hole and by the connectivity to the guide bottom wall. It is speculated that the interfacial stiffness between the PMMA and PS domains would be essential to control the placement error of the PMMA cylindrical domains.

  18. Releasing Activity Disengages Cohesin’s Smc3/Scc1 Interface in a Process Blocked by Acetylation

    PubMed Central

    Beckouët, Frederic; Srinivasan, Madhusudhan; Roig, Maurici Brunet; Chan, Kok-Lung; Scheinost, Johanna C.; Batty, Paul; Hu, Bin; Petela, Naomi; Gligoris, Thomas; Smith, Alexandra C.; Strmecki, Lana; Rowland, Benjamin D.; Nasmyth, Kim

    2016-01-01

    Summary Sister chromatid cohesion conferred by entrapment of sister DNAs within a tripartite ring formed between cohesin’s Scc1, Smc1, and Smc3 subunits is created during S and destroyed at anaphase through Scc1 cleavage by separase. Cohesin’s association with chromosomes is controlled by opposing activities: loading by Scc2/4 complex and release by a separase-independent releasing activity as well as by cleavage. Coentrapment of sister DNAs at replication is accompanied by acetylation of Smc3 by Eco1, which blocks releasing activity and ensures that sisters remain connected. Because fusion of Smc3 to Scc1 prevents release and bypasses the requirement for Eco1, we suggested that release is mediated by disengagement of the Smc3/Scc1 interface. We show that mutations capable of bypassing Eco1 in Smc1, Smc3, Scc1, Wapl, Pds5, and Scc3 subunits reduce dissociation of N-terminal cleavage fragments of Scc1 (NScc1) from Smc3. This process involves interaction between Smc ATPase heads and is inhibited by Smc3 acetylation. PMID:26895425

  19. Valves - current operating experience of slurry valves (block and letdown) in coal liquefaction processes. Third quarter report

    SciTech Connect

    1996-07-01

    This paper summarizes the recent letdown and block valve experience in the liquefaction pilot plants. Also included is a brief description of the research and development activities on valves which are conducted in supporting laboratories. The purpose of the summary is to concentrate on critical component problems common to all liquefaction plants, to avoid duplication of efforts, and to help provide timely solutions to the valve problems. The main source of information used in this paper is the Minutes of the Critical Component and Materials Meeting which is sponsored by the Office of Coal Processing, Fossil Energy, Department of Energy. Other sources of information such as the technical progress reports are also included based on availability and relevance to topics covered in this paper. It is intended that this report will be followed by updates as pertinent information concerning valves becomes available. In the subsequent sections of this paper a brief outline of past valve studies is given as background material followed by a summary of the most recent valve operating experience at the liquefaction plants.

  20. The Hertzsprung-Russell Diagram.

    ERIC Educational Resources Information Center

    Woodrow, Janice

    1991-01-01

    Describes a classroom use of the Hertzsprung-Russell diagram to infer not only the properties of a star but also the star's probable stage in evolution, life span, and age of the cluster in which it is located. (ZWH)

  1. Atemporal diagrams for quantum circuits

    SciTech Connect

    Griffiths, Robert B.; Wu Shengjun; Yu Li; Cohen, Scott M.

    2006-05-15

    A system of diagrams is introduced that allows the representation of various elements of a quantum circuit, including measurements, in a form which makes no reference to time (hence 'atemporal'). It can be used to relate quantum dynamical properties to those of entangled states (map-state duality), and suggests useful analogies, such as the inverse of an entangled ket. Diagrams clarify the role of channel kets, transition operators, dynamical operators (matrices), and Kraus rank for noisy quantum channels. Positive (semidefinite) operators are represented by diagrams with a symmetry that aids in understanding their connection with completely positive maps. The diagrams are used to analyze standard teleportation and dense coding, and for a careful study of unambiguous (conclusive) teleportation. A simple diagrammatic argument shows that a Kraus rank of 3 is impossible for a one-qubit channel modeled using a one-qubit environment in a mixed state.

  2. Particles, Feynman Diagrams and All That

    ERIC Educational Resources Information Center

    Daniel, Michael

    2006-01-01

    Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.

  3. Impersonal parameters from Hertzsprung-Russell diagrams

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.; Hurley, Jarrod R.

    2003-10-01

    An objective process for estimation of star cluster parameters from Hertzsprung-Russell (HR) diagrams is introduced, with direct inclusion of multiple stars, a least-squares fitting criterion, and standard error estimates. No role is played by conventional isochrones. Instead the quantity compared between observation and theory is the density of points (areal ) as it varies over the diagram. With as the effective observable quantity, standard parameter adjustment theory can be brought to bear on HR diagram analysis. Here we use the method of differential corrections with a least-squares fitting criterion, but any of the many known fitting methods should be applicable to comparison of observed and theoretical distributions. Diverse numerical schemes were developed to make the overall algorithm workable, including two that improve differentiability of by rendering point distributions effectively equivalent to continuous distributions in certain respects. Statistics of distributions are handled not via Monte Carlo methods but by the Functional Statistics Algorithm (hereafter FSA), a statistical algorithm that has been developed for HR diagram fitting but should serve as an alternative to Monte Carlo in many other applications. FSA accomplishes the aims of Monte Carlo with orders of magnitude less computation. Analysis of luminosity functions is included within the HR diagram algorithm as a special case. Areal density analysis of HR diagrams is acceptably fast because we handle stellar evolution via approximation functions, whose output also is more precisely differentiable than that of a full stellar evolution program. Evolution by approximation functions is roughly a million times as fast as full evolution and has virtually no numerical noise. The algorithmic ideas that lead to objective solutions can be applied to many kinds of HR diagram analysis that are now done subjectively. The present solution program is limited by speed considerations to use of one evolution

  4. Penguin-like diagrams from the standard model

    NASA Astrophysics Data System (ADS)

    Ping, Chia Swee

    2015-04-01

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the `tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.

  5. Penguin-like diagrams from the standard model

    SciTech Connect

    Ping, Chia Swee

    2015-04-24

    The Standard Model is highly successful in describing the interactions of leptons and quarks. There are, however, rare processes that involve higher order effects in electroweak interactions. One specific class of processes is the penguin-like diagram. Such class of diagrams involves the neutral change of quark flavours accompanied by the emission of a gluon (gluon penguin), a photon (photon penguin), a gluon and a photon (gluon-photon penguin), a Z-boson (Z penguin), or a Higgs-boson (Higgs penguin). Such diagrams do not arise at the tree level in the Standard Model. They are, however, induced by one-loop effects. In this paper, we present an exact calculation of the penguin diagram vertices in the ‘tHooft-Feynman gauge. Renormalization of the vertex is effected by a prescription by Chia and Chong which gives an expression for the counter term identical to that obtained by employing Ward-Takahashi identity. The on-shell vertex functions for the penguin diagram vertices are obtained. The various penguin diagram vertex functions are related to one another via Ward-Takahashi identity. From these, a set of relations is obtained connecting the vertex form factors of various penguin diagrams. Explicit expressions for the gluon-photon penguin vertex form factors are obtained, and their contributions to the flavor changing processes estimated.

  6. High Relief Block Printing.

    ERIC Educational Resources Information Center

    Foster, Michael

    1989-01-01

    Explains a method of block printing using styrofoam shapes to make high relief. Describes the creation of the block design as well as the actual printing process. Uses a range of paper types for printing so children can see the results of using different media. (LS)

  7. Heterochromatin Blocks Constituting the Entire Short Arms of Acrocentric Chromosomes of Azara's Owl Monkey: Formation Processes Inferred From Chromosomal Locations

    PubMed Central

    Prakhongcheep, Ornjira; Chaiprasertsri, Nampech; Terada, Shoko; Hirai, Yuriko; Srikulnath, Kornsorn; Hirai, Hirohisa; Koga, Akihiko

    2013-01-01

    Centromeres and telomeres of higher eukaryotes generally contain repetitive sequences, which often form pericentric or subtelomeric heterochromatin blocks. C-banding analysis of chromosomes of Azara's owl monkey, a primate species, showed that the short arms of acrocentric chromosomes consist mostly or solely of constitutive heterochromatin. The purpose of the present study was to determine which category, pericentric, or subtelomeric is most appropriate for this heterochromatin, and to infer its formation processes. We cloned and sequenced its DNA component, finding it to be a tandem repeat sequence comprising 187-bp repeat units, which we named OwlRep. Subsequent hybridization analyses revealed that OwlRep resides in the pericentric regions of a small number of metacentric chromosomes, in addition to the short arms of acrocentric chromosomes. Further, in the pericentric regions of the acrocentric chromosomes, OwlRep was observed on the short-arm side only. This distribution pattern of OwlRep among chromosomes can be simply and sufficiently explained by assuming (i) OwlRep was transferred from chromosome to chromosome by the interaction of pericentric heterochromatin, and (ii) it was amplified there as subtelomeric heterochromatin. OwlRep carries several direct and inverted repeats within its repeat units. This complex structure may lead to a higher frequency of chromosome scission and may thus be a factor in the unique distribution pattern among chromosomes. Neither OwlRep nor similar sequences were found in the genomes of the other New World monkey species we examined, suggesting that OwlRep underwent rapid amplification after the divergence of the owl monkey lineage from lineages of the other species. PMID:23761219

  8. Direct Measurement of the Fluid Phase Diagram.

    PubMed

    Bao, Bo; Riordon, Jason; Xu, Yi; Li, Huawei; Sinton, David

    2016-07-19

    The thermodynamic phase of a fluid (liquid, vapor or supercritical) is fundamental to all chemical processes, and the critical point is particularly important for supercritical chemical extraction. Conventional phase measurement methods require hours to obtain a single datum on the pressure and temperature diagram. Here, we present the direct measurement of the full pressure-temperature phase diagram, with 10 000 microwells. Orthogonal, linear, pressure and temperature gradients are obtained with 100 parallel microchannels (spanning the pressure range), each with 100 microwells (spanning the temperature range). The phase-mapping approach is demonstrated with both a pure substance (CO2) and a mixture (95% CO2 + 5% N2). Liquid, vapor, and supercritical regions are clearly differentiated, and the critical pressure is measured at 1.2% error with respect to the NIST standard. This approach provides over 100-fold improvement in measurement speed over conventional methods. PMID:27331613

  9. Ionic Blocks

    ERIC Educational Resources Information Center

    Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    "Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery. Three dimensional blocks are used to represent cations and anions, with color indicating charge (positive or negative) and size…

  10. Diagram of Zeolite Crystals

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Center for Advanced Microgravity Materials Processing (CAMMP) in Cambridge, MA, a NASA-sponsored Commercial Space Center, is working to improve zeolite materials for storing hydrogen fuel. CAMMP is also applying zeolites to detergents, optical cables, gas and vapor detection for environmental monitoring and control, and chemical production techniques that significantly reduce by-products that are hazardous to the environment. Depicted here is one of the many here complex geometric shapes which make them highly absorbent. Zeolite experiments have also been conducted aboard the International Space Station

  11. Automatically Assessing Graph-Based Diagrams

    ERIC Educational Resources Information Center

    Thomas, Pete; Smith, Neil; Waugh, Kevin

    2008-01-01

    To date there has been very little work on the machine understanding of imprecise diagrams, such as diagrams drawn by students in response to assessment questions. Imprecise diagrams exhibit faults such as missing, extraneous and incorrectly formed elements. The semantics of imprecise diagrams are difficult to determine. While there have been…

  12. Energy Tracking Diagrams

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel E.; Harrer, Benedikt W.; Close, Hunter G.; Daane, Abigail R.; DeWater, Lezlie S.; Robertson, Amy D.; Seeley, Lane; Vokos, Stamatis

    2016-02-01

    Energy is a crosscutting concept in science and features prominently in national science education documents. In the Next Generation Science Standards, the primary conceptual learning goal is for learners to conserve energy as they track the transfers and transformations of energy within, into, or out of the system of interest in complex physical processes. As part of tracking energy transfers among objects, learners should (i) distinguish energy from matter, including recognizing that energy flow does not uniformly align with the movement of matter, and should (ii) identify specific mechanisms by which energy is transferred among objects, such as mechanical work and thermal conduction. As part of tracking energy transformations within objects, learners should (iii) associate specific forms with specific models and indicators (e.g., kinetic energy with speed and/or coordinated motion of molecules, thermal energy with random molecular motion and/or temperature) and (iv) identify specific mechanisms by which energy is converted from one form to another, such as incandescence and metabolism. Eventually, we may hope for learners to be able to optimize systems to maximize some energy transfers and transformations and minimize others, subject to constraints based in both imputed mechanism (e.g., objects must have motion energy in order for gravitational energy to change) and the second law of thermodynamics (e.g., heating is irreversible). We hypothesize that a subsequent goal of energy learning—innovating to meet socially relevant needs—depends crucially on the extent to which these goals have been met.

  13. Neuraminidase Ribbon Diagram

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ribbons is a program developed at UAB used worldwide to graphically depict complicated protein structures in a simplified format. The program uses sophisticated computer systems to understand the implications of protein structures. The Influenza virus remains a major causative agent for a large number of deaths among the elderly and young children and huge economic losses due to illness. Finding a cure will have a general impact both on the basic research of viral pathologists of fast evolving infectious agents and clinical treatment of influenza virus infection. The reproduction process of all strains of influenza are dependent on the same enzyme neuraminidase. Shown here is a segmented representation of the neuraminidase inhibitor compound sitting inside a cave-like contour of the neuraminidase enzyme surface. This cave-like formation present in every neuraminidase enzyme is the active site crucial to the flu's ability to infect. The space-grown crystals of neuraminidase have provided significant new details about the three-dimensional characteristics of this active site thus allowing researchers to design drugs that fit tighter into the site. Principal Investigator: Dr. Larry DeLucas

  14. Self-assembly of high-resolutions PS-b-PMMA block-copolymers: processes capabilities and integration on 300mm track

    NASA Astrophysics Data System (ADS)

    Chevalier, X.; Nicolet, C.; Tiron, R.; Gharbi, A.; Chamiot-Maitral, G.; Jullian, K.; Pimenta-Barros, P.; Argoud, M.; Peyre, J.-L.; Van Spaandonk, R.; Fleury, G.; Hadziioannou, G.; Navarro, C.

    2014-03-01

    Careful control and reproducibility of BCP's synthesis are mandatory parameters to push-down PS-b-PMMA block-copolymer systems toward its lowest dimensions for microelectronic applications. The self-assembly process optimization of different high-resolution cylindrical PS-b-PMMA block-copolymers (i.e. L0 period below 25 nm) is studied to highlight processes-variations as regard to more classical PS-b-PMMA systems while the characterizations of bulk materials provide deeper insights on the parameters addressing the self-assembly of such materials. The integration of a high-resolution BCP on 300 mm track is then studied to check the capabilities of such materials in terms of lithographic applications. CD uniformity measurements in contact hole shrink approach, as well as the transfer of the BCP mask into typical industrial under-layer stacks leading to aggressive features, show that these materials exhibit promising potentials for advanced lithographic nodes.

  15. Voronoi Diagrams and Spring Rain

    ERIC Educational Resources Information Center

    Perham, Arnold E.; Perham, Faustine L.

    2011-01-01

    The goal of this geometry project is to use Voronoi diagrams, a powerful modeling tool across disciplines, and the integration of technology to analyze spring rainfall from rain gauge data over a region. In their investigation, students use familiar equipment from their mathematical toolbox: triangles and other polygons, circumcenters and…

  16. Blocked randomization with randomly selected block sizes.

    PubMed

    Efird, Jimmy

    2011-01-01

    When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes. PMID:21318011

  17. Dynamic phase diagram of soft nanocolloids.

    PubMed

    Gupta, Sudipta; Camargo, Manuel; Stellbrink, Jörg; Allgaier, Jürgen; Radulescu, Aurel; Lindner, Peter; Zaccarelli, Emanuela; Likos, Christos N; Richter, Dieter

    2015-09-01

    We present a comprehensive experimental and theoretical study covering micro-, meso- and macroscopic length and time scales, which enables us to establish a generalized view in terms of structure-property relationship and equilibrium dynamics of soft colloids. We introduce a new, tunable block copolymer model system, which allows us to vary the aggregation number, and consequently its softness, by changing the solvophobic-to-solvophilic block ratio (m : n) over two orders of magnitude. Based on a simple and general coarse-grained model of the colloidal interaction potential, we verify the significance of interaction length σint governing both structural and dynamic properties. We put forward a quantitative comparison between theory and experiment without adjustable parameters, covering a broad range of experimental polymer volume fractions (0.001 ≤ϕ≤ 0.5) and regimes from ultra-soft star-like to hard sphere-like particles, that finally results in the dynamic phase diagram of soft colloids. In particular, we find throughout the concentration domain a strong correlation between mesoscopic diffusion and macroscopic viscosity, irrespective of softness, manifested in data collapse on master curves using the interaction length σint as the only relevant parameter. A clear reentrance in the glass transition at high aggregation numbers is found, recovering the predicted hard-sphere (HS) value in the hard-sphere like limit. Finally, the excellent agreement between our new experimental systems with different but already established model systems shows the relevance of block copolymer micelles as a versatile realization of soft colloids and the general validity of a coarse-grained approach for the description of the structure and dynamics of soft colloids. PMID:26219628

  18. Sporadic Nucleation and Growth in the Microphase Separation Process of an I2S Miktoarm Star Block Copolymer and its Blends with Homopolymer

    NASA Astrophysics Data System (ADS)

    Yang, Lizhang; Pochan, Darrin J.; Gido, Samuel P.; Pispas, Stergios; Hong, Kunlun; Mays, Jimmy W.

    2000-03-01

    A selective solvent and annealing study was done to investigate the morphology behavior of an I2S miktoarm star block copolymer and its blends with homopolyisoprene. Casting from cyclohexane, a selective solvent for polyisoprene, the neat star shaped I2S block copolymer only partially microphase separated, and formed a unique layered morphology inside a homogeneous media. During annealing, the layered phase and the homogeneous phase both transformed into a randomly oriented worm morphology. The path of this transformation is different depending on whether the starting state is layered or homogenous. The I2S/homopolyisoprene blend formed a mostly homogeneous phase after casting from cyclohexane. Annealing produced slow microphase separation which was observed at various stages by TEM. Based on these observations, a sporadic nucleation process of microphase separation is proposed.

  19. Endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface of a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Cernohous, Bob R; Ratterman, Joseph D; Smith, Brian E

    2014-11-18

    Methods, apparatuses, and computer program products for endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface (`PAMI`) of a parallel computer are provided. Embodiments include establishing by a parallel application a data communications geometry, the geometry specifying a set of endpoints that are used in collective operations of the PAMI, including associating with the geometry a list of collective algorithms valid for use with the endpoints of the geometry. Embodiments also include registering in each endpoint in the geometry a dispatch callback function for a collective operation and executing without blocking, through a single one of the endpoints in the geometry, an instruction for the collective operation.

  20. Endpoint-based parallel data processing with non-blocking collective instructions in a parallel active messaging interface of a parallel computer

    DOEpatents

    Archer, Charles J; Blocksome, Michael A; Cernohous, Bob R; Ratterman, Joseph D; Smith, Brian E

    2014-11-11

    Endpoint-based parallel data processing with non-blocking collective instructions in a PAMI of a parallel computer is disclosed. The PAMI is composed of data communications endpoints, each including a specification of data communications parameters for a thread of execution on a compute node, including specifications of a client, a context, and a task. The compute nodes are coupled for data communications through the PAMI. The parallel application establishes a data communications geometry specifying a set of endpoints that are used in collective operations of the PAMI by associating with the geometry a list of collective algorithms valid for use with the endpoints of the geometry; registering in each endpoint in the geometry a dispatch callback function for a collective operation; and executing without blocking, through a single one of the endpoints in the geometry, an instruction for the collective operation.

  1. Spectral Determinants on Mandelstam Diagrams

    NASA Astrophysics Data System (ADS)

    Hillairet, Luc; Kalvin, Victor; Kokotov, Alexey

    2016-04-01

    We study the regularized determinant of the Laplacian as a functional on the space of Mandelstam diagrams (noncompact translation surfaces glued from finite and semi-infinite cylinders). A Mandelstam diagram can be considered as a compact Riemann surface equipped with a conformal flat singular metric {|ω|^2}, where {ω} is a meromorphic one-form with simple poles such that all its periods are pure imaginary and all its residues are real. The main result is an explicit formula for the determinant of the Laplacian in terms of the basic objects on the underlying Riemann surface (the prime form, theta-functions, the canonical meromorphic bidifferential) and the divisor of the meromorphic form {ω}. As an important intermediate result we prove a decomposition formula of the type of Burghelea-Friedlander-Kappeler for the determinant of the Laplacian for flat surfaces with cylindrical ends and conical singularities.

  2. Hero's journey in bifurcation diagram

    NASA Astrophysics Data System (ADS)

    Monteiro, L. H. A.; Mustaro, P. N.

    2012-06-01

    The hero's journey is a narrative structure identified by several authors in comparative studies on folklore and mythology. This storytelling template presents the stages of inner metamorphosis undergone by the protagonist after being called to an adventure. In a simplified version, this journey is divided into three acts separated by two crucial moments. Here we propose a discrete-time dynamical system for representing the protagonist's evolution. The suffering along the journey is taken as the control parameter of this system. The bifurcation diagram exhibits stationary, periodic and chaotic behaviors. In this diagram, there are transition from fixed point to chaos and transition from limit cycle to fixed point. We found that the values of the control parameter corresponding to these two transitions are in quantitative agreement with the two critical moments of the three-act hero's journey identified in 10 movies appearing in the list of the 200 worldwide highest-grossing films.

  3. The effect of different component ratios in block polymers and processing conditions on electrodeposition efficiency onto titanium

    NASA Astrophysics Data System (ADS)

    Fukuhara, Yusuke; Kyuzo, Megumi; Tsutsumi, Yusuke; Nagai, Akiko; Chen, Peng; Hanawa, Takao

    2015-11-01

    2-Methacryloyloxyethyl phosphorylcholine (MPC) polymers for electrodeposition to titanium surfaces were synthesized. The polymers were block-type copolymers composed of a poly(MPC) segment and a poly(2-aminoethylmethacrylate (AEMA)) segment, which could electronically adsorb to a titanium oxide film on the titanium surface. The polymer was synthesized as expected by nuclear magnetic resonance and gel permeation chromatography. In a 0.26 mmol L-1 PMbA solution adjusted to pH 11, -3.0 V (vs. an Ag/AgCl electrode) was applied to a titanium substrate for 300 s. We evaluated the effects of the molecular structure of poly(MPC-block-AEMA) (PMbA) with a different polymerization degree of MPC unit, whereas the polymerization degree of the AEMA units was fixed. The 15-min electrodeposition of PMbA100 was the most efficient condition in this study. On the other hand, the results of the water contact angle and the amount of adsorbed protein did not change, even when altering the MPC unit number and electrodeposition time. This indicates that the immobilization by electrodeposition of PMbA is important for the inhibition of protein adsorption, while the polymerization degree of the MPC unit and the electrodeposition time do not influence them. This study will enhance the understanding of effective polymer structures for electrodeposition and electrodeposition conditions.

  4. Playing "Twenty Questions" with Attribute Blocks.

    ERIC Educational Resources Information Center

    Pagni, David L.

    1993-01-01

    Investigates the problem of finding the expected number of questions necessary to identify 1 out of a set of 30 attribute blocks. Solutions include the use of a tree diagram or a computer simulation. Generalizes the problem for increased numbers of attributes. (MDH)

  5. Causal diagrams in systems epidemiology

    PubMed Central

    2012-01-01

    Methods of diagrammatic modelling have been greatly developed in the past two decades. Outside the context of infectious diseases, systematic use of diagrams in epidemiology has been mainly confined to the analysis of a single link: that between a disease outcome and its proximal determinant(s). Transmitted causes ("causes of causes") tend not to be systematically analysed. The infectious disease epidemiology modelling tradition models the human population in its environment, typically with the exposure-health relationship and the determinants of exposure being considered at individual and group/ecological levels, respectively. Some properties of the resulting systems are quite general, and are seen in unrelated contexts such as biochemical pathways. Confining analysis to a single link misses the opportunity to discover such properties. The structure of a causal diagram is derived from knowledge about how the world works, as well as from statistical evidence. A single diagram can be used to characterise a whole research area, not just a single analysis - although this depends on the degree of consistency of the causal relationships between different populations - and can therefore be used to integrate multiple datasets. Additional advantages of system-wide models include: the use of instrumental variables - now emerging as an important technique in epidemiology in the context of mendelian randomisation, but under-used in the exploitation of "natural experiments"; the explicit use of change models, which have advantages with respect to inferring causation; and in the detection and elucidation of feedback. PMID:22429606

  6. Looking inside the butterfly diagram

    NASA Astrophysics Data System (ADS)

    Ternullo, M.

    2007-12-01

    The suitability of Maunder's butterfly diagram to give a realistic picture of the photospheric magnetic flux large scale distribution is discussed. The evolution of the sunspot zone in cycle 20 through 23 is described. To reduce the noise which covers any structure in the diagram, a smoothing algorithm has been applied to the sunspot data. This operation has eliminated any short period fluctuation, and given visibility to long duration phenomena. One of these phenomena is the fact that the equatorward drift of the spot zone center of mass results from the alternation of several prograde (namely, equatorward) segments with other stationary or poleward segments. The long duration of the stationary/retrograde phases as well as the similarities among the spot zone alternating paths in the cycles under examination prevent us from considering these features as meaningless fluctuations, randomly superimposed on the continuous equatorward migration. On the contrary, these features should be considered physically meaningful phenomena, requiring adequate explanations. Moreover, even the smoothed spotted area markedly oscillates. The compared examination of area and spot zone evolution allows us to infer details about the spotted area distribution inside the butterfly diagram. Links between the changing structure of the spot zone and the tachocline rotation rate oscillations are proposed.

  7. Twistor Diagrams and Quantum Field Theory.

    NASA Astrophysics Data System (ADS)

    O'Donald, Lewis

    Available from UMI in association with The British Library. Requires signed TDF. This thesis uses twistor diagram theory, as developed by Penrose (1975) and Hodges (1990c), to try to approach some of the difficulties inherent in the standard quantum field theoretic description of particle interactions. The resolution of these issues is the eventual goal of the twistor diagram program. First twistor diagram theory is introduced from a physical view-point, with the aim of studying larger diagrams than have been typically explored. Methods are evolved to tackle the double box and triple box diagrams. These lead to three methods of constructing an amplitude for the double box, and two ways for the triple box. Next this theory is applied to translate the channels of a Yukawa Feynman diagram, which has more than four external states, into various twistor diagrams. This provides a test of the skeleton hypothesis (of Hodges, 1990c) in these cases, and also shows that conformal breaking must enter into twistor diagrams before the translation of loop level Feynman diagrams. The issue of divergent Feynman diagrams is then considered. By using a twistor equivalent of the sum-over -states idea of quantum field theory, twistor translations of loop diagrams are conjectured. The various massless propagator corrections and vacuum diagrams calculated give results consistent with Feynman theory. Two diagrams are also found that give agreement with the finite parts of the Feynman "fish" diagrams of phi^4 -theory. However it is found that a more rigorous translation for the time-like fish requires new boundaries to be added to the twistor sum-over-states. The twistor diagram obtained is found to give the finite part of the relevant Feynman diagram.

  8. Critical point analysis of phase envelope diagram

    SciTech Connect

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  9. Preliminary Master Logic Diagram for ITER operation

    SciTech Connect

    Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.

    1998-04-01

    This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.

  10. Critical point analysis of phase envelope diagram

    NASA Astrophysics Data System (ADS)

    Soetikno, Darmadi; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Siagian, Ucok W. R.; Soewono, Edy; Gunawan, Agus Y.

    2014-03-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  11. Understanding machines from text and diagrams

    NASA Astrophysics Data System (ADS)

    Hegarty, Mary; Just, Marcel A.

    1987-12-01

    Instructional materials typically use both text and diagrams to explain how machines work. In this paper we give an account of what information is involved in understanding a mechanical device and the role that diagrams might play in communicating this information. We propose a model of how people read a text and inspect an accompanying diagram which states that people inspect diagrams for three reasons: (1) to form a representation of information read in the text, (2) to reactivate information that has already been represented, and (3) to encode information that is absent from the text. Using data from subjects' eye fixations while they read a text and inspected an accompanying diagram, we find that low-ability subjects need to inspect diagrams more often than high-ability text. The data also suggest that knowledge of what is relevant in a diagram might be a prerequisite for encoding new information from a diagram. Instructional materials typically use both text and diagrams to explain how machines work. In this paper we give an account of what information is involved in understanding a mechanical device and the role that diagrams might play in communicating this information. We propose a model of how people read a text and inspect an accompanying diagram which states that people inspect diagrams for three reasons: (1) to form a representation of information read in the text; (2) to reactivate information that was alsready represented, and *3) to encode information that is absent from the text. Uinsg data from subjects' eye fixations while they read a text and inspected an accompanying diagram, we find that low-ability subjects need to inspect diagrmas more often than high-ability tesxt. The data also suggest that knowledge of what is relevant in a diagram might be a prerequisite and encoding information on a diagram.

  12. A Block-Matrix Method for Course Development

    ERIC Educational Resources Information Center

    Greenaway, John

    1977-01-01

    Describes the block-matrix method, a technique used to develop new training programs (commonly involving educational program developers and community representatives). Two examples of the block-matrix application and supplementary diagrams are included. It is noted that this method has been used successfully in the development of new courses for…

  13. Diagram, a Learning Environment for Initiation to Object-Oriented Modeling with UML Class Diagrams

    ERIC Educational Resources Information Center

    Py, Dominique; Auxepaules, Ludovic; Alonso, Mathilde

    2013-01-01

    This paper presents Diagram, a learning environment for object-oriented modelling (OOM) with UML class diagrams. Diagram an open environment, in which the teacher can add new exercises without constraints on the vocabulary or the size of the diagram. The interface includes methodological help, encourages self-correcting and self-monitoring, and…

  14. Effects of temperature, packaging and electron beam irradiation processing conditions on the property behaviour of Poly (ether-block-amide) blends.

    PubMed

    Murray, Kieran A; Kennedy, James E; McEvoy, Brian; Vrain, Olivier; Ryan, Damien; Cowman, Richard; Higginbotham, Clement L

    2014-06-01

    The radiation stability of Poly (ether-block-amide) (PEBA) blended with a multifunctional phenolic antioxidant and a hindered amide light stabiliser was examined under various temperatures, packaging and electron beam processing conditions. FTIR revealed that there were slight alterations to the PEBA before irradiation; however, these became more pronounced following irradiation. The effect of varying the temperature, packaging and processing conditions on the resultant PEBA properties was apparent. For example, rheology demonstrated that the structural properties could be enhanced by manipulating the aforementioned criteria. Mechanical testing exhibited less radiation resistance when the PEBA samples were vacuum packed and exposed to irradiation. MFI and AFM confirmed that the melting strength and surface topography could be reduced/increased depending on the conditions employed. From this study it was concluded that virgin PEBA submerged in dry ice with non-vacuum packaging during the irradiation process, provided excellent radiation resistance (20.9% improvement) in contrast to the traditional method. PMID:24863239

  15. Optical generation of Voronoi diagram.

    PubMed

    Giavazzi, F; Cerbino, R; Mazzoni, S; Giglio, M; Vailati, A

    2008-03-31

    We present results of experiments of diffraction by an amplitude screen, made of randomly distributed circular holes. By careful selection of the experimental parameters we obtain an intensity pattern strongly connected to the Voronoi diagram (VD) generated by the centers of the apertures. With the help of simulations we give a description of the observed phenomenon and elucidate the optimal parameters for its observation. Finally, we also suggest how it can be used for a fast, all-optical generation of VDs. PMID:18542580

  16. A Hubble Diagram for Quasars

    NASA Astrophysics Data System (ADS)

    Risaliti, Guido; Lusso, Elisabeta

    2015-09-01

    We present a new method to test the cosmological model at high z, and measure the cosmological parameters, based on the non-linear correlation between UV and X-ray luminosity in quasars. While the method can be successfully tested with the data available today, a deep X-ray survey matching the future LSST and Euclid quasar catalogs is needed to achieve a high precision. Athena could provide a Hubble diagram for quasar analogous to that available today for supernovae, but extending up to z>6.

  17. Structural geometry and kinematic processes at the intracontinental Daloushan mountain chain: Implications for tectonic transfer in the Yangtze Block interior

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Li, Zhi-Wu; Liu, Shu-Gen; Wang, Guo-Zhi; Li, Shuang-Jian; Qin, Zuo-Pen; Li, Jing-Xi; Jansa, Luba

    2016-02-01

    The Daloushan mountain chain, located in the centre of the upper Yangtze continental block, is considered to represent the locus of the tectonic shortening resulting from the eastward growth of the Tibetan Plateau and NW-thrusting of the Xuefeng Orogen. Structural data and apatite fission-track ages have been used to decipher the geometry and the kinematic evolution of the Daloushan. The latter is subdivided into two domains: the eastern domain, governed by west- to NW-verging thrusting and deformation with dextral transpression, and a western domain, governed by south-verging thrusting and deformation. Both domains experienced four episodes of deformation, synchronous with the four stages of post-Cretaceous denudation, marked by rapid cooling propagating eastward from 20 to 5 Ma, at a rate of ∼0.1 mm/year. In particular, the last two episodes of denudation are closely related to the growth of the Tibetan Plateau. This indicates an intra-continental transfer of tectonic forcing from the Palaeo-Pacific to the Tethys-Himalayan Tectonic Domain across the Daloushan.

  18. Phase diagram and magnetization structures of spin-3/2 bond-alternating Ising chains with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Dou, Jun-Ya; Tian, Guang-Shan

    2016-02-01

    By the infinite time-evolving block decimation (iTEBD) algorithm, the magnetization process of the spin-3/2 bond-alternating Ising chain with single-ion anisotropy (D) is investigated. Magnetization plateaus including detailed magnetization structures of three different cases are uncovered, and three rich ground-state phase diagrams are explicitly determined. Especially, for the uniform antiferromagnetic case, a phase transition line at D=J, which divides the Mz=0 (Mz =1/2) plateau into two phases, are detected by the magnetization structure and the ground-state energy, and a updated phase diagram is proposed. Such a transition line was not recognized by the average magnetization previously. A same transition line (D=J) is also detected in the phase diagram of the antiferromagnetic-ferromagnetic alternating case. Magnetization plateaus are found to be easily induced for the classical Ising systems without quantum fluctuations, and the single-ion anisotropy plays a key role in the formation of Mz = 1/2 and 1 plateaus in the present model.

  19. Signal processing at the Poker Flat MST radar

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    Signal processing for Mesosphere-Stratosphere-Troposphere (MST) radar is carried out by a combination of hardware in high-speed, special-purpose devices and software in a general-purpose, minicomputer/array processor. A block diagram of the signal processing system is presented, and the steps in the processing pathway are described. The current processing capabilities are given, and a system offering greater coherent integration speed is advanced which hinges upon a high speed preprocessor.

  20. Recent Results in Ring-Diagram Analysis

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. C.

    2013-12-01

    The ring-diagram technique was developed by Frank Hill 25 years ago and matured quickly during the late 1990s. It is nowadays one of the most commonly used techniques in local helioseismology. The method consists in the power spectral analysis of solar acoustic oscillations on small regions (2° to 30°) of the solar surface. The power spectrum resembles a set of trumpets nested inside each other and for a given frequency, it looks like a ring, hence the technique's name. It provides information on the horizontal flow field and thermodynamic structure in the layers immediately below the photosphere. With data regularly provided by MDI, GONG, and more recently HMI, many important results have been achieved. In recently years, these results include estimations of the meridional circulation and its evolution with solar cycle; flows associated with active regions, as well as, flow divergence and vorticity, and thermal structure beneath and around active regions. Much progress is expected with data now provided by HMI's high spatial resolution observations and high duty cycle. There are two data processing pipelines (GONG and HMI) providing free access to the data and the results of the ring-diagram analysis. Here we will discuss the most recent results and improvements in the technique, as well as, the many challenges that still remain.

  1. Automated D/3 to Visio Analog Diagrams

    Energy Science and Technology Software Center (ESTSC)

    2000-08-10

    ADVAD1 reads an ASCII file containing the D/3 DCS MDL input for analog points for a D/3 continuous database. It uses the information in the files to create a series of Visio files representing the structure of each analog chain, one drawing per Visio file. The actual drawing function is performed by Visio (requires Visio version 4.5+). The user can configure the program to select which fields in the database are shown on the diagrammore » and how the information is to be presented. This gives a visual representation of the structure of the analog chains, showing selected fields in a consistent manner. Updating documentation can be done easily and the automated approach eliminates human error in the cadding process. The program can also create the drawings far faster than a human operator is capable, able to create approximately 270 typical diagrams in about 8 minutes on a Pentium II 400 MHz PC. The program allows for multiple option sets to be saved to provide different settings (i.e., different fields, different field presentations, and /or different diagram layouts) for various scenarios or facilities on one workstation. Option sets may be exported from the Windows registry to allow duplication of settings on another workstation.« less

  2. Teaching Tip: Using Activity Diagrams to Model Systems Analysis Techniques: Teaching What We Preach

    ERIC Educational Resources Information Center

    Lending, Diane; May, Jeffrey

    2013-01-01

    Activity diagrams are used in Systems Analysis and Design classes as a visual tool to model the business processes of "as-is" and "to-be" systems. This paper presents the idea of using these same activity diagrams in the classroom to model the actual processes (practices and techniques) of Systems Analysis and Design. This tip…

  3. Cell flipping in permutation diagrams

    NASA Astrophysics Data System (ADS)

    Golumbic, Martin Charles; Kaplang, Haim

    Permutation diagrams have been used in circuit design to model a set of single point nets crossing a channel, where the minimum number of layers needed to realize the diagram equals the clique number ω(G) of its permutation graph, the value of which can be calculated in O(n log n) time. We consider a generalization of this model motivated by "standard cell" technology in which the numbers on each side of the channel are partitioned into consecutive subsequences, or cells, each of which can be left unchanged or flipped (i.e., reversed). We ask, for what choice of fiippings will the resulting clique number be minimum or maximum. We show that when one side of the channel is fixed (no flipping), an optimal flipping for the other side can be found in O(n log n) time for the maximum clique number. We prove that the general problem is NP-complete for the minimum clique number and O(n 2) for the maximum clique number. Moreover, since the complement of a permutation graph is also a permutation graph, the same complexity results hold for the independence number.

  4. Phase Diagrams of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2016-03-01

    In the inner crust of neutrons stars, where matter is near the saturation density, protons and neutrons arrange themselves into complex structures called nuclear pasta. Early theoretical work predicted a simple graduated hierarchy of pasta phases, consisting of spheres, cylinders, slabs, and uniform matter with voids. Previous work has simulated these phases with a simple classical model and has shown that the formation of these structures is dependent on the temperature, density, and proton fraction. However, previous work only studied a limited range of these parameters due to computational limitations. Thanks to recent advances in computing it is now possible to survey the structure of nuclear pasta for a larger range of parameters. By simulating nuclear pasta with constant temperature and proton fraction in an expanding simulation volume we are able to study the phase transitions in nuclear pasta, and thus produce a set of phase diagrams. We report on these phase diagrams as well as newly identified phases of nuclear pasta and discuss their implications for neutron star observables.

  5. Block Oriented Simulation System (BOSS)

    NASA Technical Reports Server (NTRS)

    Ratcliffe, Jaimie

    1988-01-01

    Computer simulation is assuming greater importance as a flexible and expedient approach to modeling system and subsystem behavior. Simulation has played a key role in the growth of complex, multiple access space communications such as those used by the space shuttle and the TRW-built Tracking and Data Relay Satellites (TDRS). A powerful new simulator for use in designing and modeling the communication system of NASA's planned Space Station is being developed. Progress to date on the Block (Diagram) Oriented Simulation System (BOSS) is described.

  6. Structure diagram of binary Lennard-Jones clusters

    NASA Astrophysics Data System (ADS)

    Mravlak, Marko; Kister, Thomas; Kraus, Tobias; Schilling, Tanja

    2016-07-01

    We analyze the structure diagram for binary clusters of Lennard-Jones particles by means of a global optimization approach for a large range of cluster sizes, compositions, and interaction energies and present a publicly accessible database of 180 000 minimal energy structures (http://softmattertheory.lu/clusters.html). We identify a variety of structures such as core-shell clusters, Janus clusters, and clusters in which the minority species is located at the vertices of icosahedra. Such clusters can be synthesized from nanoparticles in agglomeration experiments and used as building blocks in colloidal molecules or crystals. We discuss the factors that determine the formation of clusters with specific structures.

  7. Structure diagram of binary Lennard-Jones clusters.

    PubMed

    Mravlak, Marko; Kister, Thomas; Kraus, Tobias; Schilling, Tanja

    2016-07-14

    We analyze the structure diagram for binary clusters of Lennard-Jones particles by means of a global optimization approach for a large range of cluster sizes, compositions, and interaction energies and present a publicly accessible database of 180 000 minimal energy structures (http://softmattertheory.lu/clusters.html). We identify a variety of structures such as core-shell clusters, Janus clusters, and clusters in which the minority species is located at the vertices of icosahedra. Such clusters can be synthesized from nanoparticles in agglomeration experiments and used as building blocks in colloidal molecules or crystals. We discuss the factors that determine the formation of clusters with specific structures. PMID:27421400

  8. A Community Based Systems Diagram of Obesity Causes

    PubMed Central

    Allender, Steven; Owen, Brynle; Kuhlberg, Jill; Lowe, Janette; Nagorcka-Smith, Phoebe; Whelan, Jill; Bell, Colin

    2015-01-01

    Introduction Application of system thinking to the development, implementation and evaluation of childhood obesity prevention efforts represents the cutting edge of community-based prevention. We report on an approach to developing a system oriented community perspective on the causes of obesity. Methods Group model building sessions were conducted in a rural Australian community to address increasing childhood obesity. Stakeholders (n = 12) built a community model that progressed from connection circles to causal loop diagrams using scripts from the system dynamics literature. Participants began this work in identifying change over time in causes and effects of childhood obesity within their community. The initial causal loop diagram was then reviewed and elaborated by 50 community leaders over a full day session. Results The process created a causal loop diagram representing community perceptions of determinants and causes of obesity. The causal loop diagram can be broken down into four separate domains; social influences; fast food and junk food; participation in sport; and general physical activity. Discussion This causal loop diagram can provide the basis for community led planning of a prevention response that engages with multiple levels of existing settings and systems. PMID:26153893

  9. Hubble's diagram and cosmic expansion

    PubMed Central

    Kirshner, Robert P.

    2004-01-01

    Edwin Hubble's classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy's distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble's Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble's distances have a large systematic error, Hubble's velocities come chiefly from Vesto Melvin Slipher, and the interpretation in terms of the de Sitter effect is out of the mainstream of modern cosmology, this article opened the way to investigation of the expanding, evolving, and accelerating universe that engages today's burgeoning field of cosmology. PMID:14695886

  10. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  11. Block Copolymers with a Twist

    SciTech Connect

    Ho, R.; Chiang, Y; Chen, C; Wang, H; Hasegawa, H; Akasaka, S; Thomas, E; Burger, C; Hsiao, B

    2009-01-01

    Chiral block copolymers (BCPs*) comprising chiral entities were designed to fabricate helical architectures (i.e., twisted morphologies) from self-assembly. A new helical phase (H*) with P622 symmetry was discovered in the self-assembly of poly(styrene)-b-poly(l-lactide) (PS-PLLA) BCPs*. Hexagonally packed, interdigitated PLLA helical microdomains in a PS matrix were directly visualized by electron tomography. The phase diagram of the PS-PLLA BCPs* was also established. Phase transitions from the H* phase to the stable cylinder and gyroid phases were found after long-time annealing, suggesting that the H* is a long-lived metastable phase. In contrast to racemic poly(styrene)-b-poly(d,l-lactide) BCPs, chiral interaction significantly enhances the incompatibility between achiral PS and chiral PLLA blocks in the PS-PLLA BCPs* and can be estimated through the determination of the interaction parameter.

  12. Analysis of Japanese banks’ historical tree diagram

    NASA Astrophysics Data System (ADS)

    Ueno, Hiromichi; Mizuno, Takayuki; Takayasu, Misako

    2007-09-01

    By using the historical data from the Japanese banks’ database at “The Bankers Library” of Japanese Banker Association, we analyze the historical network of banks from 1868 to 2006. Firstly, we define a bank every year by a particle and draw a space-time evolution process of merger, division, establishment, and failure by a tree diagram structure. We found that the distribution of the tree basin size of real data and simulation result are mostly fitting well. Secondly, we analyze the raw data of financial statements of banks collected by the National Diet library. We confirm that the distributions of the amount of deposits have fat-tail every year, however, small deviations are observed relating to governmental policy.

  13. Project Management Plan for the INEL technology logic diagrams

    SciTech Connect

    Rudin, M.J.

    1992-10-01

    This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, ``Technology Logic Diagrams For The INEL.`` The work on this project will be conducted by personnel in EG&G Idaho, Inc.`s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project.

  14. Project Management Plan for the INEL technology logic diagrams

    SciTech Connect

    Rudin, M.J.

    1992-10-01

    This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, Technology Logic Diagrams For The INEL.'' The work on this project will be conducted by personnel in EG G Idaho, Inc.'s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project.

  15. UML activity diagrams in requirements specification of logic controllers

    NASA Astrophysics Data System (ADS)

    Grobelna, Iwona; Grobelny, Michał

    2015-12-01

    Logic controller specification can be prepared using various techniques. One of them is the wide understandable and user-friendly UML language and its activity diagrams. Using formal methods during the design phase increases the assurance that implemented system meets the project requirements. In the approach we use the model checking technique to formally verify a specification against user-defined behavioral requirements. The properties are usually defined as temporal logic formulas. In the paper we propose to use UML activity diagrams in requirements definition and then to formalize them as temporal logic formulas. As a result, UML activity diagrams can be used both for logic controller specification and for requirements definition, what simplifies the specification and verification process.

  16. Fast Formal Analysis of Requirements via "Topoi Diagrams"

    NASA Technical Reports Server (NTRS)

    Menzies, Tim; Powell, John; Houle, Michael E.; Kelly, John C. (Technical Monitor)

    2001-01-01

    Early testing of requirements can decrease the cost of removing errors in software projects. However, unless done carefully, that testing process can significantly add to the cost of requirements analysis. We show here that requirements expressed as topoi diagrams can be built and tested cheaply using our SP2 algorithm, the formal temporal properties of a large class of topoi can be proven very quickly, in time nearly linear in the number of nodes and edges in the diagram. There are two limitations to our approach. Firstly, topoi diagrams cannot express certain complex concepts such as iteration and sub-routine calls. Hence, our approach is more useful for requirements engineering than for traditional model checking domains. Secondly, out approach is better for exploring the temporal occurrence of properties than the temporal ordering of properties. Within these restrictions, we can express a useful range of concepts currently seen in requirements engineering, and a wide range of interesting temporal properties.

  17. A deletion mutation in the 5' part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins.

    PubMed Central

    Crawford, S; Goff, S P

    1985-01-01

    Deletion mutations in the 5' part of the pol gene of Moloney murine leukemia virus were generated by restriction enzyme site-directed mutagenesis of cloned proviral DNA. DNA sequence analysis indicated that one such deletion was localized entirely within the 5' part of the pol gene, did not affect the region encoding reverse transcriptase, and preserved the translational reading frame downstream of the mutation. The major viral precursor polyproteins (Pr65gag, Pr200gag-pol, and gPr80env) were synthesized at wild-type levels in cell lines carrying the mutant genome. These cell lines assembled and released wild-type levels of virion particles into the medium. Cleavage of both Pr65gag and Pr200gag-pol precursors to the mature proteins was completely blocked in the mutant virions. Surprisingly, these virions contained high levels of active reverse transcriptase; examination of the endogenous reverse transcription products synthesized by the mutant virions revealed normal amounts of minus-strand strong-stop DNA, indicating that the RNA genome was packaged and that reverse transcription in detergent-permeabilized virions was not significantly impaired. Processing of gPr80env to gP70env and P15E was not affected by the mutation, but cleavage of P15E to P12E was not observed. The mutant particles were poorly infectious; analysis indicated that infection was blocked at an early stage. The data are consistent with the idea that the 5' part of the pol gene encodes a protease directly responsible for processing Pr65gag, and possibly Pr200gag-pol, to the structural virion proteins. It appears that cleavage of the gag gene product is not required for budding and release of virions and that complete processing of the pol gene product to the mature form of reverse transcriptase is not required for its functional activation. Images PMID:3882995

  18. The neptunium-iron phase diagram

    NASA Astrophysics Data System (ADS)

    Gibson, J. K.; Haire, R. G.; Beahm, E. C.; Gensini, M. M.; Maeda, A.; Ogawa, T.

    1994-08-01

    The phase relations in the Np-Fe alloy system have been elucidated using differential thermal analysis. A phase diagram for this system is postulated based upon the experimental results, regular-solution model calculations, and an expected correspondence to the U-Fe and Pu-Fe diagrams. The postulated Np-Fe diagram is characterized by limited terminal solid solubilities, two intermetallic solid phases, NpFe 2 and Np 6Fe, and two eutectics.

  19. Adapting Diagrams from Physics Textbooks: A Way to Improve the Autonomy of Blind Students

    ERIC Educational Resources Information Center

    Dickman, A. G.; Martins, A. O.; Ferreira, A. C.; Andrade, L. M.

    2014-01-01

    We devise and test a set of tactile symbols to represent elements frequently used in mechanics diagrams, such as vectors, ropes, pulleys, blocks and surfaces, that can be used to adapt drawings of physics situations in textbooks for blind students. We also investigate how figures are described for blind students in classroom activities and exams,…

  20. TCD: A Text-Based UML Class Diagram Notation and Its Model Converters

    NASA Astrophysics Data System (ADS)

    Washizaki, Hironori; Akimoto, Masayoshi; Hasebe, Atsushi; Kubo, Atsuto; Fukazawa, Yoshiaki

    Among several diagrams defined in UML, the class diagram is particularly useful through entire software development process, from early domain analysis stages to later maintenance stages. However conventional UML environments are often inappropriate for collaborative modeling in physically remote locations, such as exchanging models on a public mailing list via email. To overcome this issue, we propose a new diagram notation, called "TCD" (Text-based uml Class Diagram), for describing UML class diagrams using ASCII text. Since text files can be easily created, modified and exchanged in anywhere by any computing platforms, TCD facilitates the collaborative modeling with a number of unspecified people. Moreover, we implemented model converters for converting in both directions between UML class diagrams described in the XMI form and those in the TCD form. By using the converters, the reusability of models can be significantly improved because many of UML modeling tools support the XMI for importing and exporting modeling data.

  1. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups.

    PubMed

    Neradovic, D; Soga, O; Van Nostrum, C F; Hennink, W E

    2004-05-01

    Block copolymers of poly(ethylene glycol) (PEG) as a hydrophilic block and N-isopropylacrylamide (PNIPAAm) or poly (NIPAAm-co-N-(2-hydroxypropyl) methacrylamide-dilactate) (poly(NIPAAm-co-HPMAm-dilactate)) as a thermosensitive block, are able to self-assemble in water into nanoparticles above the cloud point (CP) of the thermosensitive block. The influence of processing and the formulation parameters on the size of the nanoparticles was studied using dynamic light scattering. PNIPAAm-b-PEG 2000 polymers were not suitable for the formation of small and stable particles. Block copolymers with PEG 5000 and 10000 formed relatively small and stable particles in aqueous solutions at temperatures above the CP of the thermosensitive block. Their size decreased with increasing molecular weight of the thermosensitive block, decreasing polymer concentration and using water instead of phosphate buffered saline as solvent. Extrusion and ultrasonication were inefficient methods to size down the polymeric nanoparticles. The heating rate of the polymer solutions was a dominant factor for the size of the nanoparticles. When an aqueous polymer solution was slowly heated through the CP, rather large particles (> or = 200 nm) were formed. Regardless the polymer composition, small nanoparticles (50-70 nm) with a narrow size distribution were formed, when a small volume of an aqueous polymer solution below the CP was added to a large volume of heated water. In this way the thermosensitive block copolymers rapidly pass their CP ('heat shock' procedure), resulting in small and stable nanoparticles. PMID:14741606

  2. Coarse-grained molecular dynamics simulation of the void growth process in the block structure of semicrystalline polymers

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuji; Kubo, Momoji

    2016-06-01

    We study fracture processes of amorphous and semicrystalline polymers with a coarse-grained molecular dynamics simulation. In the amorphous state, the stress caused by strain mainly arises from the loss of the attractive interaction in the voids. However, in semicrystalline polymers, the elongation of bonding is the dominant factor and it causes much more stress than that in an amorphous state. This is because growth of the voids is prevented by the amorphous regions and it is difficult to relax the folded polymers.

  3. Focusing by blocking: Repeatedly generating central density peaks in self-propelled particle systems by exploiting diffusive processes

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2015-05-01

    Over the past few years the displacement statistics of self-propelled particles has been intensely studied, revealing their long-time diffusive behavior. Here, we demonstrate that a concerted combination of boundary conditions and switching on and off the self-propelling drive can generate and afterwards arbitrarily often restore a non-stationary centered peak in their spatial distribution. This corresponds to a partial reversibility of their statistical behavior, in opposition to the above-mentioned long-time diffusive nature. Interestingly, it is a diffusive process that mediates and makes possible this procedure. It should be straightforward to verify our predictions in a real experimental system.

  4. A Solution-Processable Molecule using Thieno[3,2-b]thiophene as Building Block for Efficient Organic Solar Cells.

    PubMed

    Wei, Huan; Chen, Weichao; Han, Liangliang; Wang, Ting; Bao, Xichang; Li, Xiaoyun; Liu, Jie; Zhou, Yuanhang; Yang, Renqiang

    2015-08-01

    A solution-processed acceptor-π-donor-π-acceptor (A-π-D-π-A) type small molecule, namely DCATT, has been designed and synthesized for the application as donor material in organic solar cells. The fused aromatic unit thieno[3,2-b]thiophene (TT) flanked with thiophene is applied as π bridge, while 4,8-bisthienyl substituted benzodithiophene (BDT) and 2-ethylhexyl cyanoacetate are chosen as the central building block and end group, respectively. Introduction of fused ring to the small molecule enhances the conjugation length of the main chain, and gives a strong tendency to form π-π stacking with a large overlapping area which favors to high charge carrier transport. Small-molecule organic solar cells based on blends of DCATT and fullerene acceptor exhibit power conversion efficiencies as high as 5.20 % under the illumination of AM 1.5G, 100 mW cm(-2) . PMID:26097019

  5. Making Data Flow Diagrams Accessible for Visually Impaired Students Using Excel Tables

    ERIC Educational Resources Information Center

    Sauter, Vicki L.

    2015-01-01

    This paper addresses the use of Excel tables to convey information to blind students that would otherwise be presented using graphical tools, such as Data Flow Diagrams. These tables can supplement diagrams in the classroom when introducing their use to understand the scope of a system and its main sub-processes, on exams when answering questions…

  6. On the Different Ways That Mathematicians Use Diagrams in Proof Construction

    ERIC Educational Resources Information Center

    Samkoff, Aron; Lai, Yvonne; Weber, Keith

    2012-01-01

    The processes by which individuals can construct proofs based on visual arguments are poorly understood. We investigated this issue by presenting eight mathematicians with a task that invited the construction of a diagram, and examined how they used this diagram to produce a formal proof. The main findings were that participants varied in the…

  7. Learning from Text with Diagrams: Promoting Mental Model Development and Inference Generation

    ERIC Educational Resources Information Center

    Butcher, Kirsten R.

    2006-01-01

    Two experiments investigated learning outcomes and comprehension processes when students learned about the heart and circulatory system using (a) text only, (b) text with simplified diagrams designed to highlight important structural relations, or (c) text with more detailed diagrams reflecting a more accurate representation. Experiment 1 found…

  8. Expression of Superparamagnetic Particles on FORC Diagrams

    NASA Astrophysics Data System (ADS)

    Hirt, A. M.; Kumari, M.; Crippa, F.; Petri-Fink, A.

    2015-12-01

    Identification of superparamagnetic (SP) particles in natural materials provides information on processes that lead to the new formation or dissolution of iron oxides. SP particles express themselves on first-order reversal curve (FORC) diagrams as a distribution centered near the origin of the diagram. Pike et al. (2001, GJI, 145, 721) demonstrated that thermal relaxation produces an upward shift in the FORC distribution, and attributed this to a pause encountered at each reversal field. In this study we examine the relationship between this upward shift and particles size on two sets of synthetic iron oxide nanoparticles. One set of coated magnetite particles have well-constrained particles size with 9, 16 and 20 nm as their diameter. A second set from the FeraSpin™ Series, consisting of FeraSpinXS, M and XL, were evaluated. Rock magnetic experiments indicate that the first set of samples is exclusively magnetite, whereas the FeraSpin samples contain predominantly magnetite with some degree of oxidation. Samples from both sets show that the upward shift of the FORC distribution at the origin increases with decreasing particle size. The amount of shift in the FeraSpin series is less when compared to the samples from the first set. This is attributed to the effect of interaction that counteracts the effect of thermal relaxation behavior of the SP particles. The FeraSpin series also shows a broader FORC distribution on the vertical axis that appears to be related to non-saturation of the hysteresis curve at maximum applied field. This non-saturation behavior can be due to spins of very fine particles or oxidation to hematite. AC susceptibility at low temperature indicates that particle interaction may affect the effective magnetic particle size. Our results suggest that the FORC distribution in pure SP particle systems provides information on the particle size distribution or oxidation, which can be further evaluated with low temperature techniques.

  9. Transient processes in Stromboli's shallow basaltic system inferred from dolerite and magmatic breccia blocks erupted during the 5 April 2003 paroxysm

    NASA Astrophysics Data System (ADS)

    Renzulli, Alberto; Del Moro, Stefano; Menna, Michele; Landi, Patrizia; Piermattei, Marco

    2009-09-01

    shallow basaltic system during the late evening of 28 December 2002 coupled with the short break in the summit persistent explosions between December 2002 and March 2003 permitted the CR magma pockets to solidify as dolerites, which were confined to the uppermost portion of the system and thus not involved in the ongoing flank effusive activity. Crystal size distribution of the basaltic blocks and crystallization of the finer-grained (<0.1 mm) mafic minerals of the dolerites over a time interval of ˜100 days closely agrees with the above interpretation. Vesicle filling (miarolitic cavities) locally found in some dolerites, with minerals deposited as vapor-phase crystallization is a result of continuous gas percolation through the rocks of the uppermost portion of the volcanic system. Poorly welded magmatic breccias formed during syn-eruptive processes of 5 April 2003, when the paroxysm strongly shattered the shallow subvolcanic system and many dolerite fragments were entrapped in the CR magma. In contrast, the high degree of welding between the dolerite clasts and the CR basaltic matrix in the strongly welded magmatic breccias provides a snapshot of subvolcanic intrusions of the CR basalt into the dolerite when, after a 2-month break in activity, CR magmas started to rise again to the summit craters. Blocks similar to these subvolcanic ejecta of 5 April 2003 were also erupted during previous paroxysms (e.g., 1930) suggesting that changes in the usual Strombolian activity (e.g., short breaks in the persistent mild explosions and/or flank effusive activity) lead to transient crystallization of dolerites in the shallow plumbing system.

  10. Phase diagram of ammonium nitrate

    SciTech Connect

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  11. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  12. Software Tool Integrating Data Flow Diagrams and Petri Nets

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Tavana, Madjid

    2010-01-01

    Data Flow Diagram - Petri Net (DFPN) is a software tool for analyzing other software to be developed. The full name of this program reflects its design, which combines the benefit of data-flow diagrams (which are typically favored by software analysts) with the power and precision of Petri-net models, without requiring specialized Petri-net training. (A Petri net is a particular type of directed graph, a description of which would exceed the scope of this article.) DFPN assists a software analyst in drawing and specifying a data-flow diagram, then translates the diagram into a Petri net, then enables graphical tracing of execution paths through the Petri net for verification, by the end user, of the properties of the software to be developed. In comparison with prior means of verifying the properties of software to be developed, DFPN makes verification by the end user more nearly certain, thereby making it easier to identify and correct misconceptions earlier in the development process, when correction is less expensive. After the verification by the end user, DFPN generates a printable system specification in the form of descriptions of processes and data.

  13. Reading fitness landscape diagrams through HSAB concepts

    NASA Astrophysics Data System (ADS)

    Vigneresse, Jean-Louis

    2014-10-01

    Fitness landscapes are conceived as range of mountains, with local peaks and valleys. In terms of potential, such topographic variations indicate places of local instability or stability. The chemical potential, or electronegativity, its value changed of sign, carries similar information. In addition to chemical descriptors defined through hard-soft acid-base (HSAB) concepts and computed through density functional theory (DFT), the principles that rule chemical reactions allow the design of such landscape diagrams. The simplest diagram uses electrophilicity and hardness as coordinates. It allows examining the influence of maximum hardness or minimum electrophilicity principles. A third dimension is introduced within such a diagram by mapping the topography of electronegativity, polarizability or charge exchange. Introducing charge exchange during chemical reactions, or mapping a third parameter (f.i. polarizability) reinforces the information carried by a simple binary diagram. Examples of such diagrams are provided, using data from Earth Sciences, simple oxides or ligands.

  14. Data-driven implementation of data flow diagrams

    SciTech Connect

    Babb, R.G. II

    1982-01-01

    Current software engineering methods employ a variety of design notations and techniques during the development process. This paper suggests a new, unified approach to developing software, termed program/system design. Programs are viewed as being made up of systems of data-coupled data-activated processing units. Using a coherent hierarchy of data flow diagrams, complex systems are specified as compositions of successively simpler systems. The methods are illustrated by a program/system solution to the telegram problem. 19 references.

  15. Faceting diagram for sticky steps

    NASA Astrophysics Data System (ADS)

    Akutsu, Noriko

    2016-03-01

    Faceting diagrams for the step-faceting zone, the step droplet zone, and the Gruber-Mullins-Pokrovsky-Talapov (GMPT) zone for a crystal surface are obtained by using the density matrix renormalization group method to calculate the surface tension. The model based on these calculations is the restricted solid-on-solid (RSOS) model with a point-contact-type step-step attraction (p-RSOS model) on a square lattice. The point-contact-type step-step attraction represents the energy gain obtained by forming a bonding state with orbital overlap at the meeting point of the neighboring steps. In the step-faceting zone, disconnectedness in the surface tension leads to the formation of a faceted macrostep on a vicinal surface at equilibrium. The disconnectedness in the surface tension also causes the first-order shape transition for the equilibrium shape of a crystal droplet. The lower zone boundary line (ZBL), which separates the step-faceting zone and the step droplet zone, is obtained by the condition γ 1 = lim n → ∞ γ n / n , where γn is the step tension of the n-th merged step. The upper ZBL, which separates the GMPT zone and the step droplet zone, is obtained by the condition Aq,eff = 0 and Bq,eff = 0, where Aq,eff and Bq,eff represent the coefficients for the | q → | 2 term and the | q → | 3 term, respectively, in the | q → | -expanded form of the surface free energy f eff ( q → ) . Here, q → is the surface gradient relative to the (111) surface. The reason why the vicinal surface inclined in the <101> direction does not exhibit step-faceting is explained in terms of the one-dimensional spinless quasi-impenetrable attractive bosons at absolute zero.

  16. Large Block Test Final Report

    SciTech Connect

    Lin, W

    2001-12-01

    This report documents the Large-Block Test (LBT) conducted at Fran Ridge near Yucca Mountain, Nevada. The LBT was a thermal test conducted on an exposed block of middle non-lithophysal Topopah Spring tuff (Tptpmn) and was designed to assist in understanding the thermal-hydrological-mechanical-chemical (THMC) processes associated with heating and then cooling a partially saturated fractured rock mass. The LBT was unique in that it was a large (3 x 3 x 4.5 m) block with top and sides exposed. Because the block was exposed at the surface, boundary conditions on five of the six sides of the block were relatively well known and controlled, making this test both easier to model and easier to monitor. This report presents a detailed description of the test as well as analyses of the data and conclusions drawn from the test. The rock block that was tested during the LBT was exposed by excavation and removal of the surrounding rock. The block was characterized and instrumented, and the sides were sealed and insulated to inhibit moisture and heat loss. Temperature on the top of the block was also controlled. The block was heated for 13 months, during which time temperature, moisture distribution, and deformation were monitored. After the test was completed and the block cooled down, a series of boreholes were drilled, and one of the heater holes was over-cored to collect samples for post-test characterization of mineralogy and mechanical properties. Section 2 provides background on the test. Section 3 lists the test objectives and describes the block site, the site configuration, and measurements made during the test. Section 3 also presents a chronology of events associated with the LBT, characterization of the block, and the pre-heat analyses of the test. Section 4 describes the fracture network contained in the block. Section 5 describes the heating/cooling system used to control the temperature in the block and presents the thermal history of the block during the test

  17. Epstein-Barr Viral BNLF2a Protein Hijacks the Tail-anchored Protein Insertion Machinery to Block Antigen Processing by the Transport Complex TAP*

    PubMed Central

    Wycisk, Agnes I.; Lin, Jiacheng; Loch, Sandra; Hobohm, Kathleen; Funke, Jessica; Wieneke, Ralph; Koch, Joachim; Skach, William R.; Mayerhofer, Peter U.; Tampé, Robert

    2011-01-01

    Virus-infected cells are eliminated by cytotoxic T lymphocytes, which recognize viral epitopes displayed on major histocompatibility complex class I molecules at the cell surface. Herpesviruses have evolved sophisticated strategies to escape this immune surveillance. During the lytic phase of EBV infection, the viral factor BNLF2a interferes with antigen processing by preventing peptide loading of major histocompatibility complex class I molecules. Here we reveal details of the inhibition mechanism of this EBV protein. We demonstrate that BNLF2a acts as a tail-anchored protein, exploiting the mammalian Asna-1/WRB (Get3/Get1) machinery for posttranslational insertion into the endoplasmic reticulum membrane, where it subsequently blocks antigen translocation by the transporter associated with antigen processing (TAP). BNLF2a binds directly to the core TAP complex arresting the ATP-binding cassette transporter in a transport-incompetent conformation. The inhibition mechanism of EBV BNLF2a is distinct and mutually exclusive of other viral TAP inhibitors. PMID:21984826

  18. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  19. Phase diagram of a model of the protein amelogenin.

    PubMed

    Haaga, Jason; Pemberton, Elizabeth; Gunton, J D; Rickman, J M

    2016-08-28

    There has been considerable recent interest in the self-assembly and phase behavior of models of colloidal and protein particles with anisotropic interactions. One example of particular interest is amelogenin, an important protein involved in the formation of dental enamel. Amelogenin is primarily hydrophobic with a 25-residue charged C-terminus tail. This protein undergoes a hierarchical assembly process that is crucial to mineral deposition, and experimental work has demonstrated that the deletion of the C-terminus tail prevents this self-assembly. A simplified model of amelogenin has been proposed in which the protein is treated as a hydrophobic sphere, interacting via the Asakura-Oosawa (AO) potential, with a tethered point charge on its surface. In this paper, we examine the effect of the Coulomb interaction between the point charges in altering the phase diagram of the AO model. For the parameter case specific to amelogenin, we find that the previous in vitro experimental and model conditions correspond to the system being near the low-density edge of the metastable region of the phase diagram. Our study illustrates more generally the importance of understanding the phase diagram for proteins, in that the kinetic pathway for self-assembly and the resulting aggregate morphology depends on the location of the initial state in the phase diagram. PMID:27586954

  20. Algorithmic Identification for Wings in Butterfly Diagrams.

    NASA Astrophysics Data System (ADS)

    Illarionov, E. A.; Sokolov, D. D.

    2012-12-01

    We investigate to what extent the wings of solar butterfly diagrams can be separated without an explicit usage of Hale's polarity law as well as the location of the solar equator. Two algorithms of cluster analysis, namely DBSCAN and C-means, have demonstrated their ability to separate the wings of contemporary butterfly diagrams based on the sunspot group density in the diagram only. Here we generalize the method for continuous tracers, give results concerning the migration velocities and presented clusters for 12 - 20 cycles.

  1. Ultrasonic defect evaluation using DGS-diagrams modified for the inspection of anisotropic composite materials

    NASA Astrophysics Data System (ADS)

    Spies, Martin; Rieder, Hans; Dillhöfer, Alexander

    2015-03-01

    The application of DGS-diagrams (Distance-Gain-Size) for defect sizing using ultrasonics is considered for anisotropic materials. Based on far-field formulations for transducers with circular apertures, it is shown that the general DGS-diagram for isotropic materials can be applied to anisotropic media as well, if some modifications in the evaluation are performed. The modified procedure is illustrated and validated using ultrasonic inspection data acquired at a unidirectionally carbon-fiber reinforced composite test block with flat-bottomed holes as model defects.

  2. Diagram of states and morphologies of flexible-semiflexible copolymer chains: A Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Zablotskiy, Sergey V.; Martemyanova, Julia A.; Ivanov, Viktor A.; Paul, Wolfgang

    2016-06-01

    A single copolymer chain consisting of multiple flexible (F) and semiflexible (S) blocks has been studied using a continuum bead-spring model by Stochastic Approximation Monte Carlo simulations, which determine the density of states of the model. The only difference between F and S blocks is the intramolecular bending potential, all non-bonded interactions are equal. The state diagrams for this class of models display multiple nematic phases in the collapsed state, characterized through a demixing of the blocks of different stiffness and orientational ordering of the stiff blocks. We observe dumbbell-like morphologies, lamellar phases, and for the larger block lengths also Saturn-like structures with a core of flexible segments and the stiff segments forming a ring around the core.

  3. Diagram of states and morphologies of flexible-semiflexible copolymer chains: A Monte Carlo simulation.

    PubMed

    Zablotskiy, Sergey V; Martemyanova, Julia A; Ivanov, Viktor A; Paul, Wolfgang

    2016-06-28

    A single copolymer chain consisting of multiple flexible (F) and semiflexible (S) blocks has been studied using a continuum bead-spring model by Stochastic Approximation Monte Carlo simulations, which determine the density of states of the model. The only difference between F and S blocks is the intramolecular bending potential, all non-bonded interactions are equal. The state diagrams for this class of models display multiple nematic phases in the collapsed state, characterized through a demixing of the blocks of different stiffness and orientational ordering of the stiff blocks. We observe dumbbell-like morphologies, lamellar phases, and for the larger block lengths also Saturn-like structures with a core of flexible segments and the stiff segments forming a ring around the core. PMID:27369540

  4. A Hubble Diagram for Quasars

    NASA Astrophysics Data System (ADS)

    Risaliti, G.; Lusso, E.

    2015-12-01

    We present a new method to test the ΛCDM cosmological model and to estimate cosmological parameters based on the nonlinear relation between the ultraviolet and X-ray luminosities of quasars. We built a data set of 1138 quasars by merging several samples from the literature with X-ray measurements at 2 keV and SDSS photometry, which was used to estimate the extinction-corrected 2500 Å flux. We obtained three main results: (1) we checked the nonlinear relation between X-ray and UV luminosities in small redshift bins up to z˜ 6, confirming that the relation holds at all redshifts with the same slope; (2) we built a Hubble diagram for quasars up to z˜ 6, which is well matched to that of supernovae in the common z = 0-1.4 redshift interval and extends the test of the cosmological model up to z˜ 6; and (3) we showed that this nonlinear relation is a powerful tool for estimating cosmological parameters. Using the present data and assuming a ΛCDM model, we obtain {{{Ω }}}M = 0.22{}-0.08+0.10 and {{{Ω }}}{{Λ }} = 0.92{}-0.30+0.18 ({{{Ω }}}M = 0.28 ± 0.04 and {{{Ω }}}{{Λ }} = 0.73 +/- 0.08 from a joint quasar-SNe fit). Much more precise measurements will be achieved with future surveys. A few thousand SDSS quasars already have serendipitous X-ray observations from Chandra or XMM-Newton, and at least 100,000 quasars with UV and X-ray data will be made available by the extended ROentgen Survey with an Imaging Telescope Array all-sky survey in a few years. The Euclid, Large Synoptic Survey Telescope, and Advanced Telescope for High ENergy Astrophysics surveys will further increase the sample size to at least several hundred thousand. Our simulations show that these samples will provide tight constraints on the cosmological parameters and will allow us to test for possible deviations from the standard model with higher precision than is possible today.

  5. Phase diagram for passive electromagnetic scatterers.

    PubMed

    Lee, Jeng Yi; Lee, Ray-Kuang

    2016-03-21

    With the conservation of power, a phase diagram defined by amplitude square and phase of scattering coefficients for each spherical harmonic channel is introduced as a universal map for any passive electromagnetic scatterers. Physically allowable solutions for scattering coefficients in this diagram clearly show power competitions among scattering and absorption. It also illustrates a variety of exotic scattering or absorption phenomena, from resonant scattering, invisible cloaking, to coherent perfect absorber. With electrically small core-shell scatterers as an example, we demonstrate a systematic method to design field-controllable structures based on the allowed trajectories in this diagram. The proposed phase diagram and inverse design can provide tools to design functional electromagnetic devices. PMID:27136839

  6. The Art of Free-Body Diagrams.

    ERIC Educational Resources Information Center

    Puri, Avinash

    1996-01-01

    Discusses the difficulty of drawing free-body diagrams which only show forces exerted on a body from its neighbors. Presents three ways a body may be modeled: a particle, rigid extended, and nonrigid extended. (MKR)

  7. An Improved Mnemonic Diagram for Thermodynamic Relationships.

    ERIC Educational Resources Information Center

    Rodriguez, Joaquin; Brainard, Alan J.

    1989-01-01

    Considers pressure, volume, entropy, temperature, Helmholtz free energy, Gibbs free energy, enthalpy, and internal energy. Suggests the mnemonic diagram is for use with simple systems that are defined as macroscopically homogeneous, isotropic, uncharged, and chemically inert. (MVL)

  8. Numerical Simulation of Nonperiodic Rail Operation Diagram Characteristics

    PubMed Central

    Qian, Yongsheng; Wang, Bingbing; Zeng, Junwei; Wang, Xin

    2014-01-01

    This paper succeeded in utilizing cellular automata (CA) model to simulate the process of the train operation under the four-aspect color light system and getting the nonperiodic diagram of the mixed passenger and freight tracks. Generally speaking, the concerned models could simulate well the situation of wagon in preventing trains from colliding when parking and restarting and of the real-time changes the situation of train speeds and displacement and get hold of the current train states in their departures and arrivals. Finally the model gets the train diagram that simulates the train operation in different ratios of the van and analyzes some parameter characters in the process of train running, such as time, speed, through capacity, interval departing time, and departing numbers. PMID:25435863

  9. Lattice and Phase Diagram in QCD

    SciTech Connect

    Lombardo, Maria Paola

    2008-10-13

    Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.

  10. Fluctuations and the QCD phase diagram

    SciTech Connect

    Schaefer, B.-J.

    2012-06-15

    In this contribution the role of quantum fluctuations for the QCD phase diagram is discussed. This concerns in particular the importance of the matter back-reaction to the gluonic sector. The impact of these fluctuations on the location of the confinement/deconfinement and the chiral transition lines as well as their interrelation are investigated. Consequences of our findings for the size of a possible quarkyonic phase and location of a critical endpoint in the phase diagram are drawn.