Science.gov

Sample records for process system diagnostics

  1. A nonlinear filtering process diagnostic system for the Space Station

    NASA Technical Reports Server (NTRS)

    Yoel, Raymond R.; Buchner, M.; Loparo, K.; Cubukcu, Arif

    1988-01-01

    A nonlinear filtering process diagnostic system, terrestrial simulation and real time implementation studies is presented. Possible applications to Space Station subsystem elements are discussed. A process diagnostic system using model based nonlinear filtering for systems with random structure was shown to provide improvements in stability, robustness, and overall performance in comparison to linear filter based systems. A suboptimal version of the nonlinear filter (zero order approximation filter, or ZOA filter) was used in simulation studies, initially, with a pressurized water reactor model and then with water/steam heat exchanger models. Finally, a real time implementation for leak detection in a water/steam heat exchanger was conducted using the ZOA filter and heat exchanger models.

  2. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  3. PROcess Based Diagnostics PROBE

    NASA Technical Reports Server (NTRS)

    Clune, T.; Schmidt, G.; Kuo, K.; Bauer, M.; Oloso, H.

    2013-01-01

    Many of the aspects of the climate system that are of the greatest interest (e.g., the sensitivity of the system to external forcings) are emergent properties that arise via the complex interplay between disparate processes. This is also true for climate models most diagnostics are not a function of an isolated portion of source code, but rather are affected by multiple components and procedures. Thus any model-observation mismatch is hard to attribute to any specific piece of code or imperfection in a specific model assumption. An alternative approach is to identify diagnostics that are more closely tied to specific processes -- implying that if a mismatch is found, it should be much easier to identify and address specific algorithmic choices that will improve the simulation. However, this approach requires looking at model output and observational data in a more sophisticated way than the more traditional production of monthly or annual mean quantities. The data must instead be filtered in time and space for examples of the specific process being targeted.We are developing a data analysis environment called PROcess-Based Explorer (PROBE) that seeks to enable efficient and systematic computation of process-based diagnostics on very large sets of data. In this environment, investigators can define arbitrarily complex filters and then seamlessly perform computations in parallel on the filtered output from their model. The same analysis can be performed on additional related data sets (e.g., reanalyses) thereby enabling routine comparisons between model and observational data. PROBE also incorporates workflow technology to automatically update computed diagnostics for subsequent executions of a model. In this presentation, we will discuss the design and current status of PROBE as well as share results from some preliminary use cases.

  4. Implementation of Automatic Process of Edge Rotation Diagnostic System on J-TEXT Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Zepin; Cheng, Zhifeng; Luo, Jian; Wang, Zhijiang; Zhang, Xiaolong; Hou, Saiying; Cheng, Cheng

    2014-08-01

    A spectral diagnostic control system (SDCS) is developed to implement automatic process of the edge rotation diagnostic system on the J-TEXT tokamak. The SDCS contains a control module, data operation module, data analysis module, and data upload module. The core of this system is a newly developed software “Spectra Assist”, which completes the whole process by coupling all related subroutines and servers. The results of data correction and calculated rotation are presented. In the daily discharge of J-TEXT, SDCS is proved to have a stable performance and high efficiency in completing the process of data acquisition, operation and results output.

  5. Dual Processing and Diagnostic Errors

    ERIC Educational Resources Information Center

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  6. Monitoring combustion process with the vision diagnostic system

    NASA Astrophysics Data System (ADS)

    Sawicki, Daniel; Kotyra, Andrzej; Perdesh, Khairullina

    2015-09-01

    This paper presents comparison image classification method of co-firing biomass and pulverized coal. Defined two class of combustion: stable and unstable for three variants with different power value parameters and fixed amount biomass. Used support vector machine to classify flame image which correspond with the state of the combustion process.

  7. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  8. Data processing and analysis of the imaging Thomson scattering diagnostic system on HT-7 tokamak

    SciTech Connect

    Han Xiaofeng; Shao Chunqiang; Xi Xiaoqi; Zhao Junyu; Qing Zang; Yang Jianhua; Dai Xingxing; Shinichiro, Kado

    2013-05-15

    A high spatial resolution imaging Thomson scattering diagnostic system was developed in ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences). After about one month trial running on the superconducting HT-7 (Hefei Tokamak-7) tokamak, the system was proved to be capable of measuring plasma electron temperature. The system setup and data calibration are described in this paper and then the instrument function is studied in detail, as well as the measurement capability, an electron temperature of 50 eV to 2 keV and density beyond 1 Multiplication-Sign 10{sup 19} m{sup -3}. Finally, the data processing method and experimental results are presented.

  9. EMAT weld inspection and weld machine diagnostic system for continuous coil processing lines

    NASA Astrophysics Data System (ADS)

    Latham, Wayne M.; MacLauchlan, Daniel T.; Geier, Dan P.; Lang, Dennis D.

    1996-11-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed a weld process control system which monitors the key variables of the welding process and determines the quality of the welds generated by flash butt welding equipment. This system is known as the Temate 2000 Automated Flash Butt Weld Inspection and Weld Machine Diagnostic System. The Temate 2000 system utilizes electro- magnetic acoustic transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. Welding process variables such as voltage, current, platen movements and upset pressures are monitored and collected with the high speed data acquisition system. This data is processed and presented in real-time display to indicate useful welding process information such as platen crabbing, upset force, peak upset current, and many others. Alarming for each variable is provided and allows detailed maintenance reports and summary information to be generated. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the Temate 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  10. Intelligent diagnostics systems

    NASA Technical Reports Server (NTRS)

    Mcquiston, Barbara M.; Dehoff, Ronald L.

    1992-01-01

    Intelligent systems have been applied to today's problems and could also be applied to space operations integrity. One of these systems is the XMAN tool designed for 'troubleshooting' jet engines. XMAN is the eXpert MAiNtenance tool developed to be an expert information analysis tool which stores trending and diagnostic data on Air Force engines. XMAN operates with a 'network topology' which follows a flow chart containing engine management information reports required by the governments technical order procedures. With XMAN technology, the user is able to identify engine problems by presenting the assertions of the fault isolation logic and attempting to satisfy individual assertions by referring to the databases created by an engine monitoring system. The troubleshooting process requires interaction between the technician and the computer to acquire new evidence form auxiliary maintenance tests corroboration of analytical results to accurately diagnose equipment malfunctions. This same technology will be required for systems which are functioning in space either with an onboard crew, or with an unmanned system. The technology and lessons learned developing this technology while suggesting definite applications for its use with developing space systems are addressed.

  11. DDS: The Dental Diagnostic Simulation System.

    ERIC Educational Resources Information Center

    Tira, Daniel E.

    The Dental Diagnostic Simulation (DDS) System provides an alternative to simulation systems which represent diagnostic case studies of relatively limited scope. It may be used to generate simulated case studies in all of the dental specialty areas with case materials progressing through the gamut of the diagnostic process. The generation of a…

  12. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A. (Antioch, CA); Johnson, Michael A. (Pleasanton, CA); Wyeth, Richard W. (Livermore, CA)

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  13. Incorporating on-line process data into a diagnostic knowledge-based system 

    E-print Network

    Lin, Kai Hsuan

    1994-01-01

    The objective of this research was to develop and implement an on-line gypsum wallboard manufacturing expert system incorporating on-line process monitoring information and statistical process control. In support of this objective, several sub...

  14. Image Processing Diagnostics: Emphysema

    NASA Astrophysics Data System (ADS)

    McKenzie, Alex

    2009-10-01

    Currently the computerized tomography (CT) scan can detect emphysema sooner than traditional x-rays, but other tests are required to measure more accurately the amount of affected lung. CT scan images show clearly if a patient has emphysema, but is unable by visual scan alone, to quantify the degree of the disease, as it appears merely as subtle, barely distinct, dark spots on the lung. Our goal is to create a software plug-in to interface with existing open source medical imaging software, to automate the process of accurately diagnosing and determining emphysema severity levels in patients. This will be accomplished by performing a number of statistical calculations using data taken from CT scan images of several patients representing a wide range of severity of the disease. These analyses include an examination of the deviation from a normal distribution curve to determine skewness, a commonly used statistical parameter. Our preliminary results show that this method of assessment appears to be more accurate and robust than currently utilized methods which involve looking at percentages of radiodensities in air passages of the lung.

  15. New detection system and signal processing for the tokamak ISTTOK heavy ion beam diagnostic

    SciTech Connect

    Henriques, R. B.; Nedzelskiy, I. S.; Malaquias, A.; Fernandes, H.

    2012-10-15

    The tokamak ISTTOK heavy ion beam diagnostic (HIBD) operates with a multiple cell array detector (MCAD) that allows for the plasma density and the plasma density fluctuations measurements simultaneously at different sampling volumes across the plasma. To improve the capability of the plasma density fluctuations investigations, a new detection system and new signal conditioning amplifier have been designed and tested. The improvements in MCAD design are presented which allow for nearly complete suppression of the spurious plasma background signal by applying a biasing potential onto special electrodes incorporated into MCAD. The new low cost and small size transimpedance amplifiers are described with the parameters of 400 kHz, 10{sup 7} V/A, 0.4 nA of RMS noise, adequate for the plasma density fluctuations measurements.

  16. Butt weld inspection and weld machine diagnostic system for continuous coil processing lines

    SciTech Connect

    Lang, D.D.; Geier, D.; Shultz, B.L.

    1995-07-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed and installed a weld process control system which monitors the key variables of the welding process and determines the quality of welds generated by flash-butt welding equipment. The TEMATE 2000 System utilizes Electro-Magnetic Acoustic Transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the TEMATE 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  17. Signal processing in ultrasound. [for diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Le Croissette, D. H.; Gammell, P. M.

    1978-01-01

    Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.

  18. Gas turbine diagnostic system

    E-print Network

    Talgat, Shuvatov

    2011-01-01

    In the given article the methods of parametric diagnostics of gas turbine based on fuzzy logic is proposed. The diagnostic map of interconnection between some parts of turbine and changes of corresponding parameters has been developed. Also we have created model to define the efficiency of the compressor using fuzzy logic algorithms.

  19. Online NIR diagnostic of laser welding processes and its potential for quality assuring sensor systems

    NASA Astrophysics Data System (ADS)

    Dorsch, Friedhelm; Braun, Holger; Keβler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2014-02-01

    We have integrated an imaging thermographic sensor into commercial welding optics for observation of the weld zone. Key element of the sensor is an InGaAs-camera that detects the thermal radiation of the welding process in the wavelength range of 1,200 to 1,700 nm. This is well suited to record images of the keyhole, the melt pool and the thermal trace. The sensor was integrated to the welding heads for on-axis observation to minimize the interfering contour to ensure easy adaption to industrial processes. The welding heads used were established industrial-grade TRUMPF optics: a BEO fixed optics with 280 mm focal length, or a TRUMPF PFO-3D scanner optics with 450 mm focal length. We used a TRUMPF TruDisk 16002 16kW-thin disk laser that transmits its power through a 200 ?m core diameter light cable. The images were recorded and features of the various process zones were evaluated by image processing. It turns out that almost all weld faults can be clearly detected in the NIR images. Quantitative features like the dimension of the melt pool and the thermal trace can be derived from the captured images. They are correlated to process input parameters as well as to process results. In contrast to observation in the visible spectrum the NIR camera records the melt pool without auxiliary illumination. As an unrivaled attribute of the NIR sensor it supports an online heat flow thermography of the seam and allows identifying missing fusion ("false friends") of lap joints virtually during the welding process. Automated weld fault detection and documentation is possible by online image processing which sets the basis for comprehensive data documentation for quality assurance and traceability.

  20. The Henry Ford Production System: LEAN Process Redesign Improves Service in the Molecular Diagnostic Laboratory

    PubMed Central

    Cankovic, Milena; Varney, Ruan C.; Whiteley, Lisa; Brown, Ron; D'Angelo, Rita; Chitale, Dhananjay; Zarbo, Richard J.

    2009-01-01

    Accurate and timely molecular test results play an important role in patient management; consequently, there is a customer expectation of short testing turnaround times. Baseline data analysis revealed that the greatest challenge to timely result generation occurred in the preanalytic phase of specimen collection and transport. Here, we describe our efforts to improve molecular testing turnaround times by focusing primarily on redesign of preanalytic processes using the principles of LEAN production. Our goal was to complete greater than 90% of the molecular tests in less than 3 days. The project required cooperation from different laboratory disciplines as well as individuals outside of the laboratory. The redesigned processes involved defining and standardizing the protocols and approaching blood and tissue specimens as analytes for molecular testing. The LEAN process resulted in fewer steps, approaching the ideal of a one-piece flow for specimens through collection/retrieval, transport, and different aspects of the testing process. The outcome of introducing the LEAN process has been a 44% reduction in molecular test turnaround time for tissue specimens, from an average of 2.7 to 1.5 days. In addition, extending LEAN work principles to the clinician suppliers has resulted in a markedly increased number of properly collected and shipped blood specimens (from 50 to 87%). These continuous quality improvements were accomplished by empowered workers in a blame-free environment and are now being sustained with minimal management involvement. PMID:19661386

  1. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  2. ADHD Subtypes and Co-Occurring Anxiety, Depression, and Oppositional-Defiant Disorder: Differences in Gordon Diagnostic System and Wechsler Working Memory and Processing Speed Index Scores

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Chase, Gary A.; Mink, Danielle M.; Stagg, Ryan E.

    2009-01-01

    Objective: Wechsler Intelligence Scale for Children Freedom-from-Distractibility/Working Memory Index (FDI/WMI), Processing Speed Index (PSI), and Gordon Diagnostic System (GDS) scores in ADHD children were examined as a function of subtype and coexisting anxiety, depression, and oppositional-defiant disorder. Method: Participants were 587…

  3. On-line diagnostic system for power generators

    SciTech Connect

    Skormin, V.A.; Goodenough, G.S.; Huber, R.K.

    1996-12-31

    A novel approach to diagnostics of a power generator is developed. It utilizes readily available data acquired by the existing computer-based monitoring/control system. Diagnostic procedures detect various trends in the generator data and interpret these trends in the generator data and interpret these trends as changes in the generator performance caused by incipient failures. Results of trend analyses, subjected to statistical validation, facilitate failure prediction and identification thus providing the justification for service when needed. The procedures are incorporated in a diagnostic system implemented in a PC interfaced with the existing VAX-based process monitoring and control system. The diagnostic system provides graphical display of the diagnostic messages.

  4. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  5. Embedding CLIPS in a database-oriented diagnostic system

    NASA Technical Reports Server (NTRS)

    Conway, Tim

    1990-01-01

    This paper describes the integration of C Language Production Systems (CLIPS) into a powerful portable maintenance aid (PMA) system used for flightline diagnostics. The current diagnostic target of the system is the Garrett GTCP85-180L, a gas turbine engine used as an Auxiliary Power Unit (APU) on some C-130 military transport aircraft. This project is a database oriented approach to a generic diagnostic system. CLIPS is used for 'many-to-many' pattern matching within the diagnostics process. Patterns are stored in database format, and CLIPS code is generated by a 'compilation' process on the database. Multiple CLIPS rule sets and working memories (in sequence) are supported and communication between the rule sets is achieved via the export and import commands. Work is continuing on using CLIPS in other portions of the diagnostic system and in re-implementing the diagnostic system in the Ada language.

  6. SSME Post Test Diagnostic System: Systems Section

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy

    1995-01-01

    An assessment of engine and component health is routinely made after each test firing or flight firing of a Space Shuttle Main Engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project - the SSME Post Test Diagnostic System (PTDS) - is to develop a computer program which automates the analysis of test data from the SSME in order to detect and diagnose anomalies. This report primarily covers work on the Systems Section of the PTDS, which automates the analyses performed by the systems/performance group at the Propulsion Branch of NASA Marshall Space Flight Center (MSFC). This group is responsible for assessing the overall health and performance of the engine, and detecting and diagnosing anomalies which involve multiple components (other groups are responsible for analyzing the behavior of specific components). The PTDS utilizes several advanced software technologies to perform its analyses. Raw test data is analyzed using signal processing routines which detect features in the data, such as spikes, shifts, peaks, and drifts. Component analyses are performed by expert systems, which use 'rules-of-thumb' obtained from interviews with the MSFC data analysts to detect and diagnose anomalies. The systems analysis is performed using case-based reasoning. Results of all analyses are stored in a relational database and displayed via an X-window-based graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.

  7. Ion beam probe diagnostic system

    NASA Astrophysics Data System (ADS)

    Hickok, R. L.; Jennings, W. C.; Woo, J. T.; Connor, K. A.

    1980-07-01

    Tokomak plasmas suitable for diagnostic development were produced in RENTOR following technological improvements in the vacuum chamber and discharge cleaning systems. Secondary ion signals were obtained from the heavy ion beam probe on RENTOR leading to initial estimates of the plasma space potential, which appears to vary by several hundred volts during the plasma pulse. The principle of measuring space potential in a minimum-B geometry was established using an ion gun mounted at the center of the ALEX baseball coil. The neutral beam probe was installed for measuring the space potential using actual secondary ion signals from a hollow cathode arc in ALEX and preliminary tests have begun. The ion beam test stand was significantly altered to allow more flexibility in testing energy analyzers, ion guns, and ion focusing concepts.

  8. Digital signal processing for ionospheric propagation diagnostics

    NASA Astrophysics Data System (ADS)

    Rino, Charles L.; Groves, Keith M.; Carrano, Charles S.; Gunter, Jacob H.; Parris, Richard T.

    2015-08-01

    For decades, analog beacon satellite receivers have generated multifrequency narrowband complex data streams that could be processed directly to extract total electron content (TEC) and scintillation diagnostics. With the advent of software-defined radio, modern digital receivers generate baseband complex data streams that require intermediate processing to extract the narrowband modulation imparted to the signal by ionospheric structure. This paper develops and demonstrates a processing algorithm for digital beacon satellite data that will extract TEC and scintillation components. For algorithm evaluation, a simulator was developed to generate noise-limited multifrequency complex digital signal realizations with representative orbital dynamics and propagation disturbances. A frequency-tracking procedure is used to capture the slowly changing frequency component. Dynamic demodulation against the low-frequency estimate captures the scintillation. The low-frequency reference can be used directly for dual-frequency TEC estimation.

  9. Improving Model Performance through Process-Based Diagnostics

    NASA Astrophysics Data System (ADS)

    Clune, T.; Kuo, K.; Schmidt, G. A.; Bauer, M. P.; Oloso, A. O.

    2013-12-01

    Many of the aspects of the climate system that are of the greatest interest (e.g., the sensitivity of the system to external forcings) are emergent properties that arise via the complex interplay between disparate processes. This is also true for climate models -- most diagnostics are not a function of an isolated portion of source code, but rather are affected by multiple components and procedures. Thus any model-observation mismatch is hard to attribute to any specific piece of code or imperfection in a specific model assumption. An alternative approach is to identify diagnostics that are more closely tied to specific processes -- implying that if a mismatch is found, it should be much easier to identify and address specific algorithmic choices that will improve the simulation. However, this approach requires looking at model output and observational data in a more sophisticated way than the more traditional production of monthly or annual mean quantities. The data must instead be filtered in time and space for examples of the specific process being targeted. We are developing a data analysis environment called PROcess-Based Explorer (PROBE) that seeks to enable efficient and systematic computation of process-based diagnostics on very large sets of data. In this environment, investigators can define arbitrarily complex filters and then seamlessly perform computations in parallel on the filtered output from their model. The same analysis can be performed on additional related data sets (e.g., reanalyses) thereby enabling routine comparisons between model and observational data. PROBE also incorporates workflow technology to automatically update computed diagnostics for subsequent executions of a model. In this presentation, we will discuss the design and current status of PROBE as well as share results from some preliminary use cases.

  10. Expert Systems and Diagnostic Monitors in Psychiatry

    PubMed Central

    Gelernter, David; Gelernter, Joel

    1984-01-01

    We argue that existing expert systems for medical diagnosis have not satisfactorily addressed an important problem: how are such systems to be integrated into the clinical environment? This problem should be addressed before and not after a working system is developed, because its solution might well determine important aspects of the ultimate system structure. We propose as one solution the online diagnostic monitor, which is a diagnostic expert system designed for interactive use by a clinican during the course of a patient interview. The exchange between a diagnostic monitor and its clinican user is guided by the user, not the system, and the monitor functions as a passive advisor rather than an active decision-maker. We discuss why a system of this sort might be particularly well-suited to psychiatric diagnosis, and describe preliminary work on an experimental prototype.

  11. TFTR diagnostic control and data acquisition system

    NASA Astrophysics Data System (ADS)

    Sauthoff, N. R.; Daniels, R. E.

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  12. TFTR diagnostic control and data acquisition system

    SciTech Connect

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  13. High-energy laser plasma diagnostic system

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjun M.; Aye, Tin M.; Fruehauf, Norbert; Savant, Gajendra D.; Erwin, Daniel A.; Smoot, Brayton E.; Loose, Richard W.

    2000-07-01

    This paper describes the development of a non-contact diagnosis system for analyzing the plasma density profile, temperature profile, and ionic species of a high energy laser-generated plasma. The system was developed by Physical Optics Corporation in cooperation with the U.S. Army Space and Missile Defense Command, High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico. The non- contact diagnostic system consists of three subsystems: an optical fiber-based interferometer, a plasma spectrometer, and a genetic algorithm-based fringe-image processor. In the interferometer subsystem, the transmitter and the receiver are each packaged as a compact module. A narrow notch filter rejects strong plasma light, passing only the laser probing beam, which carries the plasma density information. The plasma spectrum signal is collected by an optical fiber head, which is connected to a compact spectrometer. Real- time genetic algorithm-based data processing/display permits instantaneous analysis of the plasma characteristics. The research effort included design and fabrication of a vacuum chamber, and high-energy laser plasma generation. Compactness, real-time operation, and ease of use make the laser plasma diagnosis system well suited for dual use applications such as diagnosis of electric arc and other industrial plasmas.

  14. Facial-paralysis diagnostic system based on 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  15. Memory indexing of sequential symptom processing in diagnostic reasoning.

    PubMed

    Jahn, Georg; Braatz, Janina

    2014-02-01

    In diagnostic reasoning, knowledge about symptoms and their likely causes is retrieved to generate and update diagnostic hypotheses in memory. By letting participants learn about causes and symptoms in a spatial array, we could apply eye tracking during diagnostic reasoning to trace the activation level of hypotheses across a sequence of symptoms and to evaluate process models of diagnostic reasoning directly. Gaze allocation on former locations of symptom classes and possible causes reflected the diagnostic value of initial symptoms, the set of contending hypotheses, consistency checking, biased symptom processing in favor of the leading hypothesis, symptom rehearsal, and hypothesis change. Gaze behavior mapped the reasoning process and was not dominated by auditorily presented symptoms. Thus, memory indexing proved applicable for studying reasoning tasks involving linguistic input. Looking at nothing revealed memory activation because of a close link between conceptual and motor representations and was stable even after one week. PMID:24316414

  16. DIAGNOSTIC OF MELANOMAS VIA IMAGE PROCESSING 0. Hochmuth, Beate Meffert

    E-print Network

    Freytag, Johann-Christoph

    DIAGNOSTIC OF MELANOMAS VIA IMAGE PROCESSING 0. Hochmuth, Beate Meffert Department of Electrical in dermatology as diagnostic method for malignant melanomas and other skin deseases [1,2,3]. The method helps of the melanoma is shown in Fig. 2. The approximation is possible by different procedures, e. g. by a harmonic

  17. A method for knowledge acquisition in diagnostic expert system.

    PubMed

    Li, Weishi; Li, Aiping; Li, Shudong

    2015-05-27

    Knowledge acquisition plays very important role in the diagnostic expert system. It usually takes a long period to acquire disease knowledge using the traditional methods. To solve this problem, this paper describes relations between rough set theory and rule-based description of diseases, which corresponds to the process of knowledge acquisition of diagnostic expert system. Then the exclusive rules, inclusive rules and disease images of disease are built based on the PDES diagnosis model, and the definition of probability rule is put forward. At last, the paper presents the rule-based automated induction reasoning method, including exhaustive search, post-processing procedure, estimation for statistic test and the bootstrap and resampling methods. We also introduce automated induction of the rule-based description, which is used in our diseases diagnostic expert system. The experimental results not only show that rough set theory gives a very suitable framework to represent processes of uncertain knowledge extraction, but also that this method induces diagnostic rules correctly. This method can act as the assistant tool for development of diagnosis expert system, and has an extensive application in intelligent information systems. PMID:26410329

  18. The EMMA Accelerator, a Diagnostic Systems Overview

    SciTech Connect

    Kalinin, A.; Berg, J.; Bliss, N. Cox, G.; Dufau, M.; Gallagher, A.; Hill, C.; Jones, J.; Ma, L.; McIntosh, P.; Muratori, B.; Oates, A.; Shepherd B.; Smith, R.; Hock, K.; Holder, D.; Ibison, M., Kirkman I.; Borrell, R.; Crisp, J.; Fellenz, B.; Wendt, M.

    2011-09-04

    The 'EMMA' Non-Scaling Fixed Field Alternating Gradient (ns-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyze the single bunch beams. An upgrade still to implement includes the installation of wall current monitors. This paper gives an overview of these systems and shows some data and results from the diagnostics that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.

  19. SA-SVM based automated diagnostic system for skin cancer

    NASA Astrophysics Data System (ADS)

    Masood, Ammara; Al-Jumaily, Adel

    2015-03-01

    Early diagnosis of skin cancer is one of the greatest challenges due to lack of experience of general practitioners (GPs). This paper presents a clinical decision support system aimed to save time and resources in the diagnostic process. Segmentation, feature extraction, pattern recognition, and lesion classification are the important steps in the proposed decision support system. The system analyses the images to extract the affected area using a novel proposed segmentation method H-FCM-LS. The underlying features which indicate the difference between melanoma and benign lesions are obtained through intensity, spatial/frequency and texture based methods. For classification purpose, self-advising SVM is adapted which showed improved classification rate as compared to standard SVM. The presented work also considers analyzed performance of linear and kernel based SVM on the specific skin lesion diagnostic problem and discussed corresponding findings. The best diagnostic rates obtained through the proposed method are around 90.5 %.

  20. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  1. FIDEX: An expert system for satellite diagnostics

    NASA Technical Reports Server (NTRS)

    Durkin, John; Tallo, Donald; Petrik, Edward J.

    1991-01-01

    A Fault Isolation and Diagnostic Expert system (FIDEX) was developed for communication satellite diagnostics. It was designed specifically for the 30/20 GHz satellite transponder. The expert system was designed with a generic structure and features that make it applicable to other types of space systems. FIDEX is a frame based system that enjoys many of the inherent frame base features, such as hierarchy that describes the transponder's components, with other hierarchies that provide structural and fault information about the transponder. This architecture provides a flexible diagnostic structure and enhances maintenance of the system. FIDEX also includes an inexact reasoning technique and a primitive learning ability. Inexact reasoning was an important feature for this system due to the sparse number of sensors available to provide information on the transponder's performance. FIDEX can determine the most likely faulted component under the constraint of limited information. FIDEX learns about the most likely faults in the transponder by keeping a record of past established faults. FIDEX also has the ability to detect anomalies in the sensors that provide information on the transponders performance.

  2. Optical Diagnostic System for the TLS

    SciTech Connect

    Kuan, C. K.; Tseng, T. C.; Wang, D. J.; Hsiung, G. Y.; Perng, S. Y.; Tsai, Z. D.; Ueng, T. S.; Hsueh, H. P.; Chen, J. R.

    2007-01-19

    The Taiwan light source (TLS) uses a photon beam intensity system (Io monitor) to index the electron beam stability. This index combines the information of the fluctuations of electron beam position and size. For understanding the impact of these fluctuations to the electron beam instability, a set of the optical diagnostic system was installed in the TLS BL10 diagnostics beamline. This system includes the photon beam position monitor (PBPM), the beam size monitor (BSM) and the Io monitor. From the result, we concluded that about one-third impact of beam instability came from the fluctuation of electron beam position and about two-thirds impact of beam instability came from the fluctuation of electron beam size. The hardware configuration is described in this paper.

  3. Advanced Light Source beam diagnostics systems

    SciTech Connect

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed.

  4. A sequential decision-theoretic model for medical diagnostic system.

    PubMed

    Li, Aiping; Jin, Songchang; Zhang, Lumin; Jia, Yan

    2015-01-01

    Although diagnostic expert systems using a knowledge base which models decision-making of traditional experts can provide important information to non-experts, they tend to duplicate the errors made by experts. Decision-Theoretic Model (DTM) is therefore very useful in expert system since they prevent experts from incorrect reasoning under uncertainty. For the diagnostic expert system, corresponding DTM and arithmetic are studied and a sequential diagnostic decision-theoretic model based on Bayesian Network is given. In the model, the alternative features are categorized into two classes (including diseases features and test features), then an arithmetic for prior of test is provided. The different features affect other features weights are also discussed. Bayesian Network is adopted to solve uncertainty presentation and propagation. The model can help knowledge engineers model the knowledge involved in sequential diagnosis and decide evidence alternative priority. A practical example of the models is also presented: at any time of the diagnostic process the expert is provided with a dynamically updated list of suggested tests in order to support him in the decision-making problem about which test to execute next. The results show it is better than the traditional diagnostic model which is based on experience. PMID:26410326

  5. Expert system applications in support of system diagnostics and prognostics at EBR-II

    SciTech Connect

    Lehto, W.K.; Gross, K.C.; Argonne National Lab., IL )

    1989-01-01

    Expert systems have been developed to aid in the monitoring and diagnostics of the Experimental Breeder Reactor-II (EBR-II) at the Idaho National Engineering Laboratory (INEL) in Idaho Falls, Idaho. Systems have been developed for failed fuel surveillance and diagnostics and reactor coolant pump monitoring and diagnostics. A third project is being done jointly by ANL-W and EG G Idaho to develop a transient analysis system to enhance overall plant diagnostic and prognostic capability. The failed fuel surveillance and diagnosis system monitors, processes, and interprets information from nine key plant sensors. It displays to the reactor operator diagnostic information needed to make proper decisions regarding technical specification conformance during reactor operation with failed fuel. 8 refs., 9 figs., 2 tabs.

  6. Nike Facility Diagnostics and Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  7. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  8. Experience report with the Alignment Diagnostic System

    SciTech Connect

    Gassner, Georg; /SLAC

    2011-03-03

    Since 2009 an Alignment Diagnostic System (ADS) has been operating at the undulator of the new Linac Coherent Light Source at SLAC National Accelerator Laboratory. The undulator spans a distance of 132 meters and is structured into 33 segments. Each segment is equipped with four hydrostatic leveling sensors and four wire position monitors. This report describes the set up and reflects the experience gained with the ADS.

  9. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  10. Signal processing methods for MFE plasma diagnostics

    SciTech Connect

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  11. Laser metrology — a diagnostic tool in automotive development processes

    NASA Astrophysics Data System (ADS)

    Beeck, Manfred-Andreas; Hentschel, Werner

    2000-08-01

    Laser measurement techniques are widely used in automotive development processes. Applications at Volkswagen are presented where laser metrology works as a diagnostic tool for analysing and optimising complex coupled processes inside and between automotive components and structures such as the reduction of a vehicle's interior or outer acoustic noise, including brake noise, and the combustion analysis for diesel and gasoline engines to further reduce fuel consumption and pollution. Pulsed electronic speckle pattern interferometry (ESPI) and holographic interferometry are used for analysing the knocking behaviour of modern engines and for correct positioning of knocking sensors. Holographic interferometry shows up the vibrational behaviour of brake components and their interaction during braking, and allows optimisation for noise-free brake systems. Scanning laser vibrometry analyses structure-born noise of a whole car body for the optimisation of its interior acoustical behaviour.Modern engine combustion concepts such as in direct-injection (DI) gasoline and diesel engines benefit from laser diagnostic tools which permit deeper insight into the in-cylinder processes such as flow generation, fuel injection and spray formation, atomisation and mixing, ignition and combustion, and formation and reduction of pollutants. The necessary optical access inside a cylinder is realised by so-called 'transparent engines' allowing measurements nearly during the whole engine cycle. Measurement techniques and results on double-pulse particle image velocimetry (PIV) with a frequency-doubled YAG laser for in-cylinder flow analysis are presented, as well as Mie-scattering on droplets using a copper vapour laser combined with high-speed filming, and laser-induced fluorescence (LIF) with an excimer laser for spray and fuel vapour analysis.

  12. Diagnostic systems in DEMO: Engineering design issues

    SciTech Connect

    Todd, T. N.

    2014-08-21

    The diagnostic systems of DEMO that are mounted on or near the torus, whether intended for the monitoring and control functions of the engineering aspects or the physics behaviour of the machine, will have to be designed to suit the hostile nuclear environment. This will be necessary not just for their survival and correct functioning but also to satisfy the pertinent regulatory bodies, especially where any of them relate to machine protection or the prevention or mitigation of accidents foreseen in the safety case. This paper aims to indicate the more important of the reactor design considerations that are likely to apply to diagnostics for DEMO, drawn from experience on JET, the provisions in hand for ITER and modelling results for the wall erosion and neutron damage effects in DEMO.

  13. The Diagnostic Process from a Freirean Perspective.

    ERIC Educational Resources Information Center

    Demmitt, Alan; Oldenski, Thomas

    1999-01-01

    Presents a way of approaching the reality of oppression in the counseling profession to ameliorate the pain and suffering that characterizes many lives. Asserts that mental health professionals can benefit from awareness of Freire's process of naming, reflecting, and acting. Describes unintended consequences of diagnosing that may be intended…

  14. Evaluation of Emerging Diagnostic Tools for Commercial HVAC Systems 

    E-print Network

    Friedman, H.; Piette, M. A.

    2001-01-01

    This paper compares and evaluates the capabilities of six emerging diagnostic tools for commercial HVAC systems. We present a brief description of the diagnostic tools, and then focus on evaluating the features of the tools. We include the following...

  15. Operation Diagnostics - Use of Operation Patterns to Verify and Optimize Building and System Operation 

    E-print Network

    Baumann, O.

    2004-01-01

    Building energy management systems (BEMS) process a large amount of data to operate the building. Instead of using this data only to signal failures and breakdowns of systems, it can be further employed for enhanced operation diagnostics. Adequate...

  16. Image processing methods and architectures in diagnostic pathology.

    PubMed

    Bueno, Gloria; Déniz, Oscar; Salido, Jesús; Rojo, Marcial García

    2009-01-01

    Grid technology has enabled the clustering and the efficient and secure access to and interaction among a wide variety of geographically distributed resources such as: supercomputers, storage systems, data sources, instruments and special devices and services. Their main applications include large-scale computational and data intensive problems in science and engineering. General grid structures and methodologies for both software and hardware in image analysis for virtual tissue-based diagnosis has been considered in this paper. This methods are focus on the user level middleware. The article describes the distributed programming system developed by the authors for virtual slide analysis in diagnostic pathology. The system supports different image analysis operations commonly done in anatomical pathology and it takes into account secured aspects and specialized infrastructures with high level services designed to meet application requirements. Grids are likely to have a deep impact on health related applications, and therefore they seem to be suitable for tissue-based diagnosis too. The implemented system is a joint application that mixes both Web and Grid Service Architecture around a distributed architecture for image processing. It has shown to be a successful solution to analyze a big and heterogeneous group of histological images under architecture of massively parallel processors using message passing and non-shared memory. PMID:20430740

  17. Integrated Systems For Digital Diagnostic Imaging

    NASA Astrophysics Data System (ADS)

    Flynn, Michael J.

    1982-12-01

    Digital image data is now generated in Ultrasound, Nuclear Medicine, Computed Tomography, and Digital Fluoroscopy Imaging Instruments and is anticipated for nuclear magnetic resonance imaging and direct digital radiographic recording. The interconnection of imaging instruments for the common purpose of image display and analysis forms a diagnostic image analysis network. For current studies, a typical hospital network would have to handle 4 x 1011 bits of data per year. Systems used only for investigative purposes would have to handle 2 x 10 10 bits of data per year. The demand to display image data is estimated at 38.5 or 9 display requests per hour respectively for these two systems. These demands can be met by sharing the use of central display controllers through a video distribution system. The needs of these systems can be met by 12 or 4 display controllers respectively. In the future, diagnostic imaging networks are expected to be common place with inexpensive archiving on laser optical disks providing rapid access to a full year of examinations.

  18. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA is planned to be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. The requirements of the educational tool are defined with the interaction with the school organizers, and CMDA is customized to meet the requirements accordingly. The tool needs to be production quality for 30+ simultaneous users. The summer school will thus serve as a valuable testbed for the tool development, preparing CMDA to serve the Earth-science modeling and model-analysis community at the end of the project. This work was funded by the NASA Earth Science Program called Computational Modeling Algorithms and Cyberinfrastructure (CMAC).

  19. Efficient Probabilistic Diagnostics for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  20. DEVELOPMENT OF SIGNAL PROCESSING TOOLS AND HARDWARE FOR PIEZOELECTRIC SENSOR DIAGNOSTIC PROCESSES

    SciTech Connect

    OVERLY, TIMOTHY G.; PARK, GYUHAE; FARRAR, CHARLES R.

    2007-02-09

    This paper presents a piezoelectric sensor diagnostic and validation procedure that performs in -situ monitoring of the operational status of piezoelectric (PZT) sensor/actuator arrays used in structural health monitoring (SHM) applications. The validation of the proper function of a sensor/actuator array during operation, is a critical component to a complete and robust SHM system, especially with the large number of active sensors typically involved. The method of this technique used to obtain the health of the PZT transducers is to track their capacitive value, this value manifests in the imaginary part of measured electrical admittance. Degradation of the mechanical/electric properties of a PZT sensor/actuator as well as bonding defects between a PZT patch and a host structure can be identified with the proposed procedure. However, it was found that temperature variations and changes in sensor boundary conditions manifest themselves in similar ways in the measured electrical admittances. Therefore, they examined the effects of temperature variation and sensor boundary conditions on the sensor diagnostic process. The objective of this study is to quantify and classify several key characteristics of temperature change and to develop efficient signal processing techniques to account for those variations in the sensor diagnostis process. In addition, they developed hardware capable of making the necessary measurements to perform the sensor diagnostics and to make impedance-based SHM measurements. The paper concludes with experimental results to demonstrate the effectiveness of the proposed technique.

  1. Diagnostic value of image processing in myocardial scintigraphy

    SciTech Connect

    Cinotti, L.; Meignan, M.; Usdin, J.P.; Vasile, N.; Castaigne, A.

    1983-09-01

    The diagnostic value of stress myocardial analog scintigrams, and of five image-processing methods, was assessed by a decisional analysis in 96 patients undergoing coronary arteriography. The methods involved digitalization, nine-point binomial smoothing, background subtraction by linear interpolation, stationary filtering, and a combination of them. The difference between after-test probabilities of having the disease with a positive or a negative examination provided a discriminant index for different prevalences of the disease. Though the processing methods failed to improve the detection of a circumflex stenosis, the stationary filter significantly increased the diagnostic value for the detection of stenosis in a left anterior descending artery for a large range of prevalence, and in a right coronary artery at high prevalence. Thus, the filter seemed to provide a useful tool for enhancing the diagnostic value of myocardial scintigraphy.

  2. Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses

    NASA Astrophysics Data System (ADS)

    Lawrence, Z. D.; Manney, G. L.; Minschwaner, K.; Santee, M. L.; Lambert, A.

    2015-04-01

    We present a comprehensive comparison of polar processing diagnostics derived from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research and Applications (MERRA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). We use diagnostics that focus on meteorological conditions related to stratospheric chemical ozone loss based on temperatures, polar vortex dynamics, and air parcel trajectories to evaluate the effects these reanalyses might have on polar processing studies. Our results show that the agreement between MERRA and ERA-Interim changes significantly over the 34 years from 1979 to 2013 in both hemispheres and in many cases improves. By comparing our diagnostics during five time periods when an increasing number of higher-quality observations were brought into these reanalyses, we show how changes in the data assimilation systems (DAS) of MERRA and ERA-Interim affected their meteorological data. Many of our stratospheric temperature diagnostics show a convergence toward significantly better agreement, in both hemispheres, after 2001 when Aqua and GOES (Geostationary Operational Environmental Satellite) radiances were introduced into the DAS. Other diagnostics, such as the winter mean volume of air with temperatures below polar stratospheric cloud formation thresholds (VPSC) and some diagnostics of polar vortex size and strength, do not show improved agreement between the two reanalyses in recent years when data inputs into the DAS were more comprehensive. The polar processing diagnostics calculated from MERRA and ERA-Interim agree much better than those calculated from earlier reanalysis data sets. We still, however, see fairly large differences in many of the diagnostics in years prior to 2002, raising the possibility that the choice of one reanalysis over another could significantly influence the results of polar processing studies. After 2002, we see overall good agreement among the diagnostics, which demonstrates that the ERA-Interim and MERRA reanalyses are equally appropriate choices for polar processing studies of recent Arctic and Antarctic winters.

  3. Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses

    NASA Astrophysics Data System (ADS)

    Lawrence, Z. D.; Manney, G. L.; Minschwaner, K.; Santee, M. L.; Lambert, A.

    2014-12-01

    We present a comprehensive comparison of polar processing diagnostics derived from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research and Applications (MERRA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). We use diagnostics that focus on meteorological conditions related to stratospheric chemical ozone loss based on temperatures, polar vortex dynamics, and air parcel trajectories to evaluate the effects these reanalyses might have on polar processing studies. Our results show that the agreement between MERRA and ERA-Interim changes significantly over the 34 years from 1979 through 2013 in both hemispheres, and in many cases improves. By comparing our diagnostics during five time periods when an increasing number of higher quality observations were brought into these reanalyses, we show how changes in the data assimilation systems (DAS) of MERRA and ERA-Interim affected their meteorological data. Many of our stratospheric temperature diagnostics show a convergence toward significantly better agreement, in both hemispheres, after 2001 when Aqua and GOES (Geostationary Operational Environmental Satellite) radiances were introduced into the DAS. Other diagnostics, such as the winter mean volume of air with temperatures below polar stratospheric cloud formation thresholds (VPSC) and some diagnostics of polar vortex size and strength, do not show improved agreement between the two reanalyses in recent years when data inputs into the DAS were more comprehensive. The polar processing diagnostics calculated from MERRA and ERA-Interim agree much better than those calculated from earlier reanalysis datasets. We still, however, see fairly large relative biases in many of the diagnostics in years prior to 2002, raising the possibility that the choice of one reanalysis over another could significantly influence the results of polar processing studies. After 2002, we see overall good agreement among the diagnostics, which demonstrates that the ERA-Interim and MERRA reanalyses are equally appropriate choices for polar processing studies of recent Arctic and Antarctic winters.

  4. Diagnostics and modeling of plasma processes in ion sources

    E-print Network

    Vertes, Akos

    ). For ion implantation, ion milling, and etching purposes, hollow cathode (4), plasma cathode (5-16), surface plasma (17), hollow cathode (18), microwave (19), alkaline anode (20-22), radial field dischargeDiagnostics and modeling of plasma processes in ion sources Akos Vertes*, Renaat Gijbels, and Fred

  5. Diagnostic system for exhaust gas recirculation device

    SciTech Connect

    Tsurusaki, S.

    1988-12-27

    A diagnostic system of an exhaust gas recirculation device is described having an exhaust gas recirculation control valve which is arranged in an exhaust gas recirculation passage interconnecting an exhaust passage to an intake passage of an internal combustion engine, the diagnostic system comprising: determining whether the engine is operating in a state at which the recirculation of exhaust gas is to be carried out; detecting a temperature in the exhaust gas recirculation passage downstream of the exhaust gas recirculation control valve; having a count value which is variable between a predetermined first value and a predetermined second value, the count value being changed from the first value toward the second value when the engine is operating in a state where the recirculation of exhaust is to be carried out; means for storing a first temperature detected by the detecting means when the count value is equal to the first value; and second determining means for obtaining a difference between the first temperature and second temperature detected by the detecting means when the count value becomes equal to the second value, to thereby determine that a malfunction has occurred in the exhaust gas recirculation device when the difference is lower than a predetermined value.

  6. Development of Optical Diagnostic Techniques for Microgravity Materials Processing

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung Stephen

    1999-01-01

    Materials processing including crystal growth, either under a gravity environment on ground or a microgravity environment in space, involves complicated phenomena of fluid motions in gas or liquid phases as well as interaction of various species. To obtain important physical insight, it is very necessary to provide gross-field optical diagnostics for monitoring various physical properties. Materials processing inhibits easy access by ordinary instruments and thus characterizing gross-field physical properties is very challenging. Typical properties of importance can be fluid velocity, temperature, and species concentration for fluids, and surface topology and defects for solids. Observing surface grow rate during crystal growth is also important. Material microstructures, i.e., integrity of crystal structures, is strongly influenced by the existence of thermally-induced flow as well as local nucleation of particles during solidification, which may act in many detrimental ways. In both ground-based and microgravity experiments, the nature of product property changes resulting from three-dimensional fluid or particle motions need be characterized. Gross-field diagnostics is thus required to identify their effects on product defects and process deficiencies. The quantitative visualization techniques can also be used for validation of numerical modeling. For optical nonintrusive gross-field diagnostic techniques, two approaches were developed as summer projects. One optical approach allows us to provide information of species concentration and temperature for monitoring in real time. The other approach, that is, the concept which is formulated for detection of surface topography measurement can provide unprecedented spatial resolution during crystal growth.

  7. Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Jensen, David; Poll, Scott

    2009-01-01

    Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.

  8. Portable Knowledge-Based Diagnostic And Maintenance Systems

    NASA Astrophysics Data System (ADS)

    Darvish, John; Olson, Noreen S.

    1989-03-01

    It is difficult to diagnose faults and maintain weapon systems because (1) they are highly complex pieces of equipment composed of multiple mechanical, electrical, and hydraulic assemblies, and (2) talented maintenance personnel are continuously being lost through the attrition process. To solve this problem, we developed a portable diagnostic and maintenance aid that uses a knowledge-based expert system. This aid incorporates diagnostics, operational procedures, repair and replacement procedures, and regularly scheduled maintenance into one compact, 18-pound graphics workstation. Drawings and schematics can be pulled up from the CD-ROM to assist the operator in answering the expert system's questions. Work for this aid began with the development of the initial knowledge-based expert system in a fast prototyping environment using a LISP machine. The second phase saw the development of a personal computer-based system that used videodisc technology to pictorially assist the operator. The current version of the aid eliminates the high expenses associated with videodisc preparation by scanning in the art work already in the manuals. A number of generic software tools have been developed that streamlined the construction of each iteration of the aid; these tools will be applied to the development of future systems.

  9. MFTF-B plasma-diagnostics-system instrumentation and data-acquisition system

    SciTech Connect

    Goerz, D.A.; Lau, N.H.C.; Mead, J.E.; Throop, A.L.

    1981-10-21

    The change of scope for MFTF from a simple mirror to a tandem mirror configuration utilizing thermal barriers has expanded the range of plasma parameters and increased the requirements of the plasma diagnostics system. The instrument set that is needed for start-up operation has been identified and conceptual design work is proceeding. This paper describes the diagnostic instrumentation as presently envisioned for start-up operation, with a summary of the detectors and data channels. Also presented is an overview of the current conceptual design for the Local Control and Data Acquisition System and the Data Processing and Display system. As more detailed design is done, the exact number and nature of instruments may change, but overall, the system described here is one expected to satisfy the requirements for start-up and be expandable to the basic set of diagnostics.

  10. Modeling continuous diagnostic test data using approximate Dirichlet process distributions.

    PubMed

    Ladouceur, Martin; Rahme, Elham; Bélisle, Patrick; Scott, Allison N; Schwartzman, Kevin; Joseph, Lawrence

    2011-09-20

    There is now a large literature on the analysis of diagnostic test data. In the absence of a gold standard test, latent class analysis is most often used to estimate the prevalence of the condition of interest and the properties of the diagnostic tests. When test results are measured on a continuous scale, both parametric and nonparametric models have been proposed. Parametric methods such as the commonly used bi-normal model may not fit the data well; nonparametric methods developed to date have been relatively complex to apply in practice, and their properties have not been carefully evaluated in the diagnostic testing context. In this paper, we propose a simple yet flexible Bayesian nonparametric model which approximates a Dirichlet process for continuous data. We compare results from the nonparametric model with those from the bi-normal model via simulations, investigating both how much is lost in using a nonparametric model when the bi-normal model is correct and how much can be gained in using a nonparametric model when normality does not hold. We also carefully investigate the trade-offs that occur between flexibility and identifiability of the model as different Dirichlet process prior distributions are used. Motivated by an application to tuberculosis clustering, we extend our nonparametric model to accommodate two additional dichotomous tests and proceed to analyze these data using both the continuous test alone as well as all three tests together. PMID:21786286

  11. Data collection framework for vehicular On-Board-Diagnostic systems

    E-print Network

    Liu, Chenxia

    2011-01-01

    Most modern vehicles contain an On-Board-Diagnostic (OBD) system that can collect a wide range of system data from the vehicle. In aggregation, such data could be applied towards solving the problems of accident prevention, ...

  12. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, D.C.

    1996-12-17

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.

  13. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, Donald C. (Cupertino, CA)

    1996-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.

  14. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    SciTech Connect

    Isa, Nor Ashidi Mat

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well as mathematical model of clustering technique have been widely used in developing the medical diagnostic systems. The selected features will be classified using mathematical models that embedded engineering theory such as artificial intelligence, support vector machine, neural network and fuzzy-neuro system. These classifiers will provide the diagnostic results without human intervention. Among many publishable researches, several prototypes have been developed namely NeuralPap, Neural Mammo, and Cervix Kit. The former system (NeuralPap) is an automatic intelligent diagnostic system for classifying and distinguishing between the normal and cervical cancerous cells. Meanwhile, the Cervix Kit is a portable Field-programmable gate array (FPGA)-based cervical diagnostic kit that could automatically diagnose the cancerous cell based on the images obtained during sampling test. Besides the cervical diagnostic system, the Neural Mammo system is developed to specifically aid the diagnosis of breast cancer using a fine needle aspiration image.

  15. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    NASA Astrophysics Data System (ADS)

    Isa, Nor Ashidi Mat

    2015-05-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well as mathematical model of clustering technique have been widely used in developing the medical diagnostic systems. The selected features will be classified using mathematical models that embedded engineering theory such as artificial intelligence, support vector machine, neural network and fuzzy-neuro system. These classifiers will provide the diagnostic results without human intervention. Among many publishable researches, several prototypes have been developed namely NeuralPap, Neural Mammo, and Cervix Kit. The former system (NeuralPap) is an automatic intelligent diagnostic system for classifying and distinguishing between the normal and cervical cancerous cells. Meanwhile, the Cervix Kit is a portable Field-programmable gate array (FPGA)-based cervical diagnostic kit that could automatically diagnose the cancerous cell based on the images obtained during sampling test. Besides the cervical diagnostic system, the Neural Mammo system is developed to specifically aid the diagnosis of breast cancer using a fine needle aspiration image.

  16. Target diagnostic system for the national ignition facility (invited)

    NASA Astrophysics Data System (ADS)

    Leeper, R. J.; Chandler, G. A.; Cooper, G. W.; Derzon, M. S.; Fehl, D. L.; Hebron, D. E.; Moats, A. R.; Noack, D. D.; Porter, J. L.; Ruggles, L. E.; Ruiz, C. L.; Torres, J. A.; Cable, M. D.; Bell, P. M.; Clower, C. A.; Hammel, B. A.; Kalantar, D. H.; Karpenko, V. P.; Kauffman, R. L.; Kilkenny, J. D.; Lee, F. D.; Lerche, R. A.; MacGowan, B. J.; Moran, M. J.; Nelson, M. B.; Olson, W.; Orzechowski, T. J.; Phillips, T. W.; Ress, D.; Tietbohl, G. L.; Trebes, J. E.; Bartlett, R. J.; Berggren, R.; Caldwell, S. E.; Chrien, R. E.; Failor, B. H.; Fernandez, J. C.; Hauer, A.; Idzorek, G.; Hockaday, R. G.; Murphy, T. J.; Oertel, J.; Watt, R.; Wilke, M.; Bradley, D. K.; Knauer, J.; Petrasso, R. D.; Li, C. K.

    1997-01-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests.

  17. Method and system for diagnostics of apparatus

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2012-01-01

    Proposed is a method, implemented in software, for estimating fault state of an apparatus outfitted with sensors. At each execution period the method processes sensor data from the apparatus to obtain a set of parity parameters, which are further used for estimating fault state. The estimation method formulates a convex optimization problem for each fault hypothesis and employs a convex solver to compute fault parameter estimates and fault likelihoods for each fault hypothesis. The highest likelihoods and corresponding parameter estimates are transmitted to a display device or an automated decision and control system. The obtained accurate estimate of fault state can be used to improve safety, performance, or maintenance processes for the apparatus.

  18. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.112 Emission diagnostics for SCR...

  19. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same through web-browser interfaces. The summer school will serve as a valuable testbed for the tool development, preparing CMDA to serve its target community: Earth-science modeling and model-analysis community.

  20. Target Diagnostic Control System Implementation for the National Ignition Facility

    SciTech Connect

    Shelton, R T; Kamperschroer, J H; Lagin, L J; Nelson, J R; O'Brien, D W

    2010-05-12

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A Diagnostic Control System (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.

  1. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Protection of Environment 33 2014-07-01 2014-07-01 false Emission diagnostics for SCR systems. 1033.112 Section...b) Your onboard computer must record in nonvolatile computer memory all incidents of engine operation with inadequate...

  2. [Laboratory diagnostics of systemic autoimmune diseases. Part 1. Collagenoses].

    PubMed

    Hartung, K; Seelig, H-P

    2006-12-01

    This is the first part of a series of articles on the laboratory diagnostics of rheumatic diseases and will consider the systemic autoimmune diseases lupus erythematosus, Sjögren's syndrome, systemic sclerosis, dermato/polymyositis and mixed connective tissue disease (MCTD, SHARP syndrome). The basis for diagnostics is the presence of antinuclear antibodies (ANA). Initially, these antibodies are detected using a screening test. This must be followed by the identification of the patient's individual autoantibody specificities, which then yields important diagnostic clues. Disease activity may be monitored serologically by following the titers of selected autoantibodies and, in certain patients, by examining complement consumption. PMID:17119898

  3. QUAWDS: A Composite Diagnostic System for Gait Analysis

    PubMed Central

    Weintraub, Michael A.; Bylander, Tom

    1989-01-01

    QUAWDS is a system for analyzing human gait. QUAWDS integrates associational and qualitative models of knowledge into a diagnostic system, taking advantage of the tasks each kind of model can determine efficiently and effectively. An abductive assembler is used to coordinate the different models. The result is a diagnostic solution that is “locally best,” i.e, no single change to the answer will produce a better solution. We believe QUAWDS' architecture is suitable for many complex domains.

  4. NIR-camera-based online diagnostics of laser beam welding processes

    NASA Astrophysics Data System (ADS)

    Dorsch, Friedhelm; Braun, Holger; Keßler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2012-03-01

    We have developed an on-axis camera-based online sensor system for laser beam welding diagnostics that detects the thermal radiation in the near-infrared (NIR) spectral range between 1200 and 1700 nm. In addition to a sensor in the visible (VIS) range, our camera detects the thermal radiation of the weld pool more clearly, and it is also sensible to the radiation of the solidified weld seam. The NIR images are analyzed by real-time image processing. Features are extracted from the images and evaluated to characterize the welding process. Keyhole and weld pool analysis complement VIS diagnostics, whereas the observation of the weld seam and heat affected zone with an NIR camera allows online heat flux thermography. By this means we are able to detect bad joints in overlap weldings ("false friends") online during the welding process.

  5. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  6. Physics Design Considerations for Diagnostic X Beam Transport System

    SciTech Connect

    Chen, Y-J; Paul, A C

    2000-08-01

    Diagnostic X (D-X) transport system would extract the beam from the downstream transport line of the second axis of the Dual Axis Radiographic Hydrodynamic Test facility (DARHT-II[1]) and transport this beam to the D-X firing point via four branches of the beamline in order to provide four lines of sight for x-ray radiography. The design goal is to generate four DARHT-II-like x-ray pulses on each line of sight. In this paper, we discuss several potential beam quality degradation processes in the passive magnet lattice beamline and indicate how they constrain the D-X beamline design parameters, such as the background pressure, the pipe size, and the pipe material.

  7. Physics Design Considerations of Diagnostic X Beam Transport System

    E-print Network

    Chen, Y J; Chen, Yu-Jiuan; Paul, Arthur C.

    2000-01-01

    Diagnostic X (D-X) transport system would extract the beam from the downstream transport line of the second- axis of the Dual Axis Radiographic Hydrodynamic Test facility (DARHT-II) and transport this beam to the D-X firing point via four branches of the beamline in order to provide four lines of sight for x-ray radiography. The design goal is to generate four DARHT-II-like x-ray pulses on each line of sight. In this paper, we discuss several potential beam quality degradation processes in the passive magnet lattice beamline and indicate how they constrain the D-X beamline design parameters, such as the background pressure, the pipe size, and the pipe material

  8. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  9. GIS diagnostics: thermal imaging systems used for poor contact detection

    NASA Astrophysics Data System (ADS)

    Avital, Doron; Brandenbursky, V.; Farber, A.

    2004-04-01

    The reliability of GIS is very high but any failure that occurs can cause extensive damage result and the repair times are considerably long. The consequential losses to system security and economically can be high, especially if the nominal GIS voltage is 420 kV and above. In view of these circumstances, increasing attention is being given to diagnostic techniques for in-service maintenance undertaken to improve the reliability and availability of GIS. Recently considerable progress has been made in diagnostic techniques and they are now used successfully during the service life of the equipment. These diagnostic techniques in general focus on the GIS insulation system and are based on partial discharge (PD) measurements in GIS. There are three main methods for in-service PD detection in GIS: - the chemical method that rely on the detection of cracked gas caused by PD, the acoustic method designed to detect the acoustic emission excited by PD, and, the electrical method which is based on detection of electrical resonance at ultra high frequencies (UHF) up to 1.5 GHz caused by PD excitation in GIS chambers (UHF method). These three dielectric diagnostic methods cannot be used for the detection of poor current carrying contacts in GIS. This problem does not always produce partial discharges and at early stages it does not cause gas cracking. An interesting solution to use two techniques - the current unbalance alarm scheme and partial discharge monitoring was advised by A. Salinas from South California Edison Co. Unfortunately this way is complicated and very expensive. The investigations performed in Japan on standing alone SF6 breaker showed that joule heating of the contact accompanied by released power of 1600 Watt produce temperature difference on the enclosure up to 7 degrees centigrade that could be detected by infra-red Thermal Imaging System. According to CIGRE Joint Working Group 33/23.12 Report, 11% of all GIS failures are due to poor current carrying contacts in GIS. The Israel Electric Company (IEC) in seeking a solution to this problem have undertaken experimental work to examine the possibility of in-service diagnostic of poor contact problem in GIS via direct local heating detection, using a Thermal Imaging System. The experiments were carried out on the part of the GIS with nominal SF6 pressure. The following aspects of the problem were examined: - the range of power released in the defective contact that could give the practical temperature rise on the surface of enclosure; - temperature distribution on the surface of enclosure; - the influence of spacer type (with holes or without) on the heat transfer process; - the influence of the length of SF6 tubes and there position (horizontal or vertical); - the temperature difference between upper and lower parts of the tubes in horizontal position; - practical use of the Thermal Imaging System for detecting poor contact problem in GIS.

  10. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall-Effect Thruster (PMHET), developed at the Plasma Physics Laboratory of UnB. The idea of using an array of permanent magnets, instead of an electromagnet, to produce a radial magnetic field inside the cylindrical plasma drift channel of the thruster is very attractive, especially because of the possibility of developing a HET with power consumption low enough to be used in small satellites or medium-size satellites with low on board power. Hall-Effect Thrusters are now a very good option for spacecraft primary propulsion and also for station-keeping of medium and large satellites. This is because of their high specific impulse, efficient use of propellant mass and combined low and precise thrust capabilities, which are related to an economy in terms of propellant mass utilization , longer satellite lifetime and easier spacecraft maneuvering in microgravity environment. The first HETs were developed in the mid 1950’s, and they were first called Closed Drift Thrusters. Today, the successful use of electric thrusters for attitude control and orbit modification on hundreds of satellites shows the advanced stage of development of this technology. In addition to this, after the success of space missions such as Deep Space One and Dawn (NASA), Hayabusa (JAXA) and Smart-1 (ESA), the employment of electric thrusters is also consolidated for the primary propulsion of spacecraft. This success is mainly due to three factors: reliability of this technology; efficiency of propellant utilization, and therefore reduction of the initial mass of the ship; possibility of operation over long time intervals, with practically unlimited cycling and restarts. This thrusting system is designed to be used in satellite attitude control and long term space missions. One of the greatest advantage of this kind of thruster is the production of a steady state magnetic field by permanent magnets providing electron trapping and Hall current generation within a significant decrease on the electric energy supply and thus turning this thruster into a specially good option when it comes to space usage

  11. Development of a New Diagnostic System for Human Liver Diseases Based on Conventional Ultrasonic Diagnostic Equipment

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun

    2001-05-01

    In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.

  12. Diagnostics, Modeling and Simulation: Three Keys Towards Mastering the Cutting Process with Fiber, Disk and Diode Lasers

    NASA Astrophysics Data System (ADS)

    Petring, Dirk; Molitor, Thomas; Schneider, Frank; Wolf, Norbert

    Even established laser processing technologies such as cutting are far away from being completely understood. Nevertheless, the progress in industrially available laser cutting systems and applications is quite respectable. Fiber and disk laser cutting changed from a debatable newcomer to a serious part of the business while the diode laser appears at the horizon as the next player to be reckoned. Understanding of the process and its performance are continually improved. This paper highlights results of research and development from the recent years. Some speculations, simulations, diagnostics and facts about the process, its properties and capabilities are assessed. Earlier and latest diagnostics and CALCut simulation results of laser beam cutting processes are presented.

  13. Multiple sensor expert system for diagnostic reasoning, monitoring and control of mechanical systems

    NASA Astrophysics Data System (ADS)

    Agogino, Alice M.; Srinivas, Sampath; Schneider, Kenneth M.

    1988-04-01

    This paper describes an expert systems architecture for integrating multiple sensors for diagnostic reasoning, monitoring and supervisory control of mechanical systms in automated manufacturing and process control. The IDES (Influence Diagram based Expert System) performs probabilistic inference and expected value decision making. It integrates dynamic sensor readings, statistical data and subjective expertise in symbolic and numerical data structures and is designed for real time performance. An application using acoustic, current and force sensors on a numerically-controlled milling machine is described. In this example, the fusion of information from multiple sensors achieves effective prediction and control performance with relatively simple signal processing.

  14. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  15. GammaKey system for improved diagnostics with gamma cameras.

    PubMed

    Jankovi?, Milica M; Pijetlovi?, Boris; Markovi?, Ana Koljevi?; Todorovi?-Tirnani?, Mila V; Beatovi?, Slobodanka Lj; Anti?, Vojislav; Odalovi?, Strahinja; Sekuli?, Stevan; Jorgovanovi?, Nikola; Popovi?, Dejan B

    2014-07-01

    We designed the GammaKey system for the acquisition, storage and analysis of images from semi-analogue gamma scintillation cameras (GSCs). The GammaKey system, operating on a standard PC, replicates the functionality of earlier dedicated computer systems, allows the exchange of data in the DICOM format and has an open architecture enabling the development of new diagnostic techniques. The main purpose of the GammaKey is to enable the continued use of old GSCs which have functional scintillation crystals, but also to permit data exchange with new digital GSCs. The GammaKey has been technically validated by standards established by the National Electrical Manufacturers Association. The GammaKey has been used for seven years in two leading centres for nuclear medicine in Serbia (the Clinical Center of Serbia, Belgrade, and the Clinical Center of Vojvodina, Novi Sad) in approximately 30,000 patients. Clinical application proves that the GammaKey is a robust and reliable system with high-quality image output. Data processing can be upgraded with non-standard features added on request as shown in two examples: (1) the testing of splenectomy efficacy in the case of thrombocytopenia with normal production; and (2) the detection and localisation of parathyroid adenomas. PMID:24845020

  16. Electrically heated particulate filter diagnostic systems and methods

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  17. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  18. Primary systemic amyloidosis as a real diagnostic challenge – case study

    PubMed Central

    Jerzykowska, Sonia; Gil, Lidia A.; Balcerzak, Andrzej; Pupek-Musialik, Danuta; Komarnicki, Mieczys?aw A.

    2014-01-01

    Primary amyloidosis (AL) is a rare variety of plasma cell dyscrasia, the diagnosis of which is often difficult to establish. Pathogenesis of amyloidosis involves extracellular deposition of insoluble protein fibrils in tissues, leading to insufficiency of affected organs. According to various sources, mean survival rate of patients with primary amyloidosis ranges from 12 to 24 months, making primary amyloidosis a disease with a very poor prognosis. Survival rate is significantly lowered in case of cardiac manifestation of amyloidosis (about 6 months survival in untreated patients). In recent years a considerable progress in AL treatment has been observed. Nowadays we are able not only to delay progression of amyloidosis, but also to improve the function of the affected organs. Unfortunately as first signs and symptoms of AL are usually nonspecific, the diagnosis of AL is often delayed, resulting in late introduction of optimal therapy. There are many diagnostic tests which can be used in diagnostic process of amyloidosis, i.e. electrophoresis, serum and urine immunofixation or affected organs and bone marrow biopsy. On establishing the diagnosis in a patient with suspected amyloidosis it should be remembered that particular diagnostic methods vary considerably in sensitivity. The aim of this paper is to present a case report of a 27-year-old patient with primary amyloidosis focusing on diagnostic aspect of this condition. On the basis of this case, the authors would like to emphasize the value of precise diagnostic process, with immunological techniques playing undoubtedly a crucial role. PMID:26155101

  19. The oral-systemic connection: role of salivary diagnostics

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2013-05-01

    Utilizing saliva instead of blood for diagnosis of both local and systemic health is a rapidly emerging field. Recognition of oral-systemic interrelationships for many diseases has fostered collaborations between medicine and dentistry, and many of these collaborations rely on salivary diagnostics. The oral cavity is easily accessed and contains most of the analytes present in blood. Saliva and mucosal transudate are generally utilized for oral diagnostics, but gingival crevicular fluid, buccal swabs, dental plaque and volatiles may also be useful depending on the analyte being studied. Examples of point-of-care devices capable of detecting HIV, TB, and Malaria targets are being developed and discussed in this overview.

  20. Chapter 8: The Diagnostic Systems in the FTU

    SciTech Connect

    Tudisco, O.; Apruzzese, G.M.; Buratti, P.; Cantarini, L.; Canton, A.; Carraro, L.; Cocilovo, V.; Angelis, R. de; Benedetti, M. de; Esposito, B.; Gabellieri, L.; Giovannozzi, E.; Granucci, G.; Grosso, L.A.; Grosso, G.; Innocente, P.; Kroegler, H.; Leigheb, M.; Monari, G.; Pacella, D.; Panaccione, L.; Pericoli-Ridolfini, V.; Pizzicaroli, G.; Podda, S.; Puiatti, M.E.; Rocchi, G.; Sibio, A.; Simonetto, A.; Smeulders, P.; Tartari, U.; Tartoni, N.; Tilia, B.; Valisa, M.; Zanza, V.; Zerbini, M.

    2004-05-15

    The design of diagnostics for the Frascati Tokamak Upgrade (FTU) is challenging because of the compactness of the machine (8-cm-wide ports) and the low operating temperatures requiring the presence of a cryostat. Nevertheless, a rather complete diagnostic system has been progressively installed. The basic systems include a set of magnetic probes, various visible and ultraviolet spectrometers, electron cyclotron emission (ECE) for electron temperature profiles measurements and electron tails monitoring, far-infrared and CO{sub 2} interferometry, X-ray (soft and hard) measurements, a multichord neutron diagnostics (with different type detectors), and a Thomson scattering system. Some diagnostics specific to the FTU physics program have been used such as microwave reflectometry for turbulence studies, edge-scanning Langmuir probes for radio-frequency coupling assessment, oblique ECE, and a fast electron bremsstrahlung (FEB) camera for lower hybrid current drive-induced fast electron tails.These systems are briefly reviewed in this paper. Further developments including a scanning CO{sub 2} laser two-color interferometer, two FEB cameras for tomographic analysis, a motional Stark effect system, and a collective Thomson scattering system are also described.

  1. Multifunctional laser noninvasive spectroscopic system for medical diagnostics and some metrological provisions for that

    NASA Astrophysics Data System (ADS)

    Rogatkin, D. A.; Lapaeva, L. G.; Petritskaya, E. N.; Sidorov V., Vi.; Shumskiy, V. I.

    2009-07-01

    This paper describes a new multifunctional laser noninvasive diagnostic system (MLNDS) for medicine. In a single hardware MLNDS combines 3 different in vivo laser diagnostic techniques: Laser Doppler Flowmetry, Laser Fluorescent Diagnostics and Reflectance Tissue Oximetry. All these methods together allow a doctor to evaluate more exactly and in vivo a functional condition of soft tissues, especially to study the finenesses of respiratory and blood microcirculation processes in a skin and mucosa. The complex complementary diagnostics turns out to be more powerful than a trivial sum of isolated one. To produce more precise measurements a number of problems of metrological providing for that have been studied as well as a set of simple, reproducible and photostable calibration gauges with tissue-like optical properties has been created.

  2. A large distributed digital camera system for accelerator beam diagnostics

    SciTech Connect

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-15

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  3. A large distributed digital camera system for accelerator beam diagnostics

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  4. DECISION-SUPPORT SYSTEM FOR DIAGNOSTICS RESEARCH

    EPA Science Inventory

    In Phase 1 of this research, we will identify existing tools, methods, and models available to support establishment of cause-effect relationships. In Phase 2, we will investigate existing decision support systems and produce an appropriate decision support system design. Based ...

  5. Correlating Log Messages for System Diagnostics

    SciTech Connect

    Gunasekaran, Raghul; Dillow, David A; Shipman, Galen M; Maxwell, Don E; Hill, Jason J; Park, Byung H; Geist, Al

    2010-01-01

    In large-scale computing systems, the sheer volume of log data generated presents daunting challenges for debugging and monitoring of these systems. The Oak Ridge Leadership Computing Facility s premier simulation platform, the Cray XT5 known as Jaguar, can generate a few hundred thousand log entries in less than a minute for many system level events. Determining the root cause of such system events requires analyzing and interpretation of a large number of log messages. Most often, the log messages are best understood when they are interpreted collectively rather than individually. In this paper, we present our approach to interpreting log messages by identifying their commonalities and grouping them into clusters. Given a set of log messages within a time interval, we group the messages based on source, target, and/or error type, and correlate the messages with hardware and application information. We monitor the Lustre log messages in the XT5 console log and show that such grouping of log messages assists in detecting the source of system events. By intelligent grouping and correlation of events in the log, we are able to provide system administrators with meaningful information in a concise format for root cause analysis.

  6. Spacelab Life Sciences-1 electrical diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Kao, C. Y.; Morris, W. S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  7. Spacelab Life Sciences-1 electrical diagnostics expert system

    NASA Technical Reports Server (NTRS)

    Kao, Cheng Y.; Morris, William S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  8. Diagnostic system monitors gearboxes at hydro plant

    SciTech Connect

    1995-06-01

    This article describes how, by applying real-time, tooth-by-tooth vibration ``imaging,`` this system detects gear-tooth defects -- such as pitting and cracking. To keep Swan Falls hydroelectric generating station in service, Idaho Power Co constructed a new two-unit, open-pit-turbine powerhouse. Swan Falls, Kuna, Idaho, the oldest on the Snake River, services southern Idaho and parts of Oregon -- one of 17 hydroelectric plants maintained by the utility. The hydro units use speed increasers (gearboxes) so higher-speed generators are possible. To monitor these gearboxes, engineers at Swan Falls required a continuous on-line predictive maintenance system. The system monitors the planetary step-up gearboxes in the two main 12.5-MW pit turbine/generators. In some Idaho Power plants with a similar hydro turbine/generator design, the gearboxes have experienced major failures, leading to hundreds of thousands of dollars in collateral damage.

  9. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  10. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  11. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  12. Electron cyclotron emission imaging diagnostic system for Rijnhuizen Tokamak Project

    SciTech Connect

    Deng, B.H.; Hsia, R.P.; Domier, C.W.; Burns, S.R.; Hillyer, T.R.; Luhmann, N.C. Jr.; Oyevaar, T.; Donne, A.J.; RTP team

    1999-01-01

    A 16-channel electron cyclotron emission (ECE) imaging diagnostic system has been developed and installed on the Rijnhuizen Tokamak Project for measuring plasma electron cyclotron emission with a temporal resolution of 2 {mu}s. The high spatial resolution of the system is achieved by utilizing a low cost linear mixer/receiver array. Unlike conventional ECE diagnostics, the sample volumes of the ECE imaging system are aligned vertically, and can be shifted across the plasma cross-section by varying the local oscillator frequency, making possible 2D measurements of electron temperature profiles and fluctuations. The poloidal/radial wavenumber spectra and correlation lengths of T{sub e} fluctuations in the plasma core can also be obtained by properly positioning the focal plane of the imaging system. Due to these unique features, ECE imaging is an ideal tool for plasma transport study. Technical details of the system are described, together with preliminary experimental results. {copyright} {ital 1999 American Institute of Physics.}

  13. STATUS OF VARIOUS SNS DIAGNOSTIC SYSTEMS

    SciTech Connect

    Blokland, Willem; Purcell, J David; Patton, Jeff; Pelaia II, Tom; Sundaram, Madhan; Pennisi, Terry R

    2007-01-01

    The Spallation Neutron Source (SNS) accelerator systems are ramping up to deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. Enhancements or additions have been made to several instrument systems to support the ramp up in intensity, improve reliability, and/or add functionality. The Beam Current Monitors now support increased rep rates, the Harp system now includes charge density calculations for the target, and a new system has been created to collect data for the beam accounting and present the data over the web and to the operator consoles. The majority of the SNS beam instruments are PC-based and their configuration files are now managed through the Oracle relational database. A new version for the wire scanner software was developed to add features to correlate the scan with beam loss, parking in the beam, and measuring the longitudinal beam current. This software is currently being tested. This paper also includes data from the selected instruments.

  14. Optimal Sequential Diagnostic Strategy Generation Considering Test Placement Cost for Multimode Systems.

    PubMed

    Zhang, Shigang; Song, Lijun; Zhang, Wei; Hu, Zheng; Yang, Yongmin

    2015-01-01

    Sequential fault diagnosis is an approach that realizes fault isolation by executing the optimal test step by step. The strategy used, i.e., the sequential diagnostic strategy, has great influence on diagnostic accuracy and cost. Optimal sequential diagnostic strategy generation is an important step in the process of diagnosis system construction, which has been studied extensively in the literature. However, previous algorithms either are designed for single mode systems or do not consider test placement cost. They are not suitable to solve the sequential diagnostic strategy generation problem considering test placement cost for multimode systems. Therefore, this problem is studied in this paper. A formulation is presented. Two algorithms are proposed, one of which is realized by system transformation and the other is newly designed. Extensive simulations are carried out to test the effectiveness of the algorithms. A real-world system is also presented. All the results show that both of them have the ability to solve the diagnostic strategy generation problem, and they have different characteristics. PMID:26457709

  15. Optimal Sequential Diagnostic Strategy Generation Considering Test Placement Cost for Multimode Systems

    PubMed Central

    Zhang, Shigang; Song, Lijun; Zhang, Wei; Hu, Zheng; Yang, Yongmin

    2015-01-01

    Sequential fault diagnosis is an approach that realizes fault isolation by executing the optimal test step by step. The strategy used, i.e., the sequential diagnostic strategy, has great influence on diagnostic accuracy and cost. Optimal sequential diagnostic strategy generation is an important step in the process of diagnosis system construction, which has been studied extensively in the literature. However, previous algorithms either are designed for single mode systems or do not consider test placement cost. They are not suitable to solve the sequential diagnostic strategy generation problem considering test placement cost for multimode systems. Therefore, this problem is studied in this paper. A formulation is presented. Two algorithms are proposed, one of which is realized by system transformation and the other is newly designed. Extensive simulations are carried out to test the effectiveness of the algorithms. A real-world system is also presented. All the results show that both of them have the ability to solve the diagnostic strategy generation problem, and they have different characteristics. PMID:26457709

  16. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    NASA Technical Reports Server (NTRS)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  17. A Scalable, Out-of-Band Diagnostics Architecture for International Space Station Systems Support

    NASA Technical Reports Server (NTRS)

    Fletcher, Daryl P.; Alena, Rick; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The computational infrastructure of the International Space Station (ISS) is a dynamic system that supports multiple vehicle subsystems such as Caution and Warning, Electrical Power Systems and Command and Data Handling (C&DH), as well as scientific payloads of varying size and complexity. The dynamic nature of the ISS configuration coupled with the increased demand for payload support places a significant burden on the inherently resource constrained computational infrastructure of the ISS. Onboard system diagnostics applications are hosted on computers that are elements of the avionics network while ground-based diagnostic applications receive only a subset of available telemetry, down-linked via S-band communications. In this paper we propose a scalable, out-of-band diagnostics architecture for ISS systems support that uses a read-only connection for C&DH data acquisition, which provides a lower cost of deployment and maintenance (versus a higher criticality readwrite connection). The diagnostics processing burden is off-loaded from the avionics network to elements of the on-board LAN that have a lower overall cost of operation and increased computational capacity. A superset of diagnostic data, richer in content than the configured telemetry, is made available to Advanced Diagnostic System (ADS) clients running on wireless handheld devices, affording the crew greater mobility for troubleshooting and providing improved insight into vehicle state. The superset of diagnostic data is made available to the ground in near real-time via an out-of band downlink, providing a high level of fidelity between vehicle state and test, training and operational facilities on the ground.

  18. [Diagnostic imaging of central nervous system vasculitis].

    PubMed

    Yokota, Hajime; Yamada, Kei

    2015-03-01

    Vasculitis involving the central nervous system presents with infarction and hemorrhage, which are often nonspecific findings. Laboratory examinations are essential for diagnosis of vasculitis in addition to comprehensive and systematic review of the clinical course. Although most findings tend to be nonspecific, enhancement and thickening of the vascular wall indicate vasculitis. Visualization of the vascular wall requires selection of the appropriate imaging modality and mode of image acquisition. Contrast-enhanced CT, MRI, and FDG-PET are useful for visualizing large vessel vasculitis, while CT, MRI, and angiography are effective for medium vessel vasculitis. The use of ultrasound is limited to evaluating vessels on the body surface. Although relatively thick vessels can be demonstrated by angiography, complete survey of small vessels is difficult. Here, we summarize the characteristics of each imaging modality and imaging findings of typical vasculitides-Takayasu arteritis, giant cell arteritis, ANCA-associated vasculitis, Behçet's disease, primary angiitis of the CNS, and vasculitis associated with systemic disease. Differential diagnoses are also shown, including infective endocarditis, tuberculous meningitis, Ehlers-Danlos syndrome, and reversible cerebral vasoconstriction syndrome. PMID:25846439

  19. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer (Fort Collins, CO); Willson, Bryan (Fort Collins, CO); Defoort, Morgan (Fort Collins, CO); Joshi, Sachin (Fort Collins, CO); Reynolds, Adam (Fort Collins, CO)

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  20. [Lab-on-a-chip systems in the point-of-care diagnostics].

    PubMed

    Szabó, Barnabás; Borbíró, András; Fürjes, Péter

    2015-12-01

    The need in modern medicine for near-patient diagnostics being able to accelerate therapeutic decisions and possibly replacing laboratory measurements is significantly growing. Reliable and cost-effective bioanalytical measurement systems are required which - acting as a micro-laboratory - contain integrated biomolecular recognition, sensing, signal processing and complex microfluidic sample preparation modules. These micro- and nanofabricated Lab-on-a-chip systems open new perspectives in the diagnostic supply chain, since they are able even for quantitative, high-precision and immediate analysis of special disease specific molecular markers or their combinations from a single drop of sample. Accordingly, crucial requirements regarding the instruments and the analytical methods are the high selectivity, extremely low detection limit, short response time and integrability into the healthcare information networks. All these features can make the hierarchical examination chain shorten, and revolutionize laboratory diagnostics, evolving a brand new situation in therapeutic intervention. Orv. Hetil., 2015, 156(52), 2096-2102. PMID:26686745

  1. Physics Design Considerations for Diagnostic X Electron Beam Transport System

    SciTech Connect

    Chen, Y-J

    2000-04-10

    The Diagnostic X (D-X) beamlines will transport the DARHT-II beam from the end of the accelerator to the Diagnostic X firing point providing four lines of sight for x-ray radiography. The design goal for the Diagnostic X beamline is to deliver four x-ray pulses with the DARHT-II dose format and time integrated spot size on each line of sight. The D-X beamline's final focus should be compatible with a range of first conjugates from 1 m-5 m. Furthermore, the D-X beamline operational parameters and the beamline layout should not preclude a possible upgrade to additional lines of sight. The DARHT-II accelerator is designed to deliver beams at a rate of 1 pulse per minute or less. Tuning the D-X beamline with several hundred optical elements would be time consuming. Therefore, minimizing the required number of tuning shots for the D-X beamline is also an important design goal. Many different beamline configurations may be able to accomplish these design objectives, and high beam quality (i.e., high current and low emittance) must be maintained throughout the chosen beamline configuration in order to achieve the DARHT-II x-ray dose format. In general, the longer the distance a beam travels, the harder it is to preserve the beam quality. Therefore, from the point of view of maintaining beam quality, it is highly desirable to minimize the beamline length. Lastly, modification to the DARHT-II building and the downstream transport should be minimized. Several processes can degrade beam quality by increasing the beam emittance, increasing the time-varying transverse beam motion, creating a beam halo, or creating a time-varying beam envelope. In this report, we consider those processes in the passive magnet lattice beamline and indicate how they constrain the beamline design. The physics design considerations for the active components such as the kicker system will be discussed in Ref. 2. In Sec. I, we discuss how beam emittance affects the x-ray forward dose. We also establish a physics design goal for the emittance growth budget. In Sec. II, we discuss how the conductivity and size of the beam pipe affects the transverse beam motion. We also discuss the emittance growth arise from the beam centroid offset. In Sec. III, we discuss the background gas focusing effects and establish the vacuum requirements. In Sec. IV, we consider the emittance growth in a bend. In Sec. V, we discuss the misalignment and corkscrew motion. The design specifications for misalignment are established. In Secs. VI and VII, we discuss the design objectives on how to extract beams from the DARHT-II beamline and how to minimize the tuning shots. The integrated spot size and final focusing are discussed in Sec. VIII. A conclusion will be presented in Sec. IX.

  2. Evaluation of negative ion distribution changes by image processing diagnostic

    SciTech Connect

    Ikeda, K. Nakano, H.; Tsumori, K.; Kisaki, M.; Nagaoka, K.; Tokuzawa, T.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Geng, S.

    2015-04-08

    Distributions of hydrogen Balmer-? (H{sub ?}) intensity and its reduction behavior close to a plasma grid (PG) surface have been observed by a spectrally selective imaging system in an arc discharge type negative hydrogen ion source in National Institute for Fusion Science. H{sub ?} reduction indicates a reduction of negative hydrogen ions because the mutual neutralization process between H{sup +} and H{sup ?} ions causes the dominant excitation process for H{sub ?} emission in the rich H{sup ?} condition such as in ionic plasma. We observed a significant change in H{sub ?} reduction distribution due to change in the bias voltage, which is used to suppress the electron influx. Small H{sub ?} reduction in higher bias is likely because the production of negative ions is suppressed by the potential difference between the plasma and PG surface.

  3. Applications of digital processing for noise removal from plasma diagnostics

    SciTech Connect

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-11-11

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs.

  4. Pre-PCR processing in bioterrorism preparedness: improved diagnostic capabilities for laboratory response networks.

    PubMed

    Hedman, Johannes; Knutsson, Rickard; Ansell, Ricky; Rådström, Peter; Rasmusson, Birgitta

    2013-09-01

    Diagnostic DNA analysis using polymerase chain reaction (PCR) has become a valuable tool for rapid detection of biothreat agents. However, analysis is often challenging because of the limited size, quality, and purity of the biological target. Pre-PCR processing is an integrated concept in which the issues of analytical limit of detection and simplicity for automation are addressed in all steps leading up to PCR amplification--that is, sampling, sample treatment, and the chemical composition of PCR. The sampling method should maximize target uptake and minimize uptake of extraneous substances that could impair the analysis--so-called PCR inhibitors. In sample treatment, there is a trade-off between yield and purity, as extensive purification leads to DNA loss. A cornerstone of pre-PCR processing is to apply DNA polymerase-buffer systems that are tolerant to specific sample impurities, thereby lowering the need for expensive purification steps and maximizing DNA recovery. Improved awareness among Laboratory Response Networks (LRNs) regarding pre-PCR processing is important, as ineffective sample processing leads to increased cost and possibly false-negative or ambiguous results, hindering the decision-making process in a bioterrorism crisis. This article covers the nature and mechanisms of PCR-inhibitory substances relevant for agroterrorism and bioterrorism preparedness, methods for quality control of PCR reactions, and applications of pre-PCR processing to optimize and simplify the analysis of various biothreat agents. Knowledge about pre-PCR processing will improve diagnostic capabilities of LRNs involved in the response to bioterrorism incidents. PMID:23971826

  5. Human Fetal Diagnostic Ultrasound Exposimetry System Dudley Swiney and William D. O'Brien, Jr.,

    E-print Network

    Illinois at Urbana-Champaign, University of

    Human Fetal Diagnostic Ultrasound Exposimetry System Dudley Swiney and William D. O'Brien, Jr., Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, Univerrity of Illinois fetal diagnostic ultrasound exposimetry system situ witha 7-element lineararrayhydrophoneduringan [I

  6. Programmable bio-nano-chip system for saliva diagnostics

    NASA Astrophysics Data System (ADS)

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W.; McRae, Michael P.; Wong, Jorge; Kosten, Thomas R.; Miller, Craig S.; Ebersole, Jeffrey L.; McDevitt, John

    2014-06-01

    This manuscript describes programmable Bio-Nano-Chip (p-BNC) approach that serves as miniaturized assay platform designed for the rapid detection and quantitation of multiple analytes in biological fluids along with the specific applications in salivary diagnostics intended for the point of need (PON). Included here are oral fluid-based tests for local periodontal disease, systemic cardiac disease and multiplexed tests for drugs of abuse.

  7. Design process for NIF laser alignment and beam diagnostics

    SciTech Connect

    Grey, A., LLNL

    1998-06-09

    In a controller for an adaptive optic system designed to correct phase aberrations in a high power laser, the wavefront sensor is a discrete Hartmann-Shack design. It uses an army of lenslets (like a fly` s eye) to focus the laser into 77 spots on a CCD camera. Average local tilt of the wavefront across each lenslet changes the position of its focal spot. The system requires 0.1 pixel accuracy in determining the focal spot location. We determine a small area around each spot` s previous location. Within this area, we calculate the centroid of the light intensity in x and y. This calculation fails if the spot regions overlap. Especially during initial acquisition of a highly distorted beam, distinguishing overlapping spots is difficult. However, low resolution analysis of the overlapping spots allows the system to estimate their positions. With this estimate, it can use the deformable mirror to correct the beam enough so we can detect the spots using conventional image processing.

  8. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  9. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  10. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  11. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  12. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  13. Model-Based Diagnostic decision-support system for satellites

    NASA Astrophysics Data System (ADS)

    Feldman, Alexander; de Castro, Helena Vicente; van Gemund, Arjan; Provan, Gregory

    We propose a novel framework for Model-Based Diagnosis (MBD) that uses active testing to decrease the diagnostic uncertainty. This framework is called LYDIA-NG and combines several diagnostic, simulation, and active-testing algorithms. We have illustrated the workings of LYDIA-NG by building a LYDIA-NG-based decision support system for the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite. This paper discusses a model of the GOCE Electrical Power System (EPS), the algorithms for diagnosis and disambiguation, and the experiments performed with a number of diagnostic scenarios. Our experiments produced no false positive scenarios, no false negative scenarios, the average number of classification errors per scenario is 1.25, and the fault detection time is equal to the computation time. We have further computed an average fault uncertainty of 2.06 × 10- 3 which can be automatically reduced to 9.5× 10- 4 by sending a single, automatically computed, telecommand, thus dramatically reducing the fault isolation time.

  14. IT-based diagnostic instrumentation systems for personalized healthcare services.

    PubMed

    Chun, Honggu; Kang, Jaemin; Kim, Ki-Jung; Park, Kwang Suk; Kim, Hee Chan

    2005-01-01

    This paper describes recent research and development activities on the diagnostic instruments for personalized healthcare services in Seoul National University. Utilizing the state-of-the-art information technologies (IT), various diagnostic medical instruments have been integrated into a personal wearable device and a home telehealthcare system. We developed a wrist-worn integrated health monitoring device (WIHMD) which performs the measurements of non-invasive blood pressure (NIBP), pulse oximetry (SpO2), electrocardiogram (ECG), respiration rate, heart rate, and body surface temperature and the detection of falls to determine the onset of emergency situation. The WIHMD also analyzes the acquired bio-signals and transmits the resultant data to a healthcare service center through a commercial cellular phone. Two different kinds of IT-based blood glucometer have been developed using a cellular phone and PDA(personal digital assistant) as a main unit. A blood glucometer was also integrated within a wrist pressure measurement module which is interfaced with a cellular phone via Telecommunications Technology Association (TTA) standard in order to provide users with easiness in measuring and handling two important health parameters. Non-intrusive bio-signal measurement systems were developed for the ease of home use. One can measure his ECG on a bed while he is sleeping; measure his ECG, body temperature, bodyfat ratio and weight on a toilet seat; measure his ECG on a chair; and estimate the degree of activity by motion analysis using a camera. Another integrated diagnostic system for home telehealthcare services has been developed to include a 12 channels ECG, a pressure meter for NIBP, a blood glucometer, a bodyfat meter and a spirometer. It is an expert system to analyze the measured health data and based on the diagnostic result, the system provides an appropriate medical consultation. The measured data can be either stored on the system or transmitted to the central server through the internet. We have installed the developed systems on a model house for the performance evaluation and confirmed the possibility of the system as an effective tool for the personalized healthcare services. PMID:16282668

  15. Development of an intelligent diagnostic system for reusable rocket engine control

    NASA Technical Reports Server (NTRS)

    Anex, R. P.; Russell, J. R.; Guo, T.-H.

    1991-01-01

    A description of an intelligent diagnostic system for the Space Shuttle Main Engines (SSME) is presented. This system is suitable for incorporation in an intelligent controller which implements accommodating closed-loop control to extend engine life and maximize available performance. The diagnostic system architecture is a modular, hierarchical, blackboard system which is particularly well suited for real-time implementation of a system which must be repeatedly updated and extended. The diagnostic problem is formulated as a hierarchical classification problem in which the failure hypotheses are represented in terms of predefined data patterns. The diagnostic expert system incorporates techniques for priority-based diagnostics, the combination of analytical and heuristic knowledge for diagnosis, integration of different AI systems, and the implementation of hierarchical distributed systems. A prototype reusable rocket engine diagnostic system (ReREDS) has been implemented. The prototype user interface and diagnostic performance using SSME test data are described.

  16. ORION OPTICAL DIAGNOSTIC SYSTEMS Construction and commissioning progress

    NASA Astrophysics Data System (ADS)

    Palmer, J. B. A.; Drew, D.; Fyrth, J.; Hill, M. P.; Kemshall, P.; Oades, K.; Harvey, E.; Gumbrell, E. T.

    2012-10-01

    The Orion facility provides a unique combined long- and short-pulse laser capability. We report on the progress in constructing a comprehensive plasma optical diagnostic suite for the facility, developed for a range of warm dense matter and other materials' properties experiments. The first VISAR imaging line for the suite is due to be commissioned in 2012 and its progress will be reported. The system consists of configurable optical elements mounted on a TIM, relay optics to an optical table, optics to direct the light through a VISAR bed onto an optical streak camera and the infrastructure systems to provide remote control and services. Due to the operational model of Orion the diagnostic must have comprehensive remote control for its set up and alignment. This makes the system design more complicated than otherwise. The sub-systems required to give the degree of remote control required will be described. A modified version of the suite's ASBO imaging line was used in 2011 to support the commissioning of Orion's long- and short-pulse laser beam lines by imaging optical emission from laser targets. The set up of this system and the data it recorded with an optical streak camera during a short pulse experiment will be presented.

  17. Optical Diagnostic System for Solar Sails: Phase 1 Final Report

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.

    2004-01-01

    NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.

  18. Spitzer Telemetry Processing System

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  19. Expert systems in the process industries

    NASA Technical Reports Server (NTRS)

    Stanley, G. M.

    1992-01-01

    This paper gives an overview of industrial applications of real-time knowledge based expert systems (KBES's) in the process industries. After a brief overview of the features of a KBES useful in process applications, the general roles of KBES's are covered. A particular focus is diagnostic applications, one of the major applications areas. Many applications are seen as an expansion of supervisory control. The lessons learned from numerous online applications are summarized.

  20. Criteria Combinations in the Personality Disorders: Challenges Associated with a Polythetic Diagnostic System 

    E-print Network

    Cooper, Luke D.

    2011-08-08

    Converging research on the diagnostic criteria for personality disorders (PDs) reveals that most criteria have different psychometric properties. This finding is inconsistent with the DSM-IV-TR PD diagnostic system, which ...

  1. Using hypermedia to develop an intelligent tutorial/diagnostic system for the Space Shuttle Main Engine Controller Lab

    NASA Technical Reports Server (NTRS)

    Oreilly, Daniel; Williams, Robert; Yarborough, Kevin

    1988-01-01

    This is a tutorial/diagnostic system for training personnel in the use of the Space Shuttle Main Engine Controller (SSMEC) Simulation Lab. It also provides a diagnostic capable of isolating lab failures at least to the major lab component. The system was implemented using Hypercard, which is an program of hypermedia running on Apple Macintosh computers. Hypercard proved to be a viable platform for the development and use of sophisticated tutorial systems and moderately capable diagnostic systems. This tutorial/diagnostic system uses the basic Hypercard tools to provide the tutorial. The diagnostic part of the system uses a simple interpreter written in the Hypercard language (Hypertalk) to implement the backward chaining rule based logic commonly found in diagnostic systems using Prolog. Some of the advantages of Hypercard in developing this type of system include sophisticated graphics, animation, sound and voice capabilities, its ability as a hypermedia tool, and its ability to include digitized pictures. The major disadvantage is the slow execution time for evaluation of rules (due to the interpretive processing of the language). Other disadvantages include the limitation on the size of the cards, that color is not supported, that it does not support grey scale graphics, and its lack of selectable fonts for text fields.

  2. FTDD973: A multimedia knowledge-based system and methodology for operator training and diagnostics

    NASA Technical Reports Server (NTRS)

    Hekmatpour, Amir; Brown, Gary; Brault, Randy; Bowen, Greg

    1993-01-01

    FTDD973 (973 Fabricator Training, Documentation, and Diagnostics) is an interactive multimedia knowledge based system and methodology for computer-aided training and certification of operators, as well as tool and process diagnostics in IBM's CMOS SGP fabrication line (building 973). FTDD973 is an example of what can be achieved with modern multimedia workstations. Knowledge-based systems, hypertext, hypergraphics, high resolution images, audio, motion video, and animation are technologies that in synergy can be far more useful than each by itself. FTDD973's modular and object-oriented architecture is also an example of how improvements in software engineering are finally making it possible to combine many software modules into one application. FTDD973 is developed in ExperMedia/2; and OS/2 multimedia expert system shell for domain experts.

  3. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  4. THE RARE EARTH PEAK: AN OVERLOOKED r-PROCESS DIAGNOSTIC

    SciTech Connect

    Mumpower, Matthew R.; McLaughlin, G. C.; Surman, Rebecca E-mail: gail_mclaughlin@ncsu.edu

    2012-06-20

    The astrophysical site or sites responsible for the r-process of nucleosynthesis still remains an enigma. Since the rare earth region is formed in the latter stages of the r-process, it provides a unique probe of the astrophysical conditions during which the r-process takes place. We use features of a successful rare earth region in the context of a high-entropy r-process (S {approx}> 100k{sub B} ) and discuss the types of astrophysical conditions that produce abundance patterns that best match meteoritic and observational data. Despite uncertainties in nuclear physics input, this method effectively constrains astrophysical conditions.

  5. Aerospike Engine Post-Test Diagnostic System Delivered to Rocketdyne

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field, in cooperation with Rocketdyne, has designed, developed, and implemented an automated Post-Test Diagnostic System (PTDS) for the X-33 linear aerospike engine. The PTDS was developed to reduce analysis time and to increase the accuracy and repeatability of rocket engine ground test fire and flight data analysis. This diagnostic system provides a fast, consistent, first-pass data analysis, thereby aiding engineers who are responsible for detecting and diagnosing engine anomalies from sensor data. It uses analytical methods modeled after the analysis strategies used by engineers. Glenn delivered the first version of PTDS in September of 1998 to support testing of the engine s power pack assembly. The system was used to analyze all 17 power pack tests and assisted Rocketdyne engineers in troubleshooting both data acquisition and test article anomalies. The engine version of PTDS, which was delivered in June of 1999, will support all single-engine, dual-engine, and flight firings of the aerospike engine.

  6. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    SciTech Connect

    Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.; Haves, Philip; Sohn, Michael D.

    2010-05-30

    Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models are imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.

  7. TiN Deposition and Process Diagnostics using Remote Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Yang, Wonkyun; Kim, Gi-Taek; Lee, Seunghun; Kim, Do-Geun; Kim, Jong-Kuk

    2013-08-01

    The discharge voltage-current characteristics and the optical diagnostics of a remote plasma sputtering system called by high density plasma assisted sputtering source (HiPASS) were investigated. The remote plasma was generated by the hollow cathode discharge (HCD) gun and was transported to the target surface by external electromagnet coils. This showed a wide process window because the sputtering voltage and current could be individually controlled. The ion density and energy distribution could be also controlled unlike the conventional magnetron sputtering. Titanium nitride films were deposited under different sputtering voltage. The high voltage mode induced the high ionization ratio of the sputtered atoms and the high ion energy toward the substrate. That resulted in the enlarged grain size, and the preferred orientation toward (220). Eventually, this optimized condition of HiPASS obtained the best hardness of TiN films to be about 48 GPa at the sputtering voltage of -800 V.

  8. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  9. Industrial process surveillance system

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  10. Industrial process surveillance system

    DOEpatents

    Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W. (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  11. A Diagnostic System for Improving Biomass Quality Based on a Sensor Network

    PubMed Central

    Bochtis, Dionysis D.; Sørensen, Claus G.; Green, Ole; Bartzanas, Thomas

    2011-01-01

    Losses during storage of biomass are the main parameter that defines the profitability of using preserved biomass as feed for animal husbandry. In order to minimize storage losses, potential changes in specific physicochemical properties must be identified to subsequently act as indicators of silage decomposition and form the basis for preventive measures. This study presents a framework for a diagnostic system capable of detecting potential changes in specific physicochemical properties, i.e., temperature and the oxygen content, during the biomass storage process. The diagnostic system comprises a monitoring tool based on a wireless sensors network and a prediction tool based on a validated computation fluid dynamics model. It is shown that the system can provide the manager (end-user) with continuously updated information about specific biomass quality parameters. The system encompasses graphical visualization of the information to the end-user as a first step and, as a second step, the system identifies alerts depicting real differences between actual and predicted values of the monitored properties. The perspective is that this diagnostic system will provide managers with a solid basis for necessary preventive measures. PMID:22163886

  12. Fiber optic diagnostic techniques for the electrical discharge machining process 

    E-print Network

    Pillans, Brandon William

    1998-01-01

    Plasma sparks from an electrical discharge machining phics. (EDM) process were observed using fiber optics positioned the dielectric oil. New measurement techniques were developed to observe the spark in the extremely noisy ...

  13. The Rare Earth Peak: An Overlooked r-Process Diagnostic

    NASA Astrophysics Data System (ADS)

    Mumpower, Matthew Ryan

    2012-06-01

    Where do the heavy elements in the universe come from? While the basic principles of nucleosynthesis have been established, a definite answer to this and many related questions still eludes us. The 'rapid' neutron capture process or r-process is believed to be responsible for generating roughly half the nuclei with atomic mass A ? 100. However, the astrophysical site of this process still remains uncertain. Still further, nucleosynthesis calculations of this process must rely on theoretical extrapolations as the bulk of nuclides participating in this process are short-lived.We examine the formation and final structure of the rare earth peak (A ˜ 160) of the r-process nucleosynthesis. Since rare earth peak formation does not occur during (n, gamma) ? (gamma, n) equilibrium it is sensitive to the strong interplay between late time thermodynamic evolution and nuclear physics input. We show that under high entropy conditions (S > 100 kB), the rare earth peak forms at late times in the r-process after neutron exhaustion (neutron-to-seed ratio unity or R = 1) as matter decays back to stability. Depending on the conditions the peak forms either because of the pattern of the neutron capture rates or because of the pattern of the separation energies. We use features of a successful rare earth region to discuss the types of astrophysical conditions that produce abundance patterns that best match meteoritic and observational data. Despite uncertainties in nuclear physics input, this method effectively constrains astrophysical conditions. We study the sensitivity of the r-process abundance pattern to neutron capture rates and beta-decay rates in the region. We identify the range of nuclei which are in uential in rare earth peak formation.

  14. Diagnostic system for plasma/surface energy transfer characterization

    SciTech Connect

    Thomann, A.-L.; Semmar, N.; Dussart, R.; Mathias, J.; Lang, V.

    2006-03-15

    The knowledge of the effective energy deposited onto a surface by the reactive particles (ions, electrons, metastables, photons, etc.) in plasma processes such as thin-film deposition, sputtering, etching, etc., is of high interest to understand the basic mechanisms of energy transfer. In this article, a diagnostic is developed to directly measure the global energy transferred to surfaces (reactor walls, substrates, material to be modified, etc.) immerged in low-pressure plasmas. The diagnostic is based on a commercial HFM7-Vattel registered microsensor, confined in a temperature-controlled substrate holder. The manufacturer calibration specifications are only given for atmospheric pressure. They cannot be used in low-pressure plasma conditions (typically 0.1-20 Pa). Thus, for this particular application, a calibration of the microsensor is required. It is performed at various pressures, between vacuum and the ambient, according to the NIST protocol and using a homemade blackbody (BB). It is shown that only curves obtained in vacuum or pressures below 0.1 Pa are valuable for a true calibration of the sensor. The others are perturbed by the heating of the gas in the BB surroundings. Measurements carried out in a typical transformer coupled plasma reactor in argon gas are presented. Typically the values are of the order of tens or hundreds of mW/cm{sup 2} in our experimental conditions. They are consistent with an estimation of the energy transferred by charged particles (ions and electrons) performed from Langmuir probe characterization of the plasma.

  15. [Profile comparison systems and performance diagnostic, electronic data processing-supported technology--their use in improving responses to social medicine questions and expert assessments and planning of rehabilitation measures].

    PubMed

    Schian, H M; Kaiser, H

    2000-02-01

    Systems for comparing ability and requirement profiles as well as instruments for evaluating functional capacity are current topics in rehabilitation. Only few of them however are related to vocational rehab. This article describes the present state of affairs in the development in procedures, instruments and methods to measure work-related human functional capacity with the aim of vocational rehabilitation and integration, helping to obtain objective results to decide about further steps. They are an addition to sociomedical advice in assessment and vocational centres, and serve to expand the common basis of the WHO International Classification of impairments, disabilities and handicaps (ICIDH). The purpose is intervention. Abilities are contrasted with requirements, as the basis for defining a need for intervention and realizing appropriate action. This is the thinking integrated in the German profiling assessment and documentation system IMBA--Integration von Menschen mit Behinderungen in die Arbeitswelt (Integration of people with disabilities into worklife). Diagnostic, computer based technology and work simulation and measurement to evaluate functional capacity as developed and used in the U.S. is complementary to IMBA. Work simulation is based on databases, such as the D.O.T., and includes standardized work requirement profiles. Such systems have been imported from the United States of America to Switzerland and the Netherlands and now to Germany. There are numerous connections with German assessment systems, and the fundamentals of ICIDH are included. Common application in the field of rehabilitation is dealt with, also in view of pensioning issues. The need for user training and quality management are reported in this article as well. PMID:10729954

  16. WEAVE core processing system

    NASA Astrophysics Data System (ADS)

    Walton, Nicholas A.; Irwin, Mike; Lewis, James R.; Gonzalez-Solares, Eduardo; Dalton, Gavin; Trager, Scott; Aguerri, J. Alfonso L.; Allende Prieto, Carlos; Benn, Chris R.; Abrams, Don Carlos; Picó, Sergio; Middleton, Kevin; Lodi, Marcello; Bonifacio, Piercarlo

    2014-07-01

    WEAVE is an approved massive wide field multi-object optical spectrograph (MOS) currently entering its build phase, destined for use on the 4.2-m William Herschel Telescope (WHT). It will be commissioned and begin survey operations in 2017. This paper describes the core processing system (CPS) system being developed to process the bulk data flow from WEAVE. We describe the processes and techniques to be used in producing the scientifically validated 'Level 1' data products from the WEAVE data. CPS outputs will include calibrated one-d spectra and initial estimates of basic parameters such as radial velocities (for stars) and redshifts (for galaxies).

  17. Application Of The CSRL Language To The Design Of Diagnostic Expert Systems: The Moodis Experience, A Preliminary Report

    NASA Astrophysics Data System (ADS)

    Bravos, Angelo; Hill, Howard; Choca, James; Bresolin, Linda B.; Bresolin, Michael J.

    1986-03-01

    Computer technology is rapidly becoming an inseparable part of many health science specialties. Recently, a new area of computer technology, namely Artificial Intelligence, has been applied toward assisting the medical experts in their diagnostic and therapeutic decision making process. MOODIS is an experimental diagnostic expert system which assists Psychiatry specialists in diagnosing human Mood Disorders, better known as Affective Disorders. Its diagnostic methodology is patterned after MDX, a diagnostic expert system developed at LAIR (Laboratory for Artificial Intelligence Research) of Ohio State University. MOODIS is implemented in CSRL (Conceptual Structures Representation Language) also developed at LAIR. This paper describes MOODIS in terms of conceptualization and requirements, and discusses why the MDX approach and CSRL were chosen.

  18. Materials issues in diagnostic systems for BPX and ITER

    SciTech Connect

    Clinard, F.W. Jr.; Farnum, E.H. ); Griscom, D.L. ); Mattas, R.F. ); Medley, S.S.; Young, K. M. . Plasma Physics Lab.); Wiffen, F.W. ); Wojtowicz, S.S. (General Atomics, San Diego, CA (Unit

    1991-01-01

    Diagnostic systems in advanced D-T-burning fusion devices will be subjected to intense fluxes and fluences of high-energy neutrons and gamma rays. Materials used in these systems may suffer significant degradation of structural, optical, and electrical properties, either promptly upon irradiation or after accumulation of structural damage. Of particular concern are windows, optical fibers, reflectors, and insulators. Many materials currently specified for these components are known to degrade under anticipated operating conditions. However, careful materials selection and modification based on an appropriate irradiation testing program, when combined with optimization of design-sensitive factors such as location, shielding, and ease of replacement, should help to alleviate these materials problems. 30 refs., 2 figs., 1 tab.

  19. Mach-Zehnder recording systems for pulsed power diagnostics

    SciTech Connect

    Miller, E. K.; Abbott, R. Q.; McKenna, I.; Macrum, G.; Baker, D.; Tran, V.; Rodriguez, E.; Kaufman, M. I.; Tibbits, A.; Silbernagel, C. T.; Waltman, T. B.; Herrmann, H. W.; Kim, Y. H.; Mack, J. M.; Young, C. S.; Caldwell, S. E.; Evans, S. C.; Sedillo, T. J.; Stoeffl, W.; Grafil, E.; and others

    2012-10-15

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  20. Mach-Zehnder Recording Systems for Pulsed Power Diagnostics

    SciTech Connect

    Miller, E K; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A

    2012-10-01

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as Z-R at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History (GRH) diagnostic at OMEGA and NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  1. Diagnostic accuracy of an ultrasonic multiple transducer cardiac imaging system

    NASA Technical Reports Server (NTRS)

    Popp, R. L.; Brown, O. R.; Harrison, D. C.

    1975-01-01

    An ultrasonic multiple-transducer imaging system for intracardiac structure visualization is developed in order to simplify visualization of the human heart in vivo without radiation hazard or invasion of the body. Results of the evaluation of the diagnostic accuracy of the devised system in a clinical setting for adult patients are presented and discussed. Criteria are presented for recognition of mitral valva prolapse, mitral stenosis, pericardial effusion, atrial septal defect, and left ventricular dyssynergy. The probable cause for false-positive and false-negative diagnoses is discussed. However, hypertrophic myopathy and congestive myopathy were unable to be detected. Since only qualitative criteria were used, it was not possible to differentiate patients with left ventricular volume overload from patients without cardiac pathology.

  2. Laser material processing system

    SciTech Connect

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  3. An intelligent advisory system for pre-launch processing

    NASA Technical Reports Server (NTRS)

    Engrand, Peter A.; Mitchell, Tami

    1991-01-01

    The shuttle system of interest in this paper is the shuttle's data processing system (DPS). The DPS is composed of the following: (1) general purpose computers (GPC); (2) a multifunction CRT display system (MCDS); (3) mass memory units (MMU); and (4) a multiplexer/demultiplexer (MDM) and related software. In order to ensure the correct functioning of shuttle systems, some level of automatic error detection has been incorporated into all shuttle systems. For the DPS, error detection equipment has been incorporated into all of its subsystems. The automated diagnostic system, (MCDS) diagnostic tool, that aids in a more efficient processing of the DPS is described.

  4. Spectroscopic diagnostics of plasma during laser processing of aluminium

    NASA Astrophysics Data System (ADS)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  5. Spontaneous Raman Scattering Diagnostics: Applications in Practical Combustion Systems. Chapter 5

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Viet-Nguyen, Quang; Lackner, Maximilian (Editor); Winter, Franz (Editor); Agarwal, Avinash (Editor)

    2010-01-01

    In this chapter, the recent advancements and practical aspects of laser SRS diagnostics have been reviewed wi til regards to applications in practical combustion systems. Clearly, SRS represents a theoretically and experimentally mature diagnostic technology that has become an essential tool for multiscalar measurements in turbulent combustion at elevated pressures. Today, time-, space-, spectrally, and even polarization-resolved S RS diagnostics is at hand, with aid from recent innovations in theoretical and technological developments on electro-optical or electromechanical devices. Whilst a linear increase in SRS signals can be expected in high-pressure systems (this is perhaps one of the most important advantages for using SRS in high-pressure systems), there are practical (often severe) restrictions associated with pressurized vessels, due mainly to the limited degree of optical access. This narrows ti,e available choice of diagnostics that can be employed at any given time. Point-wise SRS diagnostics provides the highest accuracy on the chemical species and temperature measurements, and will continue to remain a vital approach for the study in such harsh environments. The practical design considerations and hands-on set-up guide for SRS diagnostics provided in this chapter are rarely presented elsewhere. Although the second-harmonic Nd:YAG pulsed laser (532 nm), combined with pulse-stretching optics or the recently introduced White Cell-based laser, seems to be the most favored excitation source of choice by the research community, UV excitation will undoubtedly continue to be used on many occasions, and especially in sooting flames. Detection methods may be divided into ICCD-based nanosecond-gate detection or a rotary-chopper electromechanical shutter-based CCD array detection, and the levels of background flame emission in individual cases would determine this critical design choice. Here, a process of Raman signal calibration based on ti,e crosstalk matrix formalism was explained step-by-step. As tI,is process may be very time-consuming and expensive, a well-planned experimental approach (01' building a transferable calibration database or library (at least with in a user's own facility over a series of different testing and runs) is vitally important. Hands on advice on the design and construction of flow control systems for high pressure burner facilities were also presented.

  6. UAS-Systems Integration, Validation, and Diagnostics Simulation Capability

    NASA Technical Reports Server (NTRS)

    Buttrill, Catherine W.; Verstynen, Harry A.

    2014-01-01

    As part of the Phase 1 efforts of NASA's UAS-in-the-NAS Project a task was initiated to explore the merits of developing a system simulation capability for UAS to address airworthiness certification requirements. The core of the capability would be a software representation of an unmanned vehicle, including all of the relevant avionics and flight control system components. The specific system elements could be replaced with hardware representations to provide Hardware-in-the-Loop (HWITL) test and evaluation capability. The UAS Systems Integration and Validation Laboratory (UAS-SIVL) was created to provide a UAS-systems integration, validation, and diagnostics hardware-in-the-loop simulation capability. This paper discusses how SIVL provides a robust and flexible simulation framework that permits the study of failure modes, effects, propagation paths, criticality, and mitigation strategies to help develop safety, reliability, and design data that can assist with the development of certification standards, means of compliance, and design best practices for civil UAS.

  7. Diagnostic behavior of the Wire Arc Plasma spray process

    NASA Astrophysics Data System (ADS)

    Kowalsky, K. A.; Marantz, D. R.; Neiser, R. A.; Smith, M. F.

    Laser two-focus (L2F) velocimetry has been used to measure particle velocities in the Wire Arc Plasma spray process. Particle velocities were measured for aluminum, stainless steel, and copper feedstock with wire diameters of 1.6 mm and 0.9 mm. The Wire Arc Plasma gun was operated in both a single-gas mode, using air, and in a two-gas mode, using a mixture of argon/35 percent hydrogen as the primary plasma gas with pure argon as the secondary gas. The results indicate that maximum particle velocities are as high as 180 m/s for aluminum sprayed using air and 130 m/s using the argon/hydrogen mixture. The results also show that arc current and wire feed rate have little effect on particle velocity; however, particle velocities increase significantly with decreasing wire diameter and with decreasing density of the feedstock material.

  8. Distributed diagnostic system for tokamaks high-voltage power supply section

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Juszczyk, B.; Zienkiewicz, P.

    2015-09-01

    This paper describes recently developed system for diagnostics of high-voltage power supply section of tokamaks'. Such system is necessary for real-time monitoring of high-voltage power supply section with ability to perform automatic and fast decisions related to protection system. The system is distributed, allowing data acquisition of components installed away from the systems' controller. Remote communication is based on fiber links. Main processing units are FPGA circuits. The system can pass-through analog and digital signals from local to remote or remote to local locations. In the main FPGA unit, independent user developed algorithms can be implemented. The system structure is based on the uTCA standard. The micro TCA crate controller is implemented as PC unit in AMC standard. Communication is based on gigabit transceivers providing low-latency of data transmission. The system is working with specialized diagnostics and control software. The graphical user interface is provided for the end user. Several tests were made in term of data latency, proper signal transmission and system control.

  9. Transparent materials processing system

    NASA Technical Reports Server (NTRS)

    Hetherington, J. S.

    1977-01-01

    A zero gravity processing furnace system was designed that will allow acquisition of photographic or other visual information while the sample is being processed. A low temperature (30 to 400 C) test model with a flat specimen heated by quartz-halide lamps was constructed. A high temperature (400 to 1000 C) test model heated by resistance heaters, utilizing a cylindrical specimen and optics, was also built. Each of the test models is discussed in detail. Recommendations are given.

  10. Does the Primary Care Experience Influence the Cancer Diagnostic Process?

    PubMed Central

    Provost, Sylvie; Pineault, Raynald; Tousignant, Pierre; Roberge, Danièle; Tremblay, Dominique; Breton, Mylaine; Benhadj, Lynda; Diop, Mamadou; Fournier, Michel; Brousselle, Astrid

    2015-01-01

    Objective. To analyze the impact of patients' experience of care at their usual source of primary care on their choice of point of entry into cancer investigation process, time to diagnosis, and presence of metastatic cancer at time of diagnosis. Method. A questionnaire was administered to 438 patients with cancer (breast, lung, and colorectal) between 2011 and 2013 in four oncology clinics of Quebec (Canada). Multiple regression analyses (logistic and Cox models) were conducted. Results. Among patients with symptoms leading to investigation of cancer (n = 307), 47% used their usual source of primary care as the point of entry for investigation. Greater comprehensiveness of care was associated with the decision to use this source as point of entry (OR = 1.25; CI 90% = 1.06–1.46), as well as with shorter times between first symptoms and investigation (HR = 1.11; p = 0.05), while greater accessibility was associated with shorter times between investigation and diagnosis (HR = 1.13; p < 0.01).??Conclusion. Experience of care at the usual source of primary care has a slight influence on the choice of point of entry for cancer investigation and on time to diagnosis. This influence appears to be more related to patients' perceptions of the accessibility and comprehensiveness of their usual source of primary care. PMID:26504599

  11. Does the Primary Care Experience Influence the Cancer Diagnostic Process?

    PubMed

    Provost, Sylvie; Pineault, Raynald; Tousignant, Pierre; Roberge, Danièle; Tremblay, Dominique; Breton, Mylaine; Benhadj, Lynda; Diop, Mamadou; Fournier, Michel; Brousselle, Astrid

    2015-01-01

    Objective. To analyze the impact of patients' experience of care at their usual source of primary care on their choice of point of entry into cancer investigation process, time to diagnosis, and presence of metastatic cancer at time of diagnosis. Method. A questionnaire was administered to 438 patients with cancer (breast, lung, and colorectal) between 2011 and 2013 in four oncology clinics of Quebec (Canada). Multiple regression analyses (logistic and Cox models) were conducted. Results. Among patients with symptoms leading to investigation of cancer (n = 307), 47% used their usual source of primary care as the point of entry for investigation. Greater comprehensiveness of care was associated with the decision to use this source as point of entry (OR = 1.25; CI 90% = 1.06-1.46), as well as with shorter times between first symptoms and investigation (HR = 1.11; p = 0.05), while greater accessibility was associated with shorter times between investigation and diagnosis (HR = 1.13; p < 0.01).??Conclusion. Experience of care at the usual source of primary care has a slight influence on the choice of point of entry for cancer investigation and on time to diagnosis. This influence appears to be more related to patients' perceptions of the accessibility and comprehensiveness of their usual source of primary care. PMID:26504599

  12. Mission Evaluation Room Intelligent Diagnostic and Analysis System (MIDAS)

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Falgout, Jane; Barcio, Joseph; Shnurer, Steve; Wadsworth, David; Flores, Louis

    1994-01-01

    The role of Mission Evaluation Room (MER) engineers is to provide engineering support during Space Shuttle missions, for Space Shuttle systems. These engineers are concerned with ensuring that the systems for which they are responsible function reliably, and as intended. The MER is a central facility from which engineers may work, in fulfilling this obligation. Engineers participate in real-time monitoring of shuttle telemetry data and provide a variety of analyses associated with the operation of the shuttle. The Johnson Space Center's Automation and Robotics Division is working to transfer advances in intelligent systems technology to NASA's operational environment. Specifically, the MER Intelligent Diagnostic and Analysis System (MIDAS) project provides MER engineers with software to assist them with monitoring, filtering and analyzing Shuttle telemetry data, during and after Shuttle missions. MIDAS off-loads to computers and software, the tasks of data gathering, filtering, and analysis, and provides the engineers with information which is in a more concise and usable form needed to support decision making and engineering evaluation. Engineers are then able to concentrate on more difficult problems as they arise. This paper describes some, but not all of the applications that have been developed for MER engineers, under the MIDAS Project. The sampling described herewith was selected to show the range of tasks that engineers must perform for mission support, and to show the various levels of automation that have been applied to assist their efforts.

  13. Miniature magnetic resonance system for point-of-care diagnostics

    PubMed Central

    Issadore, David; Min, Changwook; Liong, Monty; Chung, Jaehoon; Weissleder, Ralph; Lee, Hakho

    2011-01-01

    We have developed a next generation, miniaturized platform to diagnose disease at the point-of-care using diagnostic magnetic resonance (DMR-3). Utilizing a rapidly growing library of functionalized magnetic nanoparticles, DMR has previously been demonstrated as a versatile tool to quantitatively and rapidly detect disease biomarkers in unprocessed biological samples. A major hurdle for bringing DMR to the point-of-care has been its sensitivity to temperature variation. As an alternative to costly and bulky mechanisms to control temperature, we have implemented an automated feedback system to track and compensate for the temperature drift, which enables reliable and robust DMR measurements in realistic clinical environments (4–50 °C). Furthermore, the new system interfaces with a mobile device to facilitate system control and data sharing over wireless networks. With such features, the DMR-3 platform can function as a self-contained laboratory even in resource-limited, remote settings. The clinical potential of the new system is demonstrated by detecting trace amounts of proteins and as few as 10 bacteria (Staphylococcus aureus) in a short time frame (<30 min). PMID:21547317

  14. Examining Shifts in Medical Students' Microanalytic Motivation Beliefs and Regulatory Processes during a Diagnostic Reasoning Task

    ERIC Educational Resources Information Center

    Cleary, Timothy J.; Dong, Ting; Artino, Anthony R., Jr.

    2015-01-01

    This study examined within-group shifts in the motivation beliefs and regulatory processes of second-year medical students as they engaged in a diagnostic reasoning activity. Using a contextualized assessment methodology called self-regulated learning microanalysis, the authors found that the 71 medical student participants showed statistically…

  15. XPERT DESIGN AND DIAGNOSTICS' (XDD) IN-SITU CHEMICAL OXIDATION PROCESS USING POTASSIUM PERMANGANATE (KMNO4)

    EPA Science Inventory

    Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...

  16. Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System

    NASA Astrophysics Data System (ADS)

    Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung

    At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.

  17. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M. (Rustburg, VA)

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  18. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1993-11-23

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures.

  19. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, Jaques (Lisle, IL); Wei, Thomas Y. C. (Downers Grove, IL)

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system.

  20. Economic comparison of diagnostic antibody production in perfusion stirred tank and in hollow fiber bioreactor processes.

    PubMed

    Vermasvuori, Raisa; Hurme, Markku

    2011-01-01

    The total operating costs of small-scale monoclonal antibody production were calculated for two different upstream options and general downstream procedure based on protein A chromatography. The upstream options were a spin-filter equipped stirred-tank bioreactor (STR) and a hollow fiber bioreactor (HFB). Both the bioreactors were operated in perfusion mode. The total operating costs of the processes were 6,900 €/g for STR option and 6,400 €/g for the HFB option. In the both systems, the costs were dominated by expenses derived from the downstream section (almost 80%) that was almost identical in the both systems. In the upstream section, the investment depreciation was the largest cost item. The lower total costs of the HFB option were a result of lower investment costs and more concentrated product that led into savings also in downstream section. This study brings out the HFB as on viable alternative for stirred-tank bioreactor, especially in small-scale diagnostic monoclonal antibody production. PMID:21954092

  1. Advanced imaging systems for diagnostic investigations applied to Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Petrucci, F.

    2014-12-01

    The diagnostic investigations are an important resource in the studies on Cultural Heritage to enhance the knowledge on execution techniques, materials and conservation status of a work of art. In this field, due to the great historical and artistic value of the objects, preservation is the main concern; for this reason, new technological equipment has been designed and developed in the Physics Departments of the Universities of Ferrara and Bologna to enhance the non-invasive approach to the study of pictorial artworks and other objects of cultural interest. Infrared (IR) reflectography, X-ray radiography and computed tomography (CT), applied to works of art, are joined by the same goal: to get hidden information on execution techniques and inner structure pursuing the non-invasiveness of the methods, although using different setup and physical principles. In this work transportable imaging systems to investigate large objects in museums and galleries are presented. In particular, 2D scanning devices for IR reflectography and X-ray radiography, CT systems and some applications to the Cultural Heritage are described.

  2. Modification of an automated vascular diagnostic system for hyperbaric use.

    PubMed

    Dooley, J W; Mehm, W J; Jennings, C A; Flowers, E P; Casale, J G

    1990-05-01

    Modifications of an automated, noninvasive vascular diagnostic system (VASCULAB, MedaSonics, Inc.) for measuring blood pressure and plethysmographic blood flow responses to normobaric and hyperbaric oxygenation are described. The system consisted of a pump for inflating and deflating blood pressure cuffs and a microprocessor program controller (VSC21) with ultrasound Doppler, strain-gauge plethysmograph, and chart recorder. Inclusion of the VSC21 controller in the chamber was required for performance of procedures that could not be controlled from outside the chamber. All other components were outside the chamber. For fire prevention the VSC21 controller was nitrogen-purged in an acrylic case mounted on a mobile cart. Pressure-cuff tubes were attached via adapted fittings and connectors in the cart to connector ports in the controller's front panel. Electrical power cables and instrument signal wires were routed through chamber penetrations to an electrical power source and other VASCULAB components, respectively, outside the chamber. Initially, compression of the chamber to pressures in excess of 1.68 bar disabled the VSC21, requiring removal of its front membrane panel and ventilation of its pressure-sensitive keypad switches. This allowed automated assessment of blood pressure and calf blood flow at test pressures of 1.97 and 2.96 bar. PMID:2356594

  3. ITER diagnostic systems in development in Ioffe Institute

    SciTech Connect

    Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.

    2014-08-21

    Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.

  4. TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    NASA Technical Reports Server (NTRS)

    Manner, David B.

    1990-01-01

    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system.

  5. A contactless microwave-based diagnostic tool for high repetition rate laser systems

    SciTech Connect

    Braggio, C.; Borghesani, A. F.

    2014-02-15

    We report on a novel electro-optic device for the diagnostics of high repetition rate laser systems. It is composed of a microwave receiver and of a second order nonlinear crystal, whose irradiation with a train of short laser pulses produces a time-dependent polarization in the crystal itself as a consequence of optical rectification. This process gives rise to the emission of microwave radiation that is detected by a receiver and is analyzed to infer the repetition rate and intensity of the pulses. We believe that this new method may overcome some of the limitations of photodetection techniques.

  6. Improvements to a high-frequency fiber-optic system for plasma diagnostics

    SciTech Connect

    Ogle, J.W.; Lyons, P.B.; Looney, L.; Hocker, L.; Nelson, M.A.; Zagarino, P.A.; Davies, T.J.; Simmons, R.D.; Selk, R.; Hopkins, B.

    1981-01-01

    A system for high-frequency recording of plasma diagnostics has previously been reported. Substantial improvements have been made in the system response, dynamic range, and calibration of the system. Plastic-clad silica fiber is used as a radiation-to-light converter using the Cerenkov process. A spectral equalizer device is used to compensate for the material dispersion in the fiber, increasing the frequency response (approx. = 1 GHz-km) and the dynamic range (a factor of > 20 over a FWHM 1 nm, 50% transmitting interference filter). The calibration system uses a pulsed injection laser diode (< 100 ps FWHM) injected into the fiber at the radiation end of the fiber and detected by a microchannel plate photomultiplier tube on the recording end. The injection laser diode is triggered by a synchronous trigger delay unit, which also triggers a sampling or real time scope after as much as 10 ..mu..s delay with < 50 ps jitter. The system improvements are described in detail and the utility of these components in other plasma diagnostic systems is discussed.

  7. Advanced information processing system

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  8. Development of a Diagnostic and Remedial Learning System Based on an Enhanced Concept--Effect Model

    ERIC Educational Resources Information Center

    Panjaburees, Patcharin; Triampo, Wannapong; Hwang, Gwo-Jen; Chuedoung, Meechoke; Triampo, Darapond

    2013-01-01

    With the rapid advances in computer technology during recent years, researchers have demonstrated the pivotal influences of computer-assisted diagnostic systems on student learning performance improvement. This research aims to develop a Diagnostic and Remedial Learning System (DRLS) for an algebra course in a Thai lower secondary school context…

  9. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  10. Electron beam diagnostic system using computed tomography and an annular sensor

    SciTech Connect

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  11. SSME HPOTP post-test diagnostic system enhancement project

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1995-01-01

    An assessment of engine and component health is routinely made after each test or flight firing of a space shuttle main engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project is to further develop a computer program which automates the analysis of test data from the SSME high-pressure oxidizer turbopump (HPOTP) in order to detect and diagnose anomalies. This program fits into a larger system, the SSME Post-Test Diagnostic System (PTDS), which will eventually be extended to assess the health and status of most SSME components on the basis of test data analysis. The HPOTP module is an expert system, which uses 'rules-of-thumb' obtained from interviews with experts from NASA Marshall Space Flight Center (MSFC) to detect and diagnose anomalies. Analyses of the raw test data are first performed using pattern recognition techniques which result in features such as spikes, shifts, peaks, and drifts being detected and written to a database. The HPOTP module then looks for combination of these features which are indicative of known anomalies, using the rules gathered from the turbomachinery experts. Results of this analysis are then displayed via a graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.

  12. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing

    PubMed Central

    Tsalatsanis, Athanasios; Hozo, Iztok; Kumar, Ambuj; Djulbegovic, Benjamin

    2015-01-01

    Dual Processing Theories (DPT) assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive) and type 2 (deliberative). Based on DPT we have derived a Dual Processing Model (DPM) to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called “threshold probability” at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT) and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today’s clinical practice. PMID:26244571

  13. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    SciTech Connect

    Upadhyaya, B.R.; Yan, W.

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods.

  14. Asynchronous compressed beamformer for portable diagnostic ultrasound systems.

    PubMed

    Zhou, Jun; Hoyos, Sebastian; Sadler, Brian

    2014-11-01

    State-of-the-art portable ultrasound imaging systems employ a small transducer array and a low carrier frequency to fit stringent constraints on power and form factor, and this tends to compromise the ultrasound imaging quality. In this paper, we present a low-complexity low-power asynchronous compressed beamformer (ACB) for portable diagnostic ultrasound. The proposed ACB integrates asynchronous sampling and compressive sensing (CS), and is capable of reducing data conversion power and handling a large data volume at the mixed-signal interface. A high-rate continuoustime ternary encoding (CT-TE) scheme eliminates the need for interpolation filters and coordinate rotation digital computer (CORDIC) units typically used in a conventional architecture. A split-projection least squares (SPLS) signal reconstruction algorithm is applied that replaces high-cost nonlinear signal recovery with a series of low-complexity and independent linear problems. Experiments with measured ultrasound data demonstrate the proposed ACB architecture, and the SPLS reconstruction algorithm achieves 9-fold data compression compared with Nyquist sampling. PMID:25389158

  15. Imaging system for hypervelocity dust injection diagnostic on NSTX

    SciTech Connect

    Dorf, L. A.; Roquemore, A. L.; Wurden, G. A.; Ticos, C. M.; Wang Zhehui

    2006-10-15

    The novel hypervelocity dust injection diagnostic will facilitate our understanding of basic aspects of dust-plasma interaction and magnetic field topology in fusion plasma devices, by observing 'comet tails' associated with the injected micron-size dust particles. A single projection of the tail onto an image plane will not provide sufficient information; therefore, we plan to use two views, with intensified DiCam-Pro cameras on two NSTX ports. Each camera can furnish up to five overlaying sequential images with gate times greater than 3 ns and 1280x1024 pixel resolution. A coherent fiber bundle with 1500x1200 fibers will relay the image from an imaging lens installed directly on the port to the camera optics. The lens receives light from the outer portion of the NSTX cross section and focuses a 1 cm tail onto at least 60 fibers for adequate resolution. The estimated number of photons received by the camera indicates signal-to-noise ratios of 10{sup 2}-10{sup 4}, with the use of a 10 nm bandwidth filter. The imaging system with one camera was successfully tested on NSTX in 2005. Photographing lithium pellets yielded bright and distinctive pictures of the tails nearly aligned with B lines. We also observed that the bright 'filaments' - plasma cords with high density and temperature - are present in both top and bottom portions of the machine.

  16. A malaria diagnostic system based on electric impedance spectroscopy

    E-print Network

    Ha, Sungjae

    2011-01-01

    Malaria caused by Plasmodium falciparum infection is one of the major threats to world health and especially to the community without proper medical care. New approach to cost-efficient, portable, miniaturized diagnostic ...

  17. Passive mm-wave technique for diagnostics of deep oceanic processes and underwater objects

    SciTech Connect

    Cherny, I.V.; Chernyavskiy, G.M.

    1994-12-31

    The paper describes the significant results of shipboard and airborne studies of some oceanic processes by means of multispectral mm-wave technique. The remote sensing data and in-situ measurements are analyzed. The qualitative model for possibility of microwave diagnostics of the deep oceanic processes is discussed. This paper presents some experimental results, obtained in North Western Pacific on microwave observing the precipitation influence on sub-surface ocean layer, synoptical eddies and frontal zone of Kuroshio current. All these processes are characterized by high-contrast spectral variations of sea surface brightness temperature at microwave, that allows to classify them.

  18. Biased Processing of Ambiguous Symptoms Favors the Initially Leading Hypothesis in Sequential Diagnostic Reasoning.

    PubMed

    Rebitschek, Felix G; Bocklisch, Franziska; Scholz, Agnes; Krems, Josef F; Jahn, Georg

    2015-11-01

    In sequential diagnostic reasoning, observed pieces of evidence activate hypotheses in memory and are integrated to reach a final diagnosis. The order of evidence can influence diagnostic reasoning. This article examines the processing of ambiguous evidence underlying order effects if multiple hypotheses are activated. In five experiments with a quasi-medical scenario, participants dealt with symptom sequences supporting multiple diagnoses. The symptom order, the response mode (end-of-sequence, step-by-step), and the consistency of evidence were manipulated. A primacy order effect occurred with both response modes suggesting that ambiguous pieces of evidence were distorted toward the hypothesis that strongly corresponded with the first piece. The primacy effect was partially counteracted by stepwise belief ratings, which strengthened the weight of recent evidence and promoted switching to an alternative diagnosis. We conclude that once hypotheses are generated, the interplay of coherence-oriented information distortion and memory-dependent analytic processes propagates into distinct order effects in diagnoses. PMID:26138302

  19. Theoretical studies of nonadiabatic and spin-forbidden processes: Investigations of the reactions and spectroscopy of radical species relevant to combustion reactions and diagnostics

    SciTech Connect

    Yarkony, D.R.

    1993-12-01

    This research program focusses on studies of spin-forbidden and electronically nonadiabatic processes involving radical species relevant to combustion reactions and combustion diagnostics. To study the electronic structure aspects of these processes a unique and powerful system of electronic structure programs, developed over the past nine years, the BROOKLYN codes, is employed. These programs enable the authors to address questions basic to the understanding of elementary combustion processes not tractable using more standard quantum chemistry codes.

  20. Clementine Sensor Processing System

    NASA Technical Reports Server (NTRS)

    Feldstein, A. A.

    1993-01-01

    The design of the DSPSE Satellite Controller (DSC) is baselined as a single-string satellite controller. The DSC performs two main functions: health and maintenance of the spacecraft; and image capture, storage, and playback. The DSC contains two processors: a radiation-hardened Mil-Std-1750, and a commercial R3000. The Mil-Std-1750 processor performs all housekeeping operations, while the R3000 is mainly used to perform the image processing functions associated with the navigation functions, as well as performing various experiments. The DSC also contains a data handling unit (DHU) used to interface to various spacecraft imaging sensors and to capture, compress, and store selected images onto the solid-state data recorder. The development of the DSC evolved from several key requirements; the DSPSE satellite was to do the following: (1) have a radiation-hardened spacecraft control system and be immune to single-event upsets (SEU's); (2) use an R3000-based processor to run the star tracker software that was developed by SDIO (due to schedule and cost constraints, there was no time to port the software to a radiation-hardened processor); and (3) fly a commercial processor to verify its suitability for use in a space environment. In order to enhance the DSC reliability, the system was designed with multiple processing paths. These multiple processing paths provide for greater tolerance to various component failures. The DSC was designed so that all housekeeping processing functions are performed by either the Mil-Std-1750 processor or the R3000 processor. The image capture and storage is performed either by the DHU or the R3000 processor.

  1. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  2. Automated high-throughput flow-through real-time diagnostic system

    DOEpatents

    Regan, John Frederick

    2012-10-30

    An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.

  3. Real-time Optical Alignment and Diagnostic System (ROADS)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The ultimate and most frequent usage of ROADS will be the alignment of subassemblies (collector and collimator) prior to their installation in a chamber. The system as designed has inherent associated capabilities well applied to acceptance testing of the No. 4 mirror, prediction of in-chamber performance, generation of a catalog of test results and other data, providing data for the plotting of isointensity lines, and other applications which are discussed. The ROADS system will collect, process, display, analyze, and retain data as required for components, partial subassemblies, complete subassemblies, complete modules, and multimodular arrays.

  4. Conversion-Integration of MSFC Nonlinear Signal Diagnostic Analysis Algorithms for Realtime Execution of MSFC's MPP Prototype System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    NASA's advanced propulsion system Small Scale Magnetic Disturbances/Advanced Technology Development (SSME/ATD) has been undergoing extensive flight certification and developmental testing, which involves large numbers of health monitoring measurements. To enhance engine safety and reliability, detailed analysis and evaluation of the measurement signals are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce the risk of catastrophic system failures and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. During the development of SSME, ASRI participated in the research and development of several advanced non- linear signal diagnostic methods for health monitoring and failure prediction in turbomachinery components. However, due to the intensive computational requirement associated with such advanced analysis tasks, current SSME dynamic data analysis and diagnostic evaluation is performed off-line following flight or ground test with a typical diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype System is to eliminate such 'diagnostic lag time' by achieving signal processing and analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate corrective action and also to enable efficient scheduling of inspection, maintenance and repair activities. The major objective of this project was to convert and implement a number of advanced nonlinear diagnostic DSP algorithms in a format consistent with that required for integration into the Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment. This effort will allow the real-time execution of these algorithms using the MSFC MPP Prototype System. ASRI has completed the software conversion and integration of a sequence of nonlinear signal analysis techniques specified in the SOW for real-time execution on MSFC's MPP Prototype. This report documents and summarizes the results of the contract tasks; provides the complete computer source code; including all FORTRAN/C Utilities; and all other utilities/supporting software libraries that are required for operation.

  5. Medical diagnostic decision support systems--past, present, and future: a threaded bibliography and brief commentary.

    PubMed Central

    Miller, R A

    1994-01-01

    Articles about medical diagnostic decision support (MDDS) systems often begin with a disclaimer such as, "despite many years of research and millions of dollars of expenditures on medical diagnostic systems, none is in widespread use at the present time." While this statement remains true in the sense that no single diagnostic system is in widespread use, it is misleading with regard to the state of the art of these systems. Diagnostic systems, many simple and some complex, are now ubiquitous, and research on MDDS systems is growing. The nature of MDDS systems has diversified over time. The prospects for adoption of large-scale diagnostic systems are better now than ever before, due to enthusiasm for implementation of the electronic medical record in academic, commercial, and primary care settings. Diagnostic decision support systems have become an established component of medical technology. This paper provides a review and a threaded bibliography for some of the important work on MDDS systems over the years from 1954 to 1993. PMID:7719792

  6. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  7. Mars Aqueous Processing System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    The goal of the Mars Aqueous Processing System (MAPS) is to establish a flexible process that generates multiple products that are useful for human habitation. Selectively extracting useful components into an aqueous solution, and then sequentially recovering individual constituents, can obtain a suite of refined or semi-refined products. Similarities in the bulk composition (although not necessarily of the mineralogy) of Martian and Lunar soils potentially make MAPS widely applicable. Similar process steps can be conducted on both Mars and Lunar soils while tailoring the reaction extents and recoveries to the specifics of each location. The MAPS closed-loop process selectively extracts, and then recovers, constituents from soils using acids and bases. The emphasis on Mars involves the production of useful materials such as iron, silica, alumina, magnesia, and concrete with recovery of oxygen as a byproduct. On the Moon, similar chemistry is applied with emphasis on oxygen production. This innovation has been demonstrated to produce high-grade materials, such as metallic iron, aluminum oxide, magnesium oxide, and calcium oxide, from lunar and Martian soil simulants. Most of the target products exhibited purities of 80 to 90 percent or more, allowing direct use for many potential applications. Up to one-fourth of the feed soil mass was converted to metal, metal oxide, and oxygen products. The soil residue contained elevated silica content, allowing for potential additional refining and extraction for recovery of materials needed for photovoltaic, semiconductor, and glass applications. A high-grade iron oxide concentrate derived from lunar soil simulant was used to produce a metallic iron component using a novel, combined hydrogen reduction/metal sintering technique. The part was subsequently machined and found to be structurally sound. The behavior of the lunar-simulant-derived iron product was very similar to that produced using the same methods on a Michigan iron ore concentrate, which demonstrates that lunar-derived material can be used in a manner similar to conventional terrestrial iron. Metallic iron was also produced from the Mars soil simulant. The aluminum and magnesium oxide products produced by MAPS from lunar and Mars soil simulants exhibited excellent thermal stability, and were shown to be capable of use for refractory oxide structural materials, or insulation at temperatures far in excess of what could be achieved using unrefined soils. These materials exhibited the refractory characteristics needed to support iron casting and forming operations, as well as other thermal processing needs. Extraction residue samples contained up to 79 percent silica. Such samples were successfully fused into a glass that exhibited high light transmittance.

  8. A Microscopic Telepathology System for Multiresolution Computer-Aided Diagnostics

    E-print Network

    Rivlin, Ehud

    in the United States. The diagnostics of prostate carcinoma involves pathology analysis of prostate tissue, Michael Pechuk, Ehud Rivlin Department of Computer Science, Technion ­ Israel Institute of Technology Island Hospital and Brown School of Medicine, Providence, Rhode Island esabo@lifespan.org Abstract

  9. Improved television signal processing system

    NASA Technical Reports Server (NTRS)

    Wong, R. Y.

    1967-01-01

    Digital system processes spacecraft television pictures by converting images sensed on a photostorage vidicon to pulses which can be transmitted by telemetry. This system can be applied in the processing of medical X ray photographs and in electron microscopy.

  10. Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms

    PubMed Central

    Masood, Ammara; Al-Jumaily, Adel Ali

    2013-01-01

    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. PMID:24575126

  11. A fully automated in vitro diagnostic system based on magnetic tunnel junction arrays and superparamagnetic particles

    NASA Astrophysics Data System (ADS)

    Lian, Jie; Chen, Si; Qiu, Yuqin; Zhang, Suohui; Shi, Stone; Gao, Yunhua

    2012-04-01

    A fully automated in vitro diagnostic (IVD) system for diagnosing acute myocardial infarction was developed using high sensitivity MTJ array as sensors and nano-magnetic particles as tags. On the chip is an array of 12 × 106 MTJ devices integrated onto a 3 metal layer CMOS circuit. The array is divided into 48 detection areas, therefore 48 different types of bio targets can be analyzed simultaneously if needed. The chip is assembled with a micro-fluidic cartridge which contains all the reagents necessary for completing the assaying process. Integrated with electrical, mechanical and micro-fluidic pumping devices and with the reaction protocol programed in a microprocessor, the system only requires a simple one-step analyte application procedure to operate and yields results of the three major AMI bio-markers (cTnI, MYO, CK-MB) in 15 mins.

  12. Target diagnostic control system implementation for the National Ignition Facility (invited)a)

    NASA Astrophysics Data System (ADS)

    Shelton, R. T.; Kamperschroer, J. H.; Lagin, L. J.; Nelson, J. R.; O'Brien, D. W.

    2010-10-01

    The extreme physics of targets shocked by NIF's 192-beam laser is observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A diagnostic control system (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost WINDOWS XP processor and JAVA application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The JAVA framework provides data management, control services, and operator graphical user interface generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in extensible markup language. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.

  13. Use of the target diagnostic control system in the National Ignition Facility

    SciTech Connect

    Shelton, R; Lagin, L; Nelson, J

    2011-07-25

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

  14. Target diagnostic control system implementation for the National Ignition Facility (invited)

    SciTech Connect

    Shelton, R. T.; Kamperschroer, J. H.; Lagin, L. J.; Nelson, J. R.; O'Brien, D. W.

    2010-10-15

    The extreme physics of targets shocked by NIF's 192-beam laser is observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A diagnostic control system (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost WINDOWS XP processor and JAVA application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The JAVA framework provides data management, control services, and operator graphical user interface generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in extensible markup language. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.

  15. In Depth Diagnostics for RF System Operation in the PEP-II B Factory

    SciTech Connect

    Van Winkle, Daniel; Fox, John; Teytelman, Dmitry; /SLAC

    2005-05-27

    The PEP-II RF systems incorporate numerous feedback loops in the low-level processing for impedance control and operating point regulation. The interaction of the multiple loops with the beam is complicated, and the systems incorporate online diagnostic tools to configure the feedback loops as well as to record fault files in the case of an RF abort. Rapid and consistent analysis of the RF-related beam aborts and other failures is critical to the reliable operation of the B-Factory, especially at the recently achieved high beam currents. Procedures and algorithms used to extract diagnostic information from time domain fault files are presented and illustrated via example interpretations of PEP-II fault file data. Example faults presented will highlight the subtle interpretation required to determine the root cause. Some such examples are: abort kicker firing asynchronously, klystron and cavity arcs, beam loss leading to longitudinal instability, tuner read back jumps and poorly configured low-level RF feedback loop.

  16. Shifting Diagnostic Systems for Defining Intellectual Disability in Death Penalty Cases: Hall vs. Florida.

    PubMed

    Mukherjee, Mina; Westphal, Alexander

    2015-07-01

    The case of Hall vs. Florida tested Florida's so called "bright line rule" in determining intellectual disability in capital cases. The Supreme Court Decision reflects a more general trend from categorical to dimensional approaches in psychiatric diagnostic systems. PMID:25663625

  17. Shifting Diagnostic Systems for Defining Intellectual Disability in Death Penalty Cases: Hall vs. Florida

    ERIC Educational Resources Information Center

    Mukherjee, Mina; Westphal, Alexander

    2015-01-01

    The case of Hall vs. Florida tested Florida's so called "bright line rule" in determining intellectual disability in capital cases. The Supreme Court Decision reflects a more general trend from categorical to dimensional approaches in psychiatric diagnostic systems.

  18. Nano-bio Hybrid Materials for a New Generation of High-throughput Diagnostic Systems

    NASA Astrophysics Data System (ADS)

    Nabiev, Igor

    Nano-bio hybrid materials obtained by conjugation of capture molecules and plasmonic (metal) or excitonic (semiconductor) nanocrystals or microspheres encoded with fluorescent semiconductor nanocrystals of different colors are the basis for development of a new generation of high-throughput diagnostic systems. Here, the general principles of development of "ideal" diagnostic nanoprobes based on oriented conjugates of capture molecules with the nanoparticles of different chemical compositions or with optically encoded microspheres are summarized and the basic requirements for individual components of the photonic nanoprobes being developed are discussed in the context of ensuring their advantages over the existing photonic diagnostic systems.

  19. Persistence, Diagnostic Specificity and Genetic Liability For Context-processing Deficits In Schizophrenia

    PubMed Central

    Richard, Annette E.; Carter, Cameron S.; Cohen, Jonathan D.; Cho, Raymond Y.

    2013-01-01

    Context-processing deficits have been shown in schizophrenia during first-episode, medication-naïve status, that persist after short-term antipsychotic treatment and also in first-degree relatives of individuals with schizophrenia. To confirm longer term persistence of deficits, we examined schizophrenia patients (n=63) during first-episode, medication-naïve status through to one-year follow-up, compared to healthy control (n=83) and non-schizophrenia psychosis comparison (n=47) groups, as well as unaffected first-degree relatives of individuals with schizophrenia (n=31). Context-processing ability assessed by performance on the AX-CPT (Continuous Performance Test) at baseline, 8 weeks, 6 months, and 1 year (relatives only at baseline). Reaction time, error rates and signal detection indices (d?-context) of context processing were analyzed. Linear discriminant analyses (LDA) on early timepoints (baseline, 8 weeks) were conducted to predict confirmatory diagnosis (schizophrenia vs. psychosis control) at 6 months. Schizophrenia patients showed evidence of impaired context-processing relative to both the healthy and psychosis comparator groups at baseline and continued through to 1 year. While context-processing impairments persisted in schizophrenia patients through one year, the impairments in psychosis controls, which were more modest at baseline, remitted at follow-up. First-degree relatives showed deficits that were intermediate between the schizophrenia and healthy control groups. LDA showed 67% classification rates for distinguishing schizophrenia from non-schizophrenia psychosis. The persistence, diagnostic specificity and association with genetic liability give support for context processing impairments serving as a cognitive endophenotype for schizophrenia and that evaluation of context processing could contribute to diagnostic assessments. PMID:23570894

  20. VUV diagnostic of electron impact processes in low temperature molecular hydrogen plasma

    E-print Network

    Komppula, J

    2015-01-01

    Novel methods for diagnostics of molecular hydrogen plasma processes, such as ionization, production of high vibrational levels, dissociation of molecules via excitation to singlet and triplet states and production of metastable states, are presented for molecular hydrogen plasmas in corona equilibrium. The methods are based on comparison of rate coefficients of plasma processes and optical emission spectroscopy of lowest singlet and triplet transitions, i.e. Lyman-band ($B^1\\Sigma^+_u \\rightarrow X^1\\Sigma^+_g$) and molecular continuum ($a^3\\Sigma^+_g \\rightarrow b^3\\Sigma^+_u$), of the hydrogen molecule in VUV wavelength range. Comparison of rate coefficients of spin-allowed and/or spin-forbidden excitations reduces the uncertainty caused by the non-equilibrium distributions of electron energy and molecular vibrational level, which are typically known poorly in plasma sources. The described methods are applied to estimate the rates of various plasma processes in a filament arc discharge.

  1. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marquès, J. L.; Schein, J.

    2014-11-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties.

  2. Central waste processing system

    NASA Technical Reports Server (NTRS)

    Kester, F. L.

    1973-01-01

    A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.

  3. A vibroacoustic diagnostic system as an element improving road transport safety.

    PubMed

    Komorska, Iwona

    2013-01-01

    Mechanical defects of a vehicle driving system can be dangerous on the road. Diagnostic systems, which monitor operations of electric and electronic elements and devices of vehicles, are continuously developed and improved, while defects of mechanical systems are still not managed properly. This article proposes supplementing existing on-board diagnostics with a system of diagnosing selected defects to minimize their impact. It presents a method of diagnosing mechanical defects of the engine, gearbox and other elements of the driving system on the basis of a model of the vibration signal obtained adaptively. This method is suitable for engine valves, engine head gasket, main gearbox, joints, etc. PMID:24034880

  4. A Diagnostic System for Studying Energy Partitioning and Assessing the Response of the Ionosphere during HAARP Modification Experiments

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.; Elder, John H.; Williams, Kenneth L.

    1996-01-01

    This research program focused on the construction of several key radio wave diagnostics in support of the HF Active Auroral Ionospheric Research Program (HAARP). Project activities led to the design, development, and fabrication of a variety of hardware units and to the development of several menu-driven software packages for data acquisition and analysis. The principal instrumentation includes an HF (28 MHz) radar system, a VHF (50 MHz) radar system, and a high-speed radar processor consisting of three separable processing units. The processor system supports the HF and VHF radars and is capable of acquiring very detailed data with large incoherent scatter radars. In addition, a tunable HF receiver system having high dynamic range was developed primarily for measurements of stimulated electromagnetic emissions (SEE). A separate processor unit was constructed for the SEE receiver. Finally, a large amount of support instrumentation was developed to accommodate complex field experiments. Overall, the HAARP diagnostics are powerful tools for studying diverse ionospheric modification phenomena. They are also flexible enough to support a host of other missions beyond the scope of HAARP. Many new research programs have been initiated by applying the HAARP diagnostics to studies of natural atmospheric processes.

  5. Computer-Based Diagnostic Expert Systems in Rheumatology: Where Do We Stand in 2014?

    PubMed Central

    Alder, Hannes; Michel, Beat A.; Marx, Christian; Tamborrini, Giorgio; Langenegger, Thomas; Bruehlmann, Pius; Steurer, Johann; Wildi, Lukas M.

    2014-01-01

    Background. The early detection of rheumatic diseases and the treatment to target have become of utmost importance to control the disease and improve its prognosis. However, establishing a diagnosis in early stages is challenging as many diseases initially present with similar symptoms and signs. Expert systems are computer programs designed to support the human decision making and have been developed in almost every field of medicine. Methods. This review focuses on the developments in the field of rheumatology to give a comprehensive insight. Medline, Embase, and Cochrane Library were searched. Results. Reports of 25 expert systems with different design and field of application were found. The performance of 19 of the identified expert systems was evaluated. The proportion of correctly diagnosed cases was between 43.1 and 99.9%. Sensitivity and specificity ranged from 62 to 100 and 88 to 98%, respectively. Conclusions. Promising diagnostic expert systems with moderate to excellent performance were identified. The validation process was in general underappreciated. None of the systems, however, seemed to have succeeded in daily practice. This review identifies optimal characteristics to increase the survival rate of expert systems and may serve as valuable information for future developments in the field. PMID:25114683

  6. Halo current diagnostic system of experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Sun, Y.; Qian, J. P.; Wang, Y.; Xiao, B. J.

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  7. Evaluation of a vibration diagnostic system for the detection of spur gear pitting failures

    SciTech Connect

    Townsend, D.P.; Zakrajsek, J.J.

    1993-06-01

    A vibration diagnostic system was used to detect spur gear surface pitting fatigue in a closed-loop spur gear fatigue test rig. The diagnostic system, comprising a personal computer with an analog-to-digital conversion board, a diagnostic system unit, and software, uses time-synchronous averaging of the vibration signal to produce a vibration image of each tooth on any gear in a transmission. Several parameters were analyzed including gear pair stress wave and raw baseband vibration, kurtosis, peak ratios, and others. The system provides limits for the various parameters and gives a warning when the limits are exceeded. Several spur gear tests were conducted with this system and vibration data analyzed at 5-min. intervals. The results presented herein show that the system is fairly effective at detecting spur gear tooth surface fatigue pitting failures. 4 refs.

  8. Evaluation of a vibration diagnostic system for the detection of spur gear pitting failures

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Zakrajsek, James J.

    1993-01-01

    A vibration diagnostic system was used to detect spur gear surface pitting fatigue in a closed-loop spur gear fatigue test rig. The diagnostic system, comprising a personal computer with an analog-to-digital conversion board, a diagnostic system unit, and software, uses time-synchronous averaging of the vibration signal to produce a vibration image of each tooth on any gear in a transmission. Several parameters were analyzed including gear pair stress wave and raw baseband vibration, kurtosis, peak ratios, and others. The system provides limits for the various parameters and gives a warning when the limits are exceeded. Several spur gear tests were conducted with this system and vibration data analyzed at 5-min. intervals. The results presented herein show that the system is fairly effective at detecting spur gear tooth surface fatigue pitting failures.

  9. An evidence-based diagnostic classification system for low back pain

    PubMed Central

    Vining, Robert; Potocki, Eric; Seidman, Michael; Morgenthal, A. Paige

    2013-01-01

    Introduction: While clinicians generally accept that musculoskeletal low back pain (LBP) can arise from specific tissues, it remains difficult to confirm specific sources. Methods: Based on evidence supported by diagnostic utility studies, doctors of chiropractic functioning as members of a research clinic created a diagnostic classification system, corresponding exam and checklist based on strength of evidence, and in-office efficiency. Results: The diagnostic classification system contains one screening category, two pain categories: Nociceptive, Neuropathic, one functional evaluation category, and one category for unknown or poorly defined diagnoses. Nociceptive and neuropathic pain categories are each divided into 4 subcategories. Conclusion: This article describes and discusses the strength of evidence surrounding diagnostic categories for an in-office, clinical exam and checklist tool for LBP diagnosis. The use of a standardized tool for diagnosing low back pain in clinical and research settings is encouraged. PMID:23997245

  10. Active spectroscopic measurements using the ITER diagnostic system.

    PubMed

    Thomas, D M; Counsell, G; Johnson, D; Vasu, P; Zvonkov, A

    2010-10-01

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale (?1?h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER. PMID:21033918

  11. Active spectroscopic measurements using the ITER diagnostic system

    SciTech Connect

    Thomas, D. M.; Counsell, G.; Johnson, D.; Vasu, P.; Zvonkov, A.

    2010-10-15

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale ({approx}1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

  12. Attitude Determination and Control System (ADCS) and Maintenance and Diagnostic System (MDS): A maintenance and diagnostic system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Toms, David; Hadden, George D.; Harrington, Jim

    1990-01-01

    The Maintenance and Diagnostic System (MDS) that is being developed at Honeywell to enhance the Fault Detection Isolation and Recovery system (FDIR) for the Attitude Determination and Control System on Space Station Freedom is described. The MDS demonstrates ways that AI-based techniques can be used to improve the maintainability and safety of the Station by helping to resolve fault anomalies that cannot be fully determined by built-in-test, by providing predictive maintenance capabilities, and by providing expert maintenance assistance. The MDS will address the problems associated with reasoning about dynamic, continuous information versus only about static data, the concerns of porting software based on AI techniques to embedded targets, and the difficulties associated with real-time response. An initial prototype was built of the MDS. The prototype executes on Sun and IBM PS/2 hardware and is implemented in the Common Lisp; further work will evaluate its functionality and develop mechanisms to port the code to Ada.

  13. Cloud-based Identity and Access Control for Diagnostic Imaging Systems

    E-print Network

    Sartipi, Kamran

    of diagnostic imaging (DI) systems. Migrating DI systems to cloud platform is cost-effective and improves, cloud computing is becoming a preferred solution for image sharing over the Internet using external services, OpenID Connect does not define a method of enforcing fine-grained system access control polices

  14. The Kwasan Image Processing System.

    NASA Astrophysics Data System (ADS)

    Nakai, Y.; Kitai, R.; Asada, T.; Iwasaki, K.

    The Kwasan Image Processing System is a general purpose interactive image processing and analyzing system designed to process a large amount of photographic and photoelectric data. The hardware of the system mainly consists of a PDS MICRO-10 microdensitometer, a VAX-11/750 minicomputer, a 456 M bytes Winchester disk and a VS11 color-graphic terminal. The application programs "PDS, KIPS, STII" enable users to analyze spectrographic plates and two-dimensional images without site-special knowledge of programming.

  15. The Diagnostic Challenge Competition: Probabilistic Techniques for Fault Diagnosis in Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Reliable systems health management is an important research area of NASA. A health management system that can accurately and quickly diagnose faults in various on-board systems of a vehicle will play a key role in the success of current and future NASA missions. We introduce in this paper the ProDiagnose algorithm, a diagnostic algorithm that uses a probabilistic approach, accomplished with Bayesian Network models compiled to Arithmetic Circuits, to diagnose these systems. We describe the ProDiagnose algorithm, how it works, and the probabilistic models involved. We show by experimentation on two Electrical Power Systems based on the ADAPT testbed, used in the Diagnostic Challenge Competition (DX 09), that ProDiagnose can produce results with over 96% accuracy and less than 1 second mean diagnostic time.

  16. Refining process representation in high-resolution models of headwater catchments using internal catchment diagnostics

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; McGlynn, B. L.; Wagener, T.

    2014-12-01

    As the complexity of the problems we seek to address with process-based models continues to increase, our approaches to improving confidence in our predictions must keep pace. Process-based, distributed models have been applied in headwater catchments to address many different objectives, all of which are linked by their reliance on the selection of a catchment-representative parameter set or sets. While these parameter sets are typically obtained through calibration to the streamflow hydrograph, it is widely acknowledged that there is often insufficient information in the hydrograph to effectively address parameter equifinality. Here, we suggest that optimal parameter sets can be obtained with an additional step in the calibration process that considers the spatial representation of internal catchment behavior (e.g. space-time distributions of evapotranspiration, water table depth, presence of overland flow, soil water). Modeled internal catchment behavior is an under-utilized but valuable source of information for separating plausible from unlikely model scenarios. We demonstrate how spatial patterns of hydrologic states and fluxes across annual, seasonal, and event time scales can improve the calibration process and reduce likely parameter sets. Our approach is applied to an extensively monitored headwater catchment in Tenderfoot Creek Experimental Forest in central Montana, simulated using the Distributed Hydrology-Soil-Vegetation Model. Consideration of spatial diagnostics in the calibration process has great potential to ensure a holistic representation of catchment dynamics as well as to increase confidence in conclusions from these types of modeling applications.

  17. Diagnostic Overshadowing and Other Challenges Involved in the Diagnostic Process of Patients with Mental Illness Who Present in Emergency Departments with Physical Symptoms – A Qualitative Study

    PubMed Central

    Shefer, Guy; Henderson, Claire; Howard, Louise M.; Murray, Joanna; Thornicroft, Graham

    2014-01-01

    We conducted a qualitative study in the Emergency Departments (EDs) of four hospitals in order to investigate the perceived scope and causes of ‘diagnostic overshadowing’ – the misattribution of physical symptoms to mental illness – and other challenges involved in the diagnostic process of people with mental illness who present in EDs with physical symptoms. Eighteen doctors and twenty-one nurses working in EDs and psychiatric liaisons teams in four general hospitals in the UK were interviewed. Interviewees were asked about cases in which mental illness interfered with diagnosis of physical problems and about other aspects of the diagnostic process. Interviews were transcribed and analysed thematically. Interviewees reported various scenarios in which mental illness or factors related to it led to misdiagnosis or delayed treatment with various degrees of seriousness. Direct factors which may lead to misattribution in this regard are complex presentations or aspects related to poor communication or challenging behaviour of the patient. Background factors are the crowded nature of the ED environment, time pressures and targets and stigmatising attitudes held by a minority of staff. The existence of psychiatric liaison team covering the ED twenty-four hours a day, seven days a week, can help reduce the risk of misdiagnosis of people with mental illness who present with physical symptoms. However, procedures used by emergency and psychiatric liaison staff require fuller operationalization to reduce disagreement over where responsibilities lie. PMID:25369130

  18. Development of procedures to ensure quality and integrity in Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics systems

    SciTech Connect

    Coutts, G.W.; Coon, M.L.; Hinz, A.F.; Hornady, R.S.; Lang, D.D.; Lund, N.P.

    1983-11-30

    The diagnostic systems for Tandem Mirror Experiment-Upgrade (TMX-U) have grown from eleven initial systems to more than twenty systems. During operation, diagnostic system modifications are sometimes required to complete experimental objectives. Also, during operations new diagnostic systems are being developed and implemented. To ensure and maintain the quality and integrity of the data signals, a set of plans and systematic actions are being developed. This paper reviews the procedures set in place to maintain the integrity of existing data systems and ensure the performance objectives of new diagnostics being added.

  19. The possibilities of improvement in the sensitivity of cancer fluorescence diagnostics by computer image processing

    NASA Astrophysics Data System (ADS)

    Ledwon, Aleksandra; Bieda, Robert; Kawczyk-Krupka, Aleksandra; Polanski, Andrzej; Wojciechowski, Konrad; Latos, Wojciech; Sieron-Stoltny, Karolina; Sieron, Aleksander

    2008-02-01

    Background: Fluorescence diagnostics uses the ability of tissues to fluoresce after exposition to a specific wavelength of light. The change in fluorescence between normal and progression to cancer allows to see early cancer and precancerous lesions often missed by white light. Aim: To improve by computer image processing the sensitivity of fluorescence images obtained during examination of skin, oral cavity, vulva and cervix lesions, during endoscopy, cystoscopy and bronchoscopy using Xillix ONCOLIFE. Methods: Function of image f(x,y):R2 --> R 3 was transformed from original color space RGB to space in which vector of 46 values refers to every point labeled by defined xy-coordinates- f(x,y):R2 --> R 46. By means of Fisher discriminator vector of attributes of concrete point analalyzed in the image was reduced according to two defined classes defined as pathologic areas (foreground) and healthy areas (background). As a result the highest four fisher's coefficients allowing the greatest separation between points of pathologic (foreground) and healthy (background) areas were chosen. In this way new function f(x,y):R2 --> R 4 was created in which point x,y corresponds with vector Y, H, a*, c II. In the second step using Gaussian Mixtures and Expectation-Maximisation appropriate classificator was constructed. This classificator enables determination of probability that the selected pixel of analyzed image is a pathologically changed point (foreground) or healthy one (background). Obtained map of probability distribution was presented by means of pseudocolors. Results: Image processing techniques improve the sensitivity, quality and sharpness of original fluorescence images. Conclusion: Computer image processing enables better visualization of suspected areas examined by means of fluorescence diagnostics.

  20. Knowledge based jet engine diagnostics

    NASA Technical Reports Server (NTRS)

    Jellison, Timothy G.; Dehoff, Ronald L.

    1987-01-01

    A fielded expert system automates equipment fault isolation and recommends corrective maintenance action for Air Force jet engines. The knowledge based diagnostics tool was developed as an expert system interface to the Comprehensive Engine Management System, Increment IV (CEMS IV), the standard Air Force base level maintenance decision support system. XMAM (trademark), the Expert Maintenance Tool, automates procedures for troubleshooting equipment faults, provides a facility for interactive user training, and fits within a diagnostics information feedback loop to improve the troubleshooting and equipment maintenance processes. The application of expert diagnostics to the Air Force A-10A aircraft TF-34 engine equipped with the Turbine Engine Monitoring System (TEMS) is presented.

  1. Note: Neutron bang time diagnostic system on Shenguang-III prototype

    SciTech Connect

    Tang, Qi; Chen, Jiabin; Liu, Zhongjie; Zhan, Xiayu; Song, Zifeng

    2014-04-15

    A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.

  2. A balanced diagnostic system compatible with a barotropic prognostic model. [for weather forecasting

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Shkoller, B.; Yangarber, V.

    1977-01-01

    A system of diagnostic equations for the velocity field, or wind laws, for a barotropic primitive-equation model of large-scale atmospheric flow is derived. Attention is given to the classical balance equation and its ellipticity condition. Numerical solutions of the diagnostic system are presented, including examples of cases of the mixed elliptic-hyperbolic type and cases with non-zero divergence. Procedures for implementing such a system are outlined, along with a review of factors in using the technique for operational numerical weather prediction.

  3. Data processing for soft X-ray diagnostics based on GEM detector measurements for fusion plasma imaging

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2015-12-01

    The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.

  4. Decentralized diagnostics based on a distributed micro-genetic algorithm for transducer networks monitoring large experimental systems

    NASA Astrophysics Data System (ADS)

    Arpaia, P.; Cimmino, P.; Girone, M.; Commara, G. La; Maisto, D.; Manna, C.; Pezzetti, M.

    2014-09-01

    Evolutionary approach to centralized multiple-faults diagnostics is extended to distributed transducer networks monitoring large experimental systems. Given a set of anomalies detected by the transducers, each instance of the multiple-fault problem is formulated as several parallel communicating sub-tasks running on different transducers, and thus solved one-by-one on spatially separated parallel processes. A micro-genetic algorithm merges evaluation time efficiency, arising from a small-size population distributed on parallel-synchronized processors, with the effectiveness of centralized evolutionary techniques due to optimal mix of exploitation and exploration. In this way, holistic view and effectiveness advantages of evolutionary global diagnostics are combined with reliability and efficiency benefits of distributed parallel architectures. The proposed approach was validated both (i) by simulation at CERN, on a case study of a cold box for enhancing the cryogeny diagnostics of the Large Hadron Collider, and (ii) by experiments, under the framework of the industrial research project MONDIEVOB (Building Remote Monitoring and Evolutionary Diagnostics), co-funded by EU and the company Del Bo srl, Napoli, Italy.

  5. Diagnostic Solution Assistant cornerstone for intelligent system monitoring, management, analysis and administration

    NASA Astrophysics Data System (ADS)

    Aaseng, Gordon; Holland, Courtney; Nelson, Bill

    2000-01-01

    The Diagnostic Solution Assistant (DSA) provides diagnostics for space hardware and subsystems. Advanced Honewell `smart' model-based technology performs the real-time fault detection, isolation and diagnostics. This model-based technology provides 24-hour access to the operational knowledge of the system experts. The complexity of the International Space Station (ISS) and other manned space vehicles requires that a full staff of ground based system diagnosis experts be trained and available at all times. Response to critical situations must be immediate no matter what time of the day or night. Installation of new systems plus normal staff turnover cause personnel to be in training constantly. Domain knowledge lost due to staff attrition may also never be regained. All of these factors lead to higher cost ground based flight system monitoring stations and sub-optimal efficiency. The Diagnostic Solution Assistant (DSA) provides a solution to these issues. The DSA can be deployed into the ISS Mission Control Center to enhance Flight Controller awareness and decision making. DSA can be utilized onboard the vehicle to enhance crew awareness and potentially offload the crew in time- or safety-critical situations. The DSA can be used to isolate and diagnose faults during flight preparation, thus reducing the overall vehicle turn-around time. In addition to having diagnostic capability, DSA is a tremendous requirements and operations knowledge capture tool that could streamline training for the flight controller and crew, and facilitate the rapid location of important information. .

  6. An integrated real-time diagnostic concept using expert systems, qualitative reasoning and quantitative analysis

    SciTech Connect

    Edwards, R.M.; Lee, K.Y.; Kumara, S.; Levine, S.H.

    1989-01-01

    An approach for an integrated real-time diagnostic system is being developed for inclusion as an integral part of a power plant automatic control system. In order to participate in control decisions and automatic closed loop operation, the diagnostic system must operate in real-time. Thus far, an expert system with real-time capabilities has been developed and installed on a subsystem at the Experimental Breeder Reactor (EBR-II) in Idaho, USA. Real-time simulation testing of advanced power plant concepts at the Pennsylvania State University has been developed and was used to support the expert system development and installation at EBR-II. Recently, the US National Science Foundation (NSF) and the US Department of Energy (DOE) have funded a Penn State research program to further enhance application of real-time diagnostic systems by pursuing implementation in a distributed power plant computer system including microprocessor based controllers. This paper summarizes past, current, planned, and possible future approaches to power plant diagnostic systems research at Penn State. 34 refs., 9 figs.

  7. Diagnostic and prognostic histopathology system using morphometric indices

    DOEpatents

    Parvin, Bahram; Chang, Hang; Han, Ju; Fontenay, Gerald V

    2015-05-12

    Determining at least one of a prognosis or a therapy for a patient based on a stained tissue section of the patient. An image of a stained tissue section of a patient is processed by a processing device. A set of features values for a set of cell-based features is extracted from the processed image, and the processed image is associated with a particular cluster of a plurality of clusters based on the set of feature values, where the plurality of clusters is defined with respect to a feature space corresponding to the set of features.

  8. Digital TV processing system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two digital video data compression systems directly applicable to the Space Shuttle TV Communication System were described: (1) For the uplink, a low rate monochrome data compressor is used. The compression is achieved by using a motion detection technique in the Hadamard domain. To transform the variable source rate into a fixed rate, an adaptive rate buffer is provided. (2) For the downlink, a color data compressor is considered. The compression is achieved first by intra-color transformation of the original signal vector, into a vector which has lower information entropy. Then two-dimensional data compression techniques are applied to the Hadamard transformed components of this last vector. Mathematical models and data reliability analyses were also provided for the above video data compression techniques transmitted over a channel encoded Gaussian channel. It was shown that substantial gains can be achieved by the combination of video source and channel coding.

  9. Design predictions and diagnostic test methods for hydronic heating systems in ASHRAE standard 152P

    SciTech Connect

    Andrews, J.W.

    1996-04-01

    A new method of test for residential thermal distribution efficiency is currently being developed under the auspices of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). The initial version of this test method is expected to have two main approaches, or ``pathways,`` designated Design and Diagnostic. The Design Pathway will use builder`s information to predict thermal distribution efficiency in new construction. The Diagnostic Pathway will use simple tests to evaluate thermal distribution efficiency in a completed house. Both forced-air and hydronic systems are included in the test method. This report describes an approach to predicting and measuring thermal distribution efficiency for residential hydronic heating systems for use in the Design and Diagnostic Pathways of the test method. As written, it is designed for single-loop systems with any type of passive radiation/convection (baseboard or radiators). Multiloop capability may be added later.

  10. A CLIPS based personal computer hardware diagnostic system

    NASA Technical Reports Server (NTRS)

    Whitson, George M.

    1991-01-01

    Often the person designated to repair personal computers has little or no knowledge of how to repair a computer. Described here is a simple expert system to aid these inexperienced repair people. The first component of the system leads the repair person through a number of simple system checks such as making sure that all cables are tight and that the dip switches are set correctly. The second component of the system assists the repair person in evaluating error codes generated by the computer. The final component of the system applies a large knowledge base to attempt to identify the component of the personal computer that is malfunctioning. We have implemented and tested our design with a full system to diagnose problems for an IBM compatible system based on the 8088 chip. In our tests, the inexperienced repair people found the system very useful in diagnosing hardware problems.

  11. Shipboard fluid system diagnostics using non-intrusive load monitoring

    E-print Network

    Mitchell, Gregory R. (Gregory Reed)

    2007-01-01

    Systems on modem naval vessels are becoming exclusively dependent on electrical power. One example of this is the replacement of distilling and evaporator plants with reverse osmosis units. As the system is in continuous ...

  12. Psycho-Diagnostic Problems of Personalized Teaching Systems

    NASA Astrophysics Data System (ADS)

    Abu-Dawwas, Waheeb A.; Al-Azzeh, Rashed M.; Abu-Arqoub, Mohammed H.

    2007-12-01

    The paper is an attempted to discuss one of the must important components in the architecture of personalized teaching systems—the testing system. One of the aims of the paper is to propose a definition of cognitive state, which can be used in designing personalized teaching systems.

  13. Evaluation Of Vibration-Monitoring Gear-Diagnostic System

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Zakrajsek, James J.

    1995-01-01

    Report describes experimental evaluation of commercial electronic system designed to monitor vibration signal from accelerometer on gear-box to detect vibrations indicative of damage to gears. System includes signal-conditioning subsystem and personal computer in which analog-to-digital converter installed. Results show system fairly effective in detecting surface fatigue pits on spur-gear teeth.

  14. The Process of Systemic Change

    ERIC Educational Resources Information Center

    Duffy, Francis M.; Reigeluth, Charles M.; Solomon, Monica; Caine, Geoffrey; Carr-Chellman, Alison A.; Almeida, Luis; Frick, Theodore; Thompson, Kenneth; Koh, Joyce; Ryan, Christopher D.; DeMars, Shane

    2006-01-01

    This paper presents several brief papers about the process of systemic change. These are: (1) Step-Up-To-Excellence: A Protocol for Navigating Whole-System Change in School Districts by Francis M. Duffy; (2) The Guidance System for Transforming Education by Charles M. Reigeluth; (3) The Schlechty Center For Leadership In School Reform by Monica…

  15. A Handheld Point-of-Care Genomic Diagnostic System

    PubMed Central

    Myers, Frank B.; Henrikson, Richard H.; Bone, Jennifer; Lee, Luke P.

    2013-01-01

    The rapid detection and identification of infectious disease pathogens is a critical need for healthcare in both developed and developing countries. As we gain more insight into the genomic basis of pathogen infectivity and drug resistance, point-of-care nucleic acid testing will likely become an important tool for global health. In this paper, we present an inexpensive, handheld, battery-powered instrument designed to enable pathogen genotyping in the developing world. Our Microfluidic Biomolecular Amplification Reader (µBAR) represents the convergence of molecular biology, microfluidics, optics, and electronics technology. The µBAR is capable of carrying out isothermal nucleic acid amplification assays with real-time fluorescence readout at a fraction of the cost of conventional benchtop thermocyclers. Additionally, the µBAR features cell phone data connectivity and GPS sample geotagging which can enable epidemiological surveying and remote healthcare delivery. The µBAR controls assay temperature through an integrated resistive heater and monitors real-time fluorescence signals from 60 individual reaction chambers using LEDs and phototransistors. Assays are carried out on PDMS disposable microfluidic cartridges which require no external power for sample loading. We characterize the fluorescence detection limits, heater uniformity, and battery life of the instrument. As a proof-of-principle, we demonstrate the detection of the HIV-1 integrase gene with the µBAR using the Loop-Mediated Isothermal Amplification (LAMP) assay. Although we focus on the detection of purified DNA here, LAMP has previously been demonstrated with a range of clinical samples, and our eventual goal is to develop a microfluidic device which includes on-chip sample preparation from raw samples. The µBAR is based entirely around open source hardware and software, and in the accompanying online supplement we present a full set of schematics, bill of materials, PCB layouts, CAD drawings, and source code for the µBAR instrument with the goal of spurring further innovation toward low-cost genetic diagnostics. PMID:23936402

  16. Diagnostic Evaluation of Ozone Production and Horizontal Transport in a Regional Photochemical Air Quality Modeling System

    EPA Science Inventory

    A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O3) within the lower troposphere. Results from th...

  17. The Introduction of a Diagnostic Decision Support System (DXplain™) into the workflow of a teaching hospital service can decrease the cost of service for diagnostically challenging Diagnostic Related Groups (DRG)s

    PubMed Central

    Elkin, Peter L.; Liebow, Mark; Bauer, Brent A.; Chaliki, Swarna; Wahner-Roedler, Dietlind; Bundrick, John; Lee, Mark; Brown, Steven H.; Froehling, David; Bailey, Kent; Famiglietti, Kathleen; Kim, Richard; Hoffer, Ed; Feldman, Mitchell; Barnett, G. Octo

    2010-01-01

    Background In an era of short inpatient stays, residents may overlook relevant elements of the differential diagnosis as they try to evaluate and treat patients. However, if a resident’s first principal diagnosis is wrong, the patient’s appropriate evaluation and treatment may take longer, cost more, and lead to worse outcomes. A diagnostic decision support system may lead to the generation of a broader differential diagnosis that more often includes the correct diagnosis, permitting a shorter, more effective, and less costly hospital stay. Methods We provided residents on General Medicine services access to DXplain, an established computer-based diagnostic decision support system, for 6 months. We compared charges and cost of service for diagnostically challenging cases seen during the fourth through sixth month of access to DXplain (intervention period) to control cases seen in the six months before the system was made available. Results 564 cases were identified as diagnostically challenging by our criteria during the intervention period along with 1173 cases during the control period. Total charges were $1281 lower (P=.006), Medicare Part A charges $1032 lower (p=.006) and cost of service $990 lower (P=.001) per admission in the intervention cases than in control cases. Conclusions Using DXplain on all diagnostically challenging cases might save our medical center over $2,000,000 a year on the General Medicine Services alone. Using clinical diagnostic decision support systems may improve quality and decrease cost substantially at teaching hospitals. PMID:20951080

  18. A Diagnostic Decision Support System for BMP Selection in Small Urban Watersheds

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Montas, H. J.; Leisnham, P.; Shirmohammadi, A.; Brubaker, K. L.; Reiling, S.

    2013-12-01

    Overall water quality in the United States has improved since the establishment of the Clean Water Act in 1972. While waste water and other point source discharge treatments are expanding and improving in quality, non-point source pollution remains a problem. Best Management Practices (BMPs) are structural and nonstructural methods to mitigate these problems. Much attention has focused on non-point source pollutants in rural areas, where agricultural activities increase the nutrients (fertilizers), toxics (pesticides), and sediments in surface water. Urban and suburban areas also suffer from severe water quantity and quality problems, largely due to stormwater. Low Impact Development (LID), a series of spatially distributed and engineered small-scale hydrologic controls, is an appropriate approach to reduce flow rate and improve urban stormwater quality before it discharges into surface water bodies. This research sought to develop a Diagnostic Decision Support System (DDSS) for urban BMP/LID selection. The process-based hydrologic model, Soil and Water Assessment Tool (SWAT), was used to simulate the hydrologic processes and to estimate related water quality variables. A logic based simple method was developed to identify the critical water quality and quantity hotspots using the SWAT outputs for multiple Hydrologic Response Units (HRUs) within the study watershed. The DDSS consisted of two parts: a Diagnostic Expert System (DES), which identifies the most likely reasons for excessive pollutants; and a Prescriptive Expert System (PES), which selects the best set of spatially distributed BMPs. The DDSS is tested in Watts Branch, a small urban subwatershed in metropolitan Washington D.C. A SWAT model for the watershed was calibrated and validated first. The DDSS was then applied. The final selected series of BMPs was simulated again in the SWAT model for a ten-year period to quantify their effectiveness. The identified hotspots, possible reasons, and BMP solutions are visualized in GIS maps. The resulting BMP recommendations and maps will be useful in decision making and in developing appropriate educational material for residents and the general public. Mean Annual Sediment Yield Rate (Ton/ha) List of Candidate BMPs

  19. A relational approach to the development of expert diagnostic systems

    NASA Technical Reports Server (NTRS)

    Ames, K. R.

    1984-01-01

    The proposition that, given a structural and/or functional description of any real or abstract system, an expert system can be built based on this description is examined. First, a model is developed for a microprocessor-controlled end effector/sensor system using a modeling approach called a relational Knowledge-Base Machine (RKBM). Next, an explanation of how the end effector model could be used for the error diagnosis on the operational end effector is given and two versions of an error diagnosis algorithm based on the model are presented. Finally, areas of further research are described that are necessary before an expert system using this approach becomes a reality.

  20. Living in negotiation: patients’ experiences of being in the diagnostic process of COPD

    PubMed Central

    Lindgren, Sari; Storli, Sissel Lisa; Wiklund-Gustin, Lena

    2014-01-01

    Purpose To illuminate patients’ lived experiences of going through the process of being diagnosed with chronic obstructive pulmonary disease (COPD). Patients and methods A phenomenological-hermeneutic analysis was applied in the interpretation of interviews with eight persons diagnosed with mild or moderate COPD. Results One main theme ‘living in negotiation’, and three themes ‘living with a body out of step with the diagnosis’, ‘dealing with the past’, and ‘being challenged by the future’ reflected the process participants were living through in their quest for acceptance and a new balance in life. Participants found that the diagnostic processes were confusing, and that the diagnosis itself was ‘a slap in the face’. Unclear messages gave rise to fluctuating between an understanding of the condition as ‘not too severe’, insecurity, and fear. Shame and guilt related to the diagnosis had origins in the past, and in combination with the idea of ‘chronic’ the COPD diagnosis interfered with the present moment and gave rise to uncertainty for the future. The understanding of the present is related to negotiations not only with the past, but also with the future. Thus temporal aspects of the diagnosis are of great significance for the process of finding acceptance. Conclusion Regardless of disease severity, the diagnosis seems to be a breakdown of life, which puts life itself at stake. Medical professionals should be aware that the way the diagnosis is disclosed and communicated has considerable significance for how individuals understand and deal with their illness. The diagnosis should be communicated face-to-face, clearly and with empathy, and followed by information about COPD. Physicians should allow time and listen to the patients’ stories, and thus develop a shared understanding of the temporal aspect of the illness and patients’ needs and concerns. Thus, good communication is essential in determining whether the patient remains in negotiation, or enters a process toward acceptance and new understanding. PMID:24851046

  1. Rotorcraft Diagnostics

    NASA Technical Reports Server (NTRS)

    Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James

    2012-01-01

    Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer decision support for optimal maintenance.

  2. On the processes generating latitudinal richness gradients: identifying diagnostic patterns and predictions

    SciTech Connect

    Hurlbert, Allen H.; Stegen, James C.

    2014-12-02

    Many processes have been put forward to explain the latitudinal gradient in species richness. Here, we use a simulation model to examine four of the most common hypotheses and identify patterns that might be diagnostic of those four hypotheses. The hypotheses examined include (1) tropical niche conservatism, or the idea that the tropics are more diverse because a tropical clade origin has allowed more time for diversification in the tropics and has resulted in few species adapted to extra-tropical climates. (2) The productivity, or energetic constraints, hypothesis suggests that species richness is limited by the amount of biologically available energy in a region. (3) The tropical stability hypothesis argues that major climatic fluctuations and glacial cycles in extratropical regions have led to greater extinction rates and less opportunity for specialization relative to the tropics. (4) Finally, the speciation rates hypothesis suggests that the latitudinal richness gradient arises from a parallel gradient in rates of speciation. We found that tropical niche conservatism can be distinguished from the other three scenarios by phylogenies which are more balanced than expected, no relationship between mean root distance and richness across regions, and a homogeneous rate of speciation across clades and through time. The energy gradient, speciation gradient, and disturbance gradient scenarios all exhibited phylogenies which were more imbalanced than expected, showed a negative relationship between mean root distance and richness, and diversity-dependence of speciation rate estimates through time. Using Bayesian Analysis of Macroevolutionary Mixtures on the simulated phylogenies, we found that the relationship between speciation rates and latitude could distinguish among these three scenarios. We emphasize the importance of considering multiple hypotheses and focusing on diagnostic predictions instead of predictions that are consistent with more than one hypothesis.

  3. A vibration monitoring acquisition and diagnostic system for helicopter drive train bench tests

    NASA Astrophysics Data System (ADS)

    Dousis, Dimitri A.

    An automated drive train test stand vibration monitoring system called VMADS has been developed by Bell Helicopter Textron, Inc., and has been installed at Bell's transmission bench test facility. VMADS provides the operator with warning and alarm indications for preselected degraded conditions, and acquires vibration data to be used by engineers to improve the diagnostics for better fault detection and fault isolation. VMADS is used as a test bed for new monitoring and diagnostic algorithm evaluation and validation, a necessary step to ensure development of accurate, reliable integrated health usage monitoring systems for the Bell rotorcraft fleet. This paper highlights the VMADS features for helicopter and tiltrotor aircraft drive train bench test monitoring and diagnostics and discusses supportive ongoing health and usage monitoring activities at BHTI, both military and commercial for enhanced safety and reduced maintenance costs. Bell is translating VMADS developed capability to airborne applications, while simultaneously enhancing the original VMADS capabilities.

  4. Developmental trauma disorder: pros and cons of including formal criteria in the psychiatric diagnostic systems

    PubMed Central

    2013-01-01

    Background This article reviews the current debate on developmental trauma disorder (DTD) with respect to formalizing its diagnostic criteria. Victims of abuse, neglect, and maltreatment in childhood often develop a wide range of age-dependent psychopathologies with various mental comorbidities. The supporters of a formal DTD diagnosis argue that post-traumatic stress disorder (PTSD) does not cover all consequences of severe and complex traumatization in childhood. Discussion Traumatized individuals are difficult to treat, but clinical experience has shown that they tend to benefit from specific trauma therapy. A main argument against inclusion of formal DTD criteria into existing diagnostic systems is that emphasis on the etiology of the disorder might force current diagnostic systems to deviate from their purely descriptive nature. Furthermore, comorbidities and biological aspects of the disorder may be underdiagnosed using the DTD criteria. Summary Here, we discuss arguments for and against the proposal of DTD criteria and address implications and consequences for the clinical practice. PMID:23286319

  5. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    SciTech Connect

    Jianxun Yan; Daniel Sexton; Steven Moore; Albert Grippo; Kevin Jordan

    2006-10-24

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller was built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.

  6. Intelligent Work Process Engineering System

    NASA Technical Reports Server (NTRS)

    Williams, Kent E.

    2003-01-01

    Optimizing performance on work activities and processes requires metrics of performance for management to monitor and analyze in order to support further improvements in efficiency, effectiveness, safety, reliability and cost. Information systems are therefore required to assist management in making timely, informed decisions regarding these work processes and activities. Currently information systems regarding Space Shuttle maintenance and servicing do not exist to make such timely decisions. The work to be presented details a system which incorporates various automated and intelligent processes and analysis tools to capture organize and analyze work process related data, to make the necessary decisions to meet KSC organizational goals. The advantages and disadvantages of design alternatives to the development of such a system will be discussed including technologies, which would need to bedesigned, prototyped and evaluated.

  7. Continued Development of Expert System Tools for NPSS Engine Diagnostics

    NASA Technical Reports Server (NTRS)

    Lewandowski, Henry

    1996-01-01

    The objectives of this grant were to work with previously developed NPSS (Numerical Propulsion System Simulation) tools and enhance their functionality; explore similar AI systems; and work with the High Performance Computing Communication (HPCC) K-12 program. Activities for this reporting period are briefly summarized and a paper addressing the implementation, monitoring and zooming in a distributed jet engine simulation is included as an attachment.

  8. SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips

    DOEpatents

    Vo-Dinh, Tuan (Knoxville, TN)

    2007-09-11

    A Raman integrated sensor system for the detection of targets including biotargets includes at least one sampling platform, at least one receptor probe disposed on the sampling platform, and an integrated circuit detector system communicably connected to the receptor. The sampling platform is preferably a Raman active surface-enhanced scattering (SERS) platform, wherein the Raman sensor is a SERS sensor. The receptors can include at least one protein receptor and at least one nucleic acid receptor.

  9. Transformation of personal computers and mobile phones into genetic diagnostic systems.

    PubMed

    Walker, Faye M; Ahmad, Kareem M; Eisenstein, Michael; Soh, H Tom

    2014-09-16

    Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone--devices that have become readily accessible in developing countries--into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite. PMID:25223929

  10. Bianalyte multicommutated flow analysis system for microproteinuria diagnostics.

    PubMed

    Strzelak, Kamil; Misztal, Jagoda; Tymecki, ?ukasz; Koncki, Robert

    2016-02-01

    In this work a bianalyte multicommutated flow analysis (MCFA) system for determination of microproteinuria is presented. The developed MCFA system is based on two dedicated optoelectronic flow-through detectors which allow estimation of urinary protein creatinine ratio. For total protein determination, turbidimetric Exton's method was used, whereas creatinine was determined by the photometric Jaffe reaction. The developed analytical system is fully-mechanized, easy to operate, economic in reagent consumption and characterized by satisfactory analytical parameters. It allows protein determination in the range 36-300mgL(-1) with 33mgL(-1) detection limit and simultaneous determination of creatinine in the range 0.045-2.50mmolL(-1) with 0.025mmolL(-1) detection limit. The measurement procedure for the presented MCFA system offers performing 30 peaks per hour for both analytes. To prove the analytical usefulness of the system, real human urine samples have been analyzed. The correlation and agreement between results offered by the developed system and clinical analyzers are fully acceptable. PMID:26653505

  11. Application of Diagnostic Analysis Tools to the Ares I Thrust Vector Control System

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Melcher, Kevin J.; Chicatelli, Amy K.; Johnson, Stephen B.

    2010-01-01

    The NASA Ares I Crew Launch Vehicle is being designed to support missions to the International Space Station (ISS), to the Moon, and beyond. The Ares I is undergoing design and development utilizing commercial-off-the-shelf tools and hardware when applicable, along with cutting edge launch technologies and state-of-the-art design and development. In support of the vehicle s design and development, the Ares Functional Fault Analysis group was tasked to develop an Ares Vehicle Diagnostic Model (AVDM) and to demonstrate the capability of that model to support failure-related analyses and design integration. One important component of the AVDM is the Upper Stage (US) Thrust Vector Control (TVC) diagnostic model-a representation of the failure space of the US TVC subsystem. This paper first presents an overview of the AVDM, its development approach, and the software used to implement the model and conduct diagnostic analysis. It then uses the US TVC diagnostic model to illustrate details of the development, implementation, analysis, and verification processes. Finally, the paper describes how the AVDM model can impact both design and ground operations, and how some of these impacts are being realized during discussions of US TVC diagnostic analyses with US TVC designers.

  12. The human autodiagnostic system (Rexed's laminae as diagnostic neuroprocessors)

    NASA Astrophysics Data System (ADS)

    Chernavskii, D. S.; Karp, V. P.; Rodshtat, I. V.

    1994-01-01

    A position is formulated according to which the therapeutic effect of a puncture action is a result of the correction of defects in the human autodiagnostic system (ADS). The structure and functions of the ADS are examined from the points of view of pattern recognition, neurocomputing, and neurophysiology. The necessary conditions that the ADC must satisfy are formulated. It is shown that the theoretical conditions are satisfied by Rexed's laminae, which are a part of the central nervous system and form the grey matter of the spinal cord. The available biochemical and morphological data are utilized in an examination of the operating mechanism of Rexed's laminae as a whole (as an ADS) and each lamina individually (as neuroprocessors that perform specific functions). Potential defects in the recognition system and methods for their correction by signals produced at biological active points by EHF puncture are examined.

  13. A Model-Based Expert System for Space Power Distribution Diagnostics

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Schlegelmilch, Richard F.

    1994-01-01

    When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.

  14. Gallium arsenide integrated optical devices for high-speed diagnostic systems

    SciTech Connect

    McWright, G.; Lowry, M.; Takeuchi, E.; Murphy, G.; Tindall, W.; Koo, J.; Roeske, F.

    1987-01-01

    The design, fabrication, and evaluation of waveguide electro-optic modulators in gallium arsenide for application to high-speed diagnostic systems are discussed specifically. This paper is focused on high bandwidth, single event analog modulation, and radiation susceptibility of these devices.

  15. A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.

    PubMed

    Palladino, A; Fiengo, G; Lanzo, D

    2012-01-01

    In-vehicle driving tests for evaluating the performance and diagnostic functionalities of engine control systems are often time consuming, expensive, and not reproducible. Using a hardware-in-the-loop (HIL) simulation approach, new control strategies and diagnostic functions on a controller area network (CAN) line can be easily tested in real time, in order to reduce the effort and the cost of the testing phase. Nowadays, spark ignition engines are controlled by an electronic control unit (ECU) with a large number of embedded sensors and actuators. In order to meet the rising demand of lower emissions and fuel consumption, an increasing number of control functions are added into such a unit. This work aims at presenting a portable electronic environment system, suited for HIL simulations, in order to test the engine control software and the diagnostic functionality on a CAN line, respectively, through non-regression and diagnostic tests. The performances of the proposed electronic device, called a micro hardware-in-the-loop system, are presented through the testing of the engine management system software of a 1.6 l Fiat gasoline engine with variable valve actuation for the ECU development version. PMID:22075387

  16. Pennsylvania Animal Diagnostic Laboratory System Dog and Cat Necropsy Release Form

    E-print Network

    Omiecinski, Curtis

    Pennsylvania Animal Diagnostic Laboratory System Dog and Cat Necropsy Release Form PD PATH FORM 01/Agency Address Address City, state, zip City, state, zip Phone Phone Fax Fax Email Email Animal Information: Animal ID Species Breed Age Sex Has the animal bitten anyone in the 10 days prior to its death? No Yes

  17. Some Practical Issues in Modeling Diagnostic Systems with Multiply Sectioned Bayesian Networks

    E-print Network

    Xiang, Yang

    Some Practical Issues in Modeling Diagnostic Systems with Multiply Sectioned Bayesian Networks Y paradigm (Xia96), where each agent is equipped with private knowledge about a subsystem and acts of the set of vari- ables in the other given the set of variables shared by both. It can be shown (Xia97

  18. Concurrent and Discriminant Validity of the Gordon Diagnostic System: A Preliminary Study.

    ERIC Educational Resources Information Center

    Wherry, Jeffrey N.; And Others

    1993-01-01

    Investigated discriminant and concurrent validity of Gordon Diagnostic System (GDS) in 29 boys categorized into "normals" or "attention deficit hyperactivity disordered" (ADHD) based on teacher ratings. Results failed to demonstrate discriminant validity of any GDS score regardless of behavior rating used. Vigilance Correct and Vigilance Omission…

  19. Journal of Power Sources 165 (2007) 267278 A Bayesian network fault diagnostic system for proton

    E-print Network

    Simões, Marcelo Godoy

    2007-01-01

    Journal of Power Sources 165 (2007) 267­278 A Bayesian network fault diagnostic system for proton considers the effects of different types of faults on a proton exchange membrane fuel cell model (PEMFC in proton exchange membrane fuel cell (PEMFC) technology have made them commercially avail- able

  20. Fault diagnostic instrumentation design for environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; You, K. C.; Wynveen, R. A.; Powell, J. D., Jr.

    1979-01-01

    As a development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. As part of continous development efforts, a program to evaluate, design, and demonstrate advanced instrumentation fault diagnostics was successfully completed. Fault tolerance designs for reliability and other instrumenation capabilities to increase maintainability were evaluated and studied.

  1. Diagnostics and Discovery in Viral Central Nervous System Infections.

    PubMed

    Lipkin, Walter Ian; Hornig, Mady

    2015-09-01

    The range of viruses implicated in central nervous system disease continues to grow with globalization of travel and trade, emergence and reemergence of zoonoses and investments in discovery science. Diagnosis of viral central nervous system infections is challenging in that brain tissue, where the pathogen concentration is likely to be highest, is not readily obtained and sensitive methods for molecular and serological detection of infection are not available in most clinical microbiology laboratories. Here we review these challenges and discuss how they may be addressed using advances in molecular, proteomic and immunological methods. PMID:26276023

  2. TMX-U neutral pressure measurement diagnostic systems

    SciTech Connect

    Pickles, W.L.; Allen, S.L.; Hill, D.N.; Hunt, A.L.; Simonen, T.C.

    1984-09-14

    The Tandem Mirror Experiment-Upgrade (TMX-U) has a large and complex system of Baird Alpert, magnetron, and Penning gauges, in addition to mass spectrometers (RGA), all of which measure neutral pressures in the many internal regions of TMX-U. These pressure measurements are used as part of the confinement physics data base as well as for management of the TMX-U vacuum system. Dynamic pressures are modeled by a coupled-volumes simulation code, which includes wall reflus, getter pumping, and plasma pumping.

  3. Development of a system to provide diagnostics-while-drilling.

    SciTech Connect

    Wise, Jack LeRoy; Jacobson, Ronald David; Finger, John Travis; Mansure, Arthur James; Knudsen, Steven Dell

    2003-06-01

    This report describes development of a system that provides high-speed, real-time downhole data while drilling. Background of the project, its benefits, major technical challenges, test planning, and test results are covered by relatively brief descriptions in the body of the report, with some topics presented in more detail in the attached appendices.

  4. A diagnostic system for air brakes in commercial vehicles 

    E-print Network

    Coimbatore Subramanian, Shankar Ram

    2007-09-17

    to maintenance and hence they require frequent inspections. Current inspection techniques require an inspector to go underneath a vehicle to check the brake system for possible faults, such as leaks, worn brake pads, out-of-adjustment of push rods, etc...

  5. Advanced development of particle-beam-probe diagnostic systems. Technical progress report, 1 July 1980-30 April 1981

    SciTech Connect

    Hickok, R.L.; Jennings, W.C.; Woo, J.T.; Connor, K.A.

    1981-05-01

    The heavy ion beam probe system on the RENTOR tokamak has been reinstalled with considerably improved performance. The heavy neutral beam probe system on the ALEX baseball facility has demonstrated the capability of measuring space potential in minimum-B geometry. A large amount of data were obtained from the highly successful TMX beam probe system and are presently being analyzed. Technological improvements were made on both the RENTOR and ALEX diagnostic systems, new ion sources and extraction configurations were investigated, and the superiority of off-line processing techniques for beam probe data has been demonstrated. The development of high energy probing beams for application to major confinement experiments has been initiated and cross-over sweep systems to improve spatial resolution, differential pumping, and reduce energy requirements have been designed.

  6. Advanced System for Process Engineering

    Energy Science and Technology Software Center (ESTSC)

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore »of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  7. Advanced System for Process Engineering

    Energy Science and Technology Software Center (ESTSC)

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more »It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  8. New scientific accuracy measure for performance evaluation of human-computer diagnostic systems

    NASA Astrophysics Data System (ADS)

    Lee, Samuel C.; Lee, Elisa T.; Wang, Yiming

    2001-09-01

    This paper first presents a new scientific accuracy measure (denoted by G) for assessing/evaluating the performance of computer medical diagnostic (CMD) systems by incorporating the true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) of human and computer's diagnoses with respect to each other. Based on G, a formula for computing a multi-parameter sensitivity vector S(G), with the assumption that the system parameter percentage variations are small, is then proposed. For a given set of parameter percentage errors, from the expression of S(G), we can compute the error bound of G and assess the reliability of the system with human and/or computer errors being taken into consideration. It has been demonstrated that the new measure G is capable of providing consistent performance evaluation of a CMD system in general. Based on the value of G, a CMD system can be classified as having 'good', 'fair', or 'poor' performance. Even though the proposed basic accuracy measure and its sensitivity study are derived based on the diagnosis using two diagnostic categories (positive and negative) compared by two observers (a human expert and a computer system), however, its methodology can be extended to CMD systems with multiple diagnostic categories and observers. The formulas for measuring the performance of such systems are discussed and present.

  9. Combined pulse-oximeter-NIRS system for biotissue diagnostics

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, Vladimir A.

    2005-08-01

    Multi-wavelength (670, 805, 848 and 905 nm), multi-detector device for non-invasive measurement of biochemical components concentration in human or animal tissues, combining the methods of conventional pulse-oximetry and near infrared spectroscopy, is developed. The portable and clinically applicable system allows to measure heart pulse rate, oxygen saturation of arterial hemoglobin (pulse-oximetry method) and local absolute concentration of oxyhemoglobin, deoxyhemoglobin and oxidized cytochrome aa3 or other IR absorbed compounds (NIRS method). The system can be applied in monitoring of oxygen availability and utilization by the brain in neonatal and adults, neuro- traumatology, intensive care medicine, transplantation and plastic surgery, in sport, high-altitude and aviation medicine.

  10. Design Considerations for an Integrated Solar Sail Diagnostics System

    NASA Technical Reports Server (NTRS)

    Jenkins, Christopher H. M.; Gough, Aaron R.; Pappa, Richard S.; Carroll, Joe; Blandino, Joseph R.; Miles, Jonathan J.; Rakoczy, John

    2004-01-01

    Efforts are continuing under NASA support to improve the readiness level of solar sail technology. Solar sails have one of the best chances to be the next gossamer spacecraft flown in space. In the gossamer spacecraft community thus far, solar sails have always been considered a "low precision" application compared with, say, radar or optical devices. However, as this paper shows, even low precision gossamer applications put extraordinary demands on structural measurement systems if they are to be traceable to use in space.

  11. Measurement and simulation of stilbene scintillator response for the KSTAR neutron diagnostic system

    NASA Astrophysics Data System (ADS)

    Lee, Seung Kyu; Son, Jae Bum; Kang, JeongSoo; Seo, Hee; Won, Byung-Hee; Park, Se-Hwan; Kim, Ho-Dong; Kang, Byoung Hwi; Kim, Gi Dong; Kim, Yong Kyun

    2014-03-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) project was started in December 1995, and its construction was completed in August 2007. On June 13, 2008, the KSTAR successfully produced its first plasma, and the diagnostic systems played an important role in achieving the first successful plasma operation. In fact, various diagnostic systems are required to protect reactor devices, to the control plasma, and to evaluate the plasma's performance in fusion reactors. One of the most essential tools for control of the burning plasma in fusion reactors may be a neutron diagnostic system to prove the presence of the plasma by measuring the neutrons from fusion reactions directly. The stilbene scintillator has been proposed as a good candidate for a neutron diagnostic system in the KSTAR fusion reactor because the stilbene scintillator is well-known to be an excellent material for detection of fast neutrons in a high gamma-ray background environment. If fast-neutron spectra are to be measured amid a high gamma-ray background, especially-designed electronics are necessary. For instance, a digital charge pulse shape discrimination (PSD) method, utilizing a total-to-partial-charge-ratio analysis, discriminates neutron from gamma-ray signals. Also, a flash analog-to-digital convertor (FADC) with a field-programmable gate array (FPGA) increases the data-transfer rate for real-time evaluation of plasma performance. In the present study, measurements and simulations were performed in order to confirm the stilbene scintillator's response to D-D fusion reaction neutrons. Additionally, the count-rate limit of the neutron diagnostic system was determined by using measurements with a 252Cf source at different distances.

  12. Diagnostic system for cryogenically cooled 10 Hz Yb:YAG laser

    NASA Astrophysics Data System (ADS)

    Koubíková, Lucia; Thoma, Ji?í; Naylon, Jack A.; Indra, Lukáš; Fibrich, Martin; Kramer, Daniel; Rus, Bedrich

    2015-01-01

    The ELI Beamlines facility will house repetition rate high-power lasers with pulse durations down to 15 fs and over petawatt peak powers. Our research group participates in the construction of a cryogenically cooled Yb:YAG multi-slab amplifier; part of the L2 beamline. The system shall provide square, super-Gaussian beam with nearly 2 ns pulses with rectangular temporal profile and energy of up to 10 J at 10 Hz. The laser will provide pump beams for broadband OPCPA stages. The diagnostic system of the pump laser is critical for the correct performance analysis, stabilization feedback and mostly for the machine interlock system as damages of the expensive optical components can develop very fast with the 10 Hz repetition rate. The diagnostic system provides key laser parameters and characteristics in temporal, spectral and spatial domain. The paper describes testing of the setup for measurements of the final 10 J output. Its design is based on a combination of optical wedges and diffractive sampler to facilitate multiple diagnostics on a relatively small footprint. The laser diagnostics package covers measurements in spatial domain such as near-field, far-field, or wavefront analysis, further optical spectrum, pulse energy and temporal shape. In order to detect possible damage dark-field analysis was implemented as well. The final setup was modeled in optical design software (Radiant Zemax) to understand its behavior and later tested together with real-time LabVIEW code developed by our group as being part of the machine interlock system. The first results of the tests as well as detailed description of the diagnostics package design are presented.

  13. Optical systems for point-of-care diagnostic instrumentation: analysis of imaging performance and cost.

    PubMed

    Pierce, Mark C; Weigum, Shannon E; Jaslove, Jacob M; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S

    2014-01-01

    One of the key elements in point-of-care (POC) diagnostic test instrumentation is the optical system required for signal detection and/or imaging. Many tests which use fluorescence, absorbance, or colorimetric optical signals are under development for management of infectious diseases in resource limited settings, where the overall size and cost of the device is of critical importance. At present, high-performance lenses are expensive to fabricate and difficult to obtain commercially, presenting barriers for developers of in vitro POC tests or microscopic image-based diagnostics. We recently described a compact "hybrid" objective lens incorporating both glass and plastic optical elements, with a numerical aperture of 1.0 and field-of-view of 250 ?m. This design concept may potentially enable mass-production of high-performance, low-cost optical systems which can be easily incorporated in the readout path of existing and emerging POC diagnostic assays. In this paper, we evaluate the biological imaging performance of these lens systems in three broad POC diagnostic application areas; (1) bright field microscopy of histopathology slides, (2) cytologic examination of blood smears, and (3) immunofluorescence imaging. We also break down the fabrication costs and draw comparisons with other miniature optical systems. The hybrid lenses provided images with quality comparable to conventional microscopy, enabling examination of neoplastic pathology and infectious parasites including malaria and cryptosporidium. We describe how these components can be produced at below $10 per unit in full-scale production quantities, making these systems well suited for use within POC diagnostic instrumentation. PMID:24097204

  14. Intermediate frequency band digitized high dynamic range radiometer system for plasma diagnostics and real-time Tokamak control

    SciTech Connect

    Bongers, W. A.; Beveren, V. van; Westerhof, E.; Goede, A. P. H.; Krijger, B.; Berg, M. A. van den; Graswinckel, M. F.; Schueller, F. C.; Thoen, D. J.; Nuij, P. J. W. M.; Baar, M. R. de; Donne, A. J. H.; Hennen, B. A.; Kantor, M.

    2011-06-15

    An intermediate frequency (IF) band digitizing radiometer system in the 100-200 GHz frequency range has been developed for Tokamak diagnostics and control, and other fields of research which require a high flexibility in frequency resolution combined with a large bandwidth and the retrieval of the full wave information of the mm-wave signals under investigation. The system is based on directly digitizing the IF band after down conversion. The enabling technology consists of a fast multi-giga sample analog to digital converter that has recently become available. Field programmable gate arrays (FPGA) are implemented to accomplish versatile real-time data analysis. A prototype system has been developed and tested and its performance has been compared with conventional electron cyclotron emission (ECE) spectrometer systems. On the TEXTOR Tokamak a proof of principle shows that ECE, together with high power injected and scattered radiation, becomes amenable to measurement by this device. In particular, its capability to measure the phase of coherent signals in the spectrum offers important advantages in diagnostics and control. One case developed in detail employs the FPGA in real-time fast Fourier transform (FFT) and additional signal processing. The major benefit of such a FFT-based system is the real-time trade-off that can be made between frequency and time resolution. For ECE diagnostics this corresponds to a flexible spatial resolution in the plasma, with potential application in smart sensing of plasma instabilities such as the neoclassical tearing mode (NTM) and sawtooth instabilities. The flexible resolution would allow for the measurement of the full mode content of plasma instabilities contained within the system bandwidth.

  15. Parallel processing spacecraft communication system

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary S. (Inventor); Donaldson, James A. (Inventor); Luong, Huy H. (Inventor); Wood, Steven H. (Inventor)

    1998-01-01

    An uplink controlling assembly speeds data processing using a special parallel codeblock technique. A correct start sequence initiates processing of a frame. Two possible start sequences can be used; and the one which is used determines whether data polarity is inverted or non-inverted. Processing continues until uncorrectable errors are found. The frame ends by intentionally sending a block with an uncorrectable error. Each of the codeblocks in the frame has a channel ID. Each channel ID can be separately processed in parallel. This obviates the problem of waiting for error correction processing. If that channel number is zero, however, it indicates that the frame of data represents a critical command only. That data is handled in a special way, independent of the software. Otherwise, the processed data further handled using special double buffering techniques to avoid problems from overrun. When overrun does occur, the system takes action to lose only the oldest data.

  16. In situ process diagnostics of silane plasma for device-quality a-Si:H deposition

    NASA Astrophysics Data System (ADS)

    Shing, Y. H.; Perry, J. W.; Hermann, A. M.

    Coherent anti-Stokes Raman spectroscopy (CARS) and mass spectrometry (MS) have been applied to in situ process diagnostics of a silane plasma for device-quality a-Si:H film deposition. Silane depletion was directly measured by CARS and is linearly dependent on RF power in the region of 4-12 W with a slope of 0.5 percent/mW-sq cm. The depletion is also dependent on SiH4 flow rate starting with a 50 percent depletion at a low flow rate of 5.6 sccm and asymptotically approaching an 8 percent depletion at a flow rate of 80 sccm. The mass spectral line signal intensity of disilane increases with RF power and shows an apparent transition at 6 W. Disilane formation in silane plasma, film deposition rate, and silane depletion ratio as a function of the RF power indicate that the film growth mechanism in the low-power region of 3.5-6.5 W is substantially different from that in the high-power region of 6.5-12 W.

  17. Multiple system atrophy-mimicking conditions: Diagnostic challenges.

    PubMed

    Kim, Han-Joon; Stamelou, Maria; Jeon, Beomseok

    2016-01-01

    Multiple system atrophy (MSA) is a relentless progressive disorder without effective treatment. Its accurate diagnosis is important for the management of individual patients and for the development of new therapeutic strategies. However, there are many disorders which can mimic MSA (so-called 'MSA look-alikes'), and the true rate for over- or under-diagnoses of MSA is not known, especially during the early course of disease when the disease is not fully developed yet. Herein, the authors review the neurodegenerative, genetic, and immunologic conditions that can mimic MSA and thus be part of the differential diagnosis of MSA. Clinicians should be aware of these conditions and be able to differentiate them by clinical features and laboratory findings. PMID:26365777

  18. A Study of Laser System Requirements for Application in Beam Diagnostics And Polarimetry at the ILC

    SciTech Connect

    Dixit, S.; Delerue, N.; Foster, B.; Howell, D.F.; Peach, K.; Quelch, G.; Qureshi, M.; Reichold, A.; Hirst, G.; Ross, I.; Urakawa, J.; Soskov, V.; Variola, A.; Zomer, F.; Blair, G.A.; Boogert, S.T.; Boorman, G.; Bosco, A.; Driouichi, C.; Karataev, P.; Brachmann, A.; /SLAC

    2007-02-12

    Advanced laser systems will be essential for a range of diagnostics devices and polarimetry at the ILC. High average power, high beam quality, excellent stability and reliability will be crucial in order to deliver the information required to attain the necessary ILC luminosity as well as for efficient polarimetry. The key parameters are listed together with the R & D required to achieve the necessary laser system performance.

  19. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  20. Dynamic MRI-based computer aided diagnostic systems for early detection of kidney transplant rejection: A survey

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman

    2013-10-01

    Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.

  1. Farm Feed Processing & Handling Systems

    E-print Network

    Allen, W. S.; Sorenson, J. W.; McCune, W. E.

    1970-01-01

    . These can be used to measure, with reasonable accuracy, free-flowing materials such as grains, meals and finely ground feed. In practice, the auger is calibrated by weighing the material it will unload in a set time interval. To measure a clesirecl..., page 161, you can I, make a systematic analysis of your requirements. Planning Procedure 4 System Design Procedure 5 Equipment Requirements Processing and Proportioning Grinding Mobile Power Wagons for Batch Delivery Automatic Feed Processing...

  2. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems.

    PubMed

    Moglia, Andrea; Menciassi, Arianna; Schurr, Marc Oliver; Dario, Paolo

    2007-04-01

    In the recent past, the introduction of miniaturised image sensors with low power consumption, based on complementary metal oxide semiconductor (CMOS) technology, has allowed the realisation of an ingestible wireless capsule for the visualisation of the small intestine mucosa. The device has received approval from Food and Drug Administration and has gained momentum since it has been more successful than traditional techniques in the diagnosis of small intestine disorders. In 2004 an esophagus specific capsule was launched, while a solution for colon is still under development. However, present solutions suffer from several limitations: they move passively by exploiting peristalsis, are not able to stop intentionally for a prolonged diagnosis, they receive power from an internal battery with short length, and their usage is restricted to one organ, either small bowel or esophagus. However the steady progresses in many branches of engineering, including microelectromechanical systems (MEMS), are envisaged to affect the performances of capsular endoscopy. The near future foreshadows capsules able to pass actively through the whole gastrointestinal tract, to retrieve views from all organs and to perform drug delivery and tissue sampling. In the long term, the advent of robotics could lead to autonomous medical platforms, equipped with the most advanced solutions in terms of MEMS for therapy and diagnosis of the digestive tract. In this review, we discuss the state of the art of wireless capsule endoscopy (WCE): after a description on the current status, we present the most promising solutions. PMID:17160703

  3. XCPU2 process management system

    SciTech Connect

    Ionkov, Latchesar; Van Hensbergen, Eric

    2009-01-01

    Xcpu2 is a new process management system that allows the users to specify custom file system for a running job. Most cluster management systems enforce single software distribution running on all nodes. Xcpu2 allows programs running on the cluster to work in environment identical to the user's desktop, using the same versions of the libraries and tools the user installed locally, and accessing the configuration file in the same places they are located on the desktop. Xcpu2 builds on our earlier work with the Xcpu system. Like Xcpu, Xcpu2's process management interface is represented as a set of files exported by a 9P file server. It supports heterogeneous clusters and multiple head nodes. Unlike Xcpu, it uses pull instead of push model. In this paper we describe the Xcpu2 clustering model, its operation and how the per-job filesystem configuration can be used to solve some of the common problems when running a cluster.

  4. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  5. Parallel processing and expert systems

    NASA Technical Reports Server (NTRS)

    Lau, Sonie; Yan, Jerry C.

    1991-01-01

    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited.

  6. What is depression? Psychiatrists' and GPs' experiences of diagnosis and the diagnostic process.

    PubMed

    Davidsen, Annette S; Fosgerau, Christina F

    2014-01-01

    The diagnosis of depression is defined by psychiatrists, and guidelines for treatment of patients with depression are created in psychiatry. However, most patients with depression are treated exclusively in general practice. Psychiatrists point out that general practitioners' (GPs') treatment of depression is insufficient and a collaborative care (CC) model between general practice and psychiatry has been proposed to overcome this. However, for successful implementation, a CC model demands shared agreement about the concept of depression and the diagnostic process in the two sectors. We aimed to explore how depression is understood by GPs and clinical psychiatrists. We carried out qualitative in-depth interviews with 11 psychiatrists and 12 GPs. Analysis was made by Interpretative Phenomenological Analysis. We found that the two groups of physicians differed considerably in their views on the usefulness of the concept of depression and in their language and narrative styles when telling stories about depressed patients. The differences were captured in three polarities which expressed the range of experiences in the two groups. Psychiatrists considered the diagnosis of depression as a pragmatic and agreed construct and they did not question its validity. GPs thought depression was a "gray area" and questioned the clinical utility in general practice. Nevertheless, GPs felt a demand from psychiatry to make their diagnosis based on instruments created in psychiatry, whereas psychiatrists based their diagnosis on clinical impression but used instruments to assess severity. GPs were wholly skeptical about instruments which they felt could be misleading. The different understandings could possibly lead to a clash of interests in any proposed CC model. The findings provide fertile ground for organizational research into the actual implementation of cooperation between sectors to explore how differences are dealt with. PMID:25381757

  7. What is depression? Psychiatrists’ and GPs’ experiences of diagnosis and the diagnostic process

    PubMed Central

    Davidsen, Annette S.; Fosgerau, Christina F.

    2014-01-01

    The diagnosis of depression is defined by psychiatrists, and guidelines for treatment of patients with depression are created in psychiatry. However, most patients with depression are treated exclusively in general practice. Psychiatrists point out that general practitioners’ (GPs’) treatment of depression is insufficient and a collaborative care (CC) model between general practice and psychiatry has been proposed to overcome this. However, for successful implementation, a CC model demands shared agreement about the concept of depression and the diagnostic process in the two sectors. We aimed to explore how depression is understood by GPs and clinical psychiatrists. We carried out qualitative in-depth interviews with 11 psychiatrists and 12 GPs. Analysis was made by Interpretative Phenomenological Analysis. We found that the two groups of physicians differed considerably in their views on the usefulness of the concept of depression and in their language and narrative styles when telling stories about depressed patients. The differences were captured in three polarities which expressed the range of experiences in the two groups. Psychiatrists considered the diagnosis of depression as a pragmatic and agreed construct and they did not question its validity. GPs thought depression was a “gray area” and questioned the clinical utility in general practice. Nevertheless, GPs felt a demand from psychiatry to make their diagnosis based on instruments created in psychiatry, whereas psychiatrists based their diagnosis on clinical impression but used instruments to assess severity. GPs were wholly skeptical about instruments which they felt could be misleading. The different understandings could possibly lead to a clash of interests in any proposed CC model. The findings provide fertile ground for organizational research into the actual implementation of cooperation between sectors to explore how differences are dealt with. PMID:25381757

  8. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics

    SciTech Connect

    Steinberg, Adam M.; Driscoll, James F.

    2009-12-15

    The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configuration were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)

  9. The video fluorescent device for diagnostics of cancer of human reproductive system

    NASA Astrophysics Data System (ADS)

    Brysin, Nickolay N.; Linkov, Kirill G.; Stratonnikov, Alexander A.; Savelieva, Tatiana A.; Loschenov, Victor B.

    2008-06-01

    Photodynamic therapy (PDT) is one of the advanced methods of treatment of skin cancer and surfaces of internal organs. The basic advantages of PDT are high efficiency and low cost of treatment. PDT technique is needed for providing fluorescent diagnostics. Laser-based systems are widely applied to the fluorescence excitations for diagnostic because of a narrow spectrum of fluorescence excitation and high density of radiation. Application of laser systems for carrying out fluorescent diagnostics gives the image of a tumor distorted by speckles that does not give an opportunity to obtain full information about the form of a tumor quickly. Besides, these laser excitation systems have complicated structure and high cost. As a base for the development and creation of a video fluorescent device one of commercially produced colposcopes was chosen. It allows to decrease cost of the device, and also has enabled to make modernization for already used colposcopes. A LED-based light source was offered to be used for fluorescence excitation in this work. The maximum in a spectrum of radiation of LEDs corresponds to the general spectral maximum of protoporphyrin IX (PPIX) absorption. Irradiance in the center of a light spot is 31 mW/cm2. The receiving optical system of the fluorescent channel is adjusted at 635 nm where a general spectral maximum of fluorescence PPIX is located. Also the device contains a RGB video channel, a white light source and a USB spectrometer LESA-01-BIOSPEC, for measurement of spectra of fluorescence and diffusion reflections in treatment area. The software is developed for maintenance of the device. Some studies on laboratory animals were made. As a result, areas with the increased concentration of a PPIX were correctly detected. At present, the device is used for diagnostics of cancer of female reproductive system in Research Centre for Obstetrics, Gynecology and Perinatology of the Russian Academy of Medical Sciences (Moscow, Russia).

  10. Impact of precision of Bayesian networks parameters on accuracy of medical diagnostic systems

    PubMed Central

    Oni?ko, Agnieszka; Druzdzel, Marek J.

    2014-01-01

    Objective One of the hardest technical tasks in employing Bayesian network models in practice is obtaining their numerical parameters. In the light of this difficulty, a pressing question, one that has immediate implications on the knowledge engineering effort, is whether precision of these parameters is important. In this paper, we address experimentally the question whether medical diagnostic systems based on Bayesian networks are sensitive to precision of their parameters. Methods and Materials The test networks include Hepar II, a sizeable Bayesian network model for diagnosis of liver disorders and six other medical diagnostic networks constructed from medical data sets available through the Irvine Machine Learning Repository. Assuming that the original model parameters are perfectly accurate, we lower systematically their precision by rounding them to progressively courser scales and check the impact of this rounding on the models' accuracy. Results Our main result, consistent across all tested networks, is that imprecision in numerical parameters has minimal impact on the diagnostic accuracy of models, as long as we avoid zeroes among parameters. Conclusion The experiments' results provide evidence that as long as we avoid zeroes among model parameters, diagnostic accuracy of Bayesian network models does not suffer from decreased precision of their parameters. PMID:23466438

  11. Expert diagnostics system as a part of analysis software for power mission operations

    NASA Technical Reports Server (NTRS)

    Harris, Jennifer A.; Bahrami, Khosrow A.

    1993-01-01

    The operation of interplanetary spacecraft at JPL has become an increasingly complex activity. This complexity is due to advanced spacecraft designs and ambitious mission objectives which lead to operations requirements that are more demanding than those of any previous mission. For this reason, several productivity enhancement measures are underway at JPL within mission operations, particularly in the spacecraft analysis area. These measures aimed at spacecraft analysis include: the development of a multi-mission, multi-subsystem operations environment; the introduction of automated tools into this environment; and the development of an expert diagnostics system. This paper discusses an effort to integrate the above mentioned productivity enhancement measures. A prototype was developed that integrates an expert diagnostics system into a multi-mission, multi-subsystem operations environment using the Galileo Power / Pyro Subsystem as a testbed. This prototype will be discussed in addition to background information associated with it.

  12. Operation Request Gatekeeper: A software system for remote access control of diagnostic instruments in fusion experiments

    SciTech Connect

    Abla, G.; Schissel, D. P.; Fredian, T. W.; Stillerman, J. A.; Greenwald, M. J.; Stepanov, D. N.; Ciarlette, D. J.

    2010-10-15

    Tokamak diagnostic settings are repeatedly modified to meet the changing needs of each experiment. Enabling the remote diagnostic control has significant challenges due to security and efficiency requirements. The Operation Request Gatekeeper (ORG) is a software system that addresses the challenges of remotely but securely submitting modification requests. The ORG provides a framework for screening all the requests before they enter the secure machine zone and are executed by performing user authentication and authorization, grammar validation, and validity checks. A prototype ORG was developed for the ITER CODAC that satisfies their initial requirements for remote request submission and has been tested with remote control of the KSTAR Plasma Control System. This paper describes the software design principles and implementation of ORG as well as worldwide test results.

  13. A diagnostic system for electrical faults in a high current discharge plasma setup.

    PubMed

    Nigam, S; Aneesh, K; Navathe, C P; Gupta, P D

    2011-02-01

    A diagnostic system to detect electrical faults inside a coaxial high current discharge device is presented here. This technique utilizes two biconical antennas picking up electromagnetic radiation from the discharge device, a voltage divider sensing input voltage, and a Rogowski coil measuring the main discharge current. A computer program then analyses frequency components in these signals and provides information as to whether the discharge event was normal or any breakdown fault occurred inside the coaxial device. The diagnostic system is developed for a 450 kV and 50 kA capillary discharge plasma setup. For the setup various possible faults are analyzed by electrical simulation, followed by experimental results. In the case of normal discharge through the capillary load the dominant frequency is ?4 MHz. Under faulty conditions, the peak in magnitude versus frequency plot of the antenna signal changes according to the fault position which involves different paths causing variation in the equivalent circuit elements. PMID:21361621

  14. Optical control, diagnostic and power supply system for a solid state induction modulator

    SciTech Connect

    Saethre, R.; Kirbie, H.; Hickman, B.; Lee, B.; Ollis, C.

    1997-06-01

    A new high speed optical control, diagnostic and power supply system has been developed for a solid state induction modulator. The modulator consists of a large array of field effect transistors (FETs) that switch a high-voltage pulse across a tape-wound magnetic core. The FETs within the modulator are mounted on numerous circuit boards that are stacked in series for high-voltage operation. The new optical system overcomes the issue of voltage isolation by supplying each circuit board with optically coupled control power and high bandwidth signal information. An optical fiber is used to transmit laser light to a custom photovoltaic cell that provides dc power to the on-board control circuits. Optical fiber technology is again used to convey a pulse that contains detailed analog features to the FET gate controls. Diagnostic data and status information are also obtained from each board by similar optical methods. 8 refs., 6 figs., 1 tab.

  15. PV Manufacturing R&D Project Status and Accomplishments under 'In-Line Diagnostics and Intelligent Processing' and 'Yield, Durability and Reliability': Preprint

    SciTech Connect

    Friedman, D. J.; Mitchell, R. L.; Keyes, B. M.; Bower, W. I.; King, R.; Mazer, J.

    2006-05-01

    The PV Manufacturing R&D (PVMR&D) Project conducts cost-shared research and development programs with U.S. PV industry partners. There are currently two active industry partnership activities. ''In-line Diagnostics and Intelligent Processing'', launched in 2002, supports development of new in-line diagnostics and monitoring with real-time feedback for optimal process control and increased yield in the fabrication of PV modules, systems, and other system components. ''Yield, Durability and Reliability'', launched in late 2004, supports enhancement of PV module, system component, and complete system reliability in high-volume manufacturing. A second key undertaking of the PVMR&D Project is the collection and analysis of module production cost-capacity metrics for the U.S. PV industry. In the period from 1992 through 2005, the average module manufacturing cost in 2005 dollars fell 54% (5.7% annualized) to $2.74/Wp, and the capacity increased 18.6-fold (25% annualized) to 253 MW/yr. An experience curve analysis gives progress ratios of 87% and 81%, respectively, for U.S. silicon and thin-film module production.

  16. Optical diagnostics for condensed-phase shock-compressed molecular systems

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaner, J.W.

    1983-01-01

    Experimental techniques capable of obtaining information about the molecular phenomenology in the region through and immediately behind the shockfront during the shock-compression of condensed-phase molecular systems are discussed and compared. Difficulties associated with performing measurements in this region are briefly reviewed. Some concomitant static experiments that can be used to complement the dynamic measurements are suggested. Developments and advances expected in diagnostic techniques during the next few years are summarized.

  17. A Theory of Meta-Diagnosis: Reasoning about Diagnostic Systems Nuno Belard 1,2,3

    E-print Network

    Pencolé, Yannick

    -diagnoses. This is especially useful at Airbus where the data coming from many test flights can be used, for instanceA Theory of Meta-Diagnosis: Reasoning about Diagnostic Systems Nuno Belard 1,2,3 nuno.belard@airbus.com Yannick Pencol´e 2,3 ypencole@laas.fr 1 Airbus France; 316 route de Bayonne; 31060 Toulouse, France 2 LAAS

  18. Lunar materials processing system integration

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  19. Variational Gaussian Process Dynamical Systems

    E-print Network

    Damianou, Andreas C; Lawrence, Neil D

    2011-01-01

    High dimensional time series are endemic in applications of machine learning such as robotics (sensor data), computational biology (gene expression data), vision (video sequences) and graphics (motion capture data). Practical nonlinear probabilistic approaches to this data are required. In this paper we introduce the variational Gaussian process dynamical system. Our work builds on recent variational approximations for Gaussian process latent variable models to allow for nonlinear dimensionality reduction simultaneously with learning a dynamical prior in the latent space. The approach also allows for the appropriate dimensionality of the latent space to be automatically determined. We demonstrate the model on a human motion capture data set and a series of high resolution video sequences.

  20. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  1. [Autistic spectrum disorders in very young children: issues in the diagnostic process].

    PubMed

    Sarimski, Klaus

    2006-01-01

    The diagnosis of very young children with autistic spectrum disorders and differentiating the disorder from mental retardation are difficult in the early years. Some efforts to improve diagnostic practice are reviewed. The usefulness of standardized behavioural rating scales, observation of core deficits in communication and play and parental reports are discussed in view of the author's experience with 13 children (2-4 years of age). Even in the case of diagnostic uncertainty, focussing early intervention on core symptoms of autism and supporting responsive parent-child interactions is recommended in order to prevent further social isolation of children with autistic features. PMID:16967644

  2. Parallel processing and expert systems

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Lau, Sonie

    1991-01-01

    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited.

  3. Design of a New Optical System for Alcator C-Mod Motional Stark Effect Diagnostic

    SciTech Connect

    Ko, Jinseok; Scott, Steve; Manfred, Bitter; Lerner, Lerner

    2009-11-12

    The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources. 2008 American Institute of Physics.

  4. The Sandtray Technique for Swedish Children 1945-1960: Diagnostics, Psychotherapy and Processes of Individualisation

    ERIC Educational Resources Information Center

    Nelson, Karin Zetterqvist

    2011-01-01

    The present article examines the development of a diagnostic and therapeutic technique named The Sandtray at the Erica Foundation, a privately-run child counselling service in Stockholm. Originally it was called The World, developed by the British paediatrician and child psychiatrist Margaret Lowenfeld. In the 1930s it was imported to Sweden,…

  5. An electronic documentation system increases diagnostic code capture for very low birth weight infants.

    PubMed Central

    Porcelli, P. J.

    2001-01-01

    INTRODUCTION: Information describing medical interventions and patient outcome of very low birth weight (VLBW; BW <1500 grams) infants who receive neonatal intensive care is necessary to evaluate the quality of health care. We developed an electronic patient documentation system (EDS) called PCode to identify and select patient diagnostic (DX) codes and compared EDS to the previous paper-based documentation system (PDS). Our hypothesis was that EDS would capture more patient diagnostic codes than PDS. METHODS: PDS was originally developed as a two page 'code sheet' which listed all 275 neonatal diagnoses/management options and corresponding 3-4 character diagnostic (DX) codes, organized by organ system. PDS code sheets were manually completed by one of three trained 'coders' for every neonatal patient. EDS was developed as a Java application with the 'coder' selecting DX codes from drop lists also categorized by organ system. The study intervention was patient code selection using either the PDS or the EDS system. Both systems produced a paper DX code summary. PDS data capture occurred from 11/1997-3/1999 followed by EDS data capture until 8/2000. The primary outcome variable was DX codes captured per patient. Data were analyzed using independent t-test and linear regression. RESULTS: The number of diagnoses increased with decreasing birth weight. After linear regression was applied to control for birth weight, the number of DX codes was 31% greater in the EDS group, 7.2 +/- 2.9 DX codes/patient, p=0.008. There was a trend towards fewer erroneous DX codes in the EDS group. The most common DX codes were hyaline membrane disease, sepsis evaluation and hyperbilirubinemia, as expected for this patient population. CONCLUSIONS: EDS captured more VLBW infant DX codes compared to PDS. These results support the transition toward electronic data documentation for the neonatal clinical environment. Electronically linking PCode to the patient database has been initiated and should reduce manual coding errors. PMID:11825246

  6. Chemical production processes and systems

    DOEpatents

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  7. Chemical production processes and systems

    SciTech Connect

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  8. NDMAS System and Process Description

    SciTech Connect

    Larry Hull

    2012-10-01

    Experimental data generated by the Very High Temperature Reactor Program need to be more available to users in the form of data tables on Web pages that can be downloaded to Excel or in delimited text formats that can be used directly for input to analysis and simulation codes, statistical packages, and graphics software. One solution that can provide current and future researchers with direct access to the data they need, while complying with records management requirements, is the Nuclear Data Management and Analysis System (NDMAS). This report describes the NDMAS system and its components, defines roles and responsibilities, describes the functions the system performs, describes the internal processes the NDMAS team uses to carry out the mission, and describes the hardware and software used to meet Very High Temperature Reactor Program needs.

  9. Development of fast steering mirror control system for plasma heating and diagnostics

    SciTech Connect

    Okada, K. Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Tanaka, K.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Ogasawara, S.; Nishiura, M.

    2014-11-15

    A control system for a fast steering mirror has been newly developed for the electron cyclotron heating (ECH) launchers in the large helical device. This system enables two-dimensional scan during a plasma discharge and provides a simple feedback control function. A board mounted with a field programmable gate array chip has been designed to realize feedback control of the ECH beam position to maintain higher electron temperature by ECH. The heating position is determined by a plasma diagnostic signal related to the electron temperature such as electron cyclotron emission and Thomson scattering.

  10. Diagnostic Accuracy of Radiologic Scoring System for Evaluation of Suspicious Hirschsprung Disease in Children

    PubMed Central

    Alehossein, Mehdi; Roohi, Ahad; Pourgholami, Masoud; Mollaeian, Mansour; Salamati, Payman

    2015-01-01

    Background: In 1996, Donovan and colleagues represented a scoring system for better prediction of Hirschsprung disease (HD). Objectives: Our objective was to devise another scoring system that uses a checklist of radiologic and clinical signs to determine the probability of HD in suspicious patients. Patients and Methods: In a diagnostic accuracy study, 55 children with clinical manifestations of HD that referred to a training hospital from 1998 to 2011 were assessed. A checklist was used to evaluate the items proposed by contrast enema (CE), based on six subscales, including transitional zone, rectosigmoid index (RSI), irregular contractions in aganglionic region, cobblestone appearance, filling defect due to fecaloid materials and lack of meconium defecation during the first 48 hours after birth. The patients were classified as high score and low score. Sensitivity, specificity, positive predictive value and negative predictive value of our scoring system were calculated for identifying HD, in comparison with pathologically proved or ruled out HD. Results: Of the 55 patients, 36 (65.4%) cases had HD and 19 (34.6%) cases were without HD. In the HD group, 32 patients showed high scores and four patients had low scores. The sensitivity and specificity of our diagnostic scoring system were 88.9% (95% CI: 78.6% - 99.1%) and 84.2% (95% CI: 68.7% - 100%), respectively. Moreover, positive predictive value (PPV) and negative predictive value (NPV) were 91.4% (95% CI: 82.1% - 100%) and 80% (95% CI: 62.5% - 97.5%), respectively. Conclusions: Our new scoring system of CE is a useful diagnostic method in HD. If a patient’s score is high, that patient is highly suspicious to HD and reversely, when one’s score is low, the patient presents a reduced probability to be diagnosed with HD. PMID:25901256

  11. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  12. Dynamic security assessment processing system

    NASA Astrophysics Data System (ADS)

    Tang, Lei

    The architecture of dynamic security assessment processing system (DSAPS) is proposed to address online dynamic security assessment (DSA) with focus of the dissertation on low-probability, high-consequence events. DSAPS upgrades current online DSA functions and adds new functions to fit into the modern power grid. Trajectory sensitivity analysis is introduced and its applications in power system are reviewed. An index is presented to assess transient voltage dips quantitatively using trajectory sensitivities. Then the framework of anticipatory computing system (ACS) for cascading defense is presented as an important function of DSAPS. ACS addresses various security problems and the uncertainties in cascading outages. Corrective control design is automated to mitigate the system stress in cascading progressions. The corrective controls introduced in the dissertation include corrective security constrained optimal power flow, a two-stage load control for severe under-frequency conditions, and transient stability constrained optimal power flow for cascading outages. With state-of-the-art computing facilities to perform high-speed extended-term time-domain simulation and optimization for large-scale systems, DSAPS/ACS efficiently addresses online DSA for low-probability, high-consequence events, which are not addressed by today's industrial practice. Human interference is reduced in the computationally burdensome analysis.

  13. High Quality Heart and Lung Auscultation System for Diagnostic Use on Remote Patients in Real Time

    PubMed Central

    Marani, Roberto; Gelao, Gennaro; Perri, Anna Gina

    2010-01-01

    We propose a medical electronic-computerized platform for diagnostic use, which allows doctors to carry out a complete cardio-respiratory control on remote patients in real time. In the context of telemedicine the proposed system can be considered as a really innovative product in which all the most advanced technologies of biomedical engineering converge to guarantee an efficient and reliable home assistance that allows the patient a highly better quality of life in terms of prophylaxis, treatment and reduction of discomfort connected to periodic patient controls and/or hospitalization. Moreover the system has been equipped to be employed also to real-time rescue in case of emergency without the necessity for data to be constantly monitored by a medical centre. In fact, when an emergency sign is detected through the real-time diagnosing system, it sends a warning message to people able to arrange for his/her rescue. A Global Positioning System (GPS) also provides the patient coordinates. The proposed system, in its version for diagnostic use, has been verified by the heart specialists of the Institute of Cardiology in the General Hospital (Polyclinic) of the University of Bari, Italy. PMID:21379392

  14. Design and Development of a Diagnostics Client for a Beam Loss Measurement System at CERN

    E-print Network

    Angelogiannopoulos, Emmanouil; Jackson, Stephen

    The European Organization for Nuclear Research, known as CERN, is one of the biggest research centers in the field of particle physics. Its main function is to provide particle accelerators and other infrastructure needed for high energy physics research. Particles are accelerated through a complex of accelerators and are brought into collision, in order to study the fundamental elements of matter and the forces acting between them. Of course, such complex and expensive machines need control and protection. For that purpose, a variety of different systems -hardware and/or software- is needed. One such system is the Beam Loss Monitoring (BLM) system of an accelerator. This kind of system is designed for measuring beam losses around an accelerator. An appropriate design of the BLM system and an appropriate location of the monitors enable a wide field of very useful beam diagnostics and machine protection possibilities. This thesis focuses on the design and development of a client application, which is realized ...

  15. A Diagnostic Assessment of Evolutionary Multiobjective Optimization for Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Reed, P.; Hadka, D.; Herman, J.; Kasprzyk, J.; Kollat, J.

    2012-04-01

    This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.

  16. Development of an On-board Failure Diagnostics and Prognostics System for Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.; Osipov, Vyatcheslav V.; Timucin, Dogan A.; Uckun, Serdar

    2009-01-01

    We develop a case breach model for the on-board fault diagnostics and prognostics system for subscale solid-rocket boosters (SRBs). The model development was motivated by recent ground firing tests, in which a deviation of measured time-traces from the predicted time-series was observed. A modified model takes into account the nozzle ablation, including the effect of roughness of the nozzle surface, the geometry of the fault, and erosion and burning of the walls of the hole in the metal case. The derived low-dimensional performance model (LDPM) of the fault can reproduce the observed time-series data very well. To verify the performance of the LDPM we build a FLUENT model of the case breach fault and demonstrate a good agreement between theoretical predictions based on the analytical solution of the model equations and the results of the FLUENT simulations. We then incorporate the derived LDPM into an inferential Bayesian framework and verify performance of the Bayesian algorithm for the diagnostics and prognostics of the case breach fault. It is shown that the obtained LDPM allows one to track parameters of the SRB during the flight in real time, to diagnose case breach fault, and to predict its values in the future. The application of the method to fault diagnostics and prognostics (FD&P) of other SRB faults modes is discussed.

  17. Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Lenhardt, L.; Zekovi?, I.; Drami?anin, T.; Drami?anin, M. D.

    2013-11-01

    Over the years various optical spectroscopic techniques have been widely used as diagnostic tools in the discrimination of many types of malignant diseases. Recently, synchronous fluorescent spectroscopy (SFS) coupled with chemometrics has been applied in cancer diagnostics. The SFS method involves simultaneous scanning of both emission and excitation wavelengths while keeping the interval of wavelengths (constant-wavelength mode) or frequencies (constant-energy mode) between them constant. This method is fast, relatively inexpensive, sensitive and non-invasive. Total synchronous fluorescence spectra of normal skin, nevus and melanoma samples were used as input for training of artificial neural networks. Two different types of artificial neural networks were trained, the self-organizing map and the feed-forward neural network. Histopathology results of investigated skin samples were used as the gold standard for network output. Based on the obtained classification success rate of neural networks, we concluded that both networks provided high sensitivity with classification errors between 2 and 4%.

  18. A pixel detector-based single photon-counting system as fast spectrometer for diagnostic X-ray beams.

    PubMed

    Carpentieri, C; Bisogni, M G; Del Guerra, A; Delogu, P; Fantacci, M E; Fogli, J; Marchi, A; Marzulli, V; Rosso, V; Stefanini, A; Tofani, A

    2008-01-01

    Recent advances in semiconductor pixel detectors and read-out electronics allowed to build the first prototypes of single photon-counting imaging systems that represent the last frontier of digital radiography. Among the advantages with respect to commercially available digital imaging systems, there are direct conversion of photon energy into electrical charge and the effective rejection of electronic noise by means of a thresholding process. These features allow the photon-counting systems to achieve high imaging performances in terms of spatial and contrast resolution. Moreover, the now available deep integration techniques allow the reduction of the pixel size and the improvement of the functionality of the single cell and the read-out speed so as to cope with the high fluxes found in diagnostic radiology. In particular, the single photon-counting system presented in this paper is based on a 300-microm thick silicon pixel detector bump-bonded to the Medipix2 read-out chip to form an assembly of 256 x 256 square pixels at a pitch of 55 microm. Each cell comprises a low-noise preamplifier, two pulse height discriminators and a 14-bit counter. The maximum counting rate per pixel is 1 MHz. The chip can operate in two modalities: it records the events with energy above a threshold (single mode) or between two energy thresholds (window mode). Exploiting this latter feature, a possible application of such a system as a fast spectrometer is presented to study the energy spectrum of diagnostic beams produced by X-ray tubes. PMID:18487616

  19. Laser-based systems for the structural diagnostic of artwork: an application to XVII-century Byzantine icons

    NASA Astrophysics Data System (ADS)

    Tornari, Vivi; Bonarou, Antonia; Castellini, Paolo; Esposito, Enrico; Osten, Wolfgang; Kalms, Michael K.; Smyrnakis, Nikos; Stasinopulos, Stergios

    2001-10-01

    Laser diagnostic systems based on shearography, vibrometry, and holography principles were employed to investigate the potential implementation of laser techniques in art conservation structural diagnostic field. The employed techniques offered the required measuring variability to allow a first discrimination on complex diagnostic uncertainties encountered often in art conservation. The systems were tested and used to assess the structural condition of well-documented Byzantine icons with known structural problems. Defects and mechanical deformations were identified in various distances from the artworks by alternative employment of techniques. In this way simultaneous eligibility classification of the used systems was also obtained. Results of the on-field application on the XVII century Byzantine icons are herein presented with discussion on the prospects of the techniques in the diagnostic field of art conservation.

  20. Plasma diagnostic approach for high rate nanocrystalline Si synthesis in RF/UHF hybrid plasmas using a PECVD process

    NASA Astrophysics Data System (ADS)

    Sahu, B. B.; Han, Jeon G.; Shin, Kyung S.; Ishikawa, K.; Hori, M.; Miyawaki, Yudai

    2015-04-01

    Hydrogenated nanocrystalline silicon (nc-Si?:?H) films intended for efficient nc-Si?:?H solar cells are usually made at the transition to the nanocrystalline regime using the plasma-enhanced chemical vapor deposition (PECVD) process. This change occurs within a sensitive process window and is affected by various deposition parameters. This paper reports a study of nc-Si?:?H films' fabrication by utilizing systematic plasma diagnostics. This work presents a novel approach for plasma processing using radio frequency (RF), ultra high frequency (UHF) and RF/UHF hybrid plasmas. Using careful analysis, efforts are made to investigate the radicals and plasma formation by changing the operating source power and silane (SiH4) concentration. The aim of this work is also to investigate the PECVD process and conditions favorable for the synthesis of nc-Si?:?H film. For the present study, we systematically use the optical emission spectroscopy (OES), normal, and RF-compensated Langmuir probe (LP) and vacuum ultraviolet absorption spectroscopy diagnostics. Measurements reveal that the OES diagnostic is consistent with the LP measurements. Investigation reveals that UHF power in addition to RF enables higher dissociation of H or SiH radicals and the production of higher plasma density. The combined effect of both RF and UHF sources is used as the hybrid plasma source. Measurements also reveal that inbetween SiH4 flow rates ˜20-30 sccm, there is significant change in the plasma characteristics that denotes the nc-Si?:?H-a-Si?:?H transition region. An atomic hydrogen density (nH) in the range ?(8 - 10) × 1011 cm-3 and plasma density n0 ? (2 - 3) × 1011 cm-3 with a silane to hydrogen ratio of 1-2% with high crystallinity has been obtained. Along with the discussion on the effect of frequency on plasma chemistry, this explains the RF power coupling and the role of electrons and ions in plasmas with increasing frequency.

  1. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    SciTech Connect

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  2. Process Systems Engineering Ice cream scheduling

    E-print Network

    Grossmann, Ignacio E.

    S P S Process Systems Engineering Ice cream scheduling Martijn van Elzakker EWO meeting, 28 September 2010 #12;S P S Process Systems Engineering Problem overview 128-9-2010 All products Product type 2 Storage · Ageing · Freezing · Packing #12;S P S Process Systems Engineering Process Specifics Production

  3. Vibration mitigation in J-TEXT far-infrared diagnostic systems

    SciTech Connect

    Li, Q.; Chen, J.; Zhuang, G.; Wang, Z. J.; Gao, L.; Chen, W.

    2012-10-15

    Optical structure stability is an important issue for far-infrared (FIR) phase measurements. To ensure good signal quality, influence of vibration should be minimized. Mechanical amelioration and optical optimization can be taken in turn to decrease vibration's influence and ensure acceptable measurement. J-TEXT (Joint Texal Experiment Tokamak, formerly TEXT-U) has two FIR diagnostic systems: a HCN interferometer system for electron density measurement and a three-wave polarimeter-interferometer system (POLARIS) for electron density and Faraday effect measurements. All use phase detection techniques. HCN interferometer system has almost eliminated the influence of vibration after mechanical amelioration and optical optimization. POLARIS also obtained first experimental results after mechanical stability improvements and is expected to further reduce vibration's influence on Faraday angle to 0.1 Degree-Sign after optical optimization.

  4. Feasibility Investigation on the Development of a Structural Damage Diagnostic and Monitoring System for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Shen, Ji Y.; Sharpe, Lonnie, Jr.

    1998-01-01

    The research activity for this project is mainly to investigate the necessity and feasibility to develop a structural health monitoring system for rocket engines, and to carry out a research plan for further development of the system. More than one hundred technical papers have been searched and reviewed during the period. We concluded after this investigation that adding a new module in NASA's existing automated diagnostic system to monitor the healthy condition of rocket engine structures is a crucial task, and it's possible to develop such a system based upon the vibrational-based nondestructive damage assessment techniques. A number of such techniques have been introduced. Their advantages and disadvantages are also discussed. A global research plan has been figured out. As the first step of the overall research plan, a proposal for the next fiscal year has been submitted.

  5. Use of hyperspectral imaging technology to develop a diagnostic support system for gastric cancer

    NASA Astrophysics Data System (ADS)

    Goto, Atsushi; Nishikawa, Jun; Kiyotoki, Shu; Nakamura, Munetaka; Nishimura, Junichi; Okamoto, Takeshi; Ogihara, Hiroyuki; Fujita, Yusuke; Hamamoto, Yoshihiko; Sakaida, Isao

    2015-01-01

    Hyperspectral imaging (HSI) is a new technology that obtains spectroscopic information and renders it in image form. This study examined the difference in the spectral reflectance (SR) of gastric tumors and normal mucosa recorded with a hyperspectral camera equipped with HSI technology and attempted to determine the specific wavelength that is useful for the diagnosis of gastric cancer. A total of 104 gastric tumors removed by endoscopic submucosal dissection from 96 patients at Yamaguchi University Hospital were recorded using a hyperspectral camera. We determined the optimal wavelength and the cut-off value for differentiating tumors from normal mucosa to establish a diagnostic algorithm. We also attempted to highlight tumors by image processing using the hyperspectral camera's analysis software. A wavelength of 770 nm and a cut-off value of 1/4 the corrected SR were selected as the respective optimal wavelength and cut-off values. The rates of sensitivity, specificity, and accuracy of the algorithm's diagnostic capability were 71%, 98%, and 85%, respectively. It was possible to enhance tumors by image processing at the 770-nm wavelength. HSI can be used to measure the SR in gastric tumors and to differentiate between tumorous and normal mucosa.

  6. Assembly and characterization of a fluorescence lifetime spectroscopy system for skin lesions diagnostic

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Texiera Rosa, Ramon Gabriel; Pratavieira, Sebastião.; D´Almeida, Camila de Paula; Kurachi, Cristina

    2015-06-01

    The fluorescence spectra and fluorescence lifetime analysis in biological tissues has been presented as a technique of a great potential for tissue characterization for diagnostic purposes. The objective of this study is to assemble and characterize a fluorescence lifetime spectroscopy system for diagnostic of clinically similar skin lesions in vivo. The fluorescence lifetime measurements were performed using the Time Correlated Single Photon Counting (Becker & Hickl, Berlin, Germany) technique. Two lasers, one emitting at 378 nm and another at 445 nm, are used for excitation with 20, 50 and 80 MHz repetition rate. A bifurcated optical fiber probe conducts the excitation light to the sample, the collected light is transmitted through bandpass filters and delivered to a hybrid photomultiplier tube detector. The fluorescence spectra were obtained by using a portable spectrometer (Ocean Optics USB-2000-FLG) with the same excitation sources. An instrument response function of about 300 ps was obtained and the spectrum and fluorescence lifetime of a standard fluorescent molecule (Rhodamine 6G) was measured for the calibration of the system ((4.1 +/- 0.3) ns). The assembled system was considered robust, well calibrated and will be used for clinical measurements of skin lesions.

  7. RAMI Analyses of Heating Neutral Beam and Diagnostic Neutral Beam Systems for ITER

    SciTech Connect

    Chang, D. H.; Lee, S.; Hemsworth, R.; Houtte, D. van; Okayama, K.; Sagot, F.; Schunke, B.; Svensson, L.

    2011-09-26

    A RAMI (Reliability, Availability, Maintainability, Inspectability) analysis has been performed for the heating (and current drive) neutral beam (HNB) and diagnostic neutral beam (DNB) systems of the ITER device. The objective of these analyses is to implement RAMI engineering requirements for design and testing to prepare a reliability-centred plan for commissioning, operation, and maintenance of the system in the framework of technical risk control to support the overall ITER Project. These RAMI requirements will correspond to the RAMI targets for the ITER project and the compensating provisions to reach them as deduced from the necessary actions to decrease the risk level of the function failure modes. The RAMI analyses results have to match with the procurement plan of the systems.

  8. Study on the diagnostic system of scoliosis by using infrared camera.

    PubMed

    Jeong, Jin-Hyoung; Park, Eun-Jeong; Cho, Chang-Ok; Kim, Yoon-Jeong; Lee, Sang-Sik

    2015-08-17

    In this study, the radiation generated in the diagnosis of scoliosis, to solve the problems by using an infrared camera and an optical marker system that can diagnose scoliosis developed. System developed by the infrared camera attached to the optical spinal curvature is recognized as a marker to shoot the angle between the two optical markers are measured. Measurement of angle, we used the Cobb's Angle method used in the diagnosis of spinal scoliosis. We developed a software to be able to output to the screen using an infrared camera to diagnose spinal scoliosis. Software is composed of camera output unit was manufactured in Labview, angle measurement unit, in Cobb's Angle measurement unit. In the future, kyphosis, Hallux Valgus, such as the diagnosis of orthopedic disorders that require the use of a diagnostic system is expected case. PMID:26405878

  9. Screening for Hypertension Using Diagnostic Triaging: An Interactive Policy Analysis System

    PubMed Central

    Heidenberger, Kurt

    1982-01-01

    The paper describes the development of a system for screening and group-specific diagnostic management of patients with hypertension. Based on a single-period long-term model, the system is of potential value for administrative health care planning focusing on an effective allocation of a limited budget. Since the overall goal is insight not numbers the system is to be used in a “what...if” mode. The user specifies the problem he wants to consider choosing the decision criterion, the evaluation parameters and the algorithms. Input data can be modified interactively as well. Design criteria include flexibility, expandability, adaptability to various populations, and also portability and low-cost operation.

  10. Optical property measurements as a diagnostic tool for control of materials processing in space and on Earth

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.

    1990-01-01

    A new method is described, including results, to measure, control, and follow containerless processing in ground based levitators. This technique enables instantaneous optical property measurements from a transient solid or liquid surface concurrent with true temperature measurement. This was used successfully as a diagnostic tool to follow processing of Al, Si, and Ti during electromagnetic levitation. Experiments on Al show the disappearance of the oxide (emittance 0.33) at ca. 1300 C leaving a liquid surface with an emittance of 0.06. Electromagnetic levitation of silicon shows a liquid with a constant emittance (0.2) but with a solid whose emittance decreases very rapidly with increasing temperature. Consequently, the processing of materials at high temperatures can be controlled quite well through the control of surface optical properties.

  11. Hybrid systems process mixed wastes

    SciTech Connect

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  12. Diagnostics in a digital age: an opportunity to strengthen health systems and improve health outcomes.

    PubMed

    Peeling, Rosanna W

    2015-11-01

    Diagnostics play a critical role in clinical decision making, and in disease control and prevention. Rapid point-of-care (POC) tests for infectious diseases can improve access to diagnosis and patient management, but the quality of these tests vary, quality of testing is often not assured and there are few mechanisms to capture test results for surveillance when the testing is so decentralised. A new generation of POC molecular tests that are highly sensitive and specific, robust and easy to use are now available for deployment in low resource settings. Decentralisation of testing outside of the laboratory can put tremendous stress on the healthcare system and presents challenges for training and quality assurance. A feature of many of these POC molecular devices is that they are equipped with data transmission capacities. In a digital age, it is possible to link data from diagnostic laboratories and POC test readers and devices to provide data on testing coverage, disease trends and timely information for early warning of infectious disease outbreaks to inform design or optimisation of disease control and elimination programmes. Data connectivity also allows control programmes to monitor the quality of tests and testing, and optimise supply chain management; thus, increasing the efficiency of healthcare systems and improving patient outcomes. PMID:26553825

  13. Diagnostics in Japan's microgravity experiments

    NASA Technical Reports Server (NTRS)

    Kadota, Toshikazu

    1995-01-01

    The achievement of the combustion research under microgravity depends substantially on the availability of diagnostic systems. The non-intrusive diagnostic systems are potentially applicable for providing the accurate, realistic and detailed information on momentum, mass and energy transport, complex gas phase chemistry, and phase change in the combustion field under microgravity. The non-intrusive nature of optical instruments is essential to the measurement of combustion process under microgravity which is very nervous to any perturbation. However, the implementation of the non-intrusive combustion diagnostic systems under microgravity is accompanied by several constraints. Usually, a very limited space is only available for constructing a highly sophisticated system which is so sensitive that it is easily affected by the magnitude of the gravitational force, vibration and heterogeneous field of temperature and density of the environments. The system should be properly adjusted prior to the experiment. Generally, it is quite difficult to tune the instruments during measurements. The programmed sequence of operation should also be provided. Extensive effort has been toward the development of non-intrusive diagnostic systems available for the combustion experiments under microgravity. This paper aims to describe the current art and the future strategy on the non-intrusive diagnostic systems potentially applicable to the combustion experiments under microgravity in Japan.

  14. Turbulence in the Solar Atmosphere: Manifestations and Diagnostics via Solar Image Processing

    E-print Network

    Manolis K. Georgoulis

    2005-11-15

    Intermittent magnetohydrodynamical turbulence is most likely at work in the magnetized solar atmosphere. As a result, an array of scaling and multi-scaling image-processing techniques can be used to measure the expected self-organization of solar magnetic fields. While these techniques advance our understanding of the physical system at work, it is unclear whether they can be used to predict solar eruptions, thus obtaining a practical significance for space weather. We address part of this problem by focusing on solar active regions and by investigating the usefulness of scaling and multi-scaling image-processing techniques in solar flare prediction. Since solar flares exhibit spatial and temporal intermittency, we suggest that they are the products of instabilities subject to a critical threshold in a turbulent magnetic configuration. The identification of this threshold in scaling and multi-scaling spectra would then contribute meaningfully to the prediction of solar flares. We find that the fractal dimension of solar magnetic fields and their multi-fractal spectrum of generalized correlation dimensions do not have significant predictive ability. The respective multi-fractal structure functions and their inertial-range scaling exponents, however, probably provide some statistical distinguishing features between flaring and non-flaring active regions. More importantly, the temporal evolution of the above scaling exponents in flaring active regions probably shows a distinct behavior starting a few hours prior to a flare and therefore this temporal behavior may be practically useful in flare prediction. The results of this study need to be validated by more comprehensive works over a large number of solar active regions.

  15. Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems.

    SciTech Connect

    North, Simon W.; Hsu, Andrea G.; Frank, Jonathan H.

    2009-09-01

    This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

  16. Optical diagnostics based on elastic scattering: Recent clinical demonstrations with the Los Alamos Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Loree, T.R.; Mourant, J.; Shimada, T.; Story-Held, K.; Glickman, R.D.; Conn, R.

    1993-08-01

    A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.

  17. ADAM: An Accident Diagnostic,Analysis and Management System - Applications to Severe Accident Simulation and Management

    SciTech Connect

    Zavisca, M.J.; Khatib-Rahbar, M.; Esmaili, H.; Schulz, R.

    2002-07-01

    The Accident Diagnostic, Analysis and Management (ADAM) computer code has been developed as a tool for on-line applications to accident diagnostics, simulation, management and training. ADAM's severe accident simulation capabilities incorporate a balance of mechanistic, phenomenologically based models with simple parametric approaches for elements including (but not limited to) thermal hydraulics; heat transfer; fuel heatup, meltdown, and relocation; fission product release and transport; combustible gas generation and combustion; and core-concrete interaction. The overall model is defined by a relatively coarse spatial nodalization of the reactor coolant and containment systems and is advanced explicitly in time. The result is to enable much faster than real time (i.e., 100 to 1000 times faster than real time on a personal computer) applications to on-line investigations and/or accident management training. Other features of the simulation module include provision for activation of water injection, including the Engineered Safety Features, as well as other mechanisms for the assessment of accident management and recovery strategies and the evaluation of PSA success criteria. The accident diagnostics module of ADAM uses on-line access to selected plant parameters (as measured by plant sensors) to compute the thermodynamic state of the plant, and to predict various margins to safety (e.g., times to pressure vessel saturation and steam generator dryout). Rule-based logic is employed to classify the measured data as belonging to one of a number of likely scenarios based on symptoms, and a number of 'alarms' are generated to signal the state of the reactor and containment. This paper will address the features and limitations of ADAM with particular focus on accident simulation and management. (authors)

  18. A HO-IRT Based Diagnostic Assessment System with Constructed Response Items

    ERIC Educational Resources Information Center

    Yang, Chih-Wei; Kuo, Bor-Chen; Liao, Chen-Huei

    2011-01-01

    The aim of the present study was to develop an on-line assessment system with constructed response items in the context of elementary mathematics curriculum. The system recorded the problem solving process of constructed response items and transfered the process to response codes for further analyses. An inference mechanism based on artificial…

  19. [EOS imaging acquisition system : 2D/3D diagnostics of the skeleton].

    PubMed

    Tarhan, T; Froemel, D; Meurer, A

    2015-12-01

    The application spectrum of the EOS imaging acquisition system is versatile. It is especially useful in the diagnostics and planning of corrective surgical procedures in complex orthopedic cases. The application is indicated when assessing deformities and malpositions of the spine, pelvis and lower extremities. It can also be used in the assessment and planning of hip and knee arthroplasty. For the first time physicians have the opportunity to conduct examinations of the whole body under weight-bearing conditions in order to anticipate the effects of a planned surgical procedure on the skeletal system as a whole and therefore on the posture of the patient. Compared to conventional radiographic examination techniques, such as x-ray or computed tomography, the patient is exposed to much less radiation. Therefore, the pediatric application of this technique can be described as reasonable. PMID:26564207

  20. Development of a picosecond lidar system for large-scale combustion diagnostics.

    PubMed

    Kaldvee, Billy; Ehn, Andreas; Bood, Joakim; Aldén, Marcus

    2009-02-01

    In the present work, a picosecond lidar system aiming at single-ended combustion diagnostics in full-scale combustion devices with limited optical access, such as power plants, is described. The highest overall range resolution of the system was found to be <0.5 cm. A demonstration has been made in a nonsooty and sooty Bunsen burner flame. A well-characterized ethylene flame on a McKenna burner was evaluated for different equivalence ratios using Rayleigh thermometry. The results indicate both that picosecond lidar might be applicable for single-shot Rayleigh thermometry, even two-dimensional, and that there is a possibility to qualitatively map soot occurrence. Furthermore, differential absorption lidar has been investigated in acetone vapor jets for fuel visualization purposes. PMID:19183583

  1. Toward Integrated Molecular Diagnostic System (iMDx): Principles and Applications

    PubMed Central

    Park, Seung-min; Sabour, Andrew F.; Son, Jun Ho; Lee, Sang Hun

    2014-01-01

    Integrated molecular diagnostic systems (iMDx), which are automated, sensitive, specific, user-friendly, robust, rapid, easy-to-use, and portable, can revolutionize future medicine. This review will first focus on the components of sample extraction, preservation, and filtration necessary for all point-of-care devices to include for practical use. Subsequently, we will look for low-powered and precise methods for both sample amplification and signal transduction, going in-depth to the details behind their principles. The final field of total device integration and its application to the clinical field will also be addressed to discuss the practicality for future patient care. We envision that microfluidic systems hold the potential to breakthrough the number of problems brought into the field of medical diagnosis today. PMID:24759281

  2. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  3. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    PubMed Central

    Jeong, Sinyoung; Kim, Yong-il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-01-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures. PMID:25820115

  4. Embedded diagnostic, prognostic, and health management system and method for a humanoid robot

    NASA Technical Reports Server (NTRS)

    Barajas, Leandro G. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor); Strawser, Philip A (Inventor)

    2013-01-01

    A robotic system includes a humanoid robot with multiple compliant joints, each moveable using one or more of the actuators, and having sensors for measuring control and feedback data. A distributed controller controls the joints and other integrated system components over multiple high-speed communication networks. Diagnostic, prognostic, and health management (DPHM) modules are embedded within the robot at the various control levels. Each DPHM module measures, controls, and records DPHM data for the respective control level/connected device in a location that is accessible over the networks or via an external device. A method of controlling the robot includes embedding a plurality of the DPHM modules within multiple control levels of the distributed controller, using the DPHM modules to measure DPHM data within each of the control levels, and recording the DPHM data in a location that is accessible over at least one of the high-speed communication networks.

  5. On the processes generating latitudinal richness gradients: identifying diagnostic patterns and predictions

    PubMed Central

    Hurlbert, Allen H.; Stegen, James C.

    2014-01-01

    We use a simulation model to examine four of the most common hypotheses for the latitudinal richness gradient and identify patterns that might be diagnostic of those four hypotheses. The hypotheses examined include (1) tropical niche conservatism, or the idea that the tropics are more diverse because a tropical clade origin has allowed more time for diversification in the tropics and has resulted in few species adapted to extra-tropical climates. (2) The ecological limits hypothesis suggests that species richness is limited by the amount of biologically available energy in a region. (3) The speciation rates hypothesis suggests that the latitudinal gradient arises from a gradient in speciation rates. (4) Finally, the tropical stability hypothesis argues that climatic fluctuations and glacial cycles in extratropical regions have led to greater extinction rates and less opportunity for specialization relative to the tropics. We found that tropical niche conservatism can be distinguished from the other three scenarios by phylogenies which are more balanced than expected, no relationship between mean root distance (MRD) and richness across regions, and a homogeneous rate of speciation across clades and through time. The energy gradient, speciation gradient, and disturbance gradient scenarios all produced phylogenies which were more imbalanced than expected, showed a negative relationship between MRD and richness, and diversity-dependence of speciation rate estimates through time. We found that the relationship between speciation rates and latitude could distinguish among these three scenarios, with no relation expected under the ecological limits hypothesis, a negative relationship expected under the speciation rates hypothesis, and a positive relationship expected under the tropical stability hypothesis. We emphasize the importance of considering multiple hypotheses and focusing on diagnostic predictions instead of predictions that are consistent with multiple hypotheses. PMID:25520738

  6. Laser processing and in-situ diagnostics for crystallization: from thin films to nanostructures

    NASA Astrophysics Data System (ADS)

    Yoo, Jae-Hyuck; In, Jung Bin; Zheng, Andy Cheng; Ryu, Sang-Gil; Hwang, David J.; Xiang, Bin; Minor, Andrew M.; Grigoropoulos, Costas P.

    2014-10-01

    Recent work on laser-induced crystallization of thin films and nanostructures is presented. Characterization of the morphology of the crystallized area reveals the optimum conditions for sequential lateral growth in a-Si thin films under high-pulsed laser irradiation. Silicon crystal grains of several micrometers in lateral dimensions can be obtained reproducibly. Laser-induced grain morphology change is observed in silicon nanopillars under a transmission electron microscopy (TEM) environment. The TEM is coupled with a near-field scanning optical microscopy (NSOM) pulsed laser processing system. This combination enables immediate scrutiny on the grain morphologies that the pulsed laser irradiation produces. The tip of the amorphous or polycrystalline silicon pillar is transformed into a single crystalline domain via melt-mediated crystallization. The microscopic observation provides a fundamental basis for laser-induced conversion of amorphous nanostructures into coarse-grained crystals. A laser beam shaping strategy is introduced to control the stochastic dewetting of ultrathin silicon film on a foreign substrate under thermal stimulation. Upon a single pulse irradiation of the shaped laser beam, the thermodynamically unstable ultrathin silicon film is dewetted from the glass substrate and transformed to a nanodome. The results suggest that the laser beam shaping strategy for the thermocapillary-induced de-wetting combined with the isotropic etching is a simple alternative for scalable manufacturing of array of nanostructures.

  7. SYN-PED II ©: Recent Developments in a Syntactical Pediatric Evaluation and Diagnostic System

    PubMed Central

    Witten, Matthew; Maloney, David

    1981-01-01

    SYN-PEDS© is a multiperipheral, multimodular system which is designed to be an inhome interactive access to a neonatal and pediatric diagnostic information database. This system was originally designed to assist a parent in assessing his child's condition, as well as in determining the necessity of immediate medical attention. SYN-PEDS© was not designed as a replacement for the pediatrician. Rather, it was designed as a preventative and health maintenance information system; in short, as a CAT/CAD system for the parent. SYN-PEDS II© has been developed as an extension of the original system. SYN-PEDS II© has been designed for the DEC PDP 11/23 and higher computer series. However, it is also compatible with the VAX series. SYN-PEDS II© has a freer grammar structure, and a more rapid file management system. This allows it to accept a more general query than SYN-PEDS©. The newer file management system allows for a much more rapid response time, as well as other benefits.

  8. Video and Image Processing in Multimedia Systems (Video Processing)

    E-print Network

    Furht, Borko

    COT 6930 Video and Image Processing in Multimedia Systems (Video Processing) Instructor: Borko. Content-based image and video indexing and retrieval. Video processing using compressed data. Course concepts and structures 4. Classification of compression techniques 5. Image and video compression

  9. Applications of text processing using natural processing system in Printer

    NASA Astrophysics Data System (ADS)

    Saito, Tadashi

    DAI NIPPON PRINTING CO., Ltd. developed a natural language processing system for the automatic indexing and assorting readable kana characters to kanji characters, which is called ruby. This system based on the automatic indexing system called INDEXER produced by NTT Communications and Information Processing Laboratories and NTT Data Communications Co., Ltd. This paper describes some applications using the system. This system creates kana characters for kanji characters which is useful for address books, name lists and books. Further we apply this system for an automatic indexing on CD-ROM.

  10. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  11. Cardiovascular modeling and diagnostics

    SciTech Connect

    Kangas, L.J.; Keller, P.E.; Hashem, S.; Kouzes, R.T.

    1995-12-31

    In this paper, a novel approach to modeling and diagnosing the cardiovascular system is introduced. A model exhibits a subset of the dynamics of the cardiovascular behavior of an individual by using a recurrent artificial neural network. Potentially, a model will be incorporated into a cardiovascular diagnostic system. This approach is unique in that each cardiovascular model is developed from physiological measurements of an individual. Any differences between the modeled variables and the variables of an individual at a given time are used for diagnosis. This approach also exploits sensor fusion to optimize the utilization of biomedical sensors. The advantage of sensor fusion has been demonstrated in applications including control and diagnostics of mechanical and chemical processes.

  12. Clinical Data Miner: An Electronic Case Report Form System With Integrated Data Preprocessing and Machine-Learning Libraries Supporting Clinical Diagnostic Model Research

    PubMed Central

    Van den Bosch, Thierry; De Moor, Bart; Timmerman, Dirk

    2014-01-01

    Background Using machine-learning techniques, clinical diagnostic model research extracts diagnostic models from patient data. Traditionally, patient data are often collected using electronic Case Report Form (eCRF) systems, while mathematical software is used for analyzing these data using machine-learning techniques. Due to the lack of integration between eCRF systems and mathematical software, extracting diagnostic models is a complex, error-prone process. Moreover, due to the complexity of this process, it is usually only performed once, after a predetermined number of data points have been collected, without insight into the predictive performance of the resulting models. Objective The objective of the study of Clinical Data Miner (CDM) software framework is to offer an eCRF system with integrated data preprocessing and machine-learning libraries, improving efficiency of the clinical diagnostic model research workflow, and to enable optimization of patient inclusion numbers through study performance monitoring. Methods The CDM software framework was developed using a test-driven development (TDD) approach, to ensure high software quality. Architecturally, CDM’s design is split over a number of modules, to ensure future extendability. Results The TDD approach has enabled us to deliver high software quality. CDM’s eCRF Web interface is in active use by the studies of the International Endometrial Tumor Analysis consortium, with over 4000 enrolled patients, and more studies planned. Additionally, a derived user interface has been used in six separate interrater agreement studies. CDM's integrated data preprocessing and machine-learning libraries simplify some otherwise manual and error-prone steps in the clinical diagnostic model research workflow. Furthermore, CDM's libraries provide study coordinators with a method to monitor a study's predictive performance as patient inclusions increase. Conclusions To our knowledge, CDM is the only eCRF system integrating data preprocessing and machine-learning libraries. This integration improves the efficiency of the clinical diagnostic model research workflow. Moreover, by simplifying the generation of learning curves, CDM enables study coordinators to assess more accurately when data collection can be terminated, resulting in better models or lower patient recruitment costs. PMID:25600863

  13. The effects of noise reduction, sharpening, enhancement, and image magnification on diagnostic accuracy of a photostimulable phosphor system in the detection of non-cavitated approximal dental caries

    PubMed Central

    Tayefeh Davalloo, Reza; Tavangar, Mayam; Valizade, Fatemeh

    2015-01-01

    Purpose Contrast, sharpness, enhancement, and density can be changed in digital systems. The important question is to what extent the changes in these variables affect the accuracy of caries detection. Materials and Methods Forty eight extracted human posterior teeth with healthy or proximal caries surfaces were imaged using a photostimulable phosphor (PSP) sensor. All original images were processed using a six-step method: (1) applying "Sharpening 2" and "Noise Reduction" processing options to the original images; (2) applying the "Magnification 1:3" option to the image obtained in the first step; (3) enhancing the original images by using the "Diagonal/" option; (4) reviewing the changes brought about by the third step of image processing and then, applying "Magnification 1:3"; (5) applying "Sharpening UM" to the original images; and (6) analyzing the changes brought about by the fifth step of image processing, and finally, applying "Magnification 1:3." Three observers evaluated the images. The tooth sections were evaluated histologically as the gold standard. The diagnostic accuracy of the observers was compared using a chi-squared test. Results The accuracy levels irrespective of the image processing method ranged from weak (18.8%) to intermediate (54.2%), but the highest accuracy was achieved at the sixth image processing step. The overall diagnostic accuracy level showed a statistically significant difference (p=0.0001). Conclusion This study shows that the application of "Sharpening UM" along with the "Magnification 1:3" processing option improved the diagnostic accuracy and the observer agreement more effectively than the other processing procedures. PMID:26125002

  14. Outcomes and Diagnostic Processes in Outpatients with Presumptive Tuberculosis in Zomba District, Malawi

    PubMed Central

    van Lettow, Monique; Bedell, Richard; Maosa, Sonia; Phiri, Kenneth; Chan, Adrienne K.; Mwinjiwa, Edson; Kwekwesa, Aunex; Kawonga, Harry; Joshua, Martias; Harries, Anthony D.; van Oosterhout, Joep J.

    2015-01-01

    Background In Malawi, outpatients who have presumptive tuberculosis (TB), i.e. fever, night sweats, weight loss and/or any-duration cough (HIV-infected) or cough of at least 2 weeks (HIV-uninfected), are registered in chronic cough registers. They should receive a diagnostic work-up with first-step provider-initiated HIV testing and sputum testing which includes XpertMTB/RIF, following a national algorithm introduced in 2012. Methods An operational study, in which we prospectively studied 6-month outcomes of adult outpatients who were registered in chronic cough registers in Zomba Central Hospital and Matawale peri-urban Health Center, between February and September 2013. We recorded implementation of the diagnostic protocol and outcomes at 6 months from registration. Results Of 348 patients enrolled, 165(47%) were male, median age was 40 years, 72(21%) had previous TB. At registration 154(44%) were known HIV-positive, 34(10%) HIV-negative (26 unconfirmed) and 160(46%) had unknown HIV status; 104(56%) patients with unknown/unconfirmed HIV status underwent HIV testing. At 6 months 191(55%) were HIV-positive, 87(25%) HIV-negative (26 unconfirmed) and 70(20%) still had unknown HIV status. Higher age and registration in Matawale were independently associated with remaining unknown HIV status after 6 months. 62% of patients had sputum tested, including XpertMTB/RIF, according to the algorithm. TB was diagnosed in 54(15%) patients. This was based on XpertMTB/RIF results in 8(15%) diagnosed cases. In 26(48%) TB was diagnosed on clinical grounds. Coverage of ART in HIV-positive patients was 89%. At 6 months, 236(68%) were asymptomatic, 48(14%) symptomatic, 25(7%) had been lost-to-follow-up and 39(11%) had died. Mortality among those HIV-positive, HIV-negative and with unknown HIV-status was 15%, 2% and 10%, respectively. Male gender, being HIV-positive-not-on-ART and not receiving antibiotics were independent risk factors for mortality. Conclusion HIV prevalence among patients with presumptive TB was high (55%). One quarter was not HIV tested and mortality in this group was substantial (10%). The impact of XpertMTB/RIF on TB diagnosis was limited. PMID:26556045

  15. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 45, NO. 6, JUNE 1998 783 An Automatic Diagnostic System for CT Liver

    E-print Network

    Chang, Chein-I

    System for CT Liver Image Classification E-Liang Chen, Pau-Choo Chung,* Member, IEEE, Ching-Liang Chen been widely used for liver disease diagnosis. Designing and developing computer-assisted image the past years. In this paper, a CT liver image diagnostic classification system is presented which

  16. Diagnostics of combustion process based on flame images analysis and genetic programming

    NASA Astrophysics Data System (ADS)

    Tana?, J.; Kotyra, A.; Shegebaeva, Jibek

    2015-09-01

    One of the means of assessing the state of combustion process is analyzing data obtained from flame images. Flame images can be used as a source of information of combustion process input parameters such as air flow, fuel expense or fumes temperature. These parameters are crucial for stable and effective combustion. Considering complexity of combustion process and large number of fluctuating variables, genetic programming is an approach that seems most appropriate. Several video streams of co-combusting biomass and coal were recorded at the rate of 150 frames per second with 800x800 resolution. Different image and combustion parameters were processed to determine dependencies between them.

  17. Research on Demand Analysis of the Users of the Senior English Diagnostic System

    ERIC Educational Resources Information Center

    Guo, Chen; Zhang, Hui; Yao, Qian; Wu, Min

    2013-01-01

    As the significance of learning English is becoming increasingly apparent, more and more English online practice systems are used by English learners. However, a thorough process of research and detailed analysis of user demand have not fully implemented before the design of these systems. As a result, these systems may suffer the defects of low…

  18. Fast data transmission in dynamic data acquisition system for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Byszuk, Adrian; Po?niak, Krzysztof; Zabo?otny, Wojciech M.; Kasprowicz, Grzegorz; Woje?ski, Andrzej; Cieszewski, Rados?aw; Juszczyk, Bart?omiej; Kolasi?ski, Piotr; Zienkiewicz, Pawe?; Chernyshova, Maryna; Czarski, Tomasz

    2014-11-01

    This paper describes architecture of a new data acquisition system (DAQ) targeted mainly at plasma diagnostic experiments. Modular architecture, in combination with selected hardware components, allows for straightforward reconfiguration of the whole system, both offline and online. Main emphasis will be put into the implementation of data transmission subsystem in said system. One of the biggest advantages of described system is modular architecture with well defined boundaries between main components: analog frontend (AFE), digital backplane and acquisition/control software. Usage of a FPGA chips allows for a high flexibility in design of analog frontends, including ADC <--> FPGA interface. Data transmission between backplane boards and user software was accomplished with the use of industry-standard PCI Express (PCIe) technology. PCIe implementation includes both FPGA firmware and Linux device driver. High flexibility of PCIe connections was accomplished due to use of configurable PCIe switch. Whenever it's possible, described DAQ system tries to make use of standard off-the-shelf (OTF) components, including typical x86 CPU & motherboard (acting as PCIe controller) and cabling.

  19. Development of intelligent control system for X-ray streak camera in diagnostic instrument manipulator

    NASA Astrophysics Data System (ADS)

    Pei, Chengquan; Wu, Shengli; Tian, Jinshou; Liu, Zhen; Fang, Yuman; Gao, Guilong; Liang, Lingliang; Wen, Wenlong

    2015-11-01

    An intelligent control system for an X ray streak camera in a diagnostic instrument manipulator (DIM) is proposed and implemented, which can control time delay, electric focusing, image gain adjustment, switch of sweep voltage, acquiring environment parameters etc. The system consists of 16 A/D converters and 16 D/A converters, a 32-channel general purpose input/output (GPIO) and two sensors. An isolated DC/DC converter with multi-outputs and a single mode fiber were adopted to reduce the interference generated by the common ground among the A/D, D/A and I/O. The software was designed using graphical programming language and can remotely access the corresponding instrument from a website. The entire intelligent control system can acquire the desirable data at a speed of 30 Mb/s and store it for later analysis. The intelligent system was implemented on a streak camera in a DIM and it shows a temporal resolution of 11.25 ps, spatial distortion of less than 10% and dynamic range of 279:1. The intelligent control system has been successfully used in a streak camera to verify the synchronization of multi-channel laser on the Inertial Confinement Fusion Facility.

  20. NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    2005-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  1. Electric Field-Mediated Processing of Biomaterials: Toward Nanostructured Biomimetic Systems. Appendix 3

    NASA Technical Reports Server (NTRS)

    Bowlin, Gary L.; Simpson, David G.; Lam, Philippe; Wnek, Gary E.

    2001-01-01

    Significant opportunities exist for the processing of synthetic and biological polymers using electric fields ('electroprocessing'). We review casting of multi-component films and the spinning of fibers in electric fields, and indicate opportunities for the creation of smart polymer systems using these approaches. Applications include 2-D substrates for cell growth and diagnostics, scaffolds for tissue engineering and repair, and electromechanically active biosystems.

  2. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. PMID:26411669

  3. Anatomic and Diagnostic Challenges of C-Shaped Root Canal System

    PubMed Central

    Raisingani, Deepak; Gupta, Shailendra; Mital, Prachi

    2014-01-01

    ABSTRACT Successful root canal treatment depends on the thorough management of the canal anatomy. The use of periapical radiographs is essential to identify and monitor the canal's morphological variations. The C-shaped single canaled man-dibular 2nd molar probably requires a different regimen of treatment from the two rooted, three canaled version, as it is rare. Because of the importance of its true diagnosis and treatment, a comprehensive review of published information and investigations about it in addition to approaches for its treatment is necessary. In this article, a detailed review and three case reports with different C-shaped canal configurations have been described which were successfully negotiated, pre­pared and obturated. How to cite this article: Raisingani D, Gupta S, Mital P, Khullar P. Anatomic and Diagnostic Challenges of C-Shaped Root Canal System. Int J Clin Pediatr Dent 2014;7(1):35-39. PMID:25206235

  4. Design and fabrication of a multi-purpose soft x-ray array diagnostic system for KSTAR

    SciTech Connect

    Lee, Seung Hun; Chai, Kil Byoung; Jang, Siwon; Choe, Wonho; Ko, Won-Ha; Kim, Junghee; Seo, Dongcheol; Lee, Jongha; Bogatu, I. N.; Kim, Jin-Soo

    2012-10-15

    A multi-purpose soft x-ray array diagnostic system was developed for measuring two-dimensional x-ray emissivity profile, electron temperature, Ar impurity transport, and total radiation power. A remotely controlled filter wheel was designed with three different choices of filters. The electron temperature profile can be determined from the ratio of two channels having different thickness of Be layer, and the Ar impurity concentration transport can be determined from a pair of Ar Ross filters (CaF{sub 2} and NaCl thin films). Without any filters, this diagnostic system can also be used as a bolometer.

  5. Cross-Diagnostic Comparison of Visual Processing in Bipolar Disorder and Schizophrenia

    PubMed Central

    Jahshan, Carol; Wynn, Jonathan K.; McCleery, Amanda; Glahn, David C.; Altshuler, Lori L.; Green, Michael F.

    2014-01-01

    Patients with Schizophrenia (SZ) show deficits across various stages of visual information processing. Whether patients with Bipolar Disorder (BD) exhibit these deficits is unclear. In this study, we conducted a detailed comparison of specific stages of early visual perception in BD and SZ. Forty-three BD patients, 43 SZ patients, and 51 matched healthy control subjects (HC) were administered three visual processing paradigms emphasizing: 1) an early stage of object formation (location backward masking), 2) a middle stage of object substitution (four-dot backward masking), and 3) a later stage at the perception-attention interface (rapid serial visual processing (RSVP) task eliciting the attentional blink). SZ performed significantly worse than BD and HC on location and four-dot masking. BD did not significantly differ from HC on either masking task. Both patient groups performed significantly worse than HC on the RSVP task; unlike SZ, BD did not show a significant attentional blink effect compared to HC. Our results indicate that BD patients were intact at the early and middle stages of visual processing (object formation and substitution) but intermediate between the SZ and HC groups at a later processing stage involving perceptual and attentional processes (RSVP task). These findings suggest that SZ is characterized by a diffuse pathophysiology affecting all stages of visual processing whereas in BD disruption is only at the latest stage involving higher order attentional functions. PMID:24433849

  6. ESMValTool (v1.0) - a community diagnostic and performance metrics tool for routine evaluation of Earth System Models in CMIP

    NASA Astrophysics Data System (ADS)

    Eyring, V.; Righi, M.; Evaldsson, M.; Lauer, A.; Wenzel, S.; Jones, C.; Anav, A.; Andrews, O.; Cionni, I.; Davin, E. L.; Deser, C.; Ehbrecht, C.; Friedlingstein, P.; Gleckler, P.; Gottschaldt, K.-D.; Hagemann, S.; Juckes, M.; Kindermann, S.; Krasting, J.; Kunert, D.; Levine, R.; Loew, A.; Mäkelä, J.; Martin, G.; Mason, E.; Phillips, A.; Read, S.; Rio, C.; Roehrig, R.; Senftleben, D.; Sterl, A.; van Ulft, L. H.; Walton, J.; Wang, S.; Williams, K. D.

    2015-09-01

    A community diagnostics and performance metrics tool for the evaluation of Earth System Models (ESMs) has been developed that allows for routine comparison of single or multiple models, either against predecessor versions or against observations. The priority of the effort so far has been to target specific scientific themes focusing on selected Essential Climate Variables (ECVs), a range of known systematic biases common to ESMs, such as coupled tropical climate variability, monsoons, Southern Ocean processes, continental dry biases and soil hydrology-climate interactions, as well as atmospheric CO2 budgets, tropospheric and stratospheric ozone, and tropospheric aerosols. The tool is being developed in such a way that additional analyses can easily be added. A set of standard namelists for each scientific topic reproduces specific sets of diagnostics or performance metrics that have demonstrated their importance in ESM evaluation in the peer-reviewed literature. The Earth System Model Evaluation Tool (ESMValTool) is a community effort open to both users and developers encouraging open exchange of diagnostic source code and evaluation results from the CMIP ensemble. This will facilitate and improve ESM evaluation beyond the state-of-the-art and aims at supporting such activities within the Coupled Model Intercomparison Project (CMIP) and at individual modelling centres. Ultimately, we envisage running the ESMValTool alongside the Earth System Grid Federation (ESGF) as part of a more routine evaluation of CMIP model simulations while utilizing observations available in standard formats (obs4MIPs) or provided by the user.

  7. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  8. Development of an online automatic diagnostic reference levels management system for digital radiography: a pilot experience.

    PubMed

    Ng, Curtise K C; Sun, Zhonghua

    2011-09-01

    The diagnostic reference levels (DRLs) concept is a methodology proposed by the International Commission on Radiological Protection (ICRP) for identifying any unusual high patient doses involved in radiological examinations. However, some challenges are anticipated in the DRLs concept including resource demand for running the audit cycle by individual imaging departments and availability of DRLs. The objective of this study was to develop an online automatic DRLs management system for digital radiography (DR) with the aim of addressing the challenges of the DRLs obligation. An online automatic DRLs management system for DR composed of freeware was developed. The system was tested with 75 DR images. This pilot experience shows that the system successfully addresses the challenges in the DRLs management, i.e. resource demand for running the audit cycle by individual imaging departments and availability of DRLs. It can provide at a low cost an efficient and effective solution to the implementation of regular audits of patient doses using DR in busy clinical departments. It can also contribute to the development of DRLs at local and national levels. In this way, any unacceptable radiological practice (examination used unjustified high radiation dose) can be identified. PMID:20719401

  9. TFTR diagnostic vacuum controller

    SciTech Connect

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  10. Development of a processing and visualization software suite, and optical hardware for the fast infrared diagnostic on NSTX

    NASA Astrophysics Data System (ADS)

    Benjamin, Mark; McLean, Adam; Maingi, Rajesh

    2010-11-01

    Infrared (IR) video is regularly captured at a rate of up to 1.6 kHz during plasma discharges in the National Spherical Torus Experiment (NSTX). Analysis of data collected by this diagnostic is complicated by the recent enhancement to dual-band infrared operation, in which both bands are projected side-by-side on the IR detector. In this work, a suite of IDL and JAVA-based processing and visualization tools have been developed to implement automatic image recognition, incorporate temperature and heat flux calibration, and present key video features essential for study of plasma interaction with the NSTX divertor. In addition, design and development work has been carried out for a broadband, low-aberration optical relay for the fast IR camera to make it possible to move the camera outside of the high magnetic field of the machine where electromagnetic interference sometimes leads to unreliable operation.

  11. An Improved Error Diagnostics System for IBM System/360 -- 370 Assembler Program Dumps.

    ERIC Educational Resources Information Center

    Kirsch, Barry M.

    A system to aid in the post-mortem debugging of assembler language programs written for the IBM System/360-370 series of computers is described in this master's thesis. A user's manual for the system, with descriptions of user requirements, Job Control Language (JCL) statements, and system output, comprises the first chapter. The program logic…

  12. Wireless Infrastructure for Performing Monitoring, Diagnostics, and Control HVAC and Other Energy-Using Systems in Small Commercial Buildings

    SciTech Connect

    Patrick O'Neill

    2009-06-30

    This project focused on developing a low-cost wireless infrastructure for monitoring, diagnosing, and controlling building systems and equipment. End users receive information via the Internet and need only a web browser and Internet connection. The system used wireless communications for: (1) collecting data centrally on site from many wireless sensors installed on building equipment, (2) transmitting control signals to actuators and (3) transmitting data to an offsite network operations center where it is processed and made available to clients on the Web (see Figure 1). Although this wireless infrastructure can be applied to any building system, it was tested on two representative applications: (1) monitoring and diagnostics for packaged rooftop HVAC units used widely on small commercial buildings and (2) continuous diagnosis and control of scheduling errors such as lights and equipment left on during unoccupied hours. This project developed a generic infrastructure for performance monitoring, diagnostics, and control, applicable to a broad range of building systems and equipment, but targeted specifically to small to medium commercial buildings (an underserved market segment). The proposed solution is based on two wireless technologies. The first, wireless telemetry, is used for cell phones and paging and is reliable and widely available. This risk proved to be easily managed during the project. The second technology is on-site wireless communication for acquiring data from sensors and transmitting control signals. The technology must enable communication with many nodes, overcome physical obstructions, operate in environments with other electrical equipment, support operation with on-board power (instead of line power) for some applications, operate at low transmission power in license-free radio bands, and be low cost. We proposed wireless mesh networking to meet these needs. This technology is relatively new and has been applied only in research and tests. This proved to be a major challenge for the project and was ultimately abandoned in favor of a directly wired solution for collecting sensor data at the building. The primary reason for this was the relatively short ranges at which we were able to effectively place the sensor nodes from the central receiving unit. Several different mesh technologies were attempted with similar results. Two hardware devices were created during the original performance period of the project. The first device, the WEB-MC, is a master control unit that has two radios, a CPU, memory, and serves as the central communications device for the WEB-MC System (Currently called the 'BEST Wireless HVAC Maintenance System' as a tentative commercial product name). The WEB-MC communicates with the local mesh network system via one of its antennas. Communication with the mesh network enables the WEB-MC to configure the network, send/receive data from individual motes, and serves as the primary mechanism for collecting sensor data at remote locations. The second antenna enables the WEB-MC to connect to a cellular network ('Long-Haul Communications') to transfer data to and from the NorthWrite Network Operations Center (NOC). A third 'all-in-one' hardware solution was created after the project was extended (Phase 2) and additional resources were provided. The project team leveraged a project funded by the State of Washington to develop a hardware solution that integrated the functionality of the original two devices. The primary reason for this approach was to eliminate the mesh network technical difficulties that severely limited the functionality of the original hardware approach. There were five separate software developments required to deliver the functionality needed for this project. These include the Data Server (or Network Operations Center), Web Application, Diagnostic Software, WEB-MC Embedded Software, Mote Embedded Software. Each of these developments was necessarily dependent on the others. This resulted in a challenging management task - requiring high bandwidth communications among

  13. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  14. Use of stratospheric aerosol properties as diagnostics of Antarctic vortex processes

    NASA Technical Reports Server (NTRS)

    Thomason, Larry W.; Poole, Lamont R.

    1993-01-01

    Physical properties of the stratospheric aerosol population are inferred from cloud-free SAGE II multiwavelength extinction measurements in the Antarctic during late summer (February/March) and spring (September/October, November). Seasonal changes in these properties are used to infer physical processes occurring in the Antarctic stratosphere over the course of the winter. The analysis suggests that the apparent springtime cleansing of the Antarctic stratosphere is the result of aerosol redistribution through subsidence of the polar vortex air mass and sedimentation of large polar stratospheric cloud particles. The analysis also suggests that vortex processes are responsible for a significant downward transport of aerosol through the tropopause.

  15. Summary and early findings from a second generation information monitoring and diagnostic system

    SciTech Connect

    Piette, Mary Ann; Kinney, Satkartar; Bourassa, Norman; Kinney, Kristopher L.; Shockman, Christine

    2003-04-02

    Private sector commercial office buildings are challenging environments for energy efficiency projects. This challenge is related to the complexity of business environments that involve ownership, operation, and tenant relationships. This research project was developed to examine the environment for building operations and identify causes of inefficient use of energy related to technical and organizational issues. This paper discusses a second-generation Information Monitoring and Diagnostic System (IMDS) installed at a leased office building in Sacramento, California. The underlying principle of this project is that high quality building performance data can help show where energy is being used and how buildings systems actually perform. Such data are an important first step toward improving building energy efficiency. This project has demonstrated that the IMDS is valuable to the building operators at the Sacramento site. The building operators not only accept the technology, but it has become the core of their day-to-day building control concepts. One objective of this project was to evaluate the costs and benefits of the IMDS. The system cost about $0.70 per square foot, which includes the design, hardware, software, and installation, which is about 30% less than the previous IMDS in San Francisco. A number of operational problems have been identified with the IMDS.

  16. Library Information-Processing System

    NASA Technical Reports Server (NTRS)

    1985-01-01

    System works with Library of Congress MARC II format. System composed of subsystems that provide wide range of library informationprocessing capabilities. Format is American National Standards Institute (ANSI) format for machine-readable bibliographic data. Adaptable to any medium-to-large library.

  17. Short-Term Memory and Auditory Processing Disorders: Concurrent Validity and Clinical Diagnostic Markers

    ERIC Educational Resources Information Center

    Maerlender, Arthur

    2010-01-01

    Auditory processing disorders (APDs) are of interest to educators and clinicians, as they impact school functioning. Little work has been completed to demonstrate how children with APDs perform on clinical tests. In a series of studies, standard clinical (psychometric) tests from the Wechsler Intelligence Scale for Children, Fourth Edition…

  18. Evaluation of process systems operating envelopes

    E-print Network

    Stuber, Matthew David

    2013-01-01

    This thesis addresses the problem of worst-case steady-state design of process systems under uncertainty, also known as robust design. Designing for the worst case is of great importance when considering systems for ...

  19. Safety-driven system engineering process

    E-print Network

    Stringfellow, Margaret Virgina

    2008-01-01

    As the demand for high-performing complex systems has increased, the ability of engineers to meet that demand has not kept pace. The creators of the traditional system engineering processes did not anticipate modern complex ...

  20. RDD-100 and the systems engineering process

    NASA Technical Reports Server (NTRS)

    Averill, Robert D.

    1994-01-01

    An effective systems engineering approach applied through the project life cycle can help Langley produce a better product. This paper demonstrates how an enhanced systems engineering process for in-house flight projects assures that each system will achieve its goals with quality performance and within planned budgets and schedules. This paper also describes how the systems engineering process can be used in combination with available software tools.

  1. Developing an Internal Processing System.

    ERIC Educational Resources Information Center

    DeFord, Diane

    1997-01-01

    The goal in Reading Recovery is to support children to develop "in the head" operations or strategies that aid them to solve problems as they read and write continuous text. To help children in organizing experience and correct any idiosyncratic or unreliable relationships, teachers must understand how children develop their internal processing

  2. Conservation in signal processing systems

    E-print Network

    Baran, Thomas A. (Thomas Anthony)

    2012-01-01

    Conservation principles have played a key role in the development and analysis of many existing engineering systems and algorithms. In electrical network theory for example, many of the useful theorems regarding the ...

  3. Process Cooling Pumping Systems Analysis 

    E-print Network

    Sherman, C.

    2008-01-01

    rejection while operating three pumps each. 2. Check Valve induced Pump Failure – While attempting to take readings, both systems exhibited check valve failure to hold. This failure causes significant short-circuiting of water to the cold well, causing...

  4. Radiochemistry as a (rho)R Diagnostic with the RAGS Gas Collection System

    SciTech Connect

    Nelson, S L; Shaughnessy, D A; Schneider, D H; Stoeffl, W; Moody, K J; Cerjan, C; Stoyer, M A; Bernstein, L A; Bleuel, D L; Hoffman, R

    2010-05-21

    Radiochemical diagnostic techniques such as gas-phase capsule debris analysis may prove to be successful methods for establishing the success or failure of ignition experiments at the National Ignition Facility (NIF). Samples in the gas phase offer the most direct method of collection by simply pumping out the large target chamber following a NIF shot. The target capsules will be prepared with dopants which will produce radioactive noble gas isotopes upon activation with neutrons. We have designed and constructed the Radchem Apparatus for Gas Sampling (RAGS) in order to collect post-shot gaseous samples for NIF capsule diagnostics. The design of RAGS incorporates multiple stages intended to purify, transfer, and count the radioactive decays from gaseous products synthesized in NIF experiments. At the moment the dopant of choice is {sup 124}Xe, which will undergo (n,{gamma}) and (n, 2n) reactions to produce {sup 125}Xe and {sup 123}Xe. The half-lives of each are on the order of multiple hours and are suitable for long-term gamma-counting. These isotopes and the rest of the gases evolved in a NIF shot will be drawn through the NIF turbo pumps, past the temporarily shuttered cryo pumps (to aid our collection efficiency), and towards the first main portion of the RAGS system: the pre-cleaner. The pre-cleaner will consist of a water removal system, a series of heated getter cartridges to remove most other impurities such as N{sub 2}, O{sub 2}, CO{sub 2}, etc., and a residual gas analyzer (RGA) to monitor vacuum quality. The noble gases will flow through the precleaner and into the second stage of the system: the cryo collector. This cryo collector consists of a main cryo head for noble gas collection which will operate for approximately five minutes post-shot. Afterwards a valve will close and isolate the pre-cleaner, while the cryo head warms to release the Xe gas to one of two locations - either a second cryo station for in-situ gamma counting, or to a small cooled gas bottle for removal and counting. Additional capabilities of the RAGS system include a noble gas calibration apparatus attached to the NIF target chamber, which will be operated hours pre-shot to determine collection efficiency through the whole RAGS system via the signal detected from the RGA. Also it is possible there will be the addition of a helium puff system to drive the Xe through the pre-cleaner and collection stations. It is also likely that multiple cryo collection stations will be built into the system in the future to fractionate and collect other noble gases such as Kr, Ar, and possibly Ne. A prototype pre-cleaner has been built at Lawrence Berkeley National Laboratory (LBNL) and is in the testing phases. The information learned in this testing will help collaborators at Sandia National Laboratory that are building and delivering the systems that will be deployed at NIF. The LBNL testing so far has demonstrated that radioactive fission gases can be flowed through the system with and without carrier gases of air and/or He, and the activity can be collected on an activated charcoal sample. Further testing in the upcoming months will hopefully yield more information about any presence of Xe in the water removed from the system, and commissioning of a small cryo cooler as well.

  5. INNOVATIVE TECHNOLOGY VERIFICATION REPORT "FIELD MEASUREMENT TECHNOLOGIES FOR TOTAL PETROLEUM HYDROCARBONS IN SOIL" STRATEGIC DIAGNOSTICS INC. ENSYS PETRO TEST SYSTEM

    EPA Science Inventory



    The EnSys Petro Test System developed by Strategic Diagnostics Inc. (SDI), was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County site in Port Hueneme, California. The...

  6. Algorithms for the Control of NTM by Localized ECRH. Principles and Requirements of the Real Time Diagnostic and Control System

    SciTech Connect

    D' Antona, G.; Cirant, S.; Farina, D.; Gandini, F.; Lazzaro, E.; Treuterer, W.; Manini, A.

    2008-03-12

    The diagnostics requirements for the control of NTM instabilities is outlined stressing the importance of correctly managing the estimate uncertainty by the control system. A methodology for the Bayesian assimilation of model predictions and observations is outlined together with an example of application.

  7. Use of stratospheric aerosol properties as diagnostics of Antarctic vortex processes

    SciTech Connect

    Thomason, L.W.; Poole, L.R.

    1993-12-20

    Physical properties of the stratospheric aerosol population are inferred from cloud-free SAGE II multiwavelength extinction measurements in the Antarctic during late summer (February/March) and spring (September/October, November). Seasonal changes in these properties are used to infer physical processes occurring in the Antarctic stratosphere over the course of the winter. The analysis suggests that the apparent springtime cleansing of the Antarctic stratosphere is the result of aerosol redistribution through subsidence of the polar vortex air mass and sedimentation of large polar stratospheric cloud particles. The analysis also suggests that vortex processes are responsible for a significant downward transport of aerosol through the tropopause. 44 refs., 7 figs., 1 tab.

  8. Information Processing Capacity of Dynamical Systems

    PubMed Central

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  9. Development of distance accuracy measurement program for quality control of diagnostic ultrasound system

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Min; Kim, Moon-Chan; Han, Dong-Kyoon; Cho, Jae-Hwan; Kim, Sang-Hyun

    2013-12-01

    Evaluating the performance of a diagnostic ultrasound system is important. Above all, establishing standards for such evaluations in an objective and systematic way is critical. However, quality control is currently measured based on subjective judgment of an observer. Against this background, this study intended to suggest quantified and objective data that would enable inter-observer variation to be overcome. Five radiological technologists used an ATS-539 multi-purpose ultrasound phantom to conduct measurements in the predetermined method. A digital imaging and communications in medicine (DICOM) standard image was obtained in an ultrasound system by using a self-developed software to measure the accuracy of the distance before the 95% confidence interval was calculated. In order to examine the accuracy of the distance in longitudinal and transverse measurements, we conducted t-tests to evaluate the significance for the results of quality control that was performed manually for the past one year and for the results of quality control that was performed by using software with the same equipment. For the longitudinal and the transverse measurements, the 95% confidence intervals were 100.96-101.29 mm and 83.18-84.26 mm, respectively. The computerized longitudinal measurement showed no significant difference from the manual measurement ( p > 0.05). The results of measurements using of software showed a higher reproducibility.

  10. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic.

    PubMed

    Den Hartog, D J; Jiang, N; Lempert, W R

    2008-10-01

    A "pulse-burst" laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. This laser system will operate at 1064 nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd:YVO(4) laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20 ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching of large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (T(e)) and electron density (n(e)) dynamics in a single MST shot, and with ensembling, will enable correlation of T(e) and n(e) fluctuations with other fluctuating quantities. PMID:19044552

  11. A comparison of three Rorschach diagnostic systems and use of the Hand Test for detecting multiple personality disorder in outpatients.

    PubMed

    Young, G R; Wagner, E E; Finn, R F

    1994-06-01

    Eleven individuals diagnosed with multiple personality disorder (MPD) on the basis of clinical observation by experienced therapists plus elevated scores on the Dissociative Experiences Scale (DES; Bernstein & Putnam, 1986) were administered the Rorschach Inkblot Test and the Hand Test. Results from the sample (n = 11) and a matched control group (N = 22) were analyzed and discussed in accordance with previous Rorschach diagnostic systems. The Wagner Signs diagnosed 91% (n = 10) of the MPD cases in this outpatient sample, with no false positives. The Labott Signs were found to have no utility, and the Barach Signs, when they occurred, seemed to be diagnostic of MPD but yielded a high rate of false negatives. Hand Test results were analyzed and found to be possibly diagnostic of MPD. Tentative criteria were proposed for its use as an additional tool for diagnosing MPD. PMID:8027912

  12. Vision Systems Illuminate Industrial Processes

    NASA Technical Reports Server (NTRS)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  13. Integration of autonomous systems for remote control of data acquisition and diagnostics in the TJ-II device

    NASA Astrophysics Data System (ADS)

    Vega, J.; Mollinedo, A.; López, A.; Pacios, L.; Dormido, S.

    1997-01-01

    The data acquisition system for TJ-II will consist of a central computer, containing the data base of the device, and a set of independent systems (personal computers, embedded ones, workstations, minicomputers, PLCs, and microprocessor systems among others), controlling data collection, and automated diagnostics. Each autonomous system can be used to isolate and manage specific problems in the most efficient manner. These problems are related to data acquisition, hard (?s-ms) real time requirements, soft (ms-s) real time requirements, remote control of diagnostics, etc. In the operation of TJ-II, the programming of systems will be carried out from the central computer. Coordination and synchronization will be performed by linking systems to local area networks. Several Ethernet segments and FDDI rings will be used for these purposes. Programmable logic controller devices (PLCs) used for diagnostic low level control will be linked among them through a fast serial link, the RS485 Profibus standard. One VME crate, running on the OS-9 real time operating system, will be assigned as a gateway, so as to connect the PLCs based systems with an Ethernet segment.

  14. Integration of autonomous systems for remote control of data acquisition and diagnostics in the TJ-II device

    SciTech Connect

    Vega, J.; Mollinedo, A.; Lopez, A.; Pacios, L.

    1997-01-01

    The data acquisition system for TJ-II will consist of a central computer, containing the data base of the device, and a set of independent systems (personal computers, embedded ones, workstations, minicomputers, PLCs, and microprocessor systems among others), controlling data collection, and automated diagnostics. Each autonomous system can be used to isolate and manage specific problems in the most efficient manner. These problems are related to data acquisition, hard ({mu}s{endash}ms) real time requirements, soft (ms{endash}s) real time requirements, remote control of diagnostics, etc. In the operation of TJ-II, the programming of systems will be carried out from the central computer. Coordination and synchronization will be performed by linking systems to local area networks. Several Ethernet segments and FDDI rings will be used for these purposes. Programmable logic controller devices (PLCs) used for diagnostic low level control will be linked among them through a fast serial link, the RS485 Profibus standard. One VME crate, running on the OS-9 real time operating system, will be assigned as a gateway, so as to connect the PLCs based systems with an Ethernet segment. {copyright} {ital 1997 American Institute of Physics.}

  15. Rocket engine plume diagnostics using video digitization and image processing - Analysis of start-up

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.; Shoe, B.; Dhawan, A. P.

    1991-01-01

    Video digitization techniques have been developed to analyze the exhaust plume of the Space Shuttle Main Engine. Temporal averaging and a frame-by-frame analysis provide data used to evaluate the capabilities of image processing techniques for use as measurement tools. Capabilities include the determination of the necessary time requirement for the Mach disk to obtain a fully-developed state. Other results show the Mach disk tracks the nozzle for short time intervals, and that dominate frequencies exist for the nozzle and Mach disk movement.

  16. Pivot and cluster strategy: a preventive measure against diagnostic errors.

    PubMed

    Shimizu, Taro; Tokuda, Yasuharu

    2012-01-01

    Diagnostic errors constitute a substantial portion of preventable medical errors. The accumulation of evidence shows that most errors result from one or more cognitive biases and a variety of debiasing strategies have been introduced. In this article, we introduce a new diagnostic strategy, the pivot and cluster strategy (PCS), encompassing both of the two mental processes in making diagnosis referred to as the intuitive process (System 1) and analytical process (System 2) in one strategy. With PCS, physicians can recall a set of most likely differential diagnoses (System 2) of an initial diagnosis made by the physicians' intuitive process (System 1), thereby enabling physicians to double check their diagnosis with two consecutive diagnostic processes. PCS is expected to reduce cognitive errors and enhance their diagnostic accuracy and validity, thereby realizing better patient outcomes and cost- and time-effective health care management. PMID:23204855

  17. Pivot and cluster strategy: a preventive measure against diagnostic errors

    PubMed Central

    Shimizu, Taro; Tokuda, Yasuharu

    2012-01-01

    Diagnostic errors constitute a substantial portion of preventable medical errors. The accumulation of evidence shows that most errors result from one or more cognitive biases and a variety of debiasing strategies have been introduced. In this article, we introduce a new diagnostic strategy, the pivot and cluster strategy (PCS), encompassing both of the two mental processes in making diagnosis referred to as the intuitive process (System 1) and analytical process (System 2) in one strategy. With PCS, physicians can recall a set of most likely differential diagnoses (System 2) of an initial diagnosis made by the physicians’ intuitive process (System 1), thereby enabling physicians to double check their diagnosis with two consecutive diagnostic processes. PCS is expected to reduce cognitive errors and enhance their diagnostic accuracy and validity, thereby realizing better patient outcomes and cost- and time-effective health care management. PMID:23204855

  18. Thermal processing systems for TRU mixed waste

    SciTech Connect

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-08-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

  19. Thermal processing systems for TRU mixed waste

    SciTech Connect

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

  20. Spectroscopic diagnostics of morphological changes arising in thermal processing of polypropylene.

    PubMed

    Hakoume, Donia; Dombrovsky, Leonid A; Delaunay, Didier; Rousseau, Benoit

    2014-04-20

    Polypropylene is considered as a representative thermoplastic matrix for advanced composite materials that have some advantages in various engineering applications. Wide-range infrared optical properties of polypropylene are important for combined heat transfer modeling in these composite materials, which are semitransparent in a considerable part of the whole spectral range. This study is focused on optical properties of polypropylene in the visible and near-infrared ranges because the measurements in these ranges exhibit a stronger effect of the processing temperature used in the material manufacturing. The experimental study is based on spectral measurements of both the normal-hemispherical reflectance and transmittance of polypropylene samples. The main characteristics of volumetric absorption and scattering are identified using the inverse problem solution based on the modified two-flux approximation, which is sufficiently accurate to determine the hemispherical characteristics of the radiation field in the range of the problem parameters. In particular, the effect of a relatively strong scattering is observed at the absorption peaks in the near-infrared range. An approximate theoretical model based on spectroscopic data is developed to estimate morphological changes arising in thermal processing of polypropylene at different temperatures. PMID:24787599

  1. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, Jaques (Westchester, IL); Wei, Thomas Y. C. (Downers Grove, IL)

    1995-01-01

    A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.

  2. Combined expert system/neural networks method for process fault diagnosis

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1995-08-15

    A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.

  3. Study on Practical Application of Turboprop Engine Condition Monitoring and Fault Diagnostic System Using Fuzzy-Neuro Algorithms

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lim, Semyeong; Kim, Keunwoo

    2013-03-01

    The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.

  4. Educational agenda for diagnostic error reduction

    PubMed Central

    Trowbridge, Robert L; Dhaliwal, Gurpreet; Cosby, Karen S

    2013-01-01

    Diagnostic errors are a major patient safety concern. Although the majority of diagnostic errors are partially attributable to cognitive mistakes, the most effective means of improving clinician cognition in order to achieve gains in diagnostic reliability are unclear. We propose a tripartite educational agenda for improving diagnostic performance among students, residents and practising physicians. This agenda includes strengthening the metacognitive abilities of clinicians, fostering intuitive reasoning and increasing awareness of the role of systems in the diagnostic process. The evidence supporting initiatives in each of these realms is reviewed and a course of future implementation and study is proposed. The barriers to designing and implementing this agenda are substantial and include limited evidence supporting these initiatives and the challenges of changing the practice patterns of practising physicians. Implementation will need to be accompanied by rigorous evaluation. PMID:23764435

  5. Oil recovery system and process

    SciTech Connect

    Livingston, A.M.

    1984-01-03

    A process and apparatus for recovering oil from an oil-bearing formation which comprises the steps of injecting into the oil-bearing formation a heated aerosol fog of organic chemicals which are soluble in oil, the fog preferably being at an elevated temperature and pressure. The heated aerosol fog penetrates the formation dissolving caked oil and oil trapped within the formation thereby increasing its permeability. The dissolved oil is extracted from the formation along with the injected chemicals and the chemicals are thereafter separated from the oil.

  6. Learning tumor diagnostics and medical image processing via the WWW--the case-based radiological textbook ODITEB.

    PubMed

    Horsch, A; Balbach, T; Melnitzki, S; Knauth, J

    2000-09-01

    New Internet technologies offer excellent chances to build high-quality on-line learning media for the education in medicine. Especially, the teaching of diagnostics with medical imaging as well as medical image processing can be supported by the excellent visualization and interaction capabilities. In cooperation with three radiological departments at German universities in Munich, Erlangen and Würzburg, the case-based open distributed Internet text book (ODITEB) for tumor diagnosis of the GI-tract, liver, pancreas and thorax has been developed at the Institut für Medizinische Statistik und Epidemiologie (IMSE) of the Technische Universität München. It offers a big collection of clinical tumor cases located on servers at the provider sites Munich, Erlangen and Würzburg, visualization and interaction similar to a real CT or MRI console, original DICOM data, X-rays and endoscopic and endosonographic videos, and expert-guided tours through the cases. In a first evaluation in summer 1998, 32 medical students graded the application with 1.9 ('good') on a scale from 1 ('very good') to 5 ('very bad'). The textbook supports German language, an English version is in preparation. In a second part, it contains lessons in medical image processing for students of medical informatics. An ODITEB release 2 with several improvements will be finished until February 2000. The use of the textbook is free of cost. PMID:10978908

  7. Propellant injection systems and processes

    NASA Technical Reports Server (NTRS)

    Ito, Jackson I.

    1995-01-01

    The previous 'Art of Injector Design' is maturing and merging with the more systematic 'Science of Combustion Device Analysis.' This technology can be based upon observation, correlation, experimentation and ultimately analytical modeling based upon basic engineering principles. This methodology is more systematic and far superior to the historical injector design process of 'Trial and Error' or blindly 'Copying Past Successes.' The benefit of such an approach is to be able to rank candidate design concepts for relative probability of success or technical risk in all the important combustion device design requirements and combustion process development risk categories before committing to an engine development program. Even if a single analytical design concept cannot be developed to predict satisfying all requirements simultaneously, a series of risk mitigation key enabling technologies can be identified for early resolution. Lower cost subscale or laboratory experimentation to demonstrate proof of principle, critical instrumentation requirements, and design discriminating test plans can be developed based on the physical insight provided by these analyses.

  8. Oil recovery process and system

    SciTech Connect

    Argabright, P.A.; Rhudy, J.S.

    1987-08-18

    A process is described for producing a partially hydrolyzed polyacrylamide having a preselected average molecular weight and molecular weight distribution for use in recovering oil from a subterranean oil-bearing formation, comprising: predetermining the injectivity and mobility properties of a partially hydrolyzed polyacrylamide required to meet the oil displacement demands of an oil-bearing formation by obtaining a core sample from the formation and subjecting the sample to tests simulating the passage of the partially hydrolyzed polyacrylamide through the formation during oil displacement; forming a solution of a water soluble acrylamide monomer capable of being polymerized; polymerizing the monomer in the presence of a polymerization catalyst. The proportion of catalyst present is regulated during polymerization to provide, an acrylamide polymer having an average molecular weight of about 2 million to about 10 million and a molecular weight distribution of about 0.02 to about 0.22.

  9. Modeling and diagnostic techniques applicable to the analysis of pressure noise in pressurized water reactors and pressure-sensing systems

    SciTech Connect

    Mullens, J.A.; Thie, J.A.

    1984-01-01

    Pressure noise data from a PWR are interpreted by means of a computer-implemented model. The model's parameters, namely hydraulic impedances and noise sources, are either calculated or deduced from fits to data. Its accuracy is encouraging and raises the possibility of diagnostic assistance for nuclear plant monitoring. A number of specific applications of pressure noise in the primary system of a PWR and in a pressure sensing system are suggested.

  10. Biolighted Nanotorch Capable of Systemic Self-Delivery and Diagnostic Imaging.

    PubMed

    Singh, Ajay; Seo, Young Hun; Lim, Chang-Keun; Koh, Joonseok; Jang, Woo-Dong; Kwon, Ick Chan; Kim, Sehoon

    2015-10-27

    Sensitive imaging of inflammation with a background-free chemiluminescence (CL) signal has great potential as a clinically relevant way of early diagnosis for various inflammatory diseases. However, to date, its feasibility has been limitedly demonstrated in vivo with locally induced inflammation models by in situ injection of CL probes. To enable systemic disease targeting and imaging by intravenous administration of CL probes, hurdles need to be overcome such as weak CL emission, short glowing duration, or inability of long blood circulation. Here, we report a CL nanoprobe (BioNT) that surmounted such limitations to perform precise identification of inflammation by systemic self-delivery to the pathological tissues. This BioNT probe was engineered by physical nanointegration of multiple kinds of functional molecules into the ultrafine nanoreactor structure (?15 nm in size) that combines solid-state fluorescence-induced enhanced peroxalate CL and built-in machinery to control the intraparticle kinetics of CL reaction. Upon intravenous injection into a normal mouse, BioNT showed facile blood circulation and generated a self-lighted strong CL torchlight throughout the whole body owing to the tiny colloidal structure with an antifouling surface as well as high CL sensitivity toward endogenous biological hydrogen peroxide (H2O2). In mouse models of local and systemic inflammations, blood-injected BioNT visualized precise locations of inflamed tissues with dual selectivity (selective probe accumulation and selective CL reaction with H2O2 overproduced by inflammation). Even a tumor model that demands a long blood circulation time for targeting (>3 h) could be accurately identified by persistent signaling from the kinetics-tailored BioNT with a 65-fold slowed CL decay rate. We also show that BioNT exhibits no apparent toxicity, thus holding potential for high-contrast diagnostic imaging. PMID:26316392

  11. Improved cancer diagnostics by different image processing techniques on OCT images

    NASA Astrophysics Data System (ADS)

    Kanawade, Rajesh; Lengenfelder, Benjamin; Marini Menezes, Tassiana; Hohmann, Martin; Kopfinger, Stefan; Hohmann, Tim; Grabiec, Urszula; Klämpfl, Florian; Gonzales Menezes, Jean; Waldner, Maximilian; Schmidt, Michael

    2015-07-01

    Optical-coherence tomography (OCT) is a promising non-invasive, high-resolution imaging modality which can be used for cancer diagnosis and its therapeutic assessment. However, speckle noise makes detection of cancer boundaries and image segmentation problematic and unreliable. Therefore, to improve the image analysis for a precise cancer border detection, the performance of different image processing algorithms such as mean, median, hybrid median filter and rotational kernel transformation (RKT) for this task is investigated. This is done on OCT images acquired from an ex-vivo human cancerous mucosa and in vitro by using cultivated tumour applied on organotypical hippocampal slice cultures. The preliminary results confirm that the border between the healthy and the cancer lesions can be identified precisely. The obtained results are verified with fluorescence microscopy. This research can improve cancer diagnosis and the detection of borders between healthy and cancerous tissue. Thus, it could also reduce the number of biopsies required during screening endoscopy by providing better guidance to the physician.

  12. Non-Invasive Diagnostics for Measuring Physical Properties and Processes in High Level Wastes

    SciTech Connect

    Robert Powell; David Pfund

    2005-07-17

    This research demonstrated the usefulness of tomographic techniques for determining the physical properties of slurry suspensions. Of particular interest was the measurement of the viscosity of suspensions in complex liquids and modeling these. We undertook a long rage program that used two techniques, magnetic resonance imaging and ultrasonic pulsed Doppler velocimetry. Our laboratory originally developed both of these for the measurement of viscosity of complex liquids and suspensions. We have shown that the relationship between shear viscosity and shear rate can be determined over a wide range of shear rates from a single measurement. We have also demonstrated these techniques for many non-Newtonian fluids which demonstrate highly shear thinning behavior. This technique was extended to determine the yield stress with systems of interacting particles. To model complex slurries that may be found in wastes applications, we have also used complex slurries that are found in industrial applications

  13. Suggestions for the magnetic diagnostic fixing system in the inside of tokamak TBR-E

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo

    1991-06-01

    In small tokamaks, access of magnetic coils to the space between the vacuum vessel and the ohmic heating transformer is limited by the lack of room. The best answer for magnetic diagnostic devices which need to have a polar orientation is to put them in the toroidal vacuum chamber. The big advantage of putting magnetic coils and probes inside the vessel is reduction of magnetic signal delay and attenuation. At the same time, some technical problems arise, such as the need to encapsulate and cool the probes and coils, which are generally made of material which is quite volatile in a high vacuum environment. There is also the problem of protecting these structures from the intense plasma current, which in the TBR-E must go as high as 240 kA. The coils must, therefore, be protected at all times by the shade of the on-board plasma limiter. Two design suggestions for the system of fixing the tubes which contain the coils are presented. All retaining pins or screws should be of 304 or 316 L stainless steel (unmagnetizable). The pins can be welded to the inside of the vacuum vessel before its various parts are assembled. It is important to note that the 16 fixer lines must be welded in a manner so as to coincide with the positions of the 16 toroidal coils. The placement of the protection plates and screws can be made later, through the vacuum ports.

  14. Primary Biliary Cirrhosis Associated with Systemic Sclerosis: Diagnostic and Clinical Challenges

    PubMed Central

    Rigamonti, Cristina; Bogdanos, Dimitrios P.; Mytilinaiou, Maria G.; Smyk, Daniel S.; Rigopoulou, Eirini I.; Burroughs, Andrew K.

    2011-01-01

    Patients with primary biliary cirrhosis (PBC) often have concurrent limited systemic sclerosis (SSc). Conversely, up to one-fourth of SSc patients are positive for PBC-specific antimitochondrial antibodies (AMA). The mechanisms responsible for the co-occurrence of these diseases are largely unknown. Genetic, epigenetic, environmental, and infectious factors appear to be important for the pathogenesis of the disease, but the hierarchy of events are not well defined. Patients with SSc and PBC have an increased morbidity and mortality compared with the general population, but whether the presence of both diseases in an affected individual worsens the prognosis and/or outcome of either disease is not clear. Some case reports suggested that the presence of SSc in PBC patents is associated with a more favorable prognosis of the liver disease, whereas others report an increased mortality in patients with PBC and SSc compared to patients with PBC alone. This paper discusses the features of patients with PBC-associated SSc. Our aims are to clarify some of the pathogenetic, diagnostic, and clinical challenges that are currently faced in the routine management of these patients. We also intend to provide some practical hints for practitioners that will assist in the early identification of patients with PBC-associated SSc. PMID:22187566

  15. Electrodiffusion Method of Near-Wall Flow Diagnostics in Microfluidic Systems

    NASA Astrophysics Data System (ADS)

    Tihona, J.; P?nkavová, V.; Stanovský, P.; Vejražka, J.

    2015-05-01

    The electrodiffusion technique has been mostly used for the near-wall flow diagnostics on large scales. A novel technique for fabrication of plastic microfluidic systems with integrated metal microelectrodes (called technique of sacrificed substrate) enables us to produce microfluidic devices with precisely shaped sensors for wall shear stress measurements. Several micrometer thick gold sensors, which are built-in a plastic substrate, exhibit good mechanical resistance and smoothness. Proper functioning of prepared chips with microsensors has been first tested in various calibration experiments (polarization curve, sensor response to polarization set-up, steady flow calibration, temperature dependence of diffusivity). Our first results obtained for separating/reattaching flow behind a backward-facing step and for gas-liquid Taylor flow in microchannels then demonstrate its applicability for the detection of near-wall flow reversal, the delimitation of flow - recirculation zones, and the determination of wall shear stress response to moving bubbles. Other applications of these sensors in microfluidics (e.g. characterization of liquid films, capillary waves, bubbles or drops) can be also envisaged.

  16. Periscope-camera system for visible and infrared imaging diagnostics on TFTR

    SciTech Connect

    Medley, S.S.; Dimock, D.L.; Hayes, S.; Long, D.; Lowrence, J.L.; Mastrocola, V.; Renda, G.; Ulrickson, M.; Young, K.M.

    1985-05-01

    An optical diagnostic consisting of a periscope which relays images of the torus interior to an array of cameras is used on the Tokamak Fusion Test Reactor (TFTR) to view plasma discharge phenomena and inspect vacuum vessel internal structures in both visible and near-infrared wavelength regions. Three periscopes view through 20-cm-diameter fused-silica windows which are spaced around the torus midplane to provide a viewing coverage of approximately 75% of the vacuum vessel internal surface area. The periscopes have f/8 optics and motor-driven controls for focusing, magnification selection (5/sup 0/, 20/sup 0/, and 60/sup 0/ field of view), elevation and azimuth setting, mast rotation, filter selection, iris aperture, and viewing port selection. The four viewing ports on each periscope are equipped with multiple imaging devices which include: (1) an inspection eyepiece, (2) standard (RCA TC2900) and fast (RETICON) framing rate television cameras, (3) a PtSi CCD infrared imaging camera, (4) a 35 mm Nikon F3 still camera, or (5) a 16 mm Locam II movie camera with variable framing up to 500 fps. Operation of the periscope-camera system is controlled either locally or remotely through a computer-CAMAC interface. A description of the equipment and examples of its application are presented.

  17. Getting expert systems off the ground: Lessons learned from integrating model-based diagnostics with prototype flight hardware

    NASA Astrophysics Data System (ADS)

    Stephan, Amy; Erikson, Carol A.

    1991-11-01

    As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.

  18. Getting expert systems off the ground: Lessons learned from integrating model-based diagnostics with prototype flight hardware

    NASA Technical Reports Server (NTRS)

    Stephan, Amy; Erikson, Carol A.

    1991-01-01

    As an initial attempt to introduce expert system technology into an onboard environment, a model based diagnostic system using the TRW MARPLE software tool was integrated with prototype flight hardware and its corresponding control software. Because this experiment was designed primarily to test the effectiveness of the model based reasoning technique used, the expert system ran on a separate hardware platform, and interactions between the control software and the model based diagnostics were limited. While this project met its objective of showing that model based reasoning can effectively isolate failures in flight hardware, it also identified the need for an integrated development path for expert system and control software for onboard applications. In developing expert systems that are ready for flight, artificial intelligence techniques must be evaluated to determine whether they offer a real advantage onboard, identify which diagnostic functions should be performed by the expert systems and which are better left to the procedural software, and work closely with both the hardware and the software developers from the beginning of a project to produce a well designed and thoroughly integrated application.

  19. The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release

    SciTech Connect

    Desai, S.; Armstrong, R.; Mohr, J.J.; Semler, D.R.; Liu, J.; Bertin, E.; Allam, S.S.; Barkhouse, W.A.; Bazin, G.; Buckley-Geer, E.J.; Cooper, M.C.; /UC, Irvine /Lick Observ. /UC, Santa Cruz

    2012-04-01

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha},{delta})= (5 hr, -55{sup circ} and 23 hr, -55{sup circ}). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF corrected model fitting photometry for all detected objects. The median 10{sigma} galaxy (point source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 milli-arcsec. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from 2MASS which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematics floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7% and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta} z/(1+z)=0.054 with an outlier fraction {eta}<5% to z{approx}1. We highlight some selected science results to date and provide a full description of the released data products.

  20. THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE

    SciTech Connect

    Desai, S.; Mohr, J. J.; Semler, D. R.; Liu, J.; Bazin, G.; Zenteno, A.; Armstrong, R.; Bertin, E.; Allam, S. S.; Buckley-Geer, E. J.; Lin, H.; Tucker, D.; Barkhouse, W. A.; Cooper, M. C.; Hansen, S. M.; High, F. W.; Lin, Y.-T.; Ngeow, C.-C.; Rest, A.; Song, J.

    2012-09-20

    The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of {approx}80 deg{sup 2} of the southern sky located in two fields: ({alpha}, {delta}) = (5 hr, -55 Degree-Sign ) and (23 hr, -55 Degree-Sign ). The survey was carried out between 2005 and 2008 in griz bands with the Mosaic2 imager on the Blanco 4 m telescope. The primary aim of the BCS survey is to provide the data required to optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich effect selected galaxy clusters from the South Pole Telescope and the Atacama Cosmology Telescope. We process and calibrate the BCS data, carrying out point-spread function-corrected model-fitting photometry for all detected objects. The median 10{sigma} galaxy (point-source) depths over the survey in griz are approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6), and 21.3 (22.1), respectively. The astrometric accuracy relative to the USNO-B survey is {approx}45 mas. We calibrate our absolute photometry using the stellar locus in grizJ bands, and thus our absolute photometric scale derives from the Two Micron All Sky Survey, which has {approx}2% accuracy. The scatter of stars about the stellar locus indicates a systematic floor in the relative stellar photometric scatter in griz that is {approx}1.9%, {approx}2.2%, {approx}2.7%, and {approx}2.7%, respectively. A simple cut in the AstrOmatic star-galaxy classifier spread{sub m}odel produces a star sample with good spatial uniformity. We use the resulting photometric catalogs to calibrate photometric redshifts for the survey and demonstrate scatter {delta}z/(1 + z) = 0.054 with an outlier fraction {eta} < 5% to z {approx} 1. We highlight some selected science results to date and provide a full description of the released data products.

  1. Evaluating models of karst system processes

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-06-01

    Karst aquifers are complex hydrological systems with water flow and storage below the surface. Scientists are able to study these systems by observing surface runoff, but this method provides an incomplete picture of the system's hydrological processes. Models can help improve understanding, but evaluating which models are most accurate is difficult.

  2. Rational Unified Process for Systems Engineering

    E-print Network

    Balmelli, Laurent

    Rational Unified Process for Systems Engineering Part 1: Introducing RUP SE Version 2.0 by Murray a variety of development requirements, including "systems engineering," or SE. In 2001, the first RUP Plug-In to support systems engineering was proposed by Rational Software's strategic services organization. The RUP

  3. ECOSTATIC CANE PROCESSING SYSTEM PROTOTYPE PHASE

    EPA Science Inventory

    The overall objective of this project was to demonstrate a systems environmental management approach, from field to final product, for the processing of raw cane sugar. Specific sub-systems which were to be developed and demonstrated as part of this systems approach were: (a) har...

  4. Missouri Automated Radiology System: a dynamic, interactive diagnostic and management system for radiant images.

    PubMed

    Lodwick, G S; Tully, R J; Markivee, C R; Hakimi, B R; Dittrich, F J

    1977-01-01

    Missouri Automated Radiology System has functioned in full support of the Department of Radiology for more than 7 years. For the past 5 years, MARS has functioned as a minicomputer system on a DEC (Digital Equipment Corporation) PDP-15 computer. While continuing to effectively support the department, in daily use by 20 staff and 15 resident physicians, MARS has continued to function in a research and development mode. With the continuous development of new applications, MARS is now essential to the function of the department and has again proven the point that physicians and computers can function symbiotically in the medical environment. PMID:10297278

  5. Optical diagnostics based on elastic scattering: An update of clinical demonstrations with the Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Boyer, J.; Johnson, T.M.; Lacey, J.; Mourant, J.R.; Conn, R.; Bohorfoush, A.

    1994-10-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.

  6. Methodological particularities of creating of remote mapping diagnostical system of ionospheric characteristics from the orbits of perspective russian satellites

    NASA Astrophysics Data System (ADS)

    Kuzmin, Alexander; Merzlyi, Alexey; Shadrin, Dmitriy

    When one analyzes the dynamics of phenomena in the ionosphere, thermosphere, and magnetosphere and studies the nature of their (M-I) interaction necessity of knowledge of M-I instantaneous state. System of orbital diagnostics of space weather parameters is continually improved but there are many vagueness in understanding of electrodynamical links and processes of interaction magnetosphere and ionosphere. To provide data about energetic characteristics of precipitating from magnetosphere charge particles, gradients of magnetic and electrical fields, ionosphere conductance, distributions of auroral emissions, wave processes are supposed to use satellites at the different polar orbits. Global (~10-20 km) and local (small-scale ~1 km) resolution can be reach in remote mapping of distributions of protons and electrons energy fluxes and average energy from the high and low apogee orbits by the measurements emission intensity with VUV and VIS auroral imagers, and in spectral region 130-150 nm auroral emissions distribution are seen from the top in sunlit hemisphere owing to natural absorption of underlying oxygen molecules layer. Flux and average energy of precipitating protons and their secondary electrons to inducing conductance must be account by means of measurement of Ly-? (from high apogee orbit) and H? emissions intensity (from low apogee orbit). This is important especially in time quiet geomagnetic conditions. Both LBH-bands and 135,6 [OI] emission intensities, and N2+ and [OI] emissions at the nightside are good remote indicators of electron precipitations. Some aspects of methodology are considered for examples of auroral images from the POLAR, IMAGE and TIMED projects. Pitch-distributions that will be measure from both orbits simultaneously with gradients of electric and magnetic fields will allow to monitor the conditions in magnetic tube and to test of solution of the inverse problem by reconstruction energetic characteristics of charge particles from emission intensity distributions.

  7. A radar data processing and enhancement system

    NASA Technical Reports Server (NTRS)

    Anderson, K. F.; Wrin, J. W.; James, R.

    1986-01-01

    This report describes the space position data processing system of the NASA Western Aeronautical Test Range. The system is installed at the Dryden Flight Research Facility of NASA Ames Research Center. This operational radar data system (RADATS) provides simultaneous data processing for multiple data inputs and tracking and antenna pointing outputs while performing real-time monitoring, control, and data enhancement functions. Experience in support of the space shuttle and aeronautical flight research missions is described, as well as the automated calibration and configuration functions of the system.

  8. A dynamically reconfigurable data stream processing system

    SciTech Connect

    Nogiec, J.M.; Trombly-Freytag, K.; /Fermilab

    2004-11-01

    This paper describes a component-based framework for data stream processing that allows for configuration, tailoring, and runtime system reconfiguration. The system's architecture is based on a pipes and filters pattern, where data is passed through routes between components. A network of pipes and filters can be dynamically reconfigured in response to a preplanned sequence of processing steps, operator intervention, or a change in one or more data streams. This framework provides several mechanisms supporting dynamic reconfiguration and can be used to build static data stream processing applications such as monitoring or data acquisition systems, as well as self-adjusting systems that can adapt their processing algorithm, presentation layer, or data persistency layer in response to changes in input data streams.

  9. Energy Conservation in Process Chilled Water Systems 

    E-print Network

    Ambs, L. L.; DiBella, R. A.

    1993-01-01

    The energy consumption of the chiller and cooling tower in a process cooling application was analyzed using the TRNSYS computer code. The basic system included a constant speed centrifugal chiller and an induced-draft, counterflow cooling tower...

  10. The ESA FELYX High Resolution Diagnostic Data Set System Design and Implementation

    NASA Astrophysics Data System (ADS)

    Taberner, M.; Shutler, J.; Walker, P.; Poulter, D.; Piolle, J.-F.; Donlon, C.; Guidetti, V.

    2013-10-01

    Felyx is currently under development and is the latest evolution of a generalised High Resolution Diagnostic Data Set system funded by ESA. It draws on previous prototype developments and experience in the GHRSST, Medspiration, GlobColour and GlobWave projects. In this paper, we outline the design and implementation of the system, and illustrate using the Ocean Colour demonstration activities. Felyx is fundamentally a tool to facilitate the analysis of EO data: it is being developed by IFREMER, PML and Pelamis. It will be free software written in python and javascript. The aim is to provide Earth Observation data producers and users with an opensource, flexible and reusable tool to allow the quality and performance of data streams from satellite, in situ and model sources to be easily monitored and studied. New to this project, is the ability to establish and incorporate multi-sensor match-up database capabilities. The systems will be deployable anywhere and even include interaction mechanisms between the deployed instances. The primary concept of Felyx is to work as an extraction tool. It allows for the extraction of subsets of source data over predefined target areas(which can be static or moving). These data subsets, and associated metrics, can then be accessed by users or client applications either as raw files or through automatic alerts. These data can then be used to generate periodic reports or be used for statistical analysis and visualisation through a flexible web interface. Felyx can be used for subsetting, the generation of statistics, the generation of reports or warnings/alerts, and in-depth analyses, to name a few. There are many potential applications but important uses foreseen are: * monitoring and assessing the quality of Earth observations (e.g. satellite products and time series) through statistical analysis and/or comparison with other data sources * assessing and inter-comparing geophysical inversion algorithms * observing a given phenomenon, collecting and cumulating various parameters over a defined area * crossing different sources of data for synergy applications The services provided by felyx will be generic, deployable at users own premises, and flexible allowing the integration and development of any kind of parameters. Users will be able to operate their own felyx instance at any location, on datasets and parameters of their own interest, and the various instances will be able to interact with each other, creating a web of felyx systems enabling aggregation and cross comparison of miniProds and metrics from multiple sources. Initially two instances will be operated simultaneously during a 6 months demonstration phase, at IFREMER - on sea surface temperature and ocean waves datasets - and PML - on ocean colour.

  11. Design of Industrial Process Refrigeration Systems 

    E-print Network

    Witherell, W. D.

    1987-01-01

    of the remaining processes (i. e., dairy and air separation) had good potential but would be no better at demonstrating pinch technology principles. TABLE 2 REFRIGERATION SYSTEM APPLICATIONS OF PRIMARY INTERST Industry Applications of Primary Interst Food... REFRIGERATION PROCESSES Industry Process Food Da iry - Mi Ik/ Ice Cream "Beverages - Brewery Cryogenic Air Separation Plants Chemical Industry hTrnonia "Olefins "Selected for In-Depth Pinch Technology StUdy 33 ESL-IE-87-09-06 Proceedings from...

  12. A plasma process monitor/control system

    SciTech Connect

    Stevenson, J.O.; Ward, P.P.; Smith, M.L.; Markle, R.J.

    1997-08-01

    Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.

  13. Parallel asynchronous systems and image processing algorithms

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  14. Teaching Information Systems Development via Process Variants

    ERIC Educational Resources Information Center

    Tan, Wee-Kek; Tan, Chuan-Hoo

    2010-01-01

    Acquiring the knowledge to assemble an integrated Information System (IS) development process that is tailored to the specific needs of a project has become increasingly important. It is therefore necessary for educators to impart to students this crucial skill. However, Situational Method Engineering (SME) is an inherently complex process that…

  15. Interactive data-processing system for metallurgy

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1978-01-01

    Equipment indicates that system can rapidly and accurately process metallurgical and materials-processing data for wide range of applications. Advantages include increase in contract between areas on image, ability to analyze images via operator-written programs, and space available for storing images.

  16. What Is behind the Diagnosis of Learning Disability in Austrian Schools? An Empirical Evaluation of the Results of the Diagnostic Process

    ERIC Educational Resources Information Center

    Gebhardt, Markus; Krammer, Mathias; Schwab, Susanne; Rossmann, Peter; Gasteiger Klicpera, Barbara

    2013-01-01

    Every school system has to deal with children with Learning Disabilities (LD). However, the concepts of LD, the assessment procedures, the diagnostic criteria as well as their interpretation vary widely from country to country. What they usually have in common is that general cognitive abilities, as measured by standardized IQ tests, are seen as…

  17. What Is behind the Diagnosis of Learning Disability in Austrian Schools? An Empirical Evaluation of the Results of the Diagnostic Process

    ERIC Educational Resources Information Center

    Gebhardt, Markus; Krammer, Mathias; Schwab, Susanne; Rossmann, Peter; Klicpera, Barbara Gasteiger; Klatten, Susanne

    2013-01-01

    Every school system has to deal with children with Learning Disabilities (LD). However, the concepts of LD, the assessment procedures, the diagnostic criteria as well as their interpretation vary widely from country to country. What they usually seem to have in common is that general cognitive abilities, as measured by standardized IQ tests, are…

  18. Diagnostic Laparoscopy

    MedlinePLUS

    ... Sponsorship Opportunities Login Diagnostic Laparoscopy Patient Information from SAGES Download PDF Version Find a SAGES Surgeon Diagnostic ... 2015 CME Credits Healthy Sooner: Patient Information Contact SAGES Society of American Gastrointestinal and Endoscopic Surgeons 11300 ...

  19. The incidence of diagnostic error in medicine.

    PubMed

    Graber, Mark L

    2013-10-01

    A wide variety of research studies suggest that breakdowns in the diagnostic process result in a staggering toll of harm and patient deaths. These include autopsy studies, case reviews, surveys of patient and physicians, voluntary reporting systems, using standardised patients, second reviews, diagnostic testing audits and closed claims reviews. Although these different approaches provide important information and unique insights regarding diagnostic errors, each has limitations and none is well suited to establishing the incidence of diagnostic error in actual practice, or the aggregate rate of error and harm. We argue that being able to measure the incidence of diagnostic error is essential to enable research studies on diagnostic error, and to initiate quality improvement projects aimed at reducing the risk of error and harm. Three approaches appear most promising in this regard: (1) using 'trigger tools' to identify from electronic health records cases at high risk for diagnostic error; (2) using standardised patients (secret shoppers) to study the rate of error in practice; (3) encouraging both patients and physicians to voluntarily report errors they encounter, and facilitating this process. PMID:23771902

  20. Integrated diagnostics

    NASA Technical Reports Server (NTRS)

    Hunthausen, Roger J.

    1988-01-01

    Recently completed projects in which advanced diagnostic concepts were explored and/or demonstrated are summarized. The projects begin with the design of integrated diagnostics for the Army's new gas turbine engines, and advance to the application of integrated diagnostics to other aircraft subsystems. Finally, a recent project is discussed which ties together subsystem fault monitoring and diagnostics with a more complete picture of flight domain knowledge.

  1. Instrumentation and diagnostics

    SciTech Connect

    Nakaishi, C.V.; Bedick, R.C.

    1990-12-01

    This Technology Status Report describes research and accomplishments for the Instrumentation and Diagnostics (I D) Projects within the Advanced Research and Technology Development (AR TD) Program of the United States Department of Energy (DOE) Office of Fossil Energy (FE). Process understanding and control can be improved through the development of advanced instrumentation and diagnostics. The thrust of the I D Projects is to further develop existing measurement and control techniques for application to advanced coal-based technologies. Project highlights are: an inductively coupled plasma (ICP) instrument has been developed to analyze trace elements in gasification and combustion process streams. An in situ two-color Mie scattering technique with LSS can simultaneously measure the size, velocity, and elemental composition of coal particles during combustion. A high-temperature, fluorescence thermometry technique has accurately measured gas temperatures during field testing in combustion and gasification environments. Expert systems have been developed to improve the control of advanced coal-based processes. Capacitance flowmeters were developed to determine the mass flowrate, solid volume fraction, and particle velocities of coal slurries. 32 refs., 9 figs.

  2. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    SciTech Connect

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang; Eigenbrod, Christian; Klinkov, Konstantin; Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian

    2014-03-15

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (?g) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM{sub 00}) at narrowband operation (?? < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under ?g conditions. In order to demonstrate the capabilities of the capsule laser as a tool for ?g combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  3. Diode pumped solid state kilohertz disk laser system for time-resolved combustion diagnostics under microgravity at the drop tower Bremen

    NASA Astrophysics Data System (ADS)

    Wagner, Volker; Paa, Wolfgang; Triebel, Wolfgang; Eigenbrod, Christian; Klinkov, Konstantin; Larionov, Mikhail; Giesen, Adolf; Stolzenburg, Christian

    2014-03-01

    We describe a specially designed diode pumped solid state laser system based on the disk laser architecture for combustion diagnostics under microgravity (?g) conditions at the drop tower in Bremen. The two-stage oscillator-amplifier-system provides an excellent beam profile (TEM00) at narrowband operation (?? < 1 pm) and is tunable from 1018 nm to 1052 nm. The laser repetition rate of up to 4 kHz at pulse durations of 10 ns enables the tracking of processes on a millisecond time scale. Depending on the specific issue it is possible to convert the output radiation up to the fourth harmonic around 257 nm. The very compact laser system is integrated in a slightly modified drop capsule and withstands decelerations of up to 50 g (>11 ms). At first the concept of the two-stage disk laser is briefly explained, followed by a detailed description of the disk laser adaption to the drop tower requirements with special focus on the intended use under ?g conditions. In order to demonstrate the capabilities of the capsule laser as a tool for ?g combustion diagnostics, we finally present an investigation of the precursor-reactions before the droplet ignition using 2D imaging of the Laser Induced Fluorescence of formaldehyde.

  4. Diagnostic Lumbar Puncture

    PubMed Central

    Doherty, Carolynne M; Forbes, Raeburn B

    2014-01-01

    Diagnostic Lumbar Puncture is one of the most commonly performed invasive tests in clinical medicine. Evaluation of an acute headache and investigation of inflammatory or infectious disease of the nervous system are the most common indications. Serious complications are rare, and correct technique will minimise diagnostic error and maximise patient comfort. We review the technique of diagnostic Lumbar Puncture including anatomy, needle selection, needle insertion, measurement of opening pressure, Cerebrospinal Fluid (CSF) specimen handling and after care. We also make some quality improvement suggestions for those designing services incorporating diagnostic Lumbar Puncture. PMID:25075138

  5. Design of a magnetic shielding system for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    SciTech Connect

    Cui, Z. Q.; Chen, Z. J.; Xie, X. F.; Peng, X. Y.; Hu, Z. M.; Du, T. F.; Ge, L. J.; Zhang, X.; Yuan, X.; Fan, T. S.; Chen, J. X.; Li, X. Q. E-mail: guohuizhang@pku.edu.cn; Zhang, G. H. E-mail: guohuizhang@pku.edu.cn; Xia, Z. W.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    The novel neutron spectrometer TOFED (Time of Flight Enhanced Diagnostics), comprising 90 individual photomultiplier tubes coupled with 85 plastic scintillation detectors through light guides, has been constructed and installed at Experimental Advanced Superconducting Tokamak. A dedicated magnetic shielding system has been constructed for TOFED, and is designed to guarantee the normal operation of photomultiplier tubes in the stray magnetic field leaking from the tokamak device. Experimental measurements and numerical simulations carried out employing the finite element method are combined to optimize the design of the magnetic shielding system. The system allows detectors to work properly in an external magnetic field of 200 G.

  6. Ischemic Stroke Detection System with a Computer-Aided Diagnostic Ability Using an Unsupervised Feature Perception Enhancement Method

    PubMed Central

    Tyan, Yeu-Sheng; Wu, Ming-Chi; Chin, Chiun-Li; Kuo, Yu-Liang; Lee, Ming-Sian; Chang, Hao-Yan

    2014-01-01

    We propose an ischemic stroke detection system with a computer-aided diagnostic ability using a four-step unsupervised feature perception enhancement method. In the first step, known as preprocessing, we use a cubic curve contrast enhancement method to enhance image contrast. In the second step, we use a series of methods to extract the brain tissue image area identified during preprocessing. To detect abnormal regions in the brain images, we propose using an unsupervised region growing algorithm to segment the brain tissue area. The brain is centered on a horizontal line and the white matter of the brain's inner ring is split into eight regions. In the third step, we use a coinciding regional location method to find the hybrid area of locations where a stroke may have occurred in each cerebral hemisphere. Finally, we make corrections and mark the stroke area with red color. In the experiment, we tested the system on 90 computed tomography (CT) images from 26 patients, and, with the assistance of two radiologists, we proved that our proposed system has computer-aided diagnostic capabilities. Our results show an increased stroke diagnosis sensitivity of 83% in comparison to 31% when radiologists use conventional diagnostic images. PMID:25610453

  7. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John (Indiana, PA); Miller, Bruce G. (State College, PA); Wincek, Ronald T. (State College, PA); Decker, Glenn E. (Bellefonte, PA); Johnson, David K. (Port Matilda, PA)

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  8. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  9. Waste receiving and processing plant control system; system design description

    SciTech Connect

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed as separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.

  10. Development of an Automated Fault Detection and Diagnostic Tool for Unitary HVAC Systems at Industrial Energy Audits 

    E-print Network

    Parikh, Priyam

    2014-10-30

    Industrial energy audits generally focus on optimization of manufacturing process systems but fail to focus on the non-process industrial HVAC systems. This is in spite of the well-documented widespread prevalence of efficiency degrading faults...

  11. Information processing systems, reasoning modules, and reasoning system design methods

    DOEpatents

    Hohimer, Ryan E.; Greitzer, Frank L.; Hampton, Shawn D.

    2015-08-18

    Information processing systems, reasoning modules, and reasoning system design methods are described. According to one aspect, an information processing system includes working memory comprising a semantic graph which comprises a plurality of abstractions, wherein the abstractions individually include an individual which is defined according to an ontology and a reasoning system comprising a plurality of reasoning modules which are configured to process different abstractions of the semantic graph, wherein a first of the reasoning modules is configured to process a plurality of abstractions which include individuals of a first classification type of the ontology and a second of the reasoning modules is configured to process a plurality of abstractions which include individuals of a second classification type of the ontology, wherein the first and second classification types are different.

  12. Information processing systems, reasoning modules, and reasoning system design methods

    DOEpatents

    Hohimer, Ryan E; Greitzer, Frank L; Hampton, Shawn D

    2014-03-04

    Information processing systems, reasoning modules, and reasoning system design methods are described. According to one aspect, an information processing system includes working memory comprising a semantic graph which comprises a plurality of abstractions, wherein the abstractions individually include an individual which is defined according to an ontology and a reasoning system comprising a plurality of reasoning modules which are configured to process different abstractions of the semantic graph, wherein a first of the reasoning modules is configured to process a plurality of abstractions which include individuals of a first classification type of the ontology and a second of the reasoning modules is configured to process a plurality of abstractions which include individuals of a second classification type of the ontology, wherein the first and second classification types are different.

  13. Architecture for Survivable System Processing (ASSP)

    NASA Technical Reports Server (NTRS)

    Wood, Richard J.

    1991-01-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  14. Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems

    E-print Network

    Bigelow, Stephen

    -fold below the clinical titer of the parasite. Although advanced molecular diagnostic technologies for the detection of infectious diseases such as human immunodeficiency virus (HIV), malaria, and tuberculosis1 using microfluidics technology.25-28 The Landers group pioneered the use of microfluidics for genetic

  15. The Impact of Indiana's System of Diagnostic Assessments on Mathematics Achievement

    ERIC Educational Resources Information Center

    Konstantopoulos, Spyros; Miller, Shazia; van der Ploeg, Arie; Li, Cheng-Hsien; Traynor, Anne

    2011-01-01

    The purpose of the study was to design a rigorous experimental study and collect high quality data to determine the effectiveness of the intervention on student achievement. In particular, the authors examined whether diagnostic assessments implemented by schools in Indiana produced rigorous estimates of their effects on student performance on the…

  16. Development of an Information Fusion System for Engine Diagnostics and Health Management

    NASA Technical Reports Server (NTRS)

    Volponi, Allan J.; Brotherton, Tom; Luppold, Robert; Simon, Donald L.

    2004-01-01

    Aircraft gas-turbine engine data are available from a variety of sources including on-board sensor measurements, maintenance histories, and component models. An ultimate goal of Propulsion Health Management (PHM) is to maximize the amount of meaningful information that can be extracted from disparate data sources to obtain comprehensive diagnostic and prognostic knowledge regarding the health of the engine. Data Fusion is the integration of data or information from multiple sources, to achieve improved accuracy and more specific inferences than can be obtained from the use of a single sensor alone. The basic tenet underlying the data/information fusion concept is to leverage all available information to enhance diagnostic visibility, increase diagnostic reliability and reduce the number of diagnostic false alarms. This paper describes a basic PHM Data Fusion architecture being developed in alignment with the NASA C17 Propulsion Health Management (PHM) Flight Test program. The challenge of how to maximize the meaningful information extracted from disparate data sources to obtain enhanced diagnostic and prognostic information regarding the health and condition of the engine is the primary goal of this endeavor. To address this challenge, NASA Glenn Research Center (GRC), NASA Dryden Flight Research Center (DFRC) and Pratt & Whitney (P&W) have formed a team with several small innovative technology companies to plan and conduct a research project in the area of data fusion as applied to PHM. Methodologies being developed and evaluated have been drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and fuzzy logic. This paper will provide a broad overview of this work, discuss some of the methodologies employed and give some illustrative examples.

  17. Manual of diagnostic imaging

    SciTech Connect

    Gaylord, G.; Baker, S.; Davis, L.

    1988-01-01

    This book is on ordering and understanding the results of radiologic studies. Main sections are (I) Diagnostic Radiology serves as a basic introduction; (II) Diagnostic Modalities dedicates a chapter to each imaging modality in a clinical context, with a brief technical description and patient preparation guidelines; and (III) Organ System Imaging contains a chapter on each major organ system, covering the abilities and limitations of each modality to image a specific organ system and the significance of anatomic, physiologic, and general pathologic information.

  18. EOS image data processing system definition study

    NASA Technical Reports Server (NTRS)

    Gilbert, J.; Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    The Image Processing System (IPS) requirements and configuration are defined for NASA-sponsored advanced technology Earth Observatory System (EOS). The scope included investigation and definition of IPS operational, functional, and product requirements considering overall system constraints and interfaces (sensor, etc.) The scope also included investigation of the technical feasibility and definition of a point design reflecting system requirements. The design phase required a survey of present and projected technology related to general and special-purpose processors, high-density digital tape recorders, and image recorders.

  19. Spacelab output processing system architectural study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Two different system architectures are presented. The two architectures are derived from two different data flows within the Spacelab Output Processing System. The major differences between these system architectures are in the position of the decommutation function (the first architecture performs decommutation in the latter half of the system and the second architecture performs that function in the front end of the system). In order to be examined, the system was divided into five stand-alone subsystems; Work Assembler, Mass Storage System, Output Processor, Peripheral Pool, and Resource Monitor. The work load of each subsystem was estimated independent of the specific devices to be used. The candidate devices were surveyed from a wide sampling of off-the-shelf devices. Analytical expressions were developed to quantify the projected workload in conjunction with typical devices which would adequately handle the subsystem tasks. All of the study efforts were then directed toward preparing performance and cost curves for each architecture subsystem.

  20. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  1. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    SciTech Connect

    Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

    2008-02-01

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  2. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    NASA Astrophysics Data System (ADS)

    Wray, C. P.; Sherman, M. H.; Walker, I. S.; Dickerhoff, D. J.; Federspiel, C. C.

    2008-09-01

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  3. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect

    Lanc, T.L.

    1992-01-01

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  4. The importance of input variables to a neural network fault-diagnostic system for nuclear power plants

    SciTech Connect

    Lanc, T.L.

    1992-12-31

    This thesis explores safety enhancement for nuclear power plants. Emergency response systems currently in use depend mainly on automatic systems engaging when certain parameters go beyond a pre-specified safety limit. Often times the operator has little or no opportunity to react since a fast scram signal shuts down the reactor smoothly and efficiently. These accidents are of interest to technical support personnel since examining the conditions that gave rise to these situations help determine causality. In many other cases an automated fault-diagnostic advisor would be a valuable tool in assisting the technicians and operators to determine what just happened and why.

  5. Ontological Model of Business Process Management Systems

    NASA Astrophysics Data System (ADS)

    Manoilov, G.; Deliiska, B.

    2008-10-01

    The activities which constitute business process management (BPM) can be grouped into five categories: design, modeling, execution, monitoring and optimization. Dedicated software packets for business process management system (BPMS) are available on the market. But the efficiency of its exploitation depends on used ontological model in the development time and run time of the system. In the article an ontological model of BPMS in area of software industry is investigated. The model building is preceded by conceptualization of the domain and taxonomy of BPMS development. On the base of the taxonomy an simple online thesaurus is created.

  6. Tank Waste Remediation System optimized processing strategy

    SciTech Connect

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  7. Deficiency tracking system, conceptual business process requirements

    SciTech Connect

    Hermanson, M.L.

    1997-04-18

    The purpose of this document is to describe the conceptual business process requirements of a single, site-wide, consolidated, automated, deficiency management tracking, trending, and reporting system. This description will be used as the basis for the determination of the automated system acquisition strategy including the further definition of specific requirements, a ''make or buy'' determination and the development of specific software design details.

  8. An expert system for natural language processing

    NASA Technical Reports Server (NTRS)

    Hennessy, John F.

    1988-01-01

    A solution to the natural language processing problem that uses a rule based system, written in OPS5, to replace the traditional parsing method is proposed. The advantage to using a rule based system are explored. Specifically, the extensibility of a rule based solution is discussed as well as the value of maintaining rules that function independently. Finally, the power of using semantics to supplement the syntactic analysis of a sentence is considered.

  9. MicroRNA as Biomarkers and Diagnostics.

    PubMed

    Wang, Jin; Chen, Jinyun; Sen, Subrata

    2016-01-01

    MicroRNAs (miRNAs) are a group of small non-coding RNAs that are involved in regulating a range of developmental and physiological processes; their dysregulation has been associated with development of diseases including cancer. Circulating miRNAs and exosomal miRNAs have also been proposed as being useful in diagnostics as biomarkers for diseases and different types of cancer. In this review, miRNAs are discussed as biomarkers for cancer and other diseases, including viral infections, nervous system disorders, cardiovascular disorders, and diabetes. We summarize some of the clinical evidence for the use of miRNAs as biomarkers in diagnostics and provide some general perspectives on their use in clinical situations. The analytical challenges in using miRNAs in cancer and disease diagnostics are evaluated and discussed. Validation of specific miRNA signatures as biomarkers is a critical milestone in diagnostics. PMID:26031493

  10. Features, Events, and Processes: system Level

    SciTech Connect

    D. McGregor

    2004-10-15

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the system-level features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.113 (d, e, and f) (DIRS 156605). The system-level FEPs addressed in this report typically are overarching in nature, rather than being focused on a particular process or subsystem. As a result, they are best dealt with at the system level rather than addressed within supporting process-level or subsystem-level analyses and models reports. The system-level FEPs also tend to be directly addressed by regulations, guidance documents, or assumptions listed in the regulations; or are addressed in background information used in development of the regulations. For included FEPs, this analysis summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from the TSPA-LA (i.e., why the FEP is excluded). The initial version of this report (Revision 00) was developed to support the total system performance assessment for site recommendation (TSPA-SR). This revision addresses the license application (LA) FEP List (DIRS 170760).

  11. Material Processing Laser Systems For Manufacturing

    NASA Astrophysics Data System (ADS)

    Taeusch, David R.; Ruselowski, John M.

    1986-11-01

    Raycon Corporation is a builder of quality machine tools. Combining this with applications expertise to produce high technology production machinery systems using EDM, lasers and other processing methods to solve our customers' production problems is our product. The company has several standard laser machine systems which can be constructed from standard building blocks. The number of axes and travel, the controller requirements, and the required laser type, size and manufacturer are discussed with our customers, and the system to meet their needs is decided upon. These requirements are then built into a processing system for manufacturing use. Several of these systems which are in the field are described, and their purposes and how they accomplish their task are explained. Also, types of YAG and C02 lasers available are described and their optimum use explained. Some specific examples of type versus applications are: YAG low-divergence lasers for trepanning heat-resistant alloys for jet engine turbines; YAG oscillator-amplifier lasers for percussion drilling of cooling holes in jet engine turbine blades; and several special laser machine systems for processing automotive parts are discussed. A few words on laser safety are included to allay some common fears concerning the use of laser technology in the factory environment.

  12. Diagnostic studies of the HxOy-NzOy-O3 photochemical system using data from NASA GTE field expeditions

    NASA Technical Reports Server (NTRS)

    Chameides, William L.

    1988-01-01

    Spring 1084 GTE CITE-1 flight data from the field exercise was obtained from a GTE Data Archive Tape. Chemical and supporting meteorological data taken over the Pacific Ocean was statistically and diagnostically analyzed to identify the key processes affecting the concentrations of ozone and its chemical precursors in the region. The analysis was completed. The analysis of the GTE CITE-2 data is being performed in collaboration with Dr. D.D. Davis and other GTE scientists. Initial results of the analysis were presented and work begun on the paper describing the results.

  13. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment.

    PubMed

    Traverso, P J; Maurer, D A; Ennis, D A; Hartwell, G J; Goforth, M M; Loch, S D; Pearce, A J; Cianciosa, M R

    2014-11-01

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum system through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#? 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20-300 eV and densities of 5 × 10(18) to 5 × 10(19)?m(-3) dependent upon operational scenario. PMID:25430265

  14. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    SciTech Connect

    Traverso, P. J. Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Goforth, M. M.; Loch, S. D.; Pearce, A. J.; Cianciosa, M. R.

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum system through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#? 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19}?m{sup ?3} dependent upon operational scenario.

  15. Cable Diagnostic Focused Initiative

    SciTech Connect

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online knowledge based system (KBS) that helps utilities select the most effective diagnostic technologies for a given cable circuit and circuit conditions.

  16. Functional relationship-based alarm processing system

    DOEpatents

    Corsberg, Daniel R. (Idaho Falls, ID)

    1989-01-01

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the functional relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated or deactivated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary.

  17. Functional relationship-based alarm processing system

    DOEpatents

    Corsberg, D.R.

    1988-04-22

    A functional relationship-based alarm processing system and method analyzes each alarm as it is activated and determines its relative importance with other currently activated alarms and signals in accordance with the functional relationships that the newly activated alarm has with other currently activated alarms. Once the initial level of importance of the alarm has been determined, that alarm is again evaluated if another related alarm is activated or deactivated. Thus, each alarm's importance is continuously updated as the state of the process changes during a scenario. Four hierarchical relationships are defined by this alarm filtering methodology: (1) level precursor (usually occurs when there are two alarm settings on the same parameter); (2) direct precursor (based on causal factors between two alarms); (3) required action (system response or action expected within a specified time following activation of an alarm or combination of alarms and process signals); and (4) blocking condition (alarms that are normally expected and are not considered important). The alarm processing system and method is sensitive to the dynamic nature of the process being monitored and is capable of changing the relative importance of each alarm as necessary. 12 figs.

  18. Genesis Eco Systems, Inc. soil washing process

    SciTech Connect

    Cena, R.J.

    1994-10-11

    The Genesis soil washing system is an integrated system of modular design allowing for maximum material handling capabilities, with optimized use of space for site mobility. The Surfactant Activated Bio-enhanced Remediation Equipment-Generation 1 (SABRE-1, Patent Applied For) modification was developed specifically for removing petroleum byproducts from contaminated soils. Scientifically formulated surfactants, introduced by high pressure spray nozzles, displace the contaminant from the surface of the soil particles into the process solution. Once the contaminant is dispersed into the liquid fraction of the process, it is either mechanically removed, chemically oxidized, or biologically oxidized. The contaminated process water is pumped through the Genesis Biosep (Patent Applied For) filtration system where the fines portion is flocculated, and the contaminant-rich liquid portion is combined with an activated mixture of nutrients and carefully selected bacteria to decompose the hydrocarbon fraction. The treated soil and dewatered fines are transferred to a bermed stockpile where bioremediation continues during drying. The process water is reclaimed, filtered, and recycled within the system.

  19. Microprocessor systems for industrial process control

    NASA Technical Reports Server (NTRS)

    Lesh, F. H.

    1980-01-01

    Six computers operate synchronously and are interconnected by three independent data buses. Processors control one subsystem. Some can control buses to transfer data at 1 megabit per second. Every 2.5 msec each processor examines list of things to do during next interval. This spacecraft control system could be adapted for controlling complex industrial processes.

  20. Process Systems Engineering Education: Learning by Research

    ERIC Educational Resources Information Center

    Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.

    2009-01-01

    In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…